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Abstract 

 

Hydropower has played an essential role in the Norwegian power production over the last 

century. Approximately 99.9 % of the total production comes from renewable sources, of 

which hydropower represent 99 %. Changes in runner materials and designs have 

contributed to a tremendous improvement of the overall turbine efficiency. Several 

methods of calculating the efficiency exists today, aiming to determine the performance of 

various turbines under various circumstances. Efficiency measurements in low-head 

machines have proven to be challenging, as difficult pipe geometry and short water inlets 

complicate the use of traditional measuring techniques. 

The object of this thesis has been to evaluate the pressure-time method as a relative 

method and examine the method’s potential for application in hydraulic machines. 

Experimental pressure-time measurements were performed at the Waterpower laboratory 

at NTNU during the spring of 2016. Two flows at approximately 170 and 400 l/s were 

repeatedly measured and evaluated based on the work by former Ph.D. student P. Jonsson 

from LTU in Sweden. The relative pressure-time method presented in this thesis has been 

developed based on the experimental laboratory measurements. 

The pressure section used in the laboratory experiments was extended from 4 m to cover 

the entire area from the open reservoir to a pressure sensor 10 m upstream a closure valve. 

The geometrical constant was calculated using the laboratory pipe dimensions and 

incorporated into a developed MATLAB for further calculation of the relative pressure-time 

flow. Moreover, two numerical MOC codes were developed to verify the experimental 

results. One represents a simple pipeline with a maximum discharge of 400 l/s, while the 

second is a complex pipeline with a discharge of 600 l/s. 

The relative measurements show good accordance with the electromagnetic flowmeter 

installed on the test rig. Maximum discharge errors of  3.38 % and 2.56 % were found for 

the flows at 170 and 400 l/s, respectively. The numerical testing gave promising results with 

discharge errors of  0.15 % and  0.47 % for the simple and the complex pipeline.  

Low random errors over a wide range of repetitions implies consistency between the 

relative measurements. Moreover, an approach of the pipe factor provided final flows close 

to the reference flows recorded by the electromagnetic flowmeter. Evaluation of the 

presented method suggests that a relative pressure-time approach may possibly be relevant 

for future low-head machine testing.  
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Sammendrag 

 

Vannkraft har spilt en viktig rolle i Norsk energiproduksjon gjennom det siste århundet. 

Fornybare energikilder står for omtrent 99,9 % av den totale produksjonen, hvorav 

vannkraft alene utgjør hele 99 %. Endringer i løpehjulsmaterialer og design har bidratt til en 

enorm forbering av den totale turbinvirkningsgraden. Flere forskjellige metoder eksisterer i 

dag for å beregne virkningsgraden til ulike typer turbiner under ulike omstendigheter. 

Virkningsgradsmålinger av lavtrykksturbiner har vist seg å være utfordrende, da vanskelige 

rørgeometrier og korte vannveier ofte er tilstede og kompliserer bruken av tradisjonelle 

måleteknikker. 

Målet med denne masteroppgaven har vært å evaluere trykk-tid-metoden som en relativ 

metode og å undersøke metodens potensial for videre bruk i hydrauliske maskiner. Trykk-tid 

målinger ble gjennomført i Vannkraftlaboratoriet ved NTNU våren 2016. To vannføringer ved 

omtrent 170 og 400 l/s ble gjentatte ganger målt og evaluert basert på arbeidet til tidligere 

Ph.D. student P. Jonsson fra LTU i Sverige. Den relative trykk-tid-metoden presentert i denne 

masteroppgaven har blitt uviklet ved hjelp av de eksperimentelle laboratoriemålingene. 

Trykkseseksjonen som ble benyttet i laboratorieeksperimentene ble utvidet fra 4 m til å 

omfatte hele området fra reservoiret til en trykksensor 10 m oppstrøms en lukkeventil. Den 

geometriske konstanten ble beregnet for den nye rørgeometrien og inkludert i en MATLAB-

kode utvilket for videre beregninger av den relative trykk-tid vannføringen. To numeriske 

MOC-koder ble også utviklet for å verifisere de eksperimentelle resultatene. Den første 

koden representerer en enkel rørstrekning med en maksimal vannføring lik 400 l/s. Den 

andre representerer en kompleks rørstrekning med en vannføring lik 600 l/s. 

De relative målingene viser et godt samsvar med det elektromagnetiske flowmeteret 

montert på testriggen. Det ble funnet maksimale vannføringsfeil på henholdsvis 3.38 % og 

 2.56 % for vannføringene på 170 of 400 l/s. De numeriske testene ga lovende resultater 

med vannføringsfeil på henholdvis 0.15 % og  0.47 % for den enkle og den komplekse 

rørstrekningen. 

Tilfellet av små, tilfeldige feil over et stort spekter av repetisjoner tilsier god samsvarhet 

mellom de relative målingene. En tilnærming av rørfaktoren gir dessuten også vannføringer 

nær referansestrømmen registrert av det elektromagnetiske flowmeteret. Den presenterte 

metoden antyder at en relativ tilnærming til trykk-tid metoden kan være relevant for 

fremdige målinger i lavtrykksmaskiner.  
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Nomenclature 

 
 Symbol: Description: Unit: 

     

 𝑄𝑟𝑒𝑙  Relative discharge [%] 

 𝑄𝑖  Relative discharge [𝑚3/𝑠] 

 𝑄𝑖 𝑟𝑒𝑓 Reference discharge [𝑚3/𝑠] 

 𝑓𝑡 Overall error − 

 𝑓𝑠 Systematic uncertainty − 

 𝑓𝑟 Random uncertainty − 

 𝑋𝑖  Observation number 𝑖 − 

 �̅� Arithmetic mean of 𝑋 − 

 𝑋𝑟𝑒𝑓 Reference measurement − 

 𝑛 Number of observations − 

 𝑆𝑋 Estimated standard deviation − 

 𝑣 Degree of freedom − 

 𝑒 Discharge error [%] 

 𝑒𝑟 Random error [%] 

 𝐿 Length of measuring section [𝑚] 

 𝐴 Cross-sectional area of pipe section [𝑚2] 

 𝐷 Diameter of pipe [𝑚] 

 𝑉 Velocity of fluid [𝑚/𝑠] 

 𝑡 Duration of measurements [𝑠] 

 𝑡0 First integration point [𝑠] 

 𝑡1 Last integration point [𝑠] 

 𝑡𝑐 Duration of closure [𝑠] 

 𝑄 Discharge  [𝑚3/𝑠] 

 𝑄0 Initial discharge [𝑚3/𝑠] 

 Δ𝑄 Discharge segment [𝑚3/𝑠] 

 q Leakage water [𝑚3/𝑠] 

 Δ𝑃 Differential pressure [𝑃𝑎] 

 Δ𝑃𝑠 Differential static pressure [𝑃𝑎] 

 Δ𝑃𝑑 Differential dynamic pressure [𝑃𝑎] 

 𝑃1 Pressure section 1 [𝑃𝑎] 

 𝑃2 Pressure section 2 [𝑃𝑎] 

 𝑃𝑎𝑡𝑚 Atmospheric pressure [𝑃𝑎] 

 𝑧 Elevation above reference [𝑚] 

 𝑔 Gravitational acceleration [𝑚/𝑠2] 

 𝑥 Length in axial direction of pipe [𝑚] 

 𝐹 Pipe factor − 
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 Δ𝑃𝐿,𝑓 Frictional pressure losses [𝑃𝑎] 

 Δ𝑃𝐿,𝑚 Minor pressure losses [𝑃𝑎] 

 𝑓 Darcy friction factor [−] 

 𝑓𝑞 Quasi-steady friction [−] 

 𝑅𝑒 Reynolds number [−] 

 𝐾𝐿 Minor loss coefficient [−] 

 𝑘1 Geometrical constant − 

 𝑘2 Pressure loss constant − 

 𝑎 Wave speed [𝑚/𝑠] 

 𝑘 Brunone friction coefficient [−] 

 𝐶∗ Vardy shear decay coefficient [−] 

 𝐾 Bulk modulus of elasticity of fluid [𝑃𝑎] 

 𝐸 Young modulus [𝑃𝑎] 

 𝑒 Thickness of pipe [𝑚] 

 𝐻 Piezometric head [𝑚] 

 𝐶+ Positive characteristic line − 

 𝐶− Negative characteristic line − 

 Δ𝑥 Length of pipe section [𝑚] 

 Δ𝑡 Time step [𝑠] 

 𝑁 Number of nodes − 

 𝐻𝑅 Head of upper reservoir [𝑚] 

 𝐻𝑅2 Head of lower reservoir [𝑚] 

 𝐻𝑃 Head one time step ahead [𝑚] 

 𝑄𝑃 Discharge one time step ahead [𝑚3/𝑠] 

 𝐾𝑣 Valve loss coefficient [−] 

 𝑐𝑑 Flow coefficient [−] 

 

 

Greek symbols 

 

 Symbol: Description: Unit: 

    

 𝜌 Density of water [𝑘𝑔/𝑚3] 

 𝜉 Pressure losses [𝑃𝑎] 

 𝜉0 Initial pressure losses [𝑃𝑎] 

 𝛼 Coriolis correction factor [−] 

 𝜀 Pipe roughness [−] 
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1 Introduction 
 

Hydraulic efficiency tests are performed to reveal important information regarding the state 

of a hydraulic turbomachine. It is a necessary tool to ensure that the efficiency warranties of 

a contract are met when installing a new turbine or pump. Efficiency tests are also highly 

useful when investigating the improvement of a turbine before and after a refurbishment, 

and for operational planning in a cost-effective perspective. Moreover, regularly efficiency 

measurements of a turbine reveal the progress of wear through years of operation and may 

give an indication of the remaining lifetime of a machine. It is not unusual for modern 

turbines to have efficiencies above 90 %. Large Francis turbines operating at best efficiency 

point (BEP) at medium heads may achieve efficiencies close to 94 – 96 % (Brekke, 2001). The 

terms and conditions of performing field acceptance tests on hydraulic turbomachines are 

stated in the IEC 41 standard (IEC.41, 1991a). 

There are several different methods of determining the efficiency of a turbine. The choice of 

method depends on the available pressure head and discharge, costs associated with the 

measuring equipment and implementation, design and geometry of the hydropower plant 

and operative conditions. Some of the most common methods used today include the 

thermodynamic, ultrasound, pressure-time (Gibson), current-meter and the Winter-Kennedy 

method. Most of the methods aim to determine the flow rate in the pipeline for an indirectly 

approach of the efficiency. One exception is the thermodynamic method, which determines 

the efficiency by utilizing the temperature increase through the turbine by assuming that the 

entire energy loss has been converted into heat. 

Hydropower plants are classified by their gross head. Low-head plants are designated in the 

range 2 – 30 m, medium-head plants are in the range 30 – 250 m and high-head plants are 

classified as heads greater than 250 m (Subramanya, 2013). Choice of efficiency method 

strongly depends on the available head, as the obtainable efficiencies varies according to the 

operating conditions present. The uncertainties that are expected to be found by following 

the recommended terms for various methods are shown in Figure 1-1: 
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Figure 1-1: Variation in uncertainties as a function of available heads (Nielsen, 2015). 

 

The thermodynamic method is clearly best suited for high-head machines, as the uncertainty 

decreases with increasing head. The operating ranges of the current-meter and Gibson are 

limited to low-head and medium-head machines, while the ultrasound method succeeds to 

provide somewhat constant uncertainties for a wide range of heads.   

In Norway, the hydroelectric power production covers 99 % of the total power production. 

The thermodynamic method is widely used, due to the large number of high mountains and 

consequently many high-head plants. Several low-head machines are installed in Norwegian 

rivers, and the incidence of small hydropower plants have increased recent years due to the 

arrangement of governmental subsidies in terms of green certificates. The varying amount 

of power plants demands knowledge about various efficiency methods to unveil the true 

performance of the power production.  

The hydraulic efficiency methods are classified either as absolute or relative. Relative 

measurements, commonly referred to as index tests, are usually performed to monitor the 

decrease in efficiency over time and to investigate the improvement after refurbishment. 

Any method may be used as a relative method, but the Winter-Kennedy is essentially 

preferred. The discharge measurements shall, according to the IEC 41 (1991) standard, be 

entirely absolute. However, the standard encourages use of relative tests for either 

comparison with absolute methods or as an alternative when absolute measurements are 

difficult to perform. It is often a challenging task to perform precise efficiency measurements 

when dealing with low-head machines. Challenging geometrical variations in the pipeline 

and short inlet passages are often present in low-head power plants. In such cases, a cost 

effective and simple alternative method is requested, typically the Winter-Kennedy. The 

procedure of executing the Winter-Kennedy method is presented in the IEC 41 (1991) 

standard and includes recording of the pressure at the inner and outer wall in a cross section 

of the spiral casing. This provides a calculation of the volume flow rate by the relation 𝑄 =
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𝑘 ∙ Δℎ𝑛, where k is a calibrated constant, n is a number between 0.48 and 0.52 and Δℎ is the 

differential pressure. Although the Winter-Kennedy method is quite frequently preferred in 

low-head machines, it has shown some inconsistency over time. It is especially sensitive for 

modifications in the pipeline, which may cause a slight change in the flow pattern and affect 

the relative measurements. Problems caused by the inlet boundary layer was examined 

experimentally by J. Nicolle and G. Proulx (Nicolle and Proulx, 2010), who found deviations in 

the inflow condition of 5.4 %. Winter-Kennedy model testing done to examine the effects of 

skew inlet flow (Andersson et al., 2008), provided deviations close to 10 %. However, the 

method has given errors as low as 1 % under favorable conditions, but variations over time 

appear to be the pervasive problem. In need of an accurate, consistent alternative, the 

relative pressure-time method has been suggested as an option. P. Jonsson performed a 

relative analysis on Porjus U9 and presented the possibility of achieving accurate results 

using a relative pressure-time approach (Jonsson and Cervantes, 2013). 

A relative measurement is found by indexing the experimental flow rate against a reference 

flow, and is in the IEC 41 (1991) defined as: 

 

 
𝑄𝑟𝑒𝑙 =

𝑄𝑖
𝑄𝑟𝑒𝑓

 
 

( 1.1 ) 

 

where 𝑄𝑟𝑒𝑙 denotes the percentage size of the relative measurement, 𝑄𝑖 is the discharge 

measured during the testing and 𝑄𝑟𝑒𝑓 denotes the value of the reference flow. The value of 

the reference flow may be represented in terms of previous, absolute measurements or by 

the guarantees from the contractors. A third option is to use the best relative flow achieved 

in the measurements as the reference, assuming a probable absolute flow.  

Both random and systematic errors must be considered in the evaluation of absolute 

measurements. Errors associated with relative tests, on the other hand, are entirely random, 

implying that systematic errors are entirely neglected in the statistical analysis. However, a 

series of repetitions are required in order to evaluate the random errors thoroughly. 

 

1.1 Objective of thesis 
 

The main objective of this thesis is to evaluate the pressure-time method as a relative 

method. To this purpose, data from previously pressure-time measurements performed in 

the Waterpower Laboratory at NTNU will be evaluated. The Gibson test rig located in the 

laboratory allows for controlled measurements outside the IEC 41 (1991) standard and is 

suited for a relative evaluation of the pressure-time method. The relative analysis will 

elaborate the concerns regarding complex geometry and unknown losses in the test rig. A 

further investigation of the repeatability and assessment of the uncertainties is also 
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presented for a thorough evaluation of the method. Furthermore, a numerical model is 

developed to support the experimental findings. 

 

1.2 Structure of thesis 
 

The first part of the thesis introduces the pressure-time method and presents limitations 

and advantages associated with carrying out the measurements. A literature study covers 

recent progress of the method and discusses the problems associated with the hydraulic 

losses. An introduction to the numerical modelling is further presented, followed by a 

representation of the experimental test case setup and the modelling procedure. 

Furthermore, the experimental and numerical results are presented and evaluated, followed 

by a discussion of the method’s validity and further application in low-head machines. This 

master is a continuation of the project work written during the spring of 2016 (Dahl, 2016). 

 

1.3 Evaluation of uncertainties 
 

In statistical analysis, an error states how much a measurement deviates from its true value. 

The uncertainties of a measurement form an interval where the true value is very likely to lie 

within. A confidence interval of 95 % is commonly used, implying that it is likely that 95 % of 

the interval estimates include the true value. 

Three different types of errors must be considered in a statistical analysis, known as spurious 

errors, systematic errors and random errors: 

 

1. Spurious errors:  

Spurious errors are caused by human or instrumental failure. They usually occur as 

outliers and must be removed for further statistical analysis. 

 

2. Systematic errors:  

Systematic errors are caused by equipment errors, calibration flaws and improper 

use of instruments and are not directly related to the actual measurements. 

Systematic errors cannot be reduced by repeating the measurements and may be 

difficult to estimate. The guaranteed systematic error of a given equipment is usually 

specified by the manufacturer, but some equipment require additional calibration to 

reveal the actual uncertainties. 
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3. Random errors:  

Random errors are caused by unknown and unpredictable changes in the 

measurements and are due to variations in the system or by instability in the 

measuring equipment. They may for instance occur by changes in the water 

temperature or by noises in the electrical installation. These errors are reduced by 

increasing the number of repetitions.  

 

The overall uncertainty 𝑓𝑡  of a measurement is achieved by combining the systematic and 

random uncertainties by the root of the sum of the squares method (RSS). This assumes that 

the systematic and random errors are independent of each other:  

 

 𝑓𝑡 ± (𝑓𝑠
2 + 𝑓𝑟

2)1/2 
 

( 1.3.1 ) 

 

where 𝑓𝑠 and 𝑓𝑟 denote the systematic and relative uncertainties, respectively. 

 

1.3.1 Random uncertainties 
 

The random uncertainties for repetitive measurements under constant operational 

conditions are estimated by following the instructions stated in Appendix D in the IEC 41 

(IEC.41, 1991b) standard. 

