
Interneurons in
A Two Population Grid Cell Network

AUTHOR

Ziwei Huang

SUPERVISORS

Benjamin Dunn

Trygve Solstad

NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET(NTNU)

KAVLI INSTITUTE FOR SYSTEMS NEUROSCIENCE

AND CENTRE FOR NEURAL COMPUTATION



2



i

Abstract

The hexagonal firing pattern of entorhinal grid cells could arise from a competitive mechanism

mediated by interneurons. In this thesis, we asked if a two-population continuous attractor

model, consistent with the proposed inhibitory connectivity pattern, could maintain grid cell

firing even if interneurons lack spatial periodicity, as was recently observed in a sub-population

of entorhinal interneurons.

First, using non-negative matrix factorization, we constructed two-population models with vary-

ing numbers of interneurons while maintaining the same effective connectivity between grid

cells. Surprisingly, network drift decreased exponentially with the number of assumed interneu-

rons. Networks having less than 5% interneurons were able to accurately path integrate. The

resulting connectivity was patterned with each interneuron receiving projections from either

many grid cells with similar spatial selectivity or cells that together formed an inverted grid pat-

tern. In both cases, grid cells with inhomogeneous peak firing rates had lower grid scores than

the corresponding interneurons.

Second, we considered a network where the connections from grid cells to interneurons were

fixed to sparse random values, while back projections were found using NMF. We found that

including variation in the fields of the grid cells resulted in aperiodic neurons in this randomly

connected model and the spatial selectivity of interneurons decreased dramatically as the vari-

ance in grid field firing rates was increased. Although this network produced aperiodic interneu-

rons similar to recordings, a considerably larger proportion of interneurons was required to

reach the same level of stability which did not decrease exponentially as in the fully factorized

case.

Furthermore, we analyzed 75 grid cells from a single freely behaving animal and found that the

degree to which the firing fields vary was possibly consistent with the models in which grid-

ness score decreased as the grid field variation increased. Take together, our result suggested

that the firing patterns of interneurons were not limited to the grid or anti-grid pattern but fell

somewhere on the spectrum between highly periodic to aperiodic.
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1 | Introduction

It had long been speculated that the mammal navigation was guided by a “cognitive map” [1].

O’Keefe and Dostrovsky discovered the first neural evidence of this map in 1970s: hippocampal

place cells [2]. The most distinctive feature of place cells was that each cell fired in one unique

location of the environment, and the same cell participated in encoding many different environ-

ments. How did place cells emerge? Were place cells responsible for all the spatial computation?

These questions motivated neuroscientists to explore the mystery of how space was represented

in the brain. O’Keefe speculated that, in order to form a complete cognitive map, each place cell

needed to receive at least two different types of spatial input: first, external cues of the envi-

ronment, and second, a metric system which integrated the animal’s self-motion information

[3]. In behavioral level, this metric system was manifested as path integration[4], which was a

intrinsic capacity of animals to keep track of their moving distance and angular motion, even in

the situation without visual or other sensory inputs.

Thirty years later, Edvard Moser and May-Britt Moser discovered grid cells in the dorsal medial

part of entorhinal cortex (dMEC) [5], which is the anatomical upstream of the hippocampus and

project directly to CA3 (Figure 1.1). Each grid cell had multiple firing fields, forming a hexagonal

pattern covering the whole arena the animal explored. The multiple firing locations for each

grid cell were independent of both the velocity of the animal and the external/environmental

cues, e.g. when the animal explored in the dark, suggesting that the generation of these cells ac-

tivity is an intrinsic network phenomenon and could be maintained by self-motion information

alone [5]. Subsequent research revealed that grid cells in the layer II of MEC processed direc-

tional signal from grid × head direction conjunctive cells in deeper layers of MEC [6], boundary

1



2 CHAPTER 1. INTRODUCTION

HIPPOCAMPAL MAPS 43

We present here a simplified sketch of 
the connections between the neocortex, the 
parahippocampal regions (PHR) and the 
hippocampal formation (HF) (Box 4.1 Fig. 
1). For a more comprehensive and detailed 
description see Witter and Amaral [88]. The 
neocortex is connected to the hippocampus 
mainly via two pathways through the para-
hippocampal cortex. One projects through 
the perirhinal cortex (PER) and the lateral 
entorhinal cortex (LEC); the other projects 
through the postrhinal cortex (POR) and 
the MEC. Cells that carry information about 
the position of the animal, such as grid cells, 
head-direction cells, and border cells, are 
found in MEC but not in LEC [30]. MEC 
and LEC project to the same regions in the 
hippocampus, both via direct projections 

to each hippocampal subfield and via the 
indirect trisynaptic circuit through dentate 
gyrus and CA3. While axons from MEC and 
LEC to dentate gyrus and CA3 tend to tar-
get the same cells, connections to CA1 are 
split, such that MEC is linked preferentially 
to the proximal part of CA1, and LEC pref-
erentially to the distal part. This differential 
connectivity leads to stronger spatial modu-
lation in proximal than distal CA1 [89]. The 
arrow from CA3 to itself stresses the abun-
dance of recurrent connections within area 
CA3. Signals are routed back from CA1 to 
the entorhinal cortex either via direct projec-
tions, or via the subiculum (Sub), the pre-
subiculum or the parasubiculum (not shown 
in Box 4.1 Fig. 1).

BOX 4.1 

A N AT O M Y  O F  T H E  H I P P O C A M PA L  F O R M AT I O N
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BOX 4.1 FIGURE 1 Major anatomical connections in the HF and PHR.
Reproduced with permission from [90].

Figure 1.1: Anatomical connections between hippocampus and entorhinal cortex. PER:
perirhinal cortex, POR: postrhinal cortex, LEC: lateral entorhinal cortex, MEC, entorhinal cor-
tex, DG: dentate gyrus, Sub: subiculum. Adapted from [9].

information from border cells [7] as well as velocity input from speed cells [8], suggesting that

grid cells were probably play an important role in path integration.

1.1 Grid cells in entorhinal cortex

There were three basic properties of grid cells (Figure 1.2): grid spacing (the shortest distance

between two grid fields), grid orientation (the smallest angel of grid axes compared to an refer-

ence axis of the environment), and grid phase (the Cartesian locations of firing vertices relative

to the reference location of the environment).

Grid cells recorded from the same tetrode tended to share the same spacing and orientation,

and the spacing increased along the dorso-ventral axis of MEC [5]. Experimental data showed

that this increase was stepwise instead of continuous [10], and could be clustered into 4 or

5 modules. Moreover, cells recorded from the same tetrode tended to have different phases,

i.e. shifted away from the x-y reference coordinate independently, and without any topological

properties.
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b Grid scale Grid orientation Grid phase

Figure 1.2: Basic properties of grid cells. Firing patterns of a pair of grid cells, indicating the
difference between grid spacing, grid orientation and grid phase. Adapted from [11].
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Figure 1.3: Attractor models of grid cells with different connectivity patterns. Left: Mexican-
hat connectivity; Center: Mexican-hat like inhibitory connectivity; Right: Lincoln-hat inhibitory
connectivity. Adapted from [11].

Figure 1.4: Toroidal synaptic matrix of grid cells. Left: The periodic tutor network trained a
MEC network without topological arrangement. Center and right: a synaptic matrix with edges
wrapped around to the opposite sides and formed as a torus. Adapted from [12].
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1.2 Attractor network models

Since the discovery of grid cells, different theoretical models have been proposed to explain

the generation of this phenomenon [13, 14, 15]. One major class of models called “continu-

ous attractor network (CAN) models” emphasized that the hexagonal pattern of grid cells was a

network phenomenon generated within the entorhinal cortex through local interaction.

