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Summary
This thesis focuses on strapdown inertial navigation systems formarine vessels, ex-
ploiting low-cost micro-electro-mechanical-systems (MEMS) inertial sensors and
nonlinear observers for sensor fusion. The motivation behind the research is
to investigate the possibility to develop cost-effective inertial navigation systems
providing, roll, pitch and heave estimates, similar to typical maritime vertical ref-
erence units (VRUs), while providing estimates of the vessel’s position, velocity
and attitude as well. In addition, such systems should be fault tolerant.

Nonlinear observers serve as alternatives to the well established extended
Kalman filter where explicit stability properties are more cumbersome, and in
some cases impossible, to achieve. The presented observers are proven to have
semiglobal exponentially stability properties, where semiglobality is mainly due
to the infeasibility of pure global results when considering attitude estimation of
the special orthogonal group of order three. The observers are benchmarked in
full-scale experiments using an established navigation suite based on the extended
Kalman filter. Similar performance was obtained in state-state conditions.

The observer designs are based on a framework of a nonlinear attitude observer
and a translational motion observer, which forms a feedback interconnection. This
is extended to incorporate a virtual vertical reference (VVR) measurement for ver-
tical aiding of the inertial navigation system. The reference signal is utilized as
an alternative to vertical measurements from position references such as global
navigation satellite systems (GNSS). The inclusion of the virtual reference facil-
itates high-performance heave estimation. The VVR is also beneficial w.r.t. to
attitude estimation improving the roll and pitch estimates by exploiting kinemat-
ics couplings between the orientational and the translational motion. In addition
to including the VVR in the inertial navigation system, the observer structures
are further extended to employ time-varying gains. Moreover, the VVR concept
is improved utilizing an error model based on sea-state-dependent parameters.
Simulations indicate that the industry standard VRU performance specification of
five centimeters or five per cent root-mean-square heave error is obtainable with
the proposed design. The presented observer structure are also validated using
sensor data gathered on an offshore vessel in operation.

Access to the mean motion of the vessel prevents unwanted motion compen-
sation by the control system. Therefore, marine surface craft often apply wave
filtering of position and heading measurements in order to reconstruct the mean
motion of the vessel, by attenuating the oscillatory motion components, due to
waves, embedded in the measurements. In this work, wave filtering based, on
estimated and measured signals from the inertial navigation system and inertial
sensors, is presented. The presented work is the first to do so, serving as an
alternative to traditional observer-based approaches exploiting ship models.

The thesis also consider fault tolerance and sensors redundancy using nonlin-
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viii SUMMARY

ear observers. Concepts for fault detection and isolation using position, heading
and inertial measurement are presented based on triple-redundant sensor config-
urations and nonlinear observers. Outcomes related to weighting and averaging
of multiple sensor systems are also presented. In contrast to the VRU systems on
board offshore vessels, where the measurements often are average on the output,
this theses also focuses on weighting directly on the underlying inertial measure-
ments before these are utilized as to estimate the VRU solution. In addition, posi-
tion, velocity andheading estimates are also obtainedwith the approach proposed.
Hence, the thesis provides a more integrated design compared to the current in-
dustrial practice, that is relying on more separated sensors. The fault tolerance
properties of the concepts for redundant inertial measurement units (IMUs), are
validated using inertial sensors data gather at sea, injected with artificial faults.

In addition, the dissertation presents a study on the difference between loosely
and tightly coupled integration in the context of nonlinear observers and on how
these can be implemented in discrete time. Usingdata gather during anunmanned
aerial vehicle flight, results related to the performance difference between these
two integration techniques, based on measurements from a MEMS IMU and a
standalone GNSS receiver, relative to a real time kinematic GNSS positioning
solution, are presented.

Finally, the algorithms presented in this thesis have the potential to be imple-
mented and used commercially on ships and on other types of marine surface
vessels. The concepts presented have the potential to increase fault tolerance.
Multiple MEMS IMUs have to be installed in order to achieve this, however, these
combined with the presented methods have the potential to replace existing VRU
solutions. Therefore, the cost might be reduced, while the navigation system’s
performance and its fault-tolerance properties may be increased.
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1Introduction
1.1 Context and Background

Maritime inertial navigation systems (INSs) are the main focus of this disserta-
tion. The usage of the term navigation is widely adopted in everyday life with
numerous of meanings depending on context. These include the act of moving,
and finding one’s way in an unknown environment, ascertaining a craft’s position
or even browsing the pages of the internet. Originally the term meant the art of
sailing a ship, in particular steering and maneuvering, and is derived from the
Latin words navis and agere, translated to “ship” and “to drive” (Fossen, 2011). In
a contemporary scientific context, navigation usually relates to the ascertainment
of position, velocity and attitude (PVA) of some object relative to a reference point.
Such usages of the navigation term is applicable for all types of craft and vehi-
cles, such as ships, submarines, aircraft, cars and agricultural machinery. Other
definitions of navigation also exist where path planning and maneuvering may
be included in the definition. However, when applying the guidance, navigation
and control (GNC) framework, as done in this thesis, path planning and maneu-
vering are included in the guidance and the control system, respectively, (Fossen,
2011, Ch. 9). A generalized overview of the GNC signal flow for marine craft is
illustrated in Figure 1.1.

Environmental
Disturbances

Sensors

Navigation System

Estimation

Control
Allocation

Contol System

Motion
Controller

Trajectory
Generation

Guidance System

Marine Vessel GNC System

Figure 1.1: Simplified overview of the GNC signal flow. Fossen (2011, Ch. 9–12)
can be studied for details.

1.1.1 Marine navigation systems: Past, current and future

Execution of marine of operations, oceanographic research missions and trans-
portation at sea are all examples of situations where access to precise and accurate
vessel motion data is vital in order to carry out its operations in a safe and efficient
manner. Leverarm compensation of position measurements, attitude corrections

1



2 CHAPTER 1. INTRODUCTION

of onboard antennas, heave corrections of oceanographic data and heave compen-
sation of cranes and drilling equipment are specific examples of tasks requiring
high-quality motion data. Also automatic and autonomous docking systems re-
quire high precision and high accuracy PVA estimates. Motion data is also used
by onboard decision support systems. Access to accurate, precise and reliable PVA
information is necessary in all these examples. Often the PVA signals are obtained
by the navigation system, Figure 1.1, before used by the other systems onboard to
guide and control the vessel. Now-a-days navigation systems filters measured sig-
nals and reconstructs unknown states or signals from noisy measurements using
some filtering and estimation software.

Before the advent of motion sensors, computers and electronic navigational
aids, navigation at seawas carried outwith sextant and, at the time, accurate clocks
to manually obtain the position on Earth through measurements and calculations.
By crudely estimating the ship’s speed and heading, one could calculate a new
position based on a previously known one, a process referred to as dead reckoning
(DR). The origin of DR as an expression is not known, but one possibility is
that it stems from ded reckoning, short for deduced reckoning, (Misra and Enge,
2011, Ch. 1). As time developed one of the major breakthroughs in navigation
technology and an essential innovation in paving the way for automatic control of
ships where the invention of the gyrocompass, first installed by Anschutz in 1907,
and the ballistic compass by Elmer A. Sperry three years later. Such a device was
one of the key parts of the first autopilot known as Metal Mike. The gyrocompass,
based on gimbal inertial sensor technology and physical self-alignment, has later
established itself as the de facto standard of heading determination on ships and
free floaters. The first complete INS for PVA estimation was developed by the
Charles Stark Draper Laboratory (MIT Instrumentation Laboratory at the time) in
the 1950s.

Modern INSs provide the user with PVA information with high resolution
independent of the vehicle platform using strapdown sensors. Strapdown INS
is a type of INSs based on accelerometer and angular rate measurements from
sensors mounted directly to the craft’s hull or fuselage, while the rotational and
translational PVA motion of the craft, relative to the Earth, is obtained through
software by mechanization of the kinematic strapdown equations in a DR fashion.
Commercially available global navigational aids based on global navigation satel-
lite systems (GNSS) technology, in particular the Global Positioning System (GPS),
have paved the way for wide spread INS utilization based on low-cost inertial sen-
sors, which are in need of frequent position corrections. The reason for this can be
understood from the complementary nature of GNSS and inertial measurements
indicated in Table 1.1. High-grade sensors are still frequently used inGNSS denied
environments and in applications where GNSS outage should not impede the PVA
determination properties of the navigation system.

Future maritime navigation systems may turn out to be quite similar to the
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Table 1.1: GNSS/INS: Complementary features. Positive and negative fea-
tures/characteristics are indicated with green and red, respectively.

GNSS INS

Bounded errors Unbounded errors
Good long-term accuracy Poor long-term accuracy
Poor short-term accuracy Good short-term accuracy
Relies on external information
sources (sat. pos. & velo.) Self-contained

Medium dependent:
Susceptible to obstruction, jamming and spoofing Non-jammable and spoofable

Attitude not estimateda Attitude estimated
a Heading can be estimated with a dual-receiver solution.

state-of-the-art systems of today. The cost and size, however, will go down and
reliability must increase to enable more remote sensing using autonomous un-
derwater vehicles (AUVs) and unmanned aerial vehicles (UAVs), applying georef-
erencing. Similar developments will enable commercialization and widespread
use of autonomous ships and aircraft in e.g. oceanic and coastal mapping and
monitoring and transportation of goods and people.

1.1.2 Inertial navigation – Sensor technology

Inertial sensors measure angular rates and specific forces, using rate gyros (or
angular rate sensors (ARSs)) and accelerometers, respectively. High-end inertial
sensing products can be based on mechanical gimbal-based systems or on sensor
technology based on fiber optic gyroscopes (FOGs), hemispherical resonant gyro-
scopes (HRGs) and ring laser gyroscopes (RLGs), (Armenise et al., 2010). Sensors
based on micro-electro-mechanical-systems (MEMS) technology have consider-
able lower cost, but also lower performance w.r.t. larger sensor biases, both static
and dynamic. The static bias is often referred to as offset representing turn-on or
run-to-run bias. The dynamic bias is the in-run variation of the bias also known as
bias stability. In addition to sensor bias there are there are other sensor errors such
as scale factor and scale factor nonlinearity, (Titterton and Weston (2004, Ch. 4-
8), Grewal et al. (2013, Ch. 3.3–3.4)). Rate gyros also have g-sensitivity induced
errors. Sensor assemblies having tri-axial and orthogonal mounts of both rate gy-
ros/ARSs and accelerometers are referred to as inertialmeasurement units (IMUs),
illustrated in Figure 1.2. These sensors may also be misaligned internally in the
triad. A resulting comprehensive measurement model (Groves, 2013, Ch. 4.4) of
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yb

xb

zb

θ

φ

ψ

IMU

Figure 1.2: Illustration of an IMU measuring six-degree-of-freedom motion.

an IMU, measuring specific force, f b
ib , and angular rate, ωb

ib , may look like

f b
IMU � (I3 −Macc) f b

ib + bb
acc + wb

acc (1.1)

ωb
IMU �

(
I3 −Mgyro

)
ωb

ib + bb
gyro + G( f b

ib) + wb
gyro (1.2)

where the bias bb
? have two components;

bb
? � bb

? offset + bb
? dynamic , (1.3)

and

M? �
©«

s?,x µ?,x y µ?,xz

µ?,yx s?,y µ?,yz

µ?,zx µ?,z y s?,y

ª®¬ , (1.4)

with s? �
(
s?,x ; s?,y ; s?,z

)
containing the respective triad’s scale factors, while

m? �
(
µ?,x y ; µ?,xz ; µ?,yx ; µ?,yz ; µ?,zx ; µ?,z y

)
represents the six misalignment angles. G( f b

ib) is the g-induced error on the rate
gyros, and wb

? represents remaining errors, typically modeled as white noise in
estimators. Furthermore, {b} and {i}, represent the BODY and inertial coordinate
frames, respectively, in compliance with the definitions in Chapter 2. For many
rate gyro technologies, such as MEMS, a more accurate term would be ARS since
often none of the sensor’s parts are rotating. However, in this thesis the term
gyro or rate gyro is used independently of sensor technology due to the established
practice in the literature, (Titterton and Weston, 2004; Farrell, 2008; Groves, 2013).

1.1.3 Inertial navigation – INS aiding and corrections

As stated above, inertial sensor measurements are corrupted with errors such
as bias and noise. Therefore pure DR, integration of angular rate and specific
force measurements, once and twice, respectively, through a kinematic model,
will result in the INS’s estimation error to grow without bounds. Hence, INSs are
dependent of corrections or aiding from some referencemeasurements tomaintain
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accurate PVA estimation over time. In early gimbals-based solutions for attitude
determination, the attitude correctionwas donemechanically, based on accelerom-
eter measurements and constant realigning of the gyro-stabilized platform, such
that the platform’s orientation in space remained constant (zero angular velocity
relative inertial space) regardless of the motion of the vehicle it was attached to
(Britting, 1971). When using strapdown inertial sensors, the realignment is im-
plicitly carried out in software bymechanization of the strapdown equation, when
fusing the aiding measurements with the inertial sensor outputs. The traditional
sensor fusion algorithms of choice are variants of the nonlinear extension of the
Kalmanfilter (KF), the extendedKalmanfilter (EKF),which has been covered in the
literature for five decades, such as in Gelb et al. (1974); Maybeck (1979); Titterton
and Weston (2004); Farrell (2008); Grewal et al. (2013); Groves (2013), often using
an error-state implementation based on complementary filtering (Appendix D).
If the attitude is represented using a unit quaternion, a multiplicative extended
Kalman filter (MEKF), such as Markley (2003), can be used to estimate the attitude
indirectly by filtering on the multiplicative unit quaternion error.

EKF-based sensor fusion algorithms for INSs are well established with high
performance. Nonetheless, one could argue that the lack of, or at least the difficulty
of obtaining and verifying, global stability properties of the EKF’s error dynamics,
due to linearization about the INSs’s given trajectory, is a disadvantage. Nonlinear
observer theory offers a way around these potential limitations and is applied
throughout this thesis.

1.1.4 Nonlinear observers estimation of position, velocity and attitude

In the last two to three decades numerous nonlinear observers (NLOs) have been
developed in the context of attitude estimation. The basis for these observers has
been that either some direct attitude measurement is available or that the attitude
can be estimated by comparing vector measurements with known reference vec-
tors. The first principle was utilized in Salcudean (1991); Vik and Fossen (2001);
Thienel and Sanner (2003), while results such as Hamel and Mahony (2006); Ma-
hony et al. (2008, 2009); Hua (2010); Martin and Salaün (2010); Roberts and Tayebi
(2011); Grip et al. (2012a); Batista et al. (2012c,b,a); Hua et al. (2014); Zlotnik and
Forbes (2016); Hua et al. (2016) used the latter principle. All of these works, ex-
cept Hua (2010), Roberts and Tayebi (2011), Batista et al. (2012a) and Hua et al.
(2016) provide estimates of the gyro bias. In addition, the observer of Batista et al.
(2012a) is actually not a NLO, where the attitude was estimated with a linear ob-
server, while avoiding use of linearization as with EKFs. Estimates on SO(3)were
obtained by orthogonalization of the outputs from the linear observer.

Loosely coupled GNSS/INS integration strategies using NLOs have also de-
veloped with position and velocity references to estimate six-degrees-of-freedom
(6-DOF) motion. In Vik and Fossen (2001), the PVA were estimated based on iner-
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tial, attitude and GNSS measurements. Hua (2010), Roberts and Tayebi (2011) and
Hua et al. (2016) are examples of what is often referred to as velocity-aided attitude
observers in the literature, where GNSS velocity, together with Earth magnetic field
and inertial measurements were fused to estimate linear velocity in addition to
the attitude. Further results on estimating PVA, using nonlinear theory, based
on inertial, magnetometer and GNSS position (and velocity) measurements were
provided byGrip et al. (2013, 2015). These results estimated PVAusing a feedback-
interconnected design, based on the unit quaternion and the rotation matrix as
attitude representation, respectively. The results were obtained by extending the
results of Grip et al. (2012a) in order to incorporate estimation of position and
linear velocity based on the framework of Grip et al. (2012b). In Grip et al. (2013),
a semiglobal result was obtained, similar to Grip et al. (2012a). The semiglobal
result, instead of global, was obtained due to the topological constraint on SO(3),
(Bhat and Bernstein, 2000). Grip et al. (2015) circumvented this by allowing the
estimated rotation matrix to evolve freely on R3×3 instead of being constraint to
SO(3) as in Grip et al. (2013). Similar to Batista et al. (2012a), rotation matrices
on SO(3) were obtained by orthogonalization of the estimates evolving on R3×3.
Other contemporary results on integration strategies of position reference (Pos-
Ref) systems and inertial sensor based on ranging, applying linear and nonlinear
theory, also exists. Some examples can be found in Batista (2015); Johansen and
Fossen (2016); Johansen et al. (2016); Bayat et al. (2016); Johansen et al. (2017). Since
both the rate gyro and accelerometer triads are used to estimate the attitude and
the respective biases, tri-axial gyro and accelerometer biases are unfortunately
not uniformly observable (Groves, 2013, Ch. 11.9) regardless of choice of estima-
tor. Therefore the accelerometer biases are often assumed to be compensated for
during calibration when using GNSS/INS integration based on NLOs. There are
some exceptions such as Grip et al. (2012a, 2016) where the accelerometer biases
are estimated online based on a persistency-of-excitation (PE) condition. Similar
statements related to observability and PE are given in Batista et al. (2009).

1.2 Scope, Objective and Contributions

The thesis covers selected topics within the field of navigation systems for marine
surface vessels. The objective of the research is to investigate and develop algo-
rithms in order to enable increased usage of low-cost inertial sensing technology
onboard ships, and in particular on dynamically positioned (DP) ships, based on
loosely coupled GNSS/INS integration. The scope of the work is closely linked to
the vision of the research project Fault-Tolerant Inertial Sensor Fusion for Marine
Vessels1. The vision was: Gaining high-quality and redundant position and motion
estimates by fusion of position reference, inertial sensors, and vessel modeling to improve

1A knowledge-building projection funded by the Research Council of Norway and Rolls–Royce
Marine through the MAROFF programme.
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fault-tolerance, safety and performance of ships’ path monitoring, control and advisory
systems. The work that has resulted in this dissertation has been focused towards
the performance aspects of the project.

The largest classification society in the world DNV GL (2011) defines a vessel
equipped with a DP system according to:

Definition 1.1 (Dynamically positioned vessel). A vessel which automatically main-
tains its position and heading (fixed location or predetermined track) exclusively by means
of thruster force.2

State-of-the-art DP systems often relies onMEMS IMU indirectly through so called
vertical reference units (VRUs) (Ingram et al., 1996), being a black box providing
roll, pitch and sometimes heaves estimates. The roll and pitch signals are e.g. used
for leverarm compensation of position reference on DP vessel. They can also be
used in ballast system when controlling the trim and heel angles of a vessel. The
heave signal, together with roll and pitch, can be used for motion compensation
of onboard cranes and in decisions support systems.

Current classification notations 2 and 3 for DP vessels, such as DNVGL (2011),
related to the sensor system design onboard require two or three VRUs. The
internal IMU measurements in these units are often totally separated from the
position measurements which is potentially neither optimal for performance nor
fault-tolerance of both the attitude and position estimation in the DP system. The
main focus of this work is aimed towards how both single and redundant sensor
configurations can be exploited more efficiently based on the same type of inertial
sensors often used inside VRUs using NLO-based sensor fusion. By doing so
global or semiglobal stability properties is obtained with overall high estimation
performance. In addition, both synergies andpotentials pit falls related to the fault-
tolerance aspects have also been studied. This is done by using the unambiguous
kinematic relations and couplings between the respective sensors available on a
DP vessel.

1.2.1 Main contributions

The thesis have developed nonlinear observers for INS solutions based on low-cost
strapdown MEMS IMUs. The main contributions are summarized as:

• Extending theworks of recent years developments of 6-DOFestimators based
on NLOs by developing tailor-made algorithms for marine surface vessels
(Bryne et al., 2014, 2015b, 2016, n.d.). By doing so, a VRU solution is achieved
together with estimates of the ship’s position and velocity (Bryne et al., 2014,
2015b, 2016).

2Thruster force may include propulsion and steering (rudder) forces for backup purposes only.
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• Heave estimates are obtained without vertical aiding from PosRef systems,
such as vertical GNSS and hydroacoustic position reference (HPR) system
measurements. Neither of these provide accurate vertical measurements.
Instead a new concept branded the Virtual Vertical Reference (VVR) principle
is developed (Bryne et al., 2014, 2015b, 2016, n.d.). TheVVR-based heave esti-
mation is performedwith andwithout exploiting an errormodel, employing
sea-state-dependent parameters.

• The developed observers have guaranteed robustness due to the proven
uniform semiglobal exponential stability (USGES) properties cf. Appendix
A.1, (Bryne et al., 2014, n.d.).

• Wave-filtering algorithms for shipborne INSs are developed (Bryne et al.,
2015a). Wave-filtering is performed in order to attenuate the wave-induced
motions of ships’ PVAs estimates before providing these to the control system
such that positioning of the vessel is done based on the mean trajectory of
the vessel.

• Redundant sensor configurations are exploited to improve performance, ro-
bustness and fault-tolerance of NLO-based INSs for marine vessel (Bryne
et al. (2015a), Rogne et al. (n.d.a)).

• Nonlinear observer implementation aspects are presented, in particular re-
lated to error modeling, discretization and Riccati-based gain assignment
(Bryne et al., 2017a).

The proposed algorithms are validated and compared to maritime industry stan-
dard VRUs. The attitude estimates are verified using NavLab (Gade, 2004), a
navigation software suite developed by the Norwegian Defence Research Estab-
lishment (FFI) andKongsbergMaritime. In addition, a comparison study related to
the estimation performance, obtainedwith loosely and tightly coupled GNSS/INS
integration using NLOs, is carried out.

1.2.2 Inertial sensor deployment on an offshore ship

In order to experimentally validate the developed NLO-based sensor fusion algo-
rithms during the course of this work, a data acquisition system was developed,
shown in Figure 1.3, containing multiple ADIS16485 IMUs by Analog Devices and
one STIM300 IMU by Sensonor, and installed on an ship operating in the Norwe-
gian Sea. Data from the inertial sensors was collected in the Fall of 2015 together
with measurements from onboard sensors. The ship in question is an offshore
vessel with a Rolls–Royce Marine Icon DP system. The vessel type is shown in
Figure 1.4. A track of the vessel is seen in Figure 1.5, showing where the data were
collected off the coast of Norway. More details on the data collection is presented
in Appendix E.
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Figure 1.3: The data acquisition system used for IMU data collection.

Figure 1.4: Illustration of the offshore vessel. Courtesy Rolls–Royce Marine.
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Figure 1.5: Track of the vessel off the coast of Norway.

1.2.3 Publications and organization of thesis

This thesis is based on the following publications in internationally recognized
journals and conferences:

Journal publication and magazine articles:

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2015a). Design of inertial
navigation systems for marine craft with adaptive wave filtering aided by
triple-redundant sensor packages. International Journal of Adaptive Control
and Signal Processing, pp. 1–23. doi: 10.1002/acs.2645

• Bryne, T. H., Hansen, J. M., Rogne, R. H., Sokolova, N., Fossen, T. I., and
Johansen, T. A. (2017a). Nonlinear observers for integrated INS/GNSS navi-
gation – Implementation aspects. IEEE Control Systems Magazine. To Appear

• Bryne, T. H., Rogne, R. H., Fossen, T. I., and Johansen, T. A. (n.d.). A virtual
vertical reference concept for integrated inertial navigation at the sea surface.
Control Engineering Practice. Submitted for publication

• Rogne, R.H., Bryne, T.H., Fossen, T. I., and Johansen, T.A. (n.d.a). Redundant
MEMS-based inertial navigation using nonlinear observers. ASME Journal of
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Dynamic Systems, Measurement and Control. Submitted for publication

• Rogne, R.H., Bryne, T.H., Fossen, T. I., and Johansen, T.A. (n.d.b). Strapdown
inertial navigation on ships using MEMS sensors and nonlinear observers.
IEEE Transactions On Control System Technology. Submitted for publication

Conference publications:

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2014). Nonlinear observerwith
time-varying gains for inertial navigation aided by satellite reference systems
indynamicpositioning. InProc. of the IEEEMediterraneanConference onControl
andAutomation, pp. 1353–1360, Palermo, Italy. doi: 10.1109/MED.2014.6961564

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2015b). A virtual vertical
reference concept for GNSS/INS applications at the sea surface. In Proc. of
the 10th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC),
pp. 127–133, Copenhagen, Denmark. Received the best regular paper award
at IFAC MCMC’15. doi: j.ifacol.2015.10.269

• Bryne, T. H., Rogne, R. H., Fossen, T. I., and Johansen, T. A. (2016). Attitude
and heave estimation for ships using MEMS-based inertial measurements.
In Proc. of the 10th IFAC Conference on Control Applications in Marine Systems
(CAMS), pp. 568–575, Trondheim. doi: 10.1016/j.ifacol.2016.10.496

Publications not included in the thesis:

I have also contributed to

• Rogne, R. H., Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2016a). MEMS-
based inertial navigation on dynamically positioned ships: Dead reckoning.
In Proc. of the 10th IFAC Conference on Control Applications in Marine Systems
(CAMS), pp. 139—146, Trondheim. doi: 10.1016/j.ifacol.2016.10.334

• Rogne, R. H., Bryne, T. H., Johansen, T. A., and Fossen, T. I. (2016b). Fault
detection in lever-arm-compensated position reference systems based on
nonlinear attitude observers and inertial measurements in dynamic posi-
tioning. In Proc. of the American Contr. Conf., pp. 985–992, Boston, Ma. doi:
10.1109/ACC.2016.7525043

• Bryne, T. H., Rogne, R. H., Fossen, T. I., and Johansen, T. A. (2017b). In-
ertial sensors for risk-based redundancy in dynamic positioning. In Proc.
of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic
Engineering, OMAE2017, Trondheim, Norway. To Appear

However, these publications are not included in the thesis.

The content of the considered publications is organized as follows:
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Chapter 2: Kinematics and Sensor Models

A general modeling chapter presenting the underlying coordinate frames together
with kinematic and sensor models applied in the observer design of this work.

Chapter 3: GNSS/INS Integration Using Nonlinear Observers –
Implementation Aspects

This chapter include a general presentation of INSs based on NLOs and the
feedback-interconnected framework applied throughout this thesis. GNSS/INS
integration strategies, discretization and implementation aspects are considered
and is based upon

• Bryne, T. H., Hansen, J. M., Rogne, R. H., Sokolova, N., Fossen, T. I., and
Johansen, T. A. (2017a). Nonlinear observers for integrated INS/GNSS navi-
gation – Implementation aspects. IEEE Control Systems Magazine. To Appear.

Chapter 4: The Virtual Vertical Reference Principle – Vertical Aiding of INSs
for Marine Surface Vessels

This is the main chapter of this thesis covering design, discretization, evaluation
and validation of NLOs tailored for marine surface vessel providing 6-DOF vessel
motion estimates. The chapter is based on the work presented in

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2014). Nonlinear observerwith
time-varying gains for inertial navigation aided by satellite reference systems
indynamicpositioning. InProc. of the IEEEMediterraneanConference onControl
andAutomation, pp. 1353–1360, Palermo, Italy. doi: 10.1109/MED.2014.6961564

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2015b). A virtual vertical
reference concept for GNSS/INS applications at the sea surface. In Proc. of
the 10th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC),
pp. 127–133, Copenhagen, Denmark. Received the best regular paper award
at IFAC MCMC’15. doi: j.ifacol.2015.10.269

• Bryne, T. H., Rogne, R. H., Fossen, T. I., and Johansen, T. A. (n.d.). A virtual
vertical reference concept for integrated inertial navigation at the sea surface.
Control Engineering Practice. Submitted for publication.

Chapter 5: INS on Ships

This chapter covers more practical aspects of MEMS-based INS using NLOs on
ships and is based on

• Rogne, R.H., Bryne, T.H., Fossen, T. I., and Johansen, T.A. (n.d.b). Strapdown
inertial navigation on ships using MEMS sensors and nonlinear observers.
IEEE Transactions On Control System Technology. Submitted for publication.
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• Bryne, T. H., Rogne, R. H., Fossen, T. I., and Johansen, T. A. (2016). Attitude
and heave estimation for ships using MEMS-based inertial measurements.
In Proc. of the 10th IFAC Conference on Control Applications in Marine Systems
(CAMS), pp. 568–575, Trondheim. doi: 10.1016/j.ifacol.2016.10.496

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2015a). Design of inertial
navigation systems for marine craft with adaptive wave filtering aided by
triple-redundant sensor packages. International Journal of Adaptive Control
and Signal Processing, pp. 1–23. doi: 10.1002/acs.2645.

The two former articles cover filtering, validation and tuning aspects of different
NLO configurations. The latter article covers the aspects of wave-filtering for INS.

Chapter 6: Sensor Redundancy and Fault Tolerance

This chapter presents the work on redundant sensor configurations and fault
tolerance in aided INS in the context of DP. The chapter is based on

• Bryne, T. H., Fossen, T. I., and Johansen, T. A. (2015a). Design of inertial
navigation systems for marine craft with adaptive wave filtering aided by
triple-redundant sensor packages. International Journal of Adaptive Control
and Signal Processing, pp. 1–23. doi: 10.1002/acs.2645

• Rogne, R.H., Bryne, T.H., Fossen, T. I., and Johansen, T.A. (n.d.a). Redundant
MEMS-based inertial navigation using nonlinear observers. ASME Journal of
Dynamic Systems, Measurement and Control. Submitted for publication.

Chapter 7: Concluding Remarks

This chapter summarizes the results of the thesis.

Appendices

• Appendix A presents the applied stability properties and the proofs of the
theoretical results of the thesis.

• Appendix B outlines mathematical notions and definitions applied through-
put the thesis.

• Appendix C presents some background material related to modeling of
GNSS errors together with simulation and validation case studies.

• Appendix D presents some background material on the concept of comple-
mentary filtering.
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• Appendix E presents an overview of the collection of sensor data, used for
full-scale validation and verification of the algorithms developed, carried out
on an offshore vessel.

• Appendix F presents algorithms for discrete-time implementation of the
nonlinear attitude observer and for averaging of unit quaternions.



2Kinematics and Sensor Models
Navigation systems, and in particular INS, fuses information, from sensors or
other information sources, containing parts of the motion of a vessel, general craft
or robot. The type of sensor determines which reference or coordinate frames
the motion information is related to. This chapter presents the coordinate frames
applied in the thesis, the accompanying kinematic strapdown equations applied to
fuse strapdown inertial measurements with respective references, and the sensor
models used.

The mathematical notations and definitions serving as the foundation of this
chapter, and the remainder of the thesis, is presented Appendix B.

2.1 Coordinate Frames

This thesis employs five coordinate frames; The Earth Centered Inertial (ECI)
frame, the Earth Centered Earth Fixed (ECEF) frame, the North East Down (NED)
frame, a tangent frame equivalent of an Earth fixed NED frame, and the BODY
coordinate frame, denoted {i}, {e}, {n}, {t} and {b}, respectively relating to each
other as seen in Figure 2.1. ECI is an assumed inertial frame following the Earth,
where the x-axis points towards vernal equinox, the z-axis is pointing along the
Earth’s rotational axis and the y-axis completes the right hand frame. ECEF is
defined with x-axis points towards the zero meridian, the z-axis points along the
Earth’s rotational axis, while the y-axis completes the right hand frame. TheEarth’s
rotation rate ωie � 7.292115 · 10−5 rad/s is assumed to be constant and given by
the WGS-84 datum. It is further decomposed in the ECEF and tangent frame as

ωe
ie �

©«
0
0
1

ª®¬ωie , ωt
ie �

©«
cos(µ)

0
− sin(µ)

ª®¬ωie , (2.1)

xi

xe

yi

ye

zi , ze

ωie

xt

yt

zt zb

yb

xb

oi , oe

ob

on

λ

µ

Figure 2.1: Definitions of the BODY, tangent, ECEF and ECI reference frames.
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where µ is the latitude on the Earth and ω??? represents angular velocity. The
longitude is denoted λ. The tangent frame is an Earth fixed frame and has it’s
origin on the surface on WGS-84 at some latitude and longitude, where the x-
axis points towards north, the y-axis points towards east, and the z-axis points
downwards. The BODY frame is fixed to the vessel. The origin of {b} is located at
the nominal center of gravity of the vessel. The x-axis is directed from aft to fore,
the y-axis is directed to starboard and the z-axis points downwards.

2.2 Kinematic Models – Strapdown Equations

The subsequent rigid body kinematic models, used as a basis for the aided INSs
in this thesis, follows fromworks such as Britting (1971); Farrell (2008), where p?

?b ,
v?
?b , f?ib∈ R3 are position, linear velocity and specific force, respectively where ?

represents the chosen navigation coordinate frame. The attitude is represented
both with the rotation matrix R?

b or the unit quaternion q?b . ω
?
i? represent angular

velocity of a given frame ? relative to the inertial frame, decomposed in the given
coordinate system, represented by ?. See, Appendix B for details. Other repre-
sentations of attitude than the mentioned rotationmatrix and unit quaternion also
exist. A survey on attitude representations is found in Shuster (1983).

2.2.1 Inertial frame representation

Newtons laws ofmotion apply in the inertial frame. An approximate inertial frame
is the ECI frame. The ECI frame representation of the strapdown takes the form of

Ûp i
ib � v i

ib , (2.2)

Ûv i
ib � Ri

b f b
ib + g i

b(p
i
ib), (2.3)

ÛRi
b � Ri

bS
(
ωb

ib

)
. (2.4)

The alternative representation of (2.4), using the unit quaternion takes the form of

Ûq i
b �

1
2

q i
b ⊗

(
0
ωb

ib

)
. (2.5)

When the NED frame is assumed inertial, the strapdown equations related to the
translational motion take a similar form to that of (2.2)–(2.3) with

Ûpn
nb � vn

nb , (2.6)

Ûvn
nb � Rn

b f b
ib + gn

b , (2.7)

while for the attitude, using the unit quaternion representation, qn
b , between the

{b} and the {n} frame evolves according to

Ûqn
b �

1
2

qn
b ⊗

(
0
ωb

ib

)
, (2.8)
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where f b
in and ωb

in are assumed to be negligible.

2.2.2 Earth Centered Earth Fixed frame representation

The ECEF frame representation is given as

Ûpe
eb � ve

eb , (2.9)

Ûve
eb � −2S

(
ωe

ie

)
ve

eb + Re
b f b

ib + g e
b(p

e
eb), (2.10)

ÛRe
b � Re

bS
(
ωb

ib

)
− S

(
ωe

ie

)
Re

b . (2.11)

The vector g e
b(p

e
eb) denotes the plumb bob gravity vector, which is a function of the

vehicle’s position decomposed in the ECEF frame and is obtained with a gravity
model. The alternative representation of (2.11), using the unit quaternion takes
the form of

Ûqe
b �

1
2

qe
b ⊗

(
0
ωb

ib

)
− 1

2

(
0
ωe

ie

)
⊗ qe

b . (2.12)

2.2.3 Tangent frame representation

The tangent frame representation of the strapdown equations takes the form of

Ûpt
tb � vt

tb , (2.13)

Ûvt
tb � −2S

(
ωt

ie

)
vt

tb + Rt
b f b

ib + g t
b(p

t
tb), (2.14)

ÛRt
b � Rt

bS
(
ωb

ib

)
− S

(
ωt

it

)
Rt

b , (2.15)

where
ωt

it � ω
t
ie + ω

t
et (2.16)

is the angular velocity of the tangent frame relative the inertial frame. However,
ωt

et � 03×1 since the tangent frame is Earth fixed. Thus,

ωt
it � ω

t
ie � Rt

e(µ, λ)ωe
ie , (2.17)

where µ, λ is constant, which result is given in (2.1). The alternative representation
of (2.15), using the unit quaternion, takes the form of

Ûqt
b �

1
2

qt
b ⊗

(
0
ωb

ib

)
− 1

2

(
0
ωt

it

)
⊗ qt

b . (2.18)

2.3 Sensor Models

2.3.1 Inertial sensor models

In this work a simpler IMU model than presented in (1.1)–(1.2), is utilized in con-
junction with the feedback-interconnected NLO design (Chapter 3). Throughout
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most of this thesis the IMU model,

f b
IMU � f b

ib + ε
b
f , (2.19)

ωb
IMU � ωb

ib + bb
gyro + εb

ω , (2.20)

Ûbb
gyro � 03×1 , (2.21)

is assumed to be sufficiency accurate, where f b
ib � Rb

?

(
a?ib − g?b (p

?
?b)

)
, with a?ib

being the acceleration decomposed in the navigation frame of choice ({n}, {t},
{e} in this thesis), measured by the IMU. bb

gyro denotes the rate gyro/ARS bias.
Accelerometer errors, such as run-to-run bias, are mostly assumed to be compen-
sated for using offline and online calibration methods such as Grip et al. (2012a,
Sec. VI). In addition, εb

? represents the residual noise and error components of
(1.1)–(1.2). In addition, the tri-axial measurements of (2.19) and (2.20) can be
described componentwise as

f b
IMU �

(
f b
IMU,x , f b

IMU,y , f b
IMU,z

)ᵀ
, (2.22)

ωb
IMU �

(
ωb

IMU,x , ω
b
IMU,y , ω

b
IMU,z

)ᵀ
, (2.23)

where the subscripts x, y and z, denote the forward, starboard and downwards
axes, respectively, in the BODY frame.

2.3.2 Other sensors models

In addition to the IMU sensor model, PosRef system, compass and magnetometer
measurement models are often chosen, if not otherwise specified, as

p?PosRef � p??b + ε
?
PosRef , (2.24)

ψc � ψ + εc , (2.25)

mb
mag � mb

eb + ε
b
mag , (2.26)

where ε?? and εψ represent the respective sensor noise and errors.



3GNSS/INS Integration Using Nonlinear
Observers – Implementation Aspects
The chapter is mainly based on Bryne et al. (2017a) and considers theNLOs of Grip
et al. (2013) and Johansen and Fossen (2015); Johansen et al. (2017) estimating PVA
using loosely and tightly coupled GNSS/INS integration, respectively. The main
focus of the chapter is on how the NLOs can be realized with time-varying gains
and how the observers can be implemented explicitly in discrete-time. Conceptual
differences of the two integration strategies are presented and an illustration of the
respective performance difference obtained using data collected in a UAV flight.

The NLOs of Grip et al. (2013) and Johansen and Fossen (2015); Johansen et al.
(2017) are based on complementary filtering on SO(3), inspired by the work of
Mahony et al. (2008), in combination with a linear approach to design a transla-
tionalmotion observer (TMO),which in turn is used to estimate the position, linear
velocity and specific force. The origin of the two observers’ error dynamics have
USGES and uniform local exponential stability (ULES) properties, respectively,
proven in the original works. An introduction to complementary filtering can be
found in Appendix D.

In applied usage, NLOs are immature, in particular related to implementation
aspects and handling imperfect measurements with different errors, resolution
and sample rates. In addition to presenting implementation related aspects of
NLOs, further re-design is addressed in this chapter to answer the research ques-
tions presented above. The basis for this work include linear methods for exact
discretization of the translational motion part of the observer, error model aug-
mentation, and usage of the methods in Fossen (2011, Ch. 11.3.4), Hua et al. (2014)
for discretization, tuning and multi-rate implementation of the attitude observer.
Based on this, the main contributions of the chapter are:

• A linear time-varying (LTV) representation of the observer error dynamics is
exploited to formulate a time-varying Riccati equation to select time-varying
gains in the update of velocity and position estimates (as well as some aux-
iliary variable estimates).

• Strategies originally developed for the Kalman filter are exploited in han-
dling sequential single-measurement updates to accommodate multi-rate
and asynchronous measurements in estimation of PVA.

• Inclusion of GNSS error models in order to take into account the dynamic
noise characteristic of GNSS observables.

• Experimental validation of the presented methods using data collected dur-
ing a UAV test flight mission.

19
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CHAPTER 3. GNSS/INS INTEGRATION USING NONLINEAR OBSERVERS –

IMPLEMENTATION ASPECTS

First an overview of the nonlinear observer structures for loose and tightly cou-
pled GNSS/INS is presented before going into detail by presenting the attitude
observer. The presentation follows with the two TMOs, estimating the position,
linear velocity and specific forces. The TMO required for the loosely coupled inte-
gration scheme is presented first, then the tightly coupled GNSS/INS integration
scheme is presented, both with the respective GNSS noise and error models. The
experimental validation of the presented methods concludes the chapter.

3.1 Overview of GNSS/INS Integration using Nonlinear
Observers

The twomost commonGNSS/INS integration techniques are known in the naviga-
tion literature as loosely coupled and tightly coupled integration, and aredescribed
below.

With loosely coupled integration the receiver’s measurements of position, and
sometimes velocity, are fusedwith the inertial measurements. When applying this
integration strategy, the GNSS position and velocity measurements are given as
pe

GNSS � pe
eb + δp and ve

GNSS � ve
eb + δv where δ? represents the errors and noise.

These are calculated by the receiver, in the ECEF frame, either with a least squares
(LS) estimator or by using an EKF (Groves, 2013, Ch. 9.4).

With a tightly coupled integration strategy, the raw GNSS observables, pseu-
dorange and Doppler range-rate, are utilized as aiding measurements by relating
these to the inertial measurements using (2.9)–(2.12). Here the pseudorange and
range-rate measurements are denoted y i and ν i , respectively, representing mea-
surements from the ith satellite out of m satellites in view. These measurements
are determined based on the knowledge of satellite position and velocity, denoted
pe

ebi
and ve

ebi
, calculated with the help of broadcasted satellite ephemeris.

An advantage of the loosely coupled approach is the ease of implementation
as the receiver takes care of all considerations about satellite constellation and
integrity of the raw GNSS observables. On the other hand this also entails that
only complete solutions can be used, whereas for tightly coupled integration a few
raw GNSS observables, that would be insufficient for a standalone solution, could
be utilized to aid the INS. A disadvantage of tightly coupled integration is that not
all receivers grants access to the raw GNSS observables, Groves (2013). Moreover,
the implementation and tuning of GNSS/INS integration is more straight forward
with loosely coupled integration than with tightly coupled integration due to
pseudorangemeasurementswith different elevation anglesmay have considerably
different noise characteristics. On the other hand, integrity monitoring is easier
with tightly coupled integration in the rangedomain compared to its counterpart in
the position domain since erroneous pseudorangemeasurementsmay be excluded
while maintaining GNSS aiding. If a GNSS fault in loosely coupled integration is
detected, GNSS aiding is lost until the fault has been remedied.
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A schematic overview of the difference between the two integration strategies,
applying the same NLO for attitude determination, is shown in Figure 3.1. Two
key features are obtained using the NLO in feedback interconnection with the
TMO as depicted in Figure 3.1; The first feature is that the attitude is estimated
without linearization, in opposite to KF-based techniques, making the attitude
observer robust to initialization errors allowing for large initial attitude errors.
The second, is that the attitude observer is utilizing the estimated specific force in
the navigation frame provided by the TMO as reference vector when calculating
attitude corrections. The latter feature is particularly useful when the navigation
system is accelerated.
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(a) Loosely coupled GNSS/INS integration. With this integration scheme, position
(and velocity) measurements are provided by the GNSS receiver and integratedwith
the IMU measurements.
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(b) Tightly coupled GNSS/INS integration. With this integration scheme, the posi-
tion and velocity solution is obtained using GNSS pseudorange and Doppler range-
rate measurements in combination with the IMUmeasurements. An algebraic pseu-
dorange solver is used to initialize the translational motion observer

Figure 3.1: Overview of the two feedback-interconnected observer structures
used for integration of GNSSs and INSs.

3.2 Attitude Observer

Theproposed loosely and tightly coupledGNSS/INS integration schemes, are both
dependent on the nonlinear attitude observer. The latter is presented in detail in
this section, where discretization prior to implementation, also is discussed.
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The attitude observer used is based on Mahony et al. (2008) and Grip et al.
(2012a, 2013), employing complementary filtering,

Û̂qe
b �

1
2

q̂e
b ⊗

(
ω̄b

IMU −
¯̂bb

gyro + ¯̂σb
ib

)
− 1

2
ω̄e

ie ⊗ q̂e
b , (3.1)

Û̂bb
gyro � Proj

(
−kI σ̂

b
ib , ‖b̂

b
gyro‖2 ≤ Mb̂gyro

)
, (3.2)

σ̂b
ib � k1 f b

IMU × Rᵀ(q̂e
b)satM f ( f̂

e
ib) + k2mb

mag × Rᵀ(q̂e
b)m

e
eb , (3.3)

using the notation of (B.11) related to the quaternion product, where k1 , k2 , kI

are gains. kI is the gain of the gyro/angular rate bias estimator, providing the
NLOwith integral action, whereas Proj(?,?) is a projection operator ensuring that
the gyro/angular rate bias estimates are bounded, ‖b̂b

gyro‖2 ≤ Mb̂gyro
using the

algorithm of (Krstić et al., 1995, App. E). See Grip et al. (2012a, 2013) for details.
The injection term σ̂b

ib is utilized to correct the attitude and compensate for the gyro
bias in (3.1), by estimating the latter in (3.2), with the goal of obtaining an estimate
of ωb

ib with ω̂b
ib � ωb

IMU − b̂b
gyro. The injection term σ̂b

ib is based on comparing the
measured vectors in the BODY frame, here specific force and magnetic field from
the accelerometer and the magnetometer, respectively, with the corresponding
reference vector in the ECEF frame, rotated to the BODY frame using R(q̂e

b). If
there are discrepancies between the two, the nonlinear injection term σ̂b

ib acts as
an angular velocity in (3.1) to compensate for this error. The reference vectors in
question are me

eb , being the Earth’s magnetic field and assumed to be known, and
the estimated specific force f̂

e
ib . Moreover, satM f (·) is a saturation operator, such

that specific force estimate remains bounded, ‖ f̂
e
ib ‖2 ≤ M f . As in Grip et al. (2013),

f̂
e
ib is obtained from the TMO, presented later on, which offers an accurate estimate

f̂
e
ib also when the vehicle is accelerated. This is beneficial, compared to assuming

that f e
ib ≈ −g e

b(p̂
e
eb), where the gravity component g e

b is obtained with a gravity
model based on the estimated position p̂e

eb , an assumption that holds only when
the vehicle in question is not exposed to acceleration for prolonged periods of time.
More vector measurement/reference pairs may be added to (3.3) depending on
the application. A minimum of two non-parallel vectors are required in order to
guarantee convergence regardless of the vehicle trajectories. The injection term
σ̂b

ib is calculated in a way that resembles how the linearized attitude error enters
themeasurementmatrixwhen using the quaternion-basedMEKF,Markley (2003),
algorithm to estimate the attitude.

3.2.1 Alternative implementation of the injection term and
continuous-time gain selection

There exist other alternatives than (3.3) to construct thevectormeasurement/reference
pairs. Normalized versions of mb

mag, me
eb , f b

IMU and satM f ( f̂
e
ib) can be implemented
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using

f b
�

f b
IMU

‖ f b
IMU‖2

, mb
�

mb
mag

‖mb
mag‖2

,

f e
�

satM f ( f̂
e
ib)

‖satM f ( f̂
e
ib)‖2

, me
�

me
eb

‖me
eb ‖2

.

By doing so, the gains k1 and k2 can be viewed as cutoff frequencies of a comple-
mentary filter as described in Mahony et al. (2008); Hua et al. (2014) with the same
unit as the angular velocity, ωb

IMU, in (3.3) since the vector pairs become dimen-
sionless. This means that for motion with frequencies above k1 (rad/s), the rate
gyro is the primary sensor used for estimating the attitude in the directions excited
by the first reference vector, while for lower frequencies, correction associatedwith
the first reference vector dominates. Similarly k2 essentially determines the cutoff
frequency for use of low-frequency information from the second reference vector.
Furthermore, the construction of vector pairs may be additionally extended, in-
spired by the TRIAD algorithm (Black, 1964), by crossing the k-th vector pair with
the previous vector pair, making the vectors in each frame perpendicular to each
other. Hence, the new vectors v1

b , v1
e , v2

b and v2
e take the form of,

v1
b
� f b , v2

b
� f b × mb ,

v1
e
� f e , v2

e
� f e × me ,

resulting in σ̂b
ib becoming,

σ̂b
ib � k1v1

b × Rᵀ(q̂e
b)v1

e
+ k2v2

b × Rᵀ(q̂e
b)v2

e , (3.4)

with the possibility to increase the attitude estimation performance compared to
using (3.3). Alternatively to (3.4), a linearization of the complementary attitude
filter is provided in Hua et al. (2014, Eq. (37)), and may be used to develop an
optimal gain selection algorithm given the noise covariances.

