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Scope
This report describes the work done during the semester with the master thesis in
marine hydrodynamics at the Norwegian University of Science and Technology.
The workload is estimated to 30 credits.

At the beginning of the semester, a draft of the project work was defined. During
the semester was the plan reviewed, and the following steps were outlined as a
framework for the project:

1. Summarize major findings/outcomes from the project thesis.

2. Complement the literature study of the Project on viscous-flow formulations
and select the Navier-Stokes solution strategy to be used for problems with
2D laminar flows.

3. Apply a generalized HPC solver made available by the developers (at con-
fidential level) for the BVP of a 2D circular cylinder in a uniform current
as done for the HPC solver during the Project. Examine the numerical-
convergence properties.

4. Introduce the generalized HPC solver for the solution of Poisson equations
into the Navier-Stokes solution strategy identified in step 2 and apply the
resulting method to the time evolution of a 2D problem with a body in a
steady current. Compare the results against available reference solutions,
for instance in terms of wake evolution and loads on the cylinder. To limit
the error sources connected with enforcing the body boundary conditions,
you can choose a squared cylinder for the study.

5. If possible, use an available Poisson-solver library in the basic Navier-
Stokes solver and compare the results in terms of CPU-time costs and solu-
tion accuracy.
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Preface
This report is the final thesis of my degree of Master of Science and Technology
at the Department of Marine Technology at NTNU.

The basis of the thesis is the HPC and the generalized HPC method, which
is higher order methods for solving Laplace and Poisson problems receptively.
These methods have shown promising results both regarding accuracy and com-
putation time.

The HPC method is implemented for a uniform flow around a circular cylinder.
The generalized HPC method has been implemented to solve the pressure Poisson
equation in a Navier-Stokes solver.

It has been interesting and motivational, both to learn more about the subject and
to collaborate with other scientists. The process of implementing my routine in a
code developed by someone else has been very informative.

The progression of the project has been by fits and starts. Some things have
been more time consuming than expected. Especially, the improvement of the
Immersed boundary grid that was implemented in the project thesis, and imple-
menting the interface between Matlab and Fortran.

I wish to thank my supervisor Professor Marilena Greco for the guidance the last
year. The weekly meetings, sometimes more often, have been very helpful to keep
a good progress in the project.

I will also thank Giuseppina Colicchio. She has implemented my routine in
her Navier-Stokes solver, and been very helpful in that process.

Andrea Bardazzi also deserves a thank. He has kindly shared his code where
the generalized HPC method where implemented. This was very helpful, espe-
cially in the beginning of the project, and made the process of understanding the
method much easier. His code has been a framework for my implementation.

I want to thank Finn Christian W. Hanssen and Shajoun Ma. It has been helpful
to discuss the HPC method with them, especially the treatment of the boundary
conditions.
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Sammendrag
Lang beregningstid gjør at løsning av Navier-Stokes ligninger ikke er utbredt for
fullskalaproblemer. Mange marine konstruksjoner er definert som storvolumkon-
struksjoner. For disse konstruksjonene gir potensialteori akseptable resultater med
betydelig kortere beregningstid enn Navier-Stokes løsere.

Shao og Faltinsen (2012) har utviklet HPC-metoden, en effektivt og nøyaktig
metode for potensialstrømninger. Metoden bruker harmoniske polynomer som per
definisjon tilfredsstiller Laplace ligningen. Bardazzi et al. (2015) har generalisert
metoden, slik at den løser Poisson ligningen.

I denne oppgaven er et ”Immersed Boundary Grid” implementert for en sirkulær
sylinder. Potensialstrømningen rundt sylinderen er løst med HPC-metoden. En
konvergensrate på 3.47 ble oppnådd for L2 − feilen. Noen svingninger i kon-
vergensgrafen ble observert, dette er typisk for ”Immersed boundary” metoder.

Den generelle HPC-metoden er implementert i en Navier-Stokes løser, for å løse
Poisson ligningen for trykket. En strømning rundt en firkantet sylinder er analysert
for et Reynoldsnummer på 40. Det samme problemet ble også løst med en ”finite
difference” metode (FDM) for trykkligningen. Resultatene ble sammenlignet med
referanseverdier.

En dragkoeffisient på 1.69 ble oppnådd med den generelle HPC-metoden, for
FDM ble dragkoeffisienten 1.77. Referanseverdiene varierte mellom 1.6 og 1.8.
Ingen av metodene konvergerte. Dette kan være fordi at det fineste gridet var for
grovt. Siden et uniformt grid ble brukt, var det ikke mulig å bruke et finere grid.

Simuleringene var betydelig raskere når HPC-metoden ble brukt enn når FDM
ble brukt for å løse trykkligningen. For det fineste gridet, som tilsvarer 237 600
ukjente, var HPC-metoden 3.4 ganger raskere enn FDM. På maskinen som ble
brukt, utgjør denne forskjellen cirka 49 timer, for å simulere 30 sekunder. Dette
illustrerer muligheten for å redusere beregningstiden i en Navier-Stokes løser, ved
å bruke den generelle HPC-metoden for trykkligningen.

Den generelle HPC-metoden tilfredsstilte ikke kompatibilitet betingelsen au-
tomatisk. For å løse dette ble et modifisert ligningssystem løst istedenfor det
originale ligningssystemet. En singulærverdi dekomposisjon var nødvendig for å
løse det modifiserte ligningssystemet. Dette øker beregningstiden, og burde være
mulig å unngå.
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Abstract
The computational cost of solving the Navier-Stokes equations numerically is too
high for most full-scale applications, especially within the marine field. Many
marine structures are defined as large volume structures. For these structures give
potential flow theory reliable results, to an acceptable computational cost.

Shao and Faltinsen (2012) have developed the HPC method, an efficient and
accurate field solver for potential flow problems. The method utilises harmonic
polynomials, which satisfy the Laplace equation by definition. Bardazzi et al.
(2015) have generalized the method to solve the Poisson equation.

In this thesis is an immersed boundary grid, proposed by Hanssen et al. (2015),
implemented for a circular cylinder. The potential flow around the cylinder is
solved with the HPC method. A convergence rate of 3.47 was obtained for the
L2 − error. However, some oscillations were observed, which is typical for im-
mersed boundary methods.

The generalized HPC method is implemented in a Navier-Stokes solver, to solve
the pressure Poisson equation. A uniform flow around a square cylinder is inves-
tigated for a Reynolds number of 40. The results are compared with reference
values. The same problem is also solved when a finite difference (FDM) scheme
is used for the pressure Poisson equation.

A drag coefficient of 1.69 was obtained with the generalized HPC method,
while the FDM scheme obtained a drag coefficient of 1.77. The drag coefficients
in the literature are in the range between 1.6 and 1.8. None of the methods con-
verged. This is probably because the finest grid was too coarse to obtain conver-
gence. A uniform grid was applied, and further grid refinement was out of reach.

Concerning computational time was the generalized HPC method significant
faster than the FDM scheme. For the finest grid, which corresponds to 237 600
unknowns, was the HPC solver 3.4 times faster than the FDM scheme. On the
machine that was used, do this correspond to a difference of approximately 49
hours, when 30 seconds are simulated. This illustrates the potential for reducing
the computational time in a Navier-Stokes solver, by using a generalized HPC
method for the pressure Poisson equation.

The generalized HPC method did not automatically satisfy the discrete com-
patibility condition. To resolve this was a modified equation system solved. A
singular value decomposition was necessary to obtain the modified equation. This
represents an additional computational cost, which should be possible to avoid.
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Nomenclature
The most used symbols and abbreviations are listed below. All symbols and ab-
breviations are described when they are introduced. Some symbols can be used to
indicate different things. Vectors are represented by bold letters.

µ - Dynamic Viscosity
ν - Kinematic Viscosity = µ/ρ
ρ - Density of Fluid
τ - Shear Stress
φ - Velocity Potential
Ω - Computational Domain
∆x - Distance Between Grid points in x-direction
∆y - Distance Between Grid points in y-direction
CD - Drag Coefficient
CFD - Computational Fluid Dynamics
D - Diameter
FDM - Finite Difference Method
FVM - Finite Volume Method
HPC - Harmonic Polynomial Cell
IBG - Immersed Boundary Grid
IBM - Immersed Boundary Method
N - Number of Unknowns in the Computational Domain
n - Normal Vector
PDE - Partial Differential Equation
Re - Reynolds Number
SVD - Singular Value Decomposition
U - Velocity Vector
U - Undisturbed Horiziontal Velocity
u - Horizontal Velocity Component
v - Vertical Velocity Component
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Chapter 1

Introduction

1.1 Background
The Navier-Stokes equations give a precise description of a fluid flow problem.
However, the computational cost of solving these equations numerically is too
high for most full-scale applications, especially for marine applications. More
efficient numerical solvers will be a major contribution towards solving full-scale
problems.

Potential flow theory is widely applied for marine applications. Potential flow the-
ory is valid for inviscid flows and the computation time is much less than for the
viscous problem. For large volume structures, which is the case for many marine
applications, potential flow theory gives reliable results. However, in some appli-
cations are viscous effects non-negligible, and potential flow models are no longer
sufficient. For example is the viscous resistance of great matter in ship hydrody-
namics. Viscous effects are also of great significance for many offshore structures,
especially those with slender elements such as jackets and risers (Gorski, 2002).

Most practical problems have no analytical solution, and numerical methods are
necessary to solve the hydrodynamic problem. The Laplace equation is the gov-
erning equation within potential flow theory. There exist several numerical meth-
ods to solve the corresponding boundary value problem. Boundary element meth-
ods (BEM) have been popular for marine applications. Field solvers like; finite
differences and finite elements are other numerical methods that are applied to the
same purpose.
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1.1. BACKGROUND

Shao and Faltinsen (2012) have developed a new numerical field solver for po-
tential flow problems. The Harmonic Polynomial Cell (HPC) method, is based
on harmonic polynomials, which satisfies the Laplace equation by definition. The
method has shown promising results both regarding accuracy and CPU time com-
pared to traditional solvers (Shao and Faltinsen, 2012), (Shao and Faltinsen, 2014a),
(Shao and Faltinsen, 2014b).

Recently, Ma et al. (2016) have carried out a detailed analysis of the properties
of the HPC method. They have investigated the accuracy of different cells and
local interpolation, global solution, and ways of enforcing boundary conditions.

Hanssen et al. (2015) have introduced an Immersed Boundary Grid (IBG) for the
HPC method. The method has shown a convergence rate close to fourth order.

The immersed boundary grid is a method to apply boundary conditions at
irregular geometries in a Cartesian grid. This simplifies the implementation, com-
pared to body-fitted grids. The approach could also be more efficient than a body-
fitted grid since it is not necessary to remesh the entire domain at every time step,
for time-dependent problems.

The implementation of the Immersed Boundary Grid for a potential flow around a
circular cylinder was the primary objective of the project thesis (Rabliås, 2016). A
convergence rate of 3.21 was obtained, which is similar to the results in Hanssen
et al. (2015). This is within the theoretical range, considering that all polynomi-
als, except one, up to fourth order were included in the interpolation. However,
the IBG converged with an oscillating behaviour, which is an issue for immersed
boundary methods in general. The same phenomenon was also discovered in Ma
et al. (2016).

A thorough review of the results obtained in the project thesis revealed that
the convergence rate was very sensitive of which grids that were included. This
indicates that it is possible to improve the algorithm.

Bardazzi et al. (2015) have extended the HPC method to solve the Poisson equa-
tion. The generalized HPC method uses the same harmonic polynomials as the
original HPC method, while a bi-quadratic polynomial approximates the particu-
lar solution. Bardazzi et al. (2015) have tested the method for physical Poisson
problems where analytical solutions exist. The results show a convergence rate of
approximately fourth order, which is close to the theoretical accuracy. Also, the
results indicate that the method is efficient concerning computational time com-
pared to traditional solvers.
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CHAPTER 1. INTRODUCTION

When a fractional step approach solves the Navier-Stokes equations, a Poisson
equation is obtained for a quantity connected with the pressure. Armfield and
Street (2002) compared a fractional step method with an iterative method with no
Poisson equation. Common to the methods that were tested was that the pressure
correction represented 50−90% of the CPU time. Hence, an accurate and efficient
method for the pressure calculation is of great importance.

3



1.1. BACKGROUND

4
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1.2 Objectives
The implementation of the immersed boundary grid in the project thesis (Rabliås,
2016) obtained a convergence rate of 3.21 for a potential flow around a circular
cylinder. However, further investigations revealed that the convergence rate was
very sensitive of which grids that were included.

The boundary value problem that was solved in the project thesis was a Laplace
problem. This is the same as a Poisson problem where the right-hand side is set to
zero. The first objective of this thesis is to solve the same boundary value problem
as in the project thesis, with the generalized HPC method. A convergence rate
between third and fourth order should be obtained. Since the HPC and the gen-
eralized HPC method are based on the same principle, is the same IBG approach
used to implement the boundary conditions.

The primary objective of this master thesis is to apply the generalized HPC method
for the pressure calculation in a Navier-Stokes solver. An efficient solver for the
Poisson equation will be a considerable step towards an efficient Navier-Stokes
solver. This thesis will describe the implementation of the generalized HPC
method in an existing Navier-Stokes solver. The performance of the generalized
HPC method shall be compared with another Poisson solver that already is imple-
mented in the code.

The following tasks will be performed to achieve the objectives:

1. Implement an Immersed Boundary Grid for the Generalized HPC method.
Test the IBG for a boundary value problem with a circular cylinder.