 

For a given number of observations 𝑋1, 𝑋2,…,𝑋𝑛, the arithmetic mean �̅� is found by: 

 

 
�̅� =

1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 
 

( 1.2.2 ) 

 

where 𝑋𝑖 is the value of the 𝑖𝑡ℎ measurement of 𝑋 and 𝑛 is the total number of 

measurements. 

The standard deviation 𝜎 describes the spread of a data set and indicates how far a single 

measurement deviates from the mean. For a limited amount of measurements, only an 

estimation of the standard deviation is obtainable. The estimated standard deviation 𝑠𝑋 is 

given by:  
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𝑠𝑋 = (
1

𝑛 − 1
∑[𝑋𝑖 − �̅�]

2

𝑛

𝑖=1

)

1/2

 

 
 

( 1.3.3 ) 

 

IEC 41 (1991) requires that the random uncertainties lie within a 95 % confidence interval, 

corresponding to 1.96 standard deviations. For an estimated standard deviation, the 

criterion is met using the Student’s 𝑡 distribution. For 𝑛 measurements, the degree of 

freedom is defined as 𝑣 = 𝑛 − 1. The corresponding 𝑡′𝑠 from the Student’s distribution are 

found in Table 1-1: 

 

 

Degrees of freedom 
 

𝑣 = 𝑛 − 1 

 

Student’s 𝒕            𝒕/√𝒏 
 

For the 95 % confidence level 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
60 
∞ 

 

12.706 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 
2.228 
2.201 
2.179 
2.160 
2.145 
2.131 
2.086 
2.042 
2.000 
1.960 

 

8.984 
2.484 
1.591 
1.241 
1.050 
0.925 
0.836 
0.769 
0.715 
0.672 
0.635 
0.604 
0.577 
0.554 
0.533 
0.455 
0.367 
0.256 

0 

 
Table 1-1: Values of the Student's t distribution (IEC.41, 1991c) 

 

The random uncertainty of the measurements at a 95 % confidence interval is further 

achieved by the following relation: 

 

 
𝑓𝑟 = ±

𝑡 𝑠𝑋

√𝑛
 

 

( 1.3.4 ) 

 

Then the true value of a measurement is likely to be found a distance 𝑓𝑟 from the mean 

value �̅�: 
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 �̅� ± 𝑓𝑟    
 

( 1.3.5 ) 

 

with a corresponding percentage error equal: 

 

 
𝑒𝑟 =

𝑓𝑟

�̅�
∙ 100 

 

( 1.3.6 ) 

 

 

1.3.2 Reference comparison 
 

The overall error 𝑒 is found when comparing an experimental measurement 𝑋𝑖 to a 

reference measurement 𝑋𝑟𝑒𝑓 by  

 

 
𝑒 =

𝑋𝑖  −  𝑋𝑟𝑒𝑓

𝑋𝑟𝑒𝑓
∙ 100  

 

( 1.3.7 ) 
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2 The pressure-time method 
 

The pressure-time method, also known as the Gibson method, was introduced by Norman 

Gibson in 1923 (Gibson, 1923). The method involves measuring the arising retardation 

pressure between two measuring sections while closing the guide vanes, needles or valve 

upstream a turbomachine in a closed conduit. By integrating the differential pressure as a 

function of the sampling time, the total discharge in the pipeline can be calculated for 

further evaluation of the turbine efficiency. 

 

Over the recent years the method has been greatly improved due to development of more 

precise measuring equipment, improved data processing and more accurate instrumental 

calibration. According to the IEC 41 (1991), the method can, favorable conditions, estimate 

the flow rate in the pipeline with an overall uncertainty of 1.5 – 2 % at the 95 % confidence 

level.  

There are several advantages associated with the pressure-time method. The method does 

not require much equipment compared to similar options and is therefore a rather cheap 

alternative. Several power plants have preinstalled pressure taps on the inlet pipe to the 

turbomachine, which entails efficient and simple installation of the pressure equipment. 

Moreover, the method requires little downtime, which is preferable in a cost-effective 

perspective. 

There are, however, several difficulties and limitations associated with application of the 

pressure-time method, stated in the IEC 41 (1991) standard. The distance between the two 

measuring sections must be a straight pipe section with a length of at least 10 m and a 

constant cross-sectional area. This is rarely the case in small, low-head power plants, due to 

the incidence of variations in the pipe geometry and short water inlets. Additionally, the 

product of the pipe length and the mean velocity of the water (𝑉𝐿) should be at 

least 50 𝑚2/𝑠2. One of the main challenges concerns the determination of the final flow. It 

is difficult to determine the final integration point, due to the arising pressure oscillations 

after complete shut-off. A large variation in the final flow may be found by variation of the 

final integration point, and the cut-off time must therefore be evaluated carefully. Despite 

strict demands and limitations regarding the application of the method, the possibility of 

using the method for complex pipes has not excluded from the standard. 
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2.1 The principles behind the pressure-time method 
 

2.1.1 Newton second law 
 

The pressure-time method is based on the principles behind Newton’s second law and the 

fluid mechanical laws. When closing the guide vanes, a large differential pressure between 

the two measuring sections occurs due to a change in momentum. This gives a relation 

between the rise in pressure and the deceleration of mass: 

 

 
𝜌𝐿𝐴

𝑑𝑉

𝑑𝑡
= −𝐴∆𝑃 

 

( 2.1.1 ) 
 
 

The setup of the pressure-time procedure is illustrated in Figure 2-1: 

 

 

Figure 2-1: Setup of pressure-time measurements 

 

During the closure, a pressure wave forms upstream the closure device and propagates at 

high speed back and forth throughout the entire pipeline. The closure time must be chosen 

to avoid the effects of these pressure waves, known as water hammers. If the closure is too 

rapid, the travelling wave may cause fatale damages, like rupture or collapse of the pipe.  

The differential pressure ∆𝑃 = 𝑃2 − 𝑃1 that is measured between pressure section 1 and 2 

upstream the guide vanes, is illustrated as a function of time in Figure 2-2. The differential 

pressure, represented by the blue curve, increases during the closure until the closing device 

is completely shut-off at the time 𝑡𝑐. Pressure oscillations arise immediately after closure 

and fade out after some time. 
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Figure 2-2: Pressure variaton during a closure 
 

The initial flow may then be calculated using the pressure-time method by integrating the 

differential pressure as a function of the closure time. The pink shaded area specifies one 

flow segment ∆𝑄𝑖 and is the area of the differential pressure over one time step. The final 

flow is found by summation of all flow segments. The number of flow segments are 

determined by the sample frequency, which should be at least 50 readings per second, as 

stipulated in the IEC 41 (1991). 

The hydraulic pressure losses are denoted 𝜉 and vary from the initial loss 𝜉0 and throughout 

the closure. Between two sections in a straight pipeline, these losses are entirely frictional, 

due to the occurrence of shear stresses along the pipe wall. These losses must be subtracted 

from the differential pressure in the integration, as they constitute a noticeable impact of 

the overall differential pressure. It is essential to define the losses properly to avoid 

substantial errors in the final flow calculation.  

The first integration point is chosen when the closing starts and the last integration point is 

chosen when the closing device is closed. It may be difficult to determine the last integration 

point due to the occurrence of pressure oscillations after closure and a mismatch between 

the shut-off of the closing device and the shut-off of the recorded flow. One procedure of 

determining the final integration point is thoroughly explained in the IEC 41 (1991). If the 

oscillations are small or fade out quickly, the final flow may be found by integrating over the 

pressure oscillations, as explained in (Jonsson, 2011). If the oscillations are small, but non-

harmonic or noisy, the same procedure may still be carried out. However, due to varying 

fluctuations, an average over a range is required to achieve the finale flow. 
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2.1.2 Derivation of the pressure-time method 
 

The pressure-time integral is derived from the general expression of the energy equation, 

which may be formulated as presented in (Adamkowski, 2012): 

 

 
𝑃1 + 𝛼1

𝜌𝑄2

2𝐴1
2 + 𝜌𝑔𝑧1 = 𝑃2 + 𝛼2

𝜌𝑄2

2𝐴2
2 + 𝜌𝑔𝑧2 + ξ + 𝜌∫

𝑑𝑥

𝐴(𝑥)

𝑑𝑄

𝑑𝑡

𝐿

0

 
 

( 2.1.2 ) 

 

where 𝑃1 and 𝑃2 are the static pressures at section 1 and 2, respectively, 𝜌 is the density of 

water, 𝑧1 and 𝑧2 are the elevations above a reference height, 𝛼1 and 𝛼2 are the Coriolis 

correction factors, L is the pipe length in the axial direction of 𝑥 and 𝐴(𝑥) is the variation of 

the cross-sectional area as a function of 𝑥. 

The geometrical pipe factor 𝐹 depends on the pipe area, pipe length and fluid density and is 

in (Adamkowski, 2012) defined as 

 

 
𝐹 = 𝜌∫

𝑑𝑥

𝐴(𝑥)

𝐿

0

 
 

( 2.1.3 ) 

 

For a straight pipe with a constant cross-sectional area, Eq. ( 2.1.3 ) simplifies to  

 

 
𝐹 = 𝜌

𝐿

𝐴
 

 
( 2.1.4 ) 

 

In Eq. ( 2.1.2 ), 𝑑𝑄/𝑑𝑡 represents the unsteady flow, which equals zero under steady state 

conditions. By substituting Eq. ( 2.1.3 ) into Eq. ( 2.1.2 ), the energy equation may be 

rewritten to  

 

 
𝜌𝐹
𝑑𝑄

𝑑𝑡
= (𝑃1 + 𝜌𝑔𝑧1 − 𝑃2 − 𝜌𝑔𝑧2) + (𝛼1

𝜌

2𝐴1
2 − 𝛼2

𝜌

2𝐴2
2)𝑄|𝑄| + ξ 

 
( 2.1.5 ) 

 

 𝑑𝑄

𝑑𝑡
=
1

𝜌𝐹
(∆𝑃𝑠 + ∆𝑃𝑑 + ξ) 

 

( 2.1.6 ) 

 

where ∆𝑃𝑠 and ∆𝑃𝑑 denote the static and dynamic pressures, respectively. Furthermore, an 

expression of 𝑄 is achieved by: 
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𝑄 − 𝑞 =

1

𝜌𝐹
∫ (∆𝑃𝑠(𝑡) + ∆𝑃𝑑(𝑡) + ξ(𝑡))
𝑡1

𝑡0

𝑑𝑡 
 

( 2.1.7 ) 

 

𝑞 represents the leakage water and must be calculated separately and added to the final 

flow. 𝑡0 and 𝑡1 denote the first and last integration points. The pressure-time integral is in 

general presented as: 

 

 
𝑄 =

𝐴

𝜌𝐿
∫ (∆𝑃(𝑡) + ξ(𝑡))
𝑡1

𝑡0

𝑑𝑡 + 𝑞 
 

( 2.1.8 ) 

 

Both the differential pressure ∆𝑃 and the frictional losses ξ vary with time and must be 

considered at each time step.  
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2.2 Hydraulic losses 
 

The pressure losses appearing in a fully developed, internal pipe flow are caused by frictional 

and minor losses. Frictional losses ∆𝑃𝑓 are present due to viscous forces along the wall and 

are calculated by the Darcy-Weisbach equation (Çengel and Cimbala, 2006): 

 

 
∆𝑃𝑓 = 𝑓

𝜌𝐿

2𝐷

𝑄2

𝐴2
 

 
( 2.2.1 ) 

 

where 𝑓 is Darcy friction factor which strongly depends on the Reynolds number 𝑅𝑒. For 

laminar flows (Re < 2300), the friction factor 𝑓 in a circular pipe is found by: 

 

 
𝑓 =

64

𝑅𝑒
 

 
( 2.2.2 ) 

 

For turbulent pipe flows (Re > 4000), the friction factor is estimated by the implicit 

Colebrook-White equation: 

 

 1

√𝑓
=  −2.0 log (

𝜀 𝐷⁄

3.7
+
2.51

𝑅𝑒√𝑓
) 

 

( 2.2.3 ) 

 

where 𝜀 denotes the roughness of the pipe. Minor losses arise as the flow passes through 

bends, fittings, valves, elbows, enlargements and contractions. Irregularities in the pipeline 

causes a mixing and separation of the passing flow, which induces additional losses, which 

must be considered along with the frictional losses. They are usually small compared to the 

frictional losses, but must be considered in pipelines with complex geometries and pipe 

junctions. The minor losses ∆𝑃𝑚 are defined as: 

 
∆𝑃𝑚 = 𝐾𝐿

𝜌

2

𝑄2

𝐴2
 

 

( 2.2.4 ) 

 

where 𝐾𝐿 is loss coefficient. Loss coefficients are experimental coefficients, which depend on 

the geometry and design of the power plant components.  

The total hydraulic pressure losses ξ through a circular pipeline are found by summation of 

the total frictional losses and minor losses: 
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ξ =
𝜌

2
(∑

𝑓𝑖𝐿𝑖

𝐷𝑖𝐴𝑖
2

𝑖=1

+∑
𝐾𝐿,𝑗

𝐴𝑗
2

𝑗=1

) ∙ 𝑄2 
 

( 2.2.5 ) 

 

ξ depends on the variation in the pipe geometries, friction factors and loss coefficients.  
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2.3 Literature review 
 

Assessment of the discharge is one of the main issues when determining the performance of 

a turbomachine and the pressure-time method has proven to give good results, due to its 

limitations and strict requirements. The latest pressure-time procedure was published in the 

IEC41 standard in 1991, aiming to provide guidance for application of the method. Since 

then, the performance of measuring equipment has been greatly improved, although the 

investigation of the pressure-time method has been somewhat limited. Recent research has 

aimed to expand the method for low-head machine application and improved the procedure 

of finding the final integration point. 

Pontus Jonsson investigated the usage of the pressure-time method outside the standard by 

performing pressure-time measurements in the Waterpower Laboratory at NTNU (Jonsson, 

2011). The measurements were conducted between measuring sections of 3, 6 and 9 

meters, corresponding to mean velocities of 𝑉 = 2.4, 4.4 and 5.8 𝑚/𝑠. He found that the 

random error of the discharge increased with a decreasing measuring section. For the 

measuring section of 3 m, the uncertainties were found to be within ±2 % when using 

differential pressure sensors, and ±3 % when using absolute pressure sensors. Likewise, for 

the measuring section at 9 m, both differential and absolute sensors provided uncertainties 

within ±1 %. All uncertainties were found at a 95 % confidence level and the experimental 

results were validated numerically. As a result of his work, the upcoming update of the IEC 

41 standard will decrease the required measuring section from 10 𝑚 to 8 𝑚, which 

corresponds to a decrease in the 𝑉𝐿 relation from 50 𝑚2/𝑠 to 40 𝑚2/𝑠 (Cervantes et al., 

2012). 

Improvements of the pressure-time method have also been done regarding the calculation 

procedure of the pressure integral. A. Adamkowski and W. Janicki (Adamkowski and Janicki, 

2010) proposed an improved procedure of finding the final integration point, due to an error 

in the original procedure described in the IEC 41 (1991). The standard fails to ensure a zero-

integral to remove the effects of the free oscillations, caused by an inadequate 

mathematical consideration.    

 

2.3.1 Friction issue 
 

A sufficient friction model is, as previously discussed, essential in the iteration process of 

finding the final flow. Determination of a precise loss model is challenging, and incorrectly 

considerations will influence the value of the calculated flow. The hydraulic losses may be 

described by assuming either constant friction losses or quasi-steady friction losses. The 

calculation procedure described in the IEC 41 (1991) calculates the hydraulic losses by 

assuming quasi-steady conditions.  
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By assuming that the hydraulic losses follow a constant friction approach, the friction factor 

𝑓 maintains constant throughout the integration procedure. The Reynolds number and 

friction factor are found from the steady-state flow conditions and are included in  

Eq. ( 2.2.1 ). An iterative solution of the pressure-time integral must be found, since the final 

flow rate 𝑄 in the pressure-time integral also is included in the pressure losses. Since the 

friction factor depends on the initial flow conditions, a new value must be found at each 

iteration step. The pressure-time integral assuming constant friction is given in Eq. ( 2.3.1 ):  

  

 
𝑄 =

𝐴

𝜌𝐿
∫ (∆𝑝 − 𝑓

𝐿

𝐷

𝜌𝑄2

2𝐴2
)

𝑡1

𝑡0

𝑑𝑡 + 𝑞 
 

( 2.3.1 ) 

 

This approach assumes frictional losses exclusively and utilizes the available pipe geometry 

to find an estimate of the losses. Previous work performed by P. Jonsson (Jonsson et al., 

2012) has shown that a constant friction assumption does not describe the losses sufficiently 

and provides an underestimation or an overestimation of the flow, due to the presence of 

hydraulic transients.  

A quasi-steady friction consideration, however, assumes that the losses are steady at each 

time step. The ASME International Code (ASME.PTC.18-2011, 2011) states that the losses are 

“assumed to follow a fully turbulent velocity-squared pressure law”, meaning that the 

recovery line can be described in terms of: 

 

 
ξ(t) = −

𝜉0
𝑄0|𝑄0|

∙ 𝑄(𝑡)|𝑄(𝑡)| = 𝑘2 ∙ 𝑄(𝑡)|𝑄(𝑡)| 
 

( 2.3.2 ) 

 

where 𝜉0 denotes the initial pressure loss and 𝑄0 is the initial flow rate. The initial conditions 

are constant properties and are represented in terms of the constant 𝑘2 . Both frictional and 

minor losses are included in the quasi-steady friction approach, as shown in Eq. ( 2.2.5 ). The 

pressure-time integral may then be represented as: 

 

 
𝑄 =

𝐴

𝜌𝐿
∫ ∆𝑝 + 𝑘2 𝑄(𝑡)|𝑄(𝑡)|
𝑡1

𝑡0

 𝑑𝑡 + 𝑞 
 

( 2.3.3 ) 

 

An iterative process, similar to the constant friction approach, is required for the quasi-

steady assumption. The initial pressure losses remains constant in Eq. ( 2.3.2 ), but the initial 

flow rate depends on the final flow calculation, implying that 𝑘2 must be included in the 

iteration process. Neither the constant friction nor the quasi-steady approach give a 

complete description of the pressure losses, as the behavior of the hydraulic transients is 

difficult to predict.  
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2.4 Friction modelling 
 

The behavior of the frictional effects is commonly examined and improved by numerical 

modelling. The use of one-dimensional numerical models, such as the method of 

characteristics (MOC), are widely used and have proven to provide fast and simple 

approximations of the losses. Unsteady friction effects are challenging to account for, as 

they are substantial and somewhat unpredictable. These effects are present as a 

consequence of decelerating the flow during a closure, causing a pressure rise and the 

occurrence of compressibility effects. 