3.2.2 Discretization of the attitude observer

The rate gyro measurements are integrated at a high rate f � 1/Ts , updating
the attitude estimates whenever a new angular rate measurement is available,
as in Hua et al. (2014). If Ts is small enough to assume that ω̂b

ib(t) remains
constant between samples, the exact discretization of the kinematic equation (3.1),
is obtained using

q̂e
b[k] � e(

Ts
2 Ω(ω̂b

ib [k]))e(−
Ts
2 Ω̄(ωe

ie))q̂e
b[k − 1], (3.5)
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where

ω̂b
ib[k] � ω

b
IMU[k] − b̂

b
gyro[k − 1] + σ̂b

ib[k], (3.6)

Ω(ω) �
(

0 −ωᵀ
ω −S(ω)

)
, Ω̄(ω) �

(
0 −ωᵀ
ω S(ω)

)
, (3.7)

e(
Ts
2 Ω(ω)) � cos

(
Ts

2
‖ω‖2

)
I4 +

Ts

2
sinc

(
Ts

2
‖ω‖2

)
Ω(ω), (3.8)

and

e(−
Ts
2 Ω̄(ω)) �

(
cos

(
Ts

2
‖ω‖2

)
I4 +

Ts

2
sinc

(
Ts

2
‖ω‖2

)
Ω̄(ω)

)−1

. (3.9)

According to Hua et al. (2014), the expressions cos (·) and sinc (·) can, in practice,
be approximated for by their first- or second-order approximation or by using
a lookup table to increase the computational efficiency of (3.5). After (3.5) is
calculated, re-normalization of q̂e

b is carried out,

q̂e
b[k] �

q̂e
b[k]

‖q̂e
b[k]‖2

, (3.10)

to account for numerical round-off errors. The gyro bias estimates can be updated
using exact integration of (3.2) with

b̂
b
gyro[k] � b̂

b
gyro[k − 1] − Ts kI[k] σ̂b

ib[k], (3.11)

where a projection algorithm, such as that of Grip et al. (2012a), is straightforward
to add. In this implementation, one or both terms in σ̂b

ib[k] is not included if there
is no valid vector measurement available at time index k. To ensure that the cutoff
frequency, chosen for each measurement vector, maps from continuous to discrete
time, σ̂b

ib[k] is implemented as

σ̂b
ib[k] � σ̂

b
ib ,1[k] + σ̂

b
ib ,2[k], (3.12)

such that if i � 1 ∈ Ik , where Ik is a set containing the indices of available
measurements (Appendix C.4), then σ̂b

ib ,1[k] is implemented as

σ̂b
ib ,1[k] �

δtacc
Ts

k1[k] v1
b[k] × Rᵀ(q̂e

b[k − 1])v1
e[k], (3.13)

else σ̂b
ib ,1[k] � 03×1. If i � 2 ∈ Ik , then

σ̂b
ib ,2[k] �

δtmag

Ts
k2[k] v2

b[k] × Rᵀ(q̂e
b[k − 1])v2

e[k], (3.14)

else σ̂b
ib ,2[k] � 03×1. δtacc and δtmag denote the time intervals since the previous

valid accelerometer andmagnetometermeasurementswere available, respectively.
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This ensures that gains and bandwidth of the respective vector measurements are
independent of sampling frequency and only decided by the continuous-time
cutoff frequencies k1 and k2. Typically, the specific force measurement is available
at the same rate as the rate gyro readings such that δtacc � Ts . In this case

σ̂b
ib ,1[k] � k1[k] v1

b[k] × Rᵀ(q̂e
b[k − 1])v1

e[k],

if i � 1 ∈ Ik . This implementation strategy assumes that a valid specific force
measurement is available when a new magnetometer measurement is available
due to the cross product of normalized vectors embedded in the implementation
of σ̂b

ib ,2[k]. An outline of the implementation of the nonlinear attitude observer is
presented in Algorithm 4, Appendix F. Moreover, the described implementation
strategy, for nonlinear and potentially low-rate injection terms is in compliance
with the corrector-predictor scheme presented in Fossen (2011, Ch. 11.3.4) and
allows for k1, k2 and kI to be time-varying.

Situations where the assumption of constant angular velocities between IMU
samples, for a given sampling time Ts , is not deemed to be sufficiently accurate
may arise. This can happen if the IMU is exposed to high-frequency vibrations,
and may be addressed with a more elaborate attitude mechanization (Groves,
2013, Ch. 5.1.1) to avoid coning (Groves, 2013, Ch. 5.5.4), resulting in drift in the
attitude estimates. The more elaborate mechanization, however, comes with the
cost of being more computational intensive. In addition, using an incremental
angle (also known as ∆-angle) configuration, related to the IMU’s angular rate
output, is beneficial. Then, the average angular rates of the IMU between samples
k−1 and k are provided based on themaximum internal IMU sampling frequency.
Concerning the accelerometer configuration, outputting incremental velocity (also
known as ∆-velocity), is beneficial in order to avoid sculling (Groves, 2013, Ch.
5.5.4). This can also benefit the attitude estimation since the specific forces are
embedded in the injection term (3.12), which again acts as an angular velocity in
(3.6), used in the attitude update.

Havingpresented the attitude observer, the following two sections present in detail
the respective TMOs used for loosely and tightly coupled GNSS/INS integration.

3.3 Translation Motion Observer for Loosely Coupled
Integration

The TMO presented first is used together with the attitude observer to perform
the loosely coupled GNSS/INS integration. In addition to the algorithm itself,
conditions for stability, and gain selection are presented. Discretization and im-
plementation considerations are also covered.
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For loosely coupled GNSS/INS integration, the TMO is obtained from Grip
et al. (2013),

Û̂pe
eb � v̂e

eb + ϑK0
pp(pe

GNSS − p̂e
eb) + K0

vp(ve
GNSS − v̂e

eb), (3.15)
Û̂ve

eb � −2S(ωe
ie)v̂

e
eb + f̂

e
ib + g e

b(p̂
e
eb)

+ ϑ2K0
pv(pe

GNSS − p̂e
eb) + ϑK0

vv(ve
GNSS − v̂e

eb),
(3.16)

Ûξb
ib � −R(q̂e

b)S(σ̂
b
ib) f

b
IMU + ϑ3K0

pξ(p
e
GNSS − p̂e

eb) + ϑ
2K0

vξ(v
e
GNSS − v̂e

eb), (3.17)

f̂
e
ib � R(q̂e

b) f
b
IMU + ξe

ib . (3.18)

The rotation matrix R(q̂e
b) is obtained using (B.3). See Appendix B.2.2 for details.

The state ξe
ib is an auxiliary parameter/state, necessary to assist the estimation of

the specific force, f e
ib , motivated by the analysis in Grip et al. (2012a) applied in

Grip et al. (2013, 2015). This state couples the rotational and translational motions,
facilitating precise attitude estimation also when the vehicle is accelerated. The
feedback of f̂

e
ib from the TMO to the attitude observer requires stability analysis

leading to some restrictions on the observer gains, that are discussed next.

3.3.1 Stability conditions

The TMO for loosely coupled integration can now be written as a continuous LTV
system,

Û̂x∗ � A∗ x̂∗ + B∗(t , q̂e
b)u
∗
+ D∗(t , x̂∗) + K∗(y − C∗ x̂∗), (3.19)

with the state, input and output, defined respectively as

x̂∗ :� (p̂e
eb ; v̂e

eb ; ξe
ib),

u∗ :� ( f b
IMU;−S(σ̂b

ib) f
b
IMU),

y :� (pe
GNSS; ve

GNSS),

and with the matrices,

A∗ � ©«
03×3 I3 03×3
03×3 03×3 I3
03×3 03×3 03×3

ª®¬ , B∗(t , q̂e
b) �

©«
03×3 03×3

R(q̂e
b) 03×3

03×3 R(q̂e
b)

ª®¬ ,
C∗ �

(
I3 03×3 03×3

03×3 I3 03×3

)
, D∗(t , x̂∗) � ©«

03×1
g e

b(p̂
e
eb) − 2(ωe

ie)v̂
e
eb

03×1

ª®¬ ,
K∗ � ©«

Kpp Kvp

Kpv Kvv

Kpξ Kvξ

ª®¬ �
©«
ϑK0

pp K0
vp

ϑ2K0
pv ϑK0

vv
ϑ3K0

pξ ϑ2K0
vξ

ª®®¬ ,
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such that the system (A∗ , B∗ , C∗) is both controllable and observable. For the latter
to hold, however, effects due to D(t , x̂)must be assumed to be negligible. The term
−2S(ωe

ie)v̂
e
eb is not an issue; if −2S(ωe

ie) instead was included in the A∗-matrix, this
would not alter the rank of the observability matrix

O �

(
C∗; C∗A∗; . . . ; C∗A∗9−1

)
, (3.20)

due to the structure of A∗, since ωe
ie is considered to be constant. Furthermore,

changes in the gravity g e
b(p̂

e
eb) are negligible as a results of its small variationsw.r.t.

to position, since the gravity is assumed to be Lipschitz.
For the nominal case when there are no sensor errors or noise, the origin of

the feedback interconnection of the attitude and translational motion observer is
USGES and established in Grip et al. (2013) under the following conditions:

• Two attitude measurement vectors available, being non-parallel. This is
satisfied if there exists a constant cobs > 0 such that ‖ f b

IMU × mb
mag‖2 ≥ cobs

or ‖v1
b × v2

b ‖2 ≥ cobs, for all t ≥ t0.

• Attitude observer gains k1, k2, and kI satisfy k1 , k2 ≥ kP , for some kP > 0, and
kI > 0.

• The gravity vector g e
b(p

e
eb) is a Lipschitz continuous function of the position,

pe
eb . This is supported by physical intuition.

• The constant gains in the matrix

K0
�

©«
K0

pp K0
vp

K0
pv K0

vv
K0

pξ K0
vξ

ª®®¬ ,
of the TMO can be chosen arbitrarily provided that the linear error dynamics
matrix A∗ − K0C∗ is Hurwitz, and ϑ ≥ ϑ∗, where ϑ∗ ≥ 1 is sufficiently large,
Grip et al. (2013). The intuitions behind a large ϑ is that it implies that
the estimate of f̂ e

ib is dominated by position measurements, such that the
attitude estimation errors do not lead to a large error in f̂ e

ib , which could
otherwise destabilize the attitude observer.

With these requirements fulfilled, the attitude estimate is guaranteed to not diverge
since the scalar part, s̃, of the quaternion error,

q̃ � qe
b ⊗ q̂e∗

b � (s̃; r̃) , (3.21)

is bounded away from zero with a margin s̃ > ε̄, for some constant ε̄ ∈ (0, 1
2 ),

such that (A.3), of Appendix A.1, holds for the given initial conditions due to
sufficiently high gains (kP and ϑ sufficiency high), thus fulfilling Definition A.2,
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concerning uniform semiglobal exponential stability. Furthermore, this yields
that origin of the overall error dynamics, of the NLO’s and the TMO’s estimation
errors, is USGES. This even holds if the reference vectors f e or f e ×me temporarily
come close to zero in the transient phase. For details, see Theorem 1 of Grip
et al. (2013). For more on unit quaternions and the quaternion conjugate qe∗

b , see
Appendix B.2.2.

The practical implication of the USGES property is the robustness to large ini-
tialization errors in both position and attitude since no linearization is needed
in the nonlinear attitude estimator. In addition, temporary violation of the con-
dition related to the availability of two non-parallel vector measurements, and
the corresponding reference vectors, can be tolerated since the attitude estimate
can be updated using only the angular rate measurements, or one of the vectors
measurements, for shorter periods of time.

3.3.2 Continuous-time gain selection

The gain conditions of Grip et al. (2013), reviewed above, are of limited practical
use since they are general and sufficient (not always necessary) conditions where a
non-conservative bound ϑ∗ may be difficult to find. Moreover, ϑ∗ also depends on
the attitude observer gains k1 , k2 , kI . In a practical approach to tuning, the gains
in the matrix K0 of the TMO may be tuned using a minimum-variance estimation
criterion by taking into account the influences ofmeasurement noises. This is done
by choosing ϑ � 1 and

Q∗ � blockdiag(S f , Sσ̂ f ), R � blockdiag(Sp , Sv),

as input and output noise covariance matrices, respectively. Regarding R, the
matrices Sp and Sv represents the covariance matrices of the position and velocity
measurement noise components εe

p and εe
v , respectively. In practice the GNSS

position and velocity measurements are time-varying and correlated as the user
position estimates are used to determine the user-to-satellite line-of-sight (LOS)
vector in the velocity computation procedure. An alternative can then be to include
cross terms Spv and Svp such that

R �

(
Sp Spv

Svp Sv

)
, Spv � Svp .

The covariance matrices S f and Sσ̂ f are obtained from the accelerometer’s mea-
surement noise by S f � E[ε f ε

ᵀ
f ] and Sσ̂ f � E[S(σ̂b

ib)ε f ε
ᵀ
f Sᵀ(σ̂b

ib)]. The latter term
goes to a steady-state value when the attitude estimates has converged.

A gainmatrix that gives an approximatelyminimum variance estimate is given
by the Riccati equation solution P∗ � (P∗)ᵀ > 0 motivated by the fact that the
TMO’s error dynamics are identical to the time-scaled error dynamics of the
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Kalman and Bucy (1961) filter

K0
� P∗(C∗)ᵀR−1 , (3.22)

1
ϑ
ÛP∗ � A∗P∗ + P∗(A∗)ᵀ + B∗Q∗(B∗)ᵀ − P∗(C∗)ᵀR−1C∗P∗. (3.23)

One reason for (3.19)–(3.23) only being an approximately minimum variance
estimator is that q̂e

b and σ̂
b
ib are correlatedwith f b

IMU. Therefore the accelerometer’s
noise εb

f and the accompanying covariance S f are correlated with B∗. The result
of Johansen and Fossen (2015, Lemma 6) shows that it is possible to choose ϑ
independently from P∗, using the time-varying Riccati equation (3.23) such that
theUSGES stability properties posed inGrip et al. (2013) still holdwhen calculating
the gains with (3.22)–(3.23). However, choosing ϑ > 1 is suboptimal with respect
to the minimum variance optimization problem the Kalman-Bucy filter solves. In
addition, the covariance matrix Sσ̂ f , associated with ξe

ib , is not necessarily straight
forward to determine since S(σ̂b

ib) is correlated with εb
f . These terms are also

further correlated with R(q̂e
b). As an alternative, ad hoc tuning of Sσ̂ f can be

considered. By always choosing Sσ̂ f larger than zero, the gains associated with
the state ξe

ib never become zero, guaranteeing stability.
A simulation case study, presented inAppendixC.2, illustrates thebenefitusing

time-varying gains in both the attitude observer and TMO in order to obtained
fast convergence the feedback-interconnected NLO

3.3.3 Position space GNSS error models

The position and velocity measurements provided by the GNSS receiver’s least
squares estimator or EKF are subjected to time-varying errors inflicted by three
main effects; Satellite errors, signal propagation errors and receiver errors, (Grewal
et al., 2013, Ch. 7).

The GNSS position and velocity errors can be characterized by their spectral
contents. Using spectral factorization and a state-space realization of the resulting
filtered white noise processes for loosely coupled integration leads to an m-th
order linear error model on the form

Ûz � Fz + Gn , δ � Hz + εe
pv , (3.24)

where δ � (δp ; δv) ∈ R6 represents the position and velocity errors, and εe
pv ∈ R6

and n ∈ R6 are vectors with unity white noise where n ∼ (0, 1) and εe
pv ∼ (0, σ2

pv).
Hence, the receiver outputs position and velocity estimates pe

GNSS � pe
eb + δp and

ve
GNSS � ve

eb + δv , respectively. The model (3.24), related to the GNSS position
measurements can be chosen to be a first-order Gauss-Markov process (Rankin,
1994; Mohleji and Wang, 2010). By defining z :� (zp ; zv), the dynamic GNSS
position error is represented by the system

Ûzp � Fp zp + Gp np , δp � H p zp + εe
p , (3.25)
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with Fp � −T−1
p , where T p is the correlation time constant. The elements of Gp are

chosen equal to the appropriate standard deviations of the driving noise.
It is evident that even though the GNSS velocity measurements can be very

precise (root mean square (RMS) error of down to 0.1 m/s), these also contain
some dynamic errors, depending on satellite geometry and the dynamic error
corrupting the raw GNSS observables. Moreover, for the dynamic error of the
GNSS velocity measurement can be represented by

Ûzv � Fv zv + Gv nv , δv � H v zv + εe
v . (3.26)

By also choosing Fv � −T−1
v , where T v is the assumed correlation time and the

elements of Gv corresponds to the standard deviations of the driving noise (3.26),
the steady-state covariance of the Gauss-Markov processes zp and zv become

Pzp (∞) � −
1
2

F−1
p GpGᵀp , Pzv (∞) � −

1
2

F−1
v GvGᵀv , (3.27)

respectively for sufficiently long measurement periods since Fp � Fᵀp , Fv � Fᵀv .
For higher-order models Pz?(∞) is obtained by solving

F?Pz? + Pz?Fᵀ? + G?Gᵀ? � 0l×l , (3.28)

where? is a placeholder for p or v and l being the dimension of F?.

3.3.4 Augmented TMO for loosely coupled integration including
GNSS error models

To account for colored GNSS measurement noise, the TMO is augmented with an
estimator of the noise dynamics

Û̂z � Fẑ + Kpz(pe
GNSS − p̂e

eb − δ̂p) + Kvz(ve
GNSS − v̂e

eb − δ̂v), (3.29)

such that the augmented state vector becomes x � (x∗; z)which is leads to

Ûx � Ax + B1(t , qe
b)u
∗
+ B2n + D(t , x), (3.30)

and the corresponding TMO
Û̂x � Ax̂ + B1(t , q̂e

b)u
∗
+ D(t , x̂) + K(y − Cx̂), (3.31)

where the augmented system is defined by

A �

(
A∗ 09×l

0l×9 F

)
, C �

(
C∗ , H

)
,

B1(t , q̂e
b) �

(
B∗(t , q̂e

b)
0l×6

)
, B2 �

(
09×m

G

)
,

B �

(
B1 B2

)
, D(t , x̂) �

(
D∗(t , x̂)

0l×1

)
,

K �

(
K∗

Kz

)
,
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and where B is used to calculate K � ϑL−1
ϑ K0Eϑ from the augmented equivalent

of (3.22)–(3.23), that is

K0
� PCᵀR−1 , (3.32)

1
ϑ
ÛP � AP + PAᵀ + BQBᵀ − PCᵀR−1CP , (3.33)

with

Lϑ � blockdiag
(
I3 ,

1
ϑ

I3 ,
1
ϑ2 I3 , I lp ,

1
ϑ

I lv

)
, (3.34)

Eϑ � CLϑC†. (3.35)

Moreover, l � lp + lv is the degrees of freedom of the Gauss-Markov process,
where lp and lv are the respective dimensions of the GNSS position and velocity
error models. In addition, G is a l × m matrix, where l � m for first-order Gauss-
Markov models. If only the position measurement is corrupted by colored noise,
l :� 3 resulting in Lϑ � blockdiag

(
I3 , 1/ϑ · I3 , 1/ϑ2 · I3 , I l

)
. However, if this is

also applicable for the velocity measurement, l :� 6 with the spectral factorization
chosen above. The pair (A, C) can be shown to always be observable for any
T p , T v > 0 when the chosen spectral factorization results in a first-order Gauss-
Markov process since

rank(O) � 9 + l , (3.36)

where
O �

(
C; CA; . . . ; CA9+l−1

)
, (3.37)

hence satisfying Kalman’s rank condition of observability of linear time-invariant
systems, Kalman and Bucy (1961). With this state-space augmentation, and by
defining Q � blockdiag (Q∗ , I l), the TMO is realized using (3.31), where the gain
can be obtained using (3.32)–(3.33).

3.3.5 Simulation case study: Effects of colored GNSS noise

GNSS position and velocity measurements contain colored noise components,
(Grewal et al., 2013, Ch. 7). To illustrate the effect of the colored noise on the
GNSS/INS integration performance, induced by (3.24), a GNSS receiver is sim-
ulated, at high latitude, where the measurement is given in the NED frame,
pn

GNSS � pn
nb + zp + εn

p and vn
GNSS � vn

nb + zv + εn
v and the model parameters

are chosen as F � blockdiag(Fp , Fv) and G � blockdiag(Gp ,Gv)with

Fp � −1/Tp · I3 , Fv � −1/Tv · I3 ,

Gp � diag(1.2, 0.7, 2),
Gv � diag(1, 1, 2).
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The time constant related to the position error was chosen to be Tp � 1100 s
as in Rankin (1994), (Beard and McLain, 2012, Ch 7.5), while the time constant
related to the velocity error was chosen as Tv � 2 s. The latter was chosen
based on the assumption that the GNSS velocity measurements, obtained from
the receiver, primarily are based on the Doppler range-rate measurements. The
time constant related to these can be much smaller than for the noise embedded
in the C/A code-based pseudoranges. This is due to the GNSS carrier phase and
code observables being affected differently by various error sources. Furthermore,
with this choice of G, it is taken into account that the horizontal measurements are
more accurate than the vertical counterparts and that the eastern measurements
aremore precise than the northern at higher latitudes using GPS. The chosen noise
and bias parameters related to the simulated inertial sensors are equal to those
presented in the simulation example in Appendix C.2.

Themotion simulated is of a small UAV flying in a circular motionwith a speed
25 m/s and with a constant altitude of 150 meters over ground. The UAV is flying
with a constant yaw rate with a roll angle and pitch angles of φ � −3 and θ � 2
degrees, respectively. The North-East motion in shown in Figure 3.2.
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Figure 3.2: Overview of the simulated horizontal UAV motion. The motion sim-
ulated is a circle with radius of 10 000 meters, where the initial heading of the
UAV was zero. The chosen simulated UAV speed was 25 m/s. The blue circle
indicates the UAV path, while the red arrows depicts the heading of the UAV at
fixed intervals.
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Case 1: Only GNSS position measurement available

This first case is simulated with only position measurements available.
Figures 3.3–3.4 show the position estimation error and performance of the

GNSS colored noise estimation. It is obvious that even though rank (O) � 12, such
that the pair (A, C) is observable, the GNSS transient error is not captured by the
model augmentation. Due to the stochastic properties, in this case, the system
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Figure 3.3: Case 1, position estimation error. North, east and down axes are de-
noted n, e and d, respectively. The position estimation error obtained in simulation
when applying GNSS position measurements containing colored noise.
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Figure 3.4: Case 1, GNSS error state estimates. North, east and down axes are
denoted n, e and d, respectively. The true GNSS error states (colored noise)
are shown in blue, red and yellow, respectively. The corresponding respective
estimates are presented in purple, green and light blue. It can be seen that the
TMO fails in estimating the colored GNSS correctly.

(A, C) is only weakly observable as indicated by the estimation error covariance P.
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Figure 3.5, based on the stationary estimation error covariance P(∞), shows the
error ellipsis, with 95% confidence interval, illustrating that the states associated
with the colored GNSS noise are highly correlated with the position error. Hence,
it can be expected that the position covariance is close to that of (3.27), the Gauss-
Markov process describing the colored noise.
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Figure 3.5: Case 1, error ellipsis of the north position estimation error and the
corresponding colored noise estimate of the position measurement. The error
ellipsis presented shows that the position estimation error and the colored GNSS
noise estimation error are significantly correlated. This indicates that the TMO
struggles to separate the colored noise from the true position. Similar ellipsis are
also obtainable for the East and Down axes.

Case 2: GNSS position measurements together and a velocity measurement
with white noise

In this case, unrealistic GNSS velocity measurements are added, containing the
true velocity and only corrupted with white noise for illustrative purposes.

Figures 3.6–3.7 show the position estimation error and performance of the
GNSS colored noise estimation error when the velocity measurements, only cor-
rupted with white noise, are added as an aiding measurements in the TMO. The
deterministic observability properties are still the same with rank 12, however the
performance has increased significantly. Hence, now the TMO is able to track the
colored GNSS position error to a large extent. This is reflected in Figure 3.6 where
the position estimation error is reduced compared to the performance shown in
Figure 3.3.

Case 3: GNSS position and velocity measurements containing colored noise

In this last case, a more realistic GNSS velocity measurement is used, having some
dynamic error such that vn

GNSS � vn
nb + zv + εn

v , as described earlier, where zv
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Figure 3.6: Case 2, position estimation error. North, east and down axes are de-
noted n, e and d, respectively. The position estimation error obtained in simulation
when applying GNSS position measurements containing colored noise together
with GNSS velocity measurements containing white noise. The estimation accu-
racy is better with velocity measurements corrupted by white noise compared to
solely applying position measurements.
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ẑd

Figure 3.7: Case 2, GNSS error state estimates. North, east and down axes are
denoted n, e and d, respectively. The true GNSS error states (colored noise),
associated with position, are shown in blue, red and yellow, respectively. The
corresponding respective estimates are presented in purple, green and light blue.
It can be seen that the TMO estimates the colored GNSS error more accurate after
the velocity measurements were introduced.
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is generated as a Gauss-Markov process with time constant Tv � 2. Related to
case 2 only minor differences are seen considering Figures 3.8–3.9 compared to
Figures 3.6–3.7. The augmented observer structure of (3.31) is able to utilize the
velocity measurements with colored noise, hence improving the position accuracy
compared to Case 1 and Figures 3.3–3.4. Even though the absolute position error
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Figure 3.8: Case 3, position estimation error. North, east and down axes are
denoted n, e and d, respectively. The position estimation error obtained in simula-
tionwhen applying GNSS position and velocity measurements containing colored
noise. The estimation accuracy is better with velocity measurements compared
to solely applying position measurements, however, still worse than applying a
velocity measurement only corrupted by white noise.

is reduced compared to Case 1, the covariance of the estimation error still indicates
the same problem; the TMO may still struggle to distinguish the colored noise of
the position measurements from the true position as seen in Figure 3.10 showing
the error ellipsis of P(∞), where the cross correlation between the p̃n

nb and z̃p

still is significant, however reduced compared to case 1 where only the position
measurements were used.

Discussion

The reasonwhy theaugmentedobserver, (3.31), applying loosely coupledGNSS/INS
integration struggles to separate the true position from the slowly-varying colored
GNSS noise is the relatively high noise in the IMUs accelerometers. Since the
rotated accelerometer noise is integrated twice in the TMO, the TMO gains are
synthesized, using (3.32)–(3.33), such that the uncertainty in the position estimate
is minimized and by that stabilizing the observer. Hence, the gains, in practice, be-
come so large that the position estimate in the observer tracks the slowly-varying
colored GNSS noise. To illustrate this, a Bode diagram related to the northern
position estimation error and the GNSS errors fromCase 1 is shown in Figure 3.11.
The transfer functions shown are the transfer function from the IMU noise εn

f ,
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Figure 3.9: Case 3, GNSS error state estimates. North, east and down axes are
denoted n, e and d, respectively. The true GNSS error states (colored noise),
associated with position, are shown in blue, red and yellow, respectively. The
corresponding respective estimates are presented in purple, green and light blue.
It can be seen that the TMO estimates the colored GNSS error more accurate with
velocitymeasurements thanwithout, however, not as accurate aswhen the velocity
measurements only were corrupted with white noise.

-40 -20 0 20 40

-40

-20

0

20

40

-2 0 2

-2

0

2

Figure 3.10: Case 3, error ellipsis of the north position and velocity estimation
error and the corresponding colored noise estimate of the position and velocity
measurement. The error ellipsis associated with position is shown in blue, while
error ellipsis associated the velocity is shown red. The error position ellipsis shows
that the position estimation error and the colored global navigation satellite system
noise estimation error still are significantly correlated, however, the correlation
is significantly reduced by introducing the velocity measurement. Regarding
the velocity estimation error and the velocity colored noise, the correlation is
significantly smaller the compared to the position equivalent.
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rotated to the NED frame, to the position estimation error, p̃n
nb � pn

nb − p̂n
nb , the

transfer function from the GNSS measurement error δp � H p zp + εn
p to the posi-

tion estimation error, and the transfer function from the input of the GNSS colored
noise model, np , to the output of the model, zp . These are denoted

p̃n
nb

εb
f

� hINS(s), (3.38)

p̃n
nb

δp
� hPosErr(s), (3.39)

and
zp

np
� hCN(s), (3.40)

respectively, where

hINS(s) � C̄ (sI3 − (A∗ − K∗C∗))−1 B∗ , (3.41)

hPosErr(s) � C̄ (sI3 − (A∗ − K∗C∗))−1 K∗C∗ , (3.42)

hCN(s) � I3
(
sI3 − (Fp)

)−1 Gp , (3.43)

with C̄ � (I3 , 03×3 , 03×3). It is evident from Figure 3.11 that the INS has higher
bandwidth than the GNSS colored noise. This is due to the gains synthesis ob-
tained from (3.32)–(3.33) is emphasizing the correction of the position estimate
significantly more than the update of corresponding GNSS error state. As a result,
the estimated position tracks the colored noise contained in the GNSS position
measurements regardless of the model augmentation.

The results from Case 3 indicate that velocity measurements are beneficial to
improve the position estimation accuracy, using loosely coupled GNSS/INS inte-
gration. However, the parameters representing the colored noise characteristics
are time-varying and difficult to know in general. These are highly receiver de-
pendent, and dependent on the user’s location on Earth with respect to satellite
geometry, elevation of the satellites, the ionosphere, and whether the Doppler ob-
servables are utilized in the GNSS receiver’s estimator. In particular, knowledge
on how the velocity measurements are calculated is difficult to know using off-the
shelf equipment. Typically, the current position estimate is used in the velocity
estimation process to determine user-to-satellite LOS vectors or to estimate the
receiver’s velocity without the Doppler measurement, yielding that the position
information is being accounted for twice in the GNSS/INS observer. Knowing the
cross correlation between the position and velocity measurements are of utmost
importance in such situations. If not known, using only the positionmeasurements
may be advised.
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Figure 3.11: Bode plot. Three bode plots are shown; the transfer function from
the GNSS measurements error to the position estimation error is shown in blue,
the transfer function from the IMU noise to the position estimation error is shown
in red and the transfer function from the driving noise of the GNSS error model
to the colored GNSS position noise model output is shown in yellow. From the
three frequency responses, the conclusion is that the bandwidth of the navigation
system is higher than the slowly-varying colored noise component embedded in
the GNSS position measurements.

3.3.6 Discretization of the translational motion observer

The main principle for the discrete-time implementation is to approximate the
continuous time behavior despite the finite data rate. It implies that the estimates
are only correctedwhen the outputmeasurements contained in the injection terms
are valid, and otherwise integrate the measured inputs, using the model, at their
highest available update rate. Measurement updates can be processed sequentially
by a KF, assuming the measurements are uncorrelated such that the R matrix is
diagonal, with benefits for processing structure and complexity Farrell (2008);
Groves (2013). Due to the close relationship between (3.32)–(3.33) and the KF, a
similar strategy can be applied also for NLOs. The TMO (3.31) is straightforward
to discretize due to its linearity and the simple A-matrix, allowing for exact dis-
cretization of the unforced dynamics. In particular, the one-step ahead predicted
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state, x− can be computed by

x−[k + 1] � eATs x+[k] +
∫ (k+1)Ts

kTs

eA
(
(k+1)Ts−τ

)
B1(τ)u∗(τ)dτ

+

∫ (k+1)Ts

kTs

eA
(
(k+1)Ts−τ

)
D(τ)dτ,

(3.44)

from the estimate x+[k], where

Ad � eATs �

©«
I3 Ts I3

T2
s

2 I3 03×l

03×3 I3 Ts I3 03×l

03×3 03×3 I3 03×l

0l×3 0l×3 0l×3 eFTs

ª®®®®¬
, (3.45)

based on the model parameters of (3.31). Assuming the specific force input,
the rotation matrix and the gravity vector are constant between the sampling
intervals, f b

IMU(t) � f b
IMU[k], R(t) � R(qe

b[k]) and g e
b(p

e
eb(t)) � g e

b(p̂
e
eb[k]), for

t ∈ [kTs , (k + 1)Ts), it follows from (3.44)

Bd ,1[k] :�
©«

T2
s

2 R(q̂e
b[k])

T3
s

6 R(q̂e
b[k])

Ts R(q̂e
b[k])

T2
s

2 R(q̂e
b[k])

03×3 Ts R(q̂e
b[k])

0l×3 0l×3

ª®®®®¬
, Bd ,2[k] :�

(
09×l

F−1 (
eFTs − I l

)
G

)
,

Bd[k] �
(
Bd ,1[k] Bd ,2[k]

)
, Dd[k] :�

©«
T2

s
2

(
g e

b(p̂
e
eb[k]) − 2S(ωe

ie)v
e
eb[k]

)
Ts

(
g e

b(p̂
e
eb[k]) − 2S(ωe

ie)v
e
eb[k]

)
03×3
0l×3

ª®®®®®¬
.

Then, the state estimate can be recursively propagated by iterating through the
time update

x−[k + 1] � Ad[k]x+[k] + Bd ,1[k]u∗[k] + Dd[k], (3.46)

P−[k + 1] � Ad[k]P+[k]Aᵀd [k] + Bd[k]Qd[k]B
ᵀ
d [k], (3.47)

asmany times as necessary. Qd can be approximated as Qd � Q ·Ts . Alternatively,
the term Bd[k]Qd[k]B

ᵀ
d [k] can be replaced with Q̄d calculated by using van Loan’s

method (van Loan (1978), Brown and Hwang (2012, p. 126)).
If all measurements in the vector y[k] were available at time index k, a gain

matrix Kd[k] can be calculated in the same way as the discrete-time KF, (Farrell,
2008; Groves, 2013)

Kd[k] � P−[k]Cᵀ[k] (C[k]P−[k]Cᵀ[k] + R[k])−1 , (3.48)
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and the updated estimate could be obtained as

x̂+[k] � x−[k] + Kd[k]
(
y[k] − C[k]x−[k]

)
, (3.49)

P+[k] � (I9+l − Kd[k]C[k])P−[k]. (3.50)

If measurements with indices in the set Ik are available at time index k, they can
be proceed sequentially as follows, Farrell (2008); Groves (2013). First, use the
propagated estimate and covariance,

x̂+[k] ← x−[k],
P+[k] ← P−[k],

as the starting point for the update loop. Then, for each i ∈ Ik , where Ik is set of
aiding measurements available at time t � kTs in time, loop through the updates

Kd ,i[k] ← P+[k]Cᵀi [k]/(C i[k]P[k]C i[k]ᵀ + Rii[k]),
x̂+[k] ← x̂+[k] + Kd ,i[k]

(
y i[k] − C i[k]x̂+[k]

)
,

P+[k] ← (I9+m − Kd ,i[k]C i[k])P+[k],

where C i is the ith row of the matrix C, and Rii is the ith diagonal element
of the matrix R. As a result, such implementation yields a corrector-predictor
effect where the measurement update is bypassed for all i < Ik corresponding to
Kd ,i[k] � 0. A practical consequence is that the elements of the covariance P[k]
associated with i < Ik , at a given point in time k, increase due to the positive
definite process noise covariance matrix Qd[k] in the time update. Furthermore,
for low-frequency measurement updates, the resulting effect is that these are
emphasized more at each measurement correction, when available, than high
rate measurements. In comparison, the corrector-predictor algorithm of Fossen
(2011, Ch. 11.3.4), for fixed-gain observers, is realized with an explicit time-scale
separationwhere the gain associatedwith the low-ratemeasurement i ismultiplied
with the rate ratio, of the observer relative the aiding sensor, similar to that done
in the presentation of the attitude observer discretization.

If the assumptions of a constant rotation matrix and constant specific forces
between the IMU samples are not deemed to be sufficiently accurate, for a given
sampling time, Ts , a more elaborate specific force transformation from {b} to
{e} can be carried out (Groves, 2013, Ch. 5.1.2), in addition to the improved
attitude mechanization mentioned in Section 3.2.2. Also here, the IMU output
configuration can be considered. By using an incremental velocity configuration,
the average specific force, which the IMU is exposed to between sample k − 1 and
k, is provided based on the maximum internal IMU sampling frequency. This
reduces the probability of acceleration errors, and thereby velocity errors, due to
e.g. sculling (Groves, 2013, Ch. 5.5.4) when the IMU is exposed to vibrations.



3.4. TIGHTLY COUPLED TRANSLATIONAL MOTION OBSERVER 43

3.3.7 Time delay

If the measurements, typically GNSS and/or magnetometer, Hansen et al. (2015),
used in the NLO experiences a significant time delay, the resetting of the INS
state may be a delayed state estimate at the time with index k − j corresponding
to the time of validity of the measurement delayed with j samples relative to
current time. In this case the INS also contains a “fast-forward” function to rapidly
compute the current state estimate based on intermediate IMU measurements.
Efficient implementation methods are given in Khosravian et al. (2014, 2015) for
such problems.

3.4 Tightly Coupled Translational Motion Observer

This section introduces the TMO for tightly coupled GNSS/INS integration in
detail. The main difference between the loosely and tightly coupled integration is
that the aiding sensor information from GNSS changes from the position domain
to range domain.

An observer for tightly coupled GNSS/INS integration was presented by Jo-
hansen and Fossen (2015); Johansen et al. (2017) where an altered version of the
TMO for the loosely coupled observer, (3.15)–(3.18), was introduced. In Johansen
and Fossen (2015); Johansen et al. (2017), the TMO was integrated with the same
attitude observer as presented earlier and in applied to estimate position, velocity
and acceleration in the ECEF frame.

Tightly coupled integration utilize the rawGNSS observables, range and range-
rate (Doppler) measurements, to alter the TMO injection terms from the position
domain to the range domain. The range measurements yi can either be pseudor-
anges, obtained with C/A or other code-phase techniques, or with carrier-phase
based ranges, where the subscript i indicate measurements from the ith satellite.
The range-rate measurement is the Doppler frequency νi here measured in meters
per second.

The range and range-rate measurements are subject to disturbances and errors
represented by, for instance, the clock range error β between the atomic satellite
clocks and the less accurate receiver clock. Even a small error in timing can have
a large impact as it is multiplied with the speed of light. It is therefore vital that
β is estimated in the observer. More on error sources and GNSS/GPS is found
in Grewal et al. (2013, Ch. 7). Other disturbances on the satellite measurements
include ionospheric and tropospheric disturbances which delay the signals due
to obstructions in the signal path. Such disturbances can be opposed by a dual
frequency receiver where an ionospheric-free linear combination can be formed
using two measurements based on different frequencies. One examples is a com-
bination using measurements derived using the GPS L1 and L2 frequency bands.
The drawbacks of this approach is the higher cost of receiver and antenna and
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Figure 3.12: Concept illustration of the ranging done in GNSS-based navigation.
The receiver position is denoted pe

eb , while the satellite positions are denoted pe
ebi

,
where i ∈ [1, . . . ,m]. The position of the GNSS receiver may be located anywhere
along the circles with radius yi and origin pe

ebi
. Because of this, the (pseudo)range

yi relate to the position of the receiver nonlinearly. The figure is a simplification.
With pseudorange yi � % i + β, where % i � ‖pe

eb − pe
ebi
‖2 is the geometric distance

between the receiver and the ith satellite and β being the receiver’s clock error
multiplied with the speed of light, the nonlinearities become hyperbolic for β > 0,
not circular as indicated.

the amplification of the noise in the linear combination due to amplification of
multipath and receiver noise. Another approach is to utilize a dual receiver con-
figuration where the satellite measurements are differenced with measurements
at a known location close by, thereby cancelling the delays. In Hansen et al. (2016)
observers using single- and double-differencedmeasurements are proposed using
an observer structure similar to the one presented here.

Assuming measurements from at least four satellites (m ≥ 4) are available, the
TMO takes the form of

Û̂pe
eb � v̂e

eb +

m∑
i�1

(
Kpp

i ey ,i + Kpv
i eν,i

)
, (3.51)

Û̂ve
eb � −2S(ωe

ie)v̂
e
eb + f̂

e
ib + g e

b(p̂
e
eb) +

m∑
i�1

(
Kvp

i e y ,i + Kvv
i eν,i

)
, (3.52)

Ûξe
ib � −R(q̂e

b)S(σ̂
b
ib) f

b
IMU +

m∑
i�1

(
Kξp

i ey ,i + Kξv
i eν,i

)
, (3.53)

f̂
e
ib � R(q̂e

b) f
b
IMU + ξe

ib , (3.54)

Û̂β �

m∑
i�1

(
Kβp

i ey ,i + Kβv
i eν,i

)
. (3.55)

The observer structure of (3.51)–(3.55) is similar to the loosely coupled equivalent
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(3.15)–(3.18), however it has different injection terms and it includes estimation
of the clock error parameter β accounting for synchronization errors between the
satellites’ and receiver clocks. The clock bias error is the reason why at least four,
and not three, satellites are required to calculate the three position coordinates
from the pseudoranges. The error is expressed as a time-varying range: β :� c∆c ,
where c is the speed of light and∆c is the clock error. However, due to the injection
signals ey ,i eν,i some colored noise is going to be embedded in β over time. As
indicated by (3.55), β is assumed constant in the deterministic observer design;
Ûβ � 0. Incorporating this with a minimum variance optimization criterion, similar
to (3.32)–(3.33), this model might be considered as aWiener process, Ûβ � nc , in the
tuning process, where nc is considered to be Gaussian white noise with variance
σ2

c representing the drift rate of the receiver’s clock. Hence, the time-varying
dynamics of β is captured by the TMO through the injection terms obtained using
the raw GNSS observables.

The injection terms of the observer, based on pseudorange and range-rate
measurements, are driven by the errors eyi :� yi − ŷi and eν,i :� νi − ν̂i , with the
estimated measurements

ŷi � %̂ i + β̂, (3.56)

ν̂i �

(
p̂e

eb − pe
ebi

%̂ i

)ᵀ (
v̂e

eb − ve
ebi

)
, (3.57)

where the position and velocity of the ith satellite are denoted pe
ebi

and ve
ebi

. The
estimated geometric distance between satellite and receiver is given as %̂ i � ‖p̂e

eb −
pe

ebi
‖2. The estimation errors are defined as p̃e

eb :� pe
eb − p̂e

eb , ṽe
eb :� ve

eb − v̂e
eb , and

β̃ :� β − β̂. When estimating the satellite measurements and geometric distance,
the position and velocity of the satellites are assumed known. This assumption
is satisfied by using the updated broadcasted ephemeris data to determine the
positions and the velocities of the satellites in view.

Similar to (3.31) the observer (3.51)–(3.55) can be written

Û̂x � Ax̂ + B(t , q̂e
b)u + D(t , x̂) + K(y − h(x̂)), (3.58)

however with a nonlinear observation vector h(x̂), and the matrices and vector,

A � blockdiag(A∗ , 0), B(t , q̂e
b) �

(
B∗(t , q̂e

b)
01×3

)
, D(t , x̂) �

©«
03×1

g e
b(p̂

e
eb) − 2S(ωe

ie)v̂
e
eb

03×1
0

ª®®®¬ ,
and where the linearized matrix,

C(t , x̂) � δh
δx

����
x�x̂

, (3.59)
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takes the form of

C(t , x̂) �

©«

(
p̂e

eb−pe
eb1

)ᵀ
%̂1

01×3 01×3 1
...

...
...

...(
p̂e

eb−pe
ebm

)ᵀ
%̂m

01×3 01×3 1(
v̂e

eb−ve
eb1

)ᵀ
%̂1

(p̂e
eb−pe

1)ᵀ
%̂1

01×3 0
...

...
...

...(
v̂e

eb−ve
ebm

)ᵀ
%̂m

(
p̂e

eb−pe
ebm

)ᵀ
%̂m

01×3 0

ª®®®®®®®®®®®®®®®¬

, (3.60)

when using GNSS pseudorange and range-rate measurements. The time-varying
C-matrix consists of estimated line-of-slight (LOS) vectors describing the direction
from rover to each satellite. As the distance between rover and satellites is large
compare to the relative velocity, the LOS vectors are slowly time-varying. As
illustrated in Figure 3.12 the pseudoranges relate to the position pe

eb nonlinearly.
Hence, the linerization (3.59) is necessary to obtain C(t , x̂). If the C-matrix is
applied to the augmented version of (3.23) with A and B to obtain P(t), the
compound observer gain for (3.51)–(3.55) can be calculated as

K � ϑL−1
ϑ K0Eϑ , (3.61)

with
K0

� PCᵀR−1 , (3.62)

where P � Pᵀ > 0 is the solution of (3.33) and

Lϑ � blockdiag
(
I3 ,

1
ϑ

I3 ,
1
ϑ2 I3 ,

1
ϑ4

)
, (3.63)

Eϑ � CLϑC† , (3.64)

where (3.64) is valid according to Johansen and Fossen (2015, Lemma 4). The
conditions for (3.51)–(3.64) are satisfied when four or more pseudoranges are
available (except in degenerate configurations), thereby ensuring observability
of the system (Johansen and Fossen, 2015). Also here, the variations in g e

b(p̂
e
eb),

inducedbyposition changes, are assumed tonot affect theobservability. In contrast
to the loosely coupled GNSS/INS integration, the origin of the error dynamics
of the feedback interconnection of (3.51)–(3.55) with the attitude observer, is only
ULES, with respect to position and velocity initialization errors, since the C-matrix
is based on linearization of the pseudorange and Doppler measurement equations
about the estimated position and velocity. Accurate initialization procedures are
easily applied (Johansen and Fossen, 2015) so this is not a significant problem in
practice.
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To accommodate colored noise, when applying tightly coupled integration, the
R-matrix can be increased in an ad hoc manner. An example using such strategy,
is designing a tuning rule based on the elevation angle of each satellite in view
(Groves, 2013, Ch. 9.4.2.4). By doing this, it is possible to weight pseudoranges
from low elevation satellites less thanmeasurements from high elevation satellites
(with high elevation satellites, the GNSS signal travels through less atmosphere
compared to the signals from the low elevation satellites and therefore has less
errors).

3.4.1 Augmented TMO for tightly coupled integration including clock
error model

Above, the clock error was modeled in range space as β � c · ∆c with ∆c being the
clock error. This can be extended further by considering that ∆c is dependent on
the clock frequency error, such that β is no longer considered as a constant, but
expressed with a state-space model with a constant clock frequency error fclock
such that Üβ � 0, (Farrell (2008, Ch. 8.4.3.2), Groves (2013, Ch 9.4.2.3)):( Ûβ

Ûfclock

)
�

(
0 1
0 0

) (
β

fclock

)
+

[
0

n f

]
, (3.65)

where n f is the driving process noise assumed to be white. By introducing the
additional clock error state, (3.55) in the TMO is replaced by

Û̂β � f̂clock +

m∑
i�1

(
Kβp

i ey ,i + Kβv
i eν,i

)
, (3.66)

Û̂fclock �

m∑
i�1

(
K f p

i ey ,i + K f v
i eν,i

)
. (3.67)

By doing this, (3.58) is augmented accordingly. With this augmentation, the
C(t , x̂)-matrix of (3.60), in (3.23), is replaced with Caug, given as

Caug(t , x̂) �
(
C(t , x̂) Cf

)
, (3.68)

where Cf � (0m×1; 1m×1). The standard deviation of the white noise n f ought to
be chosen small (less than 0.02 m/s as proposed in Farrell (2008, Ch. 8.4.3.2)).
However, by modeling of the clock bias as (3.65), compared to Ûβ � 0 as done in
Johansen and Fossen (2015), onlyminor effects (centimeter level) on the estimation
of β were observed. Therefore major effects on the position and velocity estimates
cannot be expected with this augmentation. Also with this clock error model, it
is necessary to take into account that noncompensated common residuals of the
time-varying errors due to signal delays, in the ionosphere and troposphere or
stemming from multipath, may be embedded in β and fclock since these are the
only nuisance parameters related to the GNSS in this TMO.
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3.5 Experimental Validation

3.5.1 Validation platform

The experimental validation was carried out using a Penguin B fixed-wing UAV
as shown in Figure 3.13. Its technical specifications are presented in Table 3.1.
Figure 3.14 presents the flight path of aUAV test flight, conducted fromEggemoen,

Figure 3.13: Penguin B UAV in flight. Photo: Jakob M. Hansen.

Table 3.1: Penguin B UAV Technical Specifications.

Engine type: Gasoline
Wingspan: 3.3 m
Length: 2.27 m
MTOW: 21.5 kg
Endurance: 5+ hours
Cruise speed: 28 m/s
Max level speed: 36 m/s

Norway.
In the setup used for validation the UAV is equipped with an ADIS16488 IMU

measuring specific force, rotation rate and magnetic field of the vehicle, config-
ured for 410 Hz output. Additionally a u-Blox LEA-6T GNSS receiver supplies
computed position as well as pseudoranges at 5 Hz. The sensors are synchronized
using a microcontroller in order to accurately timestamp the measurements. En-
gine induced vibrations are significant and can typically be seen as a signal of
magnitude close to 1 m/s2 at 70 Hz on the accelerometer measurements.
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Figure 3.14: Flight path. The flight path using a Penguin B UAV is shown. Takeoff
of the UAV is used as the origin. The flight path is shown in blue, while the ground
track is shown in gray.

3.5.2 Experimental results

This section presents a comparison of the performance of the discussed observer
structures using experimental data collected during the UAV mission presented
in Section 3.5.1. The dataset used here has a length of approximately 22 minutes
with a flight part consisting of multiple circles and figures-of-eight over an area of
one square kilometer.

During the flight, a stationary GNSS receiver of the same type was placed at a
known location to serve as base station for a real time kinematic (RTK) positioning
solution. The RTK position was computed by the open source software package
RTKLIB (2013), where the position is obtained using carrier-phase positioning,
with a fixed or float integer ambiguity solution, indicating decimeter accuracy,
Groves (2013). The RTK position is used as reference when comparing the per-
formance of the loosely and the tightly coupled observer structures. The base
station also logged the transmitted satellite ephemeris data, used to calculate the
satellites’ positions and velocities. RTK is a type of differential GNSS (dGNSS).
For details, Grewal et al. (2013, Ch. 8) can be advised.

