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Abstract

The hexagonal firing pattern of entorhinal grid cells could arise from a competitive mechanism
mediated by interneurons. In this thesis, we asked if a two-population continuous attractor
model, consistent with the proposed inhibitory connectivity pattern, could maintain grid cell
firing even if interneurons lack spatial periodicity, as was recently observed in a sub-population

of entorhinal interneurons.

First, using non-negative matrix factorization, we constructed two-population models with vary-
ing numbers of interneurons while maintaining the same effective connectivity between grid
cells. Surprisingly, network drift decreased exponentially with the number of assumed interneu-
rons. Networks having less than 5% interneurons were able to accurately path integrate. The
resulting connectivity was patterned with each interneuron receiving projections from either
many grid cells with similar spatial selectivity or cells that together formed an inverted grid pat-
tern. In both cases, grid cells with inhomogeneous peak firing rates had lower grid scores than

the corresponding interneurons.

Second, we considered a network where the connections from grid cells to interneurons were
fixed to sparse random values, while back projections were found using NME We found that
including variation in the fields of the grid cells resulted in aperiodic neurons in this randomly
connected model and the spatial selectivity of interneurons decreased dramatically as the vari-
ance in grid field firing rates was increased. Although this network produced aperiodic interneu-
rons similar to recordings, a considerably larger proportion of interneurons was required to
reach the same level of stability which did not decrease exponentially as in the fully factorized

case.

Furthermore, we analyzed 75 grid cells from a single freely behaving animal and found that the
degree to which the firing fields vary was possibly consistent with the models in which grid-
ness score decreased as the grid field variation increased. Take together, our result suggested
that the firing patterns of interneurons were not limited to the grid or anti-grid pattern but fell

somewhere on the spectrum between highly periodic to aperiodic.
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1 Introduction

It had long been speculated that the mammal navigation was guided by a “cognitive map” [1].
O’Keefe and Dostrovsky discovered the first neural evidence of this map in 1970s: hippocampal
place cells [2]. The most distinctive feature of place cells was that each cell fired in one unique
location of the environment, and the same cell participated in encoding many different environ-
ments. How did place cells emerge? Were place cells responsible for all the spatial computation?
These questions motivated neuroscientists to explore the mystery of how space was represented
in the brain. O’Keefe speculated that, in order to form a complete cognitive map, each place cell
needed to receive at least two different types of spatial input: first, external cues of the envi-
ronment, and second, a metric system which integrated the animal’s self-motion information
[3]. In behavioral level, this metric system was manifested as path integration[4], which was a
intrinsic capacity of animals to keep track of their moving distance and angular motion, even in

the situation without visual or other sensory inputs.

Thirty years later, Edvard Moser and May-Britt Moser discovered grid cells in the dorsal medial
part of entorhinal cortex (AMEC) [5], which is the anatomical upstream of the hippocampus and
project directly to CA3 (Figure 1.1). Each grid cell had multiple firing fields, forming a hexagonal
pattern covering the whole arena the animal explored. The multiple firing locations for each
grid cell were independent of both the velocity of the animal and the external/environmental
cues, e.g. when the animal explored in the dark, suggesting that the generation of these cells ac-
tivity is an intrinsic network phenomenon and could be maintained by self-motion information
alone [5]. Subsequent research revealed that grid cells in the layer II of MEC processed direc-

tional signal from grid x head direction conjunctive cells in deeper layers of MEC [6], boundary
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Figure 1.1: Anatomical connections between hippocampus and entorhinal cortex. PER:
perirhinal cortex, POR: postrhinal cortex, LEC: lateral entorhinal cortex, MEC, entorhinal cor-
tex, DG: dentate gyrus, Sub: subiculum. Adapted from [9].

information from border cells [7] as well as velocity input from speed cells [8], suggesting that

grid cells were probably play an important role in path integration.

1.1 Grid cells in entorhinal cortex

There were three basic properties of grid cells (Figure 1.2): grid spacing (the shortest distance
between two grid fields), grid orientation (the smallest angel of grid axes compared to an refer-
ence axis of the environment), and grid phase (the Cartesian locations of firing vertices relative

to the reference location of the environment).

Grid cells recorded from the same tetrode tended to share the same spacing and orientation,
and the spacing increased along the dorso-ventral axis of MEC [5]. Experimental data showed
that this increase was stepwise instead of continuous [10], and could be clustered into 4 or
5 modules. Moreover, cells recorded from the same tetrode tended to have different phases,
i.e. shifted away from the x-y reference coordinate independently, and without any topological

properties.
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Figure 1.2: Basic properties of grid cells. Firing patterns of a pair of grid cells, indicating the
difference between grid spacing, grid orientation and grid phase. Adapted from [11].
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Figure 1.3: Attractor models of grid cells with different connectivity patterns. Left: Mexican-
hat connectivity; Center: Mexican-hat like inhibitory connectivity; Right: Lincoln-hat inhibitory
connectivity. Adapted from [11].

Figure 1.4: Toroidal synaptic matrix of grid cells. Left: The periodic tutor network trained a
MEC network without topological arrangement. Center and right: a synaptic matrix with edges
wrapped around to the opposite sides and formed as a torus. Adapted from [12].
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1.2 Attractor network models

Since the discovery of grid cells, different theoretical models have been proposed to explain
the generation of this phenomenon [13, 14, 15]. One major class of models called “continu-
ous attractor network (CAN) models” emphasized that the hexagonal pattern of grid cells was a

network phenomenon generated within the entorhinal cortex through local interaction.

One of the earliest model proposed by Fuhs and Touresky [16] suggested a topologically orga-
nized network where cells were arranged according to their phases similarity, that is, they as-
sumed nearby grid cells in the brain shared similar or slightly shifted grid phases. Each cell
received excitatory input from those nearby cells with similar phases, while the connection
weights decayed progressively as the phases difference increased. A global inhibition applied
to all cells in the network prevented the excitation from spreading, resulting in the formation of
multiple “bumps” of activity arranged hexagonally on the neural sheet, so it was called “Mexican-
hat connectivity” (See Figure 1.3a). These bumps were then moved by integrating head-directional
and speed-dependent input from a “hidden layers” as the animal navigated through the envi-
ronment, and this network activity would be reflected in each grid cell as the hexagonal pattern
in the firing rate map. This model had two problems: first, the topologically organization of
cells was at odds with the experimental observation that nearby grid cells rarely shared similar
phases [5], and the second ones was known as the boundary problem, that is, the planar repre-
sentation of space was limited by the number of neurons on the neural sheet, in other words, the
finite number of cells in the network was far from enough to encode the almost infinite amount

of locations in a real life situation.

