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1 INTRODUCTION 

1.1 Spatial function in the medial temporal lobe 

The medial temporal lobe, on the ventromedial aspect of the temporal lobe, consists of 

the hippocampal formation, amygdaloid complex and the parahippocampal region (Franko et 

al., 2014). While there is some generalized function shared by all structures in the medial 

temporal lobe, prominently their importance for long-term declarative memory (Squire and 

Zola, 1996) and higher-order association feedback for memory storage (Squire and Alvarez, 

1995), there is some notable functional specialization found within its structures. I will 

concentrate on functional specialization for spatial memory and processing, in particular along 

the anterior-posterior axis.  

There is evidence for functional difference along the anterior-posterior medial temporal 

axis within the spatial domain (Poppenk et al., 2013). The anterior medial temporal lobe, 

containing head and body of the hippocampus, is important for the initial phase of navigation, 

including the global reinstatement of the environment and planning a course of action, while 

the posterior medial temporal lobe is more active throughout the entire course of navigation, 

possibly by giving more local and detailed representations of the navigated environment (Xu et 

al., 2010).  

Here, I will specifically focus on the parahippocampal cortex and the hippocampus, 

while most other medial temporal lobe structures will be only briefly mentioned. For example, 

entorhinal cortex of rats contains grid cells, whos firing fields tile the environment in a 

hexagonal pattern and provide an allocentric map-like representation (Hafting et al., 2005), 

perirhinal cortex is centrally involved in visual memory (Malkova & Mishkin, 2003), which is 

important in most spatial tasks, and processing of scene information seems to be distributed 

throughout the MTL (Chadwick et al., 2012; Chadwick et al., 2010). However, these functional 

implications are outside the main scope of the current thesis: the former is specifically focused 

on a tangential (although important) aspect of spatial function, while the latter is too broad and 

would be more relevant in a thorough review of spatial function in general. 

 

1.1.1 Hippocampus 

Hippocampus is a structure of three-layered archicortex within the medial temporal 

lobe, and is functionally at the top of the cortical hierarchy (Lavenex and Amaral, 2000). It is 
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divided into three subregions along its anterior-posterior axis (Lorente De No, 1934), and based 

on its connectivity and cytoarchitecture it has been divided into dentate gyrus (DG), subiculum 

and cornu ammonis (CA) 1, 2, 3 and 4 (Andersen et al., 1971; Blaabjerg and Zimmer, 2007). 

The primary source of general input projections to the hippocampus comes from the 

entorhinal cortex, which in turn receives its main input from the perirhinal and parahippocampal 

cortices (Squire et al., 2004). Specifically environmental input also comes through this route 

(Lavenex and Amaral, 2000), and these projections are organized in a graded manner by number 

of projections, with more projections to the posterior hippocampus and fewer to anterior 

hippocampus (Suzuki and Amaral, 1994; Witter et al., 1989). 

The hippocampus has long been known to be important for memory processing 

(Scoville and Milner, 1957), as well as a slew of other more or less well-defined functions, 

including spatial memory (Poppenk et al., 2013; Strange et al., 2014). Since the discovery of 

hippocampal place cells in rodents (O'Keefe and Dostrovsky, 1971), it has been known that the 

hippocampus supports a cognitive map-like representation of physical space (O'Keefe and 

Dostrovsky, 1971; O'Keefe and Nadel, 1978). The cognitive map theory for the hippocampus 

was based on the discovery of hippocampal place cells that fire when the animal is in a particular 

environmental location, called the cells’ place fields (O'Keefe and Dostrovsky, 1971). The 

firing of these place cell ensembles combine to form a distinct neural code for that specific 

environment (O'Keefe and Nadel, 1978). The storage capacity of these neural networks of 

hippocampal place cells is quite large, containing at least enough patterns to be able to store 

unique representations for eleven environments without pattern overlap (Alme et al., 2014). 

Entorhinal grid cells, one synapse upstream from the hippocampal place cells (Hafting et al., 

2005) contain regularly spaced firing fields and are active across any given environment 

(Jeffery, 2011). Both place cells and grid cells utilize environmental cues to calibrate their firing 

to the outside world (Barry et al., 2007; Hafting et al., 2005), and remapping of these 

hippocampal maps, essentially reorganizing them in response to different environments, may 

be one of the fundamental mechanisms for navigation and (spatial) memory (Colgin et al., 

2008). Whether or not these spatial maps are a smaller piece in the larger role of the 

hippocampus in memory processing is not yet known (Kyle et al., 2015). 

An anterior-posterior specialization has been found in the hippocampus, where the 

posterior hippocampus (tail) supports fine grained representations of the local environment, the 

anterior (head) a coarse global representationand the middle (body) a medium-grained 

representation of the environment (Evensmoen et al., 2015; Evensmoen et al., 2013). This 
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division was also reflected in the study of London Taxi drivers, where the addition of more 

fine-grained local representations to their internal maps of London led to an increase in posterior 

hippocampal volume (Woollett and Maguire, 2011). In rats, when going from the posterior to 

the anterior hippocampus, the place cells’ place fields increase in granularity and become less 

discriminating (Jung et al., 1994; Kjelstrup et al., 2008). Lesions to the posterior hippocampus 

lead to a reduced ability to separate close but not distant spatial locations (McTighe et al., 2009). 

 

1.1.2 Parahippocampal cortex and parahippocampal place area 

The parahippocampal cortex lies caudally adjacent to the perirhinal cortex (Lavenex and 

Amaral, 2000). Besides being an important input structure to the hippocampus (Squire et al., 

2004), it is, together with entorhinal and perirhinal cortices, involved in an association network 

hierarchy within the medial temporal lobe (Lavenex and Amaral, 2000). Parahippocampal 

cortex receives input from areas that are involved in the visual processing of objects as well as 

from areas processing spatial localization information (Ranganath, 2010). It has been shown 

that parahippocampal cortex is important for spatial memory (Malkova & Mishkin, 2003; 

(Squire et al., 2004).   

Functionally, a difference in spatial and navigational function has been found along the 

anterior-posterior axis of the parahippocampal cortex. During navigation, activation in 

activation in the posterior parahippocampal cortex has been observed during the entire 

navigation period when subjects were trying to reach specified landmarks, while anteriorly 

activation was only observed initially when planning how to reach the target landmark within 

the environment (Spiers and Maguire, 2006, 2008; Xu et al., 2010). It was argued that the 

posterior parahippocampal cortex is associated with local environmental details, while the 

anterior parahippocampal cortex is associated with the initial reinstatement of a coarse global 

representation of the environment (Xu et al., 2010). This reinstatement could be of importance 

when trying to keep a general environmental overview during retrieval of local information 

(Oliva & Torralba, 2006).  

The parahippocampal place area is located in the posterior part of the parahippocampal 

cortex (Epstein and Kanwisher, 1998), a visuospatial parahippocampal region which tends to 

respond more strongly to scenes than faces, objects or other stimuli (Epstein et al., 2003). In 

addition to scene category separation, the parahippocampal place area has been implicated in 

several other functions (Baldassano et al., 2013), including local scene geometry, in which it 
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responds more strongly to place changes than object changes in a scene (Epstein et al., 2003). 

Lesions to the parahippocampal place area lead to difficulties navigating through both familiar 

and unfamiliar environments (Epstein et al., 2001), and is generally suggested to be involved 

with representations of local visual scenes (Epstein, 2008). Direct electrical brain stimulation 

of the area has also been shown to evoke visual hallicinations of topographic features 

(Megevand et al., 2014). A functional subdivision along the anterior-posterior axis of the 

parahippocampal place area has been proposed, based in part on its functional diversity 

(Aminoff et al., 2013; Baldassano et al., 2013; Rajimehr et al., 2011), the main hypothesis being 

that the posterior and anterior parahippocampal cortex is important for spatial- and non-spatial 

context, respectively (Aminoff et al., 2013). However, the search for this hypothesized 

subdivision has been largely unsuccesful (Baldassano et al., 2013). 

 

1.2 Multi-voxel-pattern-analysis of BOLD fMRI data    

1.2.1 BOLD fMRI 

Neural and synaptic activity leads to increased neuronal and astrocytic energy 

consumption through ion pumping activity (Attwell & Laughlin 2001), metabolic demands 

(Iadecola and Nedergaard 2007) and feedforward neuronal pathways (Attwell & Iadecola 

2002). This causes a local increase in O2 metabolism. At the same time, neural activity causes 

a local increase in cerebral blood flow that is larger than the increase in local O2 metabolism, 

and the net result is therefore a decrease in local deoxygenated blood hemoglobin (Kim and 

Ogawa, 2012). In blood oxygen level dependent (BOLD) functional magnetic resonance 

imaging (fMRI) (Ogawa and Lee, 1990; Ogawa et al., 1990), these local decreases in the 

relative amount of deoxygenated hemoglobin can be seen as an increase in the MR signal and 

BOLD response, because deoxygenated hemoglobin and its free iron causes local distortions in 

the magnetic field (Kim and Ogawa, 2012). 

 

1.2.2 Univariate analysis: massively univariate 

The historical standard analysis technique for analyzing BOLD fMRI data is the general 

linear model (GLM). Here, each voxel is analyzed individually, and the statistical model 

compares each single voxel’s MR signal intensity over time to the experimental time series 

(Friston, Holmes, Worsley & Poline 1995). After accounting for the delay of the hemodynamic 
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response to brain activity, these two time series can be compared to evaluate how the 

experimental manipulations correlate with changes in brain activity. This is called the massively 

univariate approach (Luo & Nichols 2003), since each voxel is analyzed individually as a single 

dependent regression variable, on the basis of one or multiple predictor variables, i.e. 

experimental stimuli as well as known nuisance variables like movement and scanner drift. 