One of the earliest model proposed by Fuhs and Touresky [16] suggested a topologically orga-

nized network where cells were arranged according to their phases similarity, that is, they as-

sumed nearby grid cells in the brain shared similar or slightly shifted grid phases. Each cell

received excitatory input from those nearby cells with similar phases, while the connection

weights decayed progressively as the phases difference increased. A global inhibition applied

to all cells in the network prevented the excitation from spreading, resulting in the formation of

multiple “bumps” of activity arranged hexagonally on the neural sheet, so it was called “Mexican-

hat connectivity” (See Figure 1.3a). These bumps were then moved by integrating head-directional

and speed-dependent input from a “hidden layers” as the animal navigated through the envi-

ronment, and this network activity would be reflected in each grid cell as the hexagonal pattern

in the firing rate map. This model had two problems: first, the topologically organization of

cells was at odds with the experimental observation that nearby grid cells rarely shared similar

phases [5], and the second ones was known as the boundary problem, that is, the planar repre-

sentation of space was limited by the number of neurons on the neural sheet, in other words, the

finite number of cells in the network was far from enough to encode the almost infinite amount

of locations in a real life situation.

To address these problems, a revised model was proposed by McNaughton et al. [12]. In this

model, nearby grid cells in MEC did not necessarily share similar grid phases but those did with

similar phases learned to connected to each other through the training of the assumed topo-

graphical arranged tutor network during early development. Due to the periodicity of this tutor

network, the edges of the synaptic matrix would wrap around to the opposite side, forming

a torus and ensuring that the activity of bumps would be periodic (see Figure 1.4). Whether
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such a toroidal synaptic matrix or the topographical arranged tutor network exist is, of course,

still a matter of debate given the lack of experimental support. A single bump network with

such a configuration could produce a hexagonal grid on a twisted torus [17], whereas a multiple

bumps network can also work in an untwisted torus. It should also be noted that a network with

multiple bumps with aperiodic boundary conditions could perform precise path integration if

carefully structured [18].

These Mexican-hat models were in agreement with experimental observations that conjunctive

cells with both grid cell and head-direction cell responses [6] were found in the deeper layers

of MEC, as were cells with speed modulation [8]. However, the main challenge of these models

was the fact that stellate cells in layer II of MEC, where we could find the most confined and

largest amount of grid cells [6, 19], lacked excitatory connections between each other almost

completely [19, 20].

A pure inhibitory attractor network had been proposed earlier by Burak and Fiete [18], in which

cells in the network formed a Mexican-hat like inhibitory connectivity, i.e. cells with similar

phases inhibited each other less than those with larger phase difference, whereas inhibition

from those far away would progressively go back to zero (See Figure 1.3b). Using pair-recording

and optogenetics, Couey et al. [20] demonstrated that almost all functional connections in MEC

layer II were inhibitory and the magnitude of inhibition exerted on two simultaneous recording

stellate cells seemed to be constant. This finding lead to the inverted Lincoln-hat or all-or-none

connectivity model (Figure 1.3c), in which cells exerted the same amount of inhibition to others

within the fix radius but not to the cells beyond that.

The benefit of switching to pure inhibitory models, besides from being more biologically com-

patible, was that they are more computationally stable in perspective of excitatory-inhibition

balance [21]. Since the inhibitory feedback was provided by the GABAergic interneurons within

the network, there was no need to include a global inhibition, as the one applied in Mexican-

hat model, to prevent runaway excitation. But this implementation lead to another problem:

pure inhibitory models require external tonic excitation out of entorhinal cortex. Hippocampus

would be one of the possible candidates since there is a hippocampal-entorhinal loop where
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hippocampus could back project to the deeper layers of MEC (Figure 1.1). Bonnevie et al. [22]

supported this assumption by blocking the hippocampal excitation to MEC and observed that

grid cells lose its hexagonal pattern gradually and became dominated by the head-directional

signal. This finding supplemented the speculation that the feedback projections from hip-

pocampus, which probably contained spatial information such as path-integrator coordinates

(mainly from place cells) and specific features of the environment, served as the error-correction

mechanism for grid cells [23, 24]. It was known that recurrent connectivity contained intrinsic

noise which will lead to unwanted drift in the activity of continuous attractor network [25]. This

drift would accumulate over time as the animal explored the environment, resulting in the de-

struction of the grid pattern. By integrating the spatial information from hippocampus, entorhi-

nal grid cells could reduce the accumulation of error and perform path integration over a long

time accurately.

1.3 Interneurons in grid cell network

Previous models [20, 18] were called “effective inhibition models” because interneurons in those

models were not implemented explicitly, even though they conceptualized that grid cells com-

municated with other grid cells indirectly by recruiting interneurons within the same network.

The effective models ignored the specific configuration of how grid cells and interneurons are

wired together, so they lacked the power of predicting what kind of neural activity these in-

terneurons might have.

The physiology of GABAergic interneurons in MEC was not that well studied by far, but there

was a consensus that this population was diverse in terms of morphology, anatomy and function

[26]. The estimated amount of interneurons were around 13% to 16% of total neural population

in layer II of MEC [27], and parvalbumin-expressing GABAergic cells (PV+ neuron) accounted for

half of them [28, 29]. These PV+ neurons formed direct inhibitory synapses onto principal cells

and other interneurons in layer II and III [27, 28, 30], suggesting that they were the one of the

best candidate for supporting the recurrent inhibitory grid cells network. Calretinin immunore-
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active neurons (CR) were another major type of interneurons in MEC, which believed to have no

overlap with the PV+ population [31]. Considerable amount of CR neurons in layer II expressed

GABA, though the exact proportion was still in debate [31]. One interesting observation of CR

neurons was that they rarely made contact with principal neuron, suggesting that their primary

role was to mediate other interneurons [31], as their counterpart in Hippocampus [32]. Layer II

of MEC was also rich in other cell types of interneurons expressed different neuropeptides, such

as somatostatin (SOM), vasoactive intestinal polypeptide (VIP), enkephalin (ENK), Substance-P

and corticotropin releasing factor (CRF), though their functions and physiology were less well

studied.

So far, only one explicit two-population model had been published [33], in which two network

configurations were investigated. In the E-surround configuration, inhibitory signals from in-

terneurons were projected to adjacent excitatory grid cells, while grid cells signal were onto

the surrounding ring of inhibitory neurons (equivalent to the Figure 1.5b). In this scenario, in-

terneurons would have a anti-grid firing pattern (Figure 1.6 left). The second configuration,

which termed I-surround configuration, was the opposite of the first one, that is, each grid cells

made an excitatory connection to one inhibitory neuron, while this interneuron inhibit the sur-

rounding grid cells (Figure 1.5a). In this case, interneurons would inherit the hexagonal pattern

from grid cells (Figure 1.6 right).
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latency in the cross-correlogram to indicate the  
presence of a strong excitatory synapse 
between the two cells. They found that grid 
cells formed the main group of cells with 
short-latency peak correlations with PV+ cells.  
They also found that individual PV+ cells 
cross-correlated with grid cells that varied sub-
stantially in grid phase: that is, the actual firing 
locations of these grid cells covered all possible 
locations. Taken at face value, the heterogene-
ity of grid-cell inputs is in disagreement with 
the preferential coupling of interneurons to 
grid cells with similar grid phases required by 
the inhibitory attractor models.