2. Implement the generalized HPC method in a computational domain with a
square cylinder.

3. Implement point two in a Navier-Stokes solver for the pressure correction.

4. Test the accuracy of the results obtained by the Navier-Stokes solver with
the generalized HPC method.

5. Compare the performance of the Navier-Stokes solver with the generalized
HPC method with another Poisson solver that already is implemented in the
code.

5
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1.3 Scope and Limitations
The Immersed Boundary Grid that is implemented for the circular cylinder is not
made for a general body. Hence, it can only be used for a circular cylinder. How-
ever, the approach is general and can be used for a general body. The IBG will
only be tested for a Laplace problem, i.e the right-hand side is set to zero. This
is because there exists an analytical solution to a Laplace problem that is relevant
for marine applications.

The main objective is to test the generalized HPC method in a Navier-Stokes
solver. Instead of programming a Navier-Stokes solver from scratch, is the Pois-
son solver implemented in an existing code. This makes it easier to compare the
results obtained with the generalized HPC method with another solver.

The square cylinder is chosen such that the errors introduced from the boundary
conditions are kept at a minimum. At this point, the objective is to study the
method itself, not the boundary conditions. A thorough study of the boundary
conditions for bodies with irregular boundaries, is a major task itself.

For Reynolds number above a certain limit, the flow around a square cylinder gets
unstable, with oscillating wake behaviour. To keep the flow as simple as possible
is the flow studied in the stable region. This reduces the error that could come from
sampling the time-varying results. Moreover, the computation time increases for
increasing Reynolds numbers.
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1.4 Structure of Report
The rest of the report is organised as follows. Chapter 2 reviews the governing
equations that are used in the report. The Navier-Stokes equations are presented
together with the governing equations in potential flow theory. In addition are the
main features of a uniform flow around a square and circular cylinder presented.
Relevant parameters for such flows are defined.

Chapter 3 reviews some of the challenges that arise when partial differential
equations (PDEs) are solved numerical, particular the Navier-Stokes equations.
How to measure the accuracy and error norms are defined. Different approaches
for spatial discretization of the computational domain are presented. Time dis-
cretization is also discussed. Some strategies for solving the Navier-Stokes equa-
tions are discussed, especially the fractional step method is given particular atten-
tion.

In chapter 4 are the HPC and the generalised HPC method presented. The
concept and numerical formulation are reviewed.

The problems that are investigated are described in chapter 5. Physical and
computational parameters are given here. Changes to the original code and new
routines are also outlined in this chapter. Challenges that were encountered during
the implementation are reviewed, and assumptions and choices are justified.

In chapter 6 are the simulation results presented. Drag coefficients, computa-
tion time, and convergence are investigated for the solution obtained by the gen-
eralized HPC method. The results are also compared with solutions obtained with
another Poisson solver.

The results and challenges related to the implementation will be discussed in
chapter 7. The drag coefficients that are obtained will be compared with reference
values. Chapter 8 tries to make some conclusions and recommends further work
on the topic.

9
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Chapter 2

Theory

2.1 Fundamental Equations
The governing equations depend on the application and simplifications that are
made. The continuity equation and the momentum equations give a detailed de-
scription of a flow problem. These equations are often called the Navier-Stokes
equations, and for most practical applications these equations are almost exact.
However, high computational costs of solving the Navier-Stokes equations has
made potential flow theory very attractive for marine applications. In potential
flow theory, is the Laplace equation the governing equation. The following sec-
tions will present the Navier-Stokes equations and the governing equations in po-
tential flow theory.

2.1.1 Mass Conservation
The continuity equation describes the conservation of mass in a control volume.
The principle is that the amount of fluid mass inside a control volume can only
change by mass transport through the boundaries, i.e. mass cannot suddenly dis-
appear. This gives us the relation between the rate of change of fluid mass in a
control volume and the mass transport trough the boundaries.

d

dt

∫∫
Ω

ρdΩ +

∮
δΩ

(ρU) · ndS = 0 (2.1)

The first term represents the rate of change of mass in the control volume. While
the second term, which is called the convective term, represents the mass flux
through the boundaries of the control volume.

11



2.1. FUNDAMENTAL EQUATIONS

By use of Gauss’ divergence theorem to the convective term, the surface integral
can be transformed to a volume integral. Equation (2.1) can then be expressed on
differential form (Ferziger and Perić, 1996):

∂ρ

∂t
+∇ · (ρU) = 0 (2.2)

For most marine applications is the flow considered to be incompressible, the
continuity equation can then be further simplified:

∇ · U = 0 (2.3)

2.1.2 Momentum Conservation
The momentum conservation equations can be derived in several ways. The con-
trol volume approach that is used for the mass conservation can also be used for
the momentum equations (Ferziger and Perić, 1996). Momentum has to be con-
served in all directions (x,y and z). There is, therefore, one momentum equation in
each direction. We start with the following conservation equation in vector form:

∂

∂t

∫
Ω

ρUdΩ +

∫
S

ρ UU · n dS =
∑

f (2.4)

The first term on the left-hand side represents the rate of momentum change in-
side the control volume, the second term represents the momentum flow over the
surfaces of the control volume. The right-hand side represents the sum of forces
acting on the control volume. This term can be divided into two main groups;
surface forces and body forces. Surface forces can be; pressure, normal and shear
stress, surface tension, etc. Body forces can be gravity, centrifugal force etc. The
body forces will not be further investigated and will be denoted fb.
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The surface forces are due to external stresses on the sides of the element. By
assuming that the fluid is Newtonian, which is valid for most fluids in marine
applications, the surface forces can be expressed by the stress tensor T:

T = −
(
p+

2

3
∇ · U

)
I + 2µD (2.5)

where I is the unit tensor and D is the rate of strain tensor:

D =
1

2
[∇U + (∇U)T ] (2.6)

The momentum conservation can now be rewritten as:

∂

∂t

∫
Ω

ρUdΩ +

∫
S

ρUU · n dS =

∫
S

T · ndS +

∫
Ω

ρfbdΩ (2.7)

By assuming an incompressible flow and applying Gauss’ divergence theorem,
the conservation of momentum can be written as:

∂U
∂t

+ (U · ∇)U = −1

ρ
∇p+ ν∇2U + fb (2.8)

The conservation of momentum in this form, in addition to the continuity equation
(2.3) are the equations that, in this thesis, will be referred to as the Navier-Stokes
equations.
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2.1. FUNDAMENTAL EQUATIONS

2.1.3 Potential Flow Theory
For an irrational velocity field ( ∇ × U = 0) there exists a scalar function such
that:

U = ∇φ (2.9)

This scalar is in marine hydrodynamics known as the velocity potential, which is
central in potential flow theory. Potential flow theory is valid for flows that are:

• Inviscid

• Irrotational

• Incompressible

For incompressible flows, is the continuity equation expressed by equation (2.3).
By inserting equation (2.9) in the continuity equation, we get:

∇ · U = ∇ · (∇φ) = ∇2φ = 0 (2.10)

This is a Laplace equation, and it is the governing equation within potential flow
theory.

Since the viscous effects are not present in potential flow theory, there are not any
no-slip condition, and the boundary condition on a solid surface is given as:

∂φ

∂n
= n · U (2.11)

For simple geometries and flow problems there exists analytical solutions. How-
ever, for most practical problems numerical methods must be applied.

Equation (2.10) together with boundary conditions, e.g. equation (2.11), makes
a boundary value problem. The boundary value problem can be solved by field
solvers such as finite differences and finite volume methods, or by panel methods.

14



CHAPTER 2. THEORY

2.2 Flow Around a Circular Cylinder

2.2.1 Potential Flow Theory
In potential flow theory, can a uniform flow around a circular cylinder be
described by a dipol, and the analytical expression in polar coordinates
becomes (Pettersen, 2007):

φan = Ur
(

1 +
a2

r2

)
cos θ (2.12)

Where U is the velocity of the undisturbed flow, a is the cylinder radius, r is the
distance from the cylinder centre, and θ is the angle (see figure 2.1).

Figure 2.1: Parallel flow around a circular cylinder with potential flow theory
(Pettersen, 2007).

In potential flow theory, there is an impermeability condition that ensures no flow
through the cylinder surface. This implies that the normal velocity is zero at the
cylinder surface. Hence, the tangential flow at the cylinder surface is given as:

uθ = −2U sin θ (2.13)
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2.2. FLOW AROUND A CIRCULAR CYLINDER

By using a point far away together with a point on the cylinder surface, the
Bernoulli equation gives an expression for the pressure on the cylinder surface:

p = p0 +
1

2
ρU2 − 2ρU2 sin2 θ (2.14)

Where p0 is the pressure far away. Integration of the pressure gives the force on
the cylinder. In potential flow theory, the net force on the cylinder is zero. This is
known as the d’Alembert’s paradox (Pettersen, 2007).

The streamlines around a circular cylinder are sketched in figure 2.2.

Figure 2.2: Streamlines around a circular cylinder in potential flow theory
(math3510edensmith, 2014).
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2.2.2 Viscous Flow
Potential flow theory gives, in general, not a realistic description of a flow around
a circular cylinder. In addition to the impermeability condition, viscous forces
introduce a no-slip condition at the cylinder surface. Both the tangential and the
normal velocity is zero at the cylinder surface. The no-slip condition introduces a
boundary layer near the solid surface, where the velocity increase from the veloc-
ity of the body to the velocity some distance away from the body. The boundary
layer thickness is determined by the external flow and the body geometry.

For a flow around a curved object, like a circular cylinder, the pressure gradient
will change. The situation when the velocity increases and the pressure decreases
is known as a favourable pressure gradient (Cengel and Cimbala, 2010). For
a circular cylinder, this is the situation between the stagnation point and the po-
sition for the maximum velocity. When the velocity decreases and the pressure
increases, we have what is known as an unfavourable pressure gradient. The
pressure gradient is unfavourable since the boundary layer is usually thicker, and
it is much more likely to separate from the body than when the pressure gradient
is favourable (Cengel and Cimbala, 2010). Figure 2.3 illustrates a viscous flow
around a circular cylinder.

Figure 2.3: Viscous flow around a circular cylinder(Kharlamova et al., 2013).
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2.2. FLOW AROUND A CIRCULAR CYLINDER

The separation point on a circular cylinder is not fixed by the geometry, but will
change when the Reynolds number changes. Where the separation point is located
will influence the drag force that is acting on the cylinder. A narrow wake will
give less drag force on the cylinder than a wide wake (Pettersen, 2007).

Figure 2.4: Flow around a circular cylinder for different Reynolds numbers (Sun-
den, 2011)

Figure 2.4 shows how the flow pattern around the cylinder changes for different
Reynolds numbers. For very low Reynolds numbers (Re < 5) the flow does not
separate from the cylinder, and the flow pattern is very similar to potential flow
(figure 2.2). When the Reynolds number increases, the streamlines behind the
cylinder moves away from the centre line and symmetric vortices are established.
For 5 < Re <≈ 40 the wake is stable and symmetric. For Reynolds numbers
above 40, vortices are shed from the cylinder in an oscillating behaviour. Even for
a constant external flow, the wake will vary with time.
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2.3 Important Parameters

2.3.1 Drag Coefficient
The drag coefficient is a non-dimensional coefficient that represents the drag force
FD on a body. A common way to define the drag coefficient on a cylinder is:

CD =
FD

1
2
ρLU2

(2.15)

Where FD is the drag force, L is the characteristic length, which for a cylinder is
the diameter, and U is the external flow velocity.

It is common to divide the drag coefficient into two main contributions; friction
drag CD,f and pressure drag CD,p:

CD = CD,f + CD,p (2.16)

The friction drag is the component of the shear force tangential to the surface,
and the pressure drag is the component of the pressure forces that is normal to the
surface. The drag force on a surface is given by (Cengel and Cimbala, 2010):

FD =

∫
A

(−P cos θ + τw sin θ)dA (2.17)

Where τw is the shear stress on the surface, and θ is the angle between the surface
normal and the positive flow direction.

The shear stress in two dimensions is defined as:

τ = µ
(∂u
∂y

+
∂v

∂x

)
(2.18)

Where u is the horizontal velocity component, v is the vertical velocity compo-
nent, and µ is the dynamic viscosity. However, it can be shown with an order-of-
magnitude-analysis that the latter term in (2.18) is two orders smaller than the first
term in a boundary layer. Hence, the shear stress at the surface can be approxi-
mated by (White, 1974):

τw ≈ µ
(∂u
∂y

)
y=0

(2.19)
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2.3.2 Recirculation Length
For a symmetric flow, with respect to the symmetry axis y=0, the recirculation
length is defined as the distance between the cylinder wall rearmost point to the
reattachment point (Boujo and Gallaire, 2014), as shown in figure 2.5.

Figure 2.5: Recirculation length (Boujo and Gallaire, 2014)

The reattachment point is recognised at the point where the vertical velocity is
zero. The recirculation length is an interesting parameter since both the shear
and the maximum backwards flow increases together with the recirculation length
(Boujo and Gallaire, 2014).
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2.4 Flow Around a Square Cylinder
The flow around a square cylinder is similar to the flow around a circular cylinder
considering the instability of the vortex shedding. However, other mechanisms as
separation and shedding frequency, hydrodynamic forces and wake, differs signif-
icantly from the flow around a circular cylinder (Sharma and Eswaran, 2004).

The separation points of the square cylinder are fixed at the corners, this differs
from the circular cylinder where the separation points not are fixed. It is stated that
the hydrodynamic characteristics are relatively insensitive to Reynolds number,
for bodies with fixed separation points (Okajima, 1982). However, the flow around
a square cylinder has a similar development as the circular cylinder when the
Reynolds number increases. Snapshots of the streamlines around a square cylinder
for different Reynolds numbers, presented by Sharma and Eswaran (2004) can be
found in figure 2.6.