1.2.3 What univariate analyses miss 

Since the goal of univariate fMRI analysis often is to investigate the overall activations 

in a brain region of interest (ROI), the data is spatially smoothed in order to increase the signal 

to noise ratio at the subject level and focus the sensitivity on the gross activations (Hopfinger 

et al., 2000). The effect of this smoothing on the underlying voxel activity distribution is 

complicated, and the main discussion revolves around whether or not an underlying 

neural/voxel information pattern is conserved or lost through the effects of spatial smoothing 

(Op de Beeck 2010;Kriegeskorte et al. 2010; Kamitani & Sawahata 2010). No matter what the 

result of the smoothing is, in a univariate analysis the information content of voxel patterns are 

not directly assessed as the model treats each voxel separately. Since it can be argued that the 

brain is inherently multivariate in nature, with both microscopic (neurons and neuronal 

populations) and macroscopic (cortical and subcortical regions) working together in distributed 

networks, the univariate approach may not be enough on its own or even the optimal choice at 

all in a given investigative context (Raizada & Kriegeskorte 2010). To account for more 

distributed activity patterns in the brain, we may need to directly measure and contrast the 

changes in voxel activation patterns across experimental conditions, brain regions and/or 

people. 
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1.2.4 Multivariate/multivoxel pattern analyses 

 

Figure 1-1 Univariate vs Multivariate Activity. The top figures are side views of two brains. Colored circles 

are mean BOLD fMRI activation across multiple voxels in a region. In a univariate analysis (top), mean regional voxel 

activations are extracted (orange --> red --> yellow = higher activation compared to baseline).  However, the underlying 

distribution of voxel activations (bottom) can be different even if their shared mean activity is the same. Here, (A) 

reveals a substantially different underlying pattern compared to (B), but their mean activations over a larger area (eg. 

ROI) are equivalent. This reveals a key difference between univariate analysis (top) and multivariate pattern analysis 

(bottom). 

 

Multivariate pattern analysis (MVPA) of fMRI data, also often called multivoxel pattern 

analysis, since it’s a multivariate analysis using the MRI voxels as its dependent variables, is 

qualitatively separate from the standard univariate analysis. The main difference is that MVPA 

looks at the pattern of BOLD fMRI signal across many voxels instead of focusing on the 

individual voxel-wise intensity changes (Norman et al. 2006). Figure 1-1 shows a simple 

illustration of the main differences between what a univariate and multivariate analysis will be 

able to detect. If the goal, or one of the goals, of an analysis is to account for the informational 

content in across-voxels patterns, one of the several MVPA approaches may then be preferable. 

Importantly, MVPA has been able to detect stable patterns of activity across voxels even in the 

absence of mean activation (Mur, Bandettini & Kriegeskorte 2009), for example in the 

orientation sensitivity of human primary visual cortex (Kamitani & Tong 2005; Haynes & Rees 

2005). Subsequent work has shown that MVPA can extract contents of higher-order functions, 

for example intentions (Haynes et al. 2007), working memory (Harrison & Tong 2009) and 

episodic memory (Collin, Milivojevic & Doeller 2015). It is important to note however, that 
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this does not necessarily reflect a superiority of multivariate over univariate analyses in fMRI 

studies, but it does mean that it may be able to detect different aspects of the brain’s response 

to a stimulus (Jimura and Poldrack, 2012). While two single locations analyzed in univariate 

analyses may not individually carry critical information about a cognitive, sensory or emotional 

state, analyzing both with a multivariate analysis may show that they convey information in 

their collective pattern, increasing the information that can be extracted from the measurement 

(Haynes and Rees, 2006). Generally, univariate analyses may be sensitive to activation of basic 

processing functions while MVPA detects representations of the specific contents being 

processed (Raizada et al., 2010). 

MVPA has been shown to have the potential to be more sensitive to distributed coding 

of information, while univariate analyses tend to be more sensitive to the global engagement of 

the brain during a task/stimulus. MVPA has the potential to reveal activity in additional regions 

not discovered by a  univariate analysis (Jimura & Poldrack 2011). In general, it seems that the 

MVPA approach yields not just a more sensitive answer to the same problems that we address 

when using univariate analysis, but that it can answer fundamentally different questions. For 

example, when looking at pattern information, we can look at spatially overlapping neural 

representations, which are not amenable to univariate investigations due to the localized pattern 

distinctions being smoothed away (Raizada & Kriegeskorte 2009) and the single-voxel focus 

of the approach (Haynes and Rees, 2006). Figure 1-2 shows the difference clearly: while 

looking only at the total amount of signal in an area (represented here by the total amount of 

digital ink) would yield the same result for both the letter ‘M’ and the arrow, looking at the 

pattern of activations across the area reveals the actual difference. 

 

Figure 1-2 Univariate and multivariate data example. The two squares contain the exact same amount of 

‘signal’ (represented by amount of “ink”). However, their spatial distributions are strikingly dissimilar. This illustrates 

the need to sometimes look deeper than the mean signal intensity in an area and also take into account the possibility 

that the distribution of activity across the voxels in the area might differ in an important way.  
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1.2.5 Representational spaces and representational geometries 

In the context of neuroscience, neuronal activity (and by extension voxel activity in 

fMRI) is interpreted as representing some mental content, like a memory, a visually observed 

image or a motor action, and the researchers’ interpretations of these representations can then 

be used to link the neuronal activity to cognition and more abstract non-physical aspects of 

brain activity (Kriegeskorte and Kievit, 2013). In order to quantitatively analyze and compare 

these representations, we need a way to look at them that lets us compute differences between 

them in a meaningful way. Two ways of constructing and analyzing such representational 

spaces are: Representational geometries and difference measures in representational similarity 

analysis (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008) and multi-subject alignment 

in high-dimensional spaces through hyperalignment (Haxby et al., 2011). 

What these have in common is the idea that the representations can be quantified as 

vectors in a high-dimensional space defined by the dimensions (x,-y,-z-, etc. axes) of the 

measurement, e.g. voxel activation in fMRI (Haxby et al., 2011; Kriegeskorte et al., 2008). In 

fMRI, this representational space is a high-dimensional space where the axes (dimensions) are 

separate voxels, each value on an axis is the voxel intensity for that voxel, and all stimuli are 

represented as separate vectors defined by their values for each axis/voxel (Haxby et al., 2014) 

(figure 1-3 A and 1-3 B). So, using only 2 or 3 voxels, we get an intuitively simple picture in 

two and three dimensions. Figure 1-3B and 1-3C shows the same thing: 1-3C shows the voxel 

activity for the blue and red stimuli across the three measured voxels, while 1-3B shows how 

this pattern will be reflected in a high-dimensional space. However, an fMRI experiment will 

often use several thousand voxels, and this number of dimensions is impossible to convey or 

even imagine in a simple way, since each additional voxel gives one more axis and thus builds 

more than three dimensions. Still, the concept is essentially the same if the dimensions are three 

or twenty thousand. Since the points (or vectors) are defined by their voxel response intensities, 

we can think of the representational space as a voxel response pattern space. 
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Figure 1-3 Representational spaces . The axes indicate the voxel intensities, with one axis per voxel: A) two 

voxels gives the space two dimensions for the stimuli (responses) to exist in. (B) three voxels gives three dimensions to 

the space. Note: each point illustrates the end point coordinate of a vector starting at the origin of the coordinate system, 

and each component value of the vector corresponds to the intensity score of a voxel (eg. the leftmost (red) point in (A) 

may represent the vector [-3, 1] for voxels 1 and 2, while the blue point in (B) may represent the vector [3, 0.5, 0], for 

intensities of voxels 1, 2 and 3 respectively). (C) shows how each point is actually a spatial pattern across voxels; for the 

red and blue stimulus points in (B), the relative voxel intensities are different, placing them at different coordinates 

within the three dimensional representational space. 

 

1.2.6 Representational similarity analysis and representational dissimilarity matrices 

The activation patterns can also be analyzed by looking at the representational geometry 

of stimulus responses across different stimuli. The representational geometries for a stimulus 

set can then be compared across brain areas, people or even between species or computer 

models. Since the responses are represented in a space, we can perform these comparisons by 

calculating the distances between the stimulus responses as the similarities (or dissimilarities1) 

between the different patterns of stimulus responses (Kriegeskorte and Kievit, 2013). 

 Representational similarity analysis (RSA) is the most common method for comparing 

representational similarities in brain activation patterns  (Mumford, 2013). In the context of 

fMRI, RSA correlates the activity patterns across spatially extended voxels with the 

experimental stimuli,by taking correlations between all task pairs, in order to quantify the 

similarity between these activity patterns. The differences between the stimulus responses can 

                                                 
1 The use of dissimilarities instead of similarities comes from the relative intuitive ease of imagining 

dissimilarity as an actual distance in real space (more dissimilar = further apart) (Kriegeskorte et al. 2011). 
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then be represented as their dissimilarities across the voxel space (the grey lines in figure 1-3) 

and quantified as 1 - correlation across space (1 - r). These dissimilarity scores can then be 

plotted as a square matrix with n rows and n columns (n = number of stimuli), as in figure 1-4. 