The loosely and tightly coupled observer structures are compared. Since no
velocity measurements were available, the state-space augmentation, introduced
above, in order to estimate colored GNSS noise, with loosely integration, was dis-
cardeddue to the results presented in Section 3.3.5. To guarantee a fair comparison,
the standalone GNSS position solution used in the loosely coupled integration is
based on the tightly coupled observer using solely the pseudoranges as observ-
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Table 3.2: Navigation performance comparison.

RMS error (x,y,z) [m] Std (x,y,z) [m]
Tightly coupled 3.412 3.341 1.106 1.067 0.561 1.005

No IMU 4.541 3.732 2.184 2.951 1.756 2.065

Loosely coupled 4.442 3.818 2.264 2.836 1.868 2.177

ables. Hence, no IMU is used to generate this aiding position solution. Therefore,
the tuning will also reflect this where (3.32) and (3.33) were modify accordingly
such that

K0
� PCᵀR−1

? , (3.69)
1
ϑ
ÛP � AP + PAᵀ + Q? − PCᵀR−1

? CP , (3.70)

was chosen to realize the gain K0 for all three observerswith the tuning parameters
Q? and R? matrices. For the loose integration, the matrices were chosen

Q l � blockdiag(03×3 , 10−10 · I3 , 2.5 · 10−3 · I3),
Rl � blockdiag(2.5 · I3).

For the tightly coupled integration, the tuning matrices were chosen

Qt � blockdiag(Q l , 1),
Rt � blockdiag(1 · Im).

The observers used the same constant attitude estimator gains: kI � 0.004, k1 �

0.25, and k2 � 0.75.
The comparison of the observers are seen in Figure 3.15, depicting the position

estimation error. Figure 3.16 shows the estimated attitude, while Figure 3.17 dis-
plays the estimated gyro bias. The position estimation was evaluated in terms of
RMS error and standard deviation (Std) relative to the RTK solution and summa-
rized in Table 3.2.

As presented above, tuning of the Q? matrix associated with the velocity
state is based on statistics describing the accelerometer’s noise characteristics.
These can either be based on the data collected or from a data sheet. For a
standalone GNSS solution (IMU not used), tuning of the Q? matrix reduces to
an ad hoc procedure based on the assumed host-vehicle dynamics. Groves (2013,
Ch. 9.4) recommends 12 m/s2, 102 m/s2 and 1002 m/s2 for pedestrian, automotive
and military aircraft, respectively associated with the velocity state. As seen
in Figure 3.15, the tightly coupled GNSS/INS integration strategy provides the
position estimates with smallest variation and also the smallest deviation from the
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Figure 3.15: Position estimation error. The results are presented in the ECEF
frame relative the RTK positioning solution. The result obtained using loosely
coupled integration is shown in blue, the result obtained using tightly coupled
integration is shown in red, while the standalone GNSS solution is presented in
yellow. These results indicate that tightly coupled integration of inertial andGNSS
measurements yield more accurate position estimation compared to loosely cou-
pled integration and standalone GNSS when applying a satellite-based navigation
system based on the standard GNSS positioning service.

RTK positioning solution. This statement is backed up by Table 3.2. The difference
between the standalone GNSS solution and the loosely coupled integration seems
less evident from Figure 3.15 and Table 3.2. This is however expected, taking
into account the simulation results in Section 3.3.5 related to the loosely coupled
GNSS/INS integration and the estimation of coloredGNSS noise presented earlier.
The benefit of loosely coupled integration, relative not using an IMU at all, is
however evident in Figure 3.18. The loosely coupled solution provides a smoother
estimate than the standalone GNSS solution and is hence more suitable to be used
in conjunction with autopilots that operate at high sampling rates. The INS also
provides fault tolerance when GNSS fails or is degraded. Moreover, one large
benefit of loosely coupled GNSS/INS, relative to a standalone GNSS solution, is
that the attitude estimates also are obtained with high accuracy.

As mentioned, the most accurate and precise position estimates relative to the
RTK solution are obtained with the tightly coupled integration strategy. Since the
pseudoranges are directly fused with the inertial measurements, instead of calcu-
lating the GNSS position before using this as aiding in loosely coupled integration,
more of the colored noise, embedded in the GNSS pseudoranges, is captured by
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Figure 3.16: Attitude estimates. The results are presented using Euler angles as
attitude representation. The estimate obtained using loosely coupled integration
is shown in blue, while the estimate obtained using tightly coupled integration is
shown in red. The standalone GNSS navigation solution did not provide attitude
estimates.
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Figure 3.17: Gyro bias estimates. The result obtained using loosely coupled
integration is shown with dotted lines, while the result obtained using tightly
coupled integration is shown with solid lines.

the receiver’s clock bias estimate. This is possible since the specific force measure-
ments and attitude estimates are available between GNSS samples. Hence, every
new position and clock error calculation, made by the observer, is based on the
current predicted position between GNSS samples using inertial data rather than
using a 0.2 to 1 second old estimate obtained at the previous GNSS update. This
point however, is mainly relevant for low-cost GNSS receivers, as higher grade re-
ceivers can output raw data at frequencies of 20 Hz or more. A contributing factor
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Figure 3.18: Normalized position error. The results are related to the RTK posi-
tioning solution between 160 and 162 seconds of flight. The error relative the RTK
solution applying the loosely coupled integration is shown in blue and the error
relative the RTK solution applying the tightly coupled integration is shown in red,
while the error relative RTK using pure GNSS positioning is shown in yellow. The
error relative RTK is smallest applying tightly coupled integration. The error us-
ing loosely coupled integration and pure GNSS is of similar magnitude, however,
the integrated solution is smoother than pure GNSS since inertial data is available
between GNSS samples.

to the performance differences of the two integration schemes may also be due to
the 5 Hz GNSS update. By sampling the GNSS that fast, more of the pseudorange
measurements can become correlated in time compared to using 1 Hz position
calculation. If differential GNSS is utilized, more accurate position estimates can
be obtained for both integration schemes.

The attitude estimates obtained with both loosely and tightly coupled integra-
tion are mostly similar except from a few significant differences. These differences
are most likely due to the attitude estimate q̂e

b has two components, the unit
quaternion from BODY to NED, qn

b , and the unit quaternion from NED to ECEF,
qe

n , and how the GNSS information enters the TMOs. The latter quaternion qe
n

is in principle a horizontal position estimate containing information of the craft’s
latitude and longitude. Therefore, the attitude estimates from the two integration
strategies may differ as a result of the difference in how the position information
enters the TMO due to the feedback interconnection with the attitude observer
and the TMO through the auxiliary state ξe

ib . This again will also affect the gyro
bias estimation, seen in Figure 3.17, and therefore explaining that the estimates
obtained using tightly coupled GNSS/INS integration resulted in more steady
estimates compared to applying loosely coupled integration.

3.6 Conclusions

Accurate and precise position, velocity and attitude estimates are needed in nu-
merous areas such as the automotive, robotics, marine and aircraft applications.
The need for computationally efficient and robust algorithms achieving this is
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growing due to a wide-spread interest in unmanned platforms, such as UAVs,
with potential limited computational power available. This need can be met by
applying nonlinear feedback-interconnected observers for integrated GNSS/INS
navigation with known stability properties.

The experimentally verified simulation results, using data collected during
an unmanned aerial vehicle flight, show that the estimation of translational mo-
tion benefits from a minimum-variance-like implementation applying the Riccati
equation. Using such an implementation strategy, compared to a fixed-gain strat-
egy, accelerates the observers convergence. This is also reflected in the attitude
estimates due to the feedback-interconnection relating the two observers.

The attitude estimates are obtained with an exponentially stable and computa-
tionally efficient observer based on complementary filtering and vector measure-
ments. In contrast to the Kalman filter, this is not a stochastic method, but based
on the desired observer bandwidth and nonlinear stability theory.

The results presented here indicate that tightly coupled GNSS/INS integration
outperforms loosely coupled integration when considering position accuracy. By
fusing the pseudorange measurements directly with the inertial data, more of the
colored noise embedded in the pseudoranges is captured by the receiver’s clock
error estimate, compared to that achieved with the augmented loosely coupled
integration scheme posed. Compensation of the colored GNSS noise proved to
be difficult even though the TMO including the GNSS error state was observable
when using loosely coupled integration. A case study indicated that this was
because of the TMO’s bandwidth resulting in the GNSS error to influence the
position estimate if not a highly precise and accurate velocity measurement is
available. Such design, more so than the tightly coupled design, is also highly
dependent of tuning of the GNSS error parameters.

The attitude estimates obtained with both loosely and tightly coupled integra-
tion are mostly similar. Differences are possibly due to the different amount of
colored noise being fed from the respective TMO to the attitude observer.

Accuracy of the loosely and tightly coupled integration schemes can be in-
creased by applying pseudorange corrections using differential GNSS, carrier-
phase smoothed pseudoranges or dual-frequency solutions canceling the iono-
spheric delay. The improvements in accuracy with the latter strategy is, however,
at the expense of increased noise.



4The Virtual Vertical Reference Principle –
Vertical Aiding of INSs for Marine Surface
Vessels
This chapter is mainly based on Bryne et al. (2014, 2015b, n.d.), presenting the
main results of the thesis, covering INSs, aided using the VVR principle. The
VVR concept also serves as key component and foundation of most of the results
presented in the following chapters of the thesis.

Here two feedback–interconnected NLOs providing 6-DOF PVA motion esti-
mates, tailored for marine surface craft, are presented. The two observers, Bryne
et al. (2014, 2015b) and Bryne et al. (n.d.), are inspired by NLOs for loosely cou-
pledGNSS/INS integration, providing 6-DOF PVAmotion estimates, such as Grip
et al. (2013, 2015) and custom heave estimators, bridging the two concepts. Both
observers are extensions of (Grip et al., 2013), based on the initial work of Grip et al.
(2012b), mergedwith thework done byMahony et al. (2008) andGrip et al. (2012a).
The second observer (Bryne et al., n.d.) is an extension of the former (Bryne et al.,
2014, 2015b) accompanied with improved heave estimation performance. Further-
more, the origin of the error dynamics of both observers were proven USGES. In
addition, both NLOs are evaluated through simulations and validated experimen-
tally using data gathered at sea. For more details on the observer validation and
data collection, see Appendix E.

4.1 Motivation

From Chapter 1 we know that marine vessels are equipped with motion sensing
capabilities in order to provide the crew and onboard systems with PVA data. Ex-
amples include PVA estimates being utilized by the DP system when controlling
the vessel’s motion, the crew monitoring the PVA data, PVA estimates used for
motion compensation of oceanographic research data such as bathymetric map-
ping, leverarm compensation of PosRef measurements, motion compensation of
the pose of onboard antennas and active heave compensation of cranes.

Roll, pitch and heave data of marine vessels are often provided by VRUs. Such
solutions have established themselves as black boxes where the outputted signals
are considered as measurements by users in the maritime industry. Moreover,
academia have in large extent not focused on similar solutions. However, there
are some published results on verification and comparison of industrial products
such as Ingram et al. (1996) and Vik and Marc̨al (2003).

Related to a VRU solution, the attitude information of a ship can be obtained
using different type of estimators or observers using IMUmeasurements, based on

55
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Figure 4.1: Example of typical GNSS errors. The vertical measurements are typi-
cally 1.5-2 times less precise than the horizontal components.

both linear and nonlinear theory. Roll and pitch estimates can be obtained using
numerous results in the litterateur, such as Markley (2003); Hamel and Mahony
(2006); Mahony et al. (2008); Martin and Salaün (2010); Küchler et al. (2011b); Grip
et al. (2012a); Batista et al. (2012c,b,a); Hua et al. (2014); Zlotnik and Forbes (2016).
None of these results are specific for marine vessels.

Heave estimation is more complicated and also specific for marine surface ves-
sels which have resulted in less attention by the open research community. One
reason for this might be due to the low precision of the vertical measurement
component of PosRef systems such as GNSS, indicated in Figure 4.1. Therefore,
sole usage of conventional GNSS aiding (or HPR for vessels in the vicinity of a site
with deployed transponders) to estimate the heave motion is not optimal due to
the low precision of the vertical position measurement compared to the horizontal
counterparts. This is due to the geometry of the baselines of such systems. To
circumvent this issue, custom heave estimators have been developed independent
of external position aids. One example is Godhavn (1998), where an IMU was uti-
lized together with a bandpass filter motivated by that the average heave position
of a marine surface craft is zero. This technique was modified by Richter et al.
(2014) to compensate for amplitude and phase errors by using additional adaptive
filters. Another heave estimation strategy, based on the assumption that the heave
motion could be described by a sum of cosines, while applying an accelerometer,
was presented in Küchler et al. (2011a) and also applied in Auestad et al. (2013).
With this strategy, however, the heave estimation performance will be reduced if
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large roll and pitch motions are experienced. An alternative to custom heave esti-
mators, with potentially higher accuracy, is RTK GNSS, as presented in Godhavn
(2000). However, the coverage of RTK is limited at sea and the real-time availability
is not necessarily guaranteed.

The works of Grip et al. (2013, 2015), in addition to provide estimates of roll,
pitch and heave, also provide heading, linear velocity and position estimates using
loosely coupled GNSS/INS integration. These results, however, require an aiding
measurement of the vertical position component, which is, as indicated above, not
optimal. Therefore a combination of the two concepts of custom heave estimators
andNLOs, providing a complete INS solution estimating 6-DOFPVA, is beneficial.
This was achieved by introducing the virtual vertical reference (VVR) principle.

4.2 The Vertical Vertical Reference Concept

The VVR concept (or principle) was introduced in Bryne et al. (2014, 2015b), and
later extended in Bryne et al. (n.d.), as vertical aidingmeasurement to a full 6-DOF
strapdown INS without any vertical GNSS measurements. The concept is based
the average heave displacement of a marine surface craft is zero relative to the
mean sea surface as illustrated in Figure 4.2. From this the VVR concept is defined
as

yVVR :� lim
T→∞

1
T

∫ T

0
dheave(t)dt � 0, (4.1)

where dheave is the heave displacement of the vessel in relation to the mean sea
surface. A similar definition is used in Godhavn (1998).

Formarine surface vessels, the kinematics of (2.6)–(2.7), can further be extended
with the auxiliary variable pt

nb ,I . The augmentation, first applied in Bryne et al.
(2014), is motivated by (4.1). One may write

lim
T→∞

1
T

∫ T

0
pn

nb ,z(t)dt � 0, (4.2)
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Figure 4.2: Example of the heave motion and the mean sea level.
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when {n} is used as navigation frame. Furthermore, based on (4.2), the strapdown
equations of (2.6)–(2.7) are augmented with pn

nb ,I by defining:

Ûpn
nb ,I :� pn

nb ,z , (4.3)

in order to integrate the vertical (down) position associatedwith the heavemotion.
Then a natural choice would be to exploit (4.1) and define a VVR measurement
(Bryne et al., 2014, 2015b) by choosing

yn
VVR � pn

nb ,I � 0, ∀t ≥ 0. (4.4)

To the author’s knowledge, at the time of writing, the works presented here is the
first to propose the VVR aiding concept. Due to kinematic couplings, improve-
ments of the attitude estimation performance is also excepted when utilizing the
VVR instead of vertical measurements from traditional PosRef system, such as
GNSS and HPR, as vertical INS aiding. Figure 4.3 illustrates the difference in how
the vertical aiding from PosRefs and from the VVR is incorporated into the INS’s
vertical channel. Nominal vertical aiding using PosRefs is shown in Figure 4.3a,
while its equivalent, using the VVR concept, is illustrated in Figure 4.3b.

Position
Reference

p̂n
nb ,z

Gain
heave

pn
nb ,zv̂n

nb ,zân
nb ,z

Gain ver.
velocity

(a) Vertical aiding with nominal position references
Virtual
Vertical
Reference

p̂n
nb ,I

Gain int.
heave

pn
nb ,Ip̂n

nb ,zv̂n
nb ,z

Gain
heave

Gain ver.
velocity

ân
nb ,z

(b) Vertical aiding with the VVR concept

Figure 4.3: VVR illustration: Block diagram of the nominal aiding from a position
reference system versus the VVR aiding concept. The z-subscript refers to the
vertical z-axis of the translational motion.
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It should be mentioned that the VVR zero-reading should not be considered
as a perfect measurement even though it is free of noise. This is due to the fact
that the integrated heave position is only zero on average. Hence, the VVR is not
applicable as an equality constraint in constrained estimation frameworks, such as
Simon (2009, Ch.7.5.), which is a common way to utilizing virtual measurements.
An alternative to the VVR would be to use a zero heave measurement (Groves,
2013, Ch. 15.4).

By applying (4.2)–(4.4), the {n}-frame will not have constant altitude above
the seabed due to, among other, tides, changes in draft due to load conditions
and changes in sea state. In many application such effects must be compensated
for. Examples include diving operations, subsea installations and bathymetric
mapping. In such situations, inducing a combination of GNSS and HPR might be
beneficial in order to compensate for vesselmotionswith especially slowdynamics
(time constants in the range tens of minutes to hours).

4.3 Nonlinear Observer for INSs Aided by VVR

This work expands the work of Grip et al. (2013) with a modified problem formu-
lation and sensor configuration; customizing the observer for surface vessels.

The overall stability of the interconnected observer, where the TMO had fixed
gains, was proven to be USGES by Grip et al. (2013). The same stability prop-
erties were obtained for the observer structure presented below, while the TMO
is extended by introducing time-varying gains. In addition, one of the attitude
vector measurements are changed compared to the cited work. The two main
contributions of this section can be summarized as:

• In general, the vertical GNSS measurement has relatively low precision. For
operations at the (known) sea surface level, this measurement is replaced
with a virtual measurement of the integrated height, (4.1)–(4.4), to achieve
increased performance related to estimation of heave and vertical specific
force.

• Expanding the work of Grip et al. (2013), related to the estimation of trans-
lation motion, by introducing time-varying gains1. During navigation at
sea, such as in DP, time-varying gains are beneficial when GNSS quality
changes due to e.g. changes in satellite constellation, obstruction of LOS to
satellite(s) when approaching an offshore installation or during temporary
loss for differential correction. Applying time-varying gains based on the
PosRef’s noise level can therefore prevent unnecessary measurement noise
to propagate from the sensors to the state estimates, and further to the con-
trol system, when GNSS quality is reduced. Such gain strategy has the

1The presented algorithm is less general than the TMO of Section 3.3 from the preceding chapter.
The TMO of this section was, however, developed earlier.
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Figure 4.4: Feedback-interconnected observer structure. The attitude observer
and TMO are denoted Σ1 and Σ2, respectively. Σ1 provides an estimate of the unit
quaternion, q̂n

b , together with an estimate on the gyro bias, b̂b
gyro. The signals q̂n

b

and σ̂b
ib are utilized by Σ2 to estimate the specific force, f n

ib . Moreover, f̂
n
ib is fed

back to Σ1, and is utilized as a reference vector by the attitude observer.

potential to reduce fuel cost, emissions from engines andwear of mechanical
equipment such as thrusters.

This NLO employs two reference frames. The NED and the BODY frames. For
marine surface vessels, employing local navigation, NED can be assumed to be
nonrotating and fixed to the average sea surface level.

Similar to Chapter 3, the NLO, for loosely coupled GNSS/VVR/INS integra-
tion, estimating PVA, is carried out in two steps as illustrated in Figure 4.4. In
the first stage the attitude is estimated, represented by the unit quaternion qn

b ,
together with the gyro bias bb

gyro. The second stage provides estimates of specific
force, linear velocity and the position decomposed in NED by exploiting the atti-
tude estimate, q̂n

b , and the injection term of the attitude observer, σ̂b
ib . The result

is based on the kinematic model formulation presented next.

4.3.1 Model formulation

For local navigation, the following dynamic kinematic model is considered

Ûpn
nb ,I � pn

nb ,z , (4.5)

Ûpn
nb � vn

nb , (4.6)
Ûvn

nb � f n
ib + gn

b , (4.7)

Ûqn
b � qn

b ⊗
(

0
ωb

ib

)
, (4.8)

Ûbb
gyro � 03×1 , (4.9)
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being in compliance with Section 2.2.1 and (4.3)2. Moreover, gn
b , is assumed to be

known. This is valid in DP since the operation is confined to a small geographical
area on the sea surface.

Theoverall feedback-interconnectedobserver structure, illustrated inFigure 4.4,
similar to Figure 3.1a, is described in Section 4.3.3–Section 4.3.4.

4.3.2 Sensor configuration

The result obtained in Bryne et al. (2014) was based on the following sensor
configuration of IMU, GNSS, compass and VVR measurements:

1. Horizontal position measurement from GNSS given in NED:
pn
GNSS � (p

n
nb ,x , pn

nb ,y)
ᵀ

2. VVR measurement: yn
VVR � pn

nb ,I � 0, for all t ≥ 0, motivated by Section 4.2.

3. Angular velocitymeasurements in BODY from a tri-axial rate gyrowith bias:
ωb

IMU � ωb
ib + bb

gyro. The bias components, bb
gyro, in (4.9) are assumed to be

slowly time-varying. In an observer, (4.9) is deemed to be sufficient together
with an injection term to compensate for the gyro bias.

4. Specific force measurements in BODY from a tri-axial accelerometer: f b
IMU �

f b
ib . Accelerometer biases are assumed to be compensated at system startup

or by online estimation, utilizing e.g. Grip et al. (2012a, Sec. VI), if themotion
is persistently exciting.

5. Heading measurement from a compass: ψc � ψ.

4.3.3 Attitude observer using compass vector measurements

The attitude observer Σ1, similar to Chapter 3, Section 3.2, based on the sensor
configuration of Section 4.3.2, is given as Grip et al. (2013)

Σ1 :


Û̂qn

b �
1
2

q̂n
b ⊗

(
0
ω̂b

ib

)
, (4.10a)

ω̂b
ib � ωb

IMU − b̂b
gyro + σ̂b

ib , (4.10b)
Û̂bb

gyro � Proj
(
b̂b

gyro ,−kI(t)σ̂b
ib

)
, (4.10c)

where Proj(?,?), as earlier, denotes the angular rate bias projection algorithm,
ensuring that ‖b̂b

gyro‖2 ≤ Mb̂gyro
for Mb̂gyro

> Mbgyro (Grip et al., 2012a), and kI(t) > 0
is the potentially time-varying gain associated with the rate gyro bias estimation.
TheNLO is structurally the same as inGrip et al. (2013)where the attitude between

2In Bryne et al. (2014), the attitude differential equation (4.7) was described according to (B.8). This
is equivalent to (4.7).
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the {b} and the {e} frame was estimated. However, here the Earth’s rotation is
neglected since ωb

in is assumed to be negligible. The injection term, σ̂b
ib , with a

compass vector measurement, is given by,

σ̂b
ib �k1(t)vb

1 × Rᵀ(q̂n
b )v

n
1 + k2(t)vb

2 × Rᵀ(q̂n
b )v

n
2 , (4.11)

with the gains which satisfy k1(t), k2(t) ≥ kP for some kP > 0. Moreover, the
measurement vectors vb

1,2 and reference vectors vn
1,2 are calculated using

vb
1 � f b , vn

1 � f n , (4.12)

vb
2 � f b × cb , vn

2 � f n × cn , (4.13)

where the measurement vector cb is based on ψc , from the compass, in contrast to
the magnetometer-based vector mb

mag, used in Section 3.2 in the previous chapter.
Furthermore, themeasurement and corresponding reference vector pairs in (4.12)–
(4.13) are constructed as

f b
�

f b
IMU

‖ f b
IMU‖2

, f n
�

satM f ( f̂
n
ib)

‖satM f ( f̂
n
ib)‖2

, (4.14)

cb
�

(
cosψc − sin(ψc) 0

)ᵀ
, cn

�

(
1 0 0

)ᵀ
, (4.15)

where f̂
n
ib is the estimated specific force, provided by the TMO as depicted in

Figure 4.4, presented next in Section 4.3.4. The benefit of using normalized vectors
is that the vector pairs only provide direction, hence these are dimensionless, such
that the gains k1,2 can be considered as cutoff frequencies of the complementary
filter Σ1, cf. Section 3.2.1. Since the gains have unit rad/s, σ̂b

ib obtains the same
unit as ωb

IMU.
The estimation error is defined as q̃ :� qn

b ⊗ q̂n∗
b and b̃b � bb

gyro− b̂b
gyro. Further-

more, we define χ :� (r̃ ; b̃b), where r̃ denotes the vector part of q̃. The constraint
of the unit quaternion yield zero estimation error when | s̃ | � 1 or equivalently
‖ r̃ ‖2 � 0. Hence, s̃ � 0 corresponds to the maximum attitude error of 180◦.
Uniform semiglobal exponential stability of the origin χ � 0 of the attitude ob-
server’s error dynamics can be established under the following three assumptions
for f̂

n
ib � f n

ib :

Assumption 4.1. The angular rateωb
ib , the specific force f b

ib and its rate Ûf
b
ib are uniformly

bounded.

Assumption 4.2. There exist a constant cobs > 0 such that ‖ f b × cb ‖2 ≥ cobs for all
t ≥ 0, resulting in the attitude being uniformly observable.

Assumption 4.3. The initial condition is contained in the set D(ε) � {q̃ | | s̃ | > ε},
i.e. q̂n

b (0) ∈ D, representing attitude errors bounded away from 180◦ by a margin
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determined by ε ∈ (0, 1
2 ). Furthermore, it is assumed that b̂b

gyro(0) is projected to the ball
B ∈ {bb

gyro | ‖bb
gyro‖2 ≤ Mbgyro}.

Then from Assumptions 4.1–4.3, we use the result of Grip et al. (2012a), where, for
each ε ∈ (0, 1

2 ), there exist a kP > 0 such that if k1(t), k2(t) > kP and a kI(t) > 0,
then

‖χ(t)‖2 ≤ κae−λa t ‖χ(0)‖2 , ∀t ≥ 0, (4.16)

for some κa , λa > 0 and χ(0) ∈ {D(ε),B}, yielding that the origin of χ is USGES.
f n

ib is however not known and needs to be estimated. This is carried out next.

4.3.4 Translation motion observer with time-varying gains applying
the VVR as vertical aiding sensor

The TMO of Bryne et al. (2014) is obtained by extending the work of Grip et al.
(2013) with

1. The state space augmentation, pn
nb ,I �

∫ t
0 pn

nb ,z dt

2. Introduction of time-varying observer gains by replacing the combined gain,
K, of Grip et al. (2013) with K(t) � ϕ(t)K, where ϕ(t) ∈ R1 is a positive
time-varying scaling factor.

The total augmented observer Σ2 is given as

Σ2 3 :



Û̂pn
nb ,I � p̂n

nb ,z + ϕ(t)ϑKpI pI p̃
n
nb ,I , (4.17a)

Û̂pn
nb � v̂n

nb + ϕ(t)ϑ
2
(
02×1
KppI

)
p̃n

nb ,I + ϕ(t)ϑ
(
01×2
Kpp

)
p̃n

nb ,x y , (4.17b)

Û̂vn
nb � f̂

n
ib + gn

b + ϕ(t)ϑ3
(
02×1
KvpI

)
p̃n

nb ,I + ϕ(t)ϑ
2
(
01×2
Kvp

)
p̃n

nb ,x y , (4.17c)

Ûξn
ib � −R(q̂n

b )S(σ̂
b
ib) f

b
IMU

+ ϕ(t)ϑ4
(
02×1
KξpI

)
p̃n

nb ,I + ϕ(t)ϑ
3
(
01×2
Kξp

)
p̃n

nb ,x y ,
(4.17d)

f̂ n
ib � R(q̂n

b ) f
b
IMU + ξn

ib , (4.17e)

where p̃n
nb ,I � yn

VVR − p̂n
nb ,I � pn

nb ,I − p̂n
nb ,I and p̃n

nb ,x y � pn
GNSS − p̂n

nb ,x y are the
innovation signals. ξn

ib is an auxiliary state used to estimate f n
ib by relating the

angular and translation motion. The signals q̂n
b and σ̂b

ib are provided by Σ1 of
Section 4.3.3. Moreover, ϑ is a high-gain-like parameter used to guarantee stability.
Furthermore, by defining the state space

x∗ :�
(
pn

nb ,I ; pn
nb ; vn

nb ; ξn
ib

)
, (4.18)

3Σ2 was presented with a slightly different structure w.r.t. the time-scale separation using the ϑ
term in Bryne et al. (2014). The correct structure is utilized here.
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the TMO (4.17) can be written on compound form as:

Û̂x∗ � A∗ x̂∗ + B∗u∗ + D∗ + ϕ(t)K∗
(
y − Cx̂∗

)
, (4.19)

where y � (yn
VVR; pn

GNSS), with the system matrices

A∗ �
©«

0 0 0 1 01×3 01×3
03×1 03×3 I3 03×3
03×1 03×3 03×3 I3
03×1 03×3 03×3 03×3

ª®®®¬ , B∗ �
©«

01×3 01×3
03×3 03×3
I3×3 03×3
03×3 I3×3

ª®®®¬ ,
C∗ � ©«

1 0 0 01×7
0 1 0 01×7
0 0 1 01×7

ª®¬ , D∗ �
©«

0
03×1
gn

b
03×1

ª®®®¬ ,
(4.20)

and the time-invariant gain

K∗ �

©«

KpI pI 01×2
02×1 Kpp

KppI 01×2
02×1 Kvp

KvpI 01×2
02×1 Kξp

K0
ξpI

01×2

ª®®®®®®®®®®¬
�

©«

ϑK0
pI pI

01×2
02×1 ϑK0

pp
ϑ2K0

ppI
01×2

02×1 ϑ2K0
vp

ϑ3K0
vpI

01×2
02×1 ϑ3K0

ξp
ϑ4K0

ξpI
01×2

ª®®®®®®®®®®®¬
(4.21)

Finally, the input u∗ is given as

u∗ �
(

R(q̂n
b ) f

b
IMU

−R(q̂n
b )S(σ̂

b
ib) f

b
IMU

)
. (4.22)

Moreover, the error states of the TMO (4.17) can be defined

x̃∗ :�
(
p̃n

nb ,I ; p̃n
nb ; ṽn

nb ; f̃
n
ib

)
, (4.23)

where f̃
n
ib , instead of ξn

ib , is utilized as error state. Then, the error dynamics of the
origin of Σ2 can be obtained as

Û̃x∗ �
(
A∗ − ϕ(t)K∗C∗

)
x̃∗ + ρ(t , χ) (4.24)

where,
ρ(t , χ) �

(
0; 03×1; 03×1; d̃(t , χ)

)
, (4.25)

with

d̃(t , χ) �
(
I3 − Rᵀ(q̃)

)
Rn

b

(
S(ωn

ib) f
b
ib +
Ûf b

ib

)
− Rᵀ(q̃)Rn

b S(b̃b
gyro) f b

ib , (4.26)
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similar to Grip et al. (2013), except here the Earth’s rotation is neglected sinceωb
in �

03×1 is assumed. Also here ϑ ≥ 1 is applied to assert some time-scale separation in
order to estimate the specific force in the navigation frame and guarantee stability
and robustness in the presence of the disturbance d̃(t , χ), induced by Σ1, and the
unknown signal Ûf n

ib . The time-varying scalar ϕ(t) ≥ τ > 0, can e.g. be chosen by
taking into account the horizontal GNSS accuracy such as the horizontal dilution
of precision (Farrell, 2008, Ch. 8.5), reported by the GNSS receiver.

4.3.5 Stability analysis

In order to obtain some stability properties of the error dynamics of Σ2, the linear
time-invariant (LTI) systems (A∗ , C∗) must be observable. The observability of
(A∗ , C∗) is trivial to verify since the gravity is constant and knownusing theKalman
rank condition on the observability matrix

O∗ �
©«

C∗

C∗A∗
...

C∗A∗m−1

ª®®®®¬
, (4.27)

where m � dim(A∗) � 10 such that O∗ will have rank m. Then we continue with
the compounded gain from (4.21) and (4.24) which can be defined by 4

K∗ :� ϑL∗ϑ
−1K∗0E∗ϑ , (4.28)

where L∗ϑ is given as

L∗ϑ � blockdiag
(
1, 1
ϑ

I3 ,
1
ϑ2 I3 ,

1
ϑ3 I3

)
, (4.29)

and
E∗ϑ � C∗L∗ϑC∗† , (4.30)

which satisfy Lemma. 4.1.

Lemma 4.1. E∗ϑ � C∗L∗ϑC∗† satisfy E∗ϑC∗ � C∗L∗ϑ.

Proof: See Appendix A.2.1.
Now by considering the non-singular transform

η :� L∗ϑ x̃∗ , (4.31)

we obtain the time-scaled error state space η

η �

©«
η1
η2
η3
η4

ª®®®¬ �

©«
p̃n

nb ,I
1
ϑ p̃n

nb
1
ϑ2 ṽn

nb
1
ϑ3 f̃

n
ib

ª®®®®¬
. (4.32)

4E∗ϑ was not included in Bryne et al. (2014)
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Furthermore, the dynamics of η may be obtained as

Ûη � ÛL∗ϑ x̃∗ + L∗ϑ Û̃x
∗
� L∗ϑ Û̃x

∗. (4.33)

Moreover, by considering the term (A∗ − ϕ(t)K∗C∗)x̃∗ from (4.24), and exploiting
that Ûη � L∗ϑ Û̃x∗ and x̃∗ � L∗

−1

ϑ η one obtains

L∗ϑ(A
∗ − ϕ(t)K∗C∗)L∗−1

ϑ � ϑ(A − ϕ(t)K∗0C∗) (4.34)

due to

L∗ϑA∗L∗
−1

ϑ � ϑA∗ ,

ϕ(t)L∗ϑK∗CL∗
−1

ϑ � ϕ(t)ϑK∗0C ,

where

L∗ϑK∗C∗L∗
−1

ϑ � ϑL∗ϑL∗
−1

ϑ K∗0E∗ϑC∗L∗
−1

ϑ � ϑK∗0C∗L∗ϑL∗
−1

ϑ � ϑK∗0C∗ (4.35)

which follows from Lemma 4.1. In addition, since

L∗ϑρ(t , χ̃) �
1
ϑ4 ρ(t , χ̃), (4.36)

the transformed error dynamics become

1
ϑ
Ûη � (A∗ − ϕ(t)K∗0C∗)η + ρ(t , χ̃). (4.37)

The nominal stationary gain K∗0 can be chosen freely in order to ensure that
A∗ − K∗0C∗ Hurwitz. ϑ ≥ 1 is a tuning parameter used to guarantee stability and
robustness with respect to the uncertainties in d̃(t , χ). However, one may choose

K∗0 � PCᵀ , (4.38)

where P � Pᵀ > 0 is the solution of the stationary algebraic Riccati equation

A∗P + PA∗ᵀ + Q − 2τPC∗ᵀC∗P � 010×10. (4.39)

Below the conditions for semiglobal exponential stability of the origin of the esti-
mation error dynamics is analysed.

Assumption 4.4. Initial conditions are in the following sets:

• X ⊂ R10 is a ball containing the origin x̃∗ � 010×1.

• D(ε̄) � {q̃ | | s̃ | > ε̄} presents a set of attitude errors bounded away from 180◦ by
a small margin determined by an arbitrary constant ε̄ ∈

(
0, 1

2
)
.

• B ∈ {bb
gyro | ‖bb

gyro‖2 ≤ Mbgyro}.
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Assumption 4.5. Observer gains are chosen according to

• k1(t), k2(t) > kP being sufficiently large, for kP > 0, cf. Grip et al. (2013).

• kI(t) > 0 is arbitrary.

• K∗(t) � ϕ(t)K∗0 is chosen according to (4.38)–(4.39), where ϕ(t) ≥ τ, for all t ≥ 0,
from some constant τ ≥ 0 and where K∗0 is determined using (4.39) with the tuning
matrix Q � Qᵀ > 0.

Under the conditions in Assumptions 4.1–4.2 and 4.4–4.5, the error dynamics
of Sections 4.3.3 and 4.3.4, the origin, (x̃∗; χ) � 0, of the error dynamics of the
feedback-interconnected observers Σ1 − Σ2, is USGES according to Theorem 4.1.

Theorem 4.1. LetX,D(ε̄) and B satisfy Assumption 4.4. Furthermore, let kP be chosen
to satisfy Assumption 4.5 and ensure stability, according to Grip et al. (2012a, Theorem
1), for Σ1 with known f n

ib . Also let P � Pᵀ > 0, being the solution of the algebraic
Riccati equation (4.39) for a Q � Qᵀ > 0. Then, there exist a ϑ∗ ≥ 1, a scalar τ > 0
and a ϕ(t) ≥ τ such that for ϑ ≥ ϑ∗, some nominal gain (4.38) and for some constants
κ∗ , λ∗ > 0, then √

‖ x̃∗(t)‖22 + ‖χ(t)‖22 ≤ κ
∗e−λ∗ t

√
‖ x̃∗(0)‖22 + ‖χ(0)‖22 , (4.40)

rendering the origin, (x̃∗; χ) � 0, uniformly semiglobally exponentially stable (USGES).

Proof: See Appendix A.2.2.

Remark 4.1. The stability result of Theorem 4.1 is achieved for sufficiently large ϑ and
kP , respectively. This in combination with D(ε̄) � {q̃ | | s̃ | > ε̄} ensuring that (4.40)
always holds. By studying the proof one can calculate the explicit minimum values of ϑ
and kP . However, ϑ and k1(t), k2(t) ≥ kP will probably be unnecessary large due to the
conservative nature of the proof. Therefore, the choice of gains should be based on careful
tuning also taking into account noise levels such that unnecessary amplification of sensor
noise is prevented. Moreover, high gains in discretized systems can result in numerical
instability. Hence, the gains should be chosen with care.

4.3.6 Case study: TMO aided by VVR versus GNSS

In order to illustrate the effect of the VVR compared to using vertical GNSS or
dGNSS measurements, the TMO above is compared to the time-invariant equiva-
lent of the TMO of Section 3.3. In the reminder of the section, this is referred to as
the nominal TMO and denotedΣ2,nom. The simulation of motion data is described
in Appendix C.3. Vertical measurements from standard GNSS and from dGNSS
were simulated based on Appendix C.1. A case study with time-varying gains,
ϕ(t), k1(t), k2(t), kI(t), can be found in Appendix C.3.2.
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Table 4.1: GNSS error-model parameters.

Std. dev. of w [m] Corr. time T [s] Ts [Hz]
North 0.21 1100 1.0
East 0.21 1100 1.0
Down 0.40 1100 1.0

Table 4.2: dGNSS error-model parameters.

Std. dev. of w [m] Corr. time T [s] Ts [Hz]
North 0.1 480 1.0
East 0.1 480 1.0
Down 0.2 480 1.0

Table 4.3: GNSS and dGNSS RMS errors related to the performance illustration in
Figure 4.1.

Measurement
Component

GNSS
RMS error [m]

dGNSS
RMS error [m]

North 4.4963 1.7300
East 4.8527 1.4609
Down 9.1083 3.2377

Colored GNSS noise

Typical noise of a standalone GNSS receiver and a receiver with differential cor-
rected positioning solution were simulated. Examples of both transient GNSS
and dGNSS error realizations are shown in Figure 4.1 earlier. The parameters of
noise process (C.1) for the standalone receiver (Beard and McLain, 2012, Ch. 7.5)
is presented in Table 4.1. The dGNSS receiver correlation time is based on the
results of Rankin (1994) and Mohleji and Wang (2010), where the former suggests
a correlation time of 10 minutes for a simulated dGPS receiver, while the latter
suggest a correlation time in the range of 4−8 minutes. Since the results presented
in Mohleji and Wang (2010) are recent, and hence more up to date with respect
to hardware and software solutions, this recommendation constituted the basis of
the choice for the dGNSS noise realization of (C.1). The driving noise was selected
such that the RMS errors of the noise, z[k], over a large time horizon was between
1 and 2 meters in North and East, while the vertical component was in the range
of 2− 4 meters. The chosen model parameters related to the dGNSS colored noise
are presented in Table 4.2. The RMS errors of the realizations of Figure 4.1 are
further given in Table 4.3.
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Figure 4.5: Heave estimates obtained using a standalone GNSS receiver as vertical
position reference.

Tuning

The gains associatedwith the horizontal axeswere chosen equal for both observers:
K0

pp ,x y � 0.4190 · I2, K0
vp ,x y � 0.0878 · I2 and K0

ξp ,x y � 0.0091 · I2, while the gains
associated with the vertical axes of Σ2,nom and Σ2 are given in Table 4.4. Thus,
the gains of the nominal TMO was chosen as K0

pp � blockdiag(Kpp ,x y , K0
pz pz
),

K0
vp � blockdiag(K0

vp ,x y , K0
vz pz
) and K0

ξp � blockdiag(K0
ξp ,x y , K

0
ξz pz
). The gains

associated with the same states were chosen similar for both observers such that
the comparison would be relevant. In addition, ϑ � 1 was chosen for both Σ2,nom
and Σ2. Regarding the attitude observer, the measurement/reference vector pairs
were given equal weights using k1 � k2 � 0.55, while kI � 0.01 was chosen.

Simulation results

Heave accuracy:
The respective heave estimates obtained, from applying the three simulated verti-
cal position references, are shown in Figures 4.5–4.7. The heave estimate, obtained
with aiding from the simulated standalone GNSS receiver, is shown in Figure 4.5
together with the actual heave motion of the ship. Figure 4.6 shows the transient
performance of the heave estimate obtained from utilizing the simulated dGNSS

Table 4.4: Vertical Gains Tuning of Σ2.

TMO
Σ2,nom Σ2

- - K0
pI pI

0.4655
K0

pp 0.1083 K0
ppI

0.1083
K0

vp 0.0148 K0
vpI

0.0148
K0
ξz p 0.0010 K0

ξpI
0.0010
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Figure 4.6: Heave estimates obtained using a dGNSS receiver as vertical position
reference.
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Figure 4.7: Heave estimates obtained using the VVR as vertical position reference.

400 600 800 1000 1200 1400

-30

-20

-10

0

10

Figure 4.8: Steady-state heave estimation error.

receiver. An improvement in heave estimation performance, when compared to
Figure 4.5, is observed. The heave estimate, using the VVR measurement as ver-
tical aiding is shown in Figure 4.7. One can clearly observe the increase in heave
estimation accuracy by utilizing Σ2 as TMO with the VVR aiding concept. This
is also observed in Figure 4.8, comparing the respective heave estimation errors.
Figure 4.8 show the steady state estimation error utilizing the three vertical po-
sition references as INS aid. It is evident that the VVR aiding gave the highest
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Figure 4.9: Heave CAEE. Calculations started after 350 seconds.

heave estimation accuracy and that standalone GNSS aiding yielded the lowest.
This is also confirmed by Table 4.5where the heave estimation RMS errors together
with themean square errors (MSEs) and the cumulative absolute estimation errors
(CAEEs) at time 1500 seconds are presented. The MSE is defined as:

MSE :� 1
N

N∑
k�1

(
x(k) − x̂(k)

)2
, (4.41)

while the CAEE is defined as

CAEE :�
N∑

k�1

|x(k) − x̂(k)| , (4.42)

where x � pn
nb ,z when evaluating the heave estimation error. Figure 4.9 shows how

Table 4.5: Heave: Estimation error statistics.

Vertical
Aiding RMS error [m] MSE [m2] CAEE [m]

(at time 1500 s)
VVR 0.1889 0.0357 20753.80

dGNSS 1.5063 2.2691 403155.62
GNSS 7.3705 60.1101 1569456.65

the heave CAEEs evolves over time. The heave CAEE obtained when using the
VVR is significantly smaller than the CAEE obtained with a GNSS-based vertical
INS aiding. The statistics presented in Table 4.5 are calculated in steady state
(between 350 and 1500 seconds of simulation), i.e. after the attitude estimate had
converged.

Roll and pitch accuracies:
Since the observersΣ1–Σ2,nom andΣ1–Σ2 are feedback interconnected, the accuracy
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Table 4.6: Roll: Estimation error statistics.

Vertical
Aiding RMS error [deg] MSE [deg2] CAEE [deg]

(at time 1500 s)
VVR 0.0394 0.0016 3627.1

dGNSS 0.0416 0.0017 3896.6
GNSS 0.0553 0.0031 4965.2

of the translational motion estimates will affect the attitude estimates through the
feedback. To show the relationship between the vertical translational motion
estimates and the roll and pitch estimates, we start with the term,

k2 f b
IMU × R(q̂n

b )
ᵀ f̂ n

ib ,

from the attitude observer injection term, σ̂b
ib , given in (4.11). Moreover, we express

the transposed estimated attitude, R(q̂n
b )ᵀ, in terms of Euler angles with

R(q̂n
b )
ᵀ
�

(
R̂n

b

)ᵀ
(φ, θ, ψ) � ©«

R11 R12 R13
R21 R22 R23
−sθ̂ cθ̂sφ̂ cθ̂cφ̂

ª®¬
ᵀ

�
©«
R11 R21 −sθ̂
R12 R22 cθ̂sφ̂
R13 R23 cθ̂cφ̂

ª®¬ (4.43)

with s · � sin(·) and c · � cos(·), where R?? is found in Fossen (2011, Ch. 2.1.1). By
only considering the vertical component of f̂ n

ib and relating this to R̂b
n , one obtains

R̂b
n ·


0
0

f̂ n
ib ,z

 �


−sθ̂

cθ̂sφ̂
cθ̂cφ̂

 f̂ n
ib ,z . (4.44)

Hence, it is evident from (4.44) that the roll and pitch estimates are strongly
coupled with the vertical component of f̂ n

ib from the TMO. Furthermore, one
can also argue that if the precision of the vertical reference measurement, which
updates the specific force estimate, increases, the roll and pitch estimate accuracy
is potentially also increased. This effect can be observed in Figures 4.10–4.11where
the conventional GNSS aiding results in the lowest roll and pitch estimate accuracy
compared to those obtained using the VVR or dGNSS as vertical aiding. The
statistics of the steady state roll and pitch estimation errors are given in Tables 4.6–
4.7, respectively. The highest accuracy is obtained with the VVR and dGNSS
aiding. Figures 4.12–4.13, presenting the evolution of CAEEs for the respective
roll and pitch estimates, show that the CAEEs are significantly less over time
when utilizing VVR and dGNSS, as vertical aiding measurement, compared to the
respective counterpart when utilizing a standalone GNSS receiver.

Additional comments

It should be mentioned that the heave estimation precision of Figure 4.7 and the
metrics associatedwith the VVR in Table 4.5 are sea state dependent. For sea states
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Figure 4.10: Steady-state roll estimation error.
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Figure 4.11: Steady-state pitch estimation error.

400 600 800 1000 1200 1400

0

2000

4000

6000

Figure 4.12: Roll CAEE. Calculations started after 350 seconds.

where the wave spectra has a low peak frequency, ω0, the precision of the heave
estimate with the VVR measurement update will decrease if the gains of Σ2 is not
modified accordingly. This is due to the low-pass characteristics of the observer
combined with the low-frequency estimated acceleration input, ân

ib � f̂ n
ib + gn

b ,
together will inflict phase error on the heave estimates.

Regarding tightly coupled integration schemes where pseudoranges are the
observables, the VVR concept also has the potential to increase the GNSS accuracy
in the horizontal plane with similar effects as differential correction. This is due to
the heave estimates, from the INS, are fed back to the pseudorange resolver during
the calculation of the estimated observation vector h(x̂) w.r.t. (3.58) of Section 3.4
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Figure 4.13: Pitch CAEE. Calculations started after 350 seconds.

Table 4.7: Pitch: Estimation error statistics.

Vertical
Aiding RMS error [deg] MSE [deg2] CAEE [deg]

(at time 1500 s)
VVR 0.0422 0.0019 3956.6

dGNSS 0.0448 0.0020 4016.0
GNSS 0.0567 0.0032 5117.9

and the calculation of the linearized observation matrix, C(t , x̂). By emphasizing
that VVR measurement, in general, is more accurate than the pseudoranges (user
equivalent range error (UERE) RMS is typically ∼ 6 meters, Misra and Enge (2011,
Ch. 5.4), for single-frequency receivers), common-mode errors affecting the posi-
tion both in the horizontal and vertical axes, may be interpreted as a receiver-clock
error. In addition, tightly coupled integration will always have some aiding in the
vertical axis from the GNSS pseudoranges even though the VVR is the primary
vertical aiding. This has the potential to combat some of the phase errors induced
by high sea states. For details related to GNSS/INS integration, Titterton and
Weston (2004), Grewal et al. (2013) or Groves (2013) can be advised.

4.3.7 Summary

A USGES nonlinear observer for aided INS tailored for ships was developed by
introducing a concept for accurate vertical aiding. The main idea is to use the
mean surface level of the ocean as a virtual measurement since this will be zero
on average. A nonlinear feedback-interconnected observer for estimation of the
attitude and translational motion has been developed to utilize the VVRmeasure-
ment together with horizontal position measurements, obtained e.g. from a GNSS
receiver. In addition time-varying gains were introduced to improve convergence
and to increase performance and robustness.

Computer simulations of a offshore vessels verify that strapdown inertial nav-
igation systems aided VVR improves the accuracy of the navigation system signif-
icantly when compared to conventional loosely coupled GNSS aiding techniques.
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The heave, roll and pitch estimates are more accurate with VVR-based aiding
compared to the performance obtained with a vertical reference with precision
equivalent to that of a standaloneGNSS receiver. TheVVR is also a simple concept,
being self contained and independent of differential corrections.