To address these problems, a revised model was proposed by McNaughton et al. [12]. In this
model, nearby grid cells in MEC did not necessarily share similar grid phases but those did with
similar phases learned to connected to each other through the training of the assumed topo-
graphical arranged tutor network during early development. Due to the periodicity of this tutor
network, the edges of the synaptic matrix would wrap around to the opposite side, forming

a torus and ensuring that the activity of bumps would be periodic (see Figure 1.4). Whether
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such a toroidal synaptic matrix or the topographical arranged tutor network exist is, of course,
still a matter of debate given the lack of experimental support. A single bump network with
such a configuration could produce a hexagonal grid on a twisted torus [17], whereas a multiple
bumps network can also work in an untwisted torus. It should also be noted that a network with
multiple bumps with aperiodic boundary conditions could perform precise path integration if

carefully structured [18].

These Mexican-hat models were in agreement with experimental observations that conjunctive
cells with both grid cell and head-direction cell responses [6] were found in the deeper layers
of MEC, as were cells with speed modulation [8]. However, the main challenge of these models
was the fact that stellate cells in layer II of MEC, where we could find the most confined and
largest amount of grid cells [6, 19], lacked excitatory connections between each other almost

completely [19, 20].

A pure inhibitory attractor network had been proposed earlier by Burak and Fiete [18], in which
cells in the network formed a Mexican-hat like inhibitory connectivity, i.e. cells with similar
phases inhibited each other less than those with larger phase difference, whereas inhibition
from those far away would progressively go back to zero (See Figure 1.3b). Using pair-recording
and optogenetics, Couey et al. [20] demonstrated that almost all functional connections in MEC
layer II were inhibitory and the magnitude of inhibition exerted on two simultaneous recording
stellate cells seemed to be constant. This finding lead to the inverted Lincoln-hat or all-or-none
connectivity model (Figure 1.3c), in which cells exerted the same amount of inhibition to others

within the fix radius but not to the cells beyond that.

The benefit of switching to pure inhibitory models, besides from being more biologically com-
patible, was that they are more computationally stable in perspective of excitatory-inhibition
balance [21]. Since the inhibitory feedback was provided by the GABAergic interneurons within
the network, there was no need to include a global inhibition, as the one applied in Mexican-
hat model, to prevent runaway excitation. But this implementation lead to another problem:
pure inhibitory models require external tonic excitation out of entorhinal cortex. Hippocampus

would be one of the possible candidates since there is a hippocampal-entorhinal loop where
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hippocampus could back project to the deeper layers of MEC (Figure 1.1). Bonnevie et al. [22]
supported this assumption by blocking the hippocampal excitation to MEC and observed that
grid cells lose its hexagonal pattern gradually and became dominated by the head-directional
signal. This finding supplemented the speculation that the feedback projections from hip-
pocampus, which probably contained spatial information such as path-integrator coordinates
(mainly from place cells) and specific features of the environment, served as the error-correction
mechanism for grid cells [23, 24]. It was known that recurrent connectivity contained intrinsic
noise which will lead to unwanted drift in the activity of continuous attractor network [25]. This
drift would accumulate over time as the animal explored the environment, resulting in the de-
struction of the grid pattern. By integrating the spatial information from hippocampus, entorhi-
nal grid cells could reduce the accumulation of error and perform path integration over a long

time accurately.

1.3 Interneurons in grid cell network

Previous models [20, 18] were called “effective inhibition models” because interneurons in those
models were not implemented explicitly, even though they conceptualized that grid cells com-
municated with other grid cells indirectly by recruiting interneurons within the same network.
The effective models ignored the specific configuration of how grid cells and interneurons are
wired together, so they lacked the power of predicting what kind of neural activity these in-

terneurons might have.

The physiology of GABAergic interneurons in MEC was not that well studied by far, but there
was a consensus that this population was diverse in terms of morphology, anatomy and function
[26]. The estimated amount of interneurons were around 13% to 16% of total neural population
inlayer IT of MEC [27], and parvalbumin-expressing GABAergic cells (PV" neuron) accounted for
half of them [28, 29]. These PV* neurons formed direct inhibitory synapses onto principal cells
and other interneurons in layer II and III [27, 28, 30], suggesting that they were the one of the

best candidate for supporting the recurrent inhibitory grid cells network. Calretinin immunore-
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active neurons (CR) were another major type of interneurons in MEC, which believed to have no
overlap with the PV* population [31]. Considerable amount of CR neurons in layer II expressed
GABA, though the exact proportion was still in debate [31]. One interesting observation of CR
neurons was that they rarely made contact with principal neuron, suggesting that their primary
role was to mediate other interneurons [31], as their counterpart in Hippocampus [32]. Layer II
of MEC was also rich in other cell types of interneurons expressed different neuropeptides, such
as somatostatin (SOM), vasoactive intestinal polypeptide (VIP), enkephalin (ENK), Substance-P
and corticotropin releasing factor (CRF), though their functions and physiology were less well

studied.

So far, only one explicit two-population model had been published [33], in which two network
configurations were investigated. In the E-surround configuration, inhibitory signals from in-
terneurons were projected to adjacent excitatory grid cells, while grid cells signal were onto
the surrounding ring of inhibitory neurons (equivalent to the Figure 1.5b). In this scenario, in-
terneurons would have a anti-grid firing pattern (Figure 1.6 left). The second configuration,
which termed I-surround configuration, was the opposite of the first one, that is, each grid cells
made an excitatory connection to one inhibitory neuron, while this interneuron inhibit the sur-
rounding grid cells (Figure 1.5a). In this case, interneurons would inherit the hexagonal pattern

from grid cells (Figure 1.6 right).
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Figure 1.5: Different connectivity between grid cells (blue) and interneurons (red). Adapted
from [34]
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Figure 1.6: Predicted interneuron firing fields for the E-surround and I-surround configura-
tion. Adapted from [33]
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However, these predictions were challenged by a recent experimental observation. In their
study, Buetfering et al. [35] explored the spatial firing properties of PV* cells in MEC, and found
that their firing patterns were spatially stable and almost always, but not completely, aperiodic,
instead of grid or anti-grid patterns as suggested (Figure 1.7). Using latency peak in cross-
correlation analysis as an indicator of synaptic connection, Buetfering et al. [35] found that
the rate maps of pairs of grid cells that made contacts to the same PV* interneurons were sub-
stantially different from each other in grid phases. They concluded that the aperiodic firing of
interneurons resulted from integrating diverse inputs from grid cells with various phases. This
observation was at odds with the assumption of the inhibitory attractor network, that is, grid

cells shared similar grid phases coupled with each other via interneurons.