This representational dissimilarity matrix (RDM) lets us characterize the representational 

geometries (Kriegeskorte et al., 2008). The resulting RSA values can then be compared in order 

to show the representational differences between eg. brain regions, subjects, species or 

computational models (Kriegeskorte et al. 2008; Kriegeskorte 2011). Particularly relevant here, 

RSA has been used successfully to investigate a scaling of representations along the 

hippocampal long axis (Collin, Milivojevic & Doeller, 2015).  Figure 1-4 shows how the 

dissimilarities in voxel patterns associated with stimulus pairs can be computed as differences 

in spatial correlations across voxels.  

 

 

Figure 1-4 Dissimilarity matrix. Top left: Different stimuli lead to different patterns of voxel activiations in an 

area of the brain (top middle). Top right and bottom left: The colored shapes represent four stimuli, or experimental 

conditions. For each stimulus pair, the voxel activity pattern associated with those stimuli are compared through spatial 

correlation. The colors in the square matrix represents a dissimilarity measure between the stimuli of 1 – correlation, 

so that 0 represents a perfect correlation, 1 no correlation and 2 perfect anticorrelation (note that the matrix is 

symmetric about the zero diagonal, since all stimuli are compared twice and have perfect (correlations (dark blue) with 

themselves. Bottom right: how each square is determined. Bottom middle: color coding scheme for the dissimilarity; 

red is most dissimilar (color bar from Kriegeskorte et al. 2011). 
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1.2.7 Classifiers and (linear) vector support machines 

In order to investigate the correspondence between neural activity patterns and mental 

representations, different classifiers can be employed. For example, it has become common 

practice to use machine learning algorithms to calculate the similarity measures used in 

searchlight analyses and for separation classification of other data structures (Etzel et al., 2013). 

As discussed in the section on representational spaces (1.2.5), multivoxel activation patterns 

can be thought of as points in an n-dimensional space (where n equals number of voxels used 

in the analysis). A linear classifier will then use a linear decision boundary (hyperplane) to 

separate the response points (multivoxel activity vector endpoints in the space) (figure 1-5). 

One such classifier is the linear support vector machine (linear SVM), where the ‘linear’ just 

means that it uses a linear hyperplane as a separator (Mur et al., 2009). 

Linear SVMs are especially popular for these types of classifications in fMRI (Etzel et 

al., 2013). Several linear classifiers exist, but while they generally seem to perform equally well 

on fMRI data, the linear SVM is very suitable because it does not assume that the data are 

multivariate normal and does not use pattern correlation, which may make a classifier 

insensitive to regional-average differences (Mur et al., 2009). The linear SVM works by margin 

maximization. It classifies the data of two classes by finding a linear classification boundary 

hyperplane that separates the classes by assuming an orientation and position that gives it the 

maximal possible distance from the nearest data point. The classifier is then defined by the 

points on the margin edge, called the support vectors, and if the classification performs better 

than chance, based on the activity patterns, this can be taken to signify that the pattern carries 

important information about the experimental task or condition (Mur et al., 2009). Importantly, 

this is done on a subset of the data (called the ‘training set’ as it is what the SVM is using to 

find the best separating hyperplane) before it is then applied to the rest of the data (‘testing set’) 

to see if the classification holds. This grouping into training and testing sets can be achieved by 

splitting the data randomly into two parts or collecting separate training and testing data (Etzel 

et al., 2013). 
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Figure 1-5 Linear support vector machine. The linear support vector machine (SVM) is a classifiser that finds 

the optimal separating hyperplane between two classes of patterns by first training itself to separate one part of the 

data and then using the test classifier on another part of the data. The test data classifier thereby determines how 

succesful the classifier is at separating the data correctly into the two real categories. Thick line = optimal hyperplane. 

Thin lines = maximum margins on either side, defined only by the closes data points on each side (i.e. each class). 

Triangles = testing patterns. Circles = training patterns. 

 

 

1.2.8 Multivoxel pattern analyses of spatial functions in the hippocampus and 

parahippocampal cortex 

Hippocampal activation patterns represent individual positions. Encoding of individual 

positions refers to how specific locations are encoded without reference to any other object or 

position, whether the position refers to the position of an object, a goal position or the subject’s 

own current location. For example subjects’ locations while navigating between four cornerns 

in a virtual environment has been succesfully decoded through hippocampal voxel patterns 

using MVPA, even when the locations were visually matched (Hassabis et al., 2009). Voxel 

pattern classification has also showed that the hippocampus can separate between three 

individual goal locations in a circular environment, when navigating to them (Rodriguez, 2010). 

Neural patterns associated with people’s senses of their location within the scanner showed a 

decoding peak in a voxel cluster extending from the posterior hippocampus into the border 

between the hippocampus and the parahippocampal gyrus. 

Hippocampal and parahippocampal activation patterns also seem to represent the 

internal relationship between positions independent of our own positions, referred to as an 

allocentric representation (Ekstrom et al., 2014). A cluster in the entorhinal subiculum showed 
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a highly similar activation pattern for geocentric direction trials,in which they had to remember 

the internal relationship between at least two background images and an object, but not 

egocentric direction (Chadwick et al., 2015). Additonally, voxel activation patterns in 

parahippocampal cortex and posterior hippocampus have been shown to be more similar the 

more locations four objects in a virtual scene had in common, while pattern similarity in the 

anterior hippocampus, for the encoding period compared to the delay period, was associated 

with object-location encoding (Libby et al., 2014). This suggests that the internal relationship 

between positions, at least on some level, is embedded in the activation patterns in the 

hippocampus, parahippocampal cortex and entorhinal cortex. Allocentric encoding is seen as 

important for creating a cognitive map-like representation of the environment (Ekstrom et al., 

2014). Worse map-drawing ability for previously experienced environments has been shown to 

correlate with increased pattern similarity between environments with a regulary shaped and 

morphed outer wall, in a hippocampal-parahippocampal cortical cluster (Stokes et al., 2015). A 

positive correlation was also observed between the ability of a hippocampal-parahippocampal 

cortical cluster’s ability to separeate virtual cities and the ability to retrieve the relative distance 

of the stores within the cities (Kyle et al., 2015). Taken together, this indicates that activation 

patterns in the hippocampus and parahippocampal cortex supports representation of the internal 

relationship between objects, possibly in an allocentric framework. 

Hippocampal and parahippocampal activation patterns also seem to involve more 

coherent environmental representations. When subjects navigated in four small virtual 

environments, it was found that voxel patterns in the parahippocampal cortex separated between 

these environments (Hassabis et al., 2009). The hippocampus has also been found to contain 

neural codes in its voxel activation patterns able to correctly classifiy different virtual 

environments (Kyle et al., 2015). Finally, environments with similar outer borders are 

associated with more similar activation patterns in both parahippocampal cortex and 

hippocampus (Stokes et al., 2015). In total, this suggests that both the hippocampus and 

parahippocampal cortex, through their activation patterns, are capable of separating between 

environments. 

 

 



14 

 

1.3 Hypotheses and aims 

Activity in the hippocampus and parahippocampal cortex, including the 

parahippocampal place area, have an important role in localization and positional encoding 

within our spatial memories. Previous studies have investigated how location and position are 

encoded in the patterns of distributed activity within these regions. Still, a study that investigates 

encoding of the different parts that an environmental representation consists of, by having the 

participants reconstruct the environment after encoding, is missing. This is crucially important, 

because it makes it possible for example to look at encoding of  allocentric positional 

representations per se while controlling for encoding of position-object, position-room, object-

room and object representations.  

The overlying goal of this thesis was to investigate dissimilarities in patterns of voxel 

activity, and the classification performance based on these patterns, of the different elements 

that our environmental  representations consist of along the anterior-posterior axis of primarily 

the hippocampus and parahippocampal cortex. To test this hypothesis we analyzed BOLD fMRI 

activation patterns from virtual environmental learning, involving both a stimulus presentation 

and a poststimulus encoding period, using a correlation-based similarity measure and linear 

support vector machine learning for classification. Each of the 35 small virtual environments 

used consisted of an outer wall and five objects. For each environment, the participants were 

tested on their ability to position the objects from a map-like perspective (position test), to 

associate the objects from the same environment together (objects test), and to associate the 

objects with the outer wall (objects-room test). The position test gave both a measure of the 

ability to reconstruct the objects’ positional pattern, to position the objects correctly within the 

pattern, and to place the objects correctly relative to the outer wall.  

Univariate analyses have shown that within the hippocampus, and to some extent 

parahippocampal cortex, anterior parts involve global environmental representations and 

posterior parts more local environmental representations. Additionally, multivoxel fMRI 

analyses have been able to detect a gradient of memory representations along the hippocampal 

long axis, with more similar activation patterns for large-scale memory representations 

anteriorly, medium-scaled intermediately and small-scale posteriorly (Collin et al., 2015). We 

therefore hypothesized that anterior hippocampus and parahippocampal cortex would encode 

individual environments more separate, including their outer wall and objects, through more 

dissimilar activation patterns than posterior hippocampus and parahippocampal cortex. 
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Further, univariate analyses have found a positional gradient along the anterior-posterior 

axis in these data, with fine-grained, medium-grained and coarse-grained positional 

representations in the posterior, intermediate and anterior hippocampus respectively. We 

therefore hypothesized that activation patterns in more posterior parts of the hippocampus and 

parahippocampal cortex would be especially good at correctly classifying fine-grained 

positional representations, intermediate parts medium-grained representations and anterior 

parts coarse-grained representations. 