The simulations indicate that using time-varying gains in estimating trans-
lational and angular motion are beneficial for fast convergence and suppression
of sensor noise in the event of changes in sensor precision. The time-varying
multiplicative scalar gain component ϕ(t) is, however, not optimal since the time-
varying component has equal effect on all three axes of the TMO regardless of
which gain components that should be modified. In Chapter 3, the results of Jo-
hansen and Fossen (2015) were utilized such that time-varying gains in the TMO
could be resolved using Riccati-based tuning, of Kalman and Bucy (1961), allowing
for multivariable tuning without ϕ(t). This is also applied next, where the VVR
concept is improved.

4.4 Extended VVR Concept: Improved Heave Estimation

This section extends the former by:

• Allowing for the NLO design to based on a tangent frame realization of the
strapdown equation based on Section 2.3.1.

• Improving the VVR concept by introducing an error model, containing time-
varying parameters describing the wave inducedmotion of a vessel, improv-
ing the heave estimates, while the performance of the attitude estimation,
obtained in the preceding section, is maintained.

• A generalization of the preceding TMO of Section 4.3 is presented allowing
for both time-varying and individual tuning of each axis of the TMO, similar
to the strategy from Section 3.3 of the preceding chapter.

As earlier, the motion of the marine surface craft is estimated using a two part
feedback-interconnected nonlinear observer strategy as depicted in Figure 4.14,
similar to Figure 4.4 though with an additional estimators providing the parame-
ters ωe(t) and λw(t), being the encounter frequency of the waves and the relative
damping factor of the approximated wave-response model (Section 4.4.1), respec-
tively.

The PVA estimation is carried out in two steps. First the attitude is estimated by
using rate gyro, specific force and compass measurements. The attitude observer
is further aided by the second step, consisting of a TMO providing specific force
estimates in the navigation frame, together with 3-DOF position and velocity esti-
mates using the estimated attitude, specific force, PosRef and VVRmeasurements.
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Figure 4.14: Extended observer structure: NLO-based INS aided by VVR, com-
pass and PosRef systems. Estimated attitude and bias compensated angular rate
measurements are utilized to estimated parameters related to the wave-induced
motion of the vessel. These parameters are further utilized in a VVR error model.

The tangent frame, {t}, is utilized as navigation frame. Therefore, the VVR
measurement is now defined as

yt
VVR :� 0, ∀t ≥ 0. (4.45)

similar to (4.2) and (4.4). However, as mentioned in Section 4.2, this measurement
is only measuring the average of the signal of pt

tb ,I relating to the heave, pt
tb ,z ,

according to
Ûpt

tb ,I � pt
tb ,z , (4.46)

equivalent to (4.3). To compensate for this, an error model in introduced.

4.4.1 Vertical vertical reference error model

As indicated in (4.2), of Section 4.2, choosing the VVR measurement

yt
VVR � pt

tb ,I � 0, (4.47)

similar to (4.4), would only be valid on average even though it is perfect w.r.t. to
noise. Thus being suboptimal w.r.t. to heave peak-to-peak precision even when
applying small gains associated with the VVR innovations in the aided INS cf. the
case study of Section 4.3.6. Hence, the heave estimation performance obtained in
Bryne et al. (2014, 2015b) may be improved, while maintaining the 6-DOF vessel
motion estimates from the INS. Especially so in high sea stateswhere the amplitude
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of the wave-induced craft motion is high and the frequency of the motion is low
(Fossen, 2011, Ch. 8), resulting in yt

VVR � pt
tb ,I is required to be valid for longer time

horizons. This is due to the time constant of the wave-induced heave motion is
larger for high sea states. Therefore, applying yt

VVR � pt
tb ,I would be less desirable

in such conditions. This issue is not dealt with in the previous works (Bryne et al.,
2014, 2015b), presented earlier in the chapter.

Fossen and Perez (2009) states that all onboard sensors measure both low-
frequency (LF) and wave-frequency (WF) motion components. However, yt

VVR
of (4.47) only contains the former; see Figure 4.2. This makes it, in some sense,
biased. In order to improve the general accuracy of yt

VVR � 0, additional sensor
parameters are introduced by using

yt
VVR � pt

tb ,I + bt
tb ,I � 0, (4.48)

instead of (4.47), where the dynamics of bt
tb ,I is inspired by the works on wave-

filtering of estimated vessel motion such as Sælid et al. (1983), Fossen and Strand
(1999) and Fossen and Perez (2009). The VVR error model takes the form of

Ûζt
tb � bt

tb ,I , (4.49)
Ûbt

tb ,I � −ω
2
e (t)ζt

tb − 2λw(t)ωe(t)bt
tb ,I + σb ,VVRεu , (4.50)

for some auxiliary state ζt
tb , where 0 < λw(t) < 1 is the relative damping ratio of

the wave-induced motion and

ωe(t ,U, ω0 , β) �
�����ω0 −U

ω2
0

gb
cos(β),

����� (4.51)

being the encounter frequency of the waves experienced by the ship (Fossen, 2011,
Ch. 8.2.3). Here U is the horizontal speed of the vessel, ω0 is the peak frequency
of the wave spectrum, gb � ‖g t

b ‖2 and β is the angle between the heading of the
vessel and the direction of the waves. σb ,VVR is the standard deviation of the
process noise and is consider a tuning parameter related to the heave amplitude.
In practice, its magnitude is also a measure of how much the model structure and
its parameters are trusted. Finally, εu represents unity white noise.

4.4.2 Model formulation

The INS, used to estimate the vessel’s motion, will be realized based upon the
tangent frame realization of the strapdown equations of Section 2.2.3. Thus, the
problem formulation is obtained by augmenting the kinematic model of (2.13)–
(2.14) and (2.18) with (4.46), the error model (4.49)–(4.50) and the gyro bias model
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of Section 2.3.1,

Ûpt
tb ,I � pt

tb ,z , (4.52)

Ûpt
tb � vt

tb , (4.53)

Ûvt
tb � −2S(ωt

ie)v
t
tb + Rt

b f b
ib + g t

b , (4.54)

Ûqt
b �

1
2

qt
b ⊗

(
0
ωb

ib

)
− 1

2

(
0
ωt

it

)
⊗ qt

b , (4.55)

Ûbb
gyro � 03×1 , (4.56)
Ûζt

tb � bt
tb ,I , (4.57)

Ûbt
tb ,I � −ω

2
e (t)ζt

tb − 2λw(t)ωe(t)bt
tb ,I . (4.58)

(4.59)

Before moving on to the observer design, a similar sensor configuration to that of
Section 4.3.1 is introduced.

4.4.3 Attitude observer

The NLO used to estimate the attitude between the {b} and {t} frame is given by,

Σ1 :


Û̂qt

b �
1
2

q̂t
b ⊗

(
0
ω̂b

ib

)
− 1

2

(
0
ωt

it

)
⊗ q̂t

b , (4.60a)

ω̂b
ib � ωb

IMU − b̂b
gyro + σ̂b

ib , (4.60b)
Û̂bb

gyro � Proj
(
b̂b

gyro ,−kI(t)σ̂b
ib

)
. (4.60c)

Also here, Proj(?,?) denotes the angular rate bias projection algorithm ensuring
that ‖b̂b

gyro‖2 ≤ Mb̂gyro
for Mb̂gyro

> Mbgyro (Grip et al., 2012a), and kI(t) is the gain
associated with the rate gyro bias estimation. The NLO is structurally the same
as in Chapter 3 and Grip et al. (2013), where the attitude between the {b} and the
{e} frame was estimated. Moreover, the observer’s nonlinear injection term, σ̂b

ib ,
is given as

σ̂b
ib �k1(t)vb

1 × Rᵀ(q̂t
b)v

t
1 + k2(t)vb

2 × Rᵀ(q̂t
b)v

t
2 , (4.61)

where themeasurement vectors vb
1,2 and reference vectors vt

1,2 are calculated using

vb
1 � f b , vt

1 � f t , (4.62)

vb
2 � f b × cb , vt

2 � f t × ct . (4.63)



4.4. EXTENDED VVR CONCEPT: IMPROVED HEAVE ESTIMATION 79

Furthermore, themeasurement and corresponding reference vector pairs in (4.62)–
(4.63) are constructed as

f b
�

f b
IMU

‖ f b
IMU‖2

, f t
�

satM f ( f̂
t
ib)

‖satM f ( f̂
t
ib)‖2

, (4.64)

cb
�

(
cosψc − sin(ψc) 0

)ᵀ
, ct

�

(
1 0 0

)ᵀ
. (4.65)

As before f̂
t
ib is the estimated specific force, provided by the TMO as depicted in

Figure 4.4.
Similar to Section 4.3.3, the estimation error is defined as q̃ :� qt

b ⊗ q̂t∗
b and

b̃b � bb
gyro − b̂b

gyro. Furthermore, we define χ :� (r̃ ; b̃b), where r̃ denotes the
vector part of q̃. Semiglobal exponential stability of the origin χ � 0 (the scalar
part of q̃, s̃ � 1) of the attitude observer’s error dynamics can be established if
Assumptions 4.1–4.2 and 4.6 are satisfied when f̂

t
ib � f t

ib .

Assumption 4.6. We assumed that the initial condition in contained in the set D(ε) �
{q̃ | | s̃ | > ε}, i.e. q̂t

b(0) ∈ D, representing attitude errors bounded away from 180◦ by a
margin determined by ε ∈ (0, 1

2 ). Furthermore, it is assumed that b̂
b
gyro(0) is projected to

the ball B ∈ {bb
gyro | ‖bb

gyro‖2 ≤ Mbgyro}.

Assumption 4.6 is equivalent to Assumption 4.3 here, however, related to q̂t
b(0).

The same argument as in Section 4.3.3 is utilized, yielding that (4.16) is satisfied
and the origin of χ is USGES if f̂

t
ib � f t

ib , (Grip et al., 2012a). Estimation of f t
ib is

carried out next.

4.4.4 Translational motion observer

The TMO is an extension of the preceding TMO of Section 4.3.4 based on Bryne
et al. (2014, 2015b) and the results of Grip et al. (2012b, 2013). Then augmentation
of the preceding TMO is done by introducing an error model, presented earlier in
Section 4.4.1, in order to capture the short term inaccuracies in the VVR measure-
ment. Since the tangent frame realization of the strapdown equations is utilized,
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the extended TMO becomes

Σ2 :



Û̂pt
tb ,I � p̂t

tb ,z + ϑK0
pI pI

ỹt
tb ,I (4.66a)

Û̂pt
tb � v̂t

tb + ϑ
2
(
02×1
K0

ppI

)
ỹt

tb ,I + ϑ

(
K0

pp
01×2

)
ỹt

tb ,x y (4.66b)

Û̂vt
tb � −2S(ωt

ie)v
t
tb + f̂ t

ib + g t
b + ϑ

3
(
02×1
K0

vpI

)
ỹt

tb ,I + ϑ
2
(

K0
vp

01×2

)
ỹt

tb ,x y (4.66c)

Ûξ t
ib � −R(q̂t

b)S(σ̂
b
ib) f

b
IMU + ϑ4

(
02×1
K0
ξpI

)
ỹt

tb ,I + ϑ3
(

K0
ξp

01×2

)
ỹt

tb ,x y (4.66d)

f̂ t
ib � R(q̂t

b) f
b
IMU + ξ t

ib (4.66e)
Û̂ζt

tb � b̂t
tb ,I + K0

ζpI
ỹt

tb ,I (4.66f)
Û̂bt

tb ,I � −ω
2
e (t)ζ̂t

tb − 2λw(t)ωe(t)b̂t
tb ,I + K0

bI pI
ỹt

tb ,I (4.66g)

where ỹt
tb ,I � yt

VVR − p̂t
tb ,I − b̂t

tb ,I and ỹt
tb ,x y � pt

PosRef − p̂t
tb ,x y , while K0

? and
K0
? are gains associated with the VVR and the horizontal PosRef measurements,

respectively. As earlier, ξ t
ib is an auxiliary state used to estimate f t

ib and where ϑ
is a high-gain-like parameter used to guarantee stability. In contrast to the cited
works on wave filtering, where the LF motion is estimated from measurements
containing LF and WF motion, Σ2 estimates the WF heave motion based on the
inherent LF zero VVRmeasurement. Furthermore, by noting the LTV structure of
(4.66) and defining

x :�
(
pt

tb ,I ; pt
tb ; vt

tb ; ξ t
ib ; ζt

tb ; bt
tb ,I

)
, (4.67)

the TMO can be written on LTV form as
Û̂x � A (t) x̂ + B(t , q̂t

b)u + D(t , x̂) + K(t)(y − Cx̂), (4.68)

with the system matrices

A(t) � blockdiag (A∗ , FVVR(t)) , (4.69a)

A∗ �
©«

0 0 0 1 01×3 01×3
03×1 03×3 I3 03×3
03×1 03×3 03×3 I3
03×1 03×3 03×3 03×3

ª®®®¬ , (4.69b)

FVVR(t) �
(

0 1
−ω2

e (t) −2λw(t)ωe(t)

)
, (4.69c)

input matrices

B(t , q̂t
b) �

(
B∗(t , q̂t

b)
02×6

)
, B∗(t , q̂t

b) �
©«

01×3 01×3
03×3 03×3

R(q̂t
b) 03×3

03×3 R(q̂t
b)

ª®®®¬ , (4.70)
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the measurement matrices,

C �

(
C∗

HVVR
02×2

)
, C∗ �

(
I3 03×7

)
,HVVR �

(
0 1

)
, (4.71)

the vector

D(t , x̂) �
(
0; 03×1; −2S(ωt

ie)v̂
t
tb + g t

b ; 03×1; 02×1

)
, (4.72)

and the gain matrix,

K(t) �

©«

KpI pI 01×2
02×1 Kpp

KppI 01×2
02×1 Kvp

KvpI 01×2
02×1 Kξp

KξpI 01×2
KζpI 01×2
KbI pI 01×2

ª®®®®®®®®®®®®®®¬
�

©«

ϑK0
pI pI

01×2
02×1 ϑK0

pp
ϑ2K0

ppI
01×2

02×1 ϑ2K0
vp

ϑ3K0
vpI

01×2
02×1 ϑ3K0

ξp
ϑ4K0

ξpI
01×2

K0
ζpI

01×2

K0
bI pI

01×2

ª®®®®®®®®®®®®®®®¬

. (4.73)

Finally, the input then becomes u � ( f b
IMU;−S(σ̂b

ib) f
b
IMU). Moreover, the error

states of the TMO can be defined as p̃t
tb ,I :� pt

tb ,I − p̂t
tb ,I , p̃t

tb :� pt
tb − p̂t

tb , ṽt
tb :�

vt
tb − v̂t

tb , and f̃ t
tb :� f t

ib − f̂ t
ib , where the latter is obtained through a combination

of (4.66d)–(4.66e). By including the auxiliary states, associatedwith the VVR error,
ζ̃t

tb :� ζt
tb − ζ̂

t
tb and b̃t

tb ,I :� bt
tb ,I − b̂t

tb ,I , one obtains the resulting the error state
space

x̃ :�
(
p̃t

tb ,I ; p̃t
tb ; ṽt

tb ; f̃
t
ib ; ζ̃t

tb ; b̃t
tb ,I

)
. (4.74)

The error dynamics of the origin of Σ2 is then given as
Û̃x � (A(t) − K(t)C)x̃ + ρ1(t , x̃) + ρ2(t , χ), (4.75)

with

ρ1(t , x̃) �
(
0; 03×1; −2S(ωt

ie)ṽ
t
tb ; 03×1; 02×1

)
, (4.76)

ρ2(t , χ) �
(
0; 03×1; 03×1; d̃(t , χ); 02×1

)
, (4.77)

and where,

d̃(t , χ) �
(
I3 − Rᵀ(q̃)

)
Rt

b

(
S(ωb

ib) f
b
ib +
Ûf b

ib

)
− S(ωt

it)
(
I3 − Rᵀ(q̃)

)
Rt

b f b
ib − Rᵀ(q̃)Rt

bS(b̃b
gyro) f b

ib ,
(4.78)

similar to Grip et al. (2013) and Johansen et al. (2017). In order to apply ϑ ≥ 1
to estimate f t

ib in the presence of the disturbance (4.78), the system much be left
invertible. This was verified using Grip and Saberi (2010) and the accompanying
Maple toolbox.
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4.4.5 Stability analysis

As inGrip et al. (2013), Bryne et al. (2014, 2015b), Johansen et al. (2017), a parameter
ϑ ≥ 1 is used in order to assign a certain time-scale structure to the error dynamics
of (4.75). For this purpose, similar to Section 4.3.5, the non-singular transform

Lϑ � blockdiag
(
1, 1
ϑ

I3 ,
1
ϑ2 I3 ,

1
ϑ3 I3 , I2

)
, (4.79)

of the state x̃ is introduced such that the transformed state space is obtained using
η :� Lϑ x̃ yielding

η �

©«
η1
η2
η3
η4
η5

ª®®®®®¬
�

©«

p̃t
tb ,I

1
ϑ p̃t

tb
1
ϑ2 ṽt

tb
1
ϑ3 f̃

t
ib

(ζ̃t
tb ; b̃t

tb ,I)

ª®®®®®®¬
. (4.80)

Moreover, the compounded gain (4.73) can further be defined

K(t) :� ϑL−1
ϑ K0(t)Eϑ , (4.81)

with ϑ � blockdiag (ϑ · I10 , I2), and where the nominal gain K0(t) and Eϑ is
obtained with

K0(t) � P(t)CᵀR−1(t), (4.82)

and
Eϑ � CLϑC† , (4.83)

respectively. Moreover, P(t) � Pᵀ(t) > 0 is the solution of the time-scaled algebraic
Riccati equation,

ϑ−1 ÛP(t) � A(t)P(t) + P(t)Aᵀ(t) − P(t)CᵀR−1(t)CP(t) + G(t)Q(t)Gᵀ(t). (4.84)

In addition,

G(t) �
(
B(t , q̂t

b)
010×1

GVVR(t)

)
, (4.85)

with GVVR(t) �
(
0, σb ,VVR(t)

)ᵀ, and the positive definite tuning matrices Q(t) �
Qᵀ(t) > 0, R(t) � Rᵀ(t) > 0, P(0) � Pᵀ(0) > 0. Finally, (4.83) follows from
Lemma 4.2.

Lemma 4.2. Eϑ � CLϑC† satisfy EϑC � CLϑ.

Proof: See Appendix A.2.4.
Now, the error dynamics of (4.75) is transformed onto η yielding

ϑ−1 Ûη � (A(t) − K0(t)C) η +
1
ϑ
ρ1(t , η) +

1
ϑ4 ρ2(t , χ), (4.86)
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where ρ1(t , η) �

(
0; 03×1;−2S(ωt

ie)η3; 03×1; 02×1

)
. With the transform, we ob-

tain LϑA(t)x̃ � ϑA(t)η and LϑK(t)Cx̃ � ϑLϑL−1
ϑ K0(t)EϑCx̃ � ϑK0(t)CLϑ x̃ �

ϑK0(t)Cη, similar to Section 4.3.5.
First we consider the nominal transformed dynamics

ϑ−1 Ûη � (A(t) − K0(t)C) η, (4.87)

and the accompanying observability and controllability properties that must be
satisfied in order to obtain the desired stability properties.

Lemma 4.3. Considering the measurement covariance matrix R(t) and the process noise
covariance matrix Q(t), the system

(
A(t),R−1/2(t)C

)
is uniformly completely observable

(UCO) and the system
(
A(t),Q1/2(t)G(t)

)
is uniformly completely controllable (UCC)

for all 0 < λw < 1 and positive, bounded ωe(t).

Proof: See Appendix A.2.5.

Remark 4.2. As stated in Chapter 3, Section 3.3.1, the term −2S(ωt
ie)v̂

t
tb , in the time-

varying vector D(t , x̂), does not affect the observability properties. This follows from the
fact that the term could have been included in the A∗-matrix (4.69b) without affecting the
observability of (A∗ , C∗).

Since UCO and UCC is established, the stability results of the origin of (4.87) can
be obtained.

Lemma 4.4. Let the nominal gain K0 be calculated according to (4.82) where P(t) �
Pᵀ(t) > 0 is the solution of the time-scaled Riccati equation (4.84) with the positive
definite matrices Q(t) � Qᵀ(t) > 0, R(t) � Rᵀ(t) > 0, P(0) � Pᵀ(0) > 0. Then, P(t)
is uniformly bounded and the origin of (4.87) is globally exponentially stable (GES) for
any ϑ ≥ 1.

Proof: See Appendix A.2.6.
Nowsemiglobal exponential stability of theoriginof the feedback-interconnected

observer design is considered.

Assumption 4.7. Initial conditions are in the following sets:

• X ⊂ R12 is a ball containing the origin x̃ � 0.

• P ⊂ R(12)×(12) is an arbitrary compact set of symmetric positive definite matrices
P(0).

• D(ε̄) � {q̃ | | s̃ | > ε̄} presents a set of attitude errors bounded away from 180◦ by
a small margin determined by an arbitrary constant ε̄ ∈

(
0, 1

2
)
.

• B ∈ {bb
gyro | ‖bb

gyro‖2 ≤ Mbgyro}.
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Assumption 4.8. Observer gains are chosen according to

• k1(t), k2(t) > kP being sufficiently large, for kP > 0, cf. Grip et al. (2013).

• kI(t) > 0 is arbitrary.

• K(t) is chosen according to (4.81)–(4.83) and is tuned using (4.84)with the matrices
Q(t) � Qᵀ(t),R(t) � Rᵀ(t),P(0) � Pᵀ(0) > 0.

Under the conditions in Assumptions 4.1–4.2 and 4.7–4.8, the main result of the
chapter, which is an extension and generalization of Theorem 4.1, can now be
established.

Proposition 4.1. There exists a ϑ? ≥ 1 such that for all ϑ ≥ ϑ?, that P(t) is uniformly
bounded and √

‖ x̃(t)‖22 + ‖χ(t)‖22 ≤ κe−λ t
√
‖ x̃(0)‖22 + ‖χ(0)‖22 , (4.88)

for some κ > 0 and λ > 0 rendering the origin (x̃; χ) � 0 uniformly semiglobally
exponentially stable (USGES).

Proof: See Appendix A.2.7.

4.4.6 Obtaining ωe and λw

The parameters, ωe(t) and λw(t) in the VVR error model are generally unknown
and have to be estimated online. Although λw(t) is often chosen as 0.1 for wave-
filtering in dynamic positioning (DP) operations, (Fossen, 2011, Ch. 8.2.6, 11.3.6),
(Perez, 2005, Ch12.5). However, during e.g. vessel transit, with changing sea states,
and other situations, estimating λw(t) might increase performance compared to
compensating for the uncertainty in λw(t) with gain-scheduling dependent on
operation and/or sea state. ωe(t) can be obtainedwith a variety of onlinemethods.
Here, three methods for finding ωe(t) is presented and compared, where one of
them also estimates λw(t).

Wave frequency estimator

The encounter frequency ωe(t) may be obtained using the GES wave frequency
estimator of Belleter et al. (2015), with

Ûζ1 � ζ2 (4.89)
Ûζ2 � −2ω f ζ2 − ω2

f ζ1 + ω
2
f yw (4.90)

Û̂ϕ � k(t)ζ1( Ûζ2 − ϕ̂ζ1) (4.91)

where yw is the input signal, ω f is the embedded lowpass filter’s cutoff frequency,
k(t) is a positive, smooth time-varying gain and the parameter ϕ relates to ω̂e(t)
with ω̂e(t) �

√
|ϕ | such that ω̂e(t) converges to ωe(t) exponentially fast. Since
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ω̂e(t) is supposed to be used to improve the heave estimate, the pitch estimate is
employed as the driving signal, i.e. yw � θ̂(t), due to the strong coupling with
heave. θ̂(t) is obtained from q̂t

b(t).

Kalman filter based estimation of ωe(t) and λw(t)

The encounter frequency ωe(t) and the relative damping factor of the wave spectra
λw(t)may be obtained using the algorithm of Perez (2005, Ch. 12.5), here however,
based on the estimated pitch θ̂ and estimated pitch rate q̂ � ωb

IMU,y − b̂b
gyro,y ,

compared to using roll and roll rate as in the cited work. The algorithm is deduced
by exploiting that pitch is mainly affected by the wave-induced motion such that
we can write ( Ûθ

Ûq

)
�

(
0 1
−ω2

e −2λwωe

) (
θ
q

)
+

(
wθ

wq

)
, (4.92)

where w? represents white noise processes independent of each other and inde-
pendent of ωe and λw . In order to estimate λw (and ωe ) online, we first apply
forward Euler discretization algorithm with step length Ts such that(

θ[k + 1]
q[k + 1]

)
�

(
1 Ts

−ω2
e Ts 1 − 2λwωeTs

) (
θ[k]
q[k]

)
+

(
wθ[k]
wq[k]

)
(4.93)

is a first-order discretization of (4.92). Furthermore, be writing the system like(
θ[k + 1]
q[k + 1]

)
�

(
ϕ11 ϕ12
ϕ21 ϕ22

) (
θ[k]
q[k]

)
, (4.94)

whereϕ jl , j, l ∈ [1, 2] are unknownparameters, one can reformulate the estimation
problem of (4.93) to estimate λw and ωe indirectly. By defining a new state vector,
ϕ :�

(
ϕ11;ϕ12;ϕ21;ϕ22

)
, and assuming that ϕ jl are constant or slowly varying

( Ûϕ � 0 or Ûϕ ≈ 0), (4.93) is reformulated to the parameter estimation problem

ϕ[k + 1] � ϕ[k], (4.95)(
θ[k]
q[k]

)
�

(
θ[k − 1] q[k − 1] 0 0

0 0 θ[k − 1] q[k − 1]

)
ϕ[k] +

(
wθ[k]
wq[k]

)
. (4.96)

Now by defining the measurement vector and measurement matrix

yϕ[k] :�
(
θ[k]
q[k]

)
, (4.97)

Cϕ[k] :�
(
θ[k − 1] q[k − 1] 0 0

0 0 θ[k − 1] q[k − 1]

)
, (4.98)
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one can estimate ϕ[k]with the discrete-time KF

Kϕ � P̄ϕ[k]Cᵀϕ[k]
(
Cϕ[k]P̄ϕ[k]Cᵀϕ[k] + Rϕ[k]

)−1
, (4.99a)

ϕ̂[k] � ϕ̄[k] + Kϕ

(
yϕ[k] − Cϕ[k]

)
, (4.99b)

Mϕ[k] � I4 − Kϕ[k]Cϕ[k], (4.99c)
P̂ϕ[k] � Mϕ[k]P̄ϕ[k]Mᵀϕ[k] + KϕRϕKᵀϕ[k], (4.99d)

ϕ̄[k + 1] � ϕ̂[k], (4.99e)
P̄ϕ[k + 1] � P̂ϕ[k] + Qϕ[k]. (4.99f)

For each k we obtain ω̂e[k], λ̂w[k]with

ω̂e[k] �

√
−
ϕ̂21[k]
ϕ̂12[k]

, λ̂w[k] �
ϕ̂11[k] − ϕ̂22[k]

2
√
−ϕ̂12[k]ϕ̂21[k]

, (4.100)

or

ω̂e[k] �

√
−
ϕ̂21[k]

Ts
, λ̂w[k] �

1 − ϕ̂22[k]
2ω̂e[k]Ts

, (4.101)

by exploiting how (4.96) relates to (4.93). In this study, Ts � 0.2 was chosen. Since
neither ω̂e[k] or λ̂w[k] are states, the possibility of negative square-roots of the
output (4.100)–(4.101) can be solved without projection algorithms by choosing
predefined minimum values of ω̂e[k] or λ̂w[k] if the evaluation of (4.100)–(4.101)
yield an imaginary result, at a certain k, in the transient phase.

Estimation of ωe based on fast Fourier transform (FFT)

The encounter frequencyωe(t)may also be estimated using awindowof data to es-
timate the power spectral destiny (PSD). By choosing awindow of some frequency
dependent data, the estimate of ωe(t)may be chosen as the peak frequency of the
PSD. In this work, the PSD calculations were based on a 15 minute window of
the estimated pitch, with five minutes of overlapping data, while applying Welch
(1967)’s method in doing so. However, approaches like this are dependent on the
amount of the historic data and are not necessarily adequately capturing transient
frequency changes in the wave-induced motion. Perez (2005, Ch. 12.6) state that
the sea state can typically be considered stationary for about 20 minutes. Hence, if
the window length is chosen in the vicinity of 20 minutes (or shorter), estimation
of ωe(t) using fast Fourier transform (FFT) may be sufficient capturing transient
effects.

4.4.7 Simulation study

For evaluation of the proposed observer structure and to perform a comparison
study relative the preceding observer of Section 4.3 (Bryne et al., 2015b), Monte
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Carlo (MC) simulations of a supply ship employing DP were conducted, using
three different sea states, with 250 runs, at 50 Hz integration frequency. The MSS
toolbox (Fossen andPerez, 2010)wasused togenerate the shipdata. The JONSWAP
Spectrum, (Fossen, 2011, Ch. 8.2.1) was chosen to generate the wave-induced ship
motions with the sea state parameters of Table 4.8 and the peak-shape parameter
γ � 3.3 in all three cases. For all simulations the rate gyro bias was chosen to
bb

gyro � (−0.04, 0.06,−0.05)ᵀ. The statistical parameters associated with the sensor
noise are presented in Table 4.9. The inertial sensors parameters are in compliance
with the datasheet of the ADIS16485 IMU from Analog Devices with RMS noise
of 0.067 mg/

√
Hz for the accelerometers and 0.0066 ◦/

√
Hz for the rate gyros. For

position sensing, the parameters were chosen in compliance with Mohleji and
Wang (2010), appropriate for dGNSS.

Theobserverswere implementedwith exactdiscretization similar toBryne et al.
(2017a) at 50 Hz. On the other hand, the measurement corrections associated with
the simulated dGNSS, VVR, compass and accelerometer readings, were carried
out at 1, 5, 5 and 50 Hz, respectively.

The attitude observer was tuned with k1 � 0.3, k2 � 0.1 and kI � 0.008 in all
three sea states using both VVR concepts (with andwithout the errormodel). Both
the presented and the preceding TMO was tuned in discrete time with

Rk � blokdiag
(
σ2

yk ,VVR , 2.4
2 , 2.42

)
,

based on thePosRef errormodel of Section 2.3.2 and therebyusing an adhoc tuning

Table 4.8: Sea State Parameters Using the Jonswap Spectrum.

Sea state Significant
wave height Hs

Peak frequency
ω0 of wave spectrum

Slight 1 m 0.9 rad/s
Moderate 2.5 m 0.75 rad/s

High 7 m 0.6 rad/s

Table 4.9: Sensor Parameters.

Sensor Gaussian White
Noise Std.

Gauss-Markov
(Time cont./

driving noise std.)

Acc. 0.0046a m/s2 –
Rate gyro 0.0467a ◦/s –
dGNSS – 8 · 60 s/1.2 m
Compass 0.1118b ◦ 600 s/ 0.5◦

cos(µ)
a Calculated at 50 Hz.
b Calculated at 5 Hz (0.05 ·

√
5
◦
RMS).
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to reflect the colored noise of the simulated dGNSS, motivated by the results of
Section 3.3.5. Moreover, the process noise of the presented TMOwas based on the
continuous-time parameters

Q(t) � blockdiag
(
σ2

acc · I3 , σ
2
acc · SQ ,QVVR

)
,

SQ � blockdiag(1.5, 1.5, 0.1),
QVVR � 1,
σb ,VVR � 0.6,

and where A(t), G(t) and step length Ts � 1/Hz where used to calculate Qk , the
discrete-time equivalent of G(t)Q(t)Gᵀ(t), using van Loan’s method (van Loan,
1978). The preceding observer was tuned with

Q(t) � blockdiag
(
σ2

acc · I3 , σ
2
acc · SQ

)
.

The tuning covariance Rk ,VVR � σ2
yk ,VVR associated with the VVR measurements

was chosen based on
σyk ,VVR � σy ,VVR ·

1√
1/Hz

,

for the proposed observer, while using the more ad hoc formula

σyk ,VVR � σy ,VVR ·
√

Sz

1/Hz
,

for the preceding observer emphasizing the VVR more or less depending on the
desired noise level of the driving noise associated with estimating f t

ib in order to
scale Rk dependent on the chosen Qk . This is done to maintain an appropriate
scale of Rk relative Qk , in order to ad hoc compensate for the short-term inaccuracy
of the VVR since this is not taken into account using an error model.

The ad hoc choice of Qk using SQ is carried out in order to tune the heave
performance almost independent of the tuning associated with the horizontal
position due to roll and pitch amplitudes on marine vessels (usually) are small.
For the proposed observer σy ,VVR � 0.0005 was chosen, where the low value was
granted by the zero noise of the VVR measurement and the usage of the error
model. For the preceding observer σy ,VVR was chosen ad hoc, σy ,VVR � 2.15,
yielding fair results in the slight and moderate seas since these are more common
than the higher sea states (Fossen, 2011, Ch. 8.2.1) (the worldwide probability of
moderate sea state or lower is at 83,13 per cent). Moreover, σy ,VVR is a suboptimal
tuning parameter, when applying the observer of Bryne et al. (2015b), since it will
be sea state dependent implying that gain-scheduled tuning is preferable. This
however is not simple to perform since such tuning preferably would be based on
the heave amplitude, which again is directly affected by the chosen tuning creating
a loop since re-tuningwill affect the heave estimates directly. An alternativewould
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Figure 4.15: Attitude estimation error in moderate sea state.

be todevelop tuning rules linked to thepitch amplitudedue to the kinematic heave-
pitch coupling. The benefit of the newly proposed algorithm is that it implicitly
re-tunes the observer based on the time-varyingA-matrix, due to the online update
of ωe(t) and λw(t) in the VVR’s error model, which again affect the gain through
(4.84). In every scenario, for both TMOs, ϑ � 1 was chosen.

The statistics obtained from the MC simulations are generated based on 5 Hz
evaluation of the last 90 minutes of each simulation run. The performance metrics
applied are mean estimation error, RMS estimation error

RMS �

√√√
1
N

N∑
k�1

(xk − x̂k)2 , (4.102)

and CAEE

CAEE �

N∑
k�1

|xk − x̂k |, (4.103)

as before.
Examples of the attitude, horizontal position andheave estimationperformance

obtained in the moderate sea state are shown in Figures 4.15–4.17. The position
error observer in Figure 4.16 is due to the dGNSS receiver simulated with colored
noise of Table 4.9. The resulting statistics are presented in Tables 4.10–4.12. It is
seen that performance of the heave estimation is improved approximately, 26.4,
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Figure 4.16: Position estimates in moderate sea state.

62.3 and 72.1 percent w.r.t. RMS error, in the slight, moderate and high sea
state, respectively, using the presented nonlinear observer structure including
the VVR error model, compared to the observer of Bryne et al. (2015b). The
presented algorithm, with the chosen tuning, also achieves the industry standard
specification of “the five cm or five per cent” RMS error in all three sea states.
Regarding the attitude, the statistics indicate that the two algorithms (with or
without VVR error model) are practically identical performance-wise.

The performance of the three wave-frequency estimators is illustrated in Fig-
ure 4.18. One can observe that the FFT-based estimator of ωe(t) proved to be the
most robust in detecting the peak-frequency of the wave spectra in DP (where
ωe � ω0 due to zero vessel velocity). The reason for the two other estimators
being slightly biased to the higher end of the spectrummight be understood from
Figure 4.19, showing the estimated PSD of the last 90 minutes of data, from one of
theMC simulations runs in moderate sea state, using both the heave reference and
the estimated pitch, depicted in blue and red, respectively. One can observe that
both signals also had one frequency component around 0.8 rad/s and one slightly
above 0.8 rad/s being almost as dominant as the peak-frequency of ω0 � 0.75
of the simulated wave spectrum. One of these are probably tracked by the two
time-domain-based wave frequency estimators. This reasoning stems from the
fact that both algorithm are intrinsically based on single frequency identification.
Moreover, from Figure 4.18b one can see that the stationary value of λ̂w is quite
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Figure 4.17: Heave estimates in moderate sea state.

far from the recommended value of 0.1 (Fossen, 2011, Ch. 8.2.1), indicating that
the relative damping factor of the wave-induced motion not necessarily should be
chosen to that of the wave spectrum’s own damping factor.

A summary of the simulation study is that the attitude estimation performance
of the observer posed is equal to the preceding observer, while the heave estimation
performance is increased significantly. The performance improvement is most
apparent in the high state yielding that the observer posed is robust to changing
sea states with constant tuning matrices Q and R compared to the preceding
observer.
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Table 4.10: Monte Carlo statistics obtained in slight sea state.

Bryne et al.
(2015b) Roll Pitch Heave

Avg. mean
error −2.1 · 10−5◦ −3.0 · 10−5◦ −0.0515 cm

Avg. RMS
error 0.0366◦ 0.0370◦ 1.8668a cm

Avg. CAEE 789.3◦ 798.5◦ 402.4 m
Proposed
Observer Roll Pitch Heave

Avg. mean
error −2.5 · 10−5◦ −2.2 · 10−6◦ −0.0480 cm

Avg. RMS
error 0.0368◦ 0.0371◦ 1.3741a cm

Avg. CAEE 794.1◦ 801.9◦ 296.2 m
a 5% RMS error margin: 0.92 cm.

Table 4.11: Monte Carlo statistics obtained in moderate sea state state.

Bryne et al.
(2015b) Roll Pitch Heave

Avg. mean
error −1.6 · 10−4◦ −4.0 · 10−4◦ −0.3218 cm

Avg. RMS
error 0.0382◦ 0.0374◦ 5.1349a cm

Avg. CAEE 824.8◦ 807.0◦ 1, 105.2 m
Proposed
Observer Roll Pitch Heave

Avg. mean
error −2.5 · 10−4◦ −3.9 · 10−4◦ −0.3217 cm

Avg. RMS
error 0.0383◦ 0.0374◦ 1.9341a cm

Avg. CAEE 825.3◦ 806.7◦ 416.3 m
a 5% RMS error margin: 2.65 cm.
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Table 4.12: Monte Carlo statistics obtained in high sea state.

Bryne et al.
(2015b) Roll Pitch Heave

Avg. mean
error 0.0013◦ −0.0535◦ −2.7377 cm

Avg. RMS
error 0.0686◦ 0.0874◦ 23.9277a cm

Avg. CAEE 1, 484.9◦ 1, 685.7◦ 5, 128.8 m
Proposed
Observer Roll Pitch Heave

Avg. mean
error 2.5 · 10−4◦ −0.0365◦ −2.6902 cm

Avg. RMS
error 0.0688◦ 0.0662◦ 6.6656a cm

Avg. CAEE 1, 489.1◦ 1, 318.3◦ 1, 394.1 m
a 5% RMS error margin: 7.78 cm.
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Figure 4.18: Wave-induced motion parameter estimates in moderate sea state.
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Figure 4.19: PSD of pitch estimate (red) relative the PSD of the true heave (blue)
in moderate sea state.
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4.4.8 Validation: Experimental results

The nonlinear observer structures of Section 4.4.3 and Section 4.4.4 are further
validated using data obtained from an ADIS16485 MEMS IMU, by Analog De-
vices, installed on an operational offshore vessel, owned and operated by Farstad
Shipping; see Appendix E.1. The IMU was interfaced at 1000 Hz, aided by VVR,
dGNSS, and gyrocompass measurements. Of the data gathered, two data sets of
120 minutes are used in the validation. The data is of two different operations,
illustrated in Figure 4.20, depicting the vessel’s respective tracks. One track is of
the offshore vessel entering DP and then performing stationkeeping and one is of
the vessel during maneuvering.
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Figure 4.20: Track of two operations conducted in the Norwegian Sea. Path track
is obtained from the onboard dGNSS.

The attitude observer and the TMO was implemented at 1000 Hz. The NLO
structure from Sections 4.4.3–4.4.4 was validated using the same measurement
corrections rates as in the simulation case study. The observers were tuned similar
to that of the simulation study. Also for the validation, the encounter frequency
was estimated using the FFT-based method, presented in Section 4.4.6, using
15 minutes of estimated pitch data with a five minute overlap from the previous
window. The roll, pitch andheave estimates are compared to the solution provided
by the onboard industry standard VRU. The specification of the VRU is presented
in Table E.2 of Appendix E.1.

Validation in DP

The statistics of the estimation performance in DP is shown in Table 4.13. Fur-
thermore, in Figure 4.23a, as with the simulation study, one can observe that the
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Table 4.13: Statistics obtained based on data gathered during DP in the Norwegian
Sea.

Roll Pitch Heave

Mean
error −1.3 · 10−4◦ 0.0053◦ 0.1461 cm

RMS
error 0.0923a◦ 0.1274a◦ 6.1489a,b cm

CAEE 1, 982.8◦ 2, 667.7◦ 1, 305.3 m
a RMS error using Bryne et al. (2015b):

Roll 0.0919◦, pitch 0.1274◦, heave 6.2736 cm.
b 5% RMS error margin: 2.1724 cm.
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Figure 4.21: Stationkeeping: Attitude estimation error.

three methods for obtaining ωe(t) differ from each other and where the FFT-based
method is the one that is the best in estimating ωe compared to reference ω0,nom,
obtained using FFT of the heave signal from the VRU using the entire data set.
The reason for the discrepancy in themethods can be understood from Figure 4.24,
presenting the estimated PSDusingWelch’smethod (Welch, 1967) of the estimated
pitch compared to that of the VRUheave reference, where the PSD of the estimated
pitch have two peaks just low of 0.8 rad/s. It seems that the wave frequency esti-
mator of Belleter et al. (2015) converges to a frequency in this area. Nevertheless,
one can see that the main peaks of the PSDs, based upon estimated pitch and the
heave reference signal, coincides indicating that the FFT-based estimation of ωe(t),
using pitch, in aiding the heave estimation, have merit.

From the statistics one can read that the performance of the roll estimation is
better than that of the pitch compared to the VRU. As with the simulation study,
the proposed observer and the preceding observer provide similar results. The
data of the two operations are gathered 45 hours and 49 minutes apart. The
accelerometer bias compensation was carried out three days before the end of
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Figure 4.22: Stationkeeping: Heave estimates.

the last data set, indicating that the applied approach is sufficient for attitude
estimation. Regarding the heave estimation, the proposed observer provides a
heave estimate two per cent closer to the heave signal from the onboard VRU
compared to the preceding observer. This is not close to the numbers obtained
in the MC simulation. However, distinct conclusions are hard to draw since the
comparison is not done relative ground truth, but to a black-box containing its
own estimator, nor do we know the exact relative latency between the collected
IMU data and the onboard VRU.

Validation during maneuvering

The statistics of the estimation performance obtained during maneuvering are
shown in Table 4.14. Also here one can read from the statistics that both observer
structures provide attitude estimates with similar error, while the heave estimates
have 15.7per cent lessRMSerror relative theVRU than theprecedingobserver. The
heave estimate relative that of theVRU can be seen in Figure 4.25. Furthermore, the
estimates ofωe(t) and λw(t) can be observed in Figure 4.26. The nominal encounter
frequency ωe ,nom is slot-wise calculated using the heave reference signal from
the VRU to obtain some benchmark value when the vessel moves with forward
velocity in the south-west direction as seen in Figure 4.20b. In this scenario the
FFT-based algorithm had marginally better performance expect between 25 and
35 minutes where the two other algorithms provided outputs closer to the peak
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Figure 4.23: Stationkeeping: Estimates of wave-induced motion parameters.

Table 4.14: Statistics obtained based on data gathered during maneuvering in the
Norwegian Sea.

Roll Pitch Heave

Mean
error −0.0023◦ −0.0246◦ 0.2047 cm

RMS error
error 0.1183 a◦ 0.1489 a◦ 5.0210a,b cm

CAEE 2, 368.9◦ 3, 095.9◦ 1, 074.8 m
a RMS error using Bryne et al. (2015b):

Roll 0.1180◦, pitch 0.1489◦, heave 5.9561 cm.
b 5% RMS error margin: 2.0311 cm.

frequency of the heave reference signal. Furthermore, from the output of the
time-domain algorithms one can clearly observe the slowly-varying change in the
encounter frequency. The increase of ω̂e(t) observed in Figure 4.26, together with
the information in Figure 4.27, indicate some degree of following seas.
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Figure 4.24: Stationkeeping: PSD of estimated pitch (red) compared to the PSD of
the VRU’s heave reference signal (blue).
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Figure 4.25: Maneuvering: Heave estimates.
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Figure 4.26: Maneuvering: Estimates of wave-induced motion parameters.
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Figure 4.27: Maneuvering: Slot-wise PSD calculation of the heave reference signal.
Peaks indicate the nominal encounter frequency ωe ,nom.
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Discussion

Since the comparison is not done relative absolute truth, there may be situations
where the proposed solution ismore accurate than theVRU ’s estimates. Moreover,
one can further observe that the spectrum of the heave reference signal is quite
wide, indicating that the wave-induced motion in heave is quite far from being
represented by a pure sine motion, which often VRUs are subjected to during
validation testing.

4.4.9 Summary

Obtaining high-quality motion data of a marine vessel is both beneficial and a
necessity in order to successfully and safely execute marine operations, oceano-
graphic observations and transportation at sea. In the section six-degree-of-
freedom vessel motions were estimated using a MEMS-based strapdown inertial
navigation system, applying nonlinear theory, specifically tailored for marine sur-
face vessels, aided by differential corrected global navigation satellite systems,
compass and virtual vertical reference measurements. This included the introduc-
tion an error model in addition to using the zero VVR as aiding measurement to
the vertical axes of the INS. Moreover, the model parameters are updated online.

The origin of the observer’s error dynamics was proven to be USGES. The
performance of the observer’s attitude and heave estimates were evaluated using
Monte Carlo simulations and validated with industry standard vertical reference
units using data collected as sea. The results obtained are in compliance with
industry standard specifications of roll, pitch and heave estimation. Furthermore,
the heave estimation performance was improved compared to the work where the
virtual vertical reference principle was introduced. In addition, both simulation
and experimental results indicate online update of the error model is preferable
compared to using fixed model parameters.

Further work could possible go into a in-depth study on the estimation of λw .
Even though the results from the simulation study indicate that the algorithm
used shows promise, both the simulation study and the experimental validation
indicate some discrepancies in the estimation of the encounter frequency using the
algorithm estimating λw compared to using Belleter et al. (2015) and the FFT-based
algorithm. This may indicate that also the estimate of λw could be improved.

4.5 Conclusions

This chapter has presented two INSs using a feedback-interconnected nonlinear
observer framework specifically tailored for marine surface vessels. Themain con-
tribution of the chapter, and the thesis, has been the use of a VVR concept to aid the
vertical axes of the translational motion observer, the second of the two observers
constituting the INS. The first INS utilized a Earth-fixed, non-rotating, NED frame



102
CHAPTER 4. THE VIRTUAL VERTICAL REFERENCE PRINCIPLE – VERTICAL

AIDING OF INSS FOR MARINE SURFACE VESSELS

as navigation frame. The second INS utilized a tangent frame implementation.
The origin of both nonlinear observers’ error dynamics were proven to be USGES.

The benefit of using the VVR as an alternative to vertical GNSS aidingmeasure-
mentswas illustrated in simulations. Theusage of theVVR resulted in significantly
improved performance of both the attitude and the heave estimates. The former
was a result of the latter due to kinematics couplings between the attitude and
translational motion observer. Moreover, in the event changing GNSS noise char-
acteristics, effects on the roll, pitch and heave estimation is minimized by using
the VVR as vertical aiding.

The first VVR concept introduced in Bryne et al. (2014, 2015b) (Section 4.3) was
later extended by including an VVR error model in Bryne et al. (n.d.) (Section 4.4)
containing time-varying parameters related to the wave-induced motion of a sur-
face vessel. This error model improved the heave estimation without affecting the
performance of the attitude estimation. The results were evaluated using Monte
Carlo simulations and validation using data gather at sea on an offshore vessel.
The results indicate that the industry standard specification of five centimeters
or five per cent heave root-mean-square estimation error is achievable by includ-
ing the error model. Moreover, by including the error model, the TMO tuning
becomes more intuitive, compared to the initial concept, since the measurement
covariance can be chosen based on fact that the VVR is noise free. This in contrast
to the initial concept where an ad hoc tuning approach was utilized.

Future works may include studying how adaptive tuning strategies based on
the heave amplitude can be developed. In applications where absolute altitude
above the seabed is of interest, the VVR concept should bemodified to also include
absolute vertical aiding fromGNSSorHPR, e.g. in order to compensate for changes
in altitude due to tides.



5INS on Ships
This chapter covers additional aspects of INS, and in particular MEMS-based INS,
on ships. This include choice of sensors, observer structures and tuning together
with wave filtering of navigation systems data which is a vital part of the ship’s
control system.

Section 5.1 covers sensors and observer structures and is based upon Bryne
et al. (2016) and Rogne et al. (n.d.b), and presents the outcome of the full-scale
validation of MEMS-based INSs using NLOs. Section 5.2 covers the INS-based
wave filtering of Bryne et al. (2015a).

5.1 Strapdown MEMS Sensor and Nonlinear Observers

This section is based on Bryne et al. (2016) and Rogne et al. (n.d.b), and presents
results on full-scale verification of different NLOs for attitude estimation for ships,
comparing two low-cost MEMS IMUs. The results are acquired by comparing the
estimation result to well-proven industrial sensor systems providing roll, pitch
and heave measurements for marine surface vessels. The verification consist of:

• Applying two NLOs —Mahony et al. (2008) and Bryne et al. (2015b), similar
to that presented in Section 4.3 — for ship attitude estimation.