A friction model was introduced by B. Brunone (Brunone et al., 1991) to evaluate the 

unsteady friction behavior. The model aims to combine the contributions from the quasi-

steady and unsteady frictions and has become popular, as it is easy to implement into a 

numerical model:  

 

 
𝑓 = 𝑓𝑞 +

𝑘𝐷

𝑉|𝑉|
(
𝜕𝑉

𝜕𝑡
− 𝑎

𝜕𝑉

𝜕𝑥
) 

 
( 2.4.1 ) 

 

where  𝑓𝑞 denotes the quasi-steady friction factor, 𝑘 is the Brunone friction coefficient, 𝐷 is 

the internal diameter of the pipe, 𝑉 the mean velocity of the flow and 𝑎 is the wave speed. 

The quasi-steady friction corresponds to the Darcy friction factor at each time step. The 

terms 𝜕𝑉/𝜕𝑡 and 𝜕𝑉/𝜕𝑥 represents the temporal and convective accelerations, respectively. 

If the Mach number is sufficiently low, the wave speed 𝑎 is greater than the velocity of the 

fluid. Under these circumstances, the convective acceleration term in Eq. ( 2.4.1 ) provides 

only a slight contribution to the friction and may be neglected. 

The unsteady Brunone friction model was later modified by Vitkovský (Bergant et al., 2001) 

to ensure a correct sign of the convective acceleration: 

 

 
𝑓 = 𝑓𝑞 +

𝑘𝐷

𝑉|𝑉|
(
𝜕𝑉

𝜕𝑡
+ 𝑎 𝑠𝑖𝑔𝑛(𝑉) |

𝜕𝑉

𝜕𝑥
|) 

 
( 2.4.2 ) 

 

The Brunone friction coefficient 𝑘 is usually found by trial and error. The value of 𝑘 may be 

changed locally, although a constant approach has proved to provide good results. Vardy 

and Brown introduced a method of calculating the Brunone friction coefficient 𝑘 (Vardy and 

Brown, 1996). The friction coefficient is then expressed by considering the Vardy shear 

decay coefficient 𝐶∗: 
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𝑘 =  

√𝐶∗

2
 

 
( 2.4.3 ) 

 

The shear decay coefficient depends on Reynolds number and is found by 

 

 

𝐶∗ ∶       {

0.00476                        𝑖𝑓 𝑅𝑒 < 2300         
        

   
7.41

𝑅𝑒𝑙𝑜𝑔(14.3/𝑅𝑒
0.05)

             𝑖𝑓 𝑅𝑒 ≥ 2300                
 

 
 

( 2.4.4 ) 

 

The main issue behind explaining the pressure losses is due to the occurrence of transients. 

Jonsson et al. (2012) developed a numerical model that incorporated the unsteady friction 

to account for the unsteadiness of the flow. This was done by including the flow at each time 

step into a simplified version of the Brunone friction model. His model succeeded to correct 

both the overestimated and underestimated flow, and the discharge estimation error 

appeared to be reduced by 0.4 %. The results did also provide a good agreement between 

his numerical model and experimental work. Later, the unsteady friction model was 

experimentally validated by G. Dunca (Dunca et al., 2013).  

A numerical pressure-time model that accounted for the compressibility of the liquid and 

the deformation of the pipe walls, was introduced by A. Adamkowski and W. Janicki 

(Adamkowski and Janicki, 2013) by assuming constant friction. Later, G. Dunca (Dunca et al., 

2016) developed a similar numerical model by incorporating the unsteady Brunone friction 

model into the standard Gibson model and the Adamkowski model. She managed to obtain 

errors close to zero, with errors of 0.006 %, 0.003 % and 0.002 % for flows at 0.160 𝑚3/𝑠, 

0.300 𝑚3/𝑠 and 0.400 𝑚3/𝑠, respectively. A greater error was found using the steady 

models, emphasizing the importance of a well-defined unsteady friction model.  
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2.5 Relative pressure-time 
 

Investigation of the pressure-time method as a relative method is of interest when 

attempting to expand the limitations of the absolute method. A proper development of the 

relative pressure-time procedure may provide a cheap and simple evaluation of the 

discharge for hydropower plant with low-head machines and complex geometry. Instead of 

limiting the measuring section to a straight pipe, the relative method utilizes the entire pipe 

length from the upper reservoir to a measuring section upstream the closure device. There 

are, however, several challenges associated with the computation of the relative Gibson 

flow. While application of the absolute method presupposes knowledge of the pipe 

geometry, the relative method must deal with a complex pipeline with varying cross-

sectional areas, pipe junctions and bends. The main issues behind the relative pressure-time 

evaluation concern the examination of the unknown pipe factor and the hydraulic pressure 

losses in the complex pipeline. 

The pipe factor equation, introduced in Eq. ( 2.1.3 ), takes into account the variations in a 

pipeline geometry caused by varying diameters, bends, inlets, contractions and expansions. 

The representation of the pipe factor is simplified by presenting it as a geometrical 

constant 𝑘1: 

 
𝑘1 =

1

𝜌𝐹
 

 

( 2.5.1 ) 

 

This constant must be found either by computation or by comparison with another 

efficiency method. The relative pressure losses are treated as the quasi-steady discussed in 

paragraph 2.3.1, which adds the unknown pressure loss constant 𝑘2 to the problem. As 

previously discussed, the loss constant must be determined by the initial pressure loss and 

the steady-state discharge. The pressure-time integral presented in Eq. ( 2.3.3 ) may then be 

reformulated to contain both unknown constants, 𝑘1 and 𝑘2: 

 

 
𝑄 = 𝑘1∫ ∆𝑝 + 𝑘2 𝑄(𝑡)|𝑄(𝑡)|

𝑡

𝑡0

𝑑𝑡 + 𝑞 
 

( 2.5.2 ) 

 

The assessment of the relative flow may prove to be a rather difficult task, as the loss 

constant 𝑘2 depends on the initial flow conditions, which depends on the geometrical 

constant 𝑘1. The first challenge is to compute a reasonable value of 𝑘1. Moreover, an 

iterative model must be developed to compute iterative values of the loss constant and the 

final relative flow. The final challenge concerns the assessment of the developed method 

and its validity. 
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3 Numerical modelling 
 

Hydraulic transients occur when steady state flows and pressures are transformed from a 

steady state condition to a time dependent state. Unsteady flow may be caused by opening 

or closing a valve, starting or stopping a pump, by variations in the reservoir level and by 

predictable and unpredictable operational changes. The appearance of hydraulic transients 

is unavoidable and must be controlled to avoid undesirable surges in the pipeline.  

 

3.1 Water hammer 
 

The water hammer phenomena, briefly discussed in paragraph 2.1.1, occurs in closed 

pipelines when the flow is decelerating rapidly due to a closure of a valve or guide vanes. 

The transients start immediately and transform the velocity of the flow into pressure, 

causing a rapid pressure rise upstream the closing device. This forms a water hammer, which 

propagates away from the device and through the entire system. The wave propagates back 

and forth until the wave is damped out due to friction and steady state is again achieved. If 

the valve is closed too rapidly, the water hammer may become too powerful and cause 

severe damages in the pipeline and pipe components. This is highly undesirable, and 

numerical modelling is usually performed to predict the pressure behavior when designing a 

new hydropower plant. 

The velocity of the wave propagation, known as the wave speed, in a pipe with a circular 

cross-section is defined as: 

 

 
𝑎 =

√𝐾/𝜌

√1 + (
𝐾
𝐸) (

𝐷
𝑒)

 
 

( 3.1.1 ) 

 

where 𝑎 denotes the wave speed, 𝐾 is the bulk modulus of elasticity of the fluid, 𝜌 is the 

density, E is the Young modulus of elasticity of the wall material, D is the diameter of the 

pipe and e is the thickness of the pipe. For rigid pipes with thick walls, the Young modulus 

goes towards infinity and the wave speed is simplified to 𝑎 ≈ √(𝐾/𝜌). The wave speed 

depends on several factors and is a major source of uncertainty. Its value may vary due to 

the amount of air in the fluid, the pipe material and the condition of the pipeline (Lüdecke 

and Kothe, 2006). The modulus of elasticity is often difficult to determine and may 

contribute to the uncertainty as well. Moreover, the wave speed is affected by whether its 

positioned above the ground or buried. 
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The bulk modulus 𝐾 represents the compressibility of the fluid. Water is usually considered 

incompressible, meaning that its density is assumed constant in a given system. This is 

usually a good approximation for water, presumed that the Mach number is low. However, 

the incidence of large pressure transients when closing a device causes rapid changes in 

pressure, and hence a consideration of the compressibility effects is necessary.   

 

 

3.2 Transient modelling 
 

The most frequently used mathematical method of modelling the water hammer 

phenomenon, is the method of characteristics, introduced by E. Wylie and V. Streeter (Wylie 

and Streeter, 1993). The method converts partial differential equations (PDEs) from the 

momentum and continuity equations into pure ordinary differential equations (ODEs), and 

allows for one-dimensional modelling of the problem. Rapid changes in velocity and 

pressure are assumed unidirectional, implying that the changes in mass, velocity and energy 

associated with a transient flow are more significant in axial direction than in radial 

direction. This provides a one-dimensional simplification of an initially complex problem, 

which computes fast and is easy to implement. The method utilizes characteristic lines to 

form a characteristic grid to compute the varying piezometric heads and discharges in a pipe 

segment for a given amount of time.  

The characteristic equations are made up by the momentum and continuity equations, 

which both are nonlinear, first order partial differential equations: 

 

 
𝑔
𝜕𝐻

𝜕𝑥
+
𝑓𝑉|𝑉|

2𝐷
+ 𝑉

𝜕𝑉

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
= 0

⏟                    

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

 
 

( 3.2.1 ) 

 

 

 
𝑉
𝜕𝐻

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔

𝜕𝑉

𝜕𝑥
= 0

⏟                

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

 
 

( 3.2.2 ) 

 

𝑔 is the acceleration of gravity, 𝐻 is the piezometric head, 𝑥 is the axial direction of the pipe, 

𝑓 is the pipe friction factor, 𝐷 is the pipe diameter, 𝑉 is the velocity of the flow, 𝑡 is the time 

and 𝑎 is the wave speed. The advective terms  𝑉 𝜕𝑉/𝜕𝑥 and 𝑉 𝜕𝐻/𝜕𝑥 are insignificant 

compared to the other terms and can be neglected. Eq. ( 3.2.1 ) and Eq. ( 3.2.2 ) are then 

simplified to 
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𝑔
𝜕𝐻

𝜕𝑥
+
𝑓𝑉|𝑉|

2𝐷
+
𝜕𝑉

𝜕𝑡
= 0 

 

( 3.2.3 ) 

 

 𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔

𝜕𝑉

𝜕𝑥
= 0 

 

( 3.2.4 ) 

 

The final 𝐶+ and 𝐶− characteristics lines are obtained by a linearization of the functions. The 

computational procedure is given in Appendix C. 

 

 

𝐶+ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:      {

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑓𝑉|𝑉|

2𝐷
= 0

𝑓𝑜𝑟 
𝑑𝑥

𝑑𝑡
= 𝑎                       

 

 
( 3.2.5 ) 

 

 

𝐶− 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:      {

𝑔

𝑎

𝑑𝐻

𝑑𝑡
−
𝑑𝑉

𝑑𝑡
−
𝑓𝑉|𝑉|

2𝐷
= 0

𝑓𝑜𝑟 
𝑑𝑥

𝑑𝑡
= −𝑎                     

 

 
( 3.2.6 ) 

 

𝑑𝑥/𝑑𝑡 = 𝑎 and 𝑑𝑥/𝑑𝑡 = −𝑎 denote the slopes of the 𝐶+ and 𝐶− equations, respectively. 

The wave speed remains constant in a single pipe segment with constant properties, but 

varies with changes in pipe material and geometry. For a pipe of a given length, the 

characteristic lines provide new values of the discharge and head for a chosen number of 

time steps ∆𝑡. The characteristic procedure is explained in terms of the x-t grid illustrated in 

Figure 3-1:  

 

 

Figure 3-1: x-t grid. Definition of characteristic lines 

 

The nodes 𝐴 and 𝐵 represent the head and flow conditions at a given time 𝑡 and 𝑃 denotes 
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the node in between, one time step ahead. The pipe is divided into 𝑁 nodes and the 

distance between each node for a pipe length 𝐿 is given by:  

 

 
∆𝑥 =  

𝐿

𝑁
 

 

( 3.2.7 ) 

 

∆𝑡 and ∆𝑥 are related to each other and the wave speed by the following expression: 

 

 
∆𝑡 =

∆𝑥

𝑎
=
𝐿

𝑎𝑁
 

 

 

( 3.2.8 ) 

∆𝑡 depends on the choice of 𝑁, the length of each pipe segment and the wave speed and 

must be evaluated carefully in cases with several pipes and various properties. The more 

nodes chosen in the characteristic operation, the smaller ∆𝑡 becomes. A general, numerical 

solution of the characteristic procedure is summarized in Figure 3-2.  

 

 

Figure 3-2: Characteristic grid. Solution of the 𝐶+and 𝐶−equations. 

 

𝑖 represents the node to be calculated, while 𝑖 − 1 and 𝑖 + 1 are the nodes downstream 

and upstream node 𝑖, respectively. The node at the pipe end is denoted 𝑁 + 1, often 

referred to as NS. 
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3.3 Numerical procedure 
 

The characteristic 𝐶+ and 𝐶− lines are solved numerically by a reformulation of the original 

characteristics. The following numerical considerations are based on the procedures 

formulated by J. Tullis (Tullis, 1989). By expressing the characteristic equations in terms of 

the flow rate 𝑄, related to the mean velocity by 𝑄 = 𝐴𝑉, the numerical equations become: 

 

 𝐶+:  𝐻𝑃𝑖 − 𝐻𝑖−1 + 𝐵(𝑄𝑃𝑖 − 𝑄𝑖−1) + 𝑅 𝑄𝑖−1|𝑄𝑖−1| = 0 
 

 ( 3.3.1 ) 

 𝐶−:  𝐻𝑃𝑖 − 𝐻𝑖+1 − 𝐵(𝑄𝑃𝑖 − 𝑄𝑖+1) − 𝑅 𝑄𝑖+1|𝑄𝑖+1| = 0 
 

 ( 3.3.2 ) 

 

The flow and head at a given time are referred to as 𝑄 and 𝐻, while the unknown flow and 

head one time step later are referred to as 𝑄𝑃 and 𝐻𝑃. 𝐵 denotes the characteristic 

impedance of the pipeline and is defined as: 

 

 𝐵 =
𝑎

𝑔𝐴
 

 

( 3.3.3 ) 

 

𝑅 represents the frictional losses and is described by means of the Darcy friction factor when 

constant friction is assumed: 

 

 
𝑅 = 𝑓

∆𝑥

2𝑔𝐷𝐴2
 

 

( 3.3.4 ) 

 

Expressing the characteristic functions in terms of 𝐶𝑃 and 𝐶𝑀, yields a simplified 

representation of Eq. ( 3.3.1 ) and Eq. ( 3.3.2 ): 

 

 𝐶+:  𝐻𝑃𝑖 = 𝐶𝑃 − 𝐵 𝑄𝑃𝑖  
 

 ( 3.3.5 ) 

 𝐶−:  𝐻𝑃𝑖 = 𝐶𝑀 + 𝐵 𝑄𝑃𝑖 
 

 ( 3.3.6 ) 

 

Since the final head 𝐻𝑃𝑖 is common for both of the characteristics in Eq. ( 3.3.5 ) and  

Eq. ( 3.3.6 ), a final solution for the head and discharge is found by a combination of the 

equations: 

 

 
𝐻𝑃𝑖 =

(𝐶𝑃 + 𝐶𝑀)

2
 

 

( 3.3.7 ) 
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𝑄𝑃𝑖 = 

𝐶𝑃 − 𝐻𝑃𝑖
𝐵

 
 

( 3.3.8 ) 

 

The Brunone unsteady friction model discussed in Eq. ( 2.4.1 ) may be included in the 

momentum equation Eq. ( 3.2.3 ) to account for the unsteadiness, by neglecting the 

convective acceleration term:  

 

 𝜕𝐻

𝜕𝑥
+
1

𝑔

𝜕𝑉

𝜕𝑡
+ [𝑓𝑞

𝑉|𝑉|

2𝑔𝐷
+
𝑘

2𝑔
(
𝜕𝑉

𝜕𝑡
)] = 0 

 

( 3.3.9 ) 

 

The characteristic equations with quasi-steady and unsteady pressure loss terms become: 

 

 
𝐶+:  𝐻𝑃𝑖 = 𝐻𝑖−1 − 𝐵(𝑄𝑃𝑖 − 𝑄𝑖−1) − (𝑓𝑞

𝑄𝑖−1|𝑄𝑖−1|

2𝑔𝐷𝐴2
+

𝑘

2𝑔𝐴
(
𝜕𝑄𝑖
𝜕𝑡
)) ∆𝑥 

 
( 3.3.10 ) 

 
𝐶−:  𝐻𝑃𝑖 = 𝐻𝑖+1 + 𝐵(𝑄𝑃𝑖 − 𝑄𝑖+1) + (𝑓𝑞

𝑄𝑖+1|𝑄𝑖+1|

2𝑔𝐷𝐴2
+

𝑘

2𝑔𝐴
(
𝜕𝑄𝑖
𝜕𝑡
)) ∆𝑥 

 
( 3.3.11 ) 

 

The temporal acceleration is numerically computed by: 

 𝜕𝑄𝑖
𝜕𝑡

=
𝑄𝑃𝑖 − 𝑄𝑖
∆𝑡

 

 

 

( 3.3.12 ) 

Since 𝑄𝑃 is unknown, an iterative process is required to find the acceleration term 𝜕𝑄/𝜕𝑡 at 

each node and time step.  
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3.4 Boundary conditions 
 

The application of the method of characteristics is useful when considering a simple, straight 

pipeline with a reservoir positioned at node 1 and a closing valve positioned at node 𝑁 + 1. 