Finally, we hypothesized that the posterior part of the parahippocampal cortex, 

including the parahippocampal place area, will be more stimulus driven, showing increased 

ability to separate the stimulus presentation- from the poststimulus encoding period.   
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2 METHODS 

2.1 Subjects 

Thirty-one right-handed men (18 - 27 years, mean 21 years) were recruited. None of 

them reported any history of neurological disorders, head trauma, or previous or current DSM-

IV axis I diagnosis of psychiatric illness, including substance abuse.  

 

2.2 Virtual Reality Environment 

The VR-environments were developed in collaboration with Terra Vision AS (Terra Vision, 

Trondheim, Norway) using the Torque game engine (Garage Games, Eugene, Oregon, US). 

There were 35 environments, each between 50 and 90 m2, and each had five unique unrelated 

objects (figure 2-1 A and B). Every environment had a unique positional pattern of objects. 

Each object was positioned in one of 16 possible tiles on the floor, and additionally assigned to 

one of five possible sub-squares within each tile (figure 2-1 B). Furthermore, the outer wall of 

each environment had one of 10 geometric shapes (figure 2-1 C). The participant moved freely 

in the environment, but the moving speed was set to 2 m/s (figure 2-1 A). 

 

2.3 fMRI paradigm and test procedures 

Using a block design fMRI paradigm, all subjects had to learn 35 unique environments. The 

paradigm included a 30 second stimulus presentation, a 15 second poststimulus encoding period 

and a 15 second period where they had to make unrelated odd-even judgments. 

When the stimulus presentation period started, subjects were positioned at the door in 

the environment, and then had to explore the virtual environments freely from a first person 

perspective (figure 2-1A, left image). During the subsequent poststimulus encoding period, 

subjects were told to fixate on a cross while continuing to encode the features in the 

environment. Then, they were given an odd-even task where they were shown random numbers 

(<100) and told to push the right joystick button if the number was even and the left button if it 

was odd. This period was used as an implicit baseline. 

The order of the 35 environments was randomized both within and between runs, with 

five new environments in each run over a total of seven runs per subject. 

After each run, subjects were given tests to assess the accuracy and success in their 

recall of the different spatial and non-spatial representations in each of the five learned 
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environments in the preceding run (figure 2-1). These tests were administered by having the 

subjects look at a computer screen while they were still in the scanner, and they answered by 

clicking and dragging objects on the screen using a joystick. All tests were programmed using 

HTML and javascript (Hansen et al., 2015). 

First, they were given the objects test, which assessed their ability to successfully recall 

which objects were presented together in an environment. Then, the objects-room association 

test assessed their ability to successfully assign the correct group of objects to the correct room 

geometry. The final test was an object-positioning test, where they were given several scores 

based on different types of spatial associations (further details below and in (Evensmoen et al., 

2013). 

 

2.4 MRI scanning  

Scanning was performed using a 32-channel Head Matrix Coil for all subjects. For the first 24 

subjects, a 3T Siemens Trio scanner was used, while the final seven were scanned in a 3T 

Siemens Skyra scanner (Siemens AG, Erlangen, Germany). To minimize head motion, the 

subjects were fitted with foam pads. Subjects moved through the virtual environment using an 

MRI compatible joystick (Current Designs, Philadelphia, US) while the stimuli were presented 

on an LCD monitor with 1280 x 1024 resolution (Current Designs, Philadelphia, US).   

First, subjects familiarized themselves with the equipment, including the monitor and 

the joystick, and the paradigm by completing practice trials of the different experimental 

conditions. When the subject showed complete task compliance, the MR scanning started.  

 

2.5 Imaging parameters 

T2* weighted, blood-oxygen-level-dependent (BOLD) sensitive images were acquired during 

the spatial encoding task with a 2D echo-planar imaging pulse sequence. Since a different 

scanner was used for the first 24 and the final 7 subjects, the 2D echo-planar imaging parameters 

differed slightly between the two groups.  

For the first 24 subjects, the parameters were as follows:  TR = 2110.8 ms, TE = 28 ms, 

FOV = 220 mm x 220 mm, slice thickness = 1.9 mm (no gap), number of slices= 40, matrix = 

116x116 producing a voxel size of 1.9x1.9x1.9mm3, flip angle = 90.  
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For the final seven subjects, the corresponding parameters were: TR = 2253.2 ms, TE = 

28 ms, FOV = 220 mm x 220 mm, slice thickness = 2.0 mm (no gap), slice number = 40, matrix 

= 116x116 giving a voxel size of 1.9x1.9x2.0mm3 , flip angle = 90.  

Imaging slices were positioned as close to 90° on the anterior-posterior direction of the 

hippocampus as possible, and GRAPPA acceleration was used (factor four). Each functional 

run consisted of 143 volumes for the first 24 subjects, and 134 volumes for the last seven 

subjects. 

A T1 weighted 3D volume was acquired for anatomical reference, using an MPRage 

sequence with parameters: TR = 2300 ms, TE = 2.94 ms, FOV = 256 mmx 256 mm x 192 mm, 

matrix 256x256x192 giving an resolution of 1.0x1.0x1.0 mm3 , flip angle = 8. 

 

2.6 Tests of non-positional representations 

In the objects test, subjects were shown five groups of objects from the five environments they 

had just learned. In each group, only three out of the five objects were pre-assigned, and from 

a group of ten other objects, they had to drag the two missing objects in each group over to their 

correct group (2-1B). They were calculated according to the total number of correct trials (all 

five groups completed correctly), the number of groups where only one of the two extra objects 

were assigned correctly, and failed trials (groups where both added objects were wrong).  

In the objects-room test, subjects dragged object groups to a 2D overview of the 

environment. Five of these overviews were lures (an environment they not had been shown in 

the recent run). For each room they associated with the correct object group, they got one point. 

The score was calculated by summing the total number of correct trials, and a score for total 

failed trials was also calculated by summing these. 
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Figure 2-1 Experimental setup. A: fMRI paradigm, with 30 s stimulus presentation period (free exploration), 

15 s poststimulus encoding period (memorization of environment) and 15 s where subjects completed odd-even 

judgments. After five environments were learned, the Objects-room geometry test (B), where they associated a group 

of objects with the associated geometric shape of the environment, and the Positions test (C), where they positioned the 

five object as accurately as possible within the 16 squares in the environment, each consisting of 5 subsquares. From 

this test, a positional accuracy score was calculated. Image reproduced from original study (Evensmoen et al., 2015). 

 

2.7 Tests of positional representations 

In the object-position test, subjects had to drag and place all 5 objects associated with an 

environment as accurately as possible onto the 2D overview of the environment (figure 2-1C). 

Several different measures were derived from performance on this task: 
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The positional granularity measure represents each subject’s ability to accurately 

reconstruct the positional pattern of the objects in the implicit coordinate system of the 

environment, irrespective of object identity and room geometry (translational, rotational and 

scaling effects between the objects and the environment were removed). This shows how well 

each subject recreated the positional pattern of objects in an environment, and it represents an 

allocentric measure, meaning that it reflects the relationships between the objects independently 

of their position (Ekstrom et al., 2014; O'Keefe and Nadel, 1978; Tolman, 1948). Accuracy 

scores, measuring how far subjects’ reconstruction of the positional pattern of the objects was 

away from the correct positions, were calculated by summing the total sum of squares from the 

correct positions. This measure was used as both a continuous and discrete measure (divided 

into fine-, medium-, coarse-grained, and failed trials). In fine-grained representations, the 

objects’ positioning was placed within an average of one-fourth of a square (figure 2-1C, right 

image), medium-grained representations were within one square, and coarse-grained 

representations within one and a half squares. Representations were classified as failed if the 

score was more than one and a half squares away from the original position. 

In the positions-room granularity analysis, scores above 16000 were discarded from the 

analysis to make sure that a rough idea of the positional pattern was present in all included 

trials. Object identity was also disregarded here. The granularity measure was estimated by the 

amount of translation, rotation and scaling that had to be applied to each subject’s positional 

pattern to get the pattern that most closely resembled the original, using least squares. Fine-, 

medium- and coarse-grained representations were made based on the same criteria as for the 

positional granularity measure. 

 

2.8 Data preparation and preprocessing 

The data were preprocessed using FSL 5.0.9 (Analysis Group, FMRIB, Oxford, UK). First, the 

seven fMRI runs were motion corrected using MCFLIRT, with the median volume of run 3 as 

reference, before they were merged using fslmerge. Finally, to exclude voxels in the fMRI data 

that were most certainly not part of the brain, BET 2 with robust center estimation (Brain 

Extraction Tool, FMRIB, Oxford, UK) was run on the merged fMRI data file, with a liberal 

fractional intensity threshold of 0.25. 
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2.9 Anatomical ROIs 

The parahippocampal cortex (PHC) was defined bilaterally combining probabilistic 

maps of the Harvard Oxford Structural Atlases (part of FSL; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) with defined anatomical boundaries (Franko et al., 

2014; Insausti et al., 1998; Pruessner et al., 2002) (figure 3-1). The posterior PHC border was 

defined as the final coronal slice with visible hippocampal gray matter on the MNI template , 

i.e. MNI: -42 (Pruessner et al., 2002), and the anterior PHC border 6 mm posteriorly to the end 

of the gyrus intralimbicus (Franko et al., 2014). The PHC was then divided into three anterior-

posterior subregions, i.e. the posterior PHC (y = -42 to y = -38, 1389 voxels), intermediate PHC 

(y = -37 to y = -33, 1290 voxels), and anterior PHC (y = -32 to y = -27, 1315 voxels). In order 

to investigate the functional borders of the PHC more closely, a posterior, i.e. lingual, ROI (y 

= -50 to y = -43, 1850 voxels) and an anterior, i.e. perirhinal/entorhinal, ROI (y = -26 to y = -

22, 827 voxels) were defined.  