However, as acknowledged by the authors, 
cross-correlograms cannot be taken as direct 
evidence of synaptic connections. Using the 
presence or absence of a short-latency peak 
in cross-correlograms to infer a connection 
or lack thereof may be a good first-order  
approximation, but it is likely to contain 
an unknown quantity of false positives or  
negatives. For example, short-latency peaks 
would also show up in cross-correlograms if 
cell pairs were activated by a common input 
and one of the cells was activated at slightly 
longer latency than the other because of 
intrinsic synaptic properties or differences in 
local circuit modulation. In simulated high- 
conductance states of cortical networks in which 
the connections are known, the peaks of the 
average cross-correlation between connected 
and unconnected pairs of neurons do differ, 
but the variation in cross-correlation functions 
within each group can be large, making it dif-
ficult to conclusively relate cross-correlograms 
to connectivity13. In the study by Buetfering 
et al.11, only 1–3% of the cell pairs had cross- 
correlograms with short-latency peaks.  
It remains to be determined how many of these 
peaks reflected actual synaptic connections 
and what proportion of those connected cells 
were from grid cells with similar grid phases.

Finally, if we assume for a moment that indi-
vidual PV+ cells do receive inputs from grid 
cells with a broad spectrum of grid phases, the 
cross-correlation findings are still not neces-
sarily incompatible with inhibitory attractor 
network models. Buetfering et al.11 calculated 
the spatial correlation (map similarity) of pairs 
of grid cells whose cross-correlations with a 
given PV+ cell showed a peak at short latencies 
(putatively connected cells) and pairs of cells 
that showed no peak (putatively unconnected 
cells). The distributions of map similarity in 
the two groups of cell pairs were found to be 
statistically indistinguishable, suggesting at 
first glance that grid inputs to PV+ cells are 
not more similar than any combination of grid 
cells in the rest of the population. However, 
this interpretation is only valid if the attractor  

firing rate following inputs from particular 
grid cells. Or the effective inhibition may be a 
consequence of a network-wide processing in 
which inhibitory neurons receive input from 
many grid cells as well as from each other, such 
that, in the end, they inhibit the right cell at  
the right position (Fig. 1c). Given that 
many PV+ cells carry substantial spatial 
information, this is certainly a possibility.  
Finally, a grid cell may modulate the activity 
of two or more inhibitory neurons to make 
them more synchronized. This may affect 
their inhibitory impact on their postsynaptic 
targets, without much influence on the firing  

rates of the interneurons. Most computa-
tional models of grid cells do not explicitly 
model how the inhibition is mediated; they  
focus only on effective inhibition8,9. To 
determine how the inhibition is actually 
implemented in the network requires more 
experimental data.

The second theoretically interesting part of 
the study by Buetfering et al.11 is the evaluation 
of the functional properties of neurons that 
project synaptically to the PV+ neurons. The 
authors cross-correlated spike patterns from 
pairs of simultaneously recorded PV+ cells  
and principal cells, taking a peak at short 

Figure 1  Alternative implementations of inhibitory connectivity in attractor models of grid cells.  
(a) Each grid cell (large blue circle) makes an excitatory connection to an inhibitory neuron (large  
red circle). Recruitment of the interneuron causes inhibition of other grid cells. Axons of grid cells and 
interneurons are shown in blue and red, respectively. Small circles indicate synapses. In this scenario, 
the inhibitory neuron inherits the spatial firing map of the grid cell that projects to it and it should  
show a grid-like firing pattern. This coupling pattern is ruled out by the results of Buetfering et al.11.  
(b) Each grid cell receives inhibitory input from an inhibitory neuron that receives input from a spectrum  
of grid cells. In this case, the inhibitory interneuron will fire out of spatial phase from the grid cell, 
thereby showing an inverted grid firing map. This pattern is also ruled out by the results of Buetfering 
et al.11. (c) The effective inhibition can be a consequence of network level processing by the inhibitory 
circuitry possibly involving lateral connections and time-coordinated spike patterns. The size of small 
circles indicates synaptic strength. (d) Inhibitory attractor network and rate maps for pairs of cells at 
different locations in an inhibitory attractor network. Top and bottom, color-coded firing rate maps 
expected in a square environment for grid cells in two different regions of the attractor network.  
Red indicates a high firing rate, blue a low firing rate. Middle, color-coded activity in the  
inhibitory attractor network, with neurons arranged according to grid phase (that is, location of grid 
nodes). Red and yellow indicate high activity. Each grid cell in the network receives input from 
neighboring cells in the neural lattice. This connectivity, combined with nonspatial external drive, 
generates a stable grid-like activity pattern on the network that, when translated across the network in 
accordance with the animal’s movement in the environment, is reflected in the spatial firing pattern 
of neurons. The blue dot indicates the location of an example cell. Green dots indicate location of four 
other cells, two of which (1 and 2) have inhibitory connections to the blue cell and two of which (3 and 4)  
do not. The white circle indicates the radius of inhibition received by the blue cell. Arrows point to 
expected rate maps for the four example cells. The rate maps can be identical at distant locations of 
the network, so long as the phase of the grid is the same (cells 1 and 3 have a common grid phase; 
cells 2 and 4 also have a common phase, different from that of cells 1 and 3). This makes it difficult or 
impossible to detect statistical differences in the similarity of the rate maps of cells projecting to a  
grid cell (inside the white circle) and cells not projecting to it (outside the circle).

a

b

d

c

1
2

3
4

Figure 1.5: Different connectivity between grid cells (blue) and interneurons (red). Adapted
from [34]

Figure 1.6: Predicted interneuron firing fields for the E-surround and I-surround configura-
tion. Adapted from [33]
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However, these predictions were challenged by a recent experimental observation. In their

study, Buetfering et al. [35] explored the spatial firing properties of PV+ cells in MEC, and found

that their firing patterns were spatially stable and almost always, but not completely, aperiodic,

instead of grid or anti-grid patterns as suggested (Figure 1.7). Using latency peak in cross-

correlation analysis as an indicator of synaptic connection, Buetfering et al. [35] found that

the rate maps of pairs of grid cells that made contacts to the same PV+ interneurons were sub-

stantially different from each other in grid phases. They concluded that the aperiodic firing of

interneurons resulted from integrating diverse inputs from grid cells with various phases. This

observation was at odds with the assumption of the inhibitory attractor network, that is, grid

cells shared similar grid phases coupled with each other via interneurons.

Figure 1.7: Firing patterns of PV+ interneurons in MEC. Most of the PV+ interneurons recorded
were firing aperiodic, however, a small amount of them were showed confined grid patterns as
grid cells. Left: Rate maps of PV+ interneurons; Right: Spatial sparsity and grid score for grid
cells, PV+ interneurons and putative interneurons with a high firing rate Adapted from [35] and
corresponding supplementary material.

As noted by Roudi and Moser [34] in response to this study, the presence of short latency peak in

cross-correlation might not necessarily mean the existence of direct synaptic connections, i.e.
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short-latency peaks might also show up in cross-correlation if pairs of cells shared a common

excitatory input while one of them were activated at later time due to intrinsic properties, etc.

[36].

Furthermore, the aperiodic firing interneurons were not necessarily contradicted with the con-

tinuous attractor network since synaptic configurations in the real biological system were rarely

as ideal as the one wired in simulation of Pastoll et al. [33]. As shown in Figure 1.5c, it was

possible that the effective inhibition was a happy coincidence of a randomly connected net-

work where interneurons connected with multiple grid cells as well as each other, and multiple

grid cells with different firing rates exerted their firing patterns onto multiple interneurons. And

since interneurons inherited firing patterns from grid cells with various grid phases (and possi-

bly with various peak firing rates in each grid field), their firing would become aperiodic.

So that, the main question of this thesis could be formulated like this: Can a two-population

grid cell model, consistent with the effective inhibitory connectivity pattern, maintain grid cell

firing even if interneurons lack spatial periodicity? In other words, what kind of synaptic config-

uration allowed grid cells performed path integration while interneurons fired in an aperiodic

manner?