It is sufficient to apply boundary conditions for the flow and head at the reservoir and valve, 

assuming constant geometry and properties along the pipe: 

 

 

Figure 3-3: Representation of a simple 1-D pipeline with one reservoir and valve 
 
 

3.4.1 Boundary conditions at the reservoir 
 

By assuming no changes in the reservoir level, the head remains constant throughout the 

valve closure: 

 

 𝐻𝑃1 = 𝐻𝑅 
 

( 3.4.1 ) 

 

𝑄𝑃1, on the other hand, depends on the change of flow rate and decreases until the valve is 

completely shut off. The change in 𝑄𝑃1 is determined by: 

 

 
𝑄𝑃1 = 

𝐶𝑃 − 𝐻𝑃1
𝐵

 
 

( 3.4.2 ) 

 

3.4.2 Boundary conditions at the valve 
 

Until the valve is closed, the flow and head depend on the valve opening and the reservoir 

head 𝐻𝑅2 downstream the valve. By applying the energy equation between the reservoir 
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and the valve, an expression of the head at the valve is found equal to  

 

 𝐻𝑃𝑁+1 = 𝐻𝑅2 + 𝐶3 𝑄𝑖+1|𝑄𝑖+1| 
 

( 3.4.3 ) 

 

The constant 𝐶3 = 𝐾𝑣/(2𝑔𝐴𝑣
2), where 𝐴𝑣 is the valve area and 𝐾𝑣 is the valve loss 

coefficient. 𝐾𝑣 can be obtained from the flow coefficient 𝑐𝑑 by the relation: 

 

 
𝐾𝑣 =

1

𝐶𝑑
2 − 1 

 

( 3.4.4 ) 

 

The flow coefficient depends on the valve type, the flow and valve opening and varies 

throughout the valve closure. From Eq. ( 3.3.5 ), the 𝐶+ characteristic provides a second 

expression for the downstream head: 

 

 𝐻𝑃𝑁+1 = 𝐶𝑃 − 𝐵 𝑄𝑃𝑁+1 
 

( 3.4.5 ) 

 

By combining Eq. ( 3.4.3 ) and Eq. ( 3.4.5 ), the equations yield a quadratic equation for the 

discharge at the final node 𝑄𝑃𝑁+1: 

 

 
𝑄𝑃𝑁+1|𝑄𝑃𝑁+1| +

𝐵

𝐶3
𝑄𝑃𝑁+1 +

𝐻𝑅2 − 𝐶𝑃

𝐶3
= 0 

 
( 3.4.6 ) 

 

Solved by: 

 

𝑄𝑃𝑁+1 = 0.5(−
𝐵

𝐶3
±√(

𝐵

𝐶3
)
2

− 4(
𝐻𝑅2 − 𝐶𝑃

𝐶3
)) 

 
( 3.4.7 ) 

 

The discharge 𝑄𝑃𝑁+1 is present in the pipeline until the valve is completely closed. After the 

closure, 𝑄𝑃𝑁+1 = 0 and the head 𝐻𝑃𝑁+1 = 𝐶𝑃. 

 

3.4.3 Evaluation of a complex pipe flow 
 

For pipelines with varying areas, pipe materials and wave speeds, additional boundary 

conditions must be considered to achieve a proper characteristic solution. For a sudden 
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change in the pipe diameter, it is necessary to define the boundary conditions between the 

connected pipes. If no losses occur between pipe 𝑗 and pipe 𝑗 + 1, both the head and flow 

remains constant in the transition area and the boundary conditions are expressed as: 

  

 𝐻𝑃𝑗,𝑁+1 = 𝐻𝑃𝑗+1,1 
 

( 3.4.8 ) 

 𝑄𝑃𝑗,𝑁+1 = 𝑄𝑃𝑗+1,1 
 

( 3.4.9 ) 

 

The boundary conditions in a pipe connection is further explained in Figure 3-4: 

 

 

 
Figure 3-4: Numerical notations for a pipeline with sudden contraction. 

 

3.4.4 Evaluation of the time step ∆𝒕  
 

When dealing with complex pipe systems, the time step ∆𝑡 must be considered to avoid 

inconsistency in head and flow throughout the pipeline. Having two different time steps in 

the simulation provides two different time frames, which is highly undesirable. As presented 

in Eq. ( 3.2.8 ), the time step depends on the pipe length, the wave speed and the number of 

nodes. ∆𝑡 is adjusted by increasing or decreasing the number of nodes until reaching the 

desired value or by adjusting the pipe lengths slightly. This is usually not sufficient and a 

slight discrepancy between the time steps remains present. However, given that the value of 

wave speed is quite uncertain, some variation of it is allowed, as discussed in paragraph 3.1.  
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4 Material and methods 
 

4.1 Experimental setup 
 

Absolute pressure-time measurements were carried out in the Waterpower Laboratory at 

NTNU during the spring of 2016. The validity of a preinstalled Gibson test rig was evaluated 

by performing a wide number of repetitions and by assessment of the measuring equipment 

(Dahl, 2016).  

The concept behind the Gibson test rig in the Waterpower Laboratory is rather simple. A 

centrifugal pump located in the laboratory cellar pumps water up to a water tank positioned 

at the attic. A narrow water channel connects the tank receiving water from the pump and a 

tank that represents the pressure head. A regulation device is installed in both tanks, 

allowing for an adjustment of the reservoir level and provides a maximum pressure head of 

approximately 9.75 m. Further, the water is led down to a long, straight pipe arranged with 

pressure taps suited for execution of pressure-time measurements. The test pipe is made of 

stainless steel with a length of 26.67 m and an inner diameter of 0.3 m, as seen in the 

illustration in Figure 4-1. A knife gate is installed at the end of the pipe and is connected to a 

hydraulic aggregate, which enables a thoroughly controlled closure of the valve during the 

measurements.  

 

 

 

 Figure 4-1: Setup of the Gibson test rig in the Waterpower Laboratory at NTNU 
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Absolute pressure sensors (UNIK 5000) were used in the experiments with a pressure range 

of 0 to 5 𝑏𝑎𝑟 and an accuracy of  ±0.04 %. They were installed on the test pipe with a 

spacing of 4 m, 10 meters upstream the gate valve. The IEC 41 (1991) recommend use of 

differential pressure sensors with tubing, but due to faulty of the differential sensors 

available, absolute sensors were applied instead. The sensors were calibrated using a 

pneumatic deadweight tester (Fluke Calibration P3000) suited for calibration between 0.2 

and 35 𝑏𝑎𝑟. The accuracy of the deadweight tester is 0.008 % of reading. A highly accurate 

electromagnetic flowmeter (KROHNE IFS 4000) with a measuring error of 0.3 % was used as 

a reference flow for validation of the pressure-time calculations. The data obtained from the 

electromagnetic flowmeter, the pressure sensors and the valve position were digitalized via 

a DAQ and recorded and sampled using the logger program NI Signal Express.  

Laboratory pressure-time measurements were carried out for two test cases with flow rates 

approximately equal 170 𝑙/𝑠 and 400 𝑙/𝑠. This corresponds to 𝑉𝐿 relations of 9.64 𝑚2/𝑠 

and 22.64 𝑚2/𝑠, respectively, which are far below the requirement stated in the IEC 41 

(1991) standard. The pipeline geometry between the reservoir and the test area is rather 

complex, as it contains several bends, valves, dead ends, contractions and expansions. The 

test section had to be positioned as close to the knife gate as possible to avoid the 

disturbances from the geometry variations. However, some distance from knife gate was 

also necessary to withstand the effects caused by a double bend installed downstream the 

valve. 

The hydraulic aggregate controlling the closure was managed by a LabView control program, 

which allowed for several repetitions of the pressure-time measurements to be executed 

automatically. Slight variations in the response of the hydraulic aggregate was detected and 

caused some discrepancies between the measurements. The average closure times were 

approximately 4.6 s and 4.7 s for the flows at 170 𝑙/𝑠 and 400 𝑙/𝑠, respectively. MATLAB 

was used for as a mathematical tool during post processing the measuring data.  

Since no leakage flow was discovered in the pipeline after shut off, the leakage term in the 

pressure-time integral was irrelevant to evaluate. 
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4.2 Evaluation of the absolute pressure-time integral 
 

The discharge in the Gibson test pipe was evaluated using both the constant friction and the 

quasi-steady approach and was assessed by comparison with the installed electromagnetic 

flowmeter. The pressure-time integral was solved using the MATLAB built-in function 

cumtrapz. This function uses the principle behind the trapezoidal method to determine the 

area enclosed by the differential pressure and the pressure recovery line. It provides a 

vector with the cumulative integral of the differential pressure as a function of time. The 

final pressure-time flow was found by taking the average over a wide range of sample 

points, due to the incidence of small oscillations in the final integral, as discussed in 

paragraph 2.1.1. For each iteration step, a new value of the pressure-time flow was 

calculated and transmitted to the next iteration until a preset simulation tolerance was 

reached. 

An initial start value of the flow rate was needed in order to initiate the computation and 

was found by assuming linear losses. The linear pressure losses were implemented in the 

sampled pressure data as shown in Figure 4-2: 

 

 

Figure 4-2: Linear pressure losses implemented into an aboslute differential pressure.  
(a) Full scale figure. (b) Enlarged section of the linear loss.   
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The initial linear losses equal the initial differential pressure and decreases linearly until 

reaching the static line end, where the losses are assumed zero. This is a reasonable 

assumption since the frictional effects are small, almost negligible after closure. Finding the 

area between the differential pressure curve and the linear pressure losses provides the 

needed start value of the flow rate 𝑄.  

 

4.2.1 Constant friction implementation 
 

The pressure losses were calculated using the Darcy-Weisbach equation by assuming 

constant friction, as discussed in paragraph 2.3.1. The initial Reynolds number was found 

using the flow from the linear assumption and the inner diameter and cross-sectional area of 

the constant pipe section. Furthermore, the constant friction factor was estimated using the 

Colebrook-White formula and included in the Darcy-Weisbach equation ( 2.2.1 ). The 

iterative procedure of the pressure loss ξ𝑛+1 is presented numerically in the following 

equation:  

 

 
ξ𝑛+1 = f

𝐿

𝐷

𝜌

2𝐴2
∙ (𝑄𝑛+1 − �̅�𝑛)|(𝑄𝑛+1 − �̅�𝑛)| 

 
( 4.2.1 ) 

 

where  ξ𝑛+1 and  Q𝑛+1 are vectors containing information about the pressure losses and 

flows at each time step and Q̅𝑛 is the value of the final pressure-time flow calculated in the 

previous iteration. The losses were included in the pressure-time integral and solved by the 

cumtrapz function at each iteration point. 

 

4.2.2 Quasi-steady friction implementation 
 

When assuming quasi-steady friction, a computation of the losses are conducted at each 

time step throughout the measurement, as concluded in paragraph 2.3.1. The initial value of 

𝑘2 was found by the differential pressure ∆𝑃 = 𝑃2 − 𝑃1 and the initial value of 𝑄 was 

determined by the linear assumption. During the iteration process, new values of 𝑘2 and 𝑄 

were accumulated until a preset toleration of the iteration was reached. Two similar 

approaches were considered when solving the relation  ξ(t) = 𝑘2 ∙ 𝑄(𝑡)|𝑄(𝑡)|: 

 

 ξ𝑛+1 = 𝑘2 ∙ (𝑄𝑛+1
2 − �̅�𝑛

2) 
 

( 4.2.2 ) 

 ξ𝑛+1 = 𝑘2 ∙ (𝑄𝑛+1 − �̅�𝑛)|(𝑄𝑛+1 − �̅�𝑛)| 
 

( 4.2.3 ) 
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Eq. ( 4.2.2 ) yields the difference in losses between the current flow vector and the flow at 

the previous time step, while Eq. ( 4.2.3 ) calculates the losses created by the flow 

differences. Both approaches provided somewhat similar results, but the second approach 

was applied in further investigations of the pressure-time flow. Eq. ( 4.2.2 ) looks at the 

difference in losses by assuming equal loss constant for both flows. 𝑘2 is highly dependent 

on the flow at each iteration step, which could possibly contribute to some discrepancies by 

use of the method. Moreover, simulations revealed a considerable larger spread in the final 

pressure-time flows when using Eq. ( 4.2.2 ) instead of Eq. ( 4.2.3 ).  
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4.3 Evaluation of the relative pressure-time integral 
 

4.3.1 Preparation of relative the measurements 
 

The relative pressure-time method was evaluated using the experimental data obtained 

from the absolute measurements. The relative test section was extended to include the 

pipeline located between the water tank and the test section 10 m upstream the valve. The 

relative setup in the Gibson test pipe is further explained in Figure 4-3.  

 

Figure 4-3: Differential pressure sections for absolute and relative  
measurements in the Waterpower Laboratory.  

 

By utilizing the atmpostheric pressure at the surface of the water tank, the differential 

pressure in the extended test section was found by:   

 

 ∆𝑃 = 𝑃(𝑡) − 𝑃𝑎𝑡𝑚 

 

 

( 4.3.1 ) 

where 𝑃(𝑡) represents the time-dependent pressure measured by pressure sensor 2 and 

𝑃𝑎𝑡𝑚 denotes the constant atmospheric pressure at the reservoir. The main challenge of 

calculating the relative pressure-time integral is to find a good approach to the pipe factor in 

the system, as previously discussed. Since the geometry of the relative test section includes 

several bends, contractions and expansions, the effects originating from the minor losses 

must be considered in addition to the frictional losses. Moreover, the relative Gibson 
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pipeline includes two dead ends, which must be considered in the evaluation of the pipe 

factor.  

The concept behind the relative pressure-time integral was discussed in paragraph 2.5 and 

the issue regarding the unknown pipe geometry and the losses was introduced. A possible 

technique of determining the geometrical constant 𝑘1 was briefly discussed and a 

computational approach was suggested.  It should be possible to obtain a good 

approximation of the pressure loss constant 𝑘2 if succeeding in the evaluation of the 

geometrical constant.  

 

4.3.2 Calculation of the geometrical constant 𝒌𝟏 
 

The pipe factor of a pipeline is defined as the summation of all local pipe factors along the 

pipeline (Adamkowski et al., 2008):  

 

 
𝐹 =∑

𝐿𝑖
𝐴𝑖

𝑛

𝑖=1

=
𝐿1
𝐴1
+
𝐿2
𝐴2
+⋯+

𝐿𝑛
𝐴𝑛

 
 

( 4.3.2 ) 

 

where 𝑛 denotes the number of pipe segments and 𝐿𝑖  and 𝐴𝑖  are the length and cross-

sectional area of each pipe segment.  

Calculation of the pipe factor was done by utilizing the dimensions of the Gibson test pipe. 

The water reservoir was not accounted for, by assuming a low flow velocity. The pipe factor 

was calculated from the outlet of the reservoir to pressure sensor 𝑃, as illustrated in Figure 

4-4:  
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Figure 4-4: The dimensions of the Gibson test pipe 

Moreover, the bends were excluded for a simplification of the problem. Geometrical 

variations due to pipe contractions and expansions were accounted for by dividing the pipes 

segments into tiny sections and separately calculating the pipe factor of each piece. The 

dead ends appearing in the pipeline were treated as a fixed wall. By assuming internal 

circulation inside a dead end, described by the streamlines shown in Figure 4-5, the 

outermost circulating streamline may be regarded as a solid wall for the passing pipe flow. 

The assumption presumes a steady, incompressible flow. 

 

 

Figure 4-5: Assumed circulation of internal streamlines in a dead end. 

 

All individual friction factors were summarized and included in Eq. ( 2.5.1 ) to yield a value of 

the geometrical constant 𝑘1:   
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𝑘1 =
1

𝜌𝐹
 

 

 

4.3.3 Evaluation of the loss constant 𝒌𝟐  
 

The procedure of calculating the relative pressure losses is similar to the absolute quasi-

steady method. Due to the occurrence of minor losses in the pipeline, the loss constant 𝑘2 

must represent both minor and frictional losses, as formulated in Eq. ( 2.2.5 ). Similar to the 

absolute quasi-steady approach, the initial loss 𝜉0 must be determined by the initial 

differential pressure and 𝑘2 must be included in the iterative process to determine the final 

relative flow. The final value of 𝑘2 depends on the choice of the geometrical constant, as 

briefly mentioned in paragraph 2.5.  

A complex problem arises during the iteration process of finding the relative pressure-time 

flow, represented graphically in Figure 4-6.  

 

 

Figure 4-6: Interaction between the parameters during an iteration. 
 