The snapshots in figure 2.6 are computational results from Sharma and Eswaran
(2004), the snapshots are instantaneous for the periodic flow. For Re=1 there is
no separation, however, when Re=2 separation occurs on the trailing edge. The
flow is stable for Reynolds numbers below 50, for higher Reynolds numbers the
vortices separates alternately. Eventually, for higher Reynolds numbers, the sepa-
ration point moves to the leading edge.

Another thing to notice is that the wake behind the square cylinder is broader
and longer than for the circular cylinder (Sharma and Eswaran, 2004).
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2.4. FLOW AROUND A SQUARE CYLINDER

Figure 2.6: Instantaneous streamlines around a square cylinder for different
Reynolds numbers: (a) Re=1; (b) Re=2; (c) Re=40; (d) Re=50; (e) Re=120; (f)
Re=160 (Sharma and Eswaran, 2004).
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Chapter 3

Numerical aspects

3.1 Accuracy and Convergence

3.1.1 Accuracy
Numerical calculations will always give approximations of the exact solution. It
is important to have control over the different sources of error. Ferziger and Perić
(1996) divides the error sources into three main groups.

• Modelling errors, which are defined as the difference between the actual
flow and the exact solution of the mathematical model.

• Discretization errors, defined as the difference between the exact solution
of the conservation equations and the exact solution of the algebraic system
of equations obtained by discretizing these equations.

• Convergence errors, defined as the difference between the iterative and
exact solutions of the algebraic equations systems.

In addition to these errors, the implementation of numerical algorithms could in-
troduce errors to the solution.

When the Navier-Stokes equations are solved for a laminar flow is the modelling
error negligible. For other flow problems could the modelling error be significant.
Such flows can be turbulent flows where turbulent models are applied, or flow
problems that are solved by potential flow theory.
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Discretization errors are maybe the source of error that is most difficult to control.
These errors come from the discretization of the conservation equations. By re-
fining the grid, the discretization error will be reduced. However, this will lead to
more unknowns and increase the CPU time. The final approximation will often be
a tradeoff between accuracy and CPU time. The accuracy that is required depends
on the given flow problem.

3.1.2 Error Norms
In order to evaluate and compare the results with analytic solutions or other stud-
ies, it is an advantage to quantify the accuracy. If there exists an exact solution to
the flow problem, the p-norm is commonly used to estimate the error. For one and
two dimensions respectively, the p-norm is given as:

‖EN‖p =
(∑

i

|ûNi − uNi |pi
)1/p

‖EN‖p =
(∑

j

∑
i

|ûNij − uNij |p
)1/p

(3.1)

Where u is the exact solution and û is the numerical solution, u could be any
quantity that is computed.

It could be convenient to normalise the error. Equation (3.1) is then divided by
the p-norm of the exact solution. This normalised norm is in the rest of the report
referred to as the Lp − error.

For some problems could it be more convenient to use parameters as drag coef-
ficients, recirculation length, or shedding frequency to investigate the accuracy.

If there exists no exact solution to the problem, a reference solution has to be used
to evaluate the results. Such references could be experimental or numerical results
from the literature.
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3.1.3 Convergence and Order of Accuracy
The order of accuracy indicates how the error decreases when the discretization
is refined. It could be refined mesh or smaller time steps in the time integration.
If the spatial discretization is first order accurate, the error is in the order of ∆x
(O(∆x)). In other words, the error can be written as C∆x, where C is a constant.
This implies that the error from the spatial discretization is halved when ∆x is
halved. If the discretization is second order accurate, the error can be written as
C∆x2. This means that the error from the spatial discretization is divided by four
when ∆x is halved.

It is important to emphasise that the order of accuracy does not say anything about
the absolute value of the error. Two methods that both are second order accurate
can give different results, the order of accuracy indicates only how the error de-
cays.
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3.2 Spatial Discretization
Numerical solution of the Navier-Stokes equations requires that the spatial deriva-
tives must be discretized. The discretization can be performed by Eulerian field
solvers like; Finite Differences Method (FDM), Finite Volume Methods (FVM)
and Finite Element Method (FEM), or by Lagrangian methods like Moving Parti-
cle Semi-implicit Method (MPS) and Smoothed-particle Hydrodynamics (SPH).
The Eulerian methods calculate the flow properties at specific points in space,
while Lagrangian methods follows fluid particles in time and space.

The Finite Volume Method and the Finite Difference Method are two popular
methods in computational fluid dynamics. The Finite Volume method solves the
conservation equations on integral form for a control volume, while the finite
difference method approximates the derivatives pointwise. The Finite Difference
Method will be reviewed in section 3.2.1.

3.2.1 Finite Difference Method
The basis for the Finite Difference Method is the differential form of the conser-
vation equation, e.g equation (2.8). Unlike the FVM that applies the conservation
laws at control volumes, the FDM applies the differential form of the conservation
law directly at nodes. For a given conservation law, each node has one unknown
and must provide one algebraic equation. The neighbouring nodes are used to
approximate the PDE. The FDM is based on the definition of the derivative, e.g.
the first derivative: (∂φ

∂x

)
xi

= lim
∆x→0

φ(xi + ∆x)− φ(xi)

∆x
(3.2)

Equation (3.2) is a first-order forward approximation, meaning that node number
i and node number i+1 are used. There are other ways to approximate the first-
order derivative, in figure 3.1 can you see the backward difference and the central
difference approximation, in addition to the forward difference. As you can see,
some approximations are better than other. The slope for the central approxima-
tion is close to the slope of the exact function. Actual, if the exact function was a
second order function, and the nodes were equally spaced the slopes would match
exactly (Ferziger and Perić, 1996).
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Figure 3.1: Graphical interpretations of the first order FDM approximation.
(Heinzl, 2007)

There are other ways of deriving the approximations. Higher order approxima-
tions can be derived with Taylor series expansion. A continuous and differentiable
function can be expressed as a Taylor series:

f(x) = f(xi) + (x− xi)
(∂f
∂x

)
i
+

(x− xi)2

2!

(∂2f

∂x2

)
i
+

(x− xi)3

3!

(∂3f

∂x3

)
i
+ · · ·+ (x− xi)n

n!

(∂nf
∂xn

)
i
+H

(3.3)

where H represents higher order terms.
If x are replaced by xi+1 or xi−1, can we obtain expressions for the first derivative,
in terms of node ”i” and/or the neighbouring nodes.

(∂f
∂x

)
i

=
fi+1 − fi
xi+1 − xi

− xi+1 − xi
2

(∂2f

∂x2

)
i
−

(xi+1 − xi)2

6

(∂3f

∂x3

)
i
+H

(3.4)

This expression corresponds to the forward differences, and if all elements with
order two or higher are removed, the expression corresponds to the first order ap-
proximation. If we use xi−1 in equation (3.3), we obtain the backwards difference.
And if we use both xi−1 and xi+1 we get the central difference.
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Higher order approximations can be derived by including more terms on the right
hand side. A second order approximation can be:(∂f

∂x

)
i

=
fi+1(∆xi)

2 − fi−1(∆xi+1)2 + fi[(∆xi+1)2 − (∆xi)
2]

∆xi+1∆xi(∆xi + ∆xi+1)
−

∆xi+1∆xi
6

(∂3f

∂x3

)
i
+H

(3.5)

If the grid is equidistant, the scheme simplifies to the first order central scheme.
The second derivative can be obtained by using the approximation for the first
derivative twice. These approximations require at least data from three points
(Ferziger and Perić, 1996).

The schemes above are only described in one dimension, the schemes in two and
three dimensions are very similar. The details will not be discussed here, but more
details can be found in Ferziger and Perić (1996) and Tannehill et al. (1997).

3.2.2 A Finite Difference Scheme for the Poisson Equation
The Poisson equation, which is central in a fractional step method, can be solved
with a finite difference method. A second order scheme that includes five nodes
can be discretized as:

∇
(
∇φ
)
i,j

=
(φi+1,j − φi,j)− (φi,j − φi−1,j)

∆x2
+

(φi,j+1 − φi,j)− (φi,j − φi,j−1)

∆y2

(3.6)
The assembling of equation (3.6) results in a sparse coefficient matrix with five
non-zero elements in each row. The global equation system can then be solved by
a suitable solver.
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3.2.3 Staggered Grid
For an Eulerian grid, the flow properties are calculated at nodes that are fixed
in space. At first, it is natural to think that it is convenient to calculate all flow
variables in the same nodes. Such grids are known as collocated grids. Collocated
grids have some drawbacks that need to be solved; ”a highly non-uniform pressure
field can act like a uniform field in the discretized momentum equations” (Versteeg
and Malalasekera, 1995).

Staggered grid is a remedy presented by Harlow and Welch (1965), that en-
sures that the pressure is properly represented. In a staggered grid is the pressure,
and other scalar quantities, calculated in the centre of the cells, while the horizon-
tal velocity component is calculated on the left side of the cell, and the vertical
velocity component is calculated at the bottom of the cell.

A sketch of a staggered grid can be found in figure 3.2, where the dots repre-
sents where the pressure is calculated, and the arrows represent where the veloci-
ties are computed.

Figure 3.2: Staggered grid arrangement, (Colocchio, 2004)
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3.3 Time Integration
Time-dependent problems need to be discretized in time. To review some dif-
ferent approaches and their features, the following initial value problem will be
investigated:

df(t)

dt
= R(t, f(t)); f(t0) = t0 (3.7)

The simplest discretization will be:

fn+1 = fn +R(tn, f
n)∆t (3.8)

Where n represent the current time step and n+1 represent the next time step.
This scheme is known as the Explicit Euler method (Ferziger and Perić, 1996).
The implicit Euler method is obtained by:

fn+1 = fn +R(tn+1, f
n+1)∆t (3.9)

The explicit scheme is straightforward to implement, while you need to solve a

linear equation system when the implicit method is used. This means that the
implicit method is more time demanding at each time step, and more memory is
required. On the other hand, the implicit method is more stable with respect to
time steps.

Tannehill et al. (1997) describes numerical stability in the following way: ”A
stable numerical scheme is one for which errors from any source (round-off, trun-
cation, mistakes) are not permitted to grow in the sequence of numerical proce-
dures as the calculation proceeds from one marching step to the next.”

Explicit schemes have very strict stability criterions. If the time step violates
the stability criterion, the simulation will fail. Implicit methods have less strict
stability criterions, and some implicit methods are even unconditional stable. This
is an advantage when you are interested in the slow and long term variation, and
the short time scale is less important.

For simple problems, a stability criterion can be derived analytically. How-
ever, for more complex problems it requires more work to establish an analytical
stability criterion. Details of deriving stability criterion will not be reviewed here,
but more information can be found in Tannehill et al. (1997).
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Both the Explicit and the Implicit Euler method are first-order accurate in time. A
method that combines the two methods is the Crank-Nicolson method:

fn+1 = fn +
1

2

[
R(tn, f

n) +R(tn+1, f
n+1)

]
∆t (3.10)

This is a method that is popular for solving the heat equation, and it is uncondi-
tionally stable and second order accurate in time (Tannehill et al., 1997).

The schemes that are described above are presented for a simple initial value prob-
lem, but the methodology is similar for more complex equations. The methods
above are quite simple and straightforward and are known as two-level method
since they involve unknowns at two time levels. The principles of two-level meth-
ods are general and can be used for more sophisticated methods (Ferziger and
Perić, 1996).

There exist several different approaches for time integration; explicit, implicit,
first order, higher order, predictor-corrector, multi-point, etc. A predictor-corrector
scheme will be presented in the next paragraphs, for more information about other
methods see Ferziger and Perić (1996), Tannehill et al. (1997) or Versteeg and
Malalasekera (1995).

The predictor-corrector approach tries to combine the best of explicit and implicit
two-level methods. First, a temporary solution is predicted, then is this solution
used to correct the final solution (Ferziger and Perić, 1996). For the initial value
problem in equation (3.7), the first step of the method, with the explicit Euler
method, will be:

f ∗n+1 = fn +R(tn, f
n)∆t (3.11)

The temporary solution f ∗n+1 is used to correct the final solution. If a trapezoid
rule is used, the final solution becomes:

fn+1 = fn +
1

2
[R(tn, f

n) +R(tn+1, f
∗
n+1)]∆t (3.12)

This method is second order accurate and has the same stability as the explicit
Euler method (Ferziger and Perić, 1996).
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3.4 Pressure Coupling
The momentum equations in two dimension together with the continuity equa-
tion gives three equations for three unknowns; two velocity components and the
pressure. The pressure occurs in all the momentum equations, but there is no
transport equation for the pressure. We need a coupling between the pressure and
the velocity.

If we discretize the momentum equation (2.8) in the simplest way with the explicit
Euler method we get:

Un+1 − Un

∆t
+ Un · ∇Un = −1

ρ
∇pn + ν∇2Un + fb (3.13)

The solution of equation (3.13) will give a new velocity Un+1 that does not satisfy
continuity. Another issue is that there is no natural way to compute pn+1 . The
latter can be overcome by introducing pn+1 in the scheme (Langtangen et al.,
2002):

Un+1 +
∆t

ρ
∇pn+1 = Un −∆tν∇2Un + ∆tfnb (3.14)

This leaves two unknowns, Un+1 and pn+1. To ensure that continuity is satisfied,
equation (3.14) must be solved simultaneously with:

∇ · Un+1 = 0 (3.15)
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3.4.1 Iterative Methods
There are two main approaches to take care of the pressure coupling; iterative
methods and projection methods. The idea behind the iterative methods is that
the momentum equations are repeatedly solved until the continuity criterion is
satisfied.