The hippocampus was divided into three anatomical ROIs; posterior (1098 voxels), 

intermediate (3169 voxels), and anterior (4385 voxels) (Evensmoen et al., 2015; Poppenk et al., 

2013).  

The caudate nucleus was defined bilaterally (probabilistic maps of the Harvard Oxford 

Structural Atlases (part of FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), using a probability 

threshold of 50. The caudate nucleus was divided into three anterior-posterior subregions, i.e. 

the posterior caudate (y =-21 to y = -4, 619 voxels), intermediate caudate (y = -3 to y = 10, 2810 

voxels), and anterior caudate (y = 11 to y = 25, 4033 voxels). The posterior caudate involved 

more slices because of the relative small size of the posterior slices. Putamen was divided into 

three anterior-posterior subregions, i.e. the posterior putamen (y = -22 to y = -8, 2609 voxels), 

intermediate putamen (y = -7 to y = 5, 4994 voxels), and anterior putamen (y = 6 to y = 20, 

4688 voxels). The intermediate putamen involved less slices because of the relative large size 

of the intermediate slices. 

The cingulate cortex was also defined bilaterally (probabilistic maps of the Harvard 

Oxford Structural Atlases (part of FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), using a 

probability threshold of 50. The cingulate cortex was divided into three anterior-posterior 

subregions (figure 3-1). 

The ventricle ROI was created by created a spherical shaped ROI in the anterior horn of 

each of the lateral ventricles (370 voxels). 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)
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The fusiform ROI was defined as the temporal occipital fusiform cortex bilateral 

(probabilistic maps of the Harvard Oxford Structural Atlases (part of FSL; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), using a probability threshold of 50 (5066 voxels). 

 

2.10 Dissimilarity matrices 

In order to investigate the similarity in the ROI activation pattern across different 

environments and different levels of encoding, representational dissimilarity matrices (RDMs) 

were created using the pyMVPA toolbox (Hanke et al., 2009). After minimal detrending, all 

samples from each condition (see each individual RDM compilation for description of 

conditions used for them) were averaged into a single exemplar. Correlation distances were 

computed using a Pearson correlation measure, and the resulting per-subject matrices were 

color graded by dissimilarity (1 minus Pearson’s r). In specified cases, the span of dissimilarities 

were truncated to show only the negative or positive correlations. 

 

2.11 Classification analyses 

Within-subject classification for levels of granularity (fine- vs. coarse-grained, fine-vs. 

medium-grained and coarse- vs. medium-grained) during the poststimulus encoding period, 

main experimental periods (poststimulus vs. stimulus, poststimulus vs. odd-even task, and 

stimulus vs. odd-even) was carried out for each ROI in the python-based pyMVPA toolbox 

(Hanke et al., 2009), using a linear c-svm classifier (Classification SVM Type 1) with a linear 

kernel, which transformed input data to a feature space, giving the coefficient of a separating 

hyperplane. A sensitivity-based feature selector was used to remove non-informative data and 

reduce noise, using an ANOVA measure to select features with the highest F-scores. Then, the 

dataset was resampled into multiple instances for leave-one-out folding cross-validation, and 

when the classifier had been trained on one run of the data, it was then applied to the remaining 

data. Both single-subject and subject-averaged within-subject classifications were extracted. 

 

2.12 Behavioral-classification analyses 

Behavior-classification correlation analyses were carried out in SPSS 21 (IBM 176 

Corporation, NY, US). Individual scatterplots of behavioral performance measures and relevant 

ROI classification accuracies were produced and used to evaluate linear and monotonic 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases)
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relationships in the data. Since we could not assume nor confirm a linear relationship, but found 

monotonic relationships, Spearman’s rank order correlation coefficient (rho) was used for 

correlation analyses between object positioning performance and classification performance 

from the postsimulus encoding, for all relevant ROIs, and to find correlations between 

granularity trial classification performance (coarse-vs. fine-grained) and positional granularity, 

positions-room granularity, objects-room test performance, objects test performance and 

object-position test performance, individually. 
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3 RESULTS 

3.1 Voxel activity pattern dissimilarities 

The dissimilarity in the stimulus and poststimulus activation pattern for anterior-

posterior and intermediate ROIs in the hippocampus, entorhinal cortex, parahippocampal 

cortex, caudate, putamen and anterior cingulate cortex were investigated across different 

positional granularities, room geometries, and individual rooms. Dissimilarities are illustrated 

as raw 1 minus Pearson’s r representational dissimilarity matrices (RDMs) (figure 3-1.). 

 

3.1.1 Arrangement of ROIs and subjects in representational dissimilarity matrices 

All RDM figures (figures 3-2, 3-3, 3-5, 3-6, 7-1, 7-2, 7-3 and 7-4) are arranged in the 

same general manner: The RDMs for each subject are shown individually along a single row, 

while each column is a region of interest (ROI) in the brain. This arrangement is shown in figure 

3-1, which depicts the first two rows (subjects) from the granularity RDMs in figure 3-3. 

Everything in figure 3-1 is applicable to all instances of figures showing RDMs for all 

subjects across all ROIs, except for the specific RDM used as an example on the bottom. This 

is only applicable to the granularity RDMs in figure 3-2 and 3-3 and appendix figures 7-1 and 

7-2. 
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Figure 3-1 Presentation of RMDs for all participants The representational dissimilarity matrices are arranged 

according to subjects (one subject per row) and ROIs (one ROI per column). The ROIs are indicated in the figure and 

follow the same order across all RDM presentations. The RDM on the bottom is the granularity RDM. Importantly, 

any RDM is symmetrical across the diagonal (blue color, indicating perfect correlation). A dissimilarity color bar is 

shown next to the illustration RDM: the dissimilarity measure here is 1 minus Peason’s r, with blue being perfect 

correlation (1-1 =0) and red perfect anticorrelation [1-(-1) =2]. 

 

3.1.2 Granularity-dependent voxel activity pattern dissimilarities 

Dissimilarities in voxel activity patterns from the stimulus presentation period for fine-

, medium-,coarse-grained, and failed positional encoding in each subject individually across all 

ROIs in the brain were computed (figure 3-2). The RDMs are arranged as shown in figure 3-1, 

including the RDM categories on the bottom. 

Visual inspection indicates a striking trend, where the lingual ROI and posterior 

parahippocampal cortex (two leftmost columns) trend clearly toward a lower (bluer) 

dissimilarity. In other words, the underlying voxel activity pattern in these brain regions is more 

similar across the three different granularities and the failed trials (figure 3-2). This indicates a 

general response pattern in these areas that is highly similar across all trials in all or most 

subjects. 
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Figure 3-3 shows the dissimilarity in activity patterns in the subsequent poststimulus 

encoding period for fine-, medium-,coarse-grained, and failed positional encoding. Visually 

comparing the RDMs in figure 3-2 and 3-3 shows that the most obvious difference from the 

stimulus presentation period to the poststimulus encoding period is a trend in the two leftmost 

ROIs (lingual and posterior parahippocampal cortices) towards more dissimilarity in the 

encoding period. This suggests that the underlying voxel patterns in these brain areas during 

trials defined as fine-, medium-, course-grained, and failed, are more similar during the stimulus 

presentation period than during the poststimulus encoding period. Both for the stimulus 

presentation and poststimulus encoding period, there is very little apparent anticorrelation. This 

is verified by figures 6-1 and 6-2 in the appendix, which only shows the range between 1 (no 

correlation) and 2 (perfect anticorrelation). 

 



28 

 

 

Figure 3-2 Activation pattern dissimilarity for positonal granularities in the stimulus presentation period The 

granularities in each matrix involved fine-grained. medium-grained, coarse-grained and failed (see also figure 3-1). The 

figure includes the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 

0 (perfect correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent 

regions of interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 
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Caud=caudate, ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex

 

Figure 3-3 Activation pattern dissimilarity for positonal granularities in the poststimulus encoding period The 

granularities in each matrix involved fine-grained. medium-grained, coarse-grained and failed (see also figure 3-1 The 

figure includes the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 

0 (perfect correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent 

regions of interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 
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Caud=caudate, ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortexVoxel activity 

pattern dissimilarities associated with room geometry 

Figure 3-4 shows the RDM category setup for the room geometries. This arrangement 

is kept across all subjects, in all ROIs. 

 

 Figure 3-4 Single-RDM arrangement, objects-room geometry binding Importantly, all RDMs are symmetric 

across the diagonal (dark blue = perfect correlation). Each category/stimulus is a different outer border geometrical 

shape of the environment the subjects navigated through. The dissimilarity measure is 1-Pearson’s r and indicates the 

dissimilarity between the voxel activity patterns associated with the different room shapes. The full range of 

dissimilarities (0 to 2) is shown and color coded according to the colorbar on the right. 

 

Dissimilarities in voxel activity patterns from the stimulus presentation period for the 

ten different outer wall geometries of environments in each subject individually across all ROIs 

in the brain were computed (figure 3-1). The RDMs are arranged as shown in figure 3-4. 