The figure describes the parameters that depend on each other. The loss coefficient 𝑘2 

depends on the initial pressure loss 𝜉0 and the initial flow rate 𝑄0, which in turn depends on 

the calculated pressure-time flow. 𝑘1 is a fixed constant in front of the pressure-time 

integral, implying that the choice of 𝑘1 has a great impact on the final flow and hence the 

losses at each iteration step.   

In order to examine the effects of choosing various geometrical constants, the repeatability 

between the relative measurements was investigated by calculating the ratio 𝑄400/𝑄170 for 

a wide range of various 𝑘1.  In case of considerable discrepancies between the ratios, the 

presented pressure-time method may prove to be invalid for relative analysis. An opposite 

case will, however, prove the method’s ability to repeat the measurements for two arbitrary 

flows, regardless of the choice of 𝑘1. 

 

1 
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4.3.4 The procedure of finding the relative pressure-time flow 
 

As for the absolute pressure-time procedure, the relative integral in Eq. ( 2.5.2 ) was solved 

using the MATLAB trapezoidal function cumtrapz. The following equation explains how the 

cumtrapz function was included in the iterative process:  

 

 𝑄𝑛+1 = 𝑘1 ∙  𝑐𝑢𝑚𝑡𝑟𝑎𝑝𝑧 (𝑡, Δ𝑃 + 𝑘2 ∙ (𝑄𝑛+1 − �̅�𝑛)|(𝑄𝑛+1 − �̅�𝑛)|) 
 

 ( 4.3.3 ) 

 

𝑛 and 𝑛 + 1 represent the previous iteration step and the current step, respectively. 𝑡 is a 

vector containing the time scale of the measurements and Δ𝑃 holds the corresponding 

differential pressure at each time step. 𝑄𝑛+1 is a vector containing the cumulative 

computation of the pressure difference with respect to 𝑡 and �̅�𝑛 is the final flow value, 

calculated from the previous flow vector 𝑄𝑛.  

The tolerance of the iteration process was set to 10−14  to ensure that the calculation was 

entirely completely. For each iteration step, the difference between the old and the new 

value of the pressure-time flow was compared to the tolerance. The iteration continued 

until the difference was sufficiently small.  

A flow chart of the iteration procedure is shown in Figure 4-7 and the associated MATLAB 

script is attached in Appendix A. 
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Figure 4-7: Flow chart explaining the relative flow iteration. 
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4.4 Numerical setup 
 

4.4.1 Introduction of the test cases 
 

Two different numerical cases were made to verify the relative experimental results. The 

first case represents a simple pipeline with constant geometry, while the second represents 

a complex pipeline with a sudden contraction. 

 

 

Figure 4-8: Numerical test cases: (a) Simpel, straight pipe. (b) Complex pipe. 

 

 

The simple pipeline, illustrated in Figure 4-8 (a), consists of a reservoir, a straight pipe and a 

closing valve. The number of nodes was chosen to 25, providing a time step of ∆𝑡 =

0.0027 𝑠, and the wave speed was estimated to be approximately 900 𝑚/𝑠. The gate was 

closed linearly from a fully open position to complete shut-off with a closure time 𝑡𝑐 = 4 𝑠. 

The reservoir level was chosen to 4 𝑚, and the straight pipe had an inner diameter of 0.3 𝑚 

and a pipe length of 60 𝑚. 

The complex pipeline ((b) in Figure 4-8) was given the same properties as the simple pipeline 

regarding the reservoir level, pipe length and closure time. However, the pipe was divided 

into two pipe segments with various diameters, lengths and nodes. The first segment was 40 

m long with a diameter of 0.5 m, divided into 16 nodes. The second segment was 20 m, had 

a diameter of 0.3 m and 8 nodes. The wave speed was calculated to 900 𝑚/𝑠 and the time 

step was ensured equal to the time step of the simple case.   
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4.4.2 Valve characteristics 
 

The valve characteristics are highly dependent on the flow rate and the differential pressure 

and had to be found for each flow in terms of the dimensionless flow coefficient 𝑐𝑑, as 

mentioned in paragraph 3.4. The coefficients chosen for the numerical cases are plotted as a 

function of the valve opening in Figure 4-9:

 

Figure 4-9: Valve characteristics applied in numerical model 
 
 

4.4.3 Building the code 
 

The numerical codes for both test cases were written almost identical. Some extra lines were 

added to the complex code to describe the transition area between the pipe segments and 

to account for the various pipe properties.  

The first step in the numerical script was to define the initial conditions, which included the 

pipe geometries, the initial flow rate, the time step, the number of nodes and the wave 

speed. Further, the gate closure time and the duration of the simulation were set and the 

initial values of the discharge and head were defined. The simulations were then carried out 

inside a while loop until the preset time criterion was reached.  

The frictional losses were described by implementation of the Brunone friction model, 

presented in Eq. ( 3.3.9 ). For each node at each time step, the quasi-steady and the 

unsteady friction factors were calculated and implemented into the pressure loss term. The 

quasi-steady frictions were found by the Colebrook-White equation (Eq. ( 2.2.3 )) and the 

unsteady frictions were determined by an iterative approach. The iteration procedure is 
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further explained in the flow chart illustrated in Figure 4-10, and the corresponding MATLAB 

script is attached in Appendix D. 𝑄𝑃 and 𝐻𝑃 are the conditions at the current time step, 𝑄 

and 𝐻 are the conditions at the previous time step and 𝑄𝑡𝑒𝑚𝑝 is a temporary value of the 

flow during the iteration until the tolerance criterion is fulfilled. 

 

 
 

Figure 4-10: Iteration chart for pressure losses, QP and HP 

 

The relative procedure explained in paragraph 4.3.4 was implemented into the numerical 

test cases for further calculations of the relative pressure-time flows. 
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5 Experimental results 
 

5.1 Absolute measurements 
 

A large number of repetitions were conducted for both test cases and the measurements 

were evaluated by including all valid data. The uncertainties presented in this section have 

been considered at a 95 % confidence level by the Student’s t distribution. Due to the 

occurrence of outliers in the measurements, an additional statistical evaluation has been 

carried out to consider the effects of removed data.  

Both test cases were conducted with gate closure times of approximately 4.6 s. A linear 

closure was carried out for the part load flow in test case 1. The closure of the flow in test 

case 2 was slow in the beginning and fast in the end in order to reduce the heavy impacts 

from the pressure fluctuations at the gate. The differential pressures obtained from the 

absolute pressure sensors are plotted in Figure 5-1 along with the valve position. Some of 

the conditions present during the absolute experiments are summarized in Table 5-1. 

 

Figure 5-1: Differential pressures along with the valve closure position. (a) Test case 1. (b) Test case 2. 
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Test case: 1 𝟐 

Load: 43 % 100 % 

Velocity 𝑉: 2.46 𝑚/𝑠 5.69 𝑚/𝑠 

𝑉𝐿: 9.84 𝑚2/𝑠 22.76 𝑚2/𝑠 

Number of repetitions: 38 46 

Initial pressure loss 𝜉0: 0.459 𝑘𝑃𝑎 2.404 𝑘𝑃𝑎 

Pipe factor F: 56.6 56.6 

 
Table 5-1: Conditions present during the absolute pressure-time measurements. 

 

 

The reference flows obtained from the electromagnetic flowmeter were 0.1740 𝑚3/𝑠  and 

0.4020 𝑚3/𝑠 for test case 1 and 2, respectively. Both flows were found as averages over a 

wide range of repetitions and examined by the Student’s t distribution. The random errors 

were found equal to 0.0768 % and 0.0897 %, which corresponds to uncertainties 

approximately 2 estimated standard deviations from the mean. Due to the incidence of low 

random errors, the reference flows are further considered in terms of their mean values. 

The statistical analysis is summarized in Table 5-2. 

 

 

Test case: 1 𝟐 

Reference flow 𝑄𝑟𝑒𝑓 : 0.1740 𝑚3/𝑠 0.4020 𝑚3/𝑠 

Degrees of freedom: 37 45 

Student’s t: 2.03 2.02 

Random uncertainty 𝑓𝑟: 0.000134 0.000361 

Random error 𝑒𝑟: 0.0768 % 0.0897 % 

 
Table 5-2: Random analysis of the reference flow. 

 

 

Pressure-time flows were calculated considering both the quasi-steady friction and the 

constant friction. Both methods were incorporated in the pressure-time integrals for further 

computation of the discharge, as previous explained. The integrated pressure losses are 

plotted in Figure 5-2. 
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Figure 5-2: Iterated pressure losses using the quasi-steady and constant friction approach.  
(a) Test case 1. (b) Test case 2. 

 

Application of the constant friction tends to contribute to a greater pressure loss than using 

the quasi-steady friction. The initial pressure differences between the methods are 

approximately 150 Pa and 330 Pa for test case 1 and 2, respectively. The results from the 

quasi-steady method and the constant friction method are discussed further by comparison 

with the reference flow.  

 

5.1.1 Evaluation of the quasi-steady friction 
 

The average pressure-time flows were calculated to 0.1713 𝑚3/𝑠 and 0.4002 𝑚3/𝑠 by the 

quasi-steady friction approach, with random errors of 0.520 % and 0.336 %. All random 

uncertainties were calculated at a 95 % confidence interval using the Student’s t distribution. 

The errors of the measurements when comparing with the flowmeter are presented in 

Figure 5-3. The random errors of the reference flows are not accounted for, as the mean 

values are assumed reasonable considering the large number of repetitions, as discussed in 

the previous section. The maximum discharge error of test case 1, calculated by means of 

Eq. ( 1.3.7 ), is close to 2.1 %, while the corresponding value for test case 2 is 0.8 %.  

One significant outlier was removed from test case 1, reducing the random error from 

0.520 % to 0.477 %. However, the result of removing one measurement led to a greater 

maximum discharge error. Two outliers were removed from the measurements in test case 

2, providing a reduction in the random error from 0.336 % to 0.292 % and a further 

reduction in the discharge error. The removal of measurements appear reasonable due to 

the considerable reduction in the random errors by removing few outliers out of many 

repetitions. The flows calculated from the pressure-time integral using quasi-steady friction 

lies below the reference flow, implying a negative systematic error. 
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Figure 5-3: Discharge error of the pressure-time flow with a quasi-steady approach. Reference flow provided by 
an electromanetic flowmeter. (a) Origintal measurements. (b) Removed outliers. 

 

The statistical considerations are summarized in Table 5-3: 

 

Test case: 1 𝟐 

 Original results: 

Pressure-time flow 𝑄: 0.1713 𝑚3/𝑠 0.4002 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.00089 𝑚3/𝑠 ±0.00134 𝑚3/𝑠 

Random error 𝑒𝑟: 0.520 % 0.336 % 

Student’s t:  2.032 2.021 

Maximum discharge error 𝑒: 2.1 % 0.8 % 

  

  Removal of outliers: 

Number of removed outliers: 1 2 

Pressure-time flow 𝑄: 0.1711 𝑚3/𝑠 0.4007 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.000816 𝑚3/𝑠 ±0.00117 𝑚3/𝑠 

Random error 𝑒𝑟: 0.477 %  0.292 % 

Student’s t: 2.034 2.024 

Maximum discharge error 𝑒: 2.14 % 0.6 % 

 
Table 5-3: Pressure-time results by applying quasi-steady friction on a confidence level of 95 %. 

 

The discharge errors correspond well to the errors presented in P. Jonsson doctoral thesis 

(2011), as he calculated the pressure-time flows using a quasi-steady approach with a 

frictional constant 𝑘2 calibrated from the initial pressure loss. Although his measuring length 

was 1 m shorter than the length presented in this thesis, he obtained maximum discharge 

errors of approximately 2.9 % for the flow at 2.4 m/s and 1 % for the flow at 5.8 m/s. 

However, lower random errors were obtained using the presented quasi-steady calculation 

method. The results appear to provide accuracies corresponding to Jonsson’s 

measurements, but with a slightly higher precision. 
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5.1.2 Constant friction 
 

The pressure-time calculations using the constant friction approach provided larger 

discharge errors for both flows, but the random errors were substantially smaller. Figure 5-4 

shows maximum discharge errors of about 2.27 % and 2.47 % for test case 1 and 2. The 

random errors at the 95 % confidence level were found equal to 0.375 % and 0.201 %. Four 

measurements were removed from test case 1, decreasing the random error to 0.239 % and 

the discharge error to 2.08 %. The positive discharge errors in Figure 5-4 indicate positive 

systematic errors and an overestimation of both flows. 

 

Figure 5-4: Discharge error of the pressure-time flow with a constant friction approach. Reference flow provided 
by an electromanetic flowmeter. (a) Origintal measurements. (b) Removed outliers. 

 

Test case: 1 𝟐 

 Original results: 

Pressure-time flow 𝑄: 0.1773 𝑚3/𝑠 0.4111 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.000666 𝑚3/𝑠 ±0.000828 𝑚3/𝑠 

Random error 𝑒𝑟: 0.375 % 0.201 % 

Student’s t:  2.032 2.021 

Maximum discharge error 𝑒: 2.27 % 2.47 % 

  

  Removal of outliers: 

Number of removed outliers: 4 0 

Pressure-time flow 𝑄: 0.1772 𝑚3/𝑠 0.4111 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.000423 𝑚3/𝑠 ±0.000828 𝑚3/𝑠 

Random error 𝑒𝑟: 0.239 %  0.201 % 

Student’s t: 2.038 2.021 

Maximum discharge error 𝑒: 2.08 % 2.47 % 

 
Table 5-4: Pressure-time results by applying constant friction on a confidence level of 95 %. 

When comparing the constant friction results to the quasi-steady, the random errors are 

considerably lower. The accuracies, on the other hand, are much poorer, which contribute to 

substantially larger discharge errors.   
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5.2 Relative measurements 
 

The differential pressures presented in Figure 5-5 are the relative pressures between the 

open reservoir and the pressure sensor. Since the atmospheric pressure remains constant 

throughout the measurement, the pressure distributions are simply just displacements of 

the original recorded pressures from the sensor. In the absolute method, two absolute 

pressure sensors were used to calculate the differential pressure in the measuring section, 

contributing to a large amount of noise in the signal, as shown in Figure 5-1. Hence, since 

only one sensor was applied in the calculation of the relative differential pressure, less noise 

is present. 

 

Figure 5-5: Differential pressures between the open reservoir and pressure sensor 10 m  
ustream the closing valve. (a) Test case 1. (2) Test case 2. 

 

The initial pressure losses are considerably larger in the relative method, due to differences 

in heights between the measuring sections and due to a longer pipeline with various 

geometry. The mean values of the initial differential pressures are approximately equal  

-8800 and -44300 𝑃𝑎 for test case 1 and 2, respectively.  

  

(a) 

(b) 
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5.2.1 Computational value of the geometrical constant k1 
 

In the process of calculating the geometrical constant, all pipe segments and areas were 

arranged in MATLAB for an individual calculation of the pipe factor. The pipe geometry 

stretching from the outlet of the reservoir to the pressure sensor 10 m upstream the knife 

gate is illustrated in Figure 5-6, with pipe cross-sectional areas as a function of the pipe 

length. When excluding the reservoir, the total pipe length is approximately 28 m. The 

geometrical variations are considerable in the beginning of the pipeline as shown in Figure 

5-6, which represent the enlargements and contractions on the pipeline just downstream 

the outlet of the reservoir. The final simple pipe geometry in the figure represents the long 

straight pipe section upstream the knife gate.  

 

 

Figure 5-6: Variation in the pipe geometry. 

 

By application of Eq. ( 4.3.2 ), the total pipe factor was found equal to 𝐹 = 303.094, which 

corresponds to a geometrical constant equal k1 = 3.2993 ∙ 10
−6. The obtained geometrical 

constant was included in the relative pressure-time integral for further calculations of the 

relative flow. The cumulative computation of the flows as a function of time is plotted in 

Figure 5-7. The associated calculated pressure losses are shown in Figure 5-8.   
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Figure 5-7: Integrated, cumulative solution using relative pressure-time method  
for the computational value of 𝑘1. 

 
 

 

Figure 5-8: Calculated relative pressure losses for test case 1 (a) and test case 2 (b). 
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Figure 5-9: Relative differential pressures with the associated calculated  
pressures losses for test case 1 (a) and test case 2 (b). 

 

The mean values of the flows were calculated to 0.1688 m3/s and 0.3921 m3/s, with 

random errors of 0.33 % and 0.28 %, respectively. When comparing with the reference 

flow, the flow at part load given in Figure 5-10 shows a maximum discharge error of 

approximately 3.32 %. The maximum error of the flow at full load is slightly lower and is 

located close to 2.74 %. Both relative pressure-time flows are underestimated when 

applying the computed value of k1. Still, they are located fairly close to the flows provided 

by the electromagnetic flowmeter.  

 

 

Figure 5-10: Discharge error of the relative flow when applying the computable k1 
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Figure 5-11: Discharge error of the relative flow when removing outliers. 

 

By the removal of two outliers in both test cases, the random errors are decreased further. 

The random error of test case 1 decreases to 0.278 %, while the maximum discharge 

increases to 3.38 %. The random error and discharge error for test case two are both 

reduced to values of  0.221 % and 2.56 %, respectively. The relative results are summarized 

in Table 5-5: 

 

Test case: 1 𝟐 

 Original results: 

Pressure-time flow 𝑄𝑟𝑒𝑙: 0.1688 𝑚3/𝑠 0.3921 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.000556 𝑚3/𝑠 ±0.00109 𝑚3/𝑠 

Random error 𝑒𝑟: 0.330 % 0.278 % 

Student’s t:  2.032 2.021 

Maximum discharge error 𝑒: 3.32 % 2.74 % 

  

  Removal of outliers: 

Number of removed outliers: 2 2 

Pressure-time flow 𝑄𝑟𝑒𝑙: 0.1686 𝑚3/𝑠 0.3926 𝑚3/𝑠 

Random uncertainty 𝑓𝑟: ±0.000423 𝑚3/𝑠 ±0.000869 𝑚3/𝑠 

Random error 𝑒𝑟: 0.278 %  0.221 %  

Student’s t: 2.035 2.024 

Maximum discharge error 𝑒: 3.38 % 2.56 % 

 
Table 5-5: Relative pressure-time results computed at a 95 % confidence level. 
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5.2.2 Repeatability of the proposed method 
 

The ratio 𝑄400/𝑄170 was investigated for various values of 𝑘1, ranging from 6.72·10-7 to 

9.93·10-5, which corresponds to pipe factors in the range of 10 to 1488. 150 points were 

examined in the given range using the mean values of the relative flows at part load and full 

load. When taking the ratio of the flows, the geometrical constants are canceled out from 

the calculation. The remaining ratio reveals to which extent 𝑘1 has affected the pressure 

losses, and hence the final flows. The results are plotted in Figure 5-12. 