• Applying the NLOs and IMUs during two operational scenarios: Station-
keeping with DP and turning maneuvers.

• Evaluation of heave estimation performance based onVVR aiding, presented
in Chapter 4, using different sensors.

This work is based on Rogne et al. (n.d.b) and the preliminary work presented by
Bryne et al. (2016). Rogne et al. (n.d.b) expanded the work with new tuning to
better reflect performance achievable with NLOs, comparison with EKF, applying
the VVR to a new observer, and an analysis of vibration and mechanical noise
afflicting the IMUs.

A method for evaluating the aggregate performance of one’s navigation so-
lution (combination of sensor quality and algorithm) is to evaluate the INS’s DR
properties. Some results related to DR are presented in Appendix E.2.1. In addi-
tion a short discussion regarding the mentioned ship vibrations and other high-
frequency motion picked up by the MEMS sensors is provided in Appendix E.2.2.
Some ways to reduce or mitigate effects due to these vibrations are provided in
this chapter, while a short presentation on how the sensed vibrations also might
be taken advantage of is given in Appendix E.2.2.
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5.1.1 IMU and ship sensor configuration

IMU and error sources

In addition to the specific forces and angular velocity, each of IMU measurements
are contaminatedwith sensor biases, errors and noise as presented in Section 1.1.2.
Furthermore, external noise may arise due to e.g. electrical and magnetic inter-
ference or stem from mechanical sources in the form of vibrations. In this work,
it is assumed that error sources related to sensor nonlinearity, scale factors, mis-
alignment, cross-coupling and g-sensitivity are compensated for in calibration
by the manufacturer, or are otherwise neglectable. Sensor biases may also be
calibrated for by the manufacturer or compensated for by in-silico temperature
sensors. Nevertheless, some time-varying bias instability and run-to-run instabil-
ity is often present with MEMS IMUs. Therefore, in contrast to Section 2.3.1, the
accelerometer and rate gyro measurements are modeled as

f b
IMU � f b

ib + bb
acc + wb

acc , (5.1)

ωb
IMU � ωb

ib + bb
gyro + wb

gyro , (5.2)

where f b
ib and ωb

ib are the true specific forces and angular rates, respectively.
Moreover, the respective sensors biases are denoted bb

acc and bb
gyro, while wb

acc
and wb

gyro represent the sensor noise and vibration induced noise contained in the
respective measurements. Both the accelerometer and gyro biases are assumed
slowly time-varying,

Ûbb
gyro � wb

b ,acc ,
Ûbb

acc � wb
b ,gyro , (5.3)

where wb
b ,acc and wb

b ,gyro represent small variations in the biases (zero mean).

Ship sensor configuration

Several IMUs were installed on an offshore vessel operating in the Norwegian sea,
equipped with a Rolls–Royce Marine DP system. The ship in question is owned
and operated by Farstad Shipping. See Appendix E.1 for details. In this work the
validation results presented are obtained using ADIS16485 and STIM300 MEMS
IMUs. The sensor configuration used in the aided strapdown INS on board the
offshore vessel was:

• 1xdGNSSPosRef systemprovidinghorizontal positionmeasurements, pt
GNSS �

(pt
tb ,x , p

t
tb ,y)

ᵀ at 1 Hz.

• VVR: pt
tb ,I � 0, for all t ≥ 0 at 1000 Hz.

• 2x IMUs (ADIS16485 and STIM300) providing

– Tri-axial accelerometer-based specific force measurements, f b
IMU,
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– Tri-axial angular rate measurements, ωb
IMU,

both interfaced at 1000 Hz

• Yaw measurements from a triple-redundant gyrocompasses solution, ψc , at
5 Hz.

The IMU measurements are filtered with a 6th order lowpass Butterworth filter
with a cutoff frequency of 5 Hz. The specifications of the IMUs installed on
the offshore vessel are presented in Table E.1. The sensors were fused using the
tangent framemechanizationof the strapdownequations (Section 2.2.3) in addition
to the kinematic augmentation, (4.46), motivated by the introduction of the VVR
measurement as presented Section 4.4, for fusing IMU, compass, GNSS and VVR
measurements. In addition, roll (φ) and pitch (θ) signals, obtained from a VRU
at 5 Hz, are used for comparison. See Table E.2, Appendix E, for manufacturer
specifications.

Effects of sensor biases and mounting errors on the attitude estimation

The IMU sensor biases have direct effects on the attitude estimates. The gyro bias
influences the attitude dynamically, implying that the unit rotates slower or faster
than what is physically happening. The accelerometer biases affect the attitude
estimation statically. As stated in e.g. Fossen (2011, Ch. 11.5.2), roll and pitch
angles may be obtained in static conditions using accelerometers or inclinometers,

φ � tan−1

(
f b
IMU,y

f b
IMU,z

)
, (5.4)

θ � − tan−1
©«

f b
IMU,x√

f b
IMU,y

2
+ f b

IMU,z
2

ª®®¬ , (5.5)

making the initialization of roll and pitch (known as leveling) susceptible to ac-
celerometer biases. Similar to accelerometer bias, mounting errors also contribute
to static roll and pitch errors. Table 5.1 describe how the different IMU noise
and error sources affect the attitude estimation. Similar to using accelerometers in
static condition, also using them asmeasurement vectors in the attitude estimation
below, in Section 5.1.2, may be problematic since the angular rate sensor biases
and accelerometer biases are not mutually uniformly observable (Farrell, 2008, Ch.
11.9). However, in most situations it is the only option to obtain a roll and pitch
like reference. The theory of Grip et al. (2012a, 2013, 2016) either assumes zero
accelerometer bias or that it is possible to compensate for it through estimation
if the motion is PE, making it possible to differentiate the effects affecting the at-
titude and the bias estimation. Accelerometer bias compensation for the attitude
estimation, using the bias estimate b̄b

acc, can be done statically based on calibration
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Figure 5.1: Observer structure. Depending on configuration, the AHRS may be
aided by a TMO, itself aided by PosRefs and VVR measurements.

results or by online estimation. Here, a constant accelerometer bias compensation
is applied, obtained in port, based on the VRU references available, prior to the
attitude observer verification scenarios. As presented in Bryne et al. (2016), static
accelerometer bias compensation proved successful for at least several days after
the initial calibration. This was due to the accelerometer bias in-run stability of
the MEMS IMUs installed onboard the vessel.

5.1.2 Nonlinear observers

The sensor configuration was tested and compared using two nonlinear attitude
observers, here denoted A and B, respectively. NLO A (Mahony et al., 2008)
receives no aiding from a TMO unlike NLO B (Grip et al., 2013; Bryne et al.,
2015b). An overview of the observer structures is shown in Figure 5.1. Both
attitude observers estimates the attitude between the {b} and the {t} frame, as in
Section 4.4, and the gyro bias, based on model of (5.3), resulting in the observer

Table 5.1: Main error sources that affect the attitude estimation.

Error source Effect on
attitude estimate

Gyro bias Dynamic
Accelerometer bias Static
Mounting errors Static
Vibrations Dynamica
a Not necessarily oscillatory. If coning (Groves,

2013, Ch. 5.5.4) occurs, the attitude estimates will
drift.
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Table 5.2: NLO reference vectors configuration.

Vector ct Vector f t

NLO A Unit vector North −g t
b/‖ − g t

b ‖2
NLO B Unit vector North f̂ t

ib/‖ f̂ t
ib ‖2 through feedback fromVVR

and PosRef injection

equations,

Σ1 :


Û̂qt

b �
1
2

q̂t
b ⊗

(
0
ω̂b

ib

)
− 1

2

(
0
ωt

it

)
⊗ q̂t

b , (5.6a)

ω̂b
ib � ωb

IMU − b̂b
gyro + σ̂b

ib , j , (5.6b)
Û̂bb

gyro � Proj
(
b̂b

gyro ,−kI(t)σ̂b
ib , j

)
, (5.6c)

where, as earlier, the gain kI(t) is associated with the gyro bias estimation, and
Proj(?,?) denotes the gyro bias projection algorithm of Grip et al. (2012a) and the
reference therein. The index j represents the respective attitude observer. The
difference between the two observers lies in the injection term, σ̂b

ib , j, given as

σ̂b
ib � k1(t)vb

1 × Rᵀ(q̂t
b)v

t
1 + k2(t)vb

2 × Rᵀ(q̂t
b)v

t
2 , (5.7)

where vb
1 and vb

2 are the measurement vectors and vt
1 and vt

2 are the reference
vectors, calculated using

vb
1 � f b , vb

2 � f b × cb ,

vt
1 � f t , vt

2 � f t × ct .

An overview of the main differences between NLO A and B can be found in
Table 5.2. For both observers, cb �

(
cos(ψc), − sin(ψc), 0

)ᵀ and ct � (1, 0, 0)ᵀ are
chosen as in Chapter 4. Both cb and ct are naturally normalized. As stated earlier,
by using normalized measurement/reference vector pairs, the gains k1 and k2 can
be considered as the NLO’s complimentary filter cutoff frequencies. Hence, for
motion frequencies higher than k1 and k2, the angular rate measurements are the
primary source of attitude information, while for frequencies lower than k1 and k2,
the respective measurement/reference vectors are the primary source of attitude
information.

Nonlinear attitude observer A

For attitude observer A, σ̂b
ib ,A is implementedwith f b and f t based on the injection

term similar to Mahony et al. (2008) by choosing

f b
�

f b
IMU − b̄b

acc

‖ f b
IMU − b̄b

acc‖2
, f t

�
−g t

b

‖ − g t
b ‖2

, (5.8)
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where the local gravity vector is utilized as reference vector based on the assump-
tion that the specific force in the navigation frame is dominated by −g t

b .

Nonlinear attitude observer B

Regarding attitude observer B, the reference vector f t , in the calculation of σ̂b
ib ,B ,

is chosen as

f t
�

satM f ( f̂
t
ib)

‖satM f ( f̂
t
ib)‖2

, (5.9)

where f̂ t
ib is estimated using a modified version of the feedback-interconnected

observer frameworkGrip et al. (2013), using the TMOs of Bryne et al. (2014, 2015b),
where the VVR-aiding concept is applied. Moreover, by providing the specific
force estimate f̂ t

ib , to Σ1, the attitude estimation is potentially more accurate when
the vessel is accelerated compared to using −g t

b as reference vector. f̂ t
ib , provided

to attitude observer B, is estimated using the TMO Σ2, see Figure 5.1, which has
injection from a PosRef in addition to the VVR measurement. The TMO used to
estimate f̂ t

ib , utilized by NLO B, takes the form of

Σ2 :



Û̂pt
tb ,I � p̂t

tb ,z + ϑKpI pI p̃
t
tb ,I , (5.10a)

Û̂pt
tb � v̂t

tb + ϑ
2
(
02×1
KppI

)
p̃t

tb ,I + ϑ

(
Kpp

01×2

)
p̃t

tb , (5.10b)

Û̂vt
tb � −2S(ωt

ie)v
t
tb + f̂ t

ib + g t
b + ϑ

3
(
02×1
KvpI

)
p̃t

tb ,I + ϑ
2
(
Kvp

01×2

)
p̃t

tb , (5.10c)

Ûξ t
ib � −R(q̂t

b)S(σ̂
b
ib ,B)

(
f b
IMU − b̄b

acc

)
+ ϑ4

(
02×1
KξpI

)
p̃t

tb ,I + ϑ3
(
Kξp

01×2

)
p̃t

tb ,
(5.10d)

f̂ t
ib � R(q̂t

b)
(

f b
IMU − b̄b

acc

)
+ ξ t

ib , (5.10e)

similar to Section 4.4.4, however, here without the VVR error model, where p̃t
tb ,I �

pt
tb ,I−p̂t

tb ,I , p̃t
tb � pt

GNSS−(p̂
t
tb ,x , p̂

t
tb ,y)

ᵀ. K[·]pI andK[·]p arefixedgains,whileϑ ≥ 1 is
a tuning parameter used to guarantee stability. The gains may be chosen such that
the feedback interconnection Σ1 − Σ2 possesses uniform semiglobal exponential
stability properties, cf. Section 4.3.5. Here, Σ2 is referred to as the aiding TMO, cf.
Figure 5.1, since it is primarily used to aid NLO B by providing an estimate of f t

ib .
In state-space form, the TMO is represented as:

Û̂xa � Aa x̂a + Ba ua + Da + ϑL−1
ϑ KaEϑ

(
y − Cx̂a

)
(5.11)
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with the state vectors, output measurement and input

x̂a �

(
p̂t

tb ,I ; p̂t
tb ; v̂t

tb ; ξ̂ t
ib

)
,

y �
(
pn

I ; pt
GNSS

)
,

u �

(
f b

IMU − b̄b
acc

−S
(
σ̂b

ib ,B

)
( f b

IMU − b̄b
acc)

)
,

the system matrices

Aa �

©«
0

(
0 0 1

)
01×3 01×3

03×1 03×3 I3 03×3
03×1 03×3 03×3 I3
03×1 03×3 03×3 03×3

ª®®®®¬
, Ba �

©«
01×3 01×3
03×3 03×3

R(q̂t
b) 03×3

03×3 R(q̂t
b)

ª®®®¬ ,
Ca �

(
I3 03×7

)
, Da �

(
0 03×1; −2S(ωt

ie)v
t
tb + g t

b 03×1

)
,

and the gain related matrices

Ka �

©«

KpI pI 01×2
02×1 Kpp

KppI 01×2
02×1 Kvp

KvpI 01×2
02×1 Kξp

KξpI 01×2

ª®®®®®®®®®®¬
,

Lϑ � blockdiag
(
1, 1
ϑ

I3 ,
1
ϑ2 I3 ,

1
ϑ3 I3

)
,

Eϑ � CaLϑC†a ,

where the latter term always satisfies Lemma 4.1.

Translational motion observer

Even though the gyro and accelerometer biases are not mutually uniformly ob-
servable without the vessel accelerating and rotating (Farrell, 2008, Ch. 11.9),
some accelerometer bias compensation has to be performed in order to obtain
an INS with reasonable DR capabilities. For Σ1 − Σ2, a fixed pre-compensated
accelerometer bias b̄b

acc is applied for attitude estimation. However, some acceler-
ation errors may be present owing to some in-run bias instability, w.r.t. Table E.1
of Appendix E. To atone for this, an additional TMO,Σ3, was utilized including an
estimate of the residual accelerometer bias b̂b

acc, inspired by the observer of Fossen
(2011, Ch. 11.5.1). Observer Σ3 for additional accelerometer bias estimation can
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be described as follows:

Û̂x � A(t , q̂t
b)x̂ + B(t , q̂t

b)u + D(t , x̂) + K(t)
(
y − Cx̂

)
. (5.12)

with the state space,
x̂ �

(
pt

tb ,I ; p̂t
tb ; v̂t

tb ; b̂
b
acc

)
,

measurement y and input u,

y �

(
pn

tb ,I ; pt
GNSS

)
,

u � f b
IMU − b̄b

acc ,

and the system matrices and vector

A(t , q̂t
b) �

©«
0

(
0 0 1

)
01×3 01×3

03×1 03×3 I3 03×3
03×1 03×3 03×3 −R(q̂t

b)
03×1 03×3 03×3 03×3

ª®®®®¬
, B(t , q̂t

b) �
©«

01×3
03×3

R(q̂t
b)

03×3

ª®®®¬ ,
C �

(
I3 03×7

)
, D(t , x̂) �

(
0; 03×1; −2S(ωt

ie)v̂
t
tb + g t

b ; 03×1

)
,

considering R(q̂t
b) as an external signal provided to Σ3 by Σ1. Thus, A(t , q̂t

b)
is treated as time-varying system matrix and the TMO’s error dynamics is ren-
dered exponentially stable by employing a Riccati-equation and gain similar to the
Kalman and Bucy (1961) filter,

K(t) � P(t)CᵀR−1(t), (5.13)
ÛP(t) � A(t)P(t) + P(t)Aᵀ(t) − K(t)R(t)Kᵀ(t) + G(t)Q(t)Gᵀ(t), (5.14)

with

G(t) �
©«

01×3 01×3
03×3 03×3

R(q̂t
b) 03×3

03×3 I3

ª®®®¬ , (5.15)

where the explicite dependency of q̂t
b have been omitted in (5.13)–(5.15). By

using (5.14)–(5.15), the process noise associated with the accelerometer in Q(t) is
related to the navigation frame, {t}, through R(q̂t

b). The actual implementation
of the observer is done in discrete time, as in for instance Bryne et al. (2017a),
cf. Chapter 3 and Section 3.3.6, using the discrete time versions of the Riccati
equation and Kalman gain. Furthermore, Q(t) and R(t) are covariance matrices
chosen according to sensor noise and desired tuning, considered next.
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5.1.3 Observer tuning

Σ1 was tested with the k1 � 0.1, k2 � 0.1, kI � 0.05. For Σ2, the parameter ϑ � 1
was chosen. In order to calculate the gains K[·]pI and K[·]p , the continuous-time
steady-state Riccati equation, similar to the (Kalman and Bucy, 1961) filter, and
akin to Σ3,

Ka � Pa ,∞Cᵀa R−1
a

0 � AaPa ,∞ + Pa ,∞Aᵀa − KaRaKᵀa + BaQaBᵀa

was employed using the following covariance matrices for process and measure-
ment noise

Qa � blockdiag(0.12 · I3 , 0.152 · I3),
Ra � blockdiag(352 , 22 · I2),

where the first element of Qa is the variance associated with the input f b
IMU,

and the second element is associated with the cross product of σ̂b
ib ,B and f b

IMU
as seen in (5.10d). Furthermore, the first element of Ra is a value representing
VVR measurement uncertainty, and the second element is the GNSS horizontal
measurement variance. This results in the following gains:

KpI pI � 0.6368,
KppI � 0.2028,Kpp � 0.7950 · I2 ,

KvpI � 0.0378,Kvp � 0.3160 · I2 ,

KξpI � 0.0035,Kξp � 0.0612 · I2.

For Σ3, the covariance matrices,

Q � blockdiag(0.12 · I3 , 0.0012 · I3),
R � blockdiag(202 , 22 · I2),

were chosen w.r.t. (5.13)–(5.14) and the calculation of the gain K. As for Σ2, the
first element of Q is the variance associated with f b

IMU, but the second element
is the driving process noise associated with the accelerometer bias estimate, b̂b

acc.
R represents exactly the same as Ra , albeit tuned a bit differently for the VVR
measurement. In addition, all matrices were tuned in continuous time, and then
converted to discrete time equivalents in the actual implementation.

5.1.4 Full-scale testing: Attitude estimation

In this section, the results related of the attitude estimation using the two dis-
tinct attitude observers and two particular MEMS IMUs, during two different
operations undertaken by the offshore vessel, are presented. The first operation
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is stationkeeping during DP. The second is a maneuvering operation, where the
vessel changes heading while surging forward. Plots of the respective path tracks
over two hours are shown in Figures 4.20a and 4.20b in Section 4.4.8, respectively.

The attitude estimation is evaluated using the mean error, RMS error and
CAEE metrics, where the latter is defined in (4.42) on page 71, using the onboard
VRU as reference. Also, a comparison with the output of NavLab (Gade, 2004)
is provided. NavLab is a navigation software suite based on the EKF, and has
been applied in the industry on a wide range of systems, including in defense and
maritime application. The metrics were calculated based on the last 90 minutes of
the data sets.

DP

An excerpt of the attitude estimates obtained using the STIM300 IMU and NLO
B in DP is shown in Figure 5.2a. The estimation errors relative the VRU and
gyrocompassmeasurements over twohours are shown inFigure 5.2b. The statistics
obtained using NLO A as attitude estimator in DP are presented in Table 5.3.
Similar statistics obtained using NLO B and NavLab are presented in Table 5.4
and 5.5, respectively. Examples of typical angular rate bias estimates are shown in
Figure 5.3.

Results
FromTables 5.3–5.5 one can see that the choice of estimator, to perform the attitude
estimation, inDP ismore important than the choice of sensor, at leastwhen it comes
to our selection of IMUs. It is evident from the results that both the RMS error and
CAEE is improved using NLO B and NavLab compared to the results obtained
with A. This is particularly noticeable in roll. The mean errors are approximately
the same, where the differences are on such a scale that the practical effects of
such errors, for instance in lever arm compensation, are negligible. For NavLab,
larger differences are observed between the IMUs than is the case for the NLOs.

Table 5.3: Attitude error statistics using NLO A in DP.

ADIS16485 STIM300

Roll mean error [deg] 0.0036 0.0003
Pitch mean error [deg] 0.0090 0.0070

Roll RMS error [deg] 0.1113 0.1151
Pitch RMS error [deg] 0.1080 0.1071

Roll CAEE [deg] 2361.8 2442.7
Pitch CAEE [deg] 2254.9 2239.7
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Figure 5.2: Attitude estimation using NLO B and STIM300.

This could mean that the tuning of NavLab is more sensitive to sensor changes.
In Bryne et al. (2016) even larger differences in the RMS errors were observed
between NLO A and B were the gains were chosen to be k1 � 0.5, k2 � 0.5, kI �

0.08. In addition, the results related to the RMS error obtained here with NLO
B is improved compared to the results obtained in Section 4.4.8, which utilized
the extended VVR concept, exploiting an error model (Sections 4.4.3–4.4.4) and
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Table 5.4: Attitude error statistics using NLO B in DP.

ADIS16485 STIM300

Roll mean error [deg] -0.0007 -0.0044
Pitch mean error [deg] 0.0047 0.0016

Roll RMS error [deg] 0.0363 0.0299
Pitch RMS error [deg] 0.0670 0.0649

Roll CAEE [deg] 759.80 628.99
Pitch CAEE [deg] 1406.0 1357.5

Table 5.5: Attitude error statistics using Navlab in DP.

ADIS16485 STIM300

Roll mean error [deg] -0.0193 -0.0094
Pitch mean error [deg] 0.0463 0.0063

Roll RMS error [deg] 0.0417 0.0287
Pitch RMS error [deg] 0.0813 0.0628

Roll CAEE [deg] 881.89 610.79
Pitch CAEE [deg] 1731.1 1233.3

unfiltered measurements from the ADIS16485 IMU. However the results obtained
in Section 4.4.8 yield less RMS error relative the VRUs than those obtained using
NLO A based on filtered inertial measurements.

Maneuvering

The statistics obtained using attitude NLO A during the turning maneuvers are
presented in Table 5.6. Similar statistics obtained using NLO B and NavLab are
presented in Table 5.7 and in Table 5.8, respectively.

Results
Comparable results to what were obtained in DP, are achieved during the ma-
neuvers as shown in Tables 5.6–5.8. NLO B and NavLab outperforms NLO A
considering RMS error and CAEE in roll and pitch, but not as much as in the DP
case. As opposed to the DP case, NavLab yielded virtually no difference in output
between the two sensors. Similar to the results from DP, the estimation RMS error
is reduced using filtered IMUmeasurements andNLOB compared to Section 4.4.8
when applying the same ADIS16485 IMU.
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Figure 5.3: Typical angular rate bias estimates.

High-speed turning

Statistics for the yaw estimation error is not generated as this is somewhat mean-
ingless exercise considering that the gyrocompass, which was the only available
heading reference, also was used to aid the attitude observers. However, some
qualitative results are portrayed in Figure 5.4 which illustrates what happens dur-
ing a sharp turn while the ship had forward velocity (Figure 5.4b). The estimation
error increases, most likely because of the IMU gyros’ greater dynamic range
compared to that of the mechanical gyrocompass.

Discussion

The results obtained during the two vessel operations gave approximately similar
results for both IMUs. The two different NLOs however provided varied results
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Table 5.6: Attitude error statistics using NLO A during turning maneuvers.

ADIS16485 STIM300

Roll mean error [deg] -0.0089 -0.0134
Pitch mean error [deg] -0.0245 -0.0041

Roll RMS error [deg] 0.1102 0.1122
Pitch RMS error [deg] 0.1161 0.1139

Roll CAEE [deg] 2442.6 2484.0
Pitch CAEE [deg] 2638.6 2582.6

Table 5.7: Attitude error statistics using NLO B during turning maneuvers.

ADIS16485 STIM300

Roll mean error [deg] -0.008 -0.0115
Pitch mean error [deg] -0.0188 0.0022

Roll RMS error [deg] 0.0870 0.0848
Pitch RMS error [deg] 0.1113 0.1193

Roll CAEE [deg] 1636.3 1575.8
Pitch CAEE [deg] 2446.2 2500.2

Table 5.8: Attitude error statistics using Navlab during turning maneuvers.

ADIS16485 STIM300

Roll mean error [deg] -0.0345 -0.0301
Pitch mean error [deg] 0.0311 0.0081

Roll RMS error [deg] 0.0847 0.0817
Pitch RMS error [deg] 0.1078 0.1154

Roll CAEE [deg] 1613.3 1433.3
Pitch CAEE [deg] 2135.6 2123.5

when compared to the onboard VRUs. Since injection from the respective ac-
celerometers and the gyrocompass heading were enabled during the entire study,
the mean attitude estimation error is primarily dependent on the vector measure-
ment/reference pairs. Signals with frequencies below the NLO’s internal cutoff
frequencies, k1 and k2, affects the attitude estimates through the measurement
vectors. Hence, the mean error is over time dependent on the measurement vec-
tors’ sensor biases, not the angular rate measurement biases. Since both IMUs
gave approximately the same performance, one can assume that the accelerometer
biases are highly in-run stable in the environment they were located, considering
the three days between the end of the bias compensation done in port and the
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Figure 5.4: Heading estimation in high-speed turning using gyrocompass as aid-
ing.

beginning of the second vessel operation presented here.
During both cases, the attitude estimation errors relative to the VRU were

smaller using NLO B, compared to using NLO A, particularly in roll. The latter
NLO has a static specific force injection, (see Section 5.1.2 and Table 5.2) using −g t

b
as reference vector. −g t

b is not equal to f t
ib , even in DP, due to the wave-induced

motions of the vessel. The effect of using f̂ t
ib as reference vector is considerable,

as expected from the results of Bryne et al. (2015b), due to the kinematic coupling
between roll, pitch and heave obtained using VVR as vertical reference in TMOΣ2.
The performance of NLO B was comparable to what achieved with NavLab. In
addition, the results obtained indicate that pre-filtering of the IMUmeasurements
are beneficial w.r.t. to roll and pitch estimation when comparing to the VRU since
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the validation results are improved compared to those obtained in Section 4.4.8.
This study unlike that of the previous chapter did not utilize the extended VVR
concept. However, the simulation study of Section 4.4.7 indicates that the attitude
estimates obtainedwith orwithout theVVRerrormodel have similar performance.
Thus one can argue that pre-filtering is beneficial even thoughdifferent TMOswere
utilized in the respective studies.

When turning, larger yaw errors can be observed compared to when the ship
is in stationkeeping. Figure 5.4 shows an example of NLO yaw estimates and
errors during a sharp turn with high forward speed. The estimate from the NLO
starts by being ahead of the gyrocompass, but is ultimately “corrected” because
of aiding. This is due to the slow dynamics of the gyrocompass during sharp
turns, such that the angular rate measurements from the IMUs about the BODY
z-axis is the primary source of yaw information for turns with rates faster than k2.
Hence, larger discrepancies between the NLOs and the gyrocompass is expected
in dynamic conditions, underlining that the MEMS IMU is more capable than the
traditional mechanical gyrocompass in capturing this motion.

It should also be emphasized the performance comparison was carried out by
comparing the NLOs’ output to the VRU’s equivalent signals and not to absolute
truth. Hence, there may exist situations where the NLOs provide more accurate
estimates than the VRU. The VRU manufacture specifications are presented in
Table E.2.

5.1.5 Full-Scale testing: Heave Estimation

DP

A selection of the heave estimates obtained using the STIM300 and Σ2 and Σ3 is
shown in Figure 5.5. The heave estimation error statistics obtained using the same
observers are presented in Tables 5.9–5.10. By comparing Table 5.9 with Table 4.13
of Section 4.4.8 one can observe that the heave RMS error is reduced by applying
filtered ADIS16485 IMU measurements when using the TMO of (5.10), originally
from Bryne et al. (2015b), to estimate heave.

Table 5.9: Heave error statistics using Σ2 in DP.

ADIS16485 STIM300

Mean heave error [cm] -0.6511 -0.6005
RMS heave error [cm] 5.7766 10.523
Heave CAEE [m] 1215.0 2207.3
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Figure 5.5: Heave estimates and heave estimation error obtained in DP using the
aiding TMO Σ2 (yellow), to aid Σ1, and Σ3 (red) vs. the onboard VRU (blue).

Table 5.10: Heave error statistics using Σ3 in DP.

ADIS16485 STIM300

Mean heave error [cm] 0.2288 0.1339
RMS heave error [cm] 8.0644 10.274

Heave CAEE [m] 1706.2 2112.6

Maneuvering

The heave estimation error statistics obtained during the turningmaneuvers using
the Σ2 and Σ3 are presented in Table 5.11 and 5.12, respectively. From Table 4.14
one can observe that the RMS error actually is larger in Tables 5.11–5.12 compared
to the same study carried out using a TMO equivalent to (5.10) (VVR-based heave
estimation without using the error model) based on unfiltered ADIS16485 IMU
measurements in Section 4.4.8.

Discussion

Considering the heave estimation performance, the usage of Σ2, the TMO used to
aid Σ1 using NLO B, was benifical compared to Σ3. While the attitude estimates
showed practically no difference between the IMUs, the use of ADIS16485 gave
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Table 5.11: Heave error statistics using Σ2 during turning maneuvers.

ADIS16485 STIM300

Mean heave error [cm] -0.2982 -0.2689
RMS heave error [cm] 6.3318 9.8799
Heave CAEE [m] 1462.5 2275.0

Table 5.12: Heave error statistics using Σ3 during turning maneuvers.

ADIS16485 STIM300

Mean heave error [cm] 0.3831 0.7008
RMS heave error [cm] 8.5277 12.308

Heave CAEE [m] 1907.4 2699.1

better heave estimates than obtained with STIM300, with the methods used. In
addition, the sensors’ effect on performance is more evident than the choice of
TMO. This might be due to the ADIS16485’s accelerometers having better velocity-
random walk and in-run bias stability characteristics than those of the STIM300
and since both TMOs have forms of (residual) accelerometer bias estimation, di-
rectly or indirectly, as illustrated in Figure 5.6. Also, it should be mentioned that
the STIM300 unit, provided by Sensonor, is an engineering sample. Such units
are made for testing and do not necessarily fulfill all of the specifications in the
datasheet under all environmental conditions. Therefore, one cannot guarantee
that the results obtained is representative for a commercially available STIM300.
The results obtained with pre-filtering of the IMU measurements were more in-
conclusive than those obtained related to attitude estimation. Generally, the heave
estimation might be improved with tuning emphasizing heave specifically, or us-
ing alternative algorithms, such as the one in Section 4.4.4 (Bryne et al., n.d.). The
heave estimates obtained with the TMO of Section 4.4.4 had significantly lower
RMS error and CAEE relative the VRU than presented in this chapter.
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Figure 5.6: Accelerometer bias estimation. Both TMOs have embedded accelerom-
eter bias estimation. Σ2 estimates the bias indirectly through ξ t

ib where the (neg-
ative) bias estimate is added to the rotated specific force measurement, (5.10e),
since ξ t

ib acts as an integral effect w.r.t. f̂
t
ib . Σ3 of (5.12) has a standard (and more

correct) approach where the bias estimate is subtracted directly from the specific
force measurement in BODY.

5.1.6 Summary

A successful verification of two nonlinear observers was carried out, employing
two different MEMS IMUs, namely the ADIS16485 and STIM300. The full-scale
experimental data was collected on an offshore vessel operating outside the Nor-
wegian coast. Comparing the observer output to industry standard VRUs and
navigation software based on EKF showed that favorable performance could be
achieved. Moreover, considering the attitude estimation performance, the type
of NLO was more important than the choice IMU. The results also showed that
estimating specific force in the navigation frame, and using this estimate as ref-
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erence vector instead of assuming that the vessel is not accelerated, improves the
attitude estimation when applying NLOs. If the vessel is assumed to be not be
accelerated, tuning can mitigate some of the performance loss, however, at price
of slower convergence due to lower gains. The results also indicate that attitude
estimation can be improved with pre-filtering of the IMU measurements. Heave
estimation was also compared, revealing more differences between the IMUs.
Seemingly ADIS16485 had a better accelerometer than STIM300, in compliance
with the restrictive specifications, cf. Table E.1.

The results indicate that the heave estimation performance is closely linked to
the quality of the accelerometer. Furthermore, it also seems that using a feedback-
interconnected NLO structure is favorable over a cascaded structure in order to
maximize the attitude estimation performance. The same goes for the heave
estimation performance.
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5.2 INS-based Wave Filtering

Wave filtering is a vital part of DP and marine autopilot systems and is applied
such that only the low frequency (LF) components of the vessel’s surge, sway and
heading motions are considered by the control system. Fossen (2011, Ch. 11)
defines:

Definition 5.1. Wave filtering can be defined as the reconstruction of the low-frequency
motion components from noisy measurements of position, heading and in some cases
velocity and acceleration by means of a state observer or a filter.

Wave-induced craft motion, also known as the wave frequency (WF)motion, oscil-
lates about the vessel’s LFmotion as indicated in Figure 5.7. By preventing theWF
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Figure 5.7: Illustration of the total (blue), LF (red) and WF (black) motion of the
vessel’s heading, ψ.

motion to enter the control loop, only the mean vessel motion is considered by the
controller which will result in less fluctuations of thrust. Hence, from a practical
point of view, wave filtering has the potential to reduce wear of mechanical equip-
ment, such as thrusters and engines, together with reducing the fuel consumption
and emissions from the vessel’s engines.

5.2.1 Background

Observer-based wave filtering was first introduced by Balchen et al. (1976) and
later extended by Sælid et al. (1983) utilizing the vessel model and applying the
EKF. This wave-filtering technique makes use of the knowledge of the encounter
frequency, ωe , to separate the LF and WF motion components. The encounter
frequency, as given in Section 4.4.1, (4.51), is the peak frequency of the wave
spectra, ω0, shifted due to the forward speed of the vessel, U, and the angle
between the craft’s heading and the direction of the waves, β. Fossen and Perez
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(2009) presented an overview of KF andmodel-based techniques for wave filtering
in DP and autopilot designs. One potential shortcoming of the EKF is that global
stability and robustness properties are nontrivial to prove.

Another non-EKF-model-based design followed with Vik and Fossen (1997),
who developed an USGES observer including wave filtering. Lauvdal and Fos-
sen (1998) presented an autopilot design with an adaptive controller in cascade
with a notch filter where the latter performed the wave filtering. Furthermore,
Fossen and Strand (1999) developed a nonlinear GES observer, with wave filtering
of horizontal position and heading measurements. The passivity result of Fossen
and Strand (1999) is valid for a constant encounter frequency. Strand and Fossen
(1999) extended theirwork to include online estimation of the encounter frequency.
Torsetnes et al. (2004) handled time-varying encounter frequencies with a glob-
ally contracting observer employing gain scheduling. Nguyen et al. (2007) and
Brodtkorb et al. (2014) dealt with time-varying encounter frequencies using four
passive observers, based on Fossen and Strand (1999), parameterized with four
different and constant encounter frequencies employed in a hybrid framework.

Hassani et al. (2012) presented an adaptive wave filtering scheme utilizing the
KF and a linearized vessel model, yielding a local result, where the encounter
frequency candidates had to be chosen in advance. Later, these results were
extended by Hassani et al. (2013a,b) to include estimation of the dominating wave
frequency with a discrete-time gradient-based algorithm and with a maximum
likelihood algorithm together with a bank of KFs, respectively.

In Chapter 4, based upon Bryne et al. (2014), presented time-varying NLOs for
INSs, estimating 6-DOF vessel motions, with USGES stability properties, exploit-
ing the PosRef system’s quality indicator, customized for marine surface vessels,
based on the results of Grip et al. (2013). However, either works considered wave
filtering. Results related to inertial sensor-based wave filtering of both position
and heading, in part except from Lindegaard and Fossen (2001) which utilized
acceleration measurements in a model-based regime, is a gap in the literature.

A radically different approachwith awave-filtering effect is provided inVeksler
et al. (2012). By allowing a dynamics window in the thrust allocation system,
the thrust variation due to the wave-induced motion, and other high-frequency
consumer power variations, is reduced. This leads to less wear on machinery, as
well as reduced fuel consumption and emissions by and from the vessel’s engines.

5.2.2 Wave filter modeling

All the sensor measurements contain both the LF and WF motions of the vessel.
Therefore the estimates from an INS will contain both motion components. In
order to separate the LFmotion from theWFmotion, linear models, exploiting the
superpositionprinciple, can be utilized to capture themaindynamics of the oscilla-
tory wave-induced motion due to first-order wave-induced forces on the hull. The
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models are parameterized with the dominant wave encounter frequency, ωe(t),
the relative damping ratio, λw , and the gain, Kwi , where the latter is a measure of
the wave excitation intensity. The WF component of the ith measurement can be
written as ywfi � hwfi (s)wi with

hwfi (s) �
Kwi s

s2 + 2λwωe s + ω2
e
, (5.16)

as in Fossen (2011, Ch. 8.2.6), similar to Section 4.4.1, where wi ∈ R1 is assumed to
be the driving noise of the WF model and being white Gaussian noise.

The wave encounter frequency is time dependent, continuous, positive, and
uniformly bounded, 0 < ωe ,min ≤ ωe(t) ≤ ωe ,max < ∞. The relative damping
ratio can be considered as a known constant. (Fossen, 2011, Ch 8.2) recommends
λw � 0.1 and λw � 0.26 for the JONSWAP and the Modified Pierson–Moskowitz
(MPM) spectra, respectively. λw can also be estimated online as in Section 4.4.6,
(4.92)–(4.101). Furthermore, the time variation of ωe(t) is dealt with using a state-
space representation given by:

Ûξwfi � ywfi (5.17)
Ûywfi � −ω2

e (t) ξwfi − 2λw ωe(t) ywfi + Ei wi (5.18)

where (5.17)–(5.18) is a realization of (5.16) with Ei � Kwi . On the other hand, the
dynamics of the LF measurement component is given as:

Ûylfi � ui (5.19)

where ui is a given input signal. Finally, the measurement, yi , is given by:

yi � ylfi + ywfi . (5.20)

Eqs. (5.17)–(5.20) can be written in matrix form as:

Ûx i � A(t)x i + Bui + Ei wi (5.21)
yi � Cx i (5.22)

with x i � (ξwfi , ywfi , ylfi )ᵀ and

A(t) � ©«
0 1 0

−ω2
e (t) −2λwωe(t) 0
0 0 0

ª®¬ , B �
©«
0
0
1

ª®¬ , C �

(
0 1 1

)
, Ei �

©«
0

Kwi

0

ª®¬ .
(5.23)

5.2.3 Observer design

This work addresses a similar problem as the nonlinear adaptive wave filter of
Strand and Fossen (1999). The wave-filtering design to be presented is based
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upon inertial sensors and an INS, as opposed to exploiting the vessel model and
auxiliary sensors together with mathematical models to obtain thruster and wind
generated forces and moments. The main contributions is:

• Development of a vessel-model-free INS with wave filtering. The design in-
corporates an exogenous time-varying encounter frequency, ωe(t), which can
be estimated using an adaptive algorithm based on signal processing such
as Belleter et al. (2015), as presented in Section 4.4.6, or using an algorithm
based on FFT.

The objective of the wave-filtering design is to construct LF estimates of posi-
tion, velocity and heading from the sensor measurements available. The objective
is carried out with a modular observer design as seen in Figure 5.8. First, two
feedback-interconnected observers, Σ1 − Σ2, are utilized to estimate the vessel’s
position, attitude, linear velocity and gyro bias, (Bryne et al., 2014, 2015b). These
two observers constitutes the strapdown INS and are the attitude observer of
Section 4.4.3 and the TMO of Section 4.3.4 with similar sensor configuration as
presented in Section 4.3.1. Furthermore, the LF estimates are constructed utilizing
the estimates from Σ1 − Σ2 and the time-varying encounter frequency, ωe(t).
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Figure 5.8: Feedback-interconnected observer structure with wave filtering. The
observers Σ1 − Σ2 are aided by a compass, position reference system and the
virtual vertical reference. The outputs of Σ1 and Σ2, together with the estimated
encounter frequency, ωe(t), are provided to the wave-filtering block. The outputs
of the wave-filtering block are the LF estimates pn

lf, vn
lf and ψlf.

The wave-filtering strategy is based on adaptive notch filtering and a time-
varying observer design utilizing the model structure from Section 5.2.2 by utiliz-
ing the time-varying encounter frequency, ωe(t), obtained from (4.89)–(4.91), and
the estimates provided by Σ1 −Σ2. With respect to the model (5.17)–(5.19), similar
to that of (4.49)–(4.50) of Section 4.4.6, the estimates from Σ1 and Σ2 are utilized
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both as input and measurements in the wave-filtering observer design as illus-
trated in Figure 5.9. Reconstructing the LF signals employing observers, together
with notch filters, has the potential to yield less phase-shift compared to utilization
of pure notch filters. In addition, the WF components can also be estimated when
employing observers. Pure filtering strategies do not have this capability.

Five time-varying observers are proposed to reconstruct the LFmotion for hor-
izontal positions, horizontal linear velocities and heading, as indicated in Figure
5.9. The observers are structurally similar and given by:

Û̂x i � A(t)x̂ i + Bui + K i(t) ỹi , ỹi � yi − Cx̂ i (5.24)

where x̂ � (ξ̂wf , ŷwf , ŷlf)ᵀ. The matrices A(t), B and C are given in (5.23). The
term Ei wi in (5.23) is neglected in the design since the observers are solely driven
by the innovation signal ỹi and the given ωe(t) at time t ≥ t0. The LF input ui is
obtained by notch filtering the given signal ri obtained from Σ1 − Σ2, as:

ui � hni (s)ri , (5.25)

with

hni (s) �
s2 + 2ζniωn s + ω2

n

(s + ωn)2
. (5.26)

The overview of the given input ri and outputs yi is presented in Table 5.13.
In order to allow for the notch filter to be adaptive, (5.25)–(5.26) is realized in
state-space form as

Ûxni � An(t)xni + Bn ri (5.27)
ui � Cni (t)xni + Dn ri (5.28)
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Figure 5.9: Wave filtering concept. The wave filtering is performed with five time-
varying observers. For each signal to be wave filtered the total motion estimate
from Σ1 or Σ2 is utilized as the observer measurement and the corresponding
derivative, estimate or measurement, is utilized as input to the observer.
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Table 5.13: Input ri and output yi of the wave-filtering observers.

Observer
Number

Measurement
yi

Input
ri

1 p̂n
nb ,x v̂n

nb ,x
2 p̂n

nb ,y v̂n
nb ,y

3 v̂n
nb ,x ân

ib ,x
4 v̂n

nb ,y ân
ib ,y

5 ψ̂ ωb
IMU,z − b̂b

gyro,z

where

An(t) �
(
−2ωn(t) −ω2

n(t)
1 0

)
, Bn �

(
1
0

)
,

Cni (t) �
(
2(ζni − 1)ωn(t) 0

)
, Dn � 1.

(5.29)

with constant ζni . Then, by choosing ωn(t) � ωe(t) , the input signal, ri , will be
adaptively notch filtered by (5.27)–(5.28).

The observer gains are given as K i(t) � P i(t)Cᵀ where P i � Pᵀi > 0 is the
positive-definite solution of

ÛP i(t) � A(t)P i(t) + P i(t)Aᵀ(t) + Q i(t) (5.30)

withQ i(t) � Qᵀi (t) > 0 as the positive-definitematrix utilized as tuningparameter.
By defining x̃ i :� x i − x̂ i , the corresponding observer error dynamics becomes:

Û̃x i � (A(t) − K i(t)C)x̃ i . (5.31)

If Q i(t), A(t) and B are uniformly bounded and the pair (A(t), C) is UCO, then
P i(t) will be uniformly bounded, that is c1I3 ≤ P i(t) ≤ c2I3 for all t ≥ 0, with the
constants c1 , c2 > 0, (Anderson, 1971, Lemma 3.2). Furthermore, this will render
the origin of (5.31) to be GES. A(t) and B are naturally bounded from the model
definition of (5.17)–(5.19) due to the physical properties of ωe(t) and that λw can
be chosen as a positive constant. In addition, Q i(t) will always be bounded by
choice since it is a tuning parameter. The following intermediate result insures
that the pair (A(t), C) is UCO:

Lemma 5.1. Assume that λw and ωe(t) are positive and uniformly bounded. Then, the
pair (A(t), C) is uniformly completely observable.

Proof: See Appendix A.2.8.
Uniform boundedness of P i(t) follows since (A(t), C) is UCO. Hence, the error

dynamics (5.31) is GES.
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Remark 5.1. The gain of the observer (5.24) is calculated similar to using the continuous
Riccati equation of the Kalman-Bucy filter (Kalman and Bucy, 1961). However, since the
given measurement yi is a smooth estimate from Σ1 −Σ2 rather than a sensor reading with
additive white Gaussian noise, the measurement covariance, is omitted from the observer
design. Then eq. (23) of Anderson (1971) takes the form of

ÛVi � −2 ỹ2
i − x̃ᵀi P−1

i (t)Q i(t)P−1
i (t)x̃ i < 0.

Since ÛV remains uniformly negative, the results of Anderson also apply for (5.30)–(5.31).

5.2.4 Case study

Some simulations results illustrating the time-varying INS-based wave filtering,
presented above, are shown.

The encounter frequency was obtained using Belleter et al. (2015). The pitch
estimate, θ̂, obtained through q̂n

b from Σ1, is chosen as the driving input signal
such that y � θ̂ of Belleter et al. (2015) similar to Section 4.4.6. The implementation
of time-varying wave filters were carried out with exact discretization at 100 Hz.
The design parameter ζni of (5.27)–(5.29) was chosen ζni � 0.05 for all five adaptive
notch filters. Details related to the simulations are available in Appendix C.3.2.

The two position wave filters were tuned with Q i � diag(0.01, 2.52 , 0.5), while
the velocity and heading wave filters were tuned as Q i � diag(0.01, 22 , 0.5).

Figure 5.10 shows the estimated pitch, from Σ1, feeding the WF estimator
together with output of the WF estimator, ωe(t). The fast convergence of the
pitch estimate, seen in Figure 5.10a, was due to the time-varying tuning scheme
presented in Appendix C.3.2. The estimate of ωe(t) began to settle at the encounter
frequency after 250 seconds as seen in Figure 5.10b. In Figure 5.11, the wave-
filtered heading, ψ̂lf, together with the adaptive notch-filtered gyro measurement,
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Figure 5.10: Evolution of the pitch estimate which acts as the driving signal in
the estimation of ωe(t) together with the encounter frequency provided by (4.89)–
(4.91).
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r f is presented. The effect of the heading wave filtering, seen in Figure 5.11a, is
evident since the majority of the WF motion is not present in the LF estimates.
The bias-compensated and notch-filtered yaw rate measurements are shown in
Figure 5.11b.

The adaptive notch-filtered acceleration input to the velocity wave filters is
shown in Figure 5.12 together with the estimated acceleration, ân

ib � f̂ n
ib + gn

b .
The effect of the adaptive notch filter is obvious where the filtered acceleration
estimates are significantly smoother than the signals which they are based upon.

This leads to the wave filtering of velocity and position. Figure 5.13 show
the LF estimates of position, p̂n

lf, and linear velocity, v̂n
lf, versus the estimated

vessel position and linear velocity, respectively provided by the INS. The initial
transients of the LF estimates are due to ω̂e(t), at the time, not having converged to
the encounter frequency, resulting in the observers of (5.24) and the notch filters



5.2. INS-BASED WAVE FILTERING 131

0 200 400 600 800 1000

0

20

40

60

300 320 340

-1

0

1

2

3

0 200 400 600 800 1000

0

20

40

60

300 320 340

-1

0

1

2

3

(a) LF position estimates versus the esti-
mated position provided by Σ2.

0 200 400 600 800 1000

-3

-2

-1

0

1

2

300 310 320 330 340 350

-1

0

1

0 200 400 600 800 1000

-3

-2

-1

0

1

2

300 310 320 330 340 350

-1

0

1

(b) LF velocity estimates versus the esti-
mated velocity provided by Σ2.

Figure 5.13: LF position and velocity estimates versus the estimates provided by
the INS.

of (5.27)–(5.28) to not perform optimally before ω̂e(t) converged to ωe(t). After the
transients settled, one can clearly observe that the wave filters reconstructed the
LF positions and velocities adequately.

5.2.5 Summary

A marine craft wave-filtering strategy for inertial navigation systems aided by a
VVR concept together with position and heading reference systems has been pre-
sented. The navigation systems consist of two feedback-interconnected observers
with USGES properties, cf. Chapter 4. The wave filtering is performed with five
time-varying GES observers, based on signals from the navigation system and
sensor measurements, to separate the LF andWFmotion components of the craft’s
position, linear velocity and heading estimates. The time-varying encounter fre-
quency, used in the wave-filtering design, was obtained using an adaptive signal-
based algorithm. Simulations show how the time-varying wave-filtering strategy
successfully generates low-frequency vessel motion estimates from the inertial
navigation system and noisy measurements.