There seems to be a strong trend where the lingual ROI and posterior parahippocampal 

cortex also here have a lower dissimilarity, meaning that the underlying voxel activity pattern 

in these brain regions are more similar across the different outer geometries in all or most 

subjects (figure 3-5). Figure 3-6 shows the dissimilarity in activity patterns in the poststimulus 
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encoding period for the same outer wall geometries. Comparing the RDMs in figure 3-5 and 3-

6, it seems that there is a trend that underlying voxel pattern activity in the lingual and posterior 

parahippocampal cortices are less similar during the poststimulus encoding period than during 

the stimulus presentation period. There does not seem to be much anticorrelation in any of the 

two periods, and this is shown more clearly by figures 7-3 and 7-4 in the appendix, which only 

shows the range between no correlation and perfect anticorrelation. 
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Figure 3-5 Activation pattern dissimilarity for outer border geometrical shapes in the stimulus presentation 

period The categories in each matrix involved ten different room shapes (see also figure 3-4). The figure includes the 

entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 0 (perfect 

correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of 

interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 

Caud=caudate, ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex 
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Figure 3-6 Activation pattern dissimilarity for outer border geometrical shapes in the poststimulus encoding 

period The categories in each matrix involved ten different room shapes (see also figure 3-4). The figure includes the 

entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 0 (perfect 

correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of 

interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 

Caud=caudate, ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex 
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3.1.4 Voxel activity pattern dissimilarities associated with 35 different environments 

Figure 3-7 shows the RDM category setup for the 35 different environments. This 

arrangement is kept across all subjects, in all ROIs. 

 

Figure 3-7 Single-RDM arrangement, 35 different environments Importantly, all RDMs are symmetric across 

the diagonal (blue = perfect correlation). Each category/stimulus is a different outer border geometrical shape of the 

environment the subjects navigated through. The dissimilarities indicate the 1-Pearson’s r dissimilarity between the 

voxel activity patterns associated with the different room shapes. The full range of dissimilarities (0 to 2) is shown and 

color coded according to the colorbar on the right 

 

This analysis showed that the activation pattern across all 35 individual environments 

seemed somewhat more similar in posterior parahippocampal and lingual ROIs during the 

stimulus presentation period, and that the similarity seemed to drop slightly from the stimulus 

to the poststimulus period (figures 3.8 and 3.9). 
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Figure 3-8 Activation pattern dissimilarity for 35 different environments in the stimulus presentation period 

The categories in each matrix involved 35 different environments (see also figure 3-7). The figure includes the entire 

span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 0 (perfect correlation) to 

2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of interest (ROIs). 

The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI abbreviations: 

pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, Caud=caudate, 

ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex 
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Figure 3-9 Activation pattern dissimilarity for 35 different environments in the poststimulus encoding period 

The categories in each matrix involved 35 different environments (see also figure 3-7). The figure includes the entire 

span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 0 (perfect correlation) to 

2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of interest (ROIs). 

The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI abbreviations: 

pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, Caud=caudate, 

ERC=entorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex 
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3.2 Within-subject classification (linear support vector machine) 

3.2.1 Main experimental periods 

As shown in table 3-1, in all three experimental period comparisons (Stimulus 

presentation vs Poststimulus encoding, Stimulus presentation vs Odd-even and Poststimulus 

encoding vs Odd-even), data from the lingual cortex ROI had the highest average within-subject 

classification performance. For most ROIs, classification accuracy was similar for Poststimulus 

encoding vs. Stimulus presentation periods and Stimulus presentation vs. Odd-even periods, 

but there seemed to be a substantial increase in lingual and parahippocampal cortices and 

posterior hippocampus for Stimulus presentation vs. Odd-even, with classification accuracy 

increasing with .07 to .12. There seemed to be a large decrease in classification accuracy across 

all ROIs from Stimulus presentation vs Odd-even to Poststimulus encoding vs Odd-even.  

For the fusiform ROI, lingual ROI, parahippocampal ROIs and posterior hippocampus, 

classification accuracy also seemed to decrease from Stimulus presentation vs Odd-even to 

Stimulus presentation vs Poststimulus encoding. The ventricular ROI, which would be expected 

to be functionally uncorrelated to any measured brain function, presupposing that it only 

contained only non-neural tissue, shows chance-level classification performance across all 

classification tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

Table 3-1 Within-subject classification results for main experimental periods 

ROI 
Subjects Stimulus 

presentation 

vs. 

poststimulus 

encoding 

Poststimulus 

encoding 

vs. 

odd-even 

Stimulus 

presentation 

vs. 

odd-even 

Lingual cortex 31 .76 +/- .01 .65 +/- .01 .88 +/- .01 

Posterior parahippocampal cortex 31 .71 +/- .01 .60 +/- .01 .77 +/- .01 

Intermed. parahippocampal cortex 31 .70 +/- .01 .63 +/- .01 .79 +/- .02 

Anterior parahippocampal cortex 31 .67 +/- .01 .61 +/- .02 .74 +/- .01 

Peri/ento/parahippocampal cortex 31 .64 +/- .01 .53 +/- .01 .66 +/- .01 

Posterior hippocampus 31 .60 +/- .01 .57 +/- .01 .70 +/- .01 

Intermediate hippocampus 31 .69 +/- .01 .59 +/- .02 .71 +/- .02 

Anterior hippocampus 31 .67 +/- .01 .56 +/- .02 .68 +/- .01 

Posterior entorhinal cortex 31 .65 +/- .01 .55 +/- .01 .65 +/- .01 

Intermediate entorhinal cortex 31 .64 +/- .01 .54 +/- .01 .65 +/- .01 

Anterior entorhinal cortex 31 .64 +/- .01 .56 +/- .02 .67 +/- .02 

Posterior caudate 31 .65 +/- .01 .59 +/- .01 .63 +/- .01 

Intermediate caudate 31 .65 +/- .01 .59 +/- .01 .66 +/- .01 

Anterior caudate 31 .64 +/- .01 .57 +/- .01 .65 +/- .01 

Posterior putamen 31 .64 +/- .01 .56 +/- .01 .62 +/- .01 

Intermediate putamen 31 .63 +/- .01 .56 +/- .02 .64 +/- .01 

Anterior putamen 31 .65 +/- .01 .56 +/- .01 .65 +/- .01 

Posterior anterior cingulate cortex 31 .65 +/- .01 .55 +/- .01 .63 +/- .02 

Intermediate ant. cingulate cortex 31 .63 +/- .01 .53 +/- .01 .68 +/- .01 

Anterior anterior cingulate cortex 31 .64 +/- .01 .56 +/- .02 .66 +/- .01 

Fusiform area 31 .76 +/- .01 .67 +/- .01 .84 +/- .01 

Anterior horn of lateral ventricle 31 .58 +/- .02 .51 +/- .02 .54 +/- .02 

The table shows average within-subjects classification performance by a linear support vector machine (SVM) on 

voxel pattern activation data in different regions of interest (ROIs) during the main experimental periods (Stimulus presentation, 

potstimulus encoding, and odd-even task period) for 31 subjects. 

 

3.2.2 Positional granularity scores 

The high classification performance in lingual and parahippocampal cortices for 

experimental periods continued with a relatively high classification performance for Coarse- 

versus Fine-grained positional representations of the environments, seemingly marginally 

better than other ROIs (Table 3-2). The fusiform ROI seems to show a large decrease in 

classification performance from experimental periods to Coarse-grained vs- Fine-grained 
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granularity representations, diverging from the other ROIs. The classification for all ROIs 

seemed to drop when the encoded positional granularity to separate between became more 

similar, i.e. from Coarse- versus Fine-grained classification to Coarse- versus Medium-grained 

or Medium- vs Fine-grained classification. . 

 

  

Table 3-2 Within-subject classification results for degrees of granularity 

ROI  
Subjects Coarse-grained 

vs. 

fine-grained 

Coarse-grained 

vs. 

medium-grained 

Medium-grained 

vs. 

fine-grained 

Lingual cortex 31 .70 +/- .06 .61 +/- .04 .55 +/- .04 

Posterior parahippocampal cortex 31 .70 +/- .06 .57+/- .04 .56 +/- .04 

Intermed. parahippocampal cortex 31 .67 +/- .06 .55 +/- .03 .56 +/- .04 

Anterior parahippocampal cortex 31 .68 +/- .06 .57 +/- .04 0.56 +/- .04 

Peri/ento/parahippocampal cortex 31 .69 +/- .06 .55 +/- .04 .56 +/- .04 

Posterior hippocampus 31 .66 +/- .06 .57 +/- .04 .55 +/- .04 

Intermediate hippocampus 31 .68 +/- .05 .56 +/- .03 .54 +/- .03 

Anterior hippocampus 31 .67 +/- .06 .54 +/- .04 .55 +/- .04 

Posterior entorhinal cortex 31 .66 +/- .06 .54 +/- .04 .55 +/- .04 

Intermediate entorhinal cortex 31 .68 +/- .06 .55 +/- .04 .56 +/- .04 

Anterior entorhinal cortex 31 .64 +/- .06 .54 +/- .04 .55 +/- .04 

Posterior caudate 31 .67 +/- .06 .53 +/- .04 .54 +/- .03 

Intermediate caudate 31 .68 +/- .06 .56 +/- .03 .57 +/- .03 

Anterior caudate 31 .65 +/- .06 .57 +/- .04 .56 +/- .04 

Posterior putamen 31 .68 +/- .06 .54 +/- .03 .56 +/- .04 

Intermediate putamen 31 .69 +/- .06 .53 +/- .03 .56 +/- .04 

Anterior putamen 31 .66 +/- .06 .55 +/- .03 .55 +/- .03 

Posterior anterior cingulate cortex 31 .64 +/- .06 .55 +/- .04 .55 +/- .04 

Intermediate ant. cingulate cortex 31 .67 +/- .06 .54 +/- .04 .56 +/- .04 

Anterior anterior cingulate cortex 31 .63 +/- .06 .56 +/- .04 .54 +/- .03 

Fusiform area 31 .58 +/- .06 .56 +/- .03 .55 +/- .06 

Anterior horn of lateral ventricle 31 .57 +/- .05 .54 +/- .05 .55 +/- .04 

The table shows average within-subjects classification performance by a linear support vector machine (SVM) on 

voxel pattern activation data in different regions of interest (ROIs) from the poststimulus encoding period for coarse-grained, 

medium-grained and fine grained positional representations, for 31 subjects. 
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3.3 Correlations between performance and classification accuracies 

3.3.1 Objects-room binding 

Table 3-3 shows that object positioning performance was significantly correlated with 

lingual ROI classification performance only for both Stimulus presentation vs. Odd-even 

periods (rho = .515, p = .004) and Stimulus presentation vs. Poststimulus encoding periods (rho 

= .367, p = .046).  