Starting from this question, we built a two-population continuous attractor model of grid cells

using a technique called nonnegative matrix factorization (see next chapter). We found that,

if grid cells and interneurons were connected in a random manner, including variation in the

firing fields of the grid cells would result in aperiodic firing interneurons. By contrast, if the

connectivity between grid cells and interneurons was well-structured, interneurons would fire

periodically and the amount of interneurons could reduce to a surprisingly small number. Fur-

thermore, we analyzed grid cell data from a single freely behaving animal and found that the

degree to which the firing fields vary was consistent with the models in which gridness score

decreased as the grid field variation increased. Take together, our result suggested that the firing

patterns of interneurons might be not limited to the grid or anti-grid pattern but fell somewhere

on the spectrum between highly periodic to aperiodic.



2 | Two population grid cell model

We derived the two population model from the effective model presented in [20]:

τ
dsi

dt
+ si = g

(∑
j

Ji j u j + It
)
+ (2.1)

τ
dui

dt
+ui = g

(∑
j

Ki j s j
)
+ (2.2)

where (.)+ is the threshold-linear function, g the gain, τ the neuronal time constant, and Ji j

and Ki j the strength of connection from inhibitory interneurons to grid cells and grid cells to

interneurons, respectively. In other words, J is a pure negative matrix because interneurons here

can only inhibit grid cells, while K is a pure positive matrix because grid cells can only excite

interneurons. It represents external input, its content depends on the context. For the drift

calculation in the result section, It is a constant external input, while for the path integration

tasks we include a term that depends on the time-varying speed vt and direction θt ,

It = constant+αvt cos(θt −θi ) (2.3)

where α is the velocity modulation and θi is the preferred direction of cell i . To determine how

spatial periodicity of the interneurons changes with respect to the variance in spatial fields of

the grid cells, we included a population of neurons with place cell-like coding and excitatory

projections to the grid cells,

11
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It = constant+∑
j

Hi j P j (t ) (2.4)

The grid field peak rates are varied by drawing the strengths of the connections, Hi j , from a

distribution with a variance related to the desired variability in peak firing rates.

To determine possible connectivity patterns corresponding to the inhibitory portion of an ef-

fective connectivity, Wi j , between principal cells, we note that, at equilibrium, dui → 0 and we

have

∑
j

Ji j u j ≈ g
∑

j
Ji j

∑
k

K j k sk ≈∑
j

Wi j s j . (2.5)

As in [18, 20, 33], we assumed a purely inhibitory connectivity with

Wi j =W0H(Rmax −di j )H(di j −Rmi n), (2.6)

where H is the Heaviside function, Rmax the outer ring of the radial extent of the connectivity,

Rmi n the inner ring, W0the strength of the inhibitory interactions between connected neurons

and di j the distance between cell i and j, d 2
i j = (xi − x j − l cosθi )2 − (yi − y j − l sinθi )2 with xi =

1. . . Nx and yi = 1. . . Ny representing the position of neuron i in a two dimensional Nx × Ny

neural sheet with periodic boundary conditions and spatial offset l . That is, each grid cell in the

model only connected with cells within the radius between Rmi n and Rmax , whereas those that

are too close or far apart are not coupled, forming a inhibitory ring connectivity.

The main challenge here is to find solutions to the problem Wi j = ∑
k Ji k Kk j . Since our model

required K to be pure positive, J and W to be pure negative, using normal matrix factorization

techniques would result in mixed values in one of the factorized matrix even when we forced

the other one to be pure positive or negative. To solve this problem, we used tricks from non-

negative matrix factorization [37, 38](See next section), which first forced a nonnegative con-

straint on all matrices (assuming all J , K and W are positive), then solve for the equations and



2.1. NONNEGATIVE MATRIX FACTORIZATION 13

turn one of the factorized matrix into negative.

2.1 Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) was first introduced by Finnish mathematicians Paatero

and Tapper [39] as positive matrix factorization, and later developed and popularized by Lee and

Seung in two papers published in 1999 and 2001 [37, 38].

An NMF problem can be defined as following: given a non-negative matrix W , find non-negative

matrix factors J and K such that:

W ≈ JK (2.7)

where J and K can be attained by the multiplicative update rules

Kaµ← Kaµ
(J T W )aµ

(J T JK )aµ
and Ji a ← Ji a

(W K T )i a

(JK K T )i a
(2.8)

Iteration of these update rules converges to the local minima of the cost function

‖J −K ‖2 =∑
i j

(Ji j −Ki j )2 (2.9)

The main difference between NMF and other matrix factorization methods, such as principal

components analysis (PCA) and vector quantization (VQ) is that NMF uses nonnegativity con-

straints and this feature leads to a parts-based representation [37] due to the additive nature of

the algorithm.

Lee and Seung [37] applied the NMF algorithm to an image dataset, which can be viewed as an

n×m matrix W and each column of matrix V is one of m images with n pixels. The factor matrix

J is called basis matrix while K is called encoding matrix or coefficient matrix. The dot product
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

Figure 2.1: NMF learns a parts-based representation of faces. Adapted from [37].

of the basis matrix and a column of the coefficient matrix yields a approximate face image of

the dataset (Figure 2.1). This parts-based representation is thought to be consistent with the

psychological and physiological evidence in the brain [40].

NMF have been widely used in the field of machine learning, data mining, signal processing, to

name a few [41]. Variations of NMF, such as Sparse NMF, Orthogonal NMF, Discriminant NMF

[42], Semi-NMF [43] were also developed for diverse contexts.

2.2 Fully factorized model and randomly connected model

In this thesis, we constructed the two population model of grid cells based on two different uses

of NMF.

First, both synaptic matrices J and K were initialized with random values, then learned the cor-

responding connectivity by applying the NMF algorithm to the effective inhibition matrix W .

The algorithm was run till both J and K converged to the optimal condition, so that we called

this model fully factorized model. This was a regular use of NMF as a unsupervised learning

algorithm.

For the second case, synaptic matrices J and K were also initialized with random values but

matrix K , which represents the projection from grid cells to interneurons, were constraint to
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a given sparsity, such as 0.8 in our simulation, representing that only 20% of grid cells were

connected to the interneurons in the network. Then the NMF algorithm were used to update

the J given the effective inhibition matrix W without updating K at the same time, learning the

backprojection from Interneurons to grid cells by the algorithm. This one-sided NMF can be

regarded as a supervised learning algorithm and we called it randomly connected model.

The rank r of factorization was generally chosen to be smaller than n and m of W such that (n+
m)r É nm due to dimension reduction. But in our case, r represented the number of interneu-

rons in the network, it could be either smaller or bigger than the amount of grid cells.
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3 | Methods

3.1 Model implementation

To investigate the firing properties of interneurons in the two population model, we constructed

a network consisting of Ngrid cells = 16×16 grid cells and Ninterneurons = 26 interneurons for both

I-surround and E-surround configuration fully factorized model, whereas randomly connected

model contained the same proportion of interneurons as grid cells (Ngrid cells = Ninterneurons =
16×16). All cells in these implementations were uniformly distributed on a twisted torus [17].

In the simulations where we considered network with grid cells having varying peak firing rates,

we used τ = 10ms, Iconstant = 1,W0 = −0.2, Rmin and Rmax are normalized to be the 0.6× 16
21 and

0.6× 36
21 percent of minimal size of the neural sheets, respectively. The networks received no

velocity input but were driven by place cells input. This place cells network with 48×48 place

cells were predefined, each place cell in the network encoded one unique position of the envi-

ronment and projected to one grid cell in the grid cell network. The synaptic connection from

place cells to grid cells were wired in a way that nine place cells arranged in hexagonal man-

ner across the environment activated one grid cell, ensuring that the “bump” of activity on grid

neural sheet was in the correct position. Then, the grid field peaks rates could be varied by

drawing the strengths of the connections from place cells to grid cells, Hi j in equation 2.4, from

a distribution with a variance related to the desired variability in peak firing rates.