An example of an iterative method is the SIMPLE scheme that is developed by
Patankar and Spalding (1972). The starting point of the SIMPLE method is that a
pressure field p∗ is guessed, such that the momentum equations can be solved to
obtain intermediate velocities U∗. The exact pressure and velocity field is the sum
of the intermediate values and a correction term:

p = p∗ + p′

U = U∗ + U′
(3.16)

If the expressions in equation (3.16) are inserted in the momentum and continuity
equations, an expression for p′ can be found. Then can the pressure be updated
and a new iteration can take place, this process is repeated until the continuity
condition is satisfied within a given criterion. This iterative process has to be
performed at every time step.
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3.4.2 Pressure Poisson Methods
The other approach is so-called Operator splitting methods, where the transport
equations are divided into simpler equations that can be solved independently.
This approach was first proposed by Chorin (1967) and is known as projection
methods. However, the approach is further developed, and methods knowns as
Operator splitting methods and fractional step methods are based on the same
idea. These methods can differ in the formulation, but the similarity is that a
Poisson-like equation is solved to take care of the pressure correction.

The advantage of these methods is that the transport equations are split into
simpler equations, that can be solved by known solution schemes. In addition,
there is no iteration involved, and continuity is satisfied exact.

An issue that arises for the pressure Poisson equation is suitable boundary condi-
tions. In general, the pressure is not known at the boundaries. However, Gresho
and Sani (1987) have demonstrated that Neumann boundary conditions always are
appropriate. The boundary value problem can then be expressed as:

∇2P = f on Ω (3.17)

∂P

∂n
= q on Γ (3.18)

Where Ω represents the computational domain, and Γ represents the external
boundaries.

Equation (3.17) and (3.18) are solvable for the pressure correction if the following
equation is satisfied (Gresho and Sani, 1987):∫

Γ

q dΓ =

∫
Ω

f dΩ (3.19)

This is known as the compatibility condition for the Neumann problem. Hence,
if the initial velocity field is divergence free, q=0, and zero Neumann condition is
applied at the boundaries.
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3.5 Example of a Navier-Stokes Solver
In the following will the main steps of a Navier-Stokes solver developed by Giusep-
pina Colocchio (2004) be presented. The code is developed for more advanced
flow problems including free surface. However, the terms that take care of the
free surface are avoided in the description below.

The code discretize the Navier-Stokes equation with a
predictor-corrector scheme. The momentum equations (2.8) can then be dis-
cretized as:

Un+1 − Un

∆t
= −1

ρ
∇pn+1/2 − Un+1/2 · ∇Un+1/2 + ν∇2Un+1/2 + fb (3.20)

For simplicity the term F(U,f, ν) is introduced:

F(U,f, ν) = −(U · ∇)U + ν∇2U + f (3.21)

Predictor Step

The values of the terms in F(U,f, ν) at time step n+1/2 are approximated by a
Taylor expansion from the previous time step.

The velocity can be found by the two-step procedure:

Ũ = Un + ∆t
{

[F (U)]
n+1/2
0 − ∇p

n−1/2

ρ

}
Un+1

0 = Ũ + ∆t
{∇pn−1/2

ρ
− ∇p

n+1/2
0

ρ

} (3.22)

The continuity equations must be satisfied for Un+1
0 , this implies that we can write

the last part of equation (3.22) as:

∇ · Ũ
∆t

= ∇ ·
(∇(pn−1/2 − pn+1/2

0 )

ρ
(3.23)

The solution of the Poisson equation (3.23) gives pn+1
0 . Then, Un+1

0 can be cal-
culated from equation (3.22). Now a corrector step is performed to improve the
accuracy and stability.
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Corrector Step

The corrector step is carried out iteratively until convergence in velocity and pres-
sure is obtained. The term [F(U,f, ν)]

n+1/2
k is obtained by a Taylor expansion, and

the pressure at step k can be written as:

∇pn+1/2
k

ρ
=
∇pn+1/2

k−1

ρ
+
∇pc
ρ

(3.24)

where pc is a pressure correction. Now the velocity at step k is calculated similarly
as for the predictor step:

Ũ = Un + ∆t
{

[F (U)]
n+1/2
k−1 −

∇pn−1/2
k−1

ρ

}
Un+1
k = Ũ + ∆t

{
− ∇pc

ρ

} (3.25)

And we obtain the Poisson equation:

∇ ·
(∇pc

ρ

)
=
∇ · Ũ

∆t
(3.26)

Now, can the velocity be updated, and this iterative process is repeated until con-
vergence is obtained.
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3.6 Solution of Equation Systems
Regardless of the numerical method that is used, a linear equation system on the
form Ax = b has to be solved. Solving the equation system is a considerable part
of the solution procedure. There are two main solution techniques; direct solvers
and iterative solvers.

The direct solvers solve the equation system exact, meaning no extra error
is introduced. However, the number of operations to solve a system with N un-
knowns is of order N3, and storage of all N2 coefficients in core memory is nec-
essary (Versteeg and Malalasekera, 1995).

The iterative solvers do not solve the equation system exact and will introduce
an iteration error. However, the convergence criterion can be set beforehand and
is usually of minor importance. With iterative solvers it is not possible, on be-
forehand, to know the exact number of operations to solve the equation system.
However, for problems in two- and three dimensions, iterative methods are usually
more efficient than direct solvers. Another advantage by iterative solvers is that
only the non-zero elements have to be stored (Versteeg and Malalasekera, 1995).

There exist several libraries with solution routines for linear equation systems.
The routines are customised to different type of equation systems, and the choice
of solution routine should be done with care. Examples of such libraries are NAG,
LAPACK and SPARSKIT.

MATLAB is a powerful computing environment, which includes a comprehensive
library of functions. mldivide is one of these function, which are used to solve
linear equation systems. mldivide is a self-adapting function that finds the most
efficient solver to the given system.
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Chapter 4

Presentation of the method

4.1 Harmonic Polynomial Cell Method

4.1.1 Concept
Shao and Faltinsen (2012) have formulated a numerical method for efficiently
solving potential flow problems. Their numerical results have been promising,
with a convergence rate between 3rd and 4th order for the L2-error. It is indicated
that the method is favourable compared to traditional BEM solvers, both regarding
accuracy and CPU time. This section will present the method with a stencil with
nine nodes, that use all polynomials, except one, up to fourth order. It is possible
to use other stencils, with different geometry or number of nodes. This is reviewed
in detailed in Ma et al. (2016). Although the method is presented for a potential
flow problem, it is not limited to such problem and can be used for any problem
governed by the Laplace equation.

The governing equation in potential flow theory is the Laplace equation, and har-
monic polynomials satisfy the Laplace equation by definition (Kreyszig, 2011).
In two dimensions, are the harmonic polynomials defined as:

zn = (x+ iy)n = un(x, y) + iνn(x, y) (4.1)

Where i =
√
−1, and n is an integer which represents the order of the polynomial.

The harmonic polynomials for n <= 4 can be found in table 4.1.
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Table 4.1: Complex Harmonic polynomials for order ≤ 4

n zn un(x, y) νn(x, y)
0 1 1 0
1 x+ iy x y
2 (x2 − y2) + 2ixy x2 − y2 2xy
3 (x3 − 3xy2) + i(3X2y − y3) x3 − 3xy 3x2y − y3

4 (x4 − 6x2y2 + y4) + i(4x3y − 4xy3) x4 − 6x2y2 + y4 4x3y − 4xy3

The computational domain is divided into quadrilateral cells, where the velocity
potential within each cell is interpolated with harmonic polynomials. Each cell
has nine nodes, and the local coordinate system has its origin at node nine. The
node numbering is sketched in figure 4.1.

Figure 4.1: Local Cell Numbering

An overlapping cell system is used, which means that one node is used in several
cells. Cell number ”i” has local numbering 5 in one cell, and local number 9 in
another cell and so on.

If the velocity potential is known for all nodes, the velocity potential within each
cell can be interpolated from the following equation:

φ(x, y) =
8∑
j=1

bjfj(x, y) (4.2)

Where fj are the first eight harmonic polynomials, they can be found in table 4.2.
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Table 4.2: Harmonic polynomials included in interpolation

j 1 2 3 4 5 6 7 8
fj 1 x y x2 − y2 xy x3 − 3xy 3x2y − y3 x4 − 6x2y2 + y4

4.1.2 Numerical Formulation
bj in equation (4.2) are unknown coefficients that have to be determined. These
coefficients can be found by plugging φ = φj , x = xj and y = yj (j=1,...8) into
equation (4.2).

bj =
8∑
j=1

ci,jφj, (i = 1, ..., 8) (4.3)

Where ci,j is the elements of the inverse matrix [f ]−1 , with fi,j = fj(xi, yi).

By putting equation (4.3) into equation (4.2), the velocity potential within a cell
can be expressed as:

φ(x, y) =
8∑
i=1

[ 8∑
j=1

cj,ifj(x, y)
]
φi (4.4)

Only the boundary nodes are used to interpolate the potential inside a cell. Since
the local origin is placed at node 9, f1(0, 0) = 1, and all other polynomials are
zero at the origin, the velocity potential at node 9 can be expressed as:

φ9 = φ(x = x9 = 0, y = y9 = 0) =
8∑
i=1

c1,iφi (4.5)

Equation (4.5) is enforced for all cells without a boundary condition, and this
provides the continuity of the flow.
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Boundary Conditions
Proper boundary conditions must be applied, in order to solve a numerical prob-
lem This could be Dirichlet boundary conditions or Neumann boundary condi-
tions. Dirichlet boundary conditions are enforced as:

φB(x, y) = φ(x, y) =
8∑
i=1

[ 8∑
j=1

cj,ifj(x, y)
]
φi (4.6)

Where φB is the velocity potential at the boundary. Neumann boundary conditions
are enforced in a similar way:

∂φB(x, y)

∂n
=
∂φ(x, y)

∂n
=

8∑
i=1

[ 8∑
j=1

cj,i∇fj(x, y) · n
]
φi (4.7)

For all nodes without any boundary condition, equation (4.5) is applied when the
node is numbered nine in the local cell. This is the equation that connects the
entire domain together.

The main steps in the solution algorithm of the HPC method are summarised
below.

Local Coefficient Matrix
For each cell, an 8x8 coefficient matrix must be calculated

f =

f1(x1, y1) . . . f8(x1, y1)
... . . . ...

f1(x8, y8)
... f8(x8, y8)


Where f1-f8 are the coefficients in table 4.2 and (xi, yi) i=1,..,8 are the local co-
ordinates to border nodes. The inverse of this matrix is also calculated, f−1.
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Local Equation System
The local equation system can be constructed based on the boundary conditions
and equation (4.3).

cφ = b (4.8)

We want to solve the system for φi, and need to determine the elements in vec-
tor b and matrix c. For nodes with boundary conditions, bj will be φB(xj, yj)

or ∂φB(xj ,yj)

∂n
for Dirichlet and Neumann boundary conditions respectively. If no

boundary condition is applied to the specific node, bj = 0.
The elements in matrix c will be equal to 1 or f−1(xj, yj)

∂f(xj ,yj)

∂n
, for Dirichlet

and Neumann boundary conditions respectively.
The solution is unknown for most nodes, and equation (4.5) is applied to these

nodes. This is the equation that connects the whole domain and is applied to all
nodes that have no boundary condition. Hence, equation (4.9) is applied to most
rows in the global coefficient matrix.

c9,i = f−1
1,i

c9,9 = −1
(4.9)

Global System
When all the local coefficients are calculated, these have to be placed in the right
location in the global system. We want to find the velocity potential φi for all
N=(nx + 1)(ny + 1) nodes. This is obtained by solving the equation system:

Cφ = B (4.10)

Where C is a (N,N) matrix with elements from the local matrices c, B is a vector
with elements from the local b vectors, and φ is a vector with all the unknown
velocity potentials.

C is a sparse matrix, which can be utilised when the equation system is built and
for solving the global equation system.
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4.2 Generalized HPC Method

4.2.1 Concept
The generalized HPC method is a further development of the HPC method, in or-
der to solve non-homogeneous elliptic boundary value problems. Such problems
are common in many fields of physics. One example is when the Navier-Stokes
equations are solved by a projection method. Then you will have a Poisson equa-
tion for the pressure.

Bardazzi et al. (2015) have proposed a method that solves the Poisson equation
with the generalized HPC method. Their test cases have shown a convergence
rate of approximately 4th order. The method will be shortly described in the next
paragraphs.

The domain is discretized in the same manner as for the HPC method described
in section 4.1. Each cell has nine nodes with the local origin placed in the centre
(see figure 4.1). The overlapping cell system is also used.

The Poisson problem for an unknown quantity u within a domain Ω can be ex-
pressed as:

∇2u(x) = σ(x), in Ω

u(x) = gD(x), on ∂ΩD

∂u(x)

∂n
= gN(x), on ∂ΩN

(4.11)

Where ∂ΩD and ∂ΩN are boundaries with Dirichlet and Neumann boundary con-
ditions respectively. The term σ(x) is assumed to be known. The solution of this
problem can be decomposed to a homogeneous part and a particular solution:

u(x) = ū(x) + ũ(x) (4.12)

The harmonic solution satisfies the homogeneous problem, corresponding to the
Laplace equation:

∇2ū(x) = 0, in Ω

ū(x) = gD(x)− ũ(x), on ∂ΩD

∂ū(x)

∂n
= gN(x)− ∂ũ(x)

∂n
, on ∂ΩN

(4.13)

47



4.2. GENERALIZED HPC METHOD

The homogeneous solution is approximated with harmonic polynomials, as de-
scribed in section 4.1. The particular solution has to satisfy:

∇2ũ(x) = σ(x) (4.14)

The forcing term and the particular solution, for a two-dimensional problem, can
then be approximated as:

σ(x, y) ≈ (α0 + α1x+ α2x
2)(β0 + β1y + β2y

2)

= cjhj(x, y), with j = 1, ..., 9
(4.15)

ũ(x, y) ≈ cjgj(x, y), with j = 1, ..., 9 (4.16)

Where hj and gj are coefficients that can be found in table 4.3.