PV* interneurons

249Hz 9.7Hz 52.9 Hz
R, -- om0 Max

» .. '
I
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Grid cells
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Figure 1.7: Firing patterns of PV" interneurons in MEC. Most of the PV+ interneurons recorded
were firing aperiodic, however, a small amount of them were showed confined grid patterns as
grid cells. Left: Rate maps of PV, interneurons; Right: Spatial sparsity and grid score for grid
cells, PV, interneurons and putative interneurons with a high firing rate Adapted from [35] and
corresponding supplementary material.

As noted by Roudi and Moser [34] in response to this study, the presence of short latency peak in

cross-correlation might not necessarily mean the existence of direct synaptic connections, i.e.
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short-latency peaks might also show up in cross-correlation if pairs of cells shared a common
excitatory input while one of them were activated at later time due to intrinsic properties, etc.

[36].

Furthermore, the aperiodic firing interneurons were not necessarily contradicted with the con-
tinuous attractor network since synaptic configurations in the real biological system were rarely
as ideal as the one wired in simulation of Pastoll et al. [33]. As shown in Figure 1.5c, it was
possible that the effective inhibition was a happy coincidence of a randomly connected net-
work where interneurons connected with multiple grid cells as well as each other, and multiple
grid cells with different firing rates exerted their firing patterns onto multiple interneurons. And
since interneurons inherited firing patterns from grid cells with various grid phases (and possi-

bly with various peak firing rates in each grid field), their firing would become aperiodic.

So that, the main question of this thesis could be formulated like this: Can a two-population
grid cell model, consistent with the effective inhibitory connectivity pattern, maintain grid cell
firing even if interneurons lack spatial periodicity? In other words, what kind of synaptic config-
uration allowed grid cells performed path integration while interneurons fired in an aperiodic

manner?

Starting from this question, we built a two-population continuous attractor model of grid cells
using a technique called nonnegative matrix factorization (see next chapter). We found that,
if grid cells and interneurons were connected in a random manner, including variation in the
firing fields of the grid cells would result in aperiodic firing interneurons. By contrast, if the
connectivity between grid cells and interneurons was well-structured, interneurons would fire
periodically and the amount of interneurons could reduce to a surprisingly small number. Fur-
thermore, we analyzed grid cell data from a single freely behaving animal and found that the
degree to which the firing fields vary was consistent with the models in which gridness score
decreased as the grid field variation increased. Take together, our result suggested that the firing
patterns of interneurons might be not limited to the grid or anti-grid pattern but fell somewhere

on the spectrum between highly periodic to aperiodic.



2 Two population grid cell model

We derived the two population model from the effective model presented in [20]:

d .
rd—s’+s,-:g(Z],-juj+1t)+ (2.1)
¢ i
du;
T dtl+ui:g(ZKijsj)+ (2.2)

where (.); is the threshold-linear function, g the gain, 7 the neuronal time constant, and J;;
and K;; the strength of connection from inhibitory interneurons to grid cells and grid cells to
interneurons, respectively. In other words, J is a pure negative matrix because interneurons here
can only inhibit grid cells, while K is a pure positive matrix because grid cells can only excite
interneurons. I; represents external input, its content depends on the context. For the drift
calculation in the result section, I; is a constant external input, while for the path integration

tasks we include a term that depends on the time-varying speed v; and direction 6;,

I; = constant + av;cos(@;—0;) (2.3)

where «a is the velocity modulation and 6; is the preferred direction of cell i. To determine how
spatial periodicity of the interneurons changes with respect to the variance in spatial fields of
the grid cells, we included a population of neurons with place cell-like coding and excitatory

projections to the grid cells,

11
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I; = constant+ Y _H;;P;(1) (2.4)
j
The grid field peak rates are varied by drawing the strengths of the connections, H;;, from a

distribution with a variance related to the desired variability in peak firing rates.

To determine possible connectivity patterns corresponding to the inhibitory portion of an ef-
fective connectivity, W;;, between principal cells, we note that, at equilibrium, du; — 0 and we

have

Z]ijuj:gzlijZKijk:ZVViij- (2.5)
J i k j

As in [18, 20, 33], we assumed a purely inhibitory connectivity with

Wij = WoH(Rmax — dij)H(dij — Rmin), (2.6)

where H is the Heaviside function, R,y the outer ring of the radial extent of the connectivity,
Rp.in the inner ring, Wythe strength of the inhibitory interactions between connected neurons
and d;; the distance between cell i and j, dl.zj = (x; —xj — [cos8;)* - (y; — yj — IsinB;)* with x; =
1...Ny and y; = 1...N, representing the position of neuron i in a two dimensional Ny x N,,
neural sheet with periodic boundary conditions and spatial offset /. That is, each grid cell in the
model only connected with cells within the radius between R,;;,, and R;,4x, whereas those that

are too close or far apart are not coupled, forming a inhibitory ring connectivity.

The main challenge here is to find solutions to the problem W;; = 3 J;xK ;. Since our model
required K to be pure positive, J and W to be pure negative, using normal matrix factorization
techniques would result in mixed values in one of the factorized matrix even when we forced
the other one to be pure positive or negative. To solve this problem, we used tricks from non-
negative matrix factorization [37, 38](See next section), which first forced a nonnegative con-

straint on all matrices (assuming all /, K and Ware positive), then solve for the equations and
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turn one of the factorized matrix into negative.

2.1 Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) was first introduced by Finnish mathematicians Paatero
and Tapper [39] as positive matrix factorization, and later developed and popularized by Lee and

Seung in two papers published in 1999 and 2001 [37, 38].

An NMF problem can be defined as following: given a non-negative matrix W, find non-negative

matrix factors J and K such that:

W= JK (2.7)

where J and K can be attained by the multiplicative update rules

W) ap WK,
Koy — Koypy——7— and Jia—Jia———— (2.8)
wWTHITIK) g T UKK g
Iteration of these update rules converges to the local minima of the cost function
IJ-KI*=Y Uij— Kij)* (2.9)
i

The main difference between NMF and other matrix factorization methods, such as principal
components analysis (PCA) and vector quantization (VQ) is that NMF uses nonnegativity con-
straints and this feature leads to a parts-based representation [37] due to the additive nature of

the algorithm.

Lee and Seung [37] applied the NMF algorithm to an image dataset, which can be viewed as an
nx m matrix W and each column of matrix V is one of m images with n pixels. The factor matrix

J is called basis matrix while K is called encoding matrix or coefficient matrix. The dot product
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Figure 2.1: NMF learns a parts-based representation of faces. Adapted from [37].

of the basis matrix and a column of the coefficient matrix yields a approximate face image of
the dataset (Figure 2.1). This parts-based representation is thought to be consistent with the

psychological and physiological evidence in the brain [40].