To evaluate how the drift depends on the size of the inhibitory population, we used three dif-

ferent size fully factorized network (Ngrid cells = 16× 13, 32× 27, 64× 55, respectively) and one

17
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randomly connected network (Ngrid cells = 32×27). Parameters were the same in all simulation:

τ= 10ms, Iconstant = 0.1,W0 =−0.1, Rmin and Rmax are normalized to be the 0.6× 18
21 and 0.6× 50

21

percent of minimal size of the neural sheets, respectively.

For path integration, we switched to a multi-bumps model on a torus with Ngrid cells = 64 ×
56, Ninterneurons = 200,τ = 10ms, l = 4,α = 30, Iconstant = 0.1,W0 = −0.1 Rmin = 15 and Rmax = 20

for fully factorized models and Ngrid cells = 64×56, Ninterneurons = 64×56×20,τ= 10ms, l = 4,α=
20, Iconstant = 1,W0 =−0.3 Rmin = 15 and Rmax = 20 for randomly connected model. No place cell

input were used for error correction.

3.2 Data analysis and statistics

3.2.1 Simulated Rate maps

To construct rate maps, the position data from simulation were divided into 30 by 30 non-

overlapping bins. Maps for number of spikes and time were smoothed with a Gaussian kernel

function with the size of 5×5 bins.

The firing rate map was then constructed by dividing the number of spikes in each bin by the

time spent per bin.

3.2.2 Gridness Score

The degree of spatial periodicity (“gridness score”) was computed from the autocorrelogram

of the rate maps [10]. A circular region of the autocorrelogram containing six nearest peaks

from the center peak was defined. The Pearson correlation was calculated between the circular

region with its rotation first for angles of 60°and 120°, then for angles of 30°, 90°, and 150°. The

gridness score then could be determined by highest minimum difference between two groups

rotations.
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3.2.3 Spatial Sparsity Score

Spatial sparsity score [35, 44] was calculated as following:

sparsity = 1− (
∑N

i=1 piλi )2∑N
i=1 piλ

2
i

where pi is the occupancy probability of bin i , and λi is the mean firing rate for bin i .

3.2.4 Grid field variation

Grid fields variation of one grid cell was determined by the coefficient of variance (CV) between

each grid field. Fields with their peaks on the border of the rate map were excluded. After identi-

fying all the fields in the rate map, peaks of each field in the smoothed rate map were then used

to compute the CV. See Figure 3.2 for the identified fields.

3.3 Experimental data

A dataset containing 176 putative grid cells identified as having spatially stable, periodic firing

fields (from [10]) was analyzed for the grid field variation. The activity of the cells were recorded

from 8 tetrodes.

The spikes were binned into 20 ms time bins, and all epochs with running speed less than 5 cm/s

were excluded. The position data of the 150 cm × 150 cm environment was divided into non-

overlapping 100 by 100 spatial bins. The path was smoothed with a Gaussian kernel function

with the size of 5×5 bins. The firing rate map was then constructed by dividing the number of

spikes in each bin by the time spent per bin.

To ensure all grid cells in the analysis have clear grid fields, cells with gridness score less than

0.3 and spatial sparsity less than 0.4 were excluded from further analysis.
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The remaining 75 grid cells could be assigned to four distinct modules using K-mean clustering

[10]. A summary of the descriptive statistics of all data used in the analysis was presented in in

Table 3.1 and Figure 3.1, splitting into each module.

Table 3.1: Mean spacing and orientation for the 4 modules
Modules Mean Spacing ± std Mean Orientation ± std

1 (25 cells) 34.0±2.1cm -9.8±3.5°
2 (23 cells) 40.9±2.5cm 5.3±2.5°
3 (20 cells) 65.7±2.5cm -7.1±3.0°
4 (7 cells) 77.5±4.0cm -11.5±2.7°
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Figure 3.1: Grid spacing against grid orientation for all three grid axes.
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Figure 3.2: Illustration of identified grid fields.
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4 | Results

4.1 Synaptic Connectivity

The nonnegative matrix factorization of the effective inhibition matrix W resulted in three dif-

ferent cases of synaptic connectivity between grid cells and interneurons.

In the fully factorized model, each interneuron received input from a “bump” of grid cells and

back-projected to a “ring” of grid cells (Figure 4.1), resembling the I-surround configuration in

the study of Pastoll at al.[33]. Swapping and transposing the J and K in the equation 2.1 and 2.2,

we got the second synaptic connectivity of the fully factorized model, which was the opposite of

the first one: a “ring” of grid cells activated one interneuron and this interneuron projected inhi-

bition to a “bump” of grid cells (Figure 4.2), resembling the I-surround configuration. [33].

For the randomly connected model, the projection from grid cells to interneurons was initial-

ized randomly with a given sparsity and not updated (Figure 4.3 top), while the sparse back-

projection from grid cells to interneurons was learned by the NMF algorithm (Figure 4.3 bot-

tom).

These different synaptic configuration lead to different predictions of the firing patterns of in-

terneurons. Similar to the study of Pastoll at al.[33], I-surround and E-surround configuration

of fully factorized model caused interneurons to have grid and anti-grid pattern, respectively,

while interneurons in randomly connected model would be fired with a less patterned activity

because they received input from grid cells of randomly phases.

23
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Figure 4.1: I-surround synaptic connectivity of fully factorized model. Visualization of the
activated neurons on the grid neural sheet which projected to one interneuron (top) and the
inhibited grid cells received input from one interneuron (bottom). Eight examples for each case
were randomly selected from a network with 256 grid cells and 26 interneurons. Each interneu-
rons received inputs from a “ring” of grid cells and back-projected to a “bump” of grid cells.
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Figure 4.2: E-surround synaptic connectivity of fully factorized model. Visualization of the
activated neurons on the grid neural sheet which projected to one interneuron (top) and the
inhibited grid cells received input from one interneuron (bottom). Eight examples for each case
were randomly selected from a network with 256 grid cells and 26 interneurons. Each interneu-
rons received inputs from a “bump” of grid cells and back-projected to a “ring” of grid cells.
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Figure 4.3: Synaptic connectivity of randomly connected model. Visualization of the activated
neurons on the grid neural sheet which projected to one interneuron (top) and the inhibited
grid cells received input from one interneuron (bottom). Eight examples for each case were
randomly selected from a network with 256 grid cells and 256 interneurons. Grid cells and in-
terneurons in the network connected with each other in a random manner.
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4.2 Interneurons in I-surround configuration fully factorized

model

As predicted, interneurons in I-surround configuration network had regular hexagonal firing

pattern and also had a higher firing rate and a lower sparsity score than grid cells in the same

network (Grid field variation, CV: 0.04±0.02;gridness score, interneurons: 1.10±0.10, grid cells:

1.09± 0.12, P = 0.57, t-test; firing rate, interneurons: 2.74± 0.56 Hz, grid cells: 0.26± 0.04 Hz,

P < 0.001, t-test; spatial sparsity , interneurons: 0.49± 0.05, grid cells: 0.58± 0.05, P < 0.001,

t-test; Figure 4.5.)

The grid field variation increased as the variance of the place cells input increased, and gridness

score of grid cells dropped accordingly while interneurons remained stable under the situation

of high grid field variance (Grid field variation, CV: 0.57± 0.24; gridness score, interneurons:

1.09 ± 0.15, grid cells: 0.92 ± 0.26, P < 0.001, t-test; firing rate, interneurons: 3.53 ± 0.80 Hz,

grid cells: 0.34±0.13 Hz, P < 0.001, t-test; spatial sparsity , interneurons: 0.55±0.05, grid cells:

0.75±0.05, P < 0.001, t-test;Figure 4.6.)
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Figure 4.4: Spatial sparsity and grid score for simulated interneurons and grid cells in I-surround
configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid cells with
low gridness score (< 0.3)
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Figure 4.5: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in I-surround configuration fully factorized model with low grid field variation.
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Figure 4.6: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in I-surround configuration fully factorized model with high grid field variation.
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4.3 Interneurons in E-surround configuration fully factorized

model

E-surround configuration network causes interneurons to have anti-grid pattern (Figure 4.8).