Table 4.3: Coefficients hj and gj

j 1 2 3 4 5 6 7 8 9
hj 1 x y x2 xy y2 x2y xy2 x2y2

gj
x2+y2

4
xy2

2
x2y
2

x4

12
x3y+xy3

12
y4

12
x4y
12

xy4

12
x4(−x2+15y2)+y4(−y2+15x2)

360

With these approximations, the solution of equation (4.11) is:

u(x, y) = aif̄i(x, y) + cjgj(x, y) with i = 1, ..., 8 j = 1, ..., 9

σ(x, y) = cjhj(x, y), with j = 1, ..., 9
(4.17)

The approximations descried above are the same as proposed by Bardazzi et al.
(2015). With accuracy of 4th order, both for the harmonic polynomials and the
bi-quadratic polynomials. However, it is possible to approximate the particular
solution with other types of polynomials.
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4.2.2 Numerical Formulation
Now, the coefficients ai and cj in equation (4.17) need to be calculated. By in-
vestigating the forcing term σ(x, y) at all nodes (xk, yk) (k=1,...,9), an explicit
expression for cj is obtained:

σk = hkjcj ⇒ cj = [h−1]jkσk j, k = 1, ..., 9 (4.18)

Similarly, by investigating the unknown property u at boundary nodes (xm, ym)
(m=1,...8), an expression for ai is obtained.

um = f̄miai + gmjcj ⇒ ai = [f̄−1]im(um − gmjcj)
i,m = 1, ..., 8; j = 1, ..., 9

(4.19)

Plugging equation (4.18) and (4.19) into equation (4.17), the solution of equation
(4.11) can be written as.

u(x, y) = f̄i(x, y)[f̄−1]im(um − gmj[h−1]jkσk) + gj(x, y)[h−1]jkσk

i,m = 1, ..., 8; j, k = 1, ..., 9.
(4.20)

The derivative of the solution can be obtained as:

∂u(x, y)

∂n
=
∂f̄i(x, y)

∂n
[f̄−1]im(um − gmj[h−1]jkσk) +

∂gj(x, y)

∂n
[h−1]jkσk (4.21)

with i,m=1,...,8, and j,k=1,...,9.

To build the equation system, equation (4.20) is evaluated at the centre of the cell,
for nodes where the solution is unknown. For nodes where the solution is known,
equation (4.20) or (4.21), for Dirichlet and Neumann BC respectively, is applied
to boundary nodes.

For each cell a linear equation system can be built in the following form:

b = F Tu−GTσ (4.22)

where b represents boundary data. This equation system has to be constructed for
all cells and put together in a global equation system. The global system can then
be solved for the unknown property u.
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4.3 Immersed Boundary Grid
For a rectangular domain with regular boundaries, the implementation of bound-
ary conditions is straightforward. However, for most practical applications the
boundaries are highly irregular, and the boundaries do not, in general, coincides
with computational nodes. There are several methods to overcome this challenge.
A popular method is to use a body-fitted grid. However, time marching prob-
lems with moving boundaries requires remeshing every time step, which can be a
considerable computational effort.

The immersed boundary method (IBM) is a method that fulfils the bound-
ary conditions at the irregular boundaries in a Cartesian grid. This simplifies the
implementation and could reduce the computational cost. Immersed boundary
methods can be classified into two main categories. The first category represents
the immersed boundary as a ”diffuse” interface of finite thickness. The second
method represents the boundary as a sharp interface (Udaykumar et al., 2001).
The IBM implemented in this thesis is within the second category, sharp interface
method.

A sharp interface IBM method together with the HPC method is implemented by
Finn C. W. Hanssen in Hanssen et al. (2015) and Ma et al. (2016). They have
named the method ”Immersed Boundary Grid” (IBG). The implementation of
the IBG was the primary focus in the project thesis (Rabliås, 2016). The IBG
described below is based on the method implemented by Finn C. W. Hanssen.
The method is described for a potential flow around a circular cylinder, but the
method is general and could be used for other problems, e.g. the pressure Poisson
equation in a fractional step method.

For a potential flow around a cylinder, the following Neumann condition has to be
enforced:

∂φ

∂n
= 0 (4.23)

The boundary condition will not be fulfilled at the entire surface, but for a discrete
number of points.

∇φ(xb, yb) · n(xb, yb) = 0 (4.24)

Where (xb, yb) is the coordinate of ”markers” at the cylinder. The boundary con-
ditions at the markers are fulfilled by using ”ghost nodes” inside the cylinder.
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A ”ghost node” is a node that belongs to a cell that intersects the surface. Each
marker is connected to a ghost node inside the cylinder.

When a cell with a ghost node and a marker are found, the following equation
are enforced to fulfil the Neumann condition at the marker:

∇f i(xb, yb) · n(xb, yb)[f
−1

]im(φm − gmj[h−1]jkσk)

+∇gj(xb, yb) · n(xb, yb)[h
−1]jkσk = ∇φ(xb, yb) · n(xb, yb)

(4.25)

This is the general expression for a Poisson problem. For the potential flow prob-
lem, which is a Laplace problem, the forcing term (σk) is zero and the expression
simplifies.

Figure 4.2: Immersed boundary grid (Ma et al., 2016)

Figure 4.2 illustrates an immersed boundary grid. The purple nodes represent
nodes in the computational domain, the blue nodes represents ”ghost nodes”, and
the red stars represent markers where the boundary conditions actually are satis-
fied.
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Numerical Implementation

5.1 Description of Problem

5.1.1 Potential Flow Around a Circular Cylinder
In the project thesis (Rabliås, 2016), a potential flow around a circular cylinder
was investigated. The governing equation for such flow is the Laplace equation.
This equation is equivalent to the Poisson equation with the forcing term set to
zero. Hence, the generalized HPC method can be used to solve the same problem
as in the project thesis.

A thorough test of the IBG that was implemented in the project thesis revealed
that the convergence rate was very sensitive to the number of grids that were
included. The aim of this part of the project, is to improve the IBG that was
implemented in the project thesis.
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Figure 5.1: Computational domain of a potential flow around a circular cylinder.
(Ma et al., 2016)

The computational domain is sketched in figure 5.1. A uniform flow with velocity
U = 1m/s around a circular cylinder with a diameter of D = 10 m, was consid-
ered. The length and height of the domain were 4*D, and the cylinder was placed
in the centre of the domain. For this potential flow problem the analytical solution
is given by:

φan(x, y) = U
(
x+

x

x2 + y2

D2

4

)
(5.1)

The generalized HPC method, as it is described in chapter 4, will be applied to
this problem. The error and convergence rate will be investigated and compared
with the results from the project thesis.
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5.1.2 Viscous Flow around a Square Cylinder
The viscous flow problem that is investigated is a uniform flow around a square
cylinder. The square cylinder is chosen such that additional errors introduced
by the implementation of the body boundary conditions are kept at a minimum.
This is an advantage when the generalized HPC method is compared with another
Poisson solver. Primarily, the objective is to compare the method itself and not
the implementation of the boundary conditions.

The problem is solved by a Navier-Stokes solver developed by Colocchio (2004).
The main steps of the solution scheme was reviewed in section 3.5.

The original code is written in Fortran and uses a finite difference scheme
to solve the pressure Poisson equation. If possible, a second order nine stencil
scheme is applied. If that is not possible the five stencil scheme in section 3.2.2 is
applied. The corresponding equation system is solved with a SPARSKIT solver.

The generalized HPC method is implemented in the Navier-Stokes solver devel-
oped by Giuseppina Colocchio. Since this code is written in Fortran and the gener-
alized HPC method is implemented in MATLAB, it is necessary to make a proper
interface between the two environments. This is further reviewed in section 5.2.4.

The code will be tested when the pressure Poisson equation is solved with both
the generalized HPC method and the FDM scheme.

The flow is investigated in the stable laminar regime. The Reynolds number is
set to 40, which means that the flow gets stable after a certain time. Hence, time
variations are removed. This makes the sampling easier, and the sources of errors
are minimised when two different solvers are compared. The inflow velocity and
the cylinder diameter is set to unity, the desired Reynolds number is then obtained
by changing the viscosity.
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Discretization and Boundary Conditions

Properly boundary conditions must be applied in order to solve the problem. The
square cylinder is placed in an infinite domain with a uniform current.

The horizontal velocity is set to 1 m/s at inflow and outflow. At the upper and
lower boundary a Neumann condition is used for the horizontal velocity ∂u

∂y
=

0. The vertical velocity is set to zero at all boundaries, while a zero Neumann
condition ( ∂p

∂n
= 0) is applied for the pressure at all boundaries.

To get accurate results, it is important to choose the computational domain such
that the external boundary conditions are realistic. If the computational domain
is too small, could the boundary conditions enforce an unphysical solution that
evolves to the interior of the computational domain.

The square cylinder has sides of length 1 and is placed in a square domain.
The distance from the centre of the cylinder to the inflow is 7*D, the distance
to the outflow is 15*D, and the height of the computational domain is 12*D. A
sketch of the computational domain and the corresponding boundary conditions
can be found in figure 5.2.

Figure 5.2: Computational domain for uniform flow around a square cylinder
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It is difficult to predict the optimal size of the computational domain a priori.
Ideally, a sensitivity analysis, where the parameters of the computational domain
are altered, should have been performed. However, the main objective of this
thesis is not to get as accurate results as possible, but to compare the performance
of a new Poisson solver with a traditional solver in the same framework. If the
objective was to perform a detailed investigation of the hydrodynamic behaviour
of a flow around a square cylinder, it is possible to do several measures to improve
the accuracy. Such measures could, for example, be to refine the grid in specific
regions or increase the computational domain. However, it is assumed that the
parameters that are chosen are sufficient to test the performance of the generalized
HPC method.

A uniform mesh with square cells is used in the calculations. Meaning, that
∆x = ∆y = constant for the entire computational domain. This excludes the
opportunity for a refined mesh close to the body, which is necessary for detailed
and accurate results. However, this approach simplifies the implementation, and
it is considered to be accurate enough for the comparison.

All parameters are kept constant when the two Poisson solvers are compared,
which means that domain size, mesh size and time step are the same. The only
thing that is changed is the Poisson solver.

57



5.1. DESCRIPTION OF PROBLEM

58



CHAPTER 5. NUMERICAL IMPLEMENTATION

5.2 Programming Features

5.2.1 Immersed Boundary Grid
The boundary value problem described in section 5.1.1 is solved by implementing
the immersed boundary grid that is presented in section 4.3. The first step of the
method is to identify the cells at the cylinder surface, these cells are named ”ghost
cells”. Then are the boundary conditions (equation (4.25)) enforced at these cells.
The nodes in these cells, that lies inside the cylinder, are so-called ”ghost nodes”.
All these ”ghost nodes” must either be connected to a marker on the cylinder
surface or be a centre node in another ”ghost cell”. The choice of ghost cells and
markers follows the following rules:

1. The marker should be as close as possible to the centre of the cell. The
marker should at least be closer than 0.5*dx to the local y-axis and closer
than 0.5*dy to the local x-axis.

2. The distance between markers should be as equal as possible.

3. If possible, enforce only one BC in each ghost cell.

4. Try to have overlapping ghost cells.

It is impossible to satisfy all the rules listed above simultaneously, and the imple-
mentation will be some kind of compromise. The two first rules are recommended
by Ma et al. (2016). In addition to these rules, it is important that each ghost node
and marker is used only once. Meaning that a ”ghost node” can be connected to
only one marker, and each marker can be connected to only one ”ghost node”. If
this is violated, the global equation system could be corrupted.

The first attempt to implement the IBG focused most on the first three rules. How-
ever, the accuracy and the convergence rate were not as good as expected. After
consultation with PhD student Finn-Christian W. Hanssen, the fourth rule was
added to the algorithm while the second rule was given less importance. This
improved the accuracy, and the desirable convergence rate was obtained.
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Figure 5.3: Ghost Cells at cylinder surface

Figure 5.3 illustrates the ghost cells for a grid with 40 nodes in x- and y-direction.
The stars represent the ghost nodes that are used for the boundary conditions, the
red circles represent the markers where the boundary condition are enforced. The
outline of the ghost cells is also sketched in the figure. As you can see, the markers
are close to the centre of the cells, and the cells are overlapping. When these two
conditions are fulfilled, will the distance between markers implicitly become quite
equidistant.
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5.2.2 Poisson Solver

The Poisson problem is solved numerical with the generalized HPC method pro-
posed by Bardazzi et al. (2015). The method is reviewed in section 4.2. Andrea
Bardazzi, one of the authors, has kindly in confidentiality, shared his code that
was used for some of the example problems in Bardazzi et al. (2015).

The code received was made for solving the pressure field in a Green-Taylor
vortex, without an internal body. The main implementation has been to properly
place a body inside the computational domain.