NMF have been widely used in the field of machine learning, data mining, signal processing, to
name a few [41]. Variations of NME such as Sparse NME Orthogonal NME Discriminant NMF

[42], Semi-NMF [43] were also developed for diverse contexts.

2.2 Fully factorized model and randomly connected model

In this thesis, we constructed the two population model of grid cells based on two different uses

of NME

First, both synaptic matrices J/ and K were initialized with random values, then learned the cor-
responding connectivity by applying the NMF algorithm to the effective inhibition matrix W.
The algorithm was run till both J and K converged to the optimal condition, so that we called
this model fully factorized model. This was a regular use of NMF as a unsupervised learning

algorithm.

For the second case, synaptic matrices J and K were also initialized with random values but

matrix K, which represents the projection from grid cells to interneurons, were constraint to



2.2. FULLY FACTORIZED MODEL AND RANDOMLY CONNECTED MODEL 15

a given sparsity, such as 0.8 in our simulation, representing that only 20% of grid cells were
connected to the interneurons in the network. Then the NMF algorithm were used to update
the J given the effective inhibition matrix W without updating K at the same time, learning the
backprojection from Interneurons to grid cells by the algorithm. This one-sided NMF can be

regarded as a supervised learning algorithm and we called it randomly connected model.

The rank r of factorization was generally chosen to be smaller than 7 and m of W such that (n+
m)r < nm due to dimension reduction. But in our case, r represented the number of interneu-

rons in the network, it could be either smaller or bigger than the amount of grid cells.
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3 Methods

3.1 Model implementation

To investigate the firing properties of interneurons in the two population model, we constructed
a network consisting of Ngid celis = 16 x 16 grid cells and Ninterneurons = 26 interneurons for both
[-surround and E-surround configuration fully factorized model, whereas randomly connected
model contained the same proportion of interneurons as grid cells (Ngrid cells = Ninterneurons =

16x16). All cells in these implementations were uniformly distributed on a twisted torus [17].

In the simulations where we considered network with grid cells having varying peak firing rates,
we used T = 10ms, Iconstant = 1, Wy = —0.2, Rmin and Rmax are normalized to be the 0.6 x % and
0.6 x % percent of minimal size of the neural sheets, respectively. The networks received no
velocity input but were driven by place cells input. This place cells network with 48 x 48 place
cells were predefined, each place cell in the network encoded one unique position of the envi-
ronment and projected to one grid cell in the grid cell network. The synaptic connection from
place cells to grid cells were wired in a way that nine place cells arranged in hexagonal man-
ner across the environment activated one grid cell, ensuring that the “bump” of activity on grid
neural sheet was in the correct position. Then, the grid field peaks rates could be varied by
drawing the strengths of the connections from place cells to grid cells, H;; in equation 2.4, from

a distribution with a variance related to the desired variability in peak firing rates.

To evaluate how the drift depends on the size of the inhibitory population, we used three dif-

ferent size fully factorized network (Ngrid celis = 16 x 13, 32 x 27, 64 x 55, respectively) and one

17
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randomly connected network (Ngrid cells = 32 x 27). Parameters were the same in all simulation:
T =10ms, Iconstant = 0.1, W = —0.1, Rimin and Ryax are normalized to be the 0.6 x % and 0.6 x %

percent of minimal size of the neural sheets, respectively.

For path integration, we switched to a multi-bumps model on a torus with Ngiq cells = 64 x
56, Ninterneurons = 200,7 = 10ms, ! = 4, a = 30, Iconstant = 0.1, Wy = —=0.1 Rpnin = 15 and Rypax = 20
for fully factorized models and Ngid cens = 64 % 56, Ninterneurons = 64 x 56 x 20,7 = 10ms,l =4, =
20, Iconstant = 1, Wo = —0.3 Rpin = 15 and Rpax = 20 for randomly connected model. No place cell

input were used for error correction.

3.2 Data analysis and statistics

3.2.1 Simulated Rate maps

To construct rate maps, the position data from simulation were divided into 30 by 30 non-
overlapping bins. Maps for number of spikes and time were smoothed with a Gaussian kernel

function with the size of 5x5 bins.

The firing rate map was then constructed by dividing the number of spikes in each bin by the

time spent per bin.

3.2.2 Gridness Score

The degree of spatial periodicity (“gridness score”) was computed from the autocorrelogram
of the rate maps [10]. A circular region of the autocorrelogram containing six nearest peaks
from the center peak was defined. The Pearson correlation was calculated between the circular
region with its rotation first for angles of 60°and 120°, then for angles of 30°, 90°, and 150°. The
gridness score then could be determined by highest minimum difference between two groups

rotations.
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3.2.3 Spatial Sparsity Score

Spatial sparsity score [35, 44] was calculated as following:

(Zi\il Pi/li)z

sparsity =1— SN o2
i=1 i

where p; is the occupancy probability of bin i, and A; is the mean firing rate for bin i.

3.2.4 Grid field variation

Grid fields variation of one grid cell was determined by the coefficient of variance (CV) between
each grid field. Fields with their peaks on the border of the rate map were excluded. After identi-
fying all the fields in the rate map, peaks of each field in the smoothed rate map were then used

to compute the CV. See Figure 3.2 for the identified fields.

3.3 Experimental data

A dataset containing 176 putative grid cells identified as having spatially stable, periodic firing
fields (from [10]) was analyzed for the grid field variation. The activity of the cells were recorded

from 8 tetrodes.

The spikes were binned into 20 ms time bins, and all epochs with running speed less than 5 cm/s
were excluded. The position data of the 150 cm x 150 cm environment was divided into non-
overlapping 100 by 100 spatial bins. The path was smoothed with a Gaussian kernel function
with the size of 5x5 bins. The firing rate map was then constructed by dividing the number of

spikes in each bin by the time spent per bin.

To ensure all grid cells in the analysis have clear grid fields, cells with gridness score less than

0.3 and spatial sparsity less than 0.4 were excluded from further analysis.
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The remaining 75 grid cells could be assigned to four distinct modules using K-mean clustering
[10]. A summary of the descriptive statistics of all data used in the analysis was presented in in

Table 3.1 and Figure 3.1, splitting into each module.