Further developments should look into optimizing the choice of input filters
with respect to mitigation of wave-frequency motion while minimizing phase lag.
Also extending the wave filtering framework to handle two-peaked wave spectra
is a possible extension.
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5.3 Conclusions

This chapter has presented the results related to specific combinations of nonlinear
observers andMEMS inertial sensors for estimating themotion of amarine surface
vessel. Verification studies related to attitude and heave estimates using data
collected at sea have been carried out. In addition, wave filtering, specific to
surface craft, have been develop based on an inertial navigation system. This
thesis is the first in doing so, where such design previously have exploited vessel
models.

The verification study of the sensors in question indicate that the choice of
nonlinear observer is more important that the choice of sensor in order to ob-
tain high-accuracy roll and pitch estimates. The heave estimation however is
more reliant on high-quality accelerometers. In addition, pre-filtering of the IMU
measurements can improve the attitude estimation. Pre-filtering related to heave
estimation was inconclusive.

The wave-filtering based purely on an inertial navigation system and inertial
sensors proved successful in attenuating the wave-frequency motions. Improve-
ments and extensions are however possible such as optimizing the filters with
respect to mitigation of wave-frequency motion while minimizing phase lag. Also
extending the wave filtering framework to handle two-peaked wave spectra is a
possible extension.



6Sensor Redundancy and Fault Tolerance
6.1 Overview and Motivation

Fault-tolerance is vital in marine control applications. Equipment such as sensors
can fail or provide erroneous measurements during operation. Hence, the nav-
igation system must be able to handle such events. This include incidents such
as sensor outliers, jumps/bias, drift and dropouts. Thus considering the GNC
framework, depicted in Figure 1.1 on page 1, sensor fault and failure handling
is imperative in order to guarantee safe, robust and efficient marine operations
involving automatic control.

The navigation system need functions for self-diagnostics and fault manage-
ment. Especially so for autonomous vessels, in order for these vehicles to operate
safely and autonomously in areas potentially far from possible human interven-
tion. In this regard, sensor redundancy is a necessity in order to detect sensors
errors, faults and failures and for the navigation system to continue to provide
PVA data in the event of sensor faults. According to DNV GL (2011) redundancy
is defined as

Definition 6.1. The ability of a component or system to maintain its function when one
failure has occurred. Redundancy can be achieved, for instance, by installation of multiple
components, systems or alternative means of performing a function.

In this chapter sensor configuration concepts is presented utilizing multiple
PosRef systems and IMUs to fully the redundancy requirement regarding the nav-
igation system. Section 6.2 takes on redundancy and fault tolerance w.r.t. PosRefs
and heading reference systems and is based on Bryne et al. (2015a). Section 6.3
presents concepts related to redundant MEMS IMUs utilizing NLOs. The section
is based on Rogne et al. (n.d.a).

133
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6.2 Redundant Position Reference and Heading References

6.2.1 Concept

In order to ensure that the INS, cf. Σ1 − Σ2 (Sections 4.3.3–4.3.4 or Sections 4.4.3–
4.4.4) of Chapter 4 and the wave filters of Section 5.2 have acceptable perfor-
mance and are fault tolerant, sensor monitoring and sensor weighting should be
performed. The respective measurements from the triple-redundant sensors are
monitored and processed as illustrated in Figure 6.1. The signal processing consist
of two main components; Signal monitoring and signal weighting. However, first
the modeling of sensor noise, which the design is based upon, is presented.
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Figure 6.1: Structure of the triple-redundant signal processing. The sensor vot-
ing and sensor weighting takes place in the two respective Signal Monitoring and
Weighting blocks. The output of each blocks is utilized by the INS to estimated
the position, p̂n

nb and the attitude, q̂n
b . Furthermore, the prediction of these signal

between sampling are utilized by the sensor-monitoring algorithms. After passing
the monitoring test, the weighted measurements, pn

PosRef and ψc , are applied in
aiding the INS.

6.2.2 Sensor error modeling and sensor faults

Thework focused on fault detection and isolation (FDI) of three types of errors and
faults in a single sensor utilizing the structural properties of the triple-redundant
sensor packages together with a high-rate strapdown INS. The typical errors and
faults in question are:

• Outliers
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• Fixed bias

• Drift

According to Chen et al. (2009), drift of dGNSS PosRef systems can be due to
differential link error, being a critical error considering dGNSS is the primary
PosRef in DP systems. Therefore, the rationale was based on this PosRef system.

Detection of the considered sensor errors can be nontrivial due to the dynamics
of the PosRefs’ measurement errors. The transient behavior of the dGNSS mea-
surement error closely resembles a Gauss-Markov process, as stated by Mohleji
andWang (2010, p. 5), due to correlation of the dGNSS observation errors in time.
In discrete time, this noise model is given by:

ei(k + 1) � a[k]ei[k] + wi[k], (6.1)

where wi[k] is the white Gaussian driving noise of the ith measurement and a[k]
is the transition parameter

a[k] � e−
1
T Ts , (6.2)

where T is the time constant and Ts is the sensor’s sampling interval. For GNSS
systems, with differential correction the time constant usually lie between 4-8
minutes as suggested in Mohleji and Wang (2010). For other DP PosRefs such
as HPR systems, similar time-correlated noise can be assumed. This is due to
the noise is time correlated due to the speed of sound in water will vary with
time due to e.g. changes in sea temperature and ocean currents. Arguments
akin to those above can also be made for a mechanical gyrocompass, which is the
nominal heading reference in DP due to class notations such as DNV GL (2011),
since in essence the north seeking procedure is a mechanical system exposed to
disturbances.

6.2.3 Sensor monitoring and voting based upon fault detection,
isolation and identification

The fault detection and isolation together with partial diagnosis are performed
by modeling the respective faults in discrete time and exploiting the information
available from the redundant sensor packages in a stochastic estimation setup
without taking into account the vessel motions.

First, the sensor information is modified by utilizing the available information
from the INS.A given fault-freemeasurement yi[k], at time k, contains information
on the vessel’s motion in addition to the noise of (6.1) for each respective sensor.
In order to analyze the sensor readings for faults separately from the motion of the
vessel, the predicted signals from the feedback-interconnected NLO Σ1 − Σ2 are
utilized to remove the craft’smotion components from the respectivemeasurement
at each sampling time k. Since the INS provides estimates at significantly higher
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rate than the respective aiding sensors do, the vessel motion components can be
removed by subtracting the INS prediction ȳi , at time k, from the measurement
yi[k] such as,

zi[k] � yi[k] − ȳi , (6.3)

where ȳi is the INS’s last available prediction of yi before time k. Now, ideally zi

contains only sensor noise and faults, i.e zi[k] � ei[k] + fi[k], since the estimates
from Σ1 − Σ2 are smooth and based on DR from IMU data between each of the
samples from the respective sensor packages.

The dynamics of transformed measurements zi[k], zi(k + 1), . . . , zi(k + m) can
be modeled, for each ith sensor reading, in discrete time as

x(k + 1) �Φ[k]x[k] + ©«
w[k]

0
0

ª®¬ + u(k − τ f )
©«

0
fb

fr

ª®¬ , (6.4)

z[k] � H[k]x[k] + e[k], (6.5)

similar to Gustafsson (2000, p. 296) with,

Φ[k] � ©«
a[k] 0 0

0 1 1
0 0 1

ª®¬ , H[k] �
(
1 1 0

)
, (6.6)

where the subscript i is omitted for simplicity. Furthermore, a[k] is given by (6.2)
and w[k] is the driving noise of (6.1). e[k] is presumed to be white Gaussian
measurement noise, while u(k − τ f ) is the step function

u(k − τ f ) �
{

1 for k > τ f

0 else . (6.7)

Moreover, fb is the sensor bias or drift and fr is the rate of the bias/drift. Hence,
fr is zero for a fixed bias and is a constant for a drift with constant rate. Then,
a measurement sample is deemed fault free if fb and fr is contained to a neigh-
borhood around zero. All this implies that x1[k] corresponds to the sensor noise,
while x2[k] and x3[k] is the given sensor bias/drift and drift rate, respectively.
The system (6.4)-(6.5) is observable for 0 < a[k] < 1 which can be verified with
Kalman’s rank condition test.

The sensor monitoring is conducted by running a discrete-time KF with the
measurement update

S[k] � H[k]P̄[k]H[k] + r[k], (6.8)
K[k] � P̄[k]C[k]ᵀS[k]−1 , (6.9)
x̂[k] � x̄[k] + K[k](z[k] − H[k]x̄[k], (6.10)

P̂[k] � (I − K[k]H[k])P̄[k](I − K[k]H[k])ᵀ + K[k]r[k]K[k]ᵀ , (6.11)
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and the time update

x̄[k + 1] �Φ[k]x̂[k], (6.12)
P̄[k + 1] �Φ[k]P̂[k]Φᵀ[k] + Γ[k]Q̄[k]Γᵀ[k], (6.13)

respectively, where P̂[k] � P̂ᵀ[k] > 0 and P̄[k + 1] � P̄ᵀ[k + 1] > 0. Even though
w[k] only enters the upper state, the process noise of the filter w[k] is chosen
w[k] � (w[k]; wb[k]; wr[k]), such that the states associated with the faults will be
more sensitive to changes in the innovation sequence. In addition, r � E[e2[k]]
is the reported covariance of the sensor noise and Q[k] � E[w[k]w[k]ᵀ] is the
covariance of the process noise. This again leads to the modified process noise
covariance matrix Q̄[k]which can be given by:

Q̄[k] � Q[k] − 1
r

M[k]M[k]ᵀ (6.14)

motivated by

E
[ (

w[k]
e[k]

)
(wᵀ[k] e[k])

]
�

(
Q[k] M[k]

Mᵀ[k] r[k]

)
, (6.15)

as given in Gustafsson (2012, Sec. 7.2.3), taking into account the cross correlation
between the process noise, w[k] and measurement noise e[k] with respect to
the model (6.1) and the measurement (6.3). In this case, M[k] � [m[k], 0, 0]ᵀ is
the cross covariance of the measurement and process noise, where m[k] can be
calculated offline as:

m[k] � 1
n − 1

k−1∑
l�k−n−1

(
w[l] − µw

) (
e[l] − µe

)
, (6.16)

and stored in a look-up table where n is the length of a window based on fault-free
data. µw and µe are the respectivemeans over the samewindow. The choice of a[k],
inΦ[k], w[k−n−1], . . . ,w[k−1] and e[k−n−1], . . . , e[k−1] can be calculated prior
to the operation based upon previous data collected from the sensor in question.
Moreover, this offline analysis should take in account the possibility of changing
sensor precision over time. Hence, the look-up table containing Q̄ should be
based upon process noise data w[k − n − 1], . . . ,w[k − 1] and measurement noise
data e[k − n − 1], . . . , e[k − 1] corresponding to a variety of sensor covariances
r[k − n − 1], . . . , r[k − 1] and a[k] such that the m[k − n − 1], . . . ,m[k − 1] are valid
for changing sensor precision.

Sensor outlier detection:

Outlier detection can then be performed with innovation monitoring of the KF
(6.8)–(6.13) with

T[k] �
(
z[k] − H[k]x̄[k]

)ᵀS−1[k]
(
z[k] − H[k]x̄[k]

)
(6.17)
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as in Gustafsson (2012, eq. (7.71)). If T[k] is exceeds a predefined threshold, z[k] is
deemed to be an outlier. For instance if T(k) exceeds χ2

α,ν , where χ2 indicates the
chi-squared distribution, α the significance level and ν the degrees of freedom.

Sensor bias and sensor drift detection:

Sudden changes in the mean of z[k], corresponding to an emerging sensor bias,
will be detectable with (6.17) yielding T[k] to spike. The same effect will present
itself if the sensor recovers. Then, monitoring of x̂2[k]/x̄2[k] should be done in
parallel with outlier detection to detect a sensor bias.

Sensor drift is in general the most difficult fault to detect and identify since
it is not necessarily noticeable in the innovation monitoring of (6.17) due to a
possibly low drift rate, fr . For the same reason, only monitoring of x̂3[k]/x̄3[k],
the state associatedwith the drift rate, can be insufficient to detect sensor drift since
the rate may be lower than the process noise of the filter (6.8)-(6.12). Therefore,
drift detection is performed by monitoring the estimate/prediction x̂2[k]/x̄2[k],
associated with the sensor bias. Then, sensor drift is detected if the sensor bias
estimate surpasses a given threshold regardless of the result from the innovation
monitoring. The fault estimation ensures that partial fault diagnosis is obtained.

By following themethodology above instead of a typical voting strategy enables
the possibility to detect an erroneous sensor also when only two PosRefs are
available. This is due to the IMUmeasurements areprovidedat significantlyhigher
rates than the PosRef and compass measurements. This again, allows for zi[k] to
be generated and performing the fault estimation with (6.8)–(6.12). However, with
only two position and heading references available, this strategy will only work
for faster emerging errors. For slowly drifting position reference measurement, an
alternative algorithm is presented by Rogne et al. (2014). An other framework for
detecting similar faults based on particle filtering is presented by Zhao and Skjetne
(2014).

6.2.4 Sensor weighting

The second step of the redundant signal processing is measurement weighting. If
the given measurement was deemed healthy by the fault-detection algorithms of
Section 6.2.3, the measurements should be weighted. By assuming that sensors
have independent noise components, the weighted measurement, xw , of dimen-
sion p from N sensors can be obtained from e.g. Gustafsson (2012, Ch. 2.2) by
minimizing the object function

VLS
�

(
y[k] − H w[k]xw[k]

)ᵀR−1[k]
(
y[k] − H w[k]xw[k]

)
, (6.18)
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where y[k] ∈ Rp·N is the vector of measurements at time k. xw[k] ∈ Rp represents
the weighted measurement while H w[k] �

(
Ip1 , . . . , sIpN

)ᵀ
yielding,

xw[k] � Rw[k]Hᵀw[k]R−1[k]y[k]. (6.19)

Here R[k] is a block-diagonal matrix of the reported covariance matrices from the
respective sensors. Furthermore, these covariances are E[e2

ci
[k]] and

E[ePosRef,i[k] eᵀPosRef,i][k] with respect to the possible sensor components of (6.5).
Then, xw is the weighted measurement, in a least squares sense with covariance

Rw[k] �
(
H w[k]ᵀR−1[k]H w[k]

)−1
, (6.20)

and utilized in the INS’s measurement updates.

Remark 6.1. The assumption of independent sensor noise is not true for PosRefs based on
satellite navigation and for HPR systems. This is due to the noise being time correlated for
dGNSS receivers within the same geographical area and for each pair of HPR transponders
and transducers. In DP, differential correction of GNSS is applied to reduce common-
mode errors, however there are still some residual common-mode errors present after the
correction. Nevertheless, this assumption have still be proven to be useful in KF-based
observer designs with position measurements from such position references.

6.2.5 Case study

This sectionpresents a simulation case studyof the combined INS triple-redundant
signal processing. The feedback interconnected observersΣ1−Σ2 of Sections 4.3.3–
4.3.4 constituted the INS. As stated in Section 6.2.2 dGNSS contained colored noise.
Hence, the dGNSSs were were simulated with the first-order Gauss-Markov. The
same was the gyrocompasses. Details related to the simulations are found in
Appendix C.3.2. The following errors and fault were introduced to illustrate the
triple-redundant FDI concept introduced above:

• At time 350 and 400 seconds the position of dGNSS3 spiked with minus five
meters north and five meters south.

• Between 400-500 seconds the precision of dGNSS2 was reduced where the
standard deviation doubled as described in Appendix C.3.2. In addition,
dGNSS2 began to drift 0.1 m/s in the same time period.

• Between 450-500 seconds dGNSS3 did not provide any measurements.

• Between 600-700 seconds the quality of all three dGNSSs deteriorated as
described in Appendix C.3.2, Table C.1.

• At 800 seconds the third gyrocompass began to lag before recovering when
time approached 1000 seconds.
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• At 1000 seconds all three dGNSS reference were lost due to e.g. powerful
ionospheric scintillation.

Results regarding the dGNSS sensor package, related to signal monitoring
and weighting can be seen in Figures 6.2–6.3. In Figure 6.2a one can observe
that the measurements from dGNSS3 at time 300 seconds and at 350 seconds
are outliers. Furthermore, from Figure 6.2b one notices that measurements from
dGNSS2 slowly drifts between 400 and 500 seconds. The outliers of dGNSS3 and
the drift of dGNSS2 were detected with the innovation monitoring and bias/drift
detection, respectively. This is indicated by Figure 6.2d, showing how the status
of the respective dGNSS receivers evolved with the faults described above. The
results of the dGNSS wild-point detection is seen in Figure 6.2c, while the drift
estimation of dGNSS2 is seen in Figures 6.2e–6.2f, respectively. dGNSS2 was
rejected when the drift estimate surpassed the bias/drift thresholds level of Table
C.2. In addition, one can observe in Figure 6.2c that the innovation monitoring
spikes multiple times after the measurements from dGNSS2 were rejected. This
is due to ȳi of (6.3), now only is based on fault-free information since the INS
estimates are only aided with non-erroneous dGNSS measurements. Then, zi[k]
will have an offset compared to ȳi since yi[k], related to dGNSS2 drifts. This
again verifies that it was correct to dismiss the measurements from dGNSS2 in the
given time period. In addition, the rejections of dGNSS3, seen in Figure 6.2d at
approximate 650 and 700 seconds, respectively were due to the bias monitoring
incorrectly estimated biases/drift at these instances in time since the transient
dGNSS measurement error surpassed the bias/drift threshold.

Figure 6.3 shows the weighted dGNSS measurements and the weighed covari-
ance. The former is almost unaffected by the simulated errors as seen in Figure 6.3.
The resulting effects of the sensor monitoring related to the weighted dGNSS co-
variance can be seen in Figure 6.3b. An increase is seenwhendGNSS2 anddGNSS3
were rejected. Furthermore, it can be seen that the weighted covariance increases
at 450 seconds since dGNSS3 fails to provide measurements. At approximately
500 seconds both dGNSS2 and dGNSS3 recovered, as seen in Figure 6.2d, such that
the weighted dGNSS covariance decreased. Figure 6.3b also shows an increase in
the weighted dGNSS covariance in the time frame of 600 to 700 seconds, however,
with larger magnitude than before. This is due to the increase in noise magnitude
in the measurements provided by all three receivers. In addition, Figure 6.3b also
shows the evolution of the time-varying gain ϕ(t) based on the weighted covari-
ance provided by the triple-redundant dGNSS sensor package. One can observe
that ϕ(t) decreases when the weighted covariance increases and vice versa.

Figure 6.4 illustrates signal monitoring and weighting of the triple-redundant
gyrocompass sensor package. Figure 6.4a shows how the third gyrocompass be-
gins to lag after 800 seconds, while the weighted measurements in Figure 6.4d
are unaffected by the this fault. This is due to the sensor monitoring excludes the
third gyrocompass approximately 30 seconds after the compass fails to capture the
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change in heading, as seen in Figure 6.4c, since the bias/drift estimate surpassed
the threshold of Table C.2. The bias/drift estimates related to the compass mea-
surements are presented in Figure 6.4b. In addition, one can see that compass1
was rejected at approximately 200 and 280 seconds and the compass3 was rejected
at approximately 150 seconds. These are falsely detected compass errors induced
by the low threshold value in Table C.2 and the transient measurement errors of
the compasses at the given instances in time.

Figure 6.5 present the position, velocity and attitude estimation errors. One can
observe that the vertical position and velocity errors are considerably smaller than
then horizontal counterparts. This is due to the usage of the VVR measurement
to stabilize the vertical axes. The horizontal axes are dependent on dGNSS qual-
ity, with the respective colored measurement noise (and errors) resulting in the
horizontal estimation errors are bigger then the vertical. The velocity error is less
affected by the transient dGNSS error since the gains, associated with the velocity,
are smaller than the position gains (Appendix C.3.2). The transient heading error
in Figure 6.5c is due to the colored noise of gyrocomass measurement errors. The
spikes seen in Figure 6.5b are due to the transient effect when dGNSS2 is excluded
due to drift, while the largest transient errors of Figure 6.5a are due to the fault
detection not instantaneously detect the drift of dGNSS2. The residual transient
error is due to the colored noise of all three PosRefs.

Results related to loss ofPosRefs is presented inAppendixC.3.2. It is shown that
heading estimation is robust to loss of PosRefs. This follows from the INS-based
FDI, in contrast to vessel-model-based designs, since the sway-yaw couplings of
the kinetics are avoided with an approach based on kinematics.
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(a) Position measurements from dGNSS3
versus the vessel’s position. Outliers are ob-
served at 350 and 400 seconds.
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(b) Positions measurements from dGNSS2
versus the vessel’s positions. dGNSS2 drifts
between 400 and 500 seconds.
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(c) Outlier monitoring of the east compo-
nents of the dGNSS sensor package.
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(d) GNSS status. Accepted and rejectedmea-
surements are representedby 1 and0, respec-
tively.
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(e) Estimates of the bias/drift of the north
dGNSS measurement component.
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(f) Estimates of the bias/drift of the east
dGNSS measurement component.

Figure 6.2: dGNSS faults and fault monitoring. dGNSS2 provided erroneousmea-
surements between 400-500 seconds of simulation, while the dGNSS3 measure-
ments spiked at 350 and 400 seconds of simulation. All of the GNSSmeasurements
becomes less accurate between 600-700 seconds of simulation.
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(a) Weighted position measurements from
the dGNSS sensor package versus the ves-
sel’s positions.
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(b) Covariance of the weighted dGNSS mea-
surements versus the time-varying gain ϑ(t).

Figure 6.3: Results of the dGNSS sensor weighting.
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(a) The lagging heading measurements
from the third gyrocompass versus the ves-
sel’s heading.
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(b) Compass bias/drift estimates.
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(c) Compass sensor status. Accepted and
rejectedmeasurements are represented by 1
and 0, respectively.
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(d) Weighted measurements from the gyro-
compass heading reference sensor package
versus the vessel’s heading.

Figure 6.4: Results of the triple-redundant signal possessing of the heading refer-
ence sensor package where compass3 provided lagging measurements after 800
seconds of simulation.
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(c) Attitude estimation error.

Figure 6.5: Position, velocity and attitude estimation errors.
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6.2.6 Summary

A sensor monitoring and weighting scheme for triple-redundant position and
heading referenceswas developed, applyingmultiple KFs, in order to detect faulty
sensor measurements, employing the possibility to detect and isolate biased and
drifting sensor readings and outliers. By doing so, potentially preventing the
faulty measurements from entering the inertial navigation system. Measurements
deemed fault-free were weighted using a least squares approach before provided
to the INS. The FDI approachwas based on access to an IMU and an accompanying
INS.

The IMU-based triple-redundant sensor monitoring and weighting scheme,
presented here, was shown to be successful in detecting and estimating realistic
sensor faults in presence of colored noise. In particular, the detection of slowly
driftingposition andheadingmeasurements is shown tobe feasiblewith thedesign
proposed. Fault tolerance of the heading estimate related to position reference loss
is achieved since the heading was maintained independent of position with the
observer structure proposed. This independence is not achieved with a vessel-
model-based design due to the sway-yaw coupling of the kinetics.
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6.3 Redundant Inertial Sensors

The main contributions of this section are methods for fusing redundant MEMS
inertial measurements in the context of nonlinear attitude observers, which have
not previously been covered in the litterateur. Usage of redundant IMUs allows
for both fault detection and automatic fault management. The latter is achieved by
relying on the remaining sensors when experiencing inertial sensor faults in one of
the available IMUs. Achieving such capabilities have received little attentionwhen
applying NLOs in INSs. Usage of the redundant sensors also have the capability
to reduce the impact of sensor noise.

6.3.1 Background

Fault detection and isolation (FDI) in inertial units is well established. A FDI
method based on the generalized likelihood ratio test (Willsky and Jones, 1976) has
prevailed for decades. The ratio is based on the likelihood given that the data fits
under two models or hypotheses. These are the zero hypothesis, H0, representing
non-failure or the H1 hypothesis representing erroneous/faulty measurements in
the context of sensor readings. In the adaptation for inertial sensors, the classical
discrete methods by Daly et al. (1979); Sturza (1988), and the continuous-time case
of Medvedev (1995), employ parity equations to generate residuals, upon which
the FDI is based. The admitted inaccuracies ofMEMS IMUs prove to be a challenge
when applying classical methods for FDI on inertial sensors, (Waegli et al., 2008;
Guerrier et al., 2012). In this context Guerrier et al. (2012) proposed an improved
method based on the Mahalanobis distance with promising results. FDI in INSs
using NLOs have up to day received limited attention, except for results such
as Rogne et al. (2014); Bryne et al. (2015a); Rogne et al. (2015, 2016b). However,
these works have not considered IMU faults, primarily focusing on faults in aiding
sensors.

Redundant IMUs have traditionally been applied in safety-critical systems such
as passenger jets, military aircraft and spacecraft. In themaritime domain, DP ves-
sels are required to have several gyrocompasses and VRUs, both forms of INSs,
on board. However, autonomous vehicles are on the horizon, not only in the air
(Sukkarieh et al., 2000), but also on land and at sea. In order for these vehicles
to operate safely and autonomously in areas potentially far from possible human
intervention, they need functions for self-diagnostics and fault management. To
be feasible and competitive in the nascent consumer and commercial markets, it
is not viable to fit all these vehicles with expensive high-end gyroscopes and ac-
celerometers. Therefore, an investigation on how to improve the FDI performance
with MEMS sensors is of interest.
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6.3.2 Concepts

Two concepts for redundant MEMS IMU configuration using NLOs, employed for
PVA estimation, are presented. Both concepts are based on the nominal observer
structurewith a single IMU, as illustrated in Figure 6.6, applying the tangent frame
as navigation frame. The design, however, allows for alternative realizations based
on e.g. ECEF or NED observer implementations. Both concepts utilize the same
TMO.
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Figure 6.6: Nominal nonlinear observer structure applicable with a single IMU.

Concept 1
In alternative 1 the gyro and accelerometer outputs from the IMUs are combined
into single measurements via the parity space method, presented in Section 6.3.5,
before being fed into the observer as shown in Figure 6.7. In this approach, no
modification of the original observer structure of Grip et al. (2013) is necessary
(only one Σ1 is used) such that q̄t

b , ω̄
b
IMU and f̄ b

IMU are utilized instead of q̂t
b , ω

b
IMU

and f b
IMU cf. Figure 6.6. ¯(·) indicates weighted measurements or estimates.

Concept 2
In concept 2, portrayed in Figure 6.8, only the accelerometer measurements are
combined beforehand, while the angular rate measurements, ωb

IMU, j , where j
is the respective IMU’s index, are sent to m different instances of the nonlinear
attitude observer, (6.25), presented in Section 6.3.4. The outputs of these observers
are then merged and forwarded to the TMO, (6.33).
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6.3.3 Inertial and heading sensors

IMU model

A similar IMU model as (5.1)–(5.2), Section 5.1.1 is considered. Now, however,
sensor faults db

? are also included,

f b
IMU � f b

ib + bb
acc + wb

acc + db
acc , (6.21)

ωb
IMU � ωb

ib + bb
gyro + wb

gyro + db
gyro , (6.22)

where

db
? �

{(
db
?,x , db

?,y , db
?,z

)ᵀ
if fault has occured,

03×1 otherwise.
(6.23)

Heading reference

In addition to the MEMS IMUs, it is assumed that there is a heading reference
available, typically in the form of a gyrocompass providing the heading ψc , or
derived from amagnetometer yielding a tri-axial measurement of the earth’s mag-
netic field mb

tb in the body frame, which can be related to the earth’s magnetic
field vector mt

tb , decomposed in the tangent frame at the vehicle’s location, thus
potentially providing a true-north heading. If ECEF is used as navigation frame,
mb

eb can be related to me
eb , similar to that presented in Section 3.2, in order to

obtained the heading.

Multiple IMUs

Combiningmultiple IMUs should in the ideal case reduce the noise levels and bias
magnitudes. Indeed, for the combined inertial sensor output x̄ from m indepen-
dent measurements x̄ �

(
y1 + y2 + . . . + ym

)
/m, with equal standard deviation

σy , j � σy results in

Var(x̄) � Var ©« 1
m

m∑
j�1

y j
ª®¬ �

1
m2

m∑
j�1

σ2
y , j

⇒ σx̄ �
σy
√

m
, (6.24)

assuming the same zero-mean distribution for each of the measurement errors.
However, when it comes to sensor noise, common-mode disturbances like vibra-
tions, mentioned in the previous chapter, could void the advantageous property
of (6.24). Regardless, the bias magnitude in the aggregated measurement will be
reduced compared to the magnitude of the of largest bias of the m measurements.

In Guerrier et al. (2012) it was found that for sensor triads, their relative orienta-
tion does not matter when it comes to optimality, but in the case of sensor failures
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a skewed configuration is preferred when using less than four sensor triads. In
the upcoming Section 6.3.7, three sensor triads in an orthogonal configuration,
arguably below the recommended number, are utilized. However, it was shown
that FDI results still are attainable using this structure.

6.3.4 Nonlinear observers

Attitude observer

When utilizing multiple attitude observer, these takes the form of

Σ1, j :


Û̂qt

b , j �
1
2

q̂t
b , j ⊗

(
0

ω̂b
ib , j

)
− 1

2

(
0
ωt

it

)
⊗ q̂t

b , j , (6.25a)

ω̂b
ib , j � ω

b
IMU, j − b̂b

gyro, j + σ̂
b
ib , j , (6.25b)

Û̂bb
gyro, j � Proj

(
b̂

b
gyro, j ,−kI(t)σ̂b

ib , j

)
, (6.25c)

where the jth NLO is similar to that of Section 4.4.3 and with the injection terms,

σ̂b
ib , j � k1(t)vb

1 × Rᵀ(q̂t
b , j)v

t
1 + k2(t)vb

2 × Rᵀ(q̂t
b , j)v

t
2. (6.26)

These are implemented such that the jth observer uses its own attitude estimate
q̂t

b , j , and

vb
1 � f b , vb

2 � f b × cb , (6.27)

vt
1 � f t , vt

2 � f t × ct , (6.28)

in order to calculate (6.26). The respective measurement and reference vectors are
defined as

f b :�
f̄ b

IMU

‖ f̄ b
IMU‖2

, (6.29)

cb :�
(
cos(ψc) − sin(ψc) 0

)ᵀ
, (6.30)

f t :�
satM f ( f̂

t
ib)

‖satM f ( f̂
t
ib)‖2

, (6.31)

ct :�
(
1 0 0

)ᵀ
, (6.32)

similar to the chosen configuration in Section 4.4.3. f̄ b
IMU is a fused accelerometer

signal. This is obtained as described Section 6.3.5. Themeasurement and reference
vector pairs cb and ct could easily be replaced with magnetometer equivalents, as
described in Section 6.3.3, similar to Section 3.2.
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Translational motion observer

The TMO estimates position, linear velocity and specific forces p̂t
tb ∈ R3, v̂t

tb ∈ R3

and f̂ t
ib ∈ R

3, with {t} as navigation frame. The resulting TMO takes the form,

Σ2 :



Û̂pt
tb � v̂t

tb + ϑKpp p̃t
tb (6.33a)

Û̂vt
tb � −2S(ωt

ie)v̂
t
tb + f̂

t
ib + g t

b + ϑ
2Kvp p̃t

tb (6.33b)

Ûξ t
ib � −R

(
q̄t

b

)
S

(
σ̄b

ib

)
f̄ b

IMU + ϑ3Kξp p̃t
tb (6.33c)

f̂
t
ib � R

(
q̄t

b

)
f̄ b

IMU + ξ t
ib , (6.33d)

equivalent to the design of Grip et al. (2013) except for use of the tangent frame,
instead of ECEF, as navigation frame and the use of fused signals f̄ b

IMU, q̄t
b and σ̄

b
ib ,

based on the signals f b
IMU, j , q̂t

b , j and σ̂
b
ib , j . How f̄ b

IMU, q̄t
b and σ̄b

ib are generated is
presented in the two following sections, Section 6.3.5 and 6.3.6, respectively.

The reason why the accelerometer measurements are not treated similarly as
the angular rate measurements in Concept 2 is because of the feedback intercon-
nection where the measured specific force enters the TMO directly through f̄ b

IMU
and indirectly through q̄t

b and σ̄b
ib . Therefore if some faulty accelerometer mea-

surements from IMU j enter the aiding TMO directly through both (6.33c) and
(6.33d), the equilibrium of the feedback-interconnected system Σ1, j − Σ2 will be
affected before the FDI algorithms of Section 6.3.6 have had time to react. If so, this
might further impair the unit quaternionweighting of Section 6.3.6. This can beun-
derstood from the fact that the stability properties of the feedback-interconnected
NLO of Grip et al. (2013) only hold for fault-free measurements.

6.3.5 Parity space method

In the parity space method, the detection of faults simply comes down to the
choice between two hypotheses, either that an erroneous measurement has pre-
sented itself or not (Sturza, 1988). A statistical test is performed, based on a
decision variable Ddet obtained from separating the measurement space, i.e. all
the redundant measurements, into two subspaces, namely the parity space and
the dimensional state space, the latter of which is essentially the vehicle’s body
frame.

For l � 3m measurements of a 3-dimensional state vector x, where m is the
number of triads, the measurement model is given as

yb
IMU � Hxb

ib + bb
? + wb

? + db
?, (6.34)

where H is the measurement matrix

H �

(
I3 I3 . . . I3

)ᵀ
, (6.35)
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relating the state space to the measurement space, ? represents either the ac-
celerometers or the gyros, wb

? is a vector of white noise, bb
? is a vector of biases and

db
? is a vector of fault effects. xb

ib is the state space vector of interest, in this case
either ωb

ib or f b
ib as described in Section 6.3.3.

To distinguish between faults and regular IMU biases, one should compensate
as much as possible for the biases beforehand, such that the resultant bias bb

? is as
close to zero as possible before applying the parity space method.

The least squares estimate of xb
ib in (6.34) is

x̄b
ib � (HᵀH)−1Hᵀyb

IMU , (6.36)

while the residual (fault and noise) vector estimate becomes

f r � Sr yb
IMU , (6.37)

where Sr is given by
Sr � (I l − H(HᵀH)−1Hᵀ). (6.38)

Furthermore, the decision variable for detection can be computed as

Ddet � f ᵀr f r . (6.39)

Assuming that themeasurement noises are Gaussian, uncorrelated andwith equal
variance, and that each of the sensors are equally likely to havemeasurement faults,
the threshold Tdet , to which Ddet will be compared, is given as Sturza (1988)

Tdet
(
pFA , l − 3, σ2

n
)
� σ2

nF−1 (
1 − pFA |l − 3

)
, (6.40)

where pFA is the probability of false alarms, l − 3 is the degree of freedom, σ2
n

is the measurement noise variance, and F−1 (
p |v

)
is the inverse χ2 cumulative

distribution function, such that:

x � F−1 (
p |v

)
� {x : F (x |v) � p}, (6.41)

where

p � F (x |v) �
∫ x

0

t(v−2)/2e−t/2

2v/2Γ(v/2)
, (6.42)

and Γ(·) is the Gamma function.
For fault isolation, the faulty sensor number k can be identified by

k � arg max
j∈[1;l]

f 2
r, j

s j j
(6.43)

where fr, j is the jth element of f r and s j j is the jth diagonal element of the matrix
Sr . The parity space method is summarized in Algorithm 1.
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Algorithm 1 Parity Space Method

Require: H , Sr , yb
IMU, Tdet

1: b_dont_stop = true
2: while b_dont_stop do
3: f r � Sr yb

IMU
4: Ddet � f ᵀv f r
5: if Ddet > Tdet then

6: k � arg max j∈[1;l]
f 2
j

s j j

7: Remove kth measurement from yb
IMU, H

8: Recalculate Sr
9: else
10: b_dont_stop = false
11: end if
12: end while
Output: x̄ � (HᵀH)−1 Hᵀyb

IMU

6.3.6 Quaternion averaging and FDI

Averaging quaternions

The estimated unit quaternions from Section 6.3.4 (q̂t
b ,1 , q̂

t
b ,2 , . . . , q̂

t
b ,m), when ap-

plying Concept 2, can be weighed optimally using a single epoch estimation algo-
rithm solving the optimization problem

q̄t
b : � arg max

qt
b∈S3

m∑
j�1

w j(qt
b)
ᵀ q̂t

b , j(q̂
t
b , j)
ᵀqt

b , (6.44)

minimizing the quaterion error, equivalent to that posed in Markley (2007) with
respect to the definition in (B.2.2) of Appendix B.2.2. Eq. (6.44) is a representation
of the objective originally posed by Wahba (1965), where w j are positive weights.
Pure least squares weighting is not applicable for unit quaternions since this pro-
cedure alone neither maintains the unity norm of the averaged quaternion nor can
guarantee that the correct averaged quaternion is obtained regardless of the sign
of the quaternions, q̂t

b , j , w.r.t. to the set Q of (B.2.2) in Appendix B.2.2. This is
a crucial property of a unit quaternion-based fusing algorithm due to the topol-
ogy, and the inherit topological obstruction (Bhat and Bernstein, 2000), inferred by
(B.2.2), where q̂t

b , j and −q̂t
b , j represents the same rotation.

Using scalar weighted quaternions, for each update of the m attitude ob-
servers the averaged/weighted quaternion, q̄t

b , based on the m quaternion es-
timates q̂t

b ,1 , q̂
t
b ,2 , . . . , q̂

t
b ,m , and the respective weights, w1 , w2 , . . . ,wm , may be

obtained using Algorithm 2 performing an eigenvalue/eigenvector decomposi-
tion of a matrix composed of the given quaternions and weights. Furthermore,
in Algorithm 2, E is the matrix of eigenvectors of Kq , Deig is a diagonal matrix of
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Algorithm 2 Quaternion Weighting with Scalar Weights

Input: Quaternion estimates q̂t
b , j , weights w j

1: wtot �
∑m

j�1 w j

2: M �
∑m

j�1 w j q̂t
b , j

(
q̂t

b , j

)ᵀ
3: Kq � 4M − wtotI4
4: [E,Deig] � eig(Kq)
5: [λmax , jmax] � max(diag(Deig))
6: q̄t

b � E(:, jmax)
Ensure: ‖q̄t

b ‖2 � 1
Output: q̄t

b

the eigenvalues of Kq and imax is the column index associated with the maximum
eigenvalue, λmax, of Deig. The algorithm results in a weighted quaternion q̄t

b pro-
viding a unique attitude representation (Markley, 2007). According to Markley
(2007), a computationally efficient alternative to Algorithm 2 is the QUaternion
ESTtimation (QUEST) algorithm. A detailed study on QUEST is found in Shuster
and Oh (1981). Alternatives to employing QUEST are presented in Markley and
Mortari (2000). For a matrix weighted alternative to Algorithm 2, see Algorithm 5,
Appendix F.

FDI with quaternions

For the detection and isolation of faults in quaternions, the angle between the
receptive orientation estimates and the weighted average, β̃ j , is employed as the
foundation for the FDI. Consider two unit quaternions q1 � (s1; r1) and q2 �

(s2; r2), where r j � (r j1 ; r j2 ; r j3), the error quaternion between them is described by

q̃ :� q1 ⊗ q∗2 �

(
q2 Ξq(q2)

)ᵀ
q1 , (6.45)

based on Appendix B.2.2, where ∗ denote the unit quaternion conjugate. For unit
quaternions, the scalar part of the error quaternion can be calculated

s̃ � s1s2 + q2p2 + q3p3 + q4p4 , (6.46)

which is equal to the dot product qᵀ1 q2. Now, consider that β̃ is the angle of the
vector part of the error quaternion. Then, the relationship between the scalar part
and the angle is given as

s̃ :� cos
(
β̃

2

)
⇒ β̃ � 2 arccos (s̃) � 2 arccos

(
qᵀp

)
, (6.47)
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Algorithm 3 Quaternion FDI

Require: q̂t
b ,1 . . . q̂

t
b ,m , w1 . . .wm , αdet

1: b_dont_stop = true
2: while b_dont_stop do
3: q̄t

b � quat_avg(q̂t
b ,1 . . . q̂

t
b ,m , w1 . . .wm)

4: for j � 1 To m do
5: β̃ j � 2 arccos

(���(q̂t
b , j)ᵀ q̄t

b

���)
6: end for
7: if any(β̃) j > αdet then
8: k � arg max j∈[1;m] β̃ j

9: Remove kth quaternion q̂t
b ,k

10: else
11: b_dont_stop = false
12: end if
13: end while
Ensure: ‖q̄t

b ‖2 � 1
Output: q̄t

b

from Chou (1992). Furthermore, (6.47) may serve as a useful metric for FDI.
However, for a α ∈ [0, 1], due to

β � 2 arccos(α) � 2π − 2 arccos(−α), (6.48)

one can instead use the absolute value of the dot product to avoid to calculate the
absolute error angle. Therefore,

β̃ j � 2 arccos
(���(q̂t

b , j)
ᵀ q̄t

b

���) , (6.49)

is chosen to serve as basis for FDI. If any of the β̃ j values are over a given threshold
αdet , the corresponding quaternion is removed from the average, using Algo-
rithm 3. The threshold αdet might be chosen as the maximum allowable angle
difference between an attitude observer’s output and the average output. The
value should be as low as possible, but in order to minimize false alarms, a lower
bound on αdet could be determined by empirical data from a fault-free case.

Fusing σ̂b
ib , j

In contrast to the unit quaternions, q̂t
b , j , the injection terms from the respective

attitude observers, σ̂b
ib , j ∈ R3, may evolve freely on R3 due to no topological

obstruction. Thus, the fused injection term, σ̄b
ib , to be used in the TMO, is easily
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obtained with LS-based weighting,

σ̄b
ib �

©«
m∑

j�1
w j

ª®¬
−1

m∑
j�1

w j σ̂
b
ib , j (6.50)

�
(
Hᵀσ̂R−1

σ̂ H σ̂
)−1

Hᵀσ̂R−1
σ̂ y σ̂ . (6.51)

where

y σ̂ �

(
σ̂b

ib ,1; σ̂b
ib ,2; . . . ; σ̂b

ib ,m

)
, (6.52)

H σ̂ �

(
I3 I3 . . . I3

)ᵀ
. (6.53)

The matrix H σ̂ and vector y σ̂ are modified according to the output of the FDI
method in Section 6.3.6, meaning that σ̂b

ib ,k from a faulty observer j is removed.
Using the scalar weights, the matrix Rσ̂ of (6.51), which can be considered as a
covariance matrix, is easily obtained as

Rσ̂ � blockdiag
(

1
w1

I3 ,
1

w2
I3 , . . . ,

1
wm

I3

)
. (6.54)

Similar to the matrix-weighted quaternion procedure, the respective weights of
Rσ̂ does not have to be diagonal, allowing for block-diagonal structure for Rσ̂

Rσ̂ � blockdiag (R1 ,R2 , . . . ,Rm) , (6.55)

based on some design criteria of positive definite matrices, R j .

6.3.7 Case study

A case study on usage of redundant IMUs installed onboard an offshore vessel,
cf. Appendix E, is presented. Three IMUs were applied. A modified version of
the translational motion observer of Section 6.3.4 was employed in validating the
two FDI concepts. This TMO is designed specifically for surface vessels and is the
same as described in (5.10), Section 5.1.2, however using the q̄t

b and σ̄b
ib , similar

to that of the TMO (6.33) of Section 6.3.4. The vessel was conducting a dynamic
positioning operation at the time of the data acquisition, and the north-east plot of
its track is shown in Figure 6.9, equivalent to Figure 4.20a of Section 4.4.8. Artificial
faults are added to the signals in order to trigger the FDI methods. The results of
the NLO-based concept (Concept 2) are compared with the classical parity space
method (Concept 1) commonly used in high-grade redundant inertial systems.

Ship sensor configuration

The sensor configuration for validating the concepts was:
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Figure 6.9: Path track obtained from the onboard GNSS.

• 1x differential GNSS position measurement, pt
GNSS � (p

t
tb ,x , p

t
tb ,y)

ᵀ available
at 1 Hz (only horizontal position is used).

• VVR: pt
tb ,I � 0, for all t ≥ 0 available at 1000 Hz.

• 3x ADIS 16485 IMUs and 1x STIM300 IMU, each providing

– Tri-axial accelerometer-based specific force measurements, f b
IMU

– Tri-axial angular rate measurements, ωb
IMU

all interfaced at 1000 Hz.

• Yawmeasurements from a triple-redundant gyrocompass (GC) solution, ψc ,
available at 5 Hz.

The STIM300 was utilized for comparison. As in Section 5.1, for the performance
and FDI evaluations, the IMU measurements are filtered with a 6th order low-
pass Butterworth filter with a cutoff frequency of 5 Hz. The attitude estimates
were compared to the 5 Hz VRU roll (φ) and pitch (θ) signals. See Table E.2 for
specifications from the manufacturer. The specifications of the IMUs installed are
presented in Table E.1.

Accelerometer bias estimation

In Bryne et al. (2016), it was found that the accelerometer biases were sufficiently
in-run stable over several days for attitude estimation, and a static accelerometer
bias estimate b̄b

acc was used. The same approach was used here, meaning that

f b
IMU,j � f b

IMU∗ ,j − b̄b
acc,j , (6.56)
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Figure 6.10: Noise estimates: z-axis the angular rate sensor.

Table 6.1: Noise standard deviation (Std) estimates, σ̂gyro, for angular rate sensors,
in degrees/s.

Std ADISx3 ADIS1 ADIS2 ADIS3 STIM

σ̂gyro,x 0.1162 0.1546 0.1545 0.1668 0.1252
σ̂gyro,y 0.1707 0.2101 0.2037 0.2073 0.1460
σ̂gyro,z 0.0776 0.1363 0.1194 0.1247 0.0881

where f b
IMU∗ ,j is the rawmeasurement from the jth IMU,was applied. Alternatively,

the approach of Grip et al. (2016) could be applied, augmenting (6.33) with an
accelerometer bias estimator subject to a PE requirement w.r.t. to the motion.

Full-scale testing: Noise reduction

To obtain some estimates for angular rate sensor and accelerometer noise, high-
pass filtering of the rawmeasurements is performed with a 6th order Butterworth
filter to remove bias and the vehicle motion, and calculate the standard deviation
of the result. An example of the output is seen in Figure 6.10. This will at least
make it possible to compare the individual sensor outputs to each other, and to
compare the individual sensors to the aggregated output based on several sensors.
The results are presented in Tables 6.1–6.2, and show a slight reduction of noise.
According to (6.24), we couldhavehoped for a reduction by the factor of

√
m ≈ 1.73,

since m � 3, but only the results related to the z-axis of the aggregated angular
rate sensor come close to that number. This is due to ship vibrations affecting the
IMU noise reduction obtained by the least squares weighting.
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Table 6.2: Noise standard deviation (Std) estimates for accelerometers, in m/s2.

Std ADISx3 ADIS1 ADIS2 ADIS3 STIM

σ̂acc,x 0.0557 0.0905 0.0400 0.0611 0.0432
σ̂acc,y 0.0441 0.0669 0.0343 0.0482 0.0485
σ̂acc,z 0.0696 0.0749 0.0750 0.0746 0.0616

Table 6.3: Attitude estimation error compared to onboard VRU, in degrees.

ADISx3
Concept 1

ADISx3
Concept 2 ADIS2 a STIM a

Roll mean error 0.0008 0.0011 -0.0007 -0.0044
Pitch mean error 0.0009 0.0009 0.0047 0.0016
Roll RMS error 0.0310 0.0328 0.0363 0.0299
Pitch RMS error 0.0653 0.0662 0.0670 0.0649
Roll CAEE 648.28 687.92 759.80 628.99
Pitch CAEE 1,370.6 1,389.1 1,406.0 1,357.5
a Results from Section 5.1.4

Table 6.4: Heave estimation error compared to onboard VRU.

ADISx3
Concept 1

ADISx3
Concept 2 ADIS2 a STIM a

Mean heave error [cm] -0.6147 -0.6147 -0.6511 -0.6005
Heave RMS error [cm] 4.0515 4.0515 5.7766 10.523
Heave CAEE [m] 855.93 855.93 1,215.0 2,207.3
a Results from Section 5.1.5

Full-scale testing: Performance evaluation

Both Concept 1 and 2 are compared with single-IMU solutions for attitude and
heave estimation, and the onboard VRU serves as reference. The results are pre-
sented in Tables 6.3–6.4, and show that for attitude there really is not much of a
difference between the different alternatives and IMUs. This is in compliance with
the findings of Rogne et al. (n.d.b), presented in Section 5.1 of the preceding chap-
ter, where it was discovered that the choice of estimator had more impact than the
choice of IMU. Even using a significantlymore noisy signal yielded approximately
the same estimation error compared to the VRU. When it comes to heave estima-
tion, the results vary more, and apparently using a combined accelerometer input
is favorable. Figures 6.11–6.13 present example outputs from Concept 2 related to
attitude and heave, and Figure 6.14 shows the fault-detection variables for both
the parity space method and quaternion averaging in a fault-free case.
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Figure 6.11: Attitude estimates based on redundant ADIS16485 IMUswith quater-
nion averaging. The weighted result is denoted with subscript w.

Full-scale testing: FDI

Here the same dataset as above was utilized where artificial faults were added
to the measurements from one of the accelerometers and one of the angular rate
sensors.

Accelerometer fault
An additional bias of 1 m/s2 is added to the x-axis of ADIS2 at t � 20min. Since
the accelerometer FDI for both alternatives is based on the exact same parity space
method, the results are expected to be the same. Figure 6.15 shows the fault
detection variables and the fault status of the faulty accelerometer. The faulty
sensor is removed in an orderly fashion, and practically no effect is seen on the
estimates. Since the parity space method only removes one axis, the observers
may still make use of the remaining eight axes to full effect.