The code by Andrea Bardazzi was written in MATLAB, in order to exploit the
framework and embedded MATLAB functions, most of the implementation in this
thesis is also done with MATLAB. Since the code was shared in confidentiality,
no code is presented here. However, the following sections will explain the main
steps of the code.

Coupling with Navier-Stokes Solver

The Navier-Stokes code utilises a staggered grid to compute velocities and pres-
sure. This means that the pressure is calculated in the centre of the cells while the
velocities are calculated at the cell faces.

At first, a ”blind coupling” between the main code and the Poisson solver was
trialled. Meaning that input for the Poisson solver was the forcing term, and
the output was the pressure in the same position as the forcing term was given.
These points were placed such that the pressure nodes coincided with the physical
boundary. This implies that the forcing term, as well as the pressure gradients,
were calculated in the Naiver-Stokes solver, and then interpolated to the correct
position. It turned out that this approach did not give a divergence free velocity
field, i.e. continuity was not satisfied.

To improve the results, a new approach was implemented. Now, the input for the
Poisson solver was the velocity at the faces. The horizontal velocity components
were given on the vertical faces, and the vertical velocity components were given
on the horizontal faces, which is consistent with the staggered grid arrangement.
The forcing term can then be interpolated at the centre of the cells with central
differences, using the velocities at the surrounding faces:

∇ · Ũ =
ui+1,j − ui,j
xi+1,j − xi,j

+
vi,j+1 − vi,j
yi,j+1 − yi,j

(5.2)
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The accuracy of equation (5.2) is second-order for an equidistant grid (Ferziger
and Perić, 1996).

When the forcing term is computed for all pressure nodes, the Poisson equa-
tion is solved with the generalized HPC method.

The values that are needed in the Navier-Stokes solver is not the pressure, but the
pressure gradients. To be consistent with the staggered grid, the output is then ∂P

∂x

on the faces where the horizontal velocities are defined, and ∂P
∂y

on the faces where
the vertical velocities are defined.

Since the generalized HPC method gives a continuous approximation close
to fourth order between the computational nodes, the derivatives can be approxi-
mated with equation (4.21). However, the solution between computational nodes
is not unique and which cell to use for the interpolation must be decided. Ma et al.
(2016) recommend that the point for local interpolation should be chosen such
that x0c <= |0.5dx| and y0c <= |0.5dy|, where x0c and y0c is the distance from
the local x- and y-axis respectively. The rule that is applied, is that cell (i,j) is used
to interpolate the derivatives at the western and southern faces, which corresponds
to the faces where ui,j and vi,j are defined. The distance from the centre of the cell
is then (x, y) = (−0.5dx, 0) and (x, y) = (0,−0.5dy) respectively. This is within
the range that is recommended to obtain good accuracy for the local interpolation.

The point where the derivative is calculated can be interpolated from two dif-
ferent cells, with equal distance to the centre of the respective cells. As a sensitiv-
ity study, where the gradients computed from both these cells. It turned out that
the deviation was in the order of machine precision.

The final implementation is more consistent with the staggered grid arrangement
than the first approach. All terms are calculated exactly where they are needed,
and unnecessary interpolation is avoided.

The discretization of equation (3.23) and (3.26) is also more consistent when
the second approach is applied. To satisfy continuity, it is important that the terms
are discretized in the same manner as they are discretized in the momentum equa-
tions (Ferziger and Perić, 1996).
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Main Routine

The main routine discretizes the domain in overlapping cells as described in chap-
ter 4. External boundaries are identified and corresponding node numbers are
saved in the vectors; Nb1, Nb2, Nb3 and Nb4. For each cell, the coefficients ma-
trices f, h and c are calculated and put in the global matrices F and G. Eventually
we want to solve the global system:

P = F−1(B + GΣ) (5.3)

B is a vector that contains boundary data, all elements except boundary nodes
(Nb1,Nb2,Nb3 and Nb4) are zero. For boundary nodes, the elements in B equals
the boundary condition that is enforced at the specific node.

F and G are sparse matrices, with at most nine non-zero elements in each row.
This reduces the required memory compared to dense matrices. MATLAB also
exploits the sparsity when the linear equation system (equation (5.3)) is solved.
The global system is solved in MATLAB with mldivide , a self-adaptive solution
algorithm that finds the best solution method corresponding to the size and the
sparsity of the equation system.

In a staggered grid do the pressure nodes, in general, not coincide with bound-
aries. For the problem investigated here do the left and right boundary of the
computational domain coincide with horizontal velocity nodes, and the upper and
lower boundaries coincides with vertical velocity nodes. This means that, for
the initially grid, can pressure boundary conditions not be applied directly to the
nodes.

The boundary conditions at the external boundaries are applied by adding
”ghost nodes” in the exterior. The Immersed Boundary Grid that is presented
in section 5.2.1 is used to satisfy the boundary conditions at the physical bound-
ary. The same approach is used to satisfy the body boundary conditions on the
square cylinder, and a more detailed description is given in the next section.
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Implementation of a Square Cylinder

A square cylinder is one of the simplest bodies to implement in a staggered grid.
The reason for this is that the sides of the cylinder are parallel with the global
coordinate system. Hence, the physical boundary is mid between computational
nodes, and neighbour nodes can easily be identified.

The body boundary conditions are implemented with the immersed boundary
grid presented in section 4.3 and 5.2.1. For a square body the implementation
simplifies since we know exactly which nodes to use in order to satisfy the rules
that were outlined in section 5.2.1. The markers will be placed in the exact same
positions relatively to the local cell, independent of grid size.

Figure 5.4: Ghost cells for a square cylinder

The immersed boundary grid is sketched in figure 5.4. The red stars represent the
”ghost nodes”, while the red circles represent the markers on the cylinder surface.
The outline and the centre of the ”ghost nodes” are also sketched in the figure.
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As you can see are the markers equidistant for all the sides, the cells are overlap-
ping, and all markers are a distance 0.5dx from the centre of the cells. This set up
is the same for all grids.

The framework from the main routine can be used to implement the square cylin-
der in the computational domain. The nodes that lie inside the body, next to the
boundary must be identified. These nodes are saved in the vectors; Nb5, Nb6,
Nb7 and Nb8
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5.2.3 Solving the Pressure Poisson Equation
The pressure is computed by solving a Poisson equation on the form:

∇2P = ∇ · Ū (5.4)

The solution of the pressure Poisson equation is obtained by solving (5.3) every
time step. The only term in equation (5.3) that changes with time is the forcing
term Σ. This means that the procedure can be split into two steps. The first step
computes the coefficient matrices A and G, and the vector B. While the second
step solves the equation system (5.3).

The first step includes a loop through all nodes and matrix inversions are per-
formed every iteration. These operations could be quite time-consuming. To make
the algorithm more efficient is the first step performed only once, at the beginning
of the simulation. Hence, the only operations that are performed every time step,
is to update the forcing term and solve equation (5.3).

For problems with moving boundaries, the coefficient matrices must also be
updated every time step.

The next paragraphs review how the pressure correction was implemented, and is-
sues that arose. Especially considering how to solve the singular equation system
that is obtained with pure Neumann boundary conditions.
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Fixing the Pressure in One Node

The boundary value problem obtained from the pressure Poisson equation with
pure Neumann boundary conditions produce a singular equation system. A widely
used method to solve a singular equation system is to fix the pressure at one node
in the computational domain. This approach was initially implemented in the
code. A node at the inflow, close to y=0, was set to p=0.

At first, this method seemed to give reasonable results. However, after a more
detailed review of the results it turned out that the Dirichlet node caused an un-
physical pressure gradient.

Figure 5.5: Unphysical Pressure Gradient at Inflow

In figure 5.5 can you clearly see that the Neumann condition is violated close
to the Dirichlet node at the inflow. If the Dirichlet node was moved to another
position, the disturbance was also relocated.
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Several measures were tried to get rid of the disturbance:

• The Neumann boundary conditions at the external boundaries were imple-
mented with ”ghost nodes” at the physical boundary and distorted cells, as
reviewed by Ma et al. (2016).

• The Neumann boundary conditions at the external boundaries were imple-
mented with ”ghost nodes” in the exterior and a symmetry condition. Simi-
lar as the method that is common with FDM.

• The two points above were also applied for the boundary conditions at the
square cylinder.

• The pressure gradients that is used in the momentum equations were ap-
proximated with a finite difference scheme, instead of HPC interpolation.

• The node with Dirichlet boundary condition was moved to different loca-
tions in the computational domain.

For all measures listed above, it was verified that the boundary conditions were
satisfied. However, none of the measures resulted in a significant improvement.
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Pure Neumann Boundary Conditions

Since the Dirichlet node caused some disturbance, was the next attempt to solve
the full Neumann problem, without any Dirichlet condition. This is a singular
system, with the issues that causes.

The first approach in order to solve the singular system, used the mldivide
function in MATLAB, without any modifications. To obtain a unique pressure
field, was the pressure shifted such that the pressure at the inflow at y ≈ 0 was
set to zero. This resulted in a pressure field without the disturbance. The pressure
field obtained for a given velocity field can be found in figure 5.6.

Figure 5.6: Pressure Field from Pure Neumann Conditions

Unfortunately, when the routine was implemented in the Navier-Stokes solver, the
resulting pressure field was not physical. Moreover, it turned out that the results
oscillated with time. This is not physical since the flow was investigated in the
stable region. The pressure field after 30 seconds can be found in figure 5.7
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Figure 5.7: Pressure Field from Pure Neumann Conditions after 30 Seconds

As you can see from figure 5.7, are there some disturbances in the pressure field,
and it is not symmetric.

To resolve this, a large amount of literature were studied. Finally, by following
the approach that is implemented by Escobar-Vargas et al. (2014) the results were
improved. The main steps are reviewed in the next paragraphs.

When the Poisson equation is discretized, an equation system on the form Ap = b
is obtained, where p is the unknown pressure, A is a coefficient matrix, and b
contains boundary data and data from the forcing term. This system is consistent
if (Golub and Van Loan, 1996):

uT
0 Ap = uT

0 b = 0 (5.5)

Where u0 is the left null singular vector of matrix A . If the compatibility condition
(equation (3.19)) in discrete form is not exactly satisfied, equation (5.5) will nor
be satisfied (Pozrikidis, 2001). Equation (5.5) is therefore known as the discrete
compatibility condition.
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This is also discussed in Gresho and Sani (1987) and Henshaw (1994). To en-
sure that equation (5.5) is satisfied, a modified equation system can be solved
(Pozrikidis, 2001):

Ap = (I− u0uT
0 )b = b̂ (5.6)

Where I is the identity matrix.

Solving equation (5.6) resulted in a symmetric pressure field without disturbance.
Moreover, the results were stable in time.

Equation (5.6) requires that a singular value decomposition (svd) of the coefficient
matrix to be performed, in order to get the left null singular vector. This could be
a very time-consuming task. Moreover, when the number of unknowns gets high,
the matrix multiplication u0uT

0 b becomes very memory demanding in MATLAB,
since the full matrix must be stored. u0uT

0 is a (NxN) dense matrix, while the final
product u0uT

0 b is a vector.
The singular value decomposition is only performed once, at the beginning of

the simulation. This is performed with the MATLAB function svds. The matrix
multiplication is performed with the built-in MATLAB function if the required
memory is lower than available RAM. If the matrix size exceeds this threshold, the
multiplication is performed inside a loop. This reduces the memory requirement
since the resulting matrix is a vector.

It is obvious that solving equation (5.6) is more time consuming than solv-
ing the original equation system. Especially since loops are relatively slow in
the MATLAB environment, compared with for example Fortran. However, the
computational time is reduced some by using parfor, which is a feature in MAT-
LAB to parallel the loop. The matrix multiplication was then computed in a loop
paralleled to 16 CPUs.

There exist numerical methods to find the left null singular vector that is faster
than the svds command in MATLAB, this is reviewed in Escobar-vargas (2012).
However, since this command is executed only once each simulation, and the
deadline was getting close at this stage of the implementation, equation (5.6) was
implemented without any further modifications.
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5.2.4 Interface Between MATLAB and Fortran
The Poisson solver and the associated routines are written in MATLAB, while
the Navier-Stokes solver is written in Fortran. There are two main ways to make
a working interface between MATLAB and Fortran. The first method is to ex-
port the MATLAB routines to a dynamic library that can be called from a Fortran
program. This is not officially supported by Mathworks and there exists no doc-
umentation for the topic. There exist documentation of doing this coupling with
MATLAB and C, and it should be possible to do the same thing with Fortran.

The second method is to open MATLAB in batch mode from the Fortran code,
this is called ”MATLAB engine”. The latter method is officially supported by
Mathworks and there exists proper documentation for the topic. With MATLAB
engine is the calculations are performed by MATLAB, meaning that MATLAB
needs to be installed on the computer that runs the Fortran program.

The advantage of the MATLAB engine approach is that it is less complicated
to implement compared to the first method. Also, since MATLAB runs the MAT-
LAB routines it is faster to do changes in the code. If the MATLAB engine is
properly implemented in the Fortran program, it is not necessary to recompile the
program if you want to do any changes in the routines. Such changes are done
directly in the MATLAB source code.

The drawback of the MATLAB engine is that a version of MATLAB needs to
be installed. This makes it more difficult to distribute the program to users without
the software. Since the routines are calculated by MATLAB, it is usually slower
than if the routines have been run by Fortran.

Initially, there was an attempt to implement the first interface method. However,
it turned out that it was not straight forward, and difficult to succeed without any
documentation. Then was the ”MATLAB engine” successfully implemented with
Fortran.

To properly make the interface between MATLAB and Fortran with the MATLAB
engine, it is necessary to make a Fortran subroutine that opens the engine and
transfer data between the Fortran program and MATLAB workspace.