Other properties of both grid cells and interneurons were similar to the I-surround configura-

tion except the mean firing rate of interneurons was significantly greater than grid cells (Grid

field variation, CV: 0.05±0.02; gridness score, interneurons: 0.68±0.16, grid cells: 1.14±0.11,

P < 0.001, t-test; firing rate, interneurons: 21.75±3.47 Hz, grid cells: 0.26±0.05 Hz, P < 0.001,

t-test; spatial sparsity , interneurons: 0.17±0.03, grid cells: 0.57±0.05, P < 0.001, t-test; Figure

4.8.)

In the scenario of high grid field variation, the anti-grid pattern of interneurons were still stable

while grid cells lost their gridness gradually (Grid field variation, CV: 0.55±0.24; gridness score,

interneurons: 0.62±0.17, grid cells: 0.88±0.22, P < 0.001, t-test; firing rate, interneurons: 27.06±
5.13 Hz, grid cells: 0.34±0.14 Hz, P < 0.001, t-test; spatial sparsity , interneurons: 0.21±0.04,

grid cells: 0.75±0.06, P < 0.001, t-test; Figure 4.9.)
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Figure 4.7: Spatial sparsity and grid score for simulated interneurons and grid cells in E-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)
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Figure 4.8: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in E-surround configuration fully factorized model with low grid field variation.
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Figure 4.9: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in E-surround configuration fully factorized model with high grid field variation.
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4.4 Interneurons in randomly connected model

Interneurons in randomly connected model fired in a more diverse manner than in fully factor-

ized model since the patterns of interneurons were inherited from random grid cells with var-

ious phases (Grid field variation, CV: 0.01±0.01; gridness score, interneurons: 0.69±0.26, grid

cells: 1.13±0.08, P < 0.001, t-test; firing rate, interneurons: 0.39±0.07 Hz, grid cells: 0.09±0.02

Hz, P < 0.001, t-test; spatial sparsity, interneurons: 0.05±0.03, grid cells: 0.64±0.05, P < 0.001,

t-test;). In a small possibility, if one interneuron integrate input from grid cells shared similar

phases, then that interneuron could have a regular hexagonal (Figure 4.11) or reverse hexag-

onal pattern. But in most cases, grid cells with various phases projected to one interneurons,

resulting in periodic but not hexagonal patterns (Figures not shown).

In the case of high grid field variation, the firing patterns of interneurons became aperiodic, in

agreement with the experimental data reported by Buetfering et al. [35] (Grid field variation,

CV: 0.38± 0.28; gridness score, interneurons: 0.18± 0.30, grid cells: 0.77± 0.24, P < 0.001, t-

test; firing rate, interneurons: 0.60±0.11 Hz, grid cells: 0.09±0.02 Hz, P < 0.001, t-test; spatial

sparsity, interneurons: 0.17±0.04, grid cells: 0.84±0.06, P < 0.001, t-test; Figure 4.12).
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Figure 4.10: Spatial sparsity and grid score for simulated interneurons and grid cells in randomly
connected model. Blue: interneurons, Red: grid cells, Gray: grid cells with low gridness score
(< 0.3)
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Figure 4.11: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in randomly connected model with low grid field variation.



38 CHAPTER 4. RESULTS

Ratemap [0.000/3.416]

Min

Max
Gridness Score = 0.934481

Min

Max

Ratemap [0.136/1.513]

Min

Max
Gridness Score = -0.141589

Min

Max

Figure 4.12: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in randomly connected model with High grid field variation.
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4.5 Gridness score and grid field variation

The gridness scores of both grid cells and interneurons were plotted as a function of grid field

variation for all three synaptic connectivities. Grid field variation was manipulated by increasing

the variance of the place cells input to the grid cells, as stated in Method section.

On the one hand, interneurons in randomly connected model had the same trend as grid cells

and lost the grid pattern in high field variation situation (Figure 4.13).

One the other hand, for both I-surround and E-surround fully factorized model, gridness score

of grid cells decreased as the variance increased while interneurons remained stable (Figure

4.14).

It should be noted that the average gridness scores in both E-surround fully factorized model

and randomly connected model were lower than the ones in I-surround fully factorized model.

This was probably due to the calculation of gridness score were only optimal for hexagonal pat-

tern but not for anti-grid pattern, so that the gridness score cannot reflect the true degree of

periodicity of cells for the anti-grid interneurons in E-surround fully factorized case.
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Figure 4.13: Randomly connected model. Gridness score of both grid cells and interneurons
decreased as grid field variation increased. In the situation of low grid field variation, interneu-
rons in this configuration possessed mix patterns, such as grid, anti-grid and other periodic but
not hexagonal firing pattern, resulting in the average gridness score around 0.7.
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Figure 4.14: I-surround (top)/ E-surround (bottom) confuguration fully factorized model. In-
terneurons stayed stable in high grid field variation situation.
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4.6 Grid field variation in experimental data

75 grid cells from Stensola et al [10] were analyzed to see if there is any connection between

gridness score and grid field variations (Grid field variation, CV: 0.33±0.17; gridness score: 1.00±
0.22). As shown in Figure 4.15, gridness score of grid cells were negative correlated with the

coefficient of variance of grid field peak firing rate. The slope (β̂=−0.43) of the linear regression

line are significantly different from 0 (t-test, P < 0.01).

Since the data clustered into 4 different modules (module 4 is excluded due to small sample

size), we also investigated if the same trend preserved in each module (module 4 was excluded

due to small sample size). As indicated in Figure 4.16 and 4.17, all three modules showed a

slightly negative correlation between gridness score and grid field variation, however, all slopes

(β̂module 1 =−0.21, β̂module 2 =−0.49, β̂module 3 =−0.24) of the linear regression lines are not sig-

nificantly different from 0 (t-test, P > 0.05).
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Figure 4.15: Gridness score versus grid field variation of all cells.
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Figure 4.16: Gridness score versus grid field variation of module 1.
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Figure 4.17: Gridness score versus grid field variation of module 2 and 3.
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4.7 Drift

Here we used drift or drift velocity as a measure to evaluate the stability of different implemen-

tations of our two population model of grid cells. Drift in the network was measured by the

average distance (over 200 repetition) that the activity on the neural sheet shifted during 100

time steps, starting from a random initial position.

As indicated in Figure 4.18, drift in the fully factorized model dropped exponentially as the ratio

of the number of interneurons to grid cells and the size of the network was increased. For the

case of randomly connected model, where interneurons received random input from grid cells,

the network required a considerably higher proportion of interneurons to ensure a stable grid

pattern.
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Figure 4.18: Drift. X-axis represented the gridness score, Y-axis the drift velocity (the unit of the
drift velocity is neuron/time step, then normalized by the length of the neural sheet).
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4.8 Path Integration

In this section, we explored the capacity of the two population model to perform path integra-

tion.