Table 3.1: Mean spacing and orientation for the 4 modules

Modules Mean Spacing + std Mean Orientation + std
1 (25 cells) 34.0+2.1cm -9.8+3.5°
2 (23 cells) 40.9+2.5cm 5.3+2.5°
3 (20 cells) 65.7+2.5cm -7.1£3.0°
4 (7 cells) 77.5+4.0cm -11.5+2.7°
20 AX 3 ' AX '1 ' AX 2
. : . : . e®e module 1
I I e®e module 2
80 . o | - : .o eee module 3 ]
. '.. : ': ° : o’ . e®e module 4
70+ ° | ° 1 °
oy e Ly
¥ L f T e
g’ 60| ° : ° : °
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Figure 3.1: Grid spacing against grid orientation for all three grid axes.
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Figure 3.2: Illustration of identified grid fields.
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4 Results

4.1 Synaptic Connectivity

The nonnegative matrix factorization of the effective inhibition matrix W resulted in three dif-

ferent cases of synaptic connectivity between grid cells and interneurons.

In the fully factorized model, each interneuron received input from a “bump” of grid cells and
back-projected to a “ring” of grid cells (Figure 4.1), resembling the I-surround configuration in
the study of Pastoll at al.[33]. Swapping and transposing the J and K in the equation 2.1 and 2.2,
we got the second synaptic connectivity of the fully factorized model, which was the opposite of
the first one: a “ring” of grid cells activated one interneuron and this interneuron projected inhi-

bition to a “bump” of grid cells (Figure 4.2), resembling the I-surround configuration. [33].

For the randomly connected model, the projection from grid cells to interneurons was initial-
ized randomly with a given sparsity and not updated (Figure 4.3 top), while the sparse back-
projection from grid cells to interneurons was learned by the NMF algorithm (Figure 4.3 bot-

tom).

These different synaptic configuration lead to different predictions of the firing patterns of in-
terneurons. Similar to the study of Pastoll at al.[33], I-surround and E-surround configuration
of fully factorized model caused interneurons to have grid and anti-grid pattern, respectively,
while interneurons in randomly connected model would be fired with a less patterned activity

because they received input from grid cells of randomly phases.

23
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Figure 4.1: I-surround synaptic connectivity of fully factorized model. Visualization of the
activated neurons on the grid neural sheet which projected to one interneuron (top) and the
inhibited grid cells received input from one interneuron (bottom). Eight examples for each case
were randomly selected from a network with 256 grid cells and 26 interneurons. Each interneu-
rons received inputs from a “ring” of grid cells and back-projected to a “bump” of grid cells.
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Figure 4.2: E-surround synaptic connectivity of fully factorized model. Visualization of the
activated neurons on the grid neural sheet which projected to one interneuron (top) and the
inhibited grid cells received input from one interneuron (bottom). Eight examples for each case
were randomly selected from a network with 256 grid cells and 26 interneurons. Each interneu-
rons received inputs from a “bump” of grid cells and back-projected to a “ring” of grid cells.
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Figure 4.3: Synaptic connectivity of randomly connected model. Visualization of the activated
neurons on the grid neural sheet which projected to one interneuron (top) and the inhibited
grid cells received input from one interneuron (bottom). Eight examples for each case were
randomly selected from a network with 256 grid cells and 256 interneurons. Grid cells and in-
terneurons in the network connected with each other in a random manner.
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4.2 Interneurons in I-surround configuration fully factorized

model

As predicted, interneurons in I-surround configuration network had regular hexagonal firing
pattern and also had a higher firing rate and a lower sparsity score than grid cells in the same
network (Grid field variation, CV: 0.04 + 0.02;gridness score, interneurons: 1.10+0.10, grid cells:
1.09+0.12, P = 0.57, t-test; firing rate, interneurons: 2.74 + 0.56 Hz, grid cells: 0.26 +0.04 Hz,
P < 0.001, z-test; spatial sparsity , interneurons: 0.49 +0.05, grid cells: 0.58 +0.05, P < 0.001,

t-test; Figure 4.5.)

The grid field variation increased as the variance of the place cells input increased, and gridness
score of grid cells dropped accordingly while interneurons remained stable under the situation
of high grid field variance (Grid field variation, CV: 0.57 + 0.24; gridness score, interneurons:
1.09 + 0.15, grid cells: 0.92 +0.26, P < 0.001, ¢-test; firing rate, interneurons: 3.53 + 0.80 Hz,
grid cells: 0.34 +0.13 Hz, P < 0.001, t-test; spatial sparsity, interneurons: 0.55 + 0.05, grid cells:
0.75+0.05, P <0.001, ¢-test;Figure 4.6.)
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Figure 4.4: Spatial sparsity and grid score for simulated interneurons and grid cells in I-surround
configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid cells with
low gridness score (< 0.3)
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Figure 4.5: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons

(bottom) in I-surround configuration fully factorized model with low grid field variation.
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Figure 4.6: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in I-surround configuration fully factorized model with high grid field variation.
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4.3 Interneurons in E-surround configuration fully factorized

model

E-surround configuration network causes interneurons to have anti-grid pattern (Figure 4.8).
Other properties of both grid cells and interneurons were similar to the I-surround configura-
tion except the mean firing rate of interneurons was significantly greater than grid cells (Grid
field variation, CV: 0.05 + 0.02; gridness score, interneurons: 0.68 + 0.16, grid cells: 1.14 +0.11,
P <0.001, ¢-test; firing rate, interneurons: 21.75 + 3.47 Hz, grid cells: 0.26 + 0.05 Hz, P < 0.001,
t-test; spatial sparsity , interneurons: 0.17 + 0.03, grid cells: 0.57 +0.05, P < 0.001, ¢-test; Figure
4.8.)

In the scenario of high grid field variation, the anti-grid pattern of interneurons were still stable
while grid cells lost their gridness gradually (Grid field variation, CV: 0.55 + 0.24; gridness score,
interneurons: 0.62+0.17, grid cells: 0.88+0.22, P < 0.001, ¢-test; firing rate, interneurons: 27.06+
5.13 Hz, grid cells: 0.34 £ 0.14 Hz, P < 0.001, ¢-test; spatial sparsity , interneurons: 0.21 +0.04,
grid cells: 0.75+0.06, P < 0.001, ¢-test; Figure 4.9.)
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Figure 4.7: Spatial sparsity and grid score for simulated interneurons and grid cells in E-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)
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Figure 4.8: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in E-surround configuration fully factorized model with low grid field variation.
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Figure 4.9: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in E-surround configuration fully factorized model with high grid field variation.
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4.4 Interneurons in randomly connected model

Interneurons in randomly connected model fired in a more diverse manner than in fully factor-
ized model since the patterns of interneurons were inherited from random grid cells with var-
ious phases (Grid field variation, CV: 0.01 + 0.01; gridness score, interneurons: 0.69 +0.26, grid
cells: 1.13+£0.08, P <0.001, ¢-test; firing rate, interneurons: 0.39 £ 0.07 Hz, grid cells: 0.09 + 0.02
Hz, P < 0.001, ¢-test; spatial sparsity, interneurons: 0.05 + 0.03, grid cells: 0.64 + 0.05, P < 0.001,
t-test;). In a small possibility, if one interneuron integrate input from grid cells shared similar
phases, then that interneuron could have a regular hexagonal (Figure 4.11) or reverse hexag-
onal pattern. But in most cases, grid cells with various phases projected to one interneurons,

resulting in periodic but not hexagonal patterns (Figures not shown).