Angular rate sensor fault
For ADIS3, the gyro bias is increased by 1 deg/s on the y-axis at t � 20min. For
Concept 1, one can observe from Figure 6.16 that the attitude estimates deviate
when the fault occurs, before converging back to its default state. The reason can be
seen in Figure 6.17; when one of the faulty angular rate sensor axis is removed, the
aggregated gyro bias, of the combined sensor output, is changed and the observer



6.3. REDUNDANT INERTIAL SENSORS 161

0 20 40 60 80 100 120

-1

0

1

0 20 40 60 80 100 120

-1

0

1

0 20 40 60 80 100 120

-1

0

1

Figure 6.12: Attitude estimation errors based on redundant ADIS16485 IMUswith
quaternion averaging. The weighted result is denoted with subscript w.

needs some time to estimate the new combined bias. From Figure 6.18 one can see
that the fault is detected and isolated sufficiently.

From Figure 6.19 one can see that the averaged attitude estimates of Concept 2
are not significantly affected by the fault, while the one faulty estimator remains
erroneous. Figure 6.20 show the results of the FDI. After a transient period the
first five minutes, the β̃ j angles remains under the threshold αdet , before the fault
occurs at t � 20min. The fault is then properly detected and isolated, and the
output from the faulty estimator is removed from the quaternion average.

Discussion

For the noise reduction, the theoretical levels from (6.24) were not achieved. This
is most likely because much of the noise is not independent from sensor to sensor,
but rather common mechanical vibrations or electrical/magnetic disturbances.
For the z-axis of the accelerometer the reduction was only around 7%, strongly
suggesting that the noise is correlated. The STIM300 IMUwas used for comparison
relative the triple-redundant solution and had a slightly better noise characteristic
than the individual ADIS16485s, w.r.t. to Table 6.2. The triple-redundant solution,
however, brought the combined ADIS16485 output to the same levels as obtained
with the STIM300.

As far as performance goes, not much was achieved for the attitude estimation
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Figure 6.13: Heave estimates and heave estimation error obtained with redundant
ADIS16485 IMUs using the parity space method.

by merging the IMUs, while the heave estimation was somewhat improved. The
accelerometer plays a major role in this regard, so reducing the noise and bias
before using it in the TMO is evidently helpful. Even though the STIM300 mea-
surements gathered at sea had better noise characteristics according to Table 6.2,
the results obtained with this IMU proved to be worse than those obtained when
both merging three IMUs and only using one of the ADIS16485 IMUs available.
This probably has something to do with the STIM300’s accelerometer in-run bias
stability, which is a bit worse than the ADIS16485’s counterpart, considering the
manufacture specifications, cf. Table E.1 on page 205.

Fault detection and isolation related to the accelerometer with the parity space
method proved successful. With much of the bias removed using (6.56), the
detection variable Ddet clearly indicated adetected fault. Moreover, by using (6.43),
the faulty sensor was identified. For the angular rate sensors, however, a problem
arose as shown in Figures 6.17–6.18. The bias estimates were disturbed, causing a
perturbation in the attitude estimate, as seen in Figure 6.16. The quaternion-based
FDI algorithm fared better in this regard, quickly voting out the erroneous (third)
IMU/NLO combination. After the estimate of Concept 1 has converged again,
this method has the upper hand, since still eight gyro axes are in play, versus only
six when using Concept 2, since a whole gyro triad providing input to the faulty
observer is removed. Considering the results of Table 6.3, the latter, however,
may not impair the attitude estimation performance since a triple-redundant IMU
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Figure 6.14: Redundant IMUs: Fault detection variables in the fault-free case.
Top: Parity space method for angular rate sensor using Concept 1. Middle: Parity
space method for accelerometer (Concept 1 and 2). Bottom: Quaternion fault
angles using Concept 2.

configuration did not have significant improvements compared to only using one.
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Figure 6.15: Redundant IMUs: Fault detection and isolation when applying the
parity space method for accelerometer FDI.
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Figure 6.16: Redundant IMUs: Concept 1 – Attitude estimation error when using
the parity space method for angular rate FDI.
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Figure 6.17: Redundant IMUs: Concept 1 – Gyro bias estimates when using the
parity space method for angular rate FDI.

0 5 10 15 20 25 30

0

0.5

1

1.5

0 5 10 15 20 25 30

0

0.5

1

IM
U

Figure 6.18: Redundant IMUs: Concept 1 – Fault detection and isolation when
using the parity space method for angular rate FDI.
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Figure 6.19: Redundant IMUs: Concept 2 – Attitude estimation error when using
the quaternion-based algorithm for angular rate FDI.
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Figure 6.20: Redundant IMUs: Concept 2 – Fault detection and isolation when
using the quaternion-based algorithm for angular rate FDI.
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6.3.8 Summary

Two concepts for applying redundantMEMS IMUs in the context for nonlinear ob-
servers have been presented. One alternative was based on the classic parity space
method, while the other also employed a quaternion-based averaging, fault detec-
tion and fault isolation scheme. The structural differences between the alternatives
were laid out. Algorithms were developed for both concepts. These were further
validated using full-scale experimental data acquired from an offshore vessel, us-
ing three ADIS16485 IMUs. A STIM300, with a better gyro, w.r.t. to in-run bias
stability, was used for comparison. In addition, the ship’s industry-proven verti-
cal reference unit sensors were utilized for comparison. In addition, the onboard
gyrocompasses were used to aid the attitude observers. For attitude estimation
performance, there was little to gain from redundant IMUs in this context, while
for heave estimation there were some improvements.

Artificial faults were added to themeasurement signals in order to test the fault
detection and isolation (FDI) algorithms. In the accelerometer fault situation, the
fault was detected and isolated rapidly, and where the FDI in this case was purely
based on the parity space method in both alternatives. For the angular rate sensor
fault, the parity space method implemented here showed some weaknesses com-
pared to the quaternion-based method. Nonetheless, both methods successfully
detected and isolated the fault.

For further work, one could consider finding ways of adding the accelerometer
FDI to the quaternion-based scheme as well. This was not done here because
of the feedback interconnection between the nonlinear attitude observer and the
translationalmotion observer, that is somewhat sensitive to accelerometer (specific
force) disturbances.
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6.4 Conclusions

This chapter presented algorithms for FDI of redundant position reference, head-
ing and MEMS inertial sensors based on INSs, designed using nonlinear observer
theory.

The algorithms related position and heading sensors was based on applying
multiple Kalman filters, to detect faulty measurements, employing the possibility
to detect and isolate biased and drifting sensor readings and outliers, preventing
the faulty measurements from entering the navigation system. Measurements
deemed fault-free were weighted using a least squares approach. The algorithms
were evaluated in simulation. The detection of slowly drifting position and head-
ing measurements, from a single sensor, is shown to be feasible with the design
proposed.

For redundant MEMS inertial sensors, two alternative concepts for integra-
tion of multiple IMUs were presented based on nonlinear observers. The first
concept was based on the classic parity space method, while the other also em-
ployed a quaternion-based averaging and FDI scheme. The algorithms were vali-
dated on full-scale experimental data acquired from an offshore vessel, using three
ADIS16485 IMUs. The results were compared to industry-proven VRUs. For atti-
tude estimation performance, there was little to gain from redundant IMUs in this
context, while for heave estimation there were some improvements. Simulated
faults were added to the signals to test the FDI properties. For FDI of angu-
lar rate sensors, the parity space method implemented showed some weaknesses
compared to the quaternion-based method.

Further work can focus on validating algorithms for FDI of position and head-
ing sensors. One could also consider investigating FDI designs where the ac-
celerometer is added to the quaternion-based scheme as well. This was not done
here because of the feedback interconnection between the nonlinear attitude ob-
server and the translational motion observer, that is somewhat sensitive to ac-
celerometer disturbances.



7Concluding Remarks
This thesis has presented new theoretical results and applications related to strap-
down inertial navigation of marine surface vessels. The proposed navigation sys-
tems have been based using nonlinear observers (NLOs) in contrast to traditional
solutions based on the extended Kalman filter. Furthermore, the designs have
utilized a feedback-interconnection framework of an attitude and a translational
motion observerwhere the origins of the observers’ error dynamicswere proven to
be uniformly semiglobally exponentially stable. The presented observers provided
position, velocity and attitude together with specific force estimates. The primary
focus, however, has been on attitude and heave estimation of marine vessels, re-
lated to vertical reference units (VRUs), providing similar signals, which have a
widespread utilization on ships, in particular on offshore vessels. The motivation
behind this was to facilitate high-quality position estimation, since accelerometers
and position measurements are related to each other, using the attitude, through
a rotation matrix, and a kinematic model. It is also beneficial that the inertial
navigation systems (INSs) provide its own heave estimate without the need of
additional VRUs.

The beginning of the thesis focused on extensions and the inclusion of time-
varying gains in the nonlinear observer design, motivated by the desire to improve
the performance of the estimation of position, velocity and attitude. It was shown
that augmenting loosely coupled integration strategies of satellite and inertial
navigation systems, in order to compensate for the colored noise of global nav-
igation satellite systems (GNSS), proved to be difficult. Through simulations it
was shown that this compensation is feasible with highly accurate velocity mea-
surements, though most likely, not realistic in practice. It was further shown,
using data collected during an unmanned aerial vehicle flight, that tightly cou-
pledGNSS/INS integration gave the best performance relative real-time kinematic
GNSS when integrating the sensors with nonlinear observers. In addition, algo-
rithms for discrete-time implementation of the observers were presented.

The main contribution of the thesis was the introduction of the virtual vertical
reference (VVR) principle as an alternative to GNSS for vertical aiding of inertial
navigation systems for marine vessels. This concept is based on exploiting that
the averaged heave displacement of a marine vessel is zero on average relative
the mean sea surface. The design was first presented with a scalar time-varying
gain, affecting the estimation of both the horizontal and the vertical motion. It was
shown through simulations that utilizing the VVR principle improved estimation
of roll and pitch compared to utilizing GNSS as vertical reference due to kinematic
couplings. Moreover, it was also shown through validation of the observers that
exploiting the feedback interconnection with the VVR concept resulted in smaller
errors relative to the output of industry standard VRUs compared to utilizing a
standalone nonlinear observer, with the gravity as reference vector. The latter is

169
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an alternative to applying the estimated specific force, obtained from a feedback
interconnection with a translational motion observer (TMO), as reference vector.

The observer structure, aided by VVR, was later extended to allow for a more
flexible time-varying design. This included exploiting an error model based on
parameters describing thewave-inducedmotion of amarine vessel. This increased
the potential heave estimation performance. Furthermore, thementioned parame-
terswereobtainedusing the estimatedpitch andmeasuredpitch rate, compensated
for gyro bias. It was shown byMonte Carlo simulations that the design has the po-
tential to achieve the industry standard specification related to heave accuracy and
precision of five centimeters or five per cent root-mean-square error. Validation
using sensor data from a MEMS inertial measurement unit (IMU), collected on an
offshore vessel, was carried out by comparing the heave estimate to the output of
an industry standard VRU.

The fifth chapter of the thesis focused on aspects of INS specifics related to
ships. Sensor configurations, choice of observers and filtering were emphasized.
Pre-filtering of the IMU measurements seems promising for attenuating sensor
noise and disturbances induced by significant ship vibrations. Such filtering,
however, might introduce undesirable phase lag. The attitude estimates obtained
using the ship data and the NLOs were compared to the output of a proven
navigation suite based on the extended Kalman filter. The NLO aided by a TMO
obtained similar performance as the navigation suite in estimating roll and pitch.
Moreover, the wave filtering of the estimates from a NLO-based INS was also
carried out. This work is the first in doing so unlike traditional designs, which
have exploited vessel models in the observer design.

The final chapter focused on sensor redundancy and fault tolerance. It was
shown that drift detection of position and heading references is possible if triple-
redundant sensors are available. Fault detection and isolation of MEMS inertial
sensors were carried out using full-scale data, applying two concepts, exploiting
redundant IMU configurations, based on nonlinear observers. The first concept
utilized a traditional parity space approach together with one attitude observer
and a TMO. The second concept exploited redundant attitude observers as well.
Both designs proved to be successful in detecting faults which were artificially
injected. However, the concept with redundant attitude observers proved to be
the most robust toward faulty rate gyros. Averaging of a triple-redundant IMU
did not improve the attitude estimation, however, the heave estimation might be
improved by fusing multiple IMUs.

The course of this work showed that the heave estimation performance could
be improved by taking sea-state-dependent parameters into account. Furtherwork
may explore ways of improving the heave estimation even more. Not necessarily
performance-wise, but towards increased robustness. The design with the highest
performance, presented in this work, is also the most sensitive to the sea state.
Validating the design in sea states with dual-peaked wave spectra is of interest.
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Extending the design might be necessary. Moreover, including absolute vertical
position reference measurements to the VVR-based TMOs, for increased applica-
bility in situations where knowing absolute altitude over the seabed is necessary,
is a possible extension. Also extending the VVR concept to be utilized in tightly
coupled GNSS/INS integration would be of interest. Such design has the poten-
tial to outperform loosely coupled integration. In addition, the inclusion of the
VVRmight increase the fault-tolerance properties of the aided INS due to possibly
improved pseudorange monitoring, since additional information related to the
vessel’s motion is introduced to the observer framework.

More focus on the fault tolerance of the proposed INSs is of interest. Fault
tolerance properties will receive increased attention in the steps towards more au-
tonomy in marine vessels. Traditionally, sensor and VRU redundancy on offshore
vessels have typically been more separated than presented here, where each unit
provides its own processed estimate output. The results presented here related
to sensor and observer validation indicate that a more integrated design could be
beneficial, especially related to the heave estimation. For such strategies to receive
industrial attention, extending the framework to handle a wider range of faults is
necessary in order to not increase or induce risk. By doing so, sensor costs can
potentially by reduced since existing VRU solutions can be replaced. At the same
time, the navigation system’s performance and its fault-tolerance properties can
be increased.





AStability Properties and Detailed Proofs
A.1 Stability Properties

This section in based on Loria and Panteley (2005).
Consider a general time-varying nonlinear system

Ûx � f (t , x , u) x(t0) :� x0 , (A.1a)
y � h(x), (A.1b)

where f : R≥0 ×Rn → Rn with initial conditions (t0 , x0). Moreover, Br denotes the
open ball

Br :� {x ∈ Rn : ‖x‖2 < r}, (A.2)

while x(t; t0 , x0) denotes the solution x(t) of (A.1), at time t, with initial condition
(t0 , x0).

The stability properties considered in this thesis follows c.f. Loria and Panteley
(2005), Definition. 2.7.

Definition A.1 (Uniform Local Exponential Stability). The origin of the system
(A.1) is said to be uniformly locally exponentially stable (ULES) if there exist constants
γ1 , γ2 and r > 0 such that for all (t0 , x0 ∈ R≥0 × Br)

‖x(t; t0 , x0)‖2 ≤ γ1‖x0‖2e−γ2(t−t0) , ∀t ≥ t0. (A.3)

Definition A.2 (Uniform Semiglobal Exponentially Stability). If for each r > 0
there exist γ1 , γ2 such that (A.3) holds for all (t0 , x0) ∈ R≥0 × Br then, the system is said
to be uniformly semiglobally exponentially stable (USGES).

DefinitionA.3 ((Uniform)Global Exponentially Stability). The origin of the system
(A.1) is said to be (uniformly) globally exponentially stable (GES) if there exist γ1 , γ2 > 0
such that (A.3) holds for all (t0 , x0) ∈ R≥0 × Rn .
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A.2 Detailed Proofs

A.2.1 Proof of Lemma 4.1

Proof. From (4.20) we have that

C∗ �
(
I3 03×7

)
. (A.4)

Hence,
C∗†C∗ � blockdiag (I3 , 07×7) , (A.5)

and we get

L∗ϑC∗†C∗ � C∗†C∗L∗ϑ , (A.6)

due to C∗†C∗ and L∗ϑ share a block diagonal structure. Then the result follows
by E∗ϑ of (4.30) post-multiplied with C∗, using (A.6) and C∗C∗†C∗ � C∗ (Horn and
Johnson, 2013, Ch. 7.3) such that E∗ϑC∗ � C∗L∗ϑC∗†C∗ � C∗C∗†C∗L∗ϑ � C∗L∗ϑ. �

A.2.2 Proof of Theorem 4.1

Proof. Consider the Lyapunov function candidate defined as U(t , η) :� 1
ϑ η
ᵀP−1η,

where P � Pᵀ > 0 is the solution of (4.39). Differentiation along the trajectories of
(4.37) gives

ÛU(t , η) � 1
ϑ
ÛηᵀP−1η +

1
ϑ
ηᵀP−1 Ûη,

� ηᵀ(P−1A∗ + A∗ᵀP−1)η − ϕ(t)ηᵀP−1K0C∗η

− ϕ(t)ηᵀCᵀKᵀ0 P−1η + 2ηᵀP−1ρ(t , χ). (A.7)

By considering (4.38), we have that K∗0 � PC∗ᵀ and by resolving the transposes
and exploiting that P � Pᵀ gives

ÛU(t , η) � ηᵀP−1(A∗P + PA∗ᵀ)P−1η − 2ϕ(t)ηᵀC∗ᵀC∗η + 2ηᵀP−1ρ(t , χ). (A.8)

Furthermore, by inserting (4.39) into (A.8) gives

ÛU(t , η) � −ηᵀP−1QP−1η − 2(ϕ(t) − τ)ηᵀC∗ᵀC∗η + 2ηᵀP−1ρ(t , χ). (A.9)

Then, (A.9) can be simplified further since ϕ(t) ≥ τ > 0 yielding,

ÛU(t , η) ≤ −ηᵀP−1QP−1η + 2ηᵀP−1ρ(t , χ). (A.10)

Moreover, since ‖I3 − R̃ᵀ‖ � ‖ s̃S(r̃) − S(r̃2)‖ ≤ 2‖ r̃ ‖2, a bound of ρ(t , χ) can be
given as ‖ρ(t , χ)‖2 ≤ 1

ϑ4 γ1‖χ‖2, for some γ1 > 0 independent of ϑ. Hence, ÛU(t , η)
can take the following form

ÛU(t , η) ≤ λmin(Q)λmin(P−1)2‖η‖22 +
2‖P−1‖
ϑ4 γ1‖η‖2‖χ‖2. (A.11)
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Since the reference vector basedon f n
ib , in (4.60)–(4.61), is not known, but estimated,

we turn the attention back to the dynamics of s̃. The attitude observer of (4.60)–
(4.61), with the injection term σb

ib based on known f n
ib and the error dynamics,

Û̃s �
1
2

r̃ᵀR(qn
b )(b̃

b
+ σb

ib), (A.12)

Û̃r � −1
2
(s̃I3 − S(r̃))R(qn

b )(b̃
b
+ σb

ib), (A.13)

Û̃b � −Proj(b̂b
gyro ,−kI(t)σb

ib), (A.14)

was proven to be USGES in Grip et al. (2012a). First, Grip et al. defines V(t , s̃) :�
1 − s̃2 � ‖ r̃ ‖22 and ÛV(t , s̃) � Mbgyro − kP c2

obsα(s̃), where α(s̃) � s̃2(1 − s̃2). Moreover,
from Grip et al. (2012a), a sufficiently large kP and | s̃ | � ε imply that ÛV � Mbgyro −
kP c2

obsα(ε). This results in the trajectories not being able to escape the region
defined by | s̃ | ≥ ε. Furthermore, Û̃s can be expressed as

Û̃s �
1
2

r̃ᵀR(qn
b )(b̃

b
+ σb

ib) + µ1 , (A.15)

where µ1 �
1
2 r̃ᵀR(qn

b )(σ̂
b
ib−σb

ib), by taking into account (A.12) and that σ̂b
ib , instead

of σb
ib , is utilized as the injection term. Moreover, µ1 has the property

|µ1 | ≤
1
2

k1‖ f b
ib ‖2 ‖ r̃ ‖2 ‖ f̃

n
ib ‖2 ≤ γ2‖ r̃ ‖2 ‖ f̃

n
ib ‖2 , (A.16)

for a γ2 > 0 independent of ϑ, which can be given as,

|µ1 | ≤ ϑ3γ2‖ r̃ ‖2 ‖η‖2. (A.17)

By following the steps of Grip et al. (2013, Proof, Theorem 1) we also have | Û̃s | ≤
1
2 (‖b̃

b ‖2 + ‖σ̂b
ib ‖2). Since ‖b̃b ‖2 ≤ Mbgyro and σ̂b

ib only consist of bounded signals
we have | Û̃s | ≤ Ms for a Ms > 0 independent of ϑ.

Motivated byGrip et al. (2013, Lemma 2), the bound of x̃∗ can be given as ‖ x̃∗‖ ≤
δ, obtained for all t ≥ T, for some δ, as presented inLemmaA.1, AppendixA.2.3, on
page 178. Furthermore, δ can be defined as δ :� kP c2

obs(α(ε+ ε̃/2)−α(ε))/(2γ2) > 0
and T � ε̃/(2 Ms), where ε̃ :� ε̄ − ε, and let ϑ be sufficiently large such that for all
t ≥ T, ‖ x̃‖∗ ≤ δ. Then, as in Grip et al. (2013, Proof, Theorem 1),

| s̃(T)| ≥ | s̃(0)| −
∫ T

0
| Û̃s(t)| dt ≤ ε̄ −Ms ε̃/(2 Ms) � ε + ε̃/2,

and for all t ≥ T, |µ1 | ≤ γ2‖ r̃ ‖2 ‖η‖2 ≤ γ2δ ≤ kP c2
obs(α(ε + ε̃/2) − α(ε))/2. Now, it

follows for t ≥ T that the derivative of V(s̃) yields

ÛV ≤ Mbgyro − kP c2
obs α(s̃) + 2| s̃µ1 |,

≤ Mbgyro − kP c2
obs(α(s̃) − α(ε + ε̃/2) + α(ε)). (A.18)
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Then, with the reference to the proof of Grip et al. (2012a, Theorem 1) it follows
for | s̃ | � ε + ε̃/2 that ÛV ≤ Mbgyro − kP c2

obsα(ε) < 0. Hence, q̃ cannot escape the set
D(ε + ε̃/2) ⊂ D(ε) and we can assume | s̃ | ≥ ε in the remainder of the analysis.

By taking in account (A.13)–(A.14) and that σ̂b
ib is the injection term, the error

dynamics of r̃ and b̃b are written

Û̃r � −1
2
(s̃I3 − S(r̃))R(qn

b )(b̃
b
+ σb

ib) + µ2 , (A.19)

Û̃b � −Proj(b̂b
gyro ,−kI(t)σb

ib) + µ3. (A.20)

Hence, µ2 and µ3 take the form,

µ2 �
1
2
(s̃I3 − S(r̃))R(qn

b )(σ
b
ib − σ̂

b
ib), (A.21)

and
µ3 � Proj(b̂b

gyro ,−kI(t)σb
ib) − Proj(b̂

b
gyro ,−kI(t)σ̂b

ib). (A.22)

Then, ‖µ2‖2 ≤ γ3‖ f̃
n
ib ‖2 ≤ ϑ3γ3‖η‖2 for some γ3 > 0 independent of ϑ. From the

properties of the parameter projection, it can be shown that

‖µ3‖2 ≤ γ4‖ f̃
n
ib ‖2 ≤ ϑ3γ4‖η‖2 , (A.23)

for some γ4 > 0 independent of ϑ.
Furthermore, Grip et al. (2012a) also presents the Lyapunov function candidate

W(t , r̃ , s̃ , b̃b) � V(s̃) + 2 ` s̃ r̃ᵀR(qn
b ) b̃

b
+

`
2kI

(
b̃

b
)ᵀ

b̃
b
> 0, ∀ r̃ , b̃b , 0, (A.24)

By following the steps of Grip et al. (2012a, Proof, Theorem 1) result in

ÛW ≤ −
(
‖ r̃ ‖2 ‖b̃b ‖2

) (
kP a − ` M2

bgyro
?

− 1
2 (1 + 2 ` Mω) l ε2

) (
‖ r̃ ‖2
‖b̃2‖2

)
, (A.25)

where ? indicates symmetry, a > 0 and Mω ≥ ‖ωb
ib ‖2. ` is given in Grip et al.

(2012a). Moreover, from Grip et al. (2012a) for some sufficiently large kP , can it be
shown that ÛW ≤ −κ‖χ‖22 < 0 for some κ > 0. With the relations above we get that
ÛW is less or equal than −κ‖χ‖22 plus the terms related to µ1, µ2 and µ3, yielding
that

ÛW ≤ −κ‖χ‖22 − 2s̃µ1 + 2`µ1 r̃ᵀR(qn
b )b̃

b
+ 2` s̃µᵀ2 R(qn

b )b̃
b

+ 2` s̃ r̃ᵀR(qn
b )µ3 +

`
kI(t)

(
b̃

b
)ᵀ
µ3.

(A.26)

Furthermore, by taking in account the bounds on µ1, µ2 and µ3, it follows that

ÛW ≤ −κ‖χ‖22 + 2ϑ3γ2‖ r̃ ‖2‖η‖2 + 2`ϑ3γ2‖b̃
b ‖2‖η‖2

+2`ϑ3γ3‖b̃
b ‖2‖η‖2 + 2`ϑ3γ4‖ r̃ ‖2‖η‖2 +

`
kI(t)

ϑ3γ4‖b̃
b ‖2‖η‖2 ,

≤ −κ‖χ‖22 + γ5ϑ
3‖χ‖2‖η‖2 , (A.27)
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for an appropriate constant γ5, independent of ϑ.
Now, defining the LFC Y(t , χ, η) :� U +

1
ϑ7 W on the form of

β1(‖η‖22 + ‖χ‖22) ≤ Y ≤ β2(‖η‖22 + ‖χ‖22), (A.28)

where β1 , β2 > 0 are constants. Then, the derivative of Y along the trajectories
satisfies

ÛY(t , χ, η) ≤ − λmin(Q)λmin(P−1)2‖η‖22 +
2 γ1

ϑ4 ‖P
−1‖‖η‖2‖χ‖2

− 1
ϑ7 κ‖χ‖

2
2 + γ5

1
ϑ4 ‖χ‖2‖η‖2 ,

(A.29)

yielding

ÛY(t , χ, η) ≤ −
(
‖η‖2 ‖χ‖2

) (
λmin(Q)λmin(P−1)2 ?

− 2‖P−1‖γ1+γ5
2ϑ4

κ
ϑ7

) (
‖η‖2
‖χ‖2

)
,

(A.30)

where? indicates symmetry. Clearly the first-order principal minor,

λmin(Q)λmin(P−1)2 > 0,

is positive. The second-order principal minor,

1
ϑ7 λmin(Q)λmin(P−1)2κ − 1

ϑ8
(2‖P−1‖γ1 + γ5)2

4

is positive for ϑ > (2‖P−1‖γ1+γ5)2
4 λmin(Q)λmin(P−1)2 κ . Inherently

ÛY(t , χ, η) ≤ −β3(‖η‖22 + ‖χ‖22), (A.31)

for some β3 > 0. By invoking the comparison lemma (Khalil, 2002, Lemma 3.4)
with the linear system Ûu � −β3u, and the corresponding solution u(t) � u(0)e−β3t

yields
Y(t , χ, η) ≤ Y(0, χ, η)e−β3t , (A.32)

for all t ≥ 0. Consequently, the equilibrium (η; χ) � 0 is USGES as defined in
Appendix A.1. �
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A.2.3 Uniform Attractivity the Origin of the TMO’s Error Dynamics

Drawing upon the elements of Grip et al. (2013, Lemma 2), the origin of x̃∗ is
proven to be uniformly attractive and stable.

Lemma A.1 (Uniform Attractivity and Stability). For any δ > 0 and T > 0 there exist
a ϑ∗1 ≥ 1 such that for ϑ ≥ ϑ∗1 and all initial condition as specified in Theorem 4.1 results
in ‖ x̃∗‖2 ≤ δ for all t ≥ T. Hence, x̃∗ � 0 is an uniformly attractive and stable equilibrium
point.

Proof. The proof follows as in (Grip et al., 2013, Proof Lemma 2). The parameter
projection in (4.10c) ensures ‖b̃b ‖2 ≤ Mb̂gyro

and because ‖ r̃ ‖2 ≤ 1, we have that

‖χ̃‖2 ≤
√

M2
b̂gyro

+ 1.

Furthermore, we define the level set Ωϑ :� {η |U ≤ δ2

ϑ7 λmin(P−1)}, and note
that η ∈ Ωϑ ⇒ ‖η‖2 ≤ δ

ϑ3 ⇒ ‖ x̃∗‖2 ≤ δ. Outside of Ωϑ, we have ‖η‖2 ≥
δ
ϑ3

√
λmin(P−1)/λmax(P−1)which implies that ÛU can be stated as

ÛU ≤ − 1
2
λmin(Q)λmin(P−1)2‖η‖22

−
(
δ
√
λmin(P−1)

√
λmin(Q)λmin(P−1)2

2ϑ3
√
λmax(P−1)

−
2‖P−1‖γ1

ϑ4

√
M2 + 1

)
‖η‖2

� − 1
2
λmin(Q)λmin(P−1)2‖η‖22

−
(
δ
√
λmin(Q)λmin(P−1) 3

2

2ϑ3
√
λmax(P−1)

−
2‖P−1‖γ1

ϑ4

√
M2 + 1

)
‖η‖2.

by utilizing (A.11). The first term is negative definite. The second term can be
made negative definite with a sufficiently large ϑ, yielding

ÛU ≤ − 1
2
λmin(Q)λmin(P−1)2‖η‖22

≤ − ϑ
2
λmin(Q)λmin(P−1)2

λmax(P−1)
U

outside Ωϑ. Defining a as:
a :�ϑ λmin(Q)λmin(P−1)2/(2λmax(P−1))

and invoking the comparison lemma (Khalil, 2002, Lemma 3.4) with the linear
system Ûu � −au and the corresponding solution u(t) ≤ u(0)e−a t , we get U(t) ≤
U(0)e−a t . By letting L > δ be a bound on ‖ x̃∗(0)‖2 for any initial condition as
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specified in Theorem 4.1 , then L is also a bound on ‖η(0)‖2. Then, outside Ωϑ we
have

U(t) ≤ λmax(P−1)L2

ϑ
e

(
− ϑ2

λmin(Q)λmin(P−1)2
λmax(P−1) t

)
.

Thus, η must enter Ωϑ before

t ≥ T �
2λmax(P−1)

λmin(Q)λmin(P−1)2ϑ

(
6 ln(ϑ) + ln

(
L2λmax(P−1)
δ2λmin(P−1)

))
.

Hence, for a sufficiency large ϑ ≥ 1, ‖ x̃∗‖2 ≤ δ for t ≥ T. �

A.2.4 Proof of Lemma 4.2

Proof. Let Z ∈ Rm×(m−k) be the matrix forming an orthonormal basis for the null
space of C where m is the dimension of A(t) and k � rank(C) such that CZ �

03×m−k . Considering thevector z � (z1; z2; z3; z4; z5; z6; z7)where z1 , z3 , z6 , z7 ∈ R1,
z2 ∈ R2 and z4 , z5 ∈ R3, the vector z belongs to the null space of C if Cz � 03×1.
This is valid for z1 � z7 � 0 and z2 � 02×1. z3, z4 and z5 can be arbitrary.

By considering singular value decomposition of C � UΣV ᵀ, where C† �

VΣ†Uᵀ. From the characterization of the null space of C, we obtain

C†C � VΣ†ΣV ᵀ �
(
Z11 Zᵀ12
Z12 Z22

)
, (A.33)

since Uᵀ � U−1, such that UᵀU � I3, (Horn and Johnson, 2013, Ch. 2.1) and
where

Z11 � blockdiag
(

1
2
, Zp , 03×3 , 03×3

)
,

Z12 �

(
0 01×9
1
2 01×9

)
, Z22 �

(
0 0
0 1

2

)
,

and Zp � blockdiag(I2 , 0). Then we get

LϑC†C � C†CLϑ , (A.34)

due to the structure of C†C and since Lϑ is diagonal and has 1 in the upper left
and bottom right element such that 1/2 contained in Z12 is distributed equivalent
in both sides of (A.34) in the upper and lower, left and right elements, respectively.
Then the result follows by Eϑ post-multiplied with C, using (A.34) and CC†C � C
(Horn and Johnson, 2013, Ch. 7.3) such that EϑC � CLϑC†C � CC†CLϑ �

CLϑ. �
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A.2.5 Proof of Lemma 4.3

Proof. UCO of the LTV system
(
A(t),R−1/2(t)C

)
can be established with the ob-

servability Gramian

Wo(t0 , t1) �
∫ t1

t0

Φᵀ(t0 , τ)CᵀR−1CΦ(t0 , τ)dτ, (A.35)

while UCC of
(
A(t),Q−1/2(t)G(t)

)
can be established with the controllability

Gramian

Wc(t0 , t1) �
∫ t1

t0

Φ(t0 , τ)G(t)Q(t)Gᵀ(t)Φᵀ(t0 , τ)dτ, (A.36)

for all t ≥ 0. Moreover, the system (A(t),G(t),C) is UCO and UCC if and only if
bothWo(t0 , t1) andWc(t0 , t1) are positive definite on every interval t ∈ [t0 , t1] for
t1 > t0 for all t ≥ 0. We omit the explicite time dependency of ωe , λw and σb ,VVR
in the reminder of the proof.

We start with the state transition matrix Φ(t0 , τ) � e(A(τ−t0)) which takes the
form of

Φ(τ) �

©«
1 0 0 (τ − t0) 0 0 (τ−t0)2

2 0 0 (τ−t0)3
6 01×2

03×1 I3 (τ − t0)I3
(τ−t0)2

2 I3 03×2
03×1 03×3 I3 (τ − t0)I3 03×2
03×1 03×3 03×3 I3 03×2
02×1 02×3 02×3 02×3 e(FVVR(τ−t0))

ª®®®®®®¬.
(A.37)

Due to the block-diagonal structure of A(t)we have that

A j(t) �
(

A j
0 010×2

02×10 F j
VVR(t)

)
, j ∈ [1, . . .m − 1], (A.38)

where m is the dimension of A(t). Therefore, we may study the observability
of the subsystems (A0 , C0), with dimension m0 � 10, and (FVVR(t),HVVR), with
dimension l � 2, separately. By consider the nominal LTI system (A0 , C0), applying
the rank condition on O0 �

(
C0; C0A0; C0A2

0; . . . ; C0Am0−1
0

)
is trivial, and yields

rank m0. Then if the system (FVVR(t),HVVR) is UCO, the complete system (A(t), C)
is UCO. We now consider the observability Gramian for the lower right block of
(A(t), C),

WoVVR(t0 , t1) �
∫ t1

t0

Υ
ᵀ
oVVR(t0 , τ)R−1

VVRΥoVVR(t0 , τ)dτ, (A.39)

where ΥoVVR(t0 , τ) � HVVRΦVVR(t0 , τ). Continuing with the non-zero vector z �

(z1 , z2)ᵀ ∈ Rl , and pre and post multiplying (A.39) with z, we obtain

zᵀWoVVR(t0 , t1)z �

∫ t1

t0

zᵀΥᵀoVVR(t0 , τ)R−1
VVRΥoVVR(t0 , τ)z dτ, (A.40)
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for all t1 ≥ t0. Since RVVR is a positive scalar we may write

zᵀWoVVR(t0 , t1)z ≥ Rmax

∫ t1

t0

‖ΥoVVR(t0 , τ)z‖22 dτ (A.41)

where Rmax is the maximum value of RVVR over the interval [t0 , t1]. Then it is
relatively straightforward to obtain

ΥoVVR(t0 , τ)z � . . .

− ωee−λw

2
√
λ2

w − 1

(
e
√
λ2

w−1ωe (τ−t0) − e−
√
λ2

w−1ωe (τ−t0)
)
z1

+

(
e−λw

2

(
e
√
λ2

w−1ωe (τ−t0) + e−
√
λ2

w−1ωe (τ−t0)
)

− λwe−λw

2
√
λ2

w − 1

(
e
√
λ2

w−1ωe (τ−t0) − e−
√
λ2

w−1ωe (τ−t0)
))

z2.

(A.42)

Furthermore, we exploit that 0 < λw < 1, resulting in√
λ2

w − 1 �

√
1 − λ2

w i (A.43)

such that (A.42) becomes

ΥoVVR(t0 , τ)z � . . .

− ωee−λw

2i
√

1 − λ2
w

(
e
√

1−λ2
wωe (τ−t0)i − e−

√
1−λ2

wωe (τ−t0)i
)
z1

+

(
e−λw

2

(
e
√

1−λ2
wωe (τ−t0)i + e−

√
1−λ2

wωe (τ−t0)i
)

− λwe−λw

2i
√

1 − λ2
w

(
e
√

1−λ2
wωe (τ−t0)i − e−

√
1−λ2

wωe (τ−t0)i
))

z2 ,

(A.44)

which again can be written as

ΥoVVR(t0 , τ)z � z2e−λw cos
(√

1 − λ2
wωe(τ − t0)

)
− (ωe z1 + λw z2)e−λw√

1 − λ2
w

sin
(√

1 − λ2
wωe(τ − t0)

)
.

(A.45)

It follows that ‖ΥoVVR(t0 , τ)z‖22 can be obtained as

‖ΥoVVR(t0 , τ)z‖22 �
(ωe z1 + λw z2)2e−2λw

1 − λ2
w

sin2(c(τ − t0))

− 2
(ωe z1z2 + λw z2

2)e−2λw√
1 − λ2

w

sin(c(τ − t0)) cos(c(τ − t0))

+ z2
2e−2λw cos2(c(τ − t0)),

(A.46)
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for c :�
√

1 − λ2
wωe . Now (A.46) can be simplified further,

‖ΥoVVR(t0 , τ)z‖22 �
(ωe z1 + λw z2)2e−2λw

1 − λ2
w

sin2(c(τ − t0))

−
(ωe z1z2 + λw z2

2)e−2λw√
1 − λ2

w

sin(2c(τ − t0)) + z2
2e−2λw cos2(c(τ − t0)).

(A.47)

From (A.47) we notice that for τ ≥ t0 ‖ΥoVVR(t0 , τ)z‖22 � 0 if and only if z � 0l×1.
Moreover, since∫ t1

t0

sin2(c(τ − t0))dτ �
2c(t1 − t0) + sin

(
2c(t0 − t1)

)
4c

, (A.48)∫ t1

t0

cos2(c(τ − t0))dτ �
2c(t1 − t0) + sin

(
2c(t1 − t0)

)
4c

, (A.49)

where 2c(t1 − t0) always is positive and

(ωe z1 + λw z2)2e−2λw

1 − λ2
w

, z2
2e−2λw ∀t ≥ 0, z , 0l×1 , (A.50)

result in zᵀWoVVR(t0 , t1)z to be uniformly positive. Hence, for any t1 > t0,
WoVVR(t0 , t1) is positive definite (and therefore invertible), since ωe is positive
and bounded and 0 < λw < 1 on every interval t ∈ [t0 , t1]. Thus, (A(t),R−1/2C) is
UCO.

Now we consider controllability, making a similar argument as above. With
no loss of generality, we assumed that R(t , q̂t

b) � I3, for usage in B0 cf. (4.70),
due to the rotation matrix having unit norm and rank of 3 uniformly. By con-
sidering the nominal LTI system (A0 , B0), applying the rank condition on C0 �(
B0 , A0B0 , A2

0B0 , . . . , Am0−1
0 B0

)
is trivial, and yields rank m0. Then if the sys-

tem (FVVR(t),GVVR(t)), is UCC, the complete system (A(t),G(t)) is UCC. Now we
consider the controllability Gramian for the lower right block of (A(t),G(t)),

WcVVR(t0 , t1) �
∫ t1

t0

Υ
ᵀ
cVVR(t0 , τ)QVVRΥcVVR(t0 , τ)dτ, (A.51)

whereΥcVVR(t0 , τ) � GᵀVVRΦ
ᵀ
VVR(t0 , τ). We continuebyprovingUCCof (FVVR(t),GVVR(t))

applying the non-zero vector z � (z1 , z2)ᵀ ∈ Rl similarly as above such that

zᵀWcVVR(t0 , t1)z �

∫ t1

t0

zᵀΥᵀcVVR(t0 , τ)ΥcVVR(t0 , τ)z dτ, (A.52)

�

∫ t1

t0

‖ΥcVVR(t0 , τ)z‖22 dτ, (A.53)
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using that QVVR � 1, for all t1 ≥ 0. Then it is relatively straightforward to obtain

ΥcVVR(t0 , τ)z � . . .

σb ,VVRe−λw

2ωe
√
λ2

w − 1

(
e−
√
λ2

w−1ωe (τ−t0) − e
√
λ2

w−1ωe (τ−t0)
)
z1

+

(
σb ,VVRe−λw

2

(
e
√
λ2

w−1ωe (τ−t0) + e−
√
λ2

w−1ωe (τ−t0)
)

−
σb ,VVRλwe−λw

2
√
λ2

w − 1

(
e
√
λ2

w−1ωe (τ−t0) − e−
√
λ2

w−1ωe (τ−t0)
))

z2.

(A.54)

which is structurally similar to (A.42). By following similar steps as to (A.44)–
(A.50) we can state that for any t1 > t0, WcVVR(t0 , t1) is positive definite since ωe

and σb ,VVR is positive and bounded and 0 < λw < 1 on every interval [t0 , t1]. Thus,
(A(t),Q−1/2(t)G(t)) is UCC. �

A.2.6 Proof of Lemma 4.4

Proof. By considering the Lyapunov function candidate U(t , η) � ηᵀϑ−1P−1ϑ−1η,
where P � Pᵀ > 0 is the solution of (4.84), the proof follows from Kalman and
Bucy (1961); Anderson (1971) and is trivial to obtain. However, the steps of the
proof is not necessarily obvious. Therefore, the main steps are still included.

Along the trajectories of (4.87) and (4.84) one obtains

ÛU(t , η) � Ûηᵀϑ−1P−1ϑ−1η + ηᵀϑ−1 ÛP−1
ϑ−1η + ηᵀϑ−1P−1ϑ−1 Ûη (A.55)

Now, inserting for Ûηᵀϑ−1 and ϑ−1 Ûη, including (4.82), such that (A.55) becomes

ÛU(t , η) � ηᵀ
(
Aᵀ − CᵀR−1CP

)
ϑ−1P−1ϑ−1η

+ ηᵀϑ−1P−1ϑ−1 (
A − PCᵀR−1C

)
η

− ηᵀϑ−1P−1 ÛPP−1ϑ−1η.

(A.56)

Expanding (A.56) results in

ÛU(t , η) � ηᵀP−1 (
PAᵀ − PCᵀR−1CP

)
P−1ϑ−1η

+ ηᵀϑ−1P−1 (
AP − PCᵀR−1CP

)
P−1η

− ηᵀϑ−1P−1 ÛPP−1ϑ−1η.

(A.57)

Furthermore, by inserting (4.84) into (A.57) results in

ÛU(t , η) � ηᵀP−1 (
PAᵀ − PCᵀR−1CP

)
P−1ϑ−1η

+ ηᵀϑ−1P−1 (
AP − PCᵀR−1CP

)
P−1η

− ηᵀϑ−1P−1 (
ϑAP + ϑPAᵀ − ϑPCᵀR−1CP + ϑGQGᵀ

)
P−1ϑ−1η.

(A.58)
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Then by expanding (A.58) such that we have ϑ−1 on both sides of the parentheses
one obtain

ÛU(t , η) � ηᵀϑ−1P−1 ( − ϑGQGᵀ + PϑAᵀ + AϑP − ϑAP − ϑPAᵀ

− PϑCᵀR−1CP − PCᵀR−1CϑP + ϑPCᵀR−1CP
)
P−1ϑ−1η.

(A.59)

Now, since ϑ commutes with A and Aᵀ, (A.59) becomes

ÛU(t , η) � ηᵀϑ−1P−1 ( − ϑGQGᵀ + PAᵀϑ + ϑAP − ϑAP − ϑPAᵀ

− PϑCᵀR−1CP − PCᵀR−1CϑP + ϑPCᵀR−1CP
)
P−1ϑ−1η

� ηᵀϑ−1P−1 ( − ϑGQGᵀ + PAᵀϑ − ϑPAᵀ

− PϑCᵀR−1CP − PCᵀR−1CϑP + ϑPCᵀR−1CP
)
P−1ϑ−1η.

(A.60)

Since ϑ � ϑᵀ > 0, ϑ ≥ 1, ‖PAᵀϑ‖ � ‖ϑPAᵀ‖ and PAᵀϑ and ϑPAᵀ have equal
eigenvalues. The same goes for PϑCᵀR−1CP and PCᵀR−1CϑP. In addition,

‖PϑCᵀR−1CP‖ � ‖PCᵀR−1CϑP‖ ≥ ‖ϑPCᵀR−1CP‖ , (A.61)

since, ϑCᵀR−1C � (CᵀR−1Cϑ)ᵀ and ‖ϑPCᵀ‖ ≤ ‖PϑCᵀ‖, together with

max
(
eig

(
PϑCᵀR−1CP

) )
� max

(
eig

(
PCᵀR−1CϑP

) )
≥ max

(
eig

(
ϑPCᵀR−1CP

) )
,

(A.62)

due to how ϑ possibly scales CᵀR−1C on the inside of P, on either side in (A.61),
since ϑP , Pϑ for ϑ > 1. Moreover, ϑPCᵀR−1CP ≥ 0, and

‖GQGᵀ‖ ≤ ‖ϑGQGᵀ‖ , (A.63)
‖PCᵀR−1CP‖ ≤ ‖ϑPCᵀR−1CP‖. (A.64)

Consequently,

ÛU(t , η) ≤ −ηᵀϑ−1P−1 (GQGᵀ + PCᵀR−1CP
)
P−1ϑ−1η

� −ηᵀϑ−1 (
P−1GQGᵀP−1

+ CᵀR−1C
)
ϑ−1η < 0 (A.65)

In addition, since ‖ϑ−1‖ � 1, for all ϑ ≥ 1, results in

ÛU(t , η) ≤ −γ1‖η‖22 < 0, (A.66)

for some constant γ1 > 0 independent of ϑ, (Johansen and Fossen, 2015, Lemma 6),
since P is bounded above and below due to UCO of (A(t), C), and UCC of
(A(t),G(t)), with positive definite R and Q matrices, yielding that the origin
of the nominal error dynamics is GES. �
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A.2.7 Proof of Proposition 4.1

Proof. The proof is mainly based on the proofs of Grip et al. (2013), Bryne et al.
(2014) and Johansen et al. (2017). For completeness the main components of the
proof are outlined below.

From the proof of Lemma 4.4 we have that U(t , η) � ηᵀϑ−1P−1ϑ−1η and that

ÛU ≤ γ1‖η‖2 +
1
ϑ
γ2γ4‖η‖22 +

1
ϑ4 γ3γ4‖η‖2 · ‖χ‖2 , (A.67)

with
2
ϑ
ηᵀϑ−1P−1ρ1(t , η) ≤ γ1‖η‖2 (A.68)

2
ϑ4 η

ᵀϑ−1P−1ρ2(t , χ) ≤
1
ϑ
γ2γ4‖η‖22 +

1
ϑ4 γ3γ4‖η‖2 · ‖χ‖2 (A.69)

where γ1 , γ2 , γ3 , γ4 > 0 are constants independent of ϑ since ‖ϑ−1‖ � 1 for all
ϑ ≥ 1. Moreover, since we known that a uniform bound on P−1, cf. proof of
Theorem 4.1, can be established independent of ϑ, (Johansen and Fossen, 2015,
Lemma 6), we continue with the intermediate results of Grip et al. (2013) where
it can be shown that for any δ > 0 and T > 0 there exist a ϑ∗1 ≥ 1 such that for
ϑ ≥ ϑ∗1 there exist an invariant setX1 ∈ R12 such that for ‖η(0)‖2 ∈ X1 we have that
‖η‖2 ≤ δ, for all t ≥ T, as obtained in Lemma A.1. By further following the cited
results we define the function

W(t , s̃ , r̃ , b̃b) :�
(
1 − s̃2)

+ 2` s̃ r̃R(qt
b)b̃

b
+
`
kI
(b̃b)ᵀ b̃

b
, (A.70)

where ` is a constant taken from Grip et al. (2012a). Furthermore, in Grip et al.
(2013) it was shown that for | s̃ | > ε̄, ÛW satisfy,

ÛW ≤ γ6‖χ‖22 + γ5‖χ‖ · ‖η‖2 , (A.71)

for some constants γ5 , γ6 > 0, independent of ϑ. Moreover, we continue to define
the Lyapunov function candidate V(t , η, χ) � U(t , η) + 1

ϑ7
W(t , χ), resulting in

ÛV ≤ −zᵀM(ϑ)z , (A.72)

with z �
(
‖η‖2; ‖χ‖2

)
∈ R2 and

M(ϑ) �
(
γ1 − γ2γ4

ϑ ?
− γ3γ4+γ5

2ϑ4
γ6
ϑ7

)
, (A.73)

and where ? indicate symmetry. Considering the principal minors of M(ϑ), we
obtain M(ϑ) > 0 with

ϑ ≥ max

(
γ2γ4

γ1
,
γ2γ4γ6 +

1
4 (γ3γ4 + γ5)2

γ1γ6

)
. (A.74)
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Thus by choosing ϑ∗1 to satisfy (A.74) and ϑ ≥ ϑ∗1 accordingly, there exist an
invariant set X2 where for all x̃ ∈ X2 and constants α3, α4 > 0, we have

ÛV ≤ −α3‖z‖22 − α4‖χ‖22 ≤ −2βV, (A.75)

for some β > 0 whereX ⊂ X1∩X2 is chosen as the largest invariant set. TheUSGES
result, applying the definition of Loria and Panteley (2005), of the origin (x̃; χ) � 0
then follows by applying the comparison lemma (Khalil, 2002, Lemma 3.4), such
that

V(t) ≤ V(0)e−2β t , ∀t ≥ 0, (A.76)
is obtained. �

A.2.8 Proof of Lemma 5.1

Proof. Since A(t) is time-varying, the rank condition for observability does not
directly apply. Observability properties of time-varying systems can, among oth-
ers, be obtained through calculating the observability co-distribution applying Lie
derivatives L0 , L1 , . . . , Ln−1 for a system of dimension n. See, e.g. Nĳmeĳer and
der Schaft (1990, Ch. 3.2) for details.