Both I-surround and E-surround fully factorized models with 64×56 grid cells and 200 interneu-

rons could path integrate accurately over 150000 time steps (Figure 4.22 and 4.23). However, the

randomly connected model with 64× 56 grid cells and 64× 56× 20 interneurons was not able

to form hexagonal patterns due to the accumulation of drift over time. Further investigation is

needed to determine how many interneurons in the randomly connected model are required to

lower the drift to the level so that path integration could be performed accurately.
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Figure 4.19: Spatial sparsity and grid score for path-integrated interneurons and grid cells in I-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)
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Figure 4.20: Spatial sparsity and grid score for path-integrated interneurons and grid cells in E-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)

Figure 4.21: Spatial sparsity and grid score for path-integrated interneurons and grid cells in
randomly connected model. The process of path integration was unsuccessful in this simula-
tion. Blue: interneurons, Red: grid cells, Gray: grid cells with low gridness score (< 0.3)
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Figure 4.22: Accurate path integration in I-surround configuration fully factorized model.
Top: grid cell; Bottom: interneuron.
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Figure 4.23: Accurate path integration in E-surround configuration fully factorized model.
Top: grid cell; Bottom: interneuron.
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Figure 4.24: Failed Path integration in randomly connected model. Top: grid cell; Bottom:
interneuron.
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In this thesis, we explored the firing properties of interneurons in a two population grid cell

model using nonnegative matrix factorization. We investigated different implementations of

the two population model which lead to two opposite speculations of how grid cells and in-

terneurons could be wired together in the recurrent inhibitory network:

• In the fully factorized model, the connectivity between grid cells and interneurons was

well-structured: either I-surround configuration, that is, each interneuron received input

from a “ring” of grid cells then backprojected to a “bump” of grid cells with similar grid

phases, or E-surround configuration, i.e. each interneuron was recruited by many grid

cells with similar spatial selectivity then inhibited other grid cells arranged in a ring on the

neural sheet. In either case, the firing patterns of both grid cells and interneurons main-

tained a high degree of periodicity, and the proportion of interneurons could be signifi-

cantly less than grid cells in the same network, for example, a network with interneurons

account for less than 5% of total cells population could path integrate accurately;

• In the randomly connected model, the grid cells and interneurons were connected with

each other in a random manner but resulted in the effective inhibitory connectivity. The

two population network produced aperiodic firing interneurons similar to recordings when

the peak firing rates of grid cells varied, however, a considerably larger proportion of in-

terneurons was required to reach the level of network stability for path integration without

spatial input as error correction.

51
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Furthermore, we analyzed experiment data of 75 grid cells from a single freely behaving animal

and found that the relationship between gridness score and grid field variation was consistent

with the above models, that is, gridness score decreased as the grid field variation increased,

when all data points were used. The same result did not hold true when we split the data into

four modules, probably due to the small sample size for each module. Also, it should be noted

that the true values of peak firing rate of grid fields were likely affected by the degree of smooth-

ing when constructing the rate maps. So that, future experiments with better coverage should

permit more accurate measurements. In our analysis, the expected variation in fields did vary

considerably from cell to cell, so that the experimental data could be fit into both fully factorized

model and randomly connected model. In both cases, the firing patterns of interneurons were

inherited from the directly connected grid cells. Given that interneurons were recruited by grid

cells with similar phases, even if the grid fields peak firing rates of those grid cells varied, the

resulting patterns were still hexagonal. By contrast, majority of interneurons in randomly con-

nected model integrated inputs from grid cells with various phases, the firing pattern of those

interneurons would depend on the degree of both phase variability and the grid field peak firing

rates variability, resulting in low spatial sparsity and aperiodic firing patterns similar to experi-

mental observation.

5.1 How were grid cells and interneurons wired together?

The randomly connected model seem biologically impossible in the first glance. Even though

interneurons in this scenario showed aperiodic firing patterns similar to experimental obser-

vation [35], the amount of interneurons required to drive the network was at odd with the fact

that the estimated number of interneurons was roughly around 13% to 16% of total neural pop-

ulation in layer II of MEC [27, 45, 46], while, the amount of stellate cells was account for 55%

to 67% [27, 45, 47]. However, there is one question needs to be answered, that is, how many of

these stellate cells are grid cells? Currently, published data were contradicted with each other

dramatically, ranging from just 3% [47] to more than 50% [6, 46]. In this sense, the randomly

connected model was not completely hopeless if the exact amount of stellate cells as grid cells
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were small.

Moreover, the potential of the randomly connected model were not exhausted in this thesis. For

one thing, we still need to explore how many interneurons were enough to path integrate accu-

rately in this scenario. As shown in section 4.4, some interneurons still possessed high spatial

periodicity. How many interneurons had grid-like firing in this model? Were those interneurons

playing a more important role than others, such as having more synaptic weight to grid cells? If

we eliminate those high periodic interneurons, can the network still perform path integration,

or otherwise, can this network path integrate only with those high periodic interneurons?

The last question raised a possibility that the randomly connected model was effectively the

fully factorized model with most of the interneurons not providing any role. It was likely that the

continuous attractor network in our randomly connected network was supported primarily by

the few interneurons that, by chance, receive projections such that they do have periodic firing

fields. This could be perceived as a weakness of this model, however, at the same time, it fur-

ther demonstrated that the number of interneurons necessary to maintain this pattern was so

few that even with just random connectivity the phenomenology can be maintained. Although

the interneurons in the fully factorized model were not like the majority of those recorded in

experiment [35], the simulated result suggested that a surprisingly small amount of interneu-

rons would be sufficient to drive the network. Interestingly, more than 3 out of 140 interneurons

sampled in the experiment showed grid-like firing and have low spatial sparsity similar to grid

cells (see Supplementary Figure 3 in [35]). Further experimentation should help to determine if

those periodic interneurons in [35] were just noise due to experimental error, or there are really

small amount of periodic firing interneurons as predicted by the fully factorized model.

Taken the results of simulation and data analysis together, we proposed the following synap-

tic configuration of two population grid cell network: grid cells and interneurons connected

with each other in a random manner and produced the effective inhibition required for con-

tinuous attractor network as a final result. A small proportion of interneurons were activated

by grid cells with similar phases, resulting in the hexagonal or anti-hexagonal firing pattern.

Those interneurons projected back to grid cells in the same network with a synaptic configura-
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tion similar to the ones of fully factorized models, and they probably had a stronger connection

strength than the rest of the population. Other interneurons, which were the majority of the

population, integrated input from grid cells with various phases, and due to those grid cells

tended to have different grid field variation, their firing patterns would become aperiodic and

have low spatial sparsity. These interneurons could feedforward to other places, or project back

to grid cells in the same network, however, since their connection strength were outweighed

by the well-structured hexagonal interneurons, they would play a smaller role in the network

mechanism.

For too long interneurons have been taken as simple mechanisms to keep the neural activity in

balance [21]. Stronger and stronger evidence is emerging supporting interneurons as integral

components of the neural code. However, in most grid cell models have considered only the

“functional connectivity”, excitatory neurons have received all the attention and the role of in-

terneurons was usually ignored. Here we demonstrate how this role could develop even if the

projections to the interneuron population were drawn at random, resulting in what would ap-

pear as a sparse interneuronal code with just a few, key interneurons shaping the activity of the

population of grid cells to emerge collectively into a neural code. With this in mind, the broader

context of this work could be the thought that a potentially small population of key interneurons

might be critical to this network, suggesting that we could disrupt the system disproportionately

through manipulation of these key cells.

In order to crack the neural computation of navigation, one needs to understand how specific

cell types contribute to this network mechanism. This work is our attempt to separate the roles

of excitatory and inhibitory neurons in the MEC circuit.

5.2 Future Directions

The two population model in this thesis focused on the interactions between grid cells and in-

terneurons. To test if this simplistic model would still hold true in a more biologically compli-

cated setting, the lateral connection between interneurons should be taken into consideration,
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so were other external inputs onto interneurons, such as velocity input or other neuromodu-

lation. Furthermore, another important thing that was left out in this thesis was the interac-

tions across layers within MEC and with other cells types such as border cells [7]. Also, it would

be informative if the two population model were implemented as a integrate-and-fire spiking

model, which could include a more detailed time-coordinated spike patterns and network os-

cillation.