Since the routine can be split into two steps, two interface routines were made.
HPC coeff that calculates the coefficient matrices is called at the beginning of
the simulation. While solve HPC that solves equation (5.3), is called every time
step.
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5.2.5 Post Processing
The output from the Navier-Stokes solver is the velocity components and the pres-
sure in the centre of the cell. To evaluate flow features like drag and wake, these
primitive variables must be post processed.

Drag Coefficient

The drag force can be computed from equation (2.17), and is divided into a con-
tribution from normal pressure and a contribution from shear stress.

Shear Stress

The shear stress is given by equation (2.19), and ∂u
∂y

must be approximated. A
second order scheme is used to approximate the derivative (Tannehill et al., 1997):(∂u

∂y

)
w

=
−3uw + 4ui,j+1 − ui,j+2

1.5∆y
(5.7)

Where uw = 0 and represents the velocity at the boundary, and ui,j+1 and ui,j+2

represent the two nodes outside the boundary in the normal direction.

For a square cylinder, only the top and bottom side of the cylinder contributes to
the shear drag.

Normal Pressure

The drag contribution from the normal pressure is the normal pressure that is
acting parallel with the global x-axis. For a square cylinder, this corresponds to
the sum of the pressure force at the left and right side of the cylinder (when proper
normals are applied).

The pressure is known at computational nodes, which do not coincide with the
solid surface. The pressure at the cylinder surface is obtained with the MATLAB
function interp2, which use the value at the computational nodes to interpolate the
value at the boundary.
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Integration

The shear stress and normal pressure are computed for a discrete number of points,
which correspond to the number of computational nodes that lies on the cylinder
side, if the boundary had coincided with the nodes. This is visualised in figure 5.8,
where the solid line represents the physical boundary, the black dots represents
some of the closest computational nodes, and the red dots represent the points at
the surface where the values are interpolated.

Figure 5.8: Computational nodes close to boundary

The boundary is divided into a number of line segments with equal length dA. The
total drag is obtained with the numerical integration:

FD,num =
N∑
i

τw,idAτ +
M∑
i

Pw,idAP (5.8)

Where τw,i is the shear stress, for the discrete points, at the top and bottom of the
square cylinder, Pw,i is the normal pressure, for the discrete points, at the left and
right side of the cylinder, dAτ is the length of the line segments where the shear
stress is computed, and dAP is the length of the line segments where the pressure
is computed.

Streamlines

The streamlines are calculated with the MATLAB function streamline. This func-
tion takes the velocity and the number of wanted streamlines as input.
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Sampling

Even if the flow around an obstacle is stable for small Reynolds numbers it is
important to have a good strategy when the results are sampled. It takes some
time before the flow stabilises, and it is important that the results are sampled
after the flow is stabilised.

Figure 5.9: Time Variation of Drag Coefficient

Figure 5.9 illustrates how the drag coefficient varies with time. It is clear that it is
necessary to simulate for a while to get reliable results. Tests revealed that there
are no changes after 30 seconds, all results are therefore sampled after 30 seconds
of simulation.
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Chapter 6

Results

6.1 Potential Flow Around a Circular Cylinder
For a potential flow around a circular cylinder, there exists an analytical solution.
Hence, the numerical results can be compared with the analytical solution. The
implementation reviewed in section 4.3 resulted in a convergence of 3.47 for the
L2 − error. Which means that the L2 − error for the velocity potential converge
at a rate L2 ∼ (D/∆x)−3.47. The results can be found in figure 6.1.
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Figure 6.1: Convergence rate for a potential flow around a circular cylinder

Because of the oscillatory behaviour, it is vital to have many data points, to es-
timate a convergence rate with some confidence. The code only accepts even
number of grid points in x- and y-direction. In figure 6.1, is the number of grid
points equal in x- and y-direction, and all possible grid sizes betweenD/∆x = 10
and D/∆x = 40 are included.

Although a good convergence rate is obtained, are there some oscillations in the
results. Some of the grids have a significant worse accuracy than the rest.
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6.2 Viscous Flow Around a Square Cylinder

6.2.1 Flow Features
The first result that is investigated is the streamlines around the square cylinder.
This is an intuitive way to evaluate if the solver gives realistic results. The stream-
lines in figure 6.2 illustrates that the flow has a stable and symmetric wake. The
recirculation length is approximately 2.5*D.

Figure 6.2: Streamlines Around a Square Cylinder, Re=40, ∆x=0.066 m

The pressure field that is obtained from the computations can also give useful
information. Contour plots of the pressure obtained with the generalized HPC
method and the FDM scheme are presented in figure 6.3 and 6.4. The contour
plots are taken after 30 seconds of simulations.
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Figure 6.3: Pressure Field Obtained with generalized HPC Mehtod, Re=40, ∆x
=0.033 m

Figure 6.4: Pressure Field Obtained with FDM, Re=40, ∆x =0.033 m
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The pressure fields are physically reasonable, and the two contour plots have a
similar pressure field. However, the value of the pressure differs some between
the two methods.

6.2.2 Drag
The drag coefficient was calculated for different grid sizes for both pressure solvers.
Drag coefficients calculated with the generalized HPC method and with the Finite
Difference method are presented in table 6.1, the deviation between the two meth-
ods is also presented in the same table.

Table 6.1: Drag Coefficients

∆x [m] CD,HPC [-] CD,FDM [-] Deviation
0.1333 1.5079 1.7861 0.2782
0.1000 1.6390 1.7660 0.1270
0.0666 1.6430 1.7671 0.1241
0.0444 1.6465 1.7663 0.1198
0.0381 1.6893 1.7704 0.0811
0.0333 1.6935 1.7780 0.0845

For these grids, the generalized HPC method gives lower drag coefficients than the
FDM scheme. However, the trend is that the difference between the two methods
decreases when the grid size is reduced. The same coefficients can be found in
figure 6.5, where the number of nodes per diameter is defined on the x-axis.
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Figure 6.5: Drag coefficients for different grid sizes

The trend is visualised in figure 6.5, that the difference between the two methods
decrease when the grid size is reduced. From figure 6.5 does it not seem like
any of the methods are converged. Both methods have a significant increase of
the drag coefficient, for the two finest grids. Especially the HPC method has a
relatively large increase from the third finest to the second finest grid.

Further investigation revealed that the drag from shear actually was slightly
larger for the third finest grid than for the second finest. This means that the
relatively large gap is caused by the pressure. To investigate this in more detail is
the pressure at the upstream side and the downstream side of the cylinder plotted
in figure 6.6 and 6.7 respectively. The blue plot represents the third finest grid,
and the green plot represents the second finest grid.
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Figure 6.6: Pressure at the Upstream side of the Square Cylinder

Figure 6.7: Pressure at the Downstream side of the Square Cylinder
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On the upstream side of the cylinder is the maximum pressure actual slightly
higher for the third finest grid than for the second finest. However, since the
pressure on the downstream side of the cylinder is negative, will the pressure
here have a suction effect on the cylinder. From figure 6.7 it is clear that the
suction is higher for the second finest grid than for the third finest grid. Hence, the
increased drag coefficient is caused by a lower pressure at the downstream side of
the cylinder.
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6.2.3 Computation Time
The two solvers were run on the same machine, and the computation time to
simulate 30 seconds was measured for both solvers. The time step and all other
parameters were equal.

The results can be found in figure 6.8. The brown dashed line is proportional
with N3/2 and the blue dashed line is proportional with N2. These lines are in-
cluded to illustrate how the computational time increase for the two solvers. The
computational time for generalized HPC method without the singular value de-
composition is also included. This is to illustrate how much it costs to solve the
modified equation (5.6) compared to the original equation system.

Figure 6.8: Comparison of CPU time to simulate 30 seconds
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For the coarsest grids where the number of unknowns is relatively small, is the
FDM scheme faster than the HPC method. When the number of unknown in-
crease, the HPC solver is significant faster than the FDM scheme.

The computation time for HPC with and without svd behave in the same man-
ner, with a different grid size dependence when the number of unknowns changes.
Between the coarsest and the second coarsest grid do the computational time in-
crease proportionally toN2. Then, between the second coarsest grid to the second
finest grid do the computational time increase slower than N3/2. For the finest
grids seems it like the computational time increase slightly less than N2. The
difference in grid dependence could be because of the self adapting-solver that is
used.

The FDM solver has also a different grid size dependence for the coarse grids
than for the fine grids. However, between the second coarsest to the finest grid is
the grid dependence approximately proportional to N2.

It is important to emphasise that there are other factors than the Poisson solver
that affect the simulation time. Stability criterions reduce the time step when the
number of unknowns increases, for example.

There is an extra cost of solving the modified equation system. For the finest grid
is the additional computation time 26 232 seconds to simulate 30 seconds. This
corresponds to approximately 7 hours.

However, the FDM scheme uses 176 830 seconds more for the same simula-
tion, than the HPC with svd. This corresponds to approximately 49 hours, and
it is over 3.4 times slower than the implemented HPC method. The difference in
computational time is remarkable.
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Discussion

7.1 Potential Flow Around a Circular Cylinder
The simulations of a potential flow around a circular cylinder resulted in a con-
vergence rate of 3.47 for the L2 − error. This is within the theoretical range,
considering that all polynomials, except one, up to fourth order are included.

TheL2−error converges with an oscillating behaviour, which can be expected
for an immersed boundary method. However, some discretizations that stand out
with a significant worse accuracy than the rest of the discretizations. A possible
reason could be that the markers and ghost nodes not are distributed ideally for
these discretizations. This emphasises the importance of choosing grid with care
when an immersed boundary method is used.

For a similar problem Hanssen et al. (2015) obtained a convergence rate of 3.96,
but the values of the L2 − error were worse than obtained here. Ma et al. (2016)
have also implemented the IBG for a fixed circular cylinder in a uniform flow.
They obtained a convergence rate of 3.44, but the values of theL2−error oscillates
slightly less than obtained in the implementation.

The convergence obtained with the improved code seems to be more robust than
the results from the project thesis (Rabliås, 2016). Although a good convergence
rate was obtained in the project thesis, it turned out that the convergence rate was
reduced when more points were included. In figure 6.1 are all possible grid sizes
included, for D/∆x ∈ [10, 40]
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7.2 Viscous Flow Around a Square Cylinder
The uniform flow around a square cylinder is not as extensively studied as the
flow around a circular cylinder, especially for low Reynolds numbers. However,
the results are compared with available references.

Dhiman et al. (2006) have obtained a drag coefficient of 1.77. Zanoun and
Nosier (2013) have obtained a drag coefficient between 1.6 and 1.7. Breuer et al.
(1999) have obtained a coefficient around 1.7 for a confined flow, with a blockage
ratio (B=D/H) of 1/8.

Tanaka et al. (1982) have performed experimental studies of oscillating flows
around a square cylinder. For large KC-numbers(KC=40 and KC=70), the drag
coefficient is around 1.7.

In computational fluid dynamics, it is not uncommon that the same physical
problem can give different results, when different numerical schemes are applied.
Such differences can be ascribed different grid size, different domain size, or dif-
ferent accuracy of the method that is used. However, it is important to compare the
results with reference values to check if the discrepancies are within a reasonable
range.

For the finest grid, the generalized HPC method produced a drag coefficient of
1.6935, while the FDM scheme produced a drag coefficient of 1.7780 The differ-
ence is below 5%. These results are within the range that is physically reasonable,
compared to numerical and experimental results from the literature. Since the ref-
erence values deviate in the same order as the HPC and the FDM scheme, it is
hard to conclude about which of the methods that are closest to the exact solution.

None of the methods have converged. One reason for this could be that the resolu-
tion is not sufficient to obtain convergence. To get accurate results, it is important
to have good resolution close to the body. If the grid is too coarse here, the bound-
ary layer will not be properly represented.

A rough estimate of the boundary layer thickness for a flat plate with length
1 could be O( 1√

Re
) (White, 1974). The flow features and boundary layer is of

course not the same for a flat plate and a square, but this can be used as a rough
estimate.

For a Reynolds number of 40, can the boundary layer thickness then be ap-
proximated as O(0.15). Considering that the finest grid in the simulations has a
grid size of 0.0333, it is not certain that this grid size is fine enough to properly
represent the boundary layer.
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It is common practice to refine the grid close to the body, to get a good resolution
in this important area. Sharma and Eswaran (2004) have performed a sensitivity
study of the grid size close to a square cylinder. They tested six grids with ∆x
between 0.0416 and 0.0083. Based on this sensitivity study, used Dhiman et al.
(2006) a grid size of 0.01, close to the cylinder, in their computations. Breuer et al.
(1999) used three different grids in their FVM computations. One equidistant grid
with ∆x = 0.1, and two non-equidistant grids with ∆x = 0.0125 and ∆x = 0.01
close to the cylinder. The two non-equidistant grids had a good agreement, while
the results from the equidistant grid deviated from the other two.

Ideally, should finer grids also be simulated, to investigate convergence properties
more properly. With the current algorithm and the available hardware, that is not
possible. Grid sensitivity studies from the literature use grid sizes close to the
cylinder that is much finer than the finest grid that is used in the simulations. This
could be a possible explanation of the lack of convergence.

Regardless of convergence, the drag coefficients for the different grids should be
investigated. The coarsest grid gives a drag coefficient that deviates significantly
from the other grids. This is not surprising since this is a very coarse grid that
clearly not give a proper representation of the physics.