In the case of high grid field variation, the firing patterns of interneurons became aperiodic, in
agreement with the experimental data reported by Buetfering et al. [35] (Grid field variation,
CV: 0.38 + 0.28; gridness score, interneurons: 0.18 +0.30, grid cells: 0.77 +0.24, P < 0.001, ¢-
test; firing rate, interneurons: 0.60 + 0.11 Hz, grid cells: 0.09 + 0.02 Hz, P < 0.001, ¢-test; spatial

sparsity, interneurons: 0.17 + 0.04, grid cells: 0.84 £0.06, P < 0.001, ¢-test; Figure 4.12).
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Figure 4.10: Spatial sparsity and grid score for simulated interneurons and grid cells in randomly
connected model. Blue: interneurons, Red: grid cells, Gray: grid cells with low gridness score

(<0.3)



4.4. INTERNEURONS IN RANDOMLY CONNECTED MODEL 37

Ratemap [0.000/0.614]

Gridness Score = 1.166556

!Max

Min

Min
Ratemap [0.225/0.707] M Gridness Score = 1.051914
ax . - ‘ b N Max
’

-~ h, ..N
: 'e ol . ~
N, Yoy T
L T T
W, 0y 'S
S ITA T
- ; . v

Min L - Min

Figure 4.11: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in randomly connected model with low grid field variation.
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Figure 4.12: Rate maps (left) and autocorrelograms (right) of grid cells (top) and interneurons
(bottom) in randomly connected model with High grid field variation.
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4.5 Gridness score and grid field variation

The gridness scores of both grid cells and interneurons were plotted as a function of grid field
variation for all three synaptic connectivities. Grid field variation was manipulated by increasing

the variance of the place cells input to the grid cells, as stated in Method section.

On the one hand, interneurons in randomly connected model had the same trend as grid cells

and lost the grid pattern in high field variation situation (Figure 4.13).

One the other hand, for both I-surround and E-surround fully factorized model, gridness score
of grid cells decreased as the variance increased while interneurons remained stable (Figure

4.14).

It should be noted that the average gridness scores in both E-surround fully factorized model
and randomly connected model were lower than the ones in I-surround fully factorized model.
This was probably due to the calculation of gridness score were only optimal for hexagonal pat-
tern but not for anti-grid pattern, so that the gridness score cannot reflect the true degree of

periodicity of cells for the anti-grid interneurons in E-surround fully factorized case.
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Figure 4.13: Randomly connected model. Gridness score of both grid cells and interneurons
decreased as grid field variation increased. In the situation of low grid field variation, interneu-
rons in this configuration possessed mix patterns, such as grid, anti-grid and other periodic but
not hexagonal firing pattern, resulting in the average gridness score around 0.7.
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Figure 4.14: I-surround (top)/ E-surround (bottom) confuguration fully factorized model. In-
terneurons stayed stable in high grid field variation situation.
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4.6 Grid field variation in experimental data

75 grid cells from Stensola et al [10] were analyzed to see if there is any connection between
gridness score and grid field variations (Grid field variation, CV: 0.33+0.17; gridness score: 1.00+
0.22). As shown in Figure 4.15, gridness score of grid cells were negative correlated with the
coefficient of variance of grid field peak firing rate. The slope (8 = —0.43) of the linear regression

line are significantly different from 0 (t-test, P < 0.01).

Since the data clustered into 4 different modules (module 4 is excluded due to small sample
size), we also investigated if the same trend preserved in each module (module 4 was excluded
due to small sample size). As indicated in Figure 4.16 and 4.17, all three modules showed a
slightly negative correlation between gridness score and grid field variation, however, all slopes
(ﬁmodulel =-0.21, ﬁmoduleg = -0.49, ,Bmodule 3 = —0.24) of the linear regression lines are not sig-

nificantly different from 0 (t-test, P > 0.05).
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4.7 Drift

Here we used drift or drift velocity as a measure to evaluate the stability of different implemen-
tations of our two population model of grid cells. Drift in the network was measured by the
average distance (over 200 repetition) that the activity on the neural sheet shifted during 100

time steps, starting from a random initial position.

As indicated in Figure 4.18, drift in the fully factorized model dropped exponentially as the ratio
of the number of interneurons to grid cells and the size of the network was increased. For the
case of randomly connected model, where interneurons received random input from grid cells,

the network required a considerably higher proportion of interneurons to ensure a stable grid

pattern.
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Figure 4.18: Drift. X-axis represented the gridness score, Y-axis the drift velocity (the unit of the
drift velocity is neuron/time step, then normalized by the length of the neural sheet).
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4.8 Path Integration

In this section, we explored the capacity of the two population model to perform path integra-

tion.

Both I-surround and E-surround fully factorized models with 64 x 56 grid cells and 200 interneu-
rons could path integrate accurately over 150000 time steps (Figure 4.22 and 4.23). However, the
randomly connected model with 64 x 56 grid cells and 64 x 56 x 20 interneurons was not able
to form hexagonal patterns due to the accumulation of drift over time. Further investigation is
needed to determine how many interneurons in the randomly connected model are required to

lower the drift to the level so that path integration could be performed accurately.
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Figure 4.19: Spatial sparsity and grid score for path-integrated interneurons and grid cells in I-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)
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Figure 4.20: Spatial sparsity and grid score for path-integrated interneurons and grid cells in E-
surround configuration fully factorized model. Blue: interneurons, Red: grid cells, Gray: grid
cells with low gridness score (< 0.3)
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Figure 4.21: Spatial sparsity and grid score for path-integrated interneurons and grid cells in
randomly connected model. The process of path integration was unsuccessful in this simula-
tion. Blue: interneurons, Red: grid cells, Gray: grid cells with low gridness score (< 0.3)
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Figure 4.22: Accurate path integration in I-surround configuration fully factorized model.
Top: grid cell; Bottom: interneuron.
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Figure 4.23: Accurate path integration in E-surround configuration fully factorized model.
Top: grid cell; Bottom: interneuron.
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Figure 4.24: Failed Path integration in randomly connected model. Top: grid cell; Bottom:
interneuron.