Moreover, it would be interesting to develop a two population variation of the developmental

model of grid cells [48]. Since the amount of interneurons required in the fully factorized model

was so small, the synaptic connection needed to be learned between grid cells and interneurons

would also be considerably smaller than the one in the effective model, e.g. in a network with

100×100 grid cells, an effective model would have to learn 100×100×9999 synaptic connec-

tions while a two population with 500 interneurons only required 100×100×500×2 synaptic

connections. It would be interesting to see if the resulting synaptic connectivity between grid

cells and interneurons were similar to the ones of nonnegative matrix factorization, and to see

where would the limit of number of interneurons in the network be which could produce grid

cells with confined grid pattern.
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A | Supplementary Figures

A.1 Grid cell data

Figure A.1: Rate map and autocorrelogram of all grid cells included in data analysis. Part 1.
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64 APPENDIX A. SUPPLEMENTARY FIGURES

Figure A.2: Rate map and autocorrelogram of all grid cells included in data analysis. Part 2.



A.1. GRID CELL DATA 65

Figure A.3: Rate map and autocorrelogram of all grid cells included in data analysis. Part 3.
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Figure A.4: Rate map and autocorrelogram of all grid cells included in data analysis. Part 4.



A.1. GRID CELL DATA 67

Figure A.5: Rate map and autocorrelogram of all grid cells included in data analysis. Part 5.



68 APPENDIX A. SUPPLEMENTARY FIGURES

Figure A.6: Rate map and autocorrelogram of all grid cells included in data analysis. Part 6.
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Figure A.7: Rate map and autocorrelogram of all grid cells included in data analysis. Part 7.
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Figure A.8: Rate map and autocorrelogram of all grid cells included in data analysis. Part 8



A.2. TETRODE RECORDING LOCATIONS 71

A.2 Tetrode recording locations

Figure A.9: The red arrow in this Nissl stained sagittal sections indicted the recording location
of grid cells. The number of grid cells (n) and the number of modules (M]) associated with each
tetrode track (TT) is shown



72 APPENDIX A. SUPPLEMENTARY FIGURES



B | Publications

This work has been partially published as a peer-reviewd abstract and poster at Computational

and Systems Neuroscience (Cosyne) 2015.

Huang, Ziwei; Solstad, Trygve; Dunn, Benjamin Adric. (2015) Interneurons in two population

grid cell network. Cosyne Abstracts 2015, Salt Lake City USA.

73



Interneurons in a two population grid cell network

Ziwei Huang ∗ Trygve Solstad † Benjamin Dunn ∗

November 26, 2014

Summary

The hexagonal firing pattern of entorhinal grid
cells [1] could arise from a competitive mecha-
nism mediated by interneurons [2, 3, 4]. Here
we asked if a two-population continuous attrac-
tor model [5, 6], consistent with the proposed
inhibitory connectivity pattern, could maintain
grid cell firing even if interneurons (a) comprise
less than 20% of the neural population and (b)
lack spatial periodicity, as was recently observed
in a sub-population of entorhinal interneurons
[7, 8].

First, using non-negative matrix factoriza-
tion (NMF) [9], we constructed two-population
models with varying numbers of interneurons
while maintaining the same effective connectiv-
ity between grid cells. Surprisingly, network
drift decreased exponentially with the number
of assumed interneurons and networks having
less than 10% interneurons were able to accu-
rately path integrate. The resulting connectiv-
ity was patterned with each interneuron receiv-
ing projections from either many grid cells with
similar spatial selectivity or cells that together
formed an inverted grid pattern. In both cases,
grid cells with inhomogeneous peak firing rates
had lower grid scores than the corresponding
interneurons. Interestingly, thought to be out-
liers, a small number of interneurons with both
high grid scores and spatial sparsity have also
been observed experimentally [7].

Second, we considered a network where the
connections from grid cells to interneurons were
fixed to sparse random values, while back pro-
jections were found using NMF. In this case, the
spatial selectivity of interneurons decreased dra-
matically as the variance in grid field firing rates

was increased. Although this network produced
aperiodic interneurons similar to recordings, a
considerably larger proportion of interneurons
was required to reach the same level of stability
which did not decrease exponentially as in the
fully factorized case.

Further experiments should be able to deter-
mine if reality falls somewhere on the spectrum
between these two simple cases.

Additional details
We let each grid cell, si, and interneuron, ui, fol-
low the dynamics of a simple firing rate model

τ
dsi
dt

+ si = g
(∑

j
Jijuj + It

)
+

(1)

τ
dui
dt

+ ui = g
(∑

j
Kijsj

)
+

(2)

where (.)+ is the threshold-linear function, g the
gain, τ the neuronal time constant, and Jij and
Kij the strength of connection from interneu-
rons to grid cells and grid cells to interneurons,
respectively. For the drift calculations It is a
constant external input, while for the path in-
tegration tasks we include a term that depends
on the time-varying speed, vt, and direction θt,
It = constant + αvt cos

(
θt − θi), where α is

the velocity modulation and θi the preferred
direction. To determine how spatial periodic-
ity of the interneurons changes with respect to
the variance in spatial fields of the grid cells,
we included a population of neurons with place
cell-like coding and excitatory projections to the
grid cells It = constant +

∑
j HijPj(t). The

grid field peak rates were varied by drawing the
strengths of the connections, Hij, from a distri-
bution with increasing variance.

∗Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU
†Faculty of teacher and interpreter education, Sør-Trøndelag University College (HiST)

1



To determine possible connectivity patterns
corresponding to the inhibitory portion of an
effective connectivity, Wij, between principal
cells, we note that, at equilibrium, dui

dt
→ 0

and we have
∑

j Jijuj ≈ g
∑

j Jij
∑

kKjksk ≈∑
j Wijsj. We can therefore find solutions to

the problem Wij =
∑

k JikKkj for different num-
bers of interneurons using techniques from non-
negative matrix factorization [9]. As in [2, 3, 4],
we assumed a purely inhibitory connectivity
with Wij = W0H(Rmax − dij)H(dij − Rmin),
where H(.) is the Heaviside function, Rmax the
outer ring of the radial extent of the connectiv-
ity, Rmin the inner ring, W0 the strength of the
inhibitory interactions between connected neu-
rons and dij the distance between cell i and j,
d2ij = (xi − xj − l cos θi)

2 − (yi − yj − l sin θi)
2

with xi = 1 . . . Nx and yi = 1 . . . Ny representing
the position of neuron i in a two dimensional
Nx × Ny neural sheet with periodic boundary
conditions and spatial offset l. For the networks
with random projections to interneurons, each
grid cell projected to each interneuron with a
probability of 0.2. The strength of each connec-
tion was taken as the absolute value of a ran-
dom number drawn from a normal distribution
of variance 0.1. Using different values for the
variance and sparsity of the random connections
did not qualitatively change the results in figure
1.

For path integration we used Nx = 64, Ny =
56, l = 4, Iext = 0.1, W0 = −0.1, Rmax = 20,
Rmin = 15 and no spatial input. To evaluate
how the drift depends on the size of the in-
hibitory population, we used a smaller model
on a twisted torus [10] with Nx = 16, Ny = 13,
l = 0 and vt = 0.

10 100 1000
Number of interneurons

10-2

10-1

D
ri

ft

Fully factorized model

Random connectivity model

Figure 1: Drift. In the fully factorized case,
drift decreased exponentially with the number
of interneurons. For the case where interneu-
rons received random input from grid cells, the
network required a considerably higher propor-
tion of interneurons to ensure a stable grid pat-
tern. The relative proportion of interneurons
necessary to acquire the same level of drift in
the fully factorized model continued to decrease
for larger networks of grid cells (not shown).
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