 

 

Figure 5-12: The repeatability of the relative measurements for a wide range  
of geometrical constants on a logaritmic scala. 

 

The ratios show absolutely no sign of inconsistency, implying that the effects caused in the 

iteration process by 𝑘1 is completely negligible. For the given range, the difference between 

the minimum and the maximum value is very close to zero. The developed relative pressure-

time method succeeds to provide consistency for a wide range of various geometrical 

constants, regardless of its value. The opposite case would imply a large, unpredictable 

effect from the constant 𝑘1 or a poor evaluation of the relative pressure-time integral.  

The main purpose of applying a relative method is, as previously emphasized, to follow up 

the decline in performance over time and to examine the improvement after maintenance. 

Calculating the exact value of the flow rate is not relevant in a relative evaluation. Still, the 

relative results show that a thorough estimation of 𝑘1 may give an indication of the 

approximate flow rate. The choice of 𝑘1 has, as stated, a great impact on the final, estimated 

pressure-time flow. Figure 5-13 presents a case with five integrated pressure-time flows with 

various geometrical constants: 
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Figure 5-13: Final integrated relative pressure-time flows for various geometrical constants for test case 1. 

 

𝑘1 ranges from 1·10-6 to 9·10-6 , giving final relative flows between 0.05 𝑚3/𝑠 and 

0.47 𝑚3/𝑠. The flow is highly dependent on the choice of 𝑘1, which emphasizes the 

necessity of having a well-computed constant when calculating an estimate of the relative 

discharge. 
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The discharge errors of the various methods applied in the pressure-time evaluations are 

summarized in Figure 5-14 and Figure 5-15. The random errors of the flowmeter flows have 

also been included.  

 

 

Figure 5-14: A summary of all discharge errors for test case 1. (Original measurements). 

 

 

 

Figure 5-15: A summary of all discharge errors for test case 2. (Original measurements). 

 

 

Additional figures related to the examination of the relative pressure-time method are 

attached in Appendix B.   
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6 Numerical results 
 

Two numerical cases were considered to verify the relative pressure-time method, as 

introduced in section 4.4.1. The developed relative pressure-time method was included in 

both scripts to provide values of the relative flows. The differential pressures and discharges 

as a function of time are plotted in Figure 6-1.  

 

 

Figure 6-1: (a) Pressure distributions for the simple and complex pipeline.  
(b) The decrease in discharge during gate closure. 

 

6.1 Computation of the geometrical constants 
 

Two various geometrical constants were considered for pipeline 1 and pipeline 2. 

Computation of the constants were conducted by application of the pipe factor in  

Eq. ( 4.3.2 ). The geometrical constant for the simple pipeline was calculated to: 

 

𝑘1 =
1

𝜌𝐹
=  1.1781 ∙ 10−6 

 

Calculation of the corresponding geometrical factor for the complex pipeline was done by 

accounting for the geometrical variations in the pipeline: 

 

𝑘1 =
1

𝜌𝐹
= (𝜌 (

𝐿1
𝐴1
+
𝐿2
𝐴2
))

−1

= 2.0548 ∙ 10−6 

 

The reference discharges that were preset in the numerical code, shown in Figure 6-1 (b), 

are plotted along with the cumulative relative pressure-time integral in Figure 6-2 and Figure 

(a) (b) 
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6-2. The final pressure-time flow for the simple pipeline was found equal to 0.4006 𝑚3/𝑠  by 

taking the average over a wide range of the oscillations after closure. 

 

 

Figure 6-2: The reference flow along with the iterated relative pressure-time flow for the simple pipeline. 

 

The corresponding pressure-time flow for the complex pipeline was calculated to 

0.6028 𝑚3/𝑠. 

 

 

Figure 6-3: The reference flow along with the iterated relative pressure-time flow for the simple pipeline. 

 

The discharge errors of the relative pressure-time flows are plotted in Figure 6-4 by applying 

Eq. ( 1.3.7 ).  
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Figure 6-4: Discharge error for the simple and the complex pipeline. 

 

The discharge error of the simple pipeline is 0.15 %, indicating a slightly overestimated flow 

lying close to the reference flow. The discharge error of the complex pipeline, on the other 

hand, is considerably larger and has a value close to 0.47 %.  
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7 Discussion  
 

Absolute pressure-time measurements previously performed in the Waterpower Laboratory 

at NTNU were applied in the development of a relative pressure-time method. The large 

number of repetitions in the laboratory experiments enabled a thoroughly and controlled 

examination of the experimental data by the presented relative procedure. A numerical 

model was developed in MATLAB to verify the relative results. Two different pipelines were 

constructed to simulate a valve closure, followed by an implementation of the developed 

relative procedure. The numerical pressure losses were described by applying both quasi-

steady and unsteady friction, as presented in the Brunone friction model. The numerical 

models were not developed to model the experimental test cases, but to examine the 

validity of the relative pressure-time method. The results discussed further are entirely 

based on the measurements where outliers have been removed. 

 

7.1 Experimental results 
 

Although the absolute pressure-time measurements were carried out outside the IEC 41 

(1991) standard, both presented friction models managed to provide reasonable estimates 

of the flows. The discharge error of test case 2 using the quasi-steady method was found 

approximately equal 0.6 %, which lies within the expected range of uncertainties, given that 

the pressure-time method is carried out according to the required terms.  

The largest discharge error was found in test case 2 when using the constant friction 

method. It is difficult to state exactly why the discharge error is larger for the flow at full 

load, but one answer may be that the method’s accuracy is poor. The random errors, 

however, appear lower for test case 2 than for test case 1, as expected. Moreover, the 

precision of the results tends to be considerably better for the constant friction approach 

than for the quasi-steady. 

One of the major benefits of using relative methods is, as previously stated, that the 

systematic errors do not affect the measurements. The random errors of both methods are 

small, with values of approximately 0.28 % and 0.22 % for test case 1 and 2. The 

repeatability of the measurements is good and the ability of obtaining accurate results 

appears to be possible by the presented relative method. A simplified approximation to the 

geometrical constant was conducted, and despite neglecting parts of the bends in the 

calculation, the method succeeded to provide flows close to the reference flow. 

Greater random errors were found in the absolute measurements than in the relative, likely 

due to the substantial amount of noises in the differential pressure signals. A reduced 

amount of noise was achieved by conducting a rapid closure to withstand the heavy and 
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rapid effects by the pressure rise upstream the valve. Only a small amount of noise was 

present in the relative pressure distribution, as only one of the absolute pressure sensors 

was applied in the relative analysis. This enables the possibility of having a slow and linear 

closure when conducting relative measurements in low-head machines with high flow rates.    

 

7.2 Numerical results 
 

The numerical discharge errors were found equal to 0.15 % and 0.47 %, which is fairly close 

to the reference values. The discrepancy was more considerable for the complex flow, 

possibly due to some faulty in the numerical code. One of the major challenges was to 

define the flow coefficients for both cases, which affected the differential pressures and 

discharges to some extent. An additional assessment of the valve characteristics would have 

been appropriate for a more thorough numerical assessment. It would also have been 

expedient to perform the numerical simulations for various flows using equivalent test 

cases, as it is difficult to state whether the increase in discharge error is caused by a 

programming error or by the complexity of the pipe. Still, the numerical results encourage 

the validity of the method, considering that the errors are small when applying the true 

geometrical constants. 

 

7.3  Relative pressure-time as an alternative 
 

Problems regarding the Winter-Kennedy method were briefly discussed in the introduction. 

Small changes in the flow pattern, due to i.e. refurbishment or replacement of a turbine, 

have proved to cause inconsistency between the flow measurements. Various operational 

conditions, challenges related to calibration of the k constant and old pressure taps have 

also been designated as sources of the discrepancies (Cervantes et al., 2012).  

It is difficult to state to which extent the relative method presented in this thesis may be a 

better option to the frequently used Winter-Kennedy method, but the main problems 

related to the Winter-Kennedy are not relevant in the relative pressure-time method. Only 

one pressure sensor is required in order to conduct the measurements and must be placed 

upstream a closing device, such as the guide vanes. Furthermore, pressure taps are usually 

found in the inlet of spiral casings as previously mentioned, enabling a fast and simple 

implementation of the method. The relative pressure-time method is highly cost-effective as 

it requires little downtime and equipment to be executed. 
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While the Winter-Kennedy appears to be highly sensitive to small flow variations in the spiral 

casing, the relative pressure-time method should work regardless of the flow patterns, as it 

only considers the differential pressure between a sensor and the reservoir. However, the 

relative pressure-time method is highly dependent on a good estimate of the viscous losses 

and a reasonable approach to the geometrical constant. The geometrical constant should 

remain constant regardless of any maintenance in a hydropower plant seen in a long time 

perspective. This means that the relative pressure-time measurements may be expected to 

be consistent for repeated tests, which may prove to simplify the use of relative methods. 
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8 Conclusion 
 

The main task of this thesis was to develop the standard pressure-time method as a relative 

method. A relative calculation procedure has been suggested and carried out experimentally 

and numerically. The method succeeds to obtain repeatable pressure-time flows using a pre-

calculated geometrical constant in a relative integration process. 

An approximation of the pipe factor for a rather complex pipeline has proved to give a good 

indication of the flow registered by the electromagnetic flowmeter. Moreover, no 

inconsistency is detected when calculating of the ratio between the presented flows for a 

wide range of geometrical constants.   

Low-head power plants are in need of a better option to the Winter-Kennedy method and 

the relative pressure-time alternative presented in this thesis could be a part of the solution. 

A further verification of the method should be conducted to reveal potential flaws in the 

presented procedure.  

 

8.1 Further work 
 

The proposed calculation of relative pressure-time method provides promising experimental 

results and it would be appropriate to conduct field measurements for a further 

investigation of the method’s applicability. This may for instance be done by comparison 

with the Winter-Kennedy or by an absolute method to detect potential disagreements.  

It would also be appropriate to conduct a more thorough investigation of the geometrical 

constant of the laboratory pipeline. This should be done by including the all bend geometries 

to examine to which extent they contribute to an improved value. 
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Appendix A: Experimental MATLAB script 

 

The following MATLAB script presents the procedure of evaluating the absolute and relative 

pressure-time data. The script was initially written for the flow at 0.170 𝑚3/𝑠, but the 

procedure applies to both flows discussed in this thesis.   

 

 

% %___________________________________________________________________________________________ 

% %__________________________ PREPARATION OF DATA_________________________________________ 

% Preparation part written by ph.D. Joel Sundström from LTU in Sweden 

 

load('Measurement2_thursday_20160428.mat'); 

 

flow_ = 0.12433226*data(:,1)-0.24877139; 

abs_pipe = (-125.27191713+62.512896*data(:,10))*1000; 

abs_pipe2 = (-224.19731877+62.562095*data(:,11)+99.2)*1000; 

gate = (285.8763+data(:,9)*-88.26); 

Temp = data(:,5)*36-30; 

trigger = data(:,17)-2; 

t = [0:1/2000:(length(trigger)-1)/2000]; 

index = find(diff(sign(trigger))==2); 

index_dec = index(1:2:end); 

index_acc = index(2:2:end); 

s = length(index_dec); 

 

 

for j = 1:s 

    dp_dec(:,j) = abs_pipe2(index_dec(j):index_dec(j)+30000)-

abs_pipe(index_dec(j):index_dec(j)+30000); 

    p_abs2_dec(:,j) = abs_pipe2(index_dec(j):index_dec(j)+30000); 

    p_abs1_dec(:,j) = abs_pipe(index_dec(j):index_dec(j)+30000); 

    t_dec(:,j) = t(index_dec(j):index_dec(j)+30000); 

    temp_dec(:,j) = Temp(index_dec(j):index_dec(j)+30000); 

end 

 

for j = 1:s 

    dp_acc(:,j) = abs_pipe2(index_acc(j):index_acc(j)+30000)-

abs_pipe(index_acc(j):index_acc(j)+30000); 

end 

 

for j = 1:s 

    gate_dec(:,j) = gate(index_dec(j):index_dec(j)+30000); 

    flow_dec(:,j) = flow_(index_dec(j):index_dec(j)+30000); 

end 

 

for j = 1:s 

    gate_dec2(:,j) = smooth(gate_dec(:,j),50); 

end 

 

for j = 1:s 

    index_temp = find(gate_dec2(2000:3000,j)<99.7); 

    index_dec2(j) = index_temp(1)+2000; 
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end 

 

dp_dec = []; 

p_abs2_dec = []; 

p_abs1_dec = []; 

t_dec = []; 

temp_dec = []; 

gate_dec = []; 

 

 

for j = 1:s 

    dp_dec(:,j) = abs_pipe2(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000)-

abs_pipe(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    p_abs2_dec(:,j) = abs_pipe2(index_dec(j)+index_dec2(j)-

1000:index_dec(j)+index_dec2(j)+30000); 

    p_abs1_dec(:,j) = abs_pipe(index_dec(j)+index_dec2(j)-

1000:index_dec(j)+index_dec2(j)+30000); 

    t_dec(:,j) = t(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    temp_dec(:,j) = Temp(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    gate_dec(:,j) = gate(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

end 

 

 

v = [1 5:18 20:22 24:32 36 38:46 49]; 

index_dec = index_dec(v); 

s = length(index_dec); 

index_dec2 = index_dec2(v); 

 

dp_dec = []; 

p_abs2_dec = []; 

p_abs1_dec = []; 

t_dec = []; 

temp_dec = []; 

gate_dec = []; 

flow_dec = []; 

 

for j = 1:s 

    dp_dec(:,j) = abs_pipe2(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000)-

abs_pipe(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    p_abs2_dec(:,j) = abs_pipe2(index_dec(j)+index_dec2(j)-

1000:index_dec(j)+index_dec2(j)+30000); 

    p_abs1_dec(:,j) = abs_pipe(index_dec(j)+index_dec2(j)-

1000:index_dec(j)+index_dec2(j)+30000); 

    t_dec(:,j) = t(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    temp_dec(:,j) = Temp(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    gate_dec(:,j) = gate(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

    flow_dec(:,j) = flow_(index_dec(j)+index_dec2(j)-1000:index_dec(j)+index_dec2(j)+30000); 

end 

 

 

for j = 1:s 

    temp(j ) = mean(dp_dec(end-10000:end,j)); 

    dp_dec(:,j) = dp_dec(:,j)-temp(j); 

end 

 

 

 

 



III 
 

 

% %___________________________________________________________________________________________ 

% %__________________________ ABSOLUTE ANALYSIS_______________________________________________ 

 

 

Fs = 2000; % Sample frequency 

rho = 999; % Density of water 

L = 4; % Length of measuring section 

Ag = pi*0.3^2*0.25; % Cross-sectional area of measuring section 

R = 0.15; % Radius of pipe 

t = [0:1/Fs:(length(dp_dec(:,1))-1)/Fs]; % Time scale of measurements 

k = Ag/rho/L; % Geometrical constant in front of PT integral 

g = 9.81; % Gravitational constant 

colebr = @colebrook; % Function calculating the Colebrook friction factor 

 

% %__________________________________________________________________________________________ 

% Adjusting dP_dec to static line end: 

mval_ = zeros(1,s); % s = number of measurements 

 

for i = 1:s 

        mval_(i) = mean(mean(dp_dec(22000:end,i))); 

end 

for j = 1:s 

    for i = 1:31001 

            dp_dec(i,j) = (dp_dec(i,j)-mval_(j)); 

    end 

end 

 

 

% %__________________________________________________________________________________________ 

% Initial flow "losses", assuming linear loss: 

losses=zeros(31001,1); % For Q = 170 l/s 

 

for i = 1:4179 

    losses(i,1) = mean(mean(dp_dec(1:913,1))); 

end 

 

x = 0; 

for i = 4180:10450 

    losses(i,1) = 0.081172635943*x-509.0336; 

    x = x+1; 

end 

 

for i = 10451:31001 

    losses(i,1) = 0; 

end 

 

 

% %_________________________________________________________________________________________ 

% Mean initial values of the pressures from absolute sensors 1 and 2: 

P1_abs = zeros(1,s); 

P2_abs = zeros(1,s); 

 

for i = 1:s 

    P1_abs(i) = mean(mean(p_abs1_dec(1:600,i))); 

    P2_abs(i) = mean(mean(p_abs2_dec(1:600,i))); 

end 
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% %__________________________________________________________________________________________ 

% %__________________________________ELECTROMAGNETIC FLOWMETER_______________________________ 

% % Mean values from the flowmeter: 

zline = zeros(31001,s); 

 

for j = 1:s 

    zline(1:31001,j) = mean(flow_dec(1:950,j)); 

end 

 

 

% %___________________________________________________________________________________________ 

% %___________________________________________________________________________________________ 

% Absolute pressure-time measurements with linear pressure loss. 