The next large jump in the drag coefficient is between the third finest and the
second finest grid. Particularly for the HPC solver is the difference significant
between these two grids. Further investigation revealed that a increased pressure
drag caused this. A pressure field with lower value at the downstream side of
the cylinder is the main reason for the increased drag. The reason for this is not
completely understood.

The computation time of solving the Navier-Stokes equations is the limiting fac-
tor for many applications. The generalized HPC method has proven to be very
efficient for boundary value problems tested by Bardazzi et al. (2015). Consider-
ing that the most time-consuming part of a Navier-Stokes solver is the pressure
calculation (Armfield and Street, 2002), should an effective Poisson solver reduce
the computational time for a fractional step method.

Since the two Poisson solvers are written in different languages, can not the
computation time be compared directly to ascertain which solver that is fastest.
Moreover, the most interesting parameter is the efficiency, the time needed to ob-
tain a certain accuracy. That being said, the computation time for the two solvers
could be an indicator of the efficiency.
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CHAPTER 7. DISCUSSION

For most problems, a Fortran code outperform a code written in MATLAB con-
sidering computational time. However, MATLAB has some efficient features that
can compete with other programming languages. mldivide is such an example, it
analyses the equation system and finds the most efficient solver. When the num-
ber of unknowns changes, the best available solver could also change. While the
FDM scheme is solved with the same SPARSKIT solver for all grid sizes, mldi-
vide always use the most efficient solver.

Except for very coarse grids, are the simulations faster when the generalized HPC
method is applied for the pressure Poisson equation, even when the singular value
decomposition is performed. This adds an extra computational cost that not is
present when the FDM scheme is used. Although the svd adds an extra cost, is
the generalized HPC method 49 hours faster than the FDM scheme, to simulate
30 seconds with the finest grid. This means that the generalized HPC method
which is implemented is approximately 3.4 times faster than the FDM scheme
with SPARSKIT, when the number of unknowns is 237 600. The difference is
enormous.

It is a bit surprising that the generalized HPC method is so much faster than
the FDM scheme, even when the svd is included. No measures were applied to
make the svd more efficient than the built-in MATLAB function svds. The corre-
sponding matrix multiplication is also possible to perform more efficient. In the
current implementation is the matrix multiplication performed in a loop through
all nodes. Admittedly was this loop paralleled to 16 CPUs. This is, however,
not 16 times faster than computing the loop on 1 CPU. Tests were performed to
compute the same loop in Fortran, and this routine was significant faster than the
parallel loop in MATLAB. This clarifies that it is possible to make the HPC solver
significant faster.

However, it is important to emphasise that it is probably possible to improve
the efficiency of the FDM scheme as well.
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7.2. VISCOUS FLOW AROUND A SQUARE CYLINDER

When a Dirichlet boundary condition was applied to one node, to solve the singu-
lar equation system, was a disturbance in the pressure field observed. The reason
for this was not fully understood. Because the deadline was close at this stage, the
svd approach was implemented without further investigations.

However, this is an interesting subject that deserves more attention. It may
look like the trouble are caused because the discrete compatibility condition is not
satisfied. Some methods satisfy the compatibility condition automatic. That is,
however, not the case for all numerical methods (Henshaw, 1994). An alternative
to solve the modified equation system, could be to discretize the Navier-Stokes
solver such that the comparability condition is satisfied automatic for the general-
ized HPC method. This is clearly the situation when the FDM scheme is used to
solve the pressure Poisson equation since the original equation system is solved,
without experiencing the same problems as the generalized HPC method.

It is not certain that the modified equation is the best way to treat the prob-
lem. The svd approach induce an extra computational cost that probably can be
avoided. Unfortunately, because of lack of time, this was not further investigated.

The importance of proper discretization was also stressed in an early phase
of the implementation when a ”blind coupling” between the Navier-Stokes solver
and the Poisson solver was tested. This resulted in a velocity field that did not
satisfy continuity,
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Chapter 8

Conclusion and Further Work

8.1 Conclusion
An Immersed Boundary Grid for the generalized HPC method is successfully im-
plemented for a circular cylinder. A uniform flow around a fixed circular cylinder
is investigated with potential flow theory. The governing equation for this prob-
lem is the Laplace equation, which corresponds to the Poisson equation with the
right-hand-side set to zero.

The numerical results were compared with the analytical solution. A conver-
gence rate of 3.47 was obtained for the L2 − error. This is within the theoretical
range of the method, and it is similar to the results obtained by others.

The L2 − error converged with an oscillating behaviour. This is an issue
for immersed boundary methods in general, and it is also observed by Ma et al.
(2016). This emphasises the importance of choosing grids with care when such
method is applied. However, the immersed boundary grid is easy to implement
for irregular geometries, and it has shown promising results regarding accuracy
and convergence.

The uniform inviscid flow around a circular cylinder is a Laplace problem.
Hence, the generalized HPC method simplifies to the HPC method for this prob-
lem. However the same immersed boundary grid is applied to enforce the bound-
ary conditions at external boundaries and for the body boundary conditions at a
square cylinder, when the pressure Poisson equation is solved. This approach
satisfied the boundary conditions, hence the approach is also suitable when the
right-hand side of the Poisson equation is non-zero.

93



8.1. CONCLUSION

The generalized HPC method has been implemented in a Navier-Sokes solver to
solve the pressure Poisson equation. A viscous uniform flow around a square
cylinder is investigated. The results are compared with the results obtained from
the same Navier-Stokes solver, when a FDM scheme is used for the pressure Pois-
son equation.

The same flow features and pressure field are observed with the two methods.
However, the value of the pressure differs between the two methods. This results
in a slightly different drag coefficient. The drag coefficient obtained with the
generalized HPC method is 4.75% lower than the drag coefficient obtained with
the FDM scheme.

The drag coefficient is also compared with results from the literature. These
reference values are not consistent, and a difference in the order of 7-8% is com-
mon. The results obtained with both the generalized HPC method and the FDM
scheme are within the range that is observed in the literature. However, because
of the deviations in the reference results it is difficult to conclude about which
method that is most accurate.

No convergence was observed, neither for the generalized HPC method or the
FDM scheme. The reason for this could be that the finest grid is too coarse to
obtained convergence, especially close to the body it is important with good reso-
lution.

The uniform grid that is used in the simulations, makes it out of reach to
perform further grid refinement. Grid sensitivity studies that are carried out in the
literature refine the grid close to the cylinder, and these grids are much finer than
the finest grid applied in this report.
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Initially a Dirichlet condition was enforced at one node, to solve the singular
equation system. This resulted in a pressure field with a disturbance close to the
Dirichlet node. Therefore was the system solved with pure Neumann conditions.
This produced a pressure field without disturbance.

In order to satisfy the discrete compatibility condition, was a modified equa-
tion system solved. A singular value decomposition of the coefficient matrix was
necessary to obtain the modified equation. Because of lack of time, was this mat-
ter not investigated in more detail, and the approach was implemented without any
further modifications.

The modified equation that is implemented adds an extra computational cost
to the program. There are two main approaches to reduce this extra cost. Perform
the svd and the corresponding matrix multiplication in a more efficient manner, or
discretize the Navier-Stokes solver such that the compatibility condition is auto-
matic satisfied. The former approach will be easiest to implement in the existing
code. However, it is favourable if the compatibility condition can be automatic
satisfied.

The time to simulate 30 seconds was measured, and compared with the FDM
scheme already implemented. For the coarsest grids is the FDM scheme fastest,
while the generalized HPC method is significant faster when the grid is refined.
For the finest grid was the generalized HPC method approximately 3.4 times faster
than the FDM scheme. The difference corresponds to 49 hours for 30 seconds of
simulation, on the machine that was used.

The HPC Poisson solver is written in MATLAB, while the FDM scheme and
the rest of the Navier-Stokes solver are written in Fortran. Hence, the simulation
time that is measured can not be used directly to conclude about which method
that is fastest. In general, is a program written in Fortran faster than a program
written in MATLAB. However, some MATLAB functions are very efficient and
can compete with other programming languages concerning speed. For this appli-
cation it is not sure that the difference between MATLAB and Fortran is as large
as expected, considering computation time.
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8.1. CONCLUSION

The singular value decomposition that is performed increase the computational
time for the generalized HPC method. For the finest grid is the extra computa-
tional time approximate 7 hours, to simulate 30 seconds. Despite this additional
cost, when the number of unknowns is above approximately 30 000 is the Navier-
Stokes solver that use the generalized HPC method for the pressure equation sig-
nificant faster than when the FDM scheme is used. Since most Navier-stokes
solvers for practical applications have more than 30 000 unknowns, is this an in-
dicator that the generalized HPC method is significant faster than a FDM scheme
solved with SPARSKIT. This is emphasised by that the generalized HPC method
that is implemented have a great potential of improving the efficiency.

The generalized HPC method is successfully implemented to solve the pressure
Poisson equation in a Navier-Stokes solver. A uniform flow around a square cylin-
der is investigated. The obtained drag coefficient is within the range that could be
expected, considering reference values from the literature.

The same flow problem is also investigated when a FDM scheme is used for
the pressure equation. The drag coefficient deviated from the value that is obtained
with the generalized HPC method. However, the deviation is in the same order that
the reference values deviates. Considering computational time, is the generalized
HPC method significant faster than the FDM scheme. This is an important finding
since computational cost is the major issue for Navier-Stokes solvers.

Some issues were discovered during the implementation. All of them are not
reviewed in detail in this report. However, suggestion for further work can be
found in the next section.
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8.2 Further Work
The Immersed Boundary Grid is successfully implemented for a circular cylinder
to solve a Laplace problem. A good convergence rate is obtained for this problem.
For a Poisson problem is the IBG only implemented for a square cylinder. This is
a much simpler geometry that eliminates some of the issues that are present for a
body with irregular boundaries.

A suggestion for further work is to implement the IBG for a Poisson problem,
on a body with irregular boundaries, e.g a circular cylinder, to verify that a good
convergence rate is obtained, also when the forcing term is non-zero.

The computational time limited further grid refinement when the viscous problem
was solved. A simple improvement could be to modify the code such that a refined
grid is applied close to the body. Then could more accurate results be obtained for
the same computational cost.

In order to satisfy the discrete compatibility condition, a modified equation system
is solved instead of the original equation system. This includes a singular value
decomposition and an extra matrix multiplication. Both these operations can be
time-consuming. A suggestion for further work is to find algorithms that perform
these operations more efficient. This can significantly improve the efficiency of
the method.

An alternative to the modified equation approach is to discretize the Navier-Stokes
solver such that the discretized compatibility condition is automatically satisfied
for the generalized HPC method. This is favourable compared to the modified
equation approach since the computational costs are reduced. To exploit the ad-
vantages of the higher order properties of the generalized HPC method, can this be
done in the process of developing a higher order method for all steps in a fractional
step method.
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Joel H. Ferziger and M. Perić. Computational methods for fluid dynamics.
Springer, Berlin, 1996.

Gene H. Golub and Charles F. Van Loan. Matrix computations. 1996. Johns
Hopkins University, Press, Baltimore, MD, USA, pages 374–426, 1996.

Joseph J. Gorski. Present state of numerical ship hydrodynamics and validation
experiments. Journal of Offshore Mechanics and Arctic Engineering, 124(2):
74–80, 2002.

Philip M. Gresho and Robert L. Sani. On pressure boundary conditions for the
incompressible navier-stokes equations. International Journal for Numerical
Methods in Fluids, 7(10):1111–1145, 1987.

Hanssen, Greco, and Shao. The harmonic polynomial cell method for moving
bodies immersed in a cartesian background grid. 34th International Conference
on Ocean, Offshore and Arctic Engineering (OMAE2015), 2015.

Francis H. Harlow and J. Eddie Welch. Numerical calculation of time dependent
viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12):
2182–2189, 1965.

Rene Heinzl. Concepts for scientific computing, 2007. URL http://www.
iue.tuwien.ac.at/phd/heinzl/node27.html. Accessed: Novem-
ber 1st, 2016.

William D. Henshaw. A fourth-order accurate method for the incompress-
ible navier-stokes equations on overlapping grids. Journal of Computational
Physics, 113(1):13–25, 1994.

I. S. Kharlamova, A. Kharlamov, and P Vlasák. Salatation of sand in vicinity of
cylindrical column. In Engineering Mechanics, Svratka, Czech Republic, 2013.

100

http://www.iue.tuwien.ac.at/phd/heinzl/node27.html
http://www.iue.tuwien.ac.at/phd/heinzl/node27.html


REFERENCES

Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, INC,
10 edition, 2011.

H. P. Langtangen, K. A. Mardal, and R. Winther. Numerical methods for incom-
pressible viscous flow. Advances in Water Resources, 25(8-12):1125–1146,
2002.

S. Ma, F-C.W. Hanssen, M.A. Siddiqui, M. Greco, and O.M. Faltinsen. Local and
global properties of the harmonic polynomial cell method: In-depth analysis in
two dimension. Submitted for journal publication, 2016.

math3510edensmith. Consolidation week, 2014. URL https:
//math3510edensmith.wordpress.com/author/
math3510edensmith/. Accessed: Novemer 14th, 2016.

Atsushi Okajima. Strouhal numbers of rectangular cylinders. Journal of Fluid
Mechanics, 123(Oct):379–398, 1982.

S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International Journal
of Heat and Mass Transfer, 15(10):1787–1806, 1972.

Bjørnar Pettersen. Kompendium - Marin Teknikk 3 Hydrodynamikk. Department
of Marine technology, NTNU, Marine Technology Centre Trondheim, 2007.

C. Pozrikidis. A note on the regularization of the discrete poisson–neumann prob-
lem. Journal of Computational Physics, 172(2):917–923, 2001.
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