 

Table 3-3 Correlations between positional granularity and experimental period classification accuracy 

ROI  
Poststimulus 

encoding 

vs. 

odd-even 

Stimulus 

presentation 

vs. 

odd-even 

Stimulus 

presentation 

vs. 

poststimulus 

encoding 

Lingual cortex .075, p = .694 .515, p = .004 ** .367, p = .046* 

Posterior parahippocampal cortex -.032, p = .867 .195, p = .301 .198, p = .294 

Intermed. parahippocampal cortex .071, p = .707 .294, p = .114 .004, p = .981 

Anterior parahippocampal cortex -.216, p = .251 .031, p = .873 .049, p = .795 

Peri-/ento-/parahippocampal cortex -.107, p = .575 .334, p = .071 -.074, p = .698 

Posterior hippocampus .117, p = .538 .175, p = .352 .052, p = .787 

Intermediate hippocampus -.041, p = .828 -.039, p = .838 -.062, p = .746 

Anterior hippocampus -.181, p = .338 .113, p = .551 -.043, p = .822 

Posterior entorhinal cortex .034, p = .859 .103, p = .587 .006, p = .975 

Intermediate entorhinal cortex -.281, p = .133 .089, p = .860 .073, p = .702 

Anterior entorhinal cortex -.077, p = .685 .077, p = .786 -.046, p = .808 

Anterior horn of lateral ventricle -.055, p = .798 .054. p = .721 -.015, p = .854 

The table shows the correlation between average within-subject classification performance by a linear support vector 

machine (SVM) for the voxel patterns in different regions of interest (ROIs) during the three experimental periods (stimulus 

presentation, poststimulus encoding, and odd-even task period) and object positioning performance (objects-room binding), for 

31 subjects. The correlation test statistic is Spearman’s rank order coefficient (rho). P-values are 2-sided, unadjusted. * = 

significant at p = .05, ** = significant at p = .01, *** = significant at p = .005 

 

3.3.2 Positional granularity 

Table 3-4 shows that lingual ROI classification performance for voxel activity patterns 

during Coarse- vs. Fine-grained representations was significantly negatively correlated with 

both Positional granularity (-0.359, p = .033) and Objects-room test performance (-.350, p = 

.045). Importantly, a lower positional granularity score indicated better performance. No other 

correlations were significant, but it’s worth noting that Positional granularity, Positions-room 
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granularity, Objects-room test performance and Objects test performance were all negatively 

correlated, and the Object-position test score positively correlated, with granularity 

classification accuracy across all ROIs 

  

Table 3-4 Correlation between performance measures and granularity classification accuracy 

ROIs 
Positional 

granularity 

Postions-

room 

granularity 

Object-

position test 

Objects-room 

test 

Objects test 

Lingual cortex -.359, p = .033* -.321, p = .084 .328, p = .150 -.350, p = .045* -.314, p = .091 

Posterior 

parahippocampal 

cortex 

-.288, p = .123 -.261, p = .164 .268, p = .153 -.333, p = .072 -.336, p = .069 

Intermed. 

parahippocampal 

cortex 

.287, p = .125 -.260, p = .165 .219, p = .246 -.284, p = .128 -.297, p = .135 

Anterior 

parahippocampal 

cortex 

-.293, p = .117 -.267, p = .153 .240, p = .202 -.300, p = .107 -.320, p = .085 

Peri/ento/ 

parahippocampal 

cortex 

-.291, p = .120 -.259, p = .167 .224, p = .234 -.328, p = .083 -.303, p = .104 

Posterior 

hippocampus 

-.323, p = .081 -.305, p = .101 .238, p = .205 -.322, p = .109 -.312, p = .093 

Intermediate 

hippocampus 

-.289, p = .122 -.253, p = .177 .230, p = .221 -.317, p = .135 -.288, p = .123 

Anterior 

hippocampus 

-.263, p = .161 -.200, p = .265 .246, p = .189 -.298, p = .210 -.281, p = .132 

Posterior entorhinal 

cortex 

-.276, p = .141 -.258, p = .187 .272, p = .146 -.235, p = .088 -.254, p = .176 

Intermediate 

entorhinal cortex 

-.282, p = .131 -.265, p = .223 .254, p = .148 -.317, p = .073 -.297, p = .111 

Anterior entorhinal 

cortex 

-.308, p = .098 -.200, p = .147 .232, p = .212 -.326, p = .125 -.316, p = .088 

Ventricle -.211, p = .135 -.155, p = .198 .155, p = .305 -.122, p = .197 -.210, p = .155 

The table shows the correlation between average within-subject classification performance by a linear support vector 

machine (SVM) for the voxel patterns in different regions of interest (ROIs) for coarse-grained vs. fine-grained representations 

and different performance measures, for 31 subjects. Performance measures are: Positional granularity, positions-room 

granularity, object-position test, objects-room test, and objects test. The correlation test statistic is Spearman’s rank order 

coefficient (rho). P-values are 2-sided, unadjusted. * = significant at p = .05 
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4 DISCUSSION 

We found that voxel activation patterns only in the posterior parahippocampal cortex 

and lingual ROI, both being within the borders of the parahippocampal place area, were similar 

across all virtual environments and levels of granularity encoded, especially during the stimulus 

presentation period. Further, the lingual ROI was the only region where activation pattern 

classification correlated significantly with performance measures (i.e. better object positioning, 

more accurate positional granularity and worse objects-room performance). Classifications 

based on voxel activation patterns were similar along all ROIs in the anterior-posterior axis, 

although they often tended to be higher in posterior parahippocampal and lingual ROIs.  

 

4.1 Multivariate encoding along the anterior-posterior axis of the 

parahippocampal cortex and hippocampus 

No functional segregation for activation patterns was observed along the anterior-

posterior axis of the hippocampus. All ROIs along the anterior-posterior axis of the 

hippocampus showed similar within-subject classification accuracy for all three granularity 

contrasts. Further, the same dissimilarity in activation pattern was observed along the anterior-

posterior hippocampal axis using the correlation-dissimilarity measure. This indicates that no 

functional segregation exists along the anterior-posterior axis of the hippocampus. Previous 

studies have found that voxel activation patterns contained different information along this axis 

for sense of self-location and later positional recall (Guterstam et al., 2015), object and scene 

similarity and object-location encoding (Libby et al., 2014), and episodic memory (Collin et 

al., 2015). However, the dataset our results are based on is the first, to our knowledge, which 

looks specifically at encoding of positional representation while controlling for related aspects 

of environmental processing, and it simply may not be the case that this function specifically is 

represented in the neural patterns along the hippocampal anterior-posterior axis. 

This result also contradicts the univariate analyses of the data, where a granularity 

gradient was found along the hippocampal anterior-posterior axis, with fine-, medium-, and 

coarse-grained representations associated with the posterior, intermediate and posterior 

hippocampus, respectively (Evensmoen et al., 2015). Paradigms that work well for studying 

and comparing (massively) univariate activation magnitudes do not necessarily transfer as well 

to studies of the differences between across-voxel patterns, like representational similarity 

analysis (Mumford, 2013) and linear classification (Etzel et al., 2013). The literature also 
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contains examples where univariate and multivariate results came to different conclusions 

regarding representational gradients in this area (Copara et al., 2014). It is, however, not certain 

how these analyses can be best combined to form a more complete picture of the underlying 

brain functions, or how and when univariate and multivariate results would be expected to give 

the same results for positional granularity. Even though a multivoxel study indicated that a 

gradient within our memories exists, from the association between a limited number of events 

posteriorly to more complete associational representations in the anterior hippocampus (Collin 

et al., 2015), same functional region might not represent eg. granularities of episodic memories 

in the same way it represents positional granularity. Additionally, differences in the multiple 

choices made for distance measures between studies can influence the results (Walther et al., 

2015). Since knowledge about what exactly drives the gradient response in any brain area is not 

fully understood, it is uncertain what the difference between multivariate and univariate results 

along these axes means, although the current results support the notion that the hippocampus is 

primarily driven by the total response amplitude found by the univariate analysis (Evensmoen 

et al., 2015) and not the pattern of activity investigated here.  