Theorem 3.32 of Nĳmeĳer and der Schaft (1990, Ch. 3.2) entails that the pair
(A(t), C) is uniformly observable if and only if the observability co-distribution,
dO has full rank, e.i

rank(dO) � n (A.77)
for all t ≥ 0.

The observability co-distribution takes the form of

dO �
©«
L0(t)
L1(t)
L2(t)

ª®¬ �
©«

C
CA(t)

CA2(t) + C ÛA(t)

ª®¬ (A.78)

�
©«

0 1 1
−ω2

e (t) −2λwωe(t) 0
2λwω3

e (t) − 2ωe(t) Ûωe(t) 4λ2
wω

2
e (t) − 2ωe(t) − 2λw 0

ª®¬ . (A.79)

Suppose that, at an instance in time, Ûωe(t) � λwω2
e (t) such that

dO �
©«

0 1 1
−ω2

e (t) −2λwωe(t) 0
0 4λ2

wω
2
e (t) − 2ωe(t) − 2λw 0

ª®¬ . (A.80)

By investigation of the null space of dO, i.e. dOx � 0, where x is the state vector,
yields

x2 + x3 � 0 (A.81)
−ω2

e (t)x1 − 2λwωe(t)x2 � 0 (A.82)(
4λ2

wω
2
e (t) − 2ωe(t) − 2λw

)
x2 � 0. (A.83)
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resulting in

eq. (A.83) implies: x2 � 0,
eq. (A.81) implies: x3 � −x2 � 0,

eq. (A.82) implies: x1 �
2λw

ω2
e (t)

x2 � 0

from the properties of 0 < ωe ,min ≤ ωe(t) ≤ ωe ,max < ∞, and that λw > 0 is a
constant. Now suppose that Ûωe(t) � 0. Then,

dO �
©«

0 1 1
−ω2

e (t) −2λwωe(t) 0
2λwω3

e (t) 4λ2
wω

2
e (t) − 2ωe(t) − 2λw 0

ª®¬ . (A.84)

Again, investigation of the null space, dOx � 0, results in

x2 + x3 � 0 (A.85)
−ω2

e (t)x1 − 2λwωe(t)x2 � 0 (A.86)
2λwω

3
e (t)x1 +

(
4λ2

wω
2
e (t) − 2ωe(t) − 2λw

)
x2 � 0. (A.87)

The validity of (A.86)–(A.87) hold if and only if x1 � x2 � 0 which implies that
(A.85) can only be zero for x3 � −x2 � 0. Then, since C is constant, ωe(t) is positive
and uniformly bounded and λw is a positive constant, dO cannot take any other
form than presented in (A.80) and (A.84). Hence, the pair (A(t), C) is uniformly
observable for all t ≥ 0 since

dim null(dO) � 0⇒ rank(dO) � 3, ∀t ≥ 0,

for all constellations of dO. �





BNotations, Representations and
Background Material
B.1 General Mathematical Notations

The Euclidean vector norm and the inducedmatrix norm are denoted ‖ · ‖2 and ‖ · ‖,
respectively. The set Ik is a set containing the indices of available measurements
at time t � k · Ts where Ts indicates the sampling interval and k is the time
index. E[·] denotes statistical expectation, while Gaussian white noise n with
mean µ and variance σ2 is given as n ∼ (µ, σ2). The exponential function is
denoted e(·), while the matrix exponential function is denoted e(·). Furthermore,
the n × n identity matrix is denoted In , while a block diagonal matrix is given by
M � blockdiag(M1 ,M2 , . . . ,M n) for squarematrices M j . Moreover, the transpose
of a vector or a matrix is denoted (·)ᵀ. S(·) ∈ SS(3) represents the skew symmetric
matrix such that S(z1)z2 � z1 × z2 for two vectors z1 , z2 ∈ R3. z � (z1; z2; . . . ; zn)
denotes a vector of stacked column vectors z1 , z2 , . . . zn . Moreover, ⊗ denotes
the Hamiltonian quaternion product. For a vector z ∈ R3, with transpose zᵀ, z̄
denotes the quaternion with zero real part and vector part z, that is z̄ � (0; z).
Saturation is represented by sat?(·), where the subscript indicates the saturation
limit. The right Moore-Penrose pseudo inverse is denoted (·)†. The sinc function
is defined as

sinc(α) :�

{
1 for α � 0
sin(α)
α otherwise,

(B.1)

for an angle α.

B.2 Attitude Representation

Ageneral rotationmatrix describing the rotation between twogiven frames {a} and
{b} and is denoted Rb

a ∈ SO(3). In this thesis two attitude representations, Euler
angles and the unit quaternion, respectively, are used to describe orientations. The
former is mainly used for illustrations on how the attitude evolves over time, while
the unit quaternion is used to estimate the attitude.

B.2.1 Euler Angles

The Euler angles roll, pitch and yaw is denoted φ, θ and ψ, respectively together
with their angular rates p, q and r in compliancewith the SNAME (1950) notations.
From Fossen (2011, Ch. 2) and the references therein these relates to the matrix
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between the {b} and {n} frames like

Rn
b �

©«
cθcψ −cφsψ + sφsθcψ sφsψ + sθcφcψ
cθsψ cφcψ + sψsθsφ −sφcψ + cφsψsθ
−sθ sφcθ cφcθ

ª®¬ ∈ SO(3), (B.2)

where s · :� sin(·), c · :� cos(·).

B.2.2 Unit Quaternion

Similar to Euler angles and the rotation matrix, the rotation between {a} and {b}
may be represented using the unit quaternion qb

a � (s , rᵀ)ᵀ where s ∈ R1 is the
real part of the quaternion and r ∈ R3 is the vector part. Moreover, its conjugate is
denoted qb∗

a � (s ,−rᵀ)ᵀ.
The unit quaternion qb

a � (s , rᵀ)ᵀ where s ∈ R1 is the real part of the quaternion
and r ∈ R3 is the vector part such that qb

a ∈ Q, where the set Q is given as

Q :�
{

q |qᵀq � 1, q � (s , rᵀ)ᵀ
}
.

The rotation matrix R(qb
a) :� Rb

a can be obtained from the unit quaternion, qb
a

using
R(qb

a) � I3 + 2sS(r) + 2S2(r), (B.3)

Fossen (2011, Eq. 2.56) and the reference therein.
Euler angles may be obtained from qb

a by relating these through the rotation
matrix

R(qb
a) � Rb

a(φ, θ, ψ) �
©«
R11 R12 R13
R21 R22 R23
R31 R32 R33

ª®¬ , (B.4)

such that

φ � arctan2(R32 , R33), (B.5)

θ � − arcsin(R32) � − arctan

(
R31

√
1 − R31

2

)
, for θ , ±90◦ (B.6)

ψ � arctan2(R31 , R11). (B.7)

The unit quaternion rate of change, Ûqb
a , can be calculated in numerous ways.

Three different notation are used in this thesis, all equivalent. The first takes the
form of

Ûqb
a �

1
2

T q(qb
a)ωa

ba , (B.8)

where

T q(q) �
(
−r

sI3 + S(r)

)
�

©«
−r1 −r2 −r3

s −r3 r2
r3 s −r1
−r2 r1 s

ª®®®¬ , (B.9)
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similar to Fossen (2011, Ch. 2.2.2), while the second takes the form of

Ûqb
a � qb

a ⊗
(

0
ωa

ba

)
, (B.10)

and the third
Ûqb

a � qb
a ⊗ ω̄a

ba , (B.11)

resembling the second, where ω̄a
ba � (0;ωa

ba). In addition, by defining

Ξq(q) :�
(
−rᵀ

sI3 − S(r)

)
, (B.12)

the quaternion differential equation for qb
a , based on the angular velocities ωa

ca
and ωb

cb may be given as

Ûqb
a �

1
2

T q(qb
a)ωa

ca −
1
2
Ξq(qb

a)ωb
cb , (B.13)

�
1
2

qb
a ⊗

(
0
ωa

ca

)
− 1

2

(
0
ωb

cb

)
⊗ qb

a . (B.14)

B.3 Navigation Related Notations

In this dissertation coordinate frames are denoted with {·}. All vectors represent-
ing some part of the navigating vehicle’s motion is generally presented using the
notation

za
bc ∈ R

3 , (B.15)

where z represents either position, velocity or specific force of frame {c}, relative
{b}, decomposed in {a}. An overview of variables used to describe PVA and their
evolution over time is found in Table B.1 in compliance with the nomenclature.
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Table B.1: Navigation related notations.

Type Notation
Position vector p???∈ R3

Linear velocity vector v???∈ R3

Specific force vector f???∈ R3

Angular velocity vector ω??? ∈ R3

Gravity vector g?b ∈ R
3

Rotation matrix R?
? ∈ SO(3)

Unit quaternion q?? ∈ Q
Latitude µ∈ [−π/2, π/2]
Longitude λ∈ (−π, π]
Height h∈ R1



CModeling, Simulations and Discretization
C.1 Modeling of GNSS Colored Noise

The modeling of colored, or transient, GNSS noise or errors, decomposed in the
NED frame, z � (zn ; ze ; zd), can for simulation purposes be modeled as a three-
dimensional, first-order, discrete-time Gauss-Markov process

z[k + 1] �ΦGNSS z[k] + Gw[k], (C.1)

whereΦGNSS � I3 · exp
(
− 1

T · Ts
)
, while w[k] being the driving unity white noise

of the Gauss Markov process, and where G � blockdiag(σn , σe , σd) contains the
respective standard deviations, σ?, of the driving noise, obtained from Rankin
(1994), where k denotes the time index. Furthermore, T is the correlation time
constant and Ts is the sampling time of the modeled GNSS receiver. The resulting
position measurements provided by the receiver in {n} can then be given as:

pn
GNSS[k] � pn

nb[k] + z[k] + ε[k]. (C.2)

where ε[k] is residual Gaussian white noise.

C.2 Simulation Case Study: Time-invariant versus
Time-varying Gains

To study the effects of the gain synthesis suggested for the feedback-interconnected
observer above, inertial sensors and position measurements with white Gaussian
noise are simulated, and both fixed and time-varying gain schemes are applied
to the observers. This is a simplification, made for illustrative purposes, since in
general both position and inertial sensors provide measurements containing noise
with colored spectral content. The results are transformed to NED coordinates.
Conversion from ECEF to NED coordinates is performed by first acquiring the
estimated latitude µ̂ and longitude λ̂ from the position estimate p̂e

eb for instance
in closed form with Vermeille (2004). This information is then used to rotate the
ECEF estimates to NED with the quaternion q̂e

n � q̂µ ⊗ q̂λ, where

q̂µ �

(
cos((µ̂ + π/2)/2) 0 sin((µ̂ + π/2)/2) 0

)ᵀ
(C.3)

and
q̂λ �

(
cos(λ̂/2) 0 0 − sin(λ̂/2)

)ᵀ
. (C.4)

The respective transient performance is shown in Figures C.1–C.3 implemented
with IMU noise characteristics εω ∼ (0, 0.00252) and ε f ∼ (0, 0.052) using position
as the only aiding TMO measurement. The GNSS noise characteristics where
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realized using εp � (εpn ; εpe ; εpd ) with εpn ∼ (0, 1.12), εpe ∼ (0, 1.12), and εpd ∼
(0, (1.5 · 1.1)2), where n, e and d denotes north, east and down, respectively, such
that the GNSS is less accurate in the vertical component after converting to NED.

The fixed-gain synthesis is done with θ � 1 and the algebraic Riccati equation,

A∗P∗ + P∗(A∗)ᵀ + B∗Q∗(B∗)ᵀ − P∗(C∗)ᵀR−1C∗P∗ � 0. (C.5)

For both observers, the TMOs were synthesized using S f � 0.052 · I3, Sσ̂ f �

0.5 ·0.052 · I3 and Sp � blockdiag(1.1 · I2 , 1.652), after converting from ECEF toNED
coordinates, with initial NED position and attitude error of p̃n

nb(0) � (10,−7, 4)ᵀ m
and φ̃(0) � 10, θ̃(0) � 7, ψ̃(0) � −10degrees, respectively. The attitude gainswhere
chosen as k1 � k2 � 0.5, kI � 0.01. In the time-varying filter implementation the
initial covariance P∗(0), of (3.23), was chosen as P∗(0) � blockdiag(102 ·I3 , I3 , I3). A
third case was also run with higher attitude gains k1 � k2 � 20 during the first 100
seconds, togetherwith the time-varying TMO solution. The transient performance
obtained is based on simulated sensors at rest.

The transient performance of the position, velocity and attitude errors is im-
proved using the time-varying Kalman filter to synthesize the TMO as seen in
Figures C.1–C.3. As indicated, in Figure C.3 by improving the TMO’s estimates,
improvements in the attitude convergence properties are also obtained. The fastest
attitude covariance properties are witnessed with both a time-varying TMO and
higher prescribed initial attitude gains as seen in Figure C.3. What also can be
seen from Figures C.1–C.2, is that the convergence properties of the position and
velocity estimates are not improved by time-varying attitude gains with the TMO
tuning chosen here. It can also been seen in Figures C.1–C.3 that the estimates
have not fully converged at 100 seconds. This is due to the gyro bias estimates
have not yet fully converged to the true gyro biases.
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Figure C.1: Position estimation error. North, east and down axes are denoted n, e
and d, respectively. The position errors obtainedwith the steady-stateKalmangain
are presented with dash lines. The position errors obtained with the translational
motion observer (TMO) applying a time-varying Kalman gain are shown using
dash-dot lines. The error in position obtainedwhen both the TMOand the attitude
observer applied time-varyinggains is shownusing solid lines. The results indicate
that using a TMO with time-varying gains, with or without an attitude observer
prescribed with high initial gains, accelerates the convergence of the position
estimates to the true position.
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Figure C.2: Velocity estimation error. North, east and down axes are denoted n,
e and d, respectively. The velocity errors obtained with the steady-state Kalman
gain are presented with dash lines. The velocity errors obtained with the trans-
lational motion observer (TMO) applying a time-varying Kalman gain are shown
using dash-dot lines. The error in velocity obtained when both the TMO and
the attitude observer applied time-varying gains is shown using solid lines. The
results indicate that using a TMO with time-varying gains, with or without an
attitude observer prescribed with high initial gains, accelerates the convergence of
the velocity estimates to the true velocity compared to the fixed-gain solution.
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Figure C.3: Attitude estimation error. The attitude error is presented applying
Euler angles as attitude representation. The attitude errors obtained in feedback
interconnection with the translational motion observer (TMO) using a steady-
state Kalman gain are presented with dash lines. The attitude errors obtained in
connection with the TMO applying a time-varying Kalman gain are shown using
dash-dot lines. The attitude error obtained when both the TMO and the attitude
observer applied time-varyinggains is shownusing solid lines. The results indicate
that using a TMO with time-varying gains in feedback interconnection with an
attitude observer prescribed with high initial gains accelerates the convergence of
the attitude estimates to the true attitude.

C.3 Vessel Simulations

All the simulated sensor measurements, related to marine vessels, in the thesis
were generated using the Marine Systems Simulator’s (Fossen and Perez, 2010)
DP_ForceRAO.mdl. All vessel wave-induced motions were generated by exposing
the vessel to wave forces and moments generated, due to first-order wave loads,
with the JONSWAP wave spectra. In addition, irrotational currents (Fossen, 2011,
Ch. 8.3) with fixed speed were also introduced.

C.3.1 Simulations of Section 4.3.6

The significant wave height and peak frequency were chosen as, Hs � 7 m and ω0
= 0.8 rad/s, respectively. The IMU and the respective observers where simulated
at 100 Hz. Gaussian white noise was added to IMU measurements. The chosen
heading and position measurements were simulated at 10 Hz and 1 Hz, respec-
tively. Hence, the GNSS correction of the TMOs was carried out at 1 Hz using
the corrector-predictor implementation of Fossen (2011, Ch. 11.3.4.). The compass
error was simulated as a Gauss-Markov process. The same model was chosen to
generate the GNSS errors. See Appendix C.1 for details.
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Table C.1: Parameters of dGNSS and gyrocompass error model.

Parameter dGNSS (hor. comp.) Compass

Time Constant T � 240 [s] T � 60 [s]
Std. e(k) 1.10 [m] 0.14 [◦]
Std w(k) 0.1 [m] 0.025 [◦]
Covariance w(k), e(k) 0.01 [m] -
Std. e(k) (low precision) 2.17 [m] -
Std w(k) (low precision) 0.2 [m] -
Covariance w(k), e(k) (low precision) 0.04 [m] -

C.3.2 Simulations of Section 5.2.4 and Section 6.2.5

The significant wave height and peak frequency were chosen to Hs � 7 m and
ω0 � 0.8 rad/s, respectively. In DP_ForceRAO.mdl ωe ≡ ω0 since the simulator is
basedonzerovessel speed. The IMUand the respective observerswhere simulated
at 100 Hz. The chosen heading and position reference were three gyrocompasses
and three dGNSS, simulated at 10 Hz and 1 Hz, respectively.

All the sensors were simulated with noise. The dGNSS and gyrocompass
noise were simulated with the first-order Gauss-Markov process of (6.1), where
Table C.1 present the parameters related to the transient noise for the respective
sensor packages. When the compasses were not sampled, the injection term of Σ1
was implemented as

σ̂b
ib � k2(t) f b

IMU × Rᵀ(q̂n
b ) f̂

n
ib . (C.6)

Because of the slow dynamics of DP vessels, this will not affect the performance of
Σ1 even though the stability analysis of Section 4.3.5 and Section 4.4.5, (Bryne et al.
(2014) and Bryne et al. (n.d.)) and the reference therein requires two vector mea-
surements. The quaternion unity constraint was enforcedwith q̂n

b � q̂n
b /‖q̂

n
b ‖ after

every quaternion update. Σ2 was implemented with the discrete-time corrector-
predictor scheme presented in Fossen (2011, Ch. 11.3.4) such that the dGNSS
measurement update of Σ2 was carried out every 100th IMU sample. The gyro
biases were chosen as bb

gyro � (0.17;−0.18; 0.14) deg/s.

Tuning and gain structure

The gains of Σ1 was tuned with ga � (k1(t), k2(t), kI(t))ᵀ, and

Ûga � − 1
T

ga +
1
T

ka ,

{
ka � (20, 20, 1)ᵀ if t ≤ 100
ka � (0.55, 0.55, 0.01)ᵀ else.

with T � 25 s to speed up the initial convergence of the q̂n
b and b̂b

gyro. This is
similar to Bryne et al. (2014) such that unnecessary amplification of sensor noise
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Table C.2: PosRef and gyro compass validity thresholds

Thresholds PosRef (north and east comp.) Compass

Outlier 8 [m] 4 [◦]
Bias/drift 2 [m] 1.2 [◦]

is avoided when the attitude estimates have converged. The fixed gains of Σ2, on
compact form,

K0
�

(
K0

pI pI 01×2 K0
pz pI 01×2 K0

vz pI 01×2 K0
ξz pI

02×1 K0ᵀ
pp 02×1 K0ᵀ

vp 02×1 K0ᵀ
ξp 02×1

)ᵀ
,

were calculated as K0
� PC∗ᵀ where P is the solution of (4.39), where A∗ and C∗

is found in (4.20), Section 4.3.4 . The numerical values of Q and τ were chosen as:

Q � 1 · 10−3 · blockdiag{2.5 · 10−3 , I2 , 2.5 · 10−3 , I2 , 2.5 · 10−3 , I2 , 2.5 · 10−3}

and τ � 1/2 which resulted in K0
pI pI

� 0.5222, K0
ppI

� 0.1363, K0
vpI

� 0.0208,
KξpI � 0.0016, K0

pp � 0.6387·I2, K0
vp � 0.2035·I2 andK0

ξp � 0.0316·I2. Furthermore,
the time-varying gain component, ϕ(t), of Σ2 was implemented as

Ûϕ � − 1
T
ϕ +

1
T

ktv ,

ktv �


0.5 (low) if GNSSrms > lhigh
0.75 (med) if GNSSrms > llow and GNSSrms < lhigh
1 (high) if GNSSrms < llow or time < 100

(C.7)

whereGNSSrms � (Rw ,xx(k)+Rw ,yy(k))0.5 is obtained from theweighting algorithm
of (6.19), such that ϕ(t) remains smooth even though the gain is modified over
time. Furthermore, llow � 0.9 and lhigh � 1.7 where chosen as the gain thresholds,
together with T � 5, such that ϕ(t)will be adaptive with respect to PosRef quality.
Moreover, ϑ � 1 was chosen.

For the triple redundant PosRef fault detection, the different Q̄ j(k), for PosRef
j, were pre-calculated for each axis of the dGNSS and the compass measurements.
These were based on the parameters of Table C.1 including different Q̄ j(k) for low
and high dGNSS variance. Regarding the gyrocompass, Q̄(k) � Q(k) was chosen
since the cross correlation between the process noise and the measurement noise
was deemed negligible based on the parameters of Table C.1. The fault-detection
thresholds were chosen as presented in Table C.2.

Time-varying multiplicative gain ϕ(t)

Here, some illustrations of the results obtained related to the time-varying gains
with the chosen tuning, sensor noise, and simulated dGNSS and heading sensor
faults above, are presented.
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The time evolution of the time-varying attitude gains, introduced to reduce the
convergence time, can be seen in Figure C.4. In Figure C.5 one can observe the
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Figure C.4: Time-varying attitude gains.

effect of choosing ϕ(t) according to (C.7) w.r.t. to the chosen tuning, noise levels
and the simulated faults presented in Section 6.2.5.
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Figure C.5: The time-varying gain component, ϕ(t), in Σ2.

INS-based wave filtering: Loss of GNSS

Figure C.6 show results related to GNSS loss. Figure C.6a displays the drift of
the LF position estimates relative the ship’s actual position. In Figure C.6b one
can see that the heading estimate is unaffected by the loss of position. This is
due to three factors. First, the heading estimate is mainly based on the compass
measurements, secondly, the ξn

ib term in f̂ n
ib , fromΣ2, will in general be small after

Σ1−Σ2 have converged. This makes the attitude observer robust to loss of position
references for shorter time periods. This statement is supported by Figure C.6c.
The third factor is that the gyro bias is still estimated with high accuracy, as seen in
Figure C.6d. Compared to a vessel-model-based strategy, INS-based wave filters
have the advantage that the kinetic sway-yaw coupling in the vessel model is
avoided altogether such that faulty position estimates not necessarily will induce
an error in the heading estimates.
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Figure C.6: Effects of loss of position reference at 1000 seconds. Figure C.6a shows
the drifting LF position estimates, while Figure C.6c show the attitude estimation
performance, in large extent, is still maintained. Figure C.6d shows the gyro bias
estimation error remains small. The LF heading estimates are seen in Figure C.6b
relative the estimated heading from Σ1.

An alternative to continue to utilize f̂
n
ib when the given source of position

reference information is lost would be to switch to an attitude observer based on
gn

b instead cf. Section 5.1.

C.4 Discretization and Measurements Samples

For the discrete-time implementation, the discretization interval Ts and a discrete
time index k are utilized such that the continuous time variable t is related to Ts

and k with t � kTs (for a constant Ts).
At a given index k all valid measurements at time t � kTs are contained in the

measurements set Ik of measurements. If the ith measurement is available and
valid, this is indicated by i ∈ Ik . The opposite case is denoted as i < Ik .



DComplementary Filtering
This appendix is mainly based upon Bryne et al. (2017a).

Complementary filtering is a filtering approach used to estimate unknowns based
on measurements corrupted with noise and/or disturbances with known spectral
content/characteristics. Typically a reformulation of the original problem is neces-
sary such that filtering techniques (not necessarily an estimator/observer) like the
Wiener filter (optimal w.r.t. mean-square error) can be applied without distorting
the desired output of the filter.

D.1 Main Concept – Outline

Say one has two measurements of the signal s(t)
y1 � s(t) + n1 , (D.1)
y2 � s(t) + n2 , (D.2)

where bothmeasurements are corruptedwith noise/errors n1 and n2, respectively,
with known spectral densities. With some abuse of notation an estimate of s(t)
can be written

ŝ � G1(s)y1 + G2(s)y2 (D.3)
for two filters represented by G1(s) ans G2(s) corresponding to the setup of Fig-
ure D.1. So how to design the filters to optimally reconstruct the signal s(t)? In

y1 G1(s)

G2(s)
y2

+
ŝ

Figure D.1: Original filter problem.

the frequency domain we get

Ŝ(s) � (G1(s) + G2(s)) S(s) + G1(s)N1(s) + G2(s)N2(s). (D.4)

Then to avoid altering s(t), G1(s) + G2(s) � 1 is a natural choice in the frequency
domain. A possible solution is then to choose G2(s) � 1 − G1(s), resulting in

G1(s) + G2(s) � G1(s) + 1 − G1(s) � 1.

201
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Furthermore, now (D.4) can be modified

Ŝ(s) � (G1(s) + (1 − G1(s))) S(s) + G1(s)N1(s) + (1 − G1(s))N2(s)
� S(s) + G1(s)N1(s) + (1 − G1(s))N2(s)
� S(s) + G1(s) (N1(s) − N2(s)) + N2(s) (D.5)

Conceptually this problem is solved according to Brown and Hwang (2012):

1. Choose a filter form that corresponds to the known spectral characteristics
of the sensor noise in question.

2. Tune the filter tominimize themean-squared error as determined from (D.5).

From (D.5) one can draw the block diagram of Figure D.2, obtaining the possibility

y1 G1(s)

y2

+
ŝ

+
−
n1 − n2 −n̂2

Figure D.2: Modified filter problem: The complementary filter.

to design a filter, used to estimate n2. The estimate ŝ is then obtained by subtracting
n̂2 from y2 such that

ŝ(t) � y2 − n̂2 � s(t) + n2 − n̂2 (D.6)

based on the known spectral content of n1 − n2. This can e.g. be done using a
Wiener filter (Farrell, 2008, Ch. 7.3.1). We did not know the spectral content of s(t)
(obviously since we wanted to estimate it), therefore the Wiener filter could not be
applied to the original problem of (D.3) shown in Figure D.1.

The complementary filter is especially useful if the two measurements have
complementary spectral characteristic. An obvious example when n2 primarily
have spectral contentwithin the low-frequency range and n1 primarily has spectral
content within the high-frequency range, then G1 would be chosen as a lowpass
filter in some form.

D.2 Complementary Filter for Aided INS based on the Kalman
Filter and Filtering on SO(3)

Inertial sensors and aiding sensors, such as GNSS, have these complementary
properties (c.f. Table 1.1) and therefore well suited for commentary filtering. In
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this context GNSS is used to capture the low frequency vehicle motion, while
the inertial sensors are used to capture any high frequency vehicle dynamics.
For both attitude and heading reference systems (AHRSs) and complete INSs,
complementary filtering is commonly utilized (Farrell, 2008, Ch. 4.10), Mahony
et al. (2008); Grip et al. (2015). The general structure of complementary filtering
for INSs is illustrated in Figure D.3, while the simplified structure for attitude

High rate
inertial
sensors

u

Low rate
aiding sensor

Vehicle
kinematics/

INS

δx̂

Kalman filter

Output
prediction

δy

xins

yins−
+

y

Figure D.3: General complementary filtering for aided INSs using the Kalman
filter. The structure is also known as error-state or indirect Kalman filtering. The
Kalman filter estimates the error between the INS and low rate aiding sensor.
For low frequencies, the aiding sensor is the dominating information sensor in
generating the INS output. For high frequencies the high-frequency input from
the inertial sensor is the dominating information source in producing the INS
output.

estimation, also known as filtering on SO(3), is presented in Figure D.4.

ωb
IMU S(·)

Ry
Ry R̂ᵀ Attitude error

to vector calc.

k

+

+

Û̂R � R̂S(·) R̂

Figure D.4: Complementary filtering on SO(3): Simplified concept. Some recon-
structed attitudemeasurementRy ≈ R is valid for low frequencies. For frequencies
lower than the cutoff frequency k, Ry is the dominating information used to cal-
culate R̂. For high-frequencies, ωb

IMU is the primary sensor used to estimate R. By
using complementary filtering on SO(3), the effect of the low-frequency gyro bias
on the attitude estimate is attenuated.





EInertial Sensors and Sensor Data
E.1 Deployment of Inertial Sensors and Collection of Sensor

Data

The NLO-based sensor fusion algorithms developed throughout the course of this
work were evaluated using data obtained by installing

• 4x ADIS16485 IMUs from Analog Devices, and

• STIM300 IMU from Sensonor

on a ship operating in the Norwegian Sea. The IMUs’ specifications are presented
in Table E.1. Data from the inertial sensors was collected in the Fall of 2015
using a data acquisition system in parallel with collecting the measurements from
onboard sensors such a dGNSSs, gyrocompasses, and VRUs. The ship in question
is an offshore vessel with a Rolls–Royce Marine Icon DP system. The vessel type
is illustrated in Figure E.1.

The STIM300 and the three of the ADIS16485 IMUs were mounted on a
vibration-damped plate, inside a cabinet, while the last ADIS IMU was mounted
directly in the cabinet as seen in Figure E.2a. All the sensor data were stored on
a server, shown in Figure E.2b, onboard the ship. The cabinet with the IMUs and
the data acquisition system was mounted close to the ship’s VRUs as seen in Fig-
ure E.2c Furthermore, the attitude and heave estimates obtained with the installed
MEMS IMUs were compared to output of the onboard industry standard VRUs,
with the manufacturer’s specifications presented in Table E.2.

Table E.1: IMU specifications from the manufacturer.

ADIS16485 STIM300

In-run Gyro Rate Bias Stability 6.25 deg
h 0.5 deg

h
Angular RandomWalk 0.3 deg√

h
0.15 deg√

h
In-run Accelerometer Bias Stability 0.032 mg 0.05 mg
Velocity RandomWalk 0.023 m/s

h 0.06 m/s
h

Table E.2: VRU Specifications from the manufacturer.

Static
Roll & Pitch

Dynamica
Roll & Pitch Heaveb

RMS error 0.02◦ 0.02◦ 5 cm or 5 %
a For a sinusoidal amplitude of ±5◦.
b Whichever is higher.
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Figure E.1: Illustrations of the offshore vessel. Courtesy Rolls–Royce Marine.
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(a) Sensor cabinet with five IMUs. The location
of the cabinet-mounted ADIS16485 is indicated
with red. The vibration-damped ADIS16485s
and STIM300 IMUs are indicated with blue and
orange, respectively.

(b) Server installed on board the vessel.

(c) Locations of sensors. Sensor cabinet (bottom right) located close to the onboard
VRUs (top left).

Figure E.2: Sensor deployment on board the offshore vessel.
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E.2 Additional Results on Full-scale Testing and Validation
using Nonlinear Observers

This section contains additional results on full-scale validation of NLOs based
on the MEMS IMUs of Appendix E.1, and presents additional material to that
provided in Section 5.1.

E.2.1 Full-scale testing: DR capabilities in DP applying MEMS IMUs

Testing the potential of the underlying fault-tolerance properties of integrated INS
solutions can be done by evaluating the dead reckoning (DR) capabilities of the
IMU-and-estimator combinations. In particular, the DR capabilities are closely
linked to the possibility to detect certain PosRef faults such as slow drift. In this
section, the evaluation of the DR properties in light of fault detection using the
one of the vibration-damped ADIS16485s and the STIM300 is presented. The DR
performance evaluation is carried out with data collected in a DP operation whose
GNSS track is shown in Figure 4.20a of Section 4.4.8.

First, the heading DR performance obtained when using the available IMUs is
discussed, and illustrated with an example. Then, the position DR performance
during the particular DP operation is evaluated, applying both IMUs and NLO
A, of Section 5.1.2, with Σ3. The resulting DR related statistics are based on a
collection of estimation runs where PosRef corrections were disabled.

DR capabilities: Heading

The heading angle DR capabilities using the IMUs available were found to be in
compliance with the IMUs’ angular rate specifications, presented in Table E.1. A
total of 60 one-hour-long heading DR evolutions of the absolute yaw angle error

|ψ̃ | � |ψc − ψ̂ |, (E.1)

compared to the ship’s gyrocompass measurements for both sensors, are shown in
Figure E.3. TheDRwas carried outwithNLOB, by disabling the observer injection
from the gyrocompass by setting k2 � 0, and the observer initialization time was
15 minutes. In addition, the average DR error, of the 60 runs, is highlighted in
Figure E.3. Examples of typical angular rate bias estimates are shown in Figure 5.3
on page 115, exhibiting that the STIM300’s biases aremore in-run stable than those
of the ADIS16485.

DR capabilities: Position

Evaluation of the DR capabilities in position is more elaborate than for heading
since the theoretical growth of errors are a combination of higher order terms,
(Groves, 2013, Ch. 5.7), as opposed to linear growth for heading. In order to
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Figure E.3: DR performance in yaw obtained using the ADIS16485 and STIM300
IMUs. Highlighted evolution indicates the average DR error.

obtain statistically significant results related to the position drift while performing
DR, each combination of the IMUs and the NLOs was evaluated 60 times (using
different data sets) by comparing theDR errors accumulatedwhendisablingGNSS
feedback at selected intervals. The DR evaluation is done by taking the norm of
the difference between the horizontal components of pt

GNSS and p̂t
GNSS, defined

p̃t
GNSS :� pt

GNSS − p̂t
GNSS where,

p̂t
GNSS � p̂t

tb + R(q̂t
b)r

b
b , (E.2)

and where r b
b is the lever arm from the IMU to the GNSS antenna position such

that

‖p̃t
GNSS‖2 � ‖pt

tb + Rt
b r b

b − p̂t
tb − R(q̂t

b)r
b
b ‖2 ,

� ‖p̃tb +
(
Rt

b − R(q̂t
b)
)

r b
b ‖2. (E.3)

For position DR, only NLO A is to be considered. This is because of NLO B’s
dependency on PosRef injection in order to improve the attitude estimates. In a
dead reckoning situation, one would have to cut the feedback interconnection and
use the same reference vector (−g t

b/‖g
t
b ‖2) as for NLO A, effectively making the

NLOs the same. Figure E.4 displays an example of a DR run with the ADIS16485
IMU. The position estimate starts drifting immediately after feedback is cut at
t � 15 min. Figure E.5 shows the aggregated drift errors over 10 minutes, after
PosRef injection is disabled, applying NLO A and Σ3 for both the ADIS16485 and
the STIM300 IMU. The statistical results based on the 60 DR runs are presented
in Table E.3. Results related to the DR performance obtained without the residual
bias estimation in Σ3 are presented in Figure E.6 and Table E.4.
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Figure E.4: Example of a DR run with prior bias compensation, where feedback
from GNSS is cut after 15 minutes, indicated by vertical the line.

Table E.3: Position DR error statistics with accelerometer bias estimation.

ADIS16485 STIM300

Mean error [m] 1 min 4.7580 4.3560
Mean error [m] 5 min 38.588 44.631
Mean error [m] 10 min 112.07 139.51
Min error [m] after 10 min 4.1972 26.919
Max error [m] after 10 min 244.97 350.30
RMS error [m] after 10 min 125.25 159.93

Discussions

Heading DR
It is evident, with regards to Figure 5.3, that the gyro bias estimates obtained using
the STIM300 is smoother andmore in-run stable than those found using the chosen
ADIS16485 unit, resulting in the performance difference seen in Figure E.3. This is
in compliancewith the sensor specifications presented inTable E.1. The asymptotic
angular rate bias estimation performances seen in Figure 5.3, is representative of
what was obtained from run to run.

Position DR
As seen from Table E.3 and Figure E.5, one of the main conclusions from the four
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Table E.4: Position DR error statistics without accelerometer bias estimation.

ADIS16485 STIM300

Mean error [m] 1 min 5.1481 4.8861
Mean error [m] 5 min 58.514 64.187
Mean error [m] 10 min 226.00 241.73
Min error [m] after 10 min 73.421 141.35
Max error [m] after 10 min 389.95 422.03
RMS error [m] after 10 min 233.20 250.34

times 60 DR runs performed over the data collected during DP is that using the
ADIS16485 results in betterDRperformance than using the STIM300. Interestingly
enough, this is opposite of the conclusion from Rogne et al. (2016a)1 where the
authors used a fixed-gain Σ3 with no heave estimation incorporated. However,
from looking at the results one can see that estimating the accelerometer biases
as in (5.12) clearly works. The difference between the IMUs could be explained
by the accelerometer in-run bias stability presented in Table E.1 and the results
from Section 5.1.5 where the ADIS16485 provides the best heave estimates, which
is highly dependent on accelerometer quality. Also, the dead reckoning was
done with aiding from the gyrocompass. Had the IMUs been left on their own
completely, the STIM300 would have a major advantage because of the superior
angular rate sensor and consequently better heading DR capabilities, as presented
above.

The results indicate a large spread of DR errors over 10minutes, and this might
be due to noise, mechanical disturbance such as vibration, or insufficient tuning
of the observers. Time synchronization of signals is also an issue, as the GNSS
and gyrocompasse signals were acquired from a system separate from the IMUs’
signal acquisition, with an unknown, albeit small, delay.

Considering the results obtained here, using either of the two MEMS-based
IMUs available, gave worse results than those presented in Paturel (2004). In
the latter works, an INS with a FOG gyro was applied. In the results presented
in Paturel (2004), a position accuracy during GNSS outage stayed within GNSS
accuracy for a period exceeding two and a half minutes. The mean position drift
after 50 seconds of GNSS outage was less than half a meter. These results are
considerably better than the approximately four to five meters error obtained after
one minutes of DR for both MEMS IMUs. However, in Paturel (2004) only 10 runs
are presented, making a definite statistical comparison difficult due to the few
DR trajectories presented. The FOG-based INS product in question is currently
advertised to have a 20 meter error with a 50 per cent circular error probability
after five minutes of unaided navigation, whereas we obtain approximately 40

1Not included in the thesis.
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meters averaged error in the same time frame.
As depicted in Figure E.5, a MEMS-based INS may provide relatively stable

position estimates (around four meters error) for half a minute, without PosRef
injection. From a fault-tolerance perspective, such as Rogne et al. (2016b)2 the
results obtained here indicate what kind of PosRef errors one might detect based
on MEMS IMUs. For instance a PosRef drift of 10 centimeters per second results
in a PosRef error of 3 meters after half a minute, which might be possible to detect
with the results obtained, considering the average DR error is two meters with
either of the two IMUs. Moreover, in the situation of PosRef failure during DP,
if four meters is an acceptable error margin, 30 seconds is available to the DP
operator to decide whether the operation should be aborted or not. This might
be sufficient time for PosRef recovery e.g. if tracking is established with one more
satellite, resulting in a complete GNSS solution.

The DR performance is not only dependent on the sensor biases, but also on
the velocity-randomwalk and the sensed vibrations on the ship. Integrating these
over time, results in a large error even when averaging them out using high-
rate integration (1000 Hz). Regarding tuning, more focus towards increased DR
performance should be considered such that better results possibility could be
accomplished. Here, the tuning is geared towards attaining the smallest errors
in attitude and heave, relative to the onboard VRU, as opposed to in Rogne et al.
(2016a)were no such regardwas given. Also, time-synchronization errors between
our IMUs and the onboard GNSS system may result in small errors in velocity
and specific force at the time of disabling GNSS injection, resulting in a steeper
error slope than otherwise obtained if the position and inertial measurements
were synchronized. As for the attitude and heave estimation, it is also difficult to
concludewith certainty that the results foundusing the STIM300 are representative
sincewe used an engineering sample. In, Rogne et al. (n.d.a), theDR results related
to position, using the ADIS16485 unit, was improved some compared to the results
presented here, by using a triple-redundant ADIS16485s.

E.2.2 Full-scale testing: Vibrations and high-rate MEMS-based INS

Vibrations

During the experiments, three ADIS16485 IMUs were situated on a vibration-
isolated plate, supported by four Vibrachoc 7002 dampers, and one was mounted
without vibration dampers directly in the cabinet, as shown in Figure E.2a. Be-
low, one of the damped ADIS16485 will be referred to as the ADIS1, while the
undamped IMU will be referred to as ADIS2. Figure E.7 shows the difference of
the raw measurement in the time domain between these two IMUs, during oper-
ation. As one can see, a lot of external noise has been attenuated by the vibration

2Not included in the thesis.
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Table E.5: Attitude error statistics for vibration isolation in DP.

Isolated Non-Isolated

Roll mean error [deg] -0.0017 -0.0028
Pitch mean error [deg] 0.0040 -0.0076

Roll RMS error [deg] 0.0490 0.0685
Pitch RMS error [deg] 0.0968 0.1017

Roll CAEE [deg] 1002.3 1437.0
Pitch CAEE [deg] 1980.1 2071.8

isolation, especially for the accelerometers. For the gyro on the other hand, there
is still a lot of noise present. This is reflected also by the frequency domain plot
in Figure E.8, showing the estimated power spectral destiny (PSD), where one can
see that there are a lot of unwanted frequencies for the ADIS1 in the range of
10-100 Hz. Figure E.8 presents the estimated PSD obtained from the DP operation,
depicted in Figure 4.20a, of Section 4.4.8, and the results contained in Figure E.9
stem from steaming, conduced by the ship at ten knots. Whereas there is nothing
much above 100 Hz for the ADIS1, there are many high frequency components
on the ADIS2. Common for both IMUs, to the far left just above zero Hz one can
find the ship motion, and the main engine rotations starts showing up at around
12 Hz, particularly evident for ADIS1. The increased response below 100 Hz for
ADIS1 could stem from resonance motion induced by the vibration isolated plate.
Regardless, looking at the attitude estimate statistics coming from using each of
the IMUs in Table E.5, there is not that much of a difference, owing to the high
integration rate of 1000 Hz, thus averaging out the noise components.

With regards to vibration damping, similar or perhaps even better noise reduc-
tion results might be obtained from applying for instance a Butterworth lowpass
filter to the raw measurements, with a cutoff frequency that is easier to control
than for mechanical damping. This would also insulate the sensors from the kind
of resonance frequencies induced below 100 Hz. Of course, applying a lowpass
filter to a signal is not without disadvantages, as phase delay is introduced.

A simple result that comes from observing Figures E.8–E.9, is that different
modes of operation could, in theory, be identified on the basis of the frequency
signatures. In addition, the higher frequency components might contain interest-
ing information from a machinery diagnosis point of view. Whether one wants
to keep all the frequency components depends consequently on one’s application
beyond traditional navigation use, but with filters implemented in software more
flexibility is achieved in this regard.
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(a) DR errors obtained with ADIS16485

(b) DR errors obtained with STIM300

Figure E.5: Aggregated DR error over 60 runs using NLO A. Red indicates the
mean DR error.
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(a) DR errors obtained with ADIS16485

(b) DR errors obtained with STIM300

Figure E.6: AggregatedDR error over 60 runs usingNLOA, and no bias estimation
in Σ3. Red indicates the mean DR error.
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(a) Accelerometer raw measurements.
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(b) Gyro raw measurements.

Figure E.7: ADIS IMU measurements, vibration isolated (red) and not (blue) in
DP.
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Figure E.8: Power spectral density estimate of IMU measurements, vibration iso-
lated (red) and not (blue) in DP.
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Figure E.9: Power spectral density estimate of IMU measurements, vibration iso-
lated (red) and not (blue) during steaming.



FAlgorithms
F.1 Discrete-time Implementation of the Attitude Observer

The algorithm on the following page presents an outline of the implementation of
the attitude observer in discrete time.
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Algorithm 4 Discrete-time attitude observer in direct form.
Require: Initializing the observer,
1: q̂e

b [0] � q0(φ[0], θ[0], ψ[0]), b̂
b
gyro � 03×1, where q0 is the mapping from the initial Euler angles φ[0], θ[0], ψ[0].

2: Enforcing ‖q̂e
b [0]‖2 � 1, using q̂e

b [0] � q̂e
b [0]/‖q̂

e
b [0]‖2 .

3: Extracting s[0] and r[0] from q̂e
b [0] and calculating the initial rotation matrix

R(q̂e
b [0]) � I3 + 2s[0]S(r[0]) + 2S2(r[0]) (F.1)

Iteration: k
4: Get f̂

e
ib [k] from the TMO,

5: Get f b
IMU[k], ωb

IMU[k] from the IMU and performing vector calculations,

f b
� f b

IMU[k]/‖ f b
IMU[k]‖2 , v1

b [k] � f b , (F.2)

f e
� satM f ( f̂

e
ib [k])/‖satM f ( f̂

e
ib [k])‖2 , v1

e [k] � f e , (F.3)

σ̂1[k] �
δtacc
Ts

k1[k]v1
b [k] × Rᵀ(q̂e

b [k − 1])v1
e [k], (F.4)

6: if new magnetometer measurement is available then
7: Get mb

mag[k] from the magnetometer and performing vector calculations,

mb
� mb

mag[k]/‖mb
mag[k]‖2 , v2

b [k] � f b × mb (F.5)

me
eb � me

eb/‖m
e
eb ‖2 , v2

e [k] � f e × me (F.6)

σ̂2[k] �
δtmag

Ts
k2[k]v2

b [k] × Rᵀ(q̂e
b [k − 1])v2

e [k], (F.7)

8: else
9: σ̂2[k] � 03×1.
10: end if
11: Calculating the aggregated injection term, σ̂[k] � σ̂1[k] + σ̂2[k].
12: Calculating intermediate variables,

ω̂[k] � ωb
IMU[k] − b̂

b
gyro[k − 1] + σ̂[k], (F.8)

Ω (ω̂[k]) �
(

0 −ω̂ᵀ[k]
ω̂[k] −S(ω̂[k])

)
, Ω̄(ωe

ie ) �
(

0 −(ωe
ie )
ᵀ

ωe
ie S(ωe

ie )

)
, (F.9)

e
(

Ts
2 Ω(ω̂[k])

)
� cos

(
Ts

2
‖ω̂[k]‖2

)
I4 +

Ts

2
sinc

(
Ts

2
‖ω̂[k]‖2

)
Ω(ω̂[k]), (F.10)

e
(
− Ts

2 Ω̄(ω
e
ie )

)
�

(
cos

(
Ts

2
‖ωe

ie ‖2
)

I4 +
Ts

2
sinc

(
Ts

2
‖ωe

ie ‖2
)
Ω̄(ωe

ie )
)−1

. (F.11)

13: Updating attitude estimate,

q̂e
b [k] � e

(
Ts
2 Ω(ω̂[k])

)
e
(
− Ts

2 Ω̄
(
ωe

ie

))
q̂e

b [k − 1]. (F.12)

14: Carry out gyro bias projection and update gyro bias estimate,

b̂
b
gyro[k] � b̂

b
gyro[k − 1] − Ts kI [k]σ̂[k]. (F.13)

15: Enforcing the unit quaternion constraint, q̂e
b [k] � q̂e

b [k]/‖q̂
e
b [k]‖2,

16: Extracting sq [k] and rq [k] from q̂e
b [k] and calculating the rotation matrix

R(q̂e
b [k]) � I3 + 2sq [k]S(rq [k]) + 2S2(rq [k]), (F.14)

and providing R(q̂e
b [k]) to the TMO.

17: k ← k + 1.
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F.2 Quaternion Averaging with Matrix Weights

For averaging quaternions with matrix weights, we need to solve the optimization
problem (Markley, 2007),

q̄?b : � arg min
q?b ∈S3

m∑
j�1

r̃ᵀj R−1
j r̃ j

� arg min
q?b ∈S3

m∑
j�1
(q?b )

ᵀΞq(q̂?b , j)R
−1
j Ξ
ᵀ
q (q̂?b , j)q

?
b , (F.15)

equivalent to (6.44). Algorithm 5 presents a similar algorithm to Algorithm 3
for the more general problem applying matrix weights R j � Rᵀj > 0, where R j

may be chosen to represent the small attitude error covariance matrix, resembling
a weighted least squares approach. If done so, the solution, q̄?b , of (F.15) is a
maximum likelihood estimate of q?b .

Algorithm 5 Quaternion Weighting with Matrix Weight
Input: Quaternion estimates q̂ j , weight matrices R j

1: for j � 1 To m do
2: Ξq(q̂?b , j) using (B.12)
3: end for
4: R−1

sum �
∑m

j�1 R−1
j

5: M � −∑m
j�1 Ξq(q̂?b , j)R

−1
j Ξ
ᵀ
q (q̂?b , j)

6: Kq � 4M + trace
(
R−1

sum
)

I4
7: [E,Deig] � eig(Kq)
8: [λmax , jmax] � max(diag(Deig))
9: q̄?b � E(:, jmax)

Ensure: ‖q̄?b ‖2 � 1
Output: q̄?b
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