% Finding initial flows for quasi-steady: 

Q_1 = zeros(1,s); 

Q_1_ = zeros(1,s); 

Q_init = zeros(31001,s); 

 

for j = 1:s 

    Q_1Q = k*trapz(t,dp_dec(:,j)-losses); % Initial values of Q 

    Q_1(j) = Q_1Q; 

 

    Q_1_Q = k*trapz(t,dp_dec(:,j)-losses); % Initial values of Q 

    Q_1_(j) = Q_1_Q; 

 

    Q_initQ = k*cumtrapz(t,dp_dec(:,j)-losses); % Initial culumative integral of Q 

    Q_init(:,j) = Q_initQ; 

end 

 

 

QI = zeros(1,s); 

 

%Fixed value of initial flow QI: 

for j = 1:s 

    QI(1,j) = Q_1(1,j); 

end 

 

% Absolute pressure losses: 

PL_abs = zeros(1,s); 

 

for i = 1:s 

    PL_abs(i) = (P1_abs(i)-P2_abs(i)); % Pressure loss in measuring section 

end 

 

 

% %_________________________________________________________________________________________ 

% %__________________________________CONSTANT FRICTION______________________________________ 

 

 

visc = 0.0000011092; % Viscosity of fluid 

e = 0.000015; % Roughness 

K_rou = e/0.3; % Roughness/diameter 

 

Q_1c = k*trapz(t,dp_dec(:,1)-losses); 
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% Initial flow for constant friction: 

Q_init_mat = zeros(31001,s); 

Q_1c_ = zeros(1,s); 

 

for j = 1:s 

        Q_initc = k*cumtrapz(t,dp_dec(:,j)-losses); 

        Q_init_mat(:,j) = Q_initc; 

        Q_1c_mat = k*trapz(t,dp_dec(:,j)-losses); 

        Q_1c_(:,j) = Q_1c_mat; 

end 

 

% Initial cumulative reynolds numbers: 

Re = zeros(31001,s); 

 

for j = 1:s 

    for i = 1:31001 

        Re(i,j) = (((Q_init_mat(i,j)./Ag).*0.3)./visc);%((Q_1_qs/Ag)*0.3)/visc; 

    end 

end 

 

Re_init = zeros(1,s); % Initial reynolds number of each measurement 

f_i = zeros(1,s); % Initial friction of each measurement 

 

for j = 1:s 

    Re_init(j) = mean(mean(Re(17700:end,j))); 

 

        if Re_init(j) < 0 

            f_i(j) = 0; 

        elseif Re_init(j) == 0 

            f_i(j) = 0; 

        elseif Re_init(j) < 2300 

            f_i(j) = 64/Re_init(j); 

        else 

            f_i(j) = colebr(Re_init(j),K_rou); 

        end 

end 

 

% Tolerance of convergence: 

tol = 1*10^-14; 

 

% Initalization of final PT matrix: 

Q_ctc_mat = zeros(31001,s); 

 

% PT with constant friction 

for j = 1:s 

 

    i = 1; 

    Q_1c = Q_1c_(1,j); 

    Q_ctc = Q_1c; 

    Q_res = Q_ctc; 

 

    while Q_res > tol 

 

        Q_ctc = k*cumtrapz(t,dp_dec(:,j)-((f_i(1,j)*L*rho)/(0.3*2*(Ag^2))).*(Q_ctc-

Q_1c).*abs(Q_ctc-Q_1c)); % Cumulative integral 

        Q_c = mean(mean(Q_ctc(15000:end))); % Final value of Q 
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        Re_fric = ((Q_c/Ag)*0.3)/visc; % Calculating new value of Re 

        if Re_fric < 0 

            f_i(1,j) = 0; 

        elseif Re_fric == 0 

            f_i(1,j) = 0; 

        elseif Re_fric < 2300 

            f_i(1,j) = 64/Re_fric; 

        else 

            f_i(1,j) = colebr(Re_fric,K_rou); 

        end 

 

        Q_res = abs(Q_c-Q_1c); 

        Q_1c = Q_c; % Initializing new value of Q_1 

        i = i+1; % Iterating until Q_residual is satisfied 

    end 

 

    Q_ctc_mat(:,j) = Q_ctc; % PT matrix containing cumulative integrals of all measurements 

end 

hold off 

 

 

% %__________________________________________________________________________________________ 

% %_____________________________ QUASI-STEADY FRICTION_______________________________________ 

 

 

% Initial value of Q: 

Q_ct_Q = zeros(1,s); 

 

for j = 1:s 

    Q_ct_Q(1,j) = QI(1,j); 

end 

 

% Initalization of final PT matrix: 

Q_ct_mat = zeros(31001,s); 

 

% PT with quasi-steady friction 

for j = 1:s 

 

    Q_ct_ = Q_ct_Q(1,j); 

    Q_residual = Q_ct_; 

    i = 1; 

 

    while Q_residual > tol 

 

         Q_ct_ = k*cumtrapz(t,dp_dec(:,j)-((PL_abs(1,j)/(Q_1_(1,j)*abs(Q_1_(1,j)))).*(Q_ct_-

Q_1_(1,j)).*abs(Q_ct_-Q_1_(1,j)))); 

         Q_q(i) = mean(mean(Q_ct_(15000:end))); 

         Q_residual = abs(Q_q(i)-Q_1_(1,j)); 

         Q_1_(1,j) = Q_q(i); % Initializing new value of Q_1 

         i = i+1; % Iterating until Q_residual is satisfied 

    end 

 

    Q_ct_mat(:,j) = Q_ct_; 

 

end 
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% %_____________________________________________________________________________________ 

% %__________________________ RELATIVE ANALYSIS _________________________________________ 

 

 

p_atm = 98150; % Initial pressure loss: 

P1_i = p_atm; % Pressure at reservoir 

P2_i = mean(mean(p_abs2_dec(1:100,:))); % Pressure at pressure sensor 2 

Qi = mean(flow_dec(1,:)); % Mean flow from flowmeter 

 

 

% %__________________________ INITIAL PRESSURE LOSS ___________________________________ 

 

% % Calculating the pressure loss: 

dp = zeros(31001,s); 

 

for j = 1:s 

    for i = 1:31001; 

        dp(i,j) = (p_abs2_dec(i,j)-p_atm); 

    end 

end 

 

% % Adjusting the differential pressures to the static line end 

mval = zeros(1,s); 

dp_ = zeros(31001,s); 

 

for i = 1:s 

        mval(i) = mean(mean(dp(25000:end,i))); 

end 

 

for j = 1:s 

    for i = 1:31001 

            dp_(i,j) = (p_abs2_dec(i,j)-p_atm)-mval(j); 

    end 

end 

 

 

% % Individual initial pressure lossses from each measurement 

PL_i = zeros(1,s); 

 

for i = 1:s 

    PL_i(i) = -(mean(dp_(1:600,i))); 

end 

 

 

% Initial pressure loss, assuming linear loss: 

loss = zeros(31001,1); % For Q = 170 l/s 

 

for i = 1:3543 

    loss(i,1) = mean(mean(dp_(1:913,1))); 

end 

 

x = 0; 

for i = 3544:10450 

    loss(i,1) = 1.29435274*x-8906.9; 

    x = x+1; 

end 
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for i = 10451:31001 

    loss(i,1) = 0; 

end 

 

 

 

% %__________________________ INITIAL VALUES ___________________________________________ 

 

% Geometrical factor k1: 

k1 = 0.0000032993; % Computational 

 

 

% Initial relative flow, assuming linear losses: 

Q_rel = zeros(31001,s); 

Q_1r = zeros(1,s); 

Q_1rel = zeros(1,s); 

Q_1rel_qs = zeros(1,s); 

 

for i = 1:s 

    Q_rel_temp=k1*cumtrapz(t,dp_(:,i)-loss); % Initial, relative flow 

    Q_rel(:,i) = Q_rel_temp; 

 

    Q_1r_temp = k1*trapz(t,dp_(:,i)-loss); % Initial, relative flow 

    Q_1r(1,i) = Q_1r_temp; 

 

    Q_1rel(1,i) = Q_1r_temp; 

    Q_1rel_qs(1,i) = Q_1r_temp; 

end 

 

 

% %___________________________________________________________________________________________ 

% %_________________________________RELATIVE PRESSURE-TIME____________________________________ 

 

%Fixed value of initial flow QIr: 

QIr = zeros(1,s); 

 

for i = 1:s 

    QIr(i) = Q_1rel(1,i); 

end 

 

% Initialization of final PT matrix 

Q_relative_mat = zeros(31001,s); 

 

for j = 1:s 

 

    i = 1; 

    Q_ctr = QIr(1,j); 

    Q_residual = Q_ctr; 

 

    while Q_residual > tol 

 

          Q_ctr = k1*cumtrapz(t,dp_(:,j)-((PL_i(1,j)/(Q_1rel(1,j)*abs(Q_1rel(1,j)))).*(Q_ctr-

Q_1rel(1,j)).*abs(Q_ctr-Q_1rel(1,j)))); 

          Q_r(i) = mean(mean(Q_ctr(15000:end))); 

          Q_residual = abs(Q_r(i)-Q_1rel(1,j)); 

          Q_1rel(1,j) = Q_r(i); % Initializing new value of Q_1r 

          i = i+1; % Iterating until Q_residual is satisfied 
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    end 

 

    Q_relative_mat(:,j) = Q_ctr; % Relative PT matrix for relative measurements 

end 

      

 

                                                                                                                 

 

% % _____________________________________________________________________________________ 

% % _____________________STATISTICAL ANALYSIS:__________________________________________ 

 

 

t_dist = @student_t_distribution; % Student's t from separate function 

 

% Final mean flows for all methods - Taking the mean over oscillations: 

Q_abs_mva = zeros(1,s); 

Q_flow_mval = zeros(1,s); 

Q_quasisteady1 = zeros(1,s); 

Q_matr_meanvalue = zeros(1,s); 

Q_constantfric = zeros(1,s); 

 

 

for i = 1:s 

 

        Q_flow_mval(i) = mean(flow_dec(1:850,i)); % Flows from flowmeter 

        Q_quasisteady1(i) = mean(Q_ct_mat(18000:end,i)); % Quasi-steady flows 

        Q_matr_meanvalue(i) = mean(Q_relative_mat(18000:end,i)); % Relative flows 

        Q_constantfric(i) = mean(Q_ctc_mat(18000:end,i)); % Flows from constant friction 

end 

 

 

% randomerror = statistical analysis of chosen measurement, 

% i.e. Q_matr_meanvalue: 

randomerror = Q_matr_meanvalue; 

 

N = length(randomerror); % Number of independent measurements 

V = N-1; % Degree of freedom 

 

Y_mean = mean(randomerror); % Mean value of relative Q 

Y_r = randomerror; % Mean array of relative Q 

 

 

 

% ESTMIATED STANDARD DEVIATION: (Matlab funvtion: std(Y_r)) 

S_y = zeros(1,N); 

 

for i = 1:length(Y_r) 

    S_y(1,i) = (Y_r(i)-Y_mean)^2; 

end 

 

S_Y = sqrt((sum(S_y)/(N-1))); % Estimated standard deviation. 

S_Y_m = S_Y/sqrt(N); % Standard deviation of the mean 
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% OTHER PARAMETERS: 

S_var = var(Y_r); 

S_min = min(Y_r); 

S_max = max(Y_r); 

S_range = range(Y_r); 

 

 

 

 

% t-students distribution: 

t_sqrtn = t_dist(V); % Student's t, t/sqrt(n) 

tS_Y = t_sqrtn*S_Y; 

 

 

% Random uncertainty associated with the mean value at the 

% 95 % confidence level: 

e_r = t_sqrtn*S_Y; % +/- value of random uncertainty 

ran_error = (e_r/Y_mean)*100; % [%] %Random error 

 

Published with MATLAB® R2015a 

  

http://www.mathworks.com/products/matlab
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Appendix B: Additional figures 

 

Figure B - 1 and Figure B - 2 illustrates the iterative process of determining the final relative 

pressure-time flows for test case 1 and 2, respectively. 

 

 

Figure B - 1: Iterative process of the relative measurements for test case 1. Numer of iterations: 23 

 

 

 

Figure B - 2: Iterative process of the relative measurements for test case 2. Numer of iterations: 26 
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Figure B - 3 and Figure B - 5 present the approximated cumulative integral of the relative 

differential pressures. The oscillations in the figures are plotted in Figure B - 4 and Figure B - 

6.   

 

Figure B - 3: Presentation of the cumulative relative  pressure-time integral.  
38 repetitions carried out on test case 1. 

 
 

 

Figure B - 4: A closer inspection of the oscillations in the cumulative pressure-time integral. 

  



XIII 
 

 

Figure B - 5: Presentation of the cumulative relative  pressure-time integral.  
46 repetitions carried out on test case 2. 

 

 

 

Figure B - 6: A closer inspection of the oscillations in the cumulative pressure-time integral. 
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Appendix C: Derivation of the characteristic equations 

 

Momentum equation: 

 
𝑔
𝜕𝐻

𝜕𝑥
+
𝑓𝑉|𝑉|

2𝐷
+ 𝑉

𝜕𝑉

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
= 0 

 

(C - 1) 

 

Continuity equation: 

 
𝑉
𝜕𝐻

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔

𝜕𝑉

𝜕𝑥
= 0 

 

(C - 2) 

 

The momentum and continuity equations may be simplified by neglecting the advective 

terms 𝑉𝜕𝑉/𝜕𝑥 and 𝑉𝜕𝐻/𝜕𝑥. The reduced equations are denoted 𝐿1 and 𝐿2: 

 

 
𝐿1 = 𝑔

𝜕𝐻

𝜕𝑥
+
𝑓𝑉|𝑉|

2𝐷
+
𝜕𝑉

𝜕𝑡
= 0 

 

(C - 3) 

 

 
𝐿2 =

𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔

𝜕𝑉

𝜕𝑥
= 0 

 

(C - 4) 

 

A linearly relation between 𝐿1 and 𝐿2 is found by multiplying the continuity equation with an 

unknown constant 𝜆:  

 𝐿 = 𝐿1 + 𝜆𝐿2 
 

𝐿 = (𝑔
𝜕𝐻

𝜕𝑥
+
𝑓𝑉|𝑉|

2𝐷
+
𝜕𝑉

𝜕𝑡
) + 𝜆 (

𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔

𝜕𝑉

𝜕𝑥
) = 0 

(C - 5) 

 

 
 

(C - 6) 

 

Rearranging the expression gives: 
 

 
𝜆 (
𝑔

𝜆

𝜕𝐻

𝜕𝑥
+
𝜕𝐻

𝜕𝑡
) + (

𝑎2

𝑔

𝜕𝑉

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
) +

𝑓𝑉|𝑉|

2𝐷
= 0 

 

(C - 7) 

 

The total derivatives of 𝐻 = 𝑓(𝑡, 𝑥) and 𝑉 = 𝑓(𝑡, 𝑥) with respect to 𝑡 are defined as: 
 

 𝑑𝐻

𝑑𝑡
=
𝜕𝐻

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝐻

𝜕𝑡
 

 

 

(C - 8) 

 𝑑𝑉

𝑑𝑡
=
𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑉

𝜕𝑡
 

 

 (C - 9) 
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The values of the constant 𝜆 is found by inserting Eq. (C - 8) and Eq. 

 (C - 9) into Eq. (C - 7): 
  

 𝜆 =  ±
𝑔

𝑎
 

 

(C - 10) 

 

The final characteristic functions 𝐶+and 𝐶− are further derived from Eq. (C - 7) by inserting 

the positive and negative value of the constant in Eq. (C - 10): 

 

 

𝐶+ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:      {

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑓𝑉|𝑉|

2𝐷
= 0

𝑓𝑜𝑟 
𝑑𝑥

𝑑𝑡
= 𝑎                       

 

 

 

(C - 11) 

 

 

𝐶− 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:      {

𝑔

𝑎

𝑑𝐻

𝑑𝑡
−
𝑑𝑉

𝑑𝑡
−
𝑓𝑉|𝑉|

2𝐷
= 0

𝑓𝑜𝑟 
𝑑𝑥

𝑑𝑡
= −𝑎                     

 

 
 

(C - 12) 
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Appendix D: Numerical MATLAB script 

 

The following MATLAB script presents the complex pipe flow with an initial discharge of 

0.600 𝑚3/𝑠 using the method of characteristics (MOC). 