 The posterior parahippocampal cortex and lingual ROI, the parahippocampal place area, 

had a unique and stimulus driven activation pattern that was similar throughout and especially 

important for encoding of local environmental details. The correlation-dissimilarity measure 

showed a high similarity in the voxel activation pattern in the parahippocampal place area 

across all conditions and memory categories investigated, i.e. granularity encoded, individual 

environments, different room geometry, and experimental conditions. Another study found that 

the parahippocampal cortex showed increased activational pattern similarity across four virtual 

environments (Kyle et al., 2015). The more similar patterns of activity observed in the 

parahippocampal place area compared to those seen in other ROIs could reflect a difference in 

visual involvement, since these areas are functionally involved in visual processing and in 

humans contain retinotopically mapped information (Orban et al., 2014). Functional 

connectivity analyses also show that the parahippocampal place area has increased connectivity 

to visual cortices (Baldassano et al., 2013). Similarity analyses have previously shown that 

other visual stream areas store category and exemplar information through more similar voxel 

patterns (Mur et al., 2013). Taken together, this could indicate that in our study the 

parahippocampal place area processes all exemplars within our environmental geometries, our 

35 environments, and the different positional granularities, as exemplars within the same 



45 

 

overarching visuospatial categories. However, this hypothesis will have to be tested for 

specifically and cannot be answered by our results. 

The classification accuracy seemed to be higher for the activation patterns in the posterior 

parahippocampal cortex and lingual ROI for the separation of the Stimulus presentation periods 

from both Poststimulus encoding and Odd-even. Increased activation in this part of the brain 

can be obseserved for spatial scenes (Epstein et al., 1999). In a previous study it was observed 

increased activation in the posterior parahippocampal cortex throughout the navigation period, 

argued to be related to more local processing of the environment (Xu et al., 2010). Similar to 

this, others have argued that the parahippocampal area has a more fundamental representation 

of local space (Mullally and Maguire, 2011).  

Supporting this, increased classification accuracy only for the Stimulus presentation 

period, vs Odd-even and Poststimulus encoding periods, and not Poststimulus encoding period 

vs Odd-even, led to less overall binding between the objects and the room and more accurate 

encoding of the objects positional pattern in the lingual ROI, between subjects. This further 

indicates that more posterior parts of the extended parahippocampal cortex is especially 

important for accurate positional encoding. Supporting this, the classification accuracy seemed 

to be higher for the posterior parahippocampal cortex and lingual ROI than the anterior 

parahippocampal cortex for Coarse- vs Fine-grained positional encoding. Further, increased 

classification accuracy for Coarse- vs Fine-grained positional encoding led to more accurate 

encoding of the objects’ positional pattern only in the lingual ROI, across subjects. For an 

object-grid task, the posterior and not anterior parahippocampal cortex was found to be 

correlated with recall of exact object binding (Sommer et al., 2005). In a recent review, the 

posterior part of the parahippocampal cortex was suggested to be more important for spatial 

associations and the anterior part for non-spatial associations (Aminoff et al., 2013). Taken 

together, the posterior parahippocampal cortex and lingual ROI, also defined as the 

parahippocampal place area, seems to be especially important for more fine-grained spatial 

representations more closely linked to the stimuli.  

 

4.2 Statistical and design considerations regarding the observed results and 

future directions 

The Pearson correlation used as a measure of activation pattern similarity in this study 

is problematic, especially for the parahippocampal place area, or the posterior parahippocampal 
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cortex and lingual ROI. The pearson correlation will be influenced by baseline shift and the 

normalization conducted in this study (Walther et al., 2015). This could explain why we see 

increased pattern similarity in this regions, especially for the stimulus period, for which we 

know from a pilot study that the univariate activation in the parahippocampal place area is high 

even across memory categories. Still, for the parahippocampal place area, increased activation 

pattern similarity was also seen for the poststimulus period for which no such increase in 

univariate activation is present. In future analyses, we will implement Euclidean distance as a 

measure of activation pattern similarity as well, which is not dependent on a reliable baseline 

and not influenced by mean-pattern substraction (Walther et al., 2015).  

Dissimilarity measures that can handle non-linearities are needed. Comparing the raw 

dissimilarity values between brains and models comes with an assumption that the model can 

linearly predict these dissimilarities, but we know that nonlinearities in the measurement can 

render this assumption void (Kriegeskorte et al., 2008; Nili et al., 2014). For this reason, we 

will use rank-correlations, which can handle these non-linearities, when comparing activation 

pattern similarities in future analyses(Kriegeskorte et al., 2008). Still, with rank-correlation, 

important activation similarity information might be lost (Kriegeskorte and Kievit, 2013). 

Noise influenced the representational similarity activation pattern results in this thesis, 

as we did only a limited amount of noise correction. The only noise correction that was done 

was detrending, removing temporal drifts. Additionally, the data were motion corrected. In our 

data we know that for example the anterior parts of the medial temporal lobe, in close proximity 

to the ventricles, will have a noisier BOLD signal due to physiological susceptibility artifacts 

(Olman et al., 2009). Distance estimates without a proper noise-correction tend to be positively 

biased (Diedrichsen et al., 2011; Nili et al., 2014). This means that the activation patterns from 

especially the anterior medial temporal lobe in this study most likely is less dissimilar than they 

appeared from our results. In fact, this could explain the dissimilarity observed for most of the 

ROIs investigated. Still, for the parahippocampal place area, removing noise from our data 

would most likely make the observed activation pattern similarities even larger. For future 

analyses, we will use a crossvalidated estimate of the multivariately noise-normalized 

Mahalanobis distance (Nili et al., 2014; Walther et al., 2015). This unbiased and more reliable 

estimate will not only reduce the increased dissimiliarty due to noise, but also give a meaningful 

zero point through crossvalidation, which will allow us to compare two activation patterns for 

significant differences. 
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The multivariate pattern analysis will also be performed independent of the predefined 

anatomical ROIs used here, through searchlight analysis. Searchlight analysis measures the 

informational content (distributed voxel activation patterns) in a sphere of voxels surrounding 

a center voxel. As the sphere moves around the brain, using each passing voxel as its center 

(like a searchlight; thereby the name), it gives each voxel a value corresponding to the voxel 

activity pattern in the searchlight sphere surrounding it (Kriegeskorte et al. 2006). Scripts for a 

multivariate searchlight analysis  were constructed using a modified version of the one provided 

in the pyMVPA toolbox framework (Hanke et al., 2009). However, we decided to postpone this 

effort and undertake future searchlight efforts within the RSA toolbox (Nili et al., 2014). In 

order to increase our understanding of how the environments we exist in are represented in our 

patterns of brain activation it is important to look at the brain more as a whole, through 

searchlight analysis, and not be limited to a few predefined anatomical ROIs. 

Since every dataset comes with its own idiosyncracies, we will test future intended 

analyses on one or more simulated data sets with known ground truths (Nili et al., 2014; Walther 

et al., 2015). The simulated data could include the challenges that have been outlined here 

(regional noise variation, between-subject variations, etc.) and an underlying pattern 

information, and perhaps a set with a null ground truth to look for remaining biases. This could 

provide vital information about the intended analysis’ ability to accurately detect the real 

patterns of interest in the data. 

There are some design issues to consider in the context of the similarity analyses of the 

different environments, most importantly with the environments not being distributed across 

multiple runs (each environment was used once per subject). Similarly, it should also be noted 

that this could also be a problem for granularity dissimilarities: The conditions were defined by 

subject performance, and there is no control for across-run distribution, and with few failed 

trials it is probable that these were not distributed across runs. 
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5 Conclusions 

Our study yielded results that differed from those found in the univariate analyses of the 

same dataset, but we have raised important methodological and statistical challenges that need 

to be addressed going forward. We found seemingly more similar patterns of voxel activation 

within posterior regions of the medial temporal lobe, specifically posterior parahippocampal 

cortex and lingual ROI, both part of the parahippocampal place area. However, it is unknown 

how this may relate to differences in noise effects due to different noise profiles between the 

anterior and posterior region of the medial temporal lobe and limitations in current methods. 

Future studies and analyses are needed. 
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Figure 7-1 Activation pattern dissimilarity for positonal granularities in the stimulus presentation period The 

granularities in each matrix involved fine-grained. medium-grained, coarse-grained and failed (see also figure 3-1). The 

figure includes only part of the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values 

goes from 1 (zero correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns 

represent regions of interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity 

spectrum. ROI abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, 

Put=putamen, Caud=caudate, ERC=enorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex. 
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Figure 7-2 Activation pattern dissimilarity for positonal granularities in the poststimulus encoding period The 

granularities in each matrix involved fine-grained. medium-grained, coarse-grained and failed (see also figure 3-1). The 

figure includes only part of the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values 

goes from 1 (zero correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns 

represent regions of interest (ROIs).The color bar on the top right shows the color coding along the dissimilarity 

spectrum. ROI abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, 

Put=putamen, Caud=caudate, ERC=enorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex. 



60 

 

 

 

Figure 7-3 Activation pattern dissimilarity for outer border geometrical shapes in the stimulus presentation 

period The categories in each matrix involved ten different room shapes (see also figure 3-4). The figure includes only 

part of the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 1 (zero 

correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of 

interest (ROIs).The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 

Caud=caudate, ERC=enorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex. 
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Figure 7-4 Activation pattern dissimilarity for outer border geometrical shapes in the poststimulus encoding 

period The categories in each matrix involved ten different room shapes (see also figure 3-4). The figure includes only 

part of the entire span of dissimilarities, calculated as 1 – Pearson’s r, so the range of possible values goes from 1 (zero 

correlation) to 2 (perfect anticorrelation). Each row represents a single subject, while the columns represent regions of 

interest (ROIs). The color bar on the top right shows the color coding along the dissimilarity spectrum. ROI 

abbreviations: pos=posterior, int=intermediate, ant=anterior; ACC=anterior cingulate cortex, Put=putamen, 

Caud=caudate, ERC=enorhinal cortex, HPC=hippocampus, PHC=parahippocampal cortex. 