5 Discussion and Conclusion

In this thesis, we explored the firing properties of interneurons in a two population grid cell
model using nonnegative matrix factorization. We investigated different implementations of
the two population model which lead to two opposite speculations of how grid cells and in-

terneurons could be wired together in the recurrent inhibitory network:

e In the fully factorized model, the connectivity between grid cells and interneurons was
well-structured: either I-surround configuration, that is, each interneuron received input
from a “ring” of grid cells then backprojected to a “bump” of grid cells with similar grid
phases, or E-surround configuration, i.e. each interneuron was recruited by many grid
cells with similar spatial selectivity then inhibited other grid cells arranged in a ring on the
neural sheet. In either case, the firing patterns of both grid cells and interneurons main-
tained a high degree of periodicity, and the proportion of interneurons could be signifi-
cantly less than grid cells in the same network, for example, a network with interneurons

account for less than 5% of total cells population could path integrate accurately;

* In the randomly connected model, the grid cells and interneurons were connected with
each other in a random manner but resulted in the effective inhibitory connectivity. The
two population network produced aperiodic firing interneurons similar to recordings when
the peak firing rates of grid cells varied, however, a considerably larger proportion of in-
terneurons was required to reach the level of network stability for path integration without

spatial input as error correction.
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Furthermore, we analyzed experiment data of 75 grid cells from a single freely behaving animal
and found that the relationship between gridness score and grid field variation was consistent
with the above models, that is, gridness score decreased as the grid field variation increased,
when all data points were used. The same result did not hold true when we split the data into
four modules, probably due to the small sample size for each module. Also, it should be noted
that the true values of peak firing rate of grid fields were likely affected by the degree of smooth-
ing when constructing the rate maps. So that, future experiments with better coverage should
permit more accurate measurements. In our analysis, the expected variation in fields did vary
considerably from cell to cell, so that the experimental data could be fit into both fully factorized
model and randomly connected model. In both cases, the firing patterns of interneurons were
inherited from the directly connected grid cells. Given that interneurons were recruited by grid
cells with similar phases, even if the grid fields peak firing rates of those grid cells varied, the
resulting patterns were still hexagonal. By contrast, majority of interneurons in randomly con-
nected model integrated inputs from grid cells with various phases, the firing pattern of those
interneurons would depend on the degree of both phase variability and the grid field peak firing
rates variability, resulting in low spatial sparsity and aperiodic firing patterns similar to experi-

mental observation.

5.1 How were grid cells and interneurons wired together?

The randomly connected model seem biologically impossible in the first glance. Even though
interneurons in this scenario showed aperiodic firing patterns similar to experimental obser-
vation [35], the amount of interneurons required to drive the network was at odd with the fact
that the estimated number of interneurons was roughly around 13% to 16% of total neural pop-
ulation in layer II of MEC [27, 45, 46], while, the amount of stellate cells was account for 55%
to 67% [27, 45, 47]. However, there is one question needs to be answered, that is, how many of
these stellate cells are grid cells? Currently, published data were contradicted with each other
dramatically, ranging from just 3% [47] to more than 50% [6, 46]. In this sense, the randomly

connected model was not completely hopeless if the exact amount of stellate cells as grid cells
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were small.

Moreover, the potential of the randomly connected model were not exhausted in this thesis. For
one thing, we still need to explore how many interneurons were enough to path integrate accu-
rately in this scenario. As shown in section 4.4, some interneurons still possessed high spatial
periodicity. How many interneurons had grid-like firing in this model? Were those interneurons
playing a more important role than others, such as having more synaptic weight to grid cells? If
we eliminate those high periodic interneurons, can the network still perform path integration,

or otherwise, can this network path integrate only with those high periodic interneurons?

The last question raised a possibility that the randomly connected model was effectively the
fully factorized model with most of the interneurons not providing any role. It was likely that the
continuous attractor network in our randomly connected network was supported primarily by
the few interneurons that, by chance, receive projections such that they do have periodic firing
fields. This could be perceived as a weakness of this model, however, at the same time, it fur-
ther demonstrated that the number of interneurons necessary to maintain this pattern was so
few that even with just random connectivity the phenomenology can be maintained. Although
the interneurons in the fully factorized model were not like the majority of those recorded in
experiment [35], the simulated result suggested that a surprisingly small amount of interneu-
rons would be sufficient to drive the network. Interestingly, more than 3 out of 140 interneurons
sampled in the experiment showed grid-like firing and have low spatial sparsity similar to grid
cells (see Supplementary Figure 3 in [35]). Further experimentation should help to determine if
those periodic interneurons in [35] were just noise due to experimental error, or there are really

small amount of periodic firing interneurons as predicted by the fully factorized model.

Taken the results of simulation and data analysis together, we proposed the following synap-
tic configuration of two population grid cell network: grid cells and interneurons connected
with each other in a random manner and produced the effective inhibition required for con-
tinuous attractor network as a final result. A small proportion of interneurons were activated
by grid cells with similar phases, resulting in the hexagonal or anti-hexagonal firing pattern.

Those interneurons projected back to grid cells in the same network with a synaptic configura-
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tion similar to the ones of fully factorized models, and they probably had a stronger connection
strength than the rest of the population. Other interneurons, which were the majority of the
population, integrated input from grid cells with various phases, and due to those grid cells
tended to have different grid field variation, their firing patterns would become aperiodic and
have low spatial sparsity. These interneurons could feedforward to other places, or project back
to grid cells in the same network, however, since their connection strength were outweighed
by the well-structured hexagonal interneurons, they would play a smaller role in the network

mechanism.

For too long interneurons have been taken as simple mechanisms to keep the neural activity in
balance [21]. Stronger and stronger evidence is emerging supporting interneurons as integral
components of the neural code. However, in most grid cell models have considered only the
“functional connectivity”, excitatory neurons have received all the attention and the role of in-
terneurons was usually ignored. Here we demonstrate how this role could develop even if the
projections to the interneuron population were drawn at random, resulting in what would ap-
pear as a sparse interneuronal code with just a few, key interneurons shaping the activity of the
population of grid cells to emerge collectively into a neural code. With this in mind, the broader
context of this work could be the thought that a potentially small population of key interneurons
might be critical to this network, suggesting that we could disrupt the system disproportionately

through manipulation of these key cells.

In order to crack the neural computation of navigation, one needs to understand how specific
cell types contribute to this network mechanism. This work is our attempt to separate the roles

of excitatory and inhibitory neurons in the MEC circuit.