 

% %_________________________________________________________________________ 

% %__________________________ PREPARATION OF DATA___________________________ 

 

 

% Functions applied in code: 

lin = @linint; % Linear interpolation of flow coefficient 

colebr = @colebrook; % Function calculating the Colebrook friction factor 

 

visc = 0.0000011092; % m^2/s, kinematic viscosity 

rho = 999; % [kg/m?3], density of water: 

e = 0.000015; % Roughness 

g = 9.81; % [m/s^2], acceleration of gravity: 

 

% Various pipe diameters: 

D1 = 0.5; % Subscript 1 means pipe 1 

D2 = 0.3; % Subscript 2 means pipe 2 

 

% Bulk modulus of elasticity: 

K1 = 2.15*10^9; % [Pa] 

K2 = 2.15*10^9; % [Pa] 

 

E = 180*10^9; %Young modulus 

et = 0.002; % Wall thickness 

 

% Wave speed number for pipes: 

a1 = 925.9259;%(sqrt(K1/rho))/(sqrt(1+((K1*D1)/(E*et)))); 

a2 = 925.9259;%(sqrt(K1/rho))/(sqrt(1+((K1*D2)/(E*et)))); 

 

% Pipe areas: 

A1 = pi*(D1/2)^2; 

A2 = pi*(D2/2)^2; 

 

% Length of pipe segments: 

L1 = 40; 

L2 = 20; 

 

%Roughness of pipe segments (Pipe roughness over pipe diameter): 

K_rough1 = e/D1; 

K_rough2 = e/D2; 

 

HR1 = 4; % Initial piezometric head[m], reservoir 

HR2 = 0; % Head of downstream reservoir 

 

QI = 0.6; % Initial discharge [m3/s] 

HI = HR1; % Initial height 

 

t1 = 0; 

t = 0; % Time start 
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tmax = 12; % [s] Duration of simulation 

tc = 4; % Valve closure time 

 

%Pipe nodes: 

N1 = 16; 

N2 = 8; 

 

NS1 = N1+1; % End of pipe 

NS2 = N2+1; % End of pipe 

 

% Length between node sections: 

dx1 = L1/N1; 

dx2 = L2/N2; 

 

% Time steps: 

dt1 = dx1/a1; 

dt2 = dx2/a2; 

 

% Decides end of simulation: 

nr_t = round(tmax/dt1); 

 

% Pipeline characteristic impedance: 

B1 = a1/(g*A1); 

B2 = a2/(g*A2); 

 

% Initial valve opening, from 0 - 1 : 

VOI = 1; 

 

% Frictional correction value: 

corrval = 55; 

 

 

% %________________________________________________________________________ 

% %_______________________STEADY STATE:____________________________________ 

 

VI = QI/A1; % Initial bulk velocity 

ReI1 = (VI*D1)/visc; % Initial Reynold's number: 

    if ReI1 < 2300 

        fq1 = 64/ReI1; 

    else 

        fq1 = colebr(ReI1,K_rough1); 

    end 

 

VI = QI/A2; % Initial bulk velocity 

ReI2 = (VI*D2)/visc; % Initial Reynold's number: 

    if ReI2 < 2300 

        fq2 = 64/ReI2; 

    else 

        fq2 = colebr(ReI2,K_rough2); 

    end 

 

 

% Only quasi-steady friction contributing. 

f1 = fq1; 

f2 = fq2; 

 

% INITIAL VALUES FOR H AND Q: 

H1 = zeros(1,NS1); 



XVIII 
 

H2 = zeros(1,NS2); 

Q1 = zeros(1,NS1); 

Q2 = zeros(1,NS2); 

 

 

    for i = 1:NS1 

            Q1(i) = QI; 

            H1(i) = HR1-((f1*(QI^2)*((i-1)*dx1))/(2*g*D1*(A1^2))); 

    end 

 

    for i = 1:NS2 

            H2(i) = H1(NS1)-((f2*(QI^2)*((i-1)*dx2))/(2*g*D2*(A2^2))); 

            Q2(i) = QI; 

    end 

 

   H2(NS2) = 0; 

________________SIMULATION START:_____________________________________ 

count = 1; % Counts for each time step 

 

Q1_temp = zeros(10,N1+1); 

H1_temp = zeros(10,N1+1); 

Q2_temp = zeros(10,N2+1); 

H2_temp = zeros(10,N2+1); 

 

tol = 1*10^(-14); % Tolerance of convergence 

 

Re1 = zeros(1,NS1); 

fq1 = zeros(1,NS1); 

J1_pos = zeros(1,NS1); 

J1_neg = zeros(1,NS1); 

 

Re2 = zeros(1,NS2); 

fq2 = zeros(1,NS2); 

J2_pos = zeros(1,NS2); 

J2_neg = zeros(1,NS2); 

 

while count~=(nr_t+2) 

% 

%_____________________________________________________________________________________________

______________________________ 

BOUNDARY CONDITIONS FOR NODE 2 to N. PIPE 1. 

        for i = 2:N1; 

 

            %First calculating Reynolds number: 

            Re1(i) = ((Q1(i)/A1)*D1)/visc; 

 

            %Calculating quasi-steady fq: 

            if Re1(i) < 2300 

                fq1(i) = 64/Re1(i); 

            else 
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                fq1(i) = colebr(Re1(i),K_rough1); 

            end 

 

            %Then calculating C_star: 

            if Re1(i) < 2300 

                C_star(i) = 0.00476; 

            else 

                C_star(i) = 7.41/(Re1(i)^(log(14.3/(Re1(i)^0.05)))); 

            end 

 

            % Brunone friction coefficient k: 

            k(i) = sqrt(C_star(i))/2; 

            k(i) = corrval*k(i); 

 

            QP_ = Q1(i); % Temporary value of QP1 = QP_ 

            Q_residual = tol; 

 

            while Q_residual >=tol 

                % Pressure losses from positive characteristic lines: 

                J1_pos(i) = (fq1(i)*Q1(i-1)*abs(Q1(i-

1))/(2*g*D1*A1^2))+((k(i)/(2*g*A1))*((QP_-Q1(i))/dt1)); 

                % Pressure losses from negative characteristic lines: 

                J1_neg(i) = 

(fq1(i)*Q1(i+1)*abs(Q1(i+1))/(2*g*D1*A1^2))+((k(i)/(2*g*A1))*((QP_-Q1(i))/dt1)); 

 

                CP = H1(i-1)+(B1*Q1(i-1))-(J1_pos(i)*dx1); 

                CM = H1(i+1)-(B1*Q1(i+1))+(J1_neg(i)*dx1); 

 

                HP1(i) = 0.5*(CP+CM); % HP value for pipe 1 

                QP1(i) = (CP-HP1(i))/B1; % QP value for pipe 1 

 

                Q_residual = abs(QP1(i)-QP_); 

                QP_ = QP1(i); 

            end 

 

 

        end 

 

% 

%_____________________________________________________________________________________________

______________________________ 

BOUNDARY CONDITIONS AT UPPER RESERVOIR. PIPE 1. 

            % Calculating Reynolds number for pipe 1 at i = 1: 

            Re1(1) = ((Q1(1)/A1)*D1)/visc; 

 

            %Calculating quasi-steady fq: 

            if Re1(1) < 2300 

                fq1(1) = 64/Re1(1); 

            else 

                fq1(1) = colebr(Re1(1),K_rough1); 

            end 

 

            %Then calculating C_star: 

            if Re1(1) < 2300 
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                C_star(1) = 0.00476; 

            else 

                C_star(1) = 7.41/(Re1(1)^(log(14.3/(Re1(1)^0.05)))); 

            end 

 

            %Coefficient k: 

            k(1) = sqrt(C_star(1))/2; 

            k(1) = corrval*k(1); 

 

 

            HP1(1) = HR1; % Upstream reservoir. Constant head. 

            QP_ = Q1(1); % Temporary value of QP1 = QP_ 

            Q_residual = tol; 

 

        while Q_residual >= tol 

 

            J1_neg(1) = (fq1(1)*Q1(1+1)*abs(Q1(1+1))/(2*g*D1*A1^2))+((k(1)/(2*g*A1))*((QP_-

Q1(1))/dt1)); 

            CM = H1(1+1)-(B1*Q1(1+1))+(J1_neg(1)*dx1); 

 

            QP1(1) = (HP1(1)-CM)/B1; 

 

            Q_residual = abs(QP1(1)-QP_); 

            QP_ = QP1(1); 

        end 

 

% 

%_____________________________________________________________________________________________

______________________________ 

BOUNDARY CONDITIONS IN THE TRANSITION BETWEEN PIPE 1 AND PIPE 2: 

            % Calculating Reynolds number at the end of pipe 1, i = NS: 

            Re1(NS1) = ((Q1(NS1)/A1)*D1)/visc; 

 

            if Re1(NS1) < 2300 

                fq1(NS1) = 64/Re1(NS1); 

            else 

                fq1(NS1) = colebr(Re1(NS1),K_rough1); 

            end 

 

            %Then calculating C_star: 

            if Re1(NS1) < 2300 

                C_star(NS1) = 0.00476; 

            else 

                C_star(NS1) = 7.41/(Re1(NS1)^(log(14.3/(Re1(NS1)^0.05)))); 

            end 

 

            %Coefficient k: 

            k(NS1) = sqrt(C_star(NS1))/2; 

            k(NS1) = corrval*k(NS1); 

 

 

            % Calculating Reynolds number for pipe 2 at i = 1: 

            Re2(1) = ((Q2(1)/A2)*D2)/visc; 
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            if Re2(1) < 2300 

                fq2(1) = 64/Re2(1); 

            else 

                fq2(1) = colebr(Re2(1),K_rough2); 

            end 

 

 

            %Then calculating C_star: 

            if Re2(1) < 2300 

                C_star2(1) = 0.00476; 

            else 

                C_star2(1) = 7.41/(Re2(1)^(log(14.3/(Re2(1)^0.05)))); 

            end 

 

            %Coefficient k: 

            k2(1) = sqrt(C_star2(1))/2; 

            k2(1) = corrval*k2(1); 

 

            QP_ = Q1(NS1); % Temporary value of QP1 and QP2 

            Q_residual = tol; 

 

        while Q_residual >= tol 

 

            % Pipe 1: 

            J1_pos(NS1) = (fq1(NS1)*Q1(NS1-1)*abs(Q1(NS1-

1))/(2*g*D1*A1^2))+((k(NS1)/(2*g*A1))*((QP_-Q1(NS1))/dt1)); 

 

            % Pipe 2: 

            J2_neg(1) = (fq2(1)*Q2(1+1)*abs(Q2(1+1))/(2*g*D2*A2^2))+((k2(1)/(2*g*A2))*((QP_-

Q2(1))/dt2)); 

 

            % Pipe 1: 

            CP_1 = H1(NS1-1)+(B1*Q1(NS1-1))-(J1_pos(NS1)*dx1); 

 

            % Pipe 2: 

            CM_2 = H2(1+1)-(B2*Q2(1+1))+(J2_neg(1)*dx2); 

 

 

            QP1(NS1) = ((CP_1-CM_2)/(B1+B2)); 

            HP1(NS1) = CP_1-(B1*QP1(NS1)); 

 

            QP2(1) = QP1(NS1); 

            HP2(1) = CM_2+(B2*QP2(1)); 

 

            Q_residual = abs(QP1(NS1)-QP_); 

            QP_ = QP1(NS1); 

 

        end 

 

%______________________________________________________________ 

BOUNDARY CONDITIONS FOR NODE 2 to N. PIPE 2. 

        for i = 2:N2; 

 

            %Calculating Reynolds number: 
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            Re2(i) = ((Q2(i)/A2)*D2)/visc; 

 

            %Calculating quasi-steady fq: 

            if Re2(i) == 0 

                fq2(i)= 0; 

            elseif 0 < Re2(i) < 2300 

                fq2(i) = 64/Re2(i); 

            else 

                fq2(i) = colebr(Re2(i),K_rough2); 

            end 

 

            %Then calculating C_star: 

            if Re2(i) < 2300 

                C_star2(i) = 0.00476; 

            else 

                C_star2(i) = 7.41/(Re2(i)^(log(14.3/(Re2(i)^0.05)))); 

            end 

 

            % Brunone friction coefficient: 

            k2(i) = sqrt(C_star2(i))/2; 

            k2(i) = corrval*k2(i); 

 

            QP2_ = Q2(i); % Temporary value of QP2 = QP2_; 

            Q2_residual = tol; 

 

            while Q2_residual >=tol 

 

                J2_pos(i) = (fq2(i)*Q2(i-1)*abs(Q2(i-

1))/(2*g*D2*A2^2))+((k2(i)/(2*g*A2))*((QP2_-Q2(i))/dt2)); 

                J2_neg(i) = 

(fq2(i)*Q2(i+1)*abs(Q2(i+1))/(2*g*D2*A2^2))+((k2(i)/(2*g*A2))*((QP2_-Q2(i))/dt2)); 

 

                CP = H2(i-1)+(B2*Q2(i-1))-(J2_pos(i)*dx2); 

                CM = H2(i+1)-(B2*Q2(i+1))+(J2_neg(i)*dx2); 

 

                HP2(i) = 0.5*(CP+CM); 

                QP2(i) = (CP-HP2(i))/B2; 

 

                Q2_residual = abs(QP2(i)-QP2_); 

                QP2_ = QP2(i); 

            end 

 

 

        end 

 

 

% 

%_____________________________________________________________________________________________

______________________________ 

BOUNDARY CONDITIONS AT PIPE END. PIPE 2. 

            % Calculating Reynolds number at pipe end: 

            Re2(NS2) = ((Q2(NS2)/A2)*D2)/visc; % Endre Q(1) 

 

            %C alculating quasi-steady fq: 

            if Re2(NS2) == 0 
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                fq2(NS2) = 0; 

 

            elseif 0 < Re2(NS2) < 2300 

                fq2(NS2) = 64/Re2(NS2); 

 

            else 

                fq2(NS2) = colebr(Re2(NS2),K_rough2); 

            end 

 

 

            %Then calculating C_star: 

            if Re2(NS2) < 2300 

                C_star2(NS2) = 0.00476; 

            else 

                C_star2(NS2) = 7.41/(Re2(NS2)^(log(14.3/(Re2(NS2)^0.05)))); 

            end 

 

            %Coefficient k: 

            k2(NS2) = sqrt(C_star2(NS2))/2; 

            k2(NS2) = corrval*k2(NS2); 

 

            % TIME STEP: 

            t_vec(count) = t; 

            t = t+dt1; 

 

    % CP at pipe end: 

    QP2_(NS2) = Q2(NS2); % Temporary value of QP2 = QP2_ 

    Q2_residual = tol; 

 

    while Q2_residual >= tol 

 

        J2_pos(NS2) = (fq2(NS2)*Q2(NS2-1)*abs(Q2(NS2-

1))/(2*g*D2*A2^2))+((k2(NS2)/(2*g*A2))*((QP2_(NS2)-Q2(NS2))/dt2)); 

        CP = H2(NS2-1)+(B2*Q2(NS2-1))-(J2_pos(NS2)*dx2); 

 

 

        if t<tc % While valve is still closing 

            tt(count) = t; 

 

            VO_c(count) = VOI*(1-(t/tc)); %Change in valve opening, array. 

            VO = VOI*(1-(t/tc)); %Change in valve opening. 

 

            Cc_c(count) = linint(VO); % Loss coefficients, array. 

            Cc = linint(VO); % Sending valve position to function "linint". Reciving flow 

coefficient. 

 

            Kv(count) = (1/Cc^2)-1; % Valve loss coefficient, f(valve opening, type) 

 

            C3 = Kv(count)/(2*g*A2^2); 

            CC3 = B2/C3; 

            CC4 = (HR2-CP)/C3; 

 

            QP2(count) = 0.5*(-CC3+sqrt((CC3^2)-(4*CC4))); 

            QP2(NS2) = 0.5*(-CC3+sqrt((CC3^2)-(4*CC4))); 

            HP2(NS2) = CP-(B2*QP2(NS2)); 

 

 

        else  % Valve is closed 
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            QP2(NS2) = 0; 

            HP2(NS2) = CP; 

 

        end 

 

            Q2_residual = abs(QP2(NS2)-QP2_(NS2)); 

            QP2_(NS2) = QP2(NS2); 

 

    end 

 

    CP_c(count) = CP; 

 

    Q1_temp(count,:) = Q1; % Pipe flow for pipe 1. Contains the flow at each node. 

    H1_temp(count,:) = H1; % Head in pipe 1. Contains head at each node. 

    Q2_temp(count,:) = Q2; % Pipe flow for pipe 2. Contains the flow at each node. 

    H2_temp(count,:) = H2; % Head in pipe 2. Contains head at each node. 

 

 

 

% % ________________________________________________________________________ 

% % REINITIALIZE VALUES: 

 

        for i = 1:NS1 

            Q1(i) = QP1(i); 

            H1(i) = HP1(i); 

        end 

 

        for i = 1:NS2 

            Q2(i) = QP2(i); 

            H2(i) = HP2(i); 

        end 

 

        count = count + 1; 

end 

__________________ END OF SIMULATION _________________________________ 

%%________________________________________________________________________________ 

__________________RELATIVE ANALYSIS:___________________________________ 

tlim = length(H2_temp); % Number of time steps 

 

% Differential pressure of the last node on pipe 2: 

P_temp = (H2_temp(:,NS2)*g*rho)-3.9198e+04; 

plot(t_vec,P_temp) 

ylabel('dP [Pa]') 

xlabel('t [s]') 

 

% Calculation of the geometrical constant: 

k1 = 1/(((L1/A1)+(L2/A2))*1000); 

 

PL_abs = -P_temp(2);% Initial pressure loss 

k2_abs = PL_abs/power(QI,2); % Initial constant k2 
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% Finding linear losses: 

loss = []; 

 

for i = 1:1 

    loss(i,1) = -PL_abs; 

end 

 

x = 0; 

for i = 2:1508 

    loss(i,1)=((PL_abs/(1508-2))*x)-PL_abs; 

    x = x+1; 

end 

 

for i = 1509:tlim 

    loss(i,1) = 0; 

end 

 

% Relative PT with linear losses: 

Q_rel_temp = k1*cumtrapz(t_vec,P_temp(:,1)-loss); 

Q_1r_temp = k1*trapz(t_vec,P_temp(:,1)-loss); 

 

Q_ct = Q_1r_temp; 

Q_1 = Q_ct; 

i = 1; 

Q_residual = Q_ct; 

 

% Implementing relative PT procedure: 

while Q_residual > tol 

 

    Q_ct = k1*cumtrapz(t_vec,P_temp-((PL_abs/(Q_1*abs(Q_1))).*(Q_ct-Q_1).*abs(Q_ct-Q_1))); 

    Q_lossterm_q = ((PL_abs/(Q_1*abs(Q_1))).*(Q_ct-Q_1).*abs(Q_ct-Q_1)); 

    Q_(i) = k1*trapz(t_vec,P_temp-((PL_abs/(Q_1*abs(Q_1))).*(Q_ct-Q_1).*abs(Q_ct-Q_1))); 

    Q_residual = abs(Q_(i)-Q_1); 

    Q_1 = Q_(i); 

    i = i+1; 

end 

 

% Relative losses: 

for i = 1:length(Q_ct) 

    relativeloss(i) = ((PL_abs/(Q_1*abs(Q_1))).*(Q_ct(i)).*abs(Q_ct(i))); 

end 

 

% Comparing relative flow and actual flow: 

figure(1) 

plot(t_vec,Q2_temp(:,NS2)); % Actual flow 

hold on 

plot(t_vec,Q_ct); % Actual flow 

hold off 
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