5.2 Future Directions

The two population model in this thesis focused on the interactions between grid cells and in-
terneurons. To test if this simplistic model would still hold true in a more biologically compli-

cated setting, the lateral connection between interneurons should be taken into consideration,



5.2. FUTURE DIRECTIONS 55

so were other external inputs onto interneurons, such as velocity input or other neuromodu-
lation. Furthermore, another important thing that was left out in this thesis was the interac-
tions across layers within MEC and with other cells types such as border cells [7]. Also, it would
be informative if the two population model were implemented as a integrate-and-fire spiking
model, which could include a more detailed time-coordinated spike patterns and network os-

cillation.

Moreover, it would be interesting to develop a two population variation of the developmental
model of grid cells [48]. Since the amount of interneurons required in the fully factorized model
was so small, the synaptic connection needed to be learned between grid cells and interneurons
would also be considerably smaller than the one in the effective model, e.g. in a network with
100 x 100 grid cells, an effective model would have to learn 100 x 100 x 9999 synaptic connec-
tions while a two population with 500 interneurons only required 100 x 100 x 500 x 2 synaptic
connections. It would be interesting to see if the resulting synaptic connectivity between grid
cells and interneurons were similar to the ones of nonnegative matrix factorization, and to see
where would the limit of number of interneurons in the network be which could produce grid

cells with confined grid pattern.
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A.1 Grid cell data
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Figure A.1: Rate map and autocorrelogram of all grid cells included in data analysis. Part 1.
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A.2 Tetrode recording locations

Rat: 14147

10000 m

Figure A.9: The red arrow in this Nissl stained sagittal sections indicted the recording location
of grid cells. The number of grid cells (n) and the number of modules (M]) associated with each

tetrode track (TT) is shown
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Summary

The hexagonal firing pattern of entorhinal grid
cells [1] could arise from a competitive mecha-
nism mediated by interneurons [2, 3, 4]. Here
we asked if a two-population continuous attrac-
tor model [5, 6], consistent with the proposed
inhibitory connectivity pattern, could maintain
grid cell firing even if interneurons (a) comprise
less than 20% of the neural population and (b)
lack spatial periodicity, as was recently observed
in a sub-population of entorhinal interneurons
[7, 8].

First, using non-negative matrix factoriza-
tion (NMF) [9], we constructed two-population
models with varying numbers of interneurons
while maintaining the same effective connectiv-
ity between grid cells. Surprisingly, network
drift decreased exponentially with the number
of assumed interneurons and networks having
less than 10% interneurons were able to accu-
rately path integrate. The resulting connectiv-
ity was patterned with each interneuron receiv-
ing projections from either many grid cells with
similar spatial selectivity or cells that together
formed an inverted grid pattern. In both cases,
grid cells with inhomogeneous peak firing rates
had lower grid scores than the corresponding
interneurons. Interestingly, thought to be out-
liers, a small number of interneurons with both
high grid scores and spatial sparsity have also
been observed experimentally [7].

Second, we considered a network where the
connections from grid cells to interneurons were
fixed to sparse random values, while back pro-
jections were found using NMF. In this case, the
spatial selectivity of interneurons decreased dra-
matically as the variance in grid field firing rates

was increased. Although this network produced
aperiodic interneurons similar to recordings, a
considerably larger proportion of interneurons
was required to reach the same level of stability
which did not decrease exponentially as in the
fully factorized case.

Further experiments should be able to deter-
mine if reality falls somewhere on the spectrum
between these two simple cases.

Additional details

We let each grid cell, s;, and interneuron, wu;, fol-
low the dynamics of a simple firing rate model

dSi
T%—l—si:g(zj JijUj+It)+ (1)
(2)

dui
T +u; = g(zj Kiij)Jr

where (.); is the threshold-linear function, g the
gain, 7 the neuronal time constant, and J;; and
K;; the strength of connection from interneu-
rons to grid cells and grid cells to interneurons,
respectively. For the drift calculations I; is a
constant external input, while for the path in-
tegration tasks we include a term that depends
on the time-varying speed, v;, and direction 6;,
I, = constant + v, cos (Ht — 0;), where « is
the velocity modulation and 6; the preferred
direction. To determine how spatial periodic-
ity of the interneurons changes with respect to
the variance in spatial fields of the grid cells,
we included a population of neurons with place
cell-like coding and excitatory projections to the
grid cells I; = constant + > H;;Pj(t). The
grid field peak rates were varied by drawing the
strengths of the connections, H;;, from a distri-
bution with increasing variance.

*Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU
TFaculty of teacher and interpreter education, Ser-Trgndelag University College (HiST)



To determine possible connectivity patterns
corresponding to the inhibitory portion of an
effective connectivity, Wj;;, between principal
cells, we note that, at equilibrium, dd“ti — 0
and we have Zj Jijuj = gzj Jij > op Kjsi =
>_; Wijsj. We can therefore find solutions to
the problem W;; = ", J; K; for different num-
bers of interneurons using techniques from non-
negative matrix factorization [9]. Asin [2, 3, 4],
we assumed a purely inhibitory connectivity
with I/VZ']' = W(]H(Rmax - dl])H(dU - Rmin)7
where H(.) is the Heaviside function, R, the
outer ring of the radial extent of the connectiv-
ity, Rmin the inner ring, Wy the strength of the
inhibitory interactions between connected neu-
rons and d;; the distance between cell i and j,
di; = (v; — x; — lcost;)® — (y; — y; — Isinb;)?
withz; =1... Ny andy; = 1... N, representing
the position of neuron ¢ in a two dimensional
N, x N, neural sheet with periodic boundary
conditions and spatial offset [. For the networks
with random projections to interneurons, each
grid cell projected to each interneuron with a
probability of 0.2. The strength of each connec-
tion was taken as the absolute value of a ran-
dom number drawn from a normal distribution
of variance 0.1. Using different values for the
variance and sparsity of the random connections
did not qualitatively change the results in figure
1.

For path integration we used N, = 64, NV, =
56, 1 =4, I,y = 0.1, Wy = —=0.1, Rpez = 20,
R,.in = 15 and no spatial input. To evaluate
how the drift depends on the size of the in-
hibitory population, we used a smaller model
on a twisted torus [10] with N, = 16, N, = 13,
[=0and v, =0.

o—o0

Fully factorized model
o Random connectivity model

107 -

Drift

10 100 1000

Number of interneurons

Figure 1: Drift. In the fully factorized case,
drift decreased exponentially with the number
of interneurons. For the case where interneu-
rons received random input from grid cells, the
network required a considerably higher propor-
tion of interneurons to ensure a stable grid pat-
tern. The relative proportion of interneurons
necessary to acquire the same level of drift in
the fully factorized model continued to decrease
for larger networks of grid cells (not shown).
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