
A hybrid numerical model for multiphase fluid flow in a deformable porous medium 

S. A. Ghoreishian Amiri1,2*, S. A. Sadrnejad2, H. Ghasemzadeh2 

1 Norwegian University of Science and Technology (NTNU), Trondheim, Norway 
2 Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran 

Abstract 

In this paper, a fully coupled finite volume-finite element model for a deforming porous medium 

interacting with the flow of two immiscible pore fluids is presented. The basic equations describing the 

system are derived based on the averaging theory. Applying the standard Galerkin finite element method 

to solve this system of partial differential equations does not conserve mass locally. A non-conservative 

method may cause some accuracy and stability problems. The control volume based finite element 

technique that satisfies local mass conservation of the flow equations can be an appropriate alternative. 

Full coupling of control volume based finite element and the standard finite element techniques to solve 

the multiphase flow and geomechanical equilibrium equations is the main goal of this paper. The 

accuracy and efficiency of the method are verified by studying several examples for which analytical or 

numerical solutions are available. The effect of mesh orientation is investigated by simulating a 

benchmark water-flooding problem. A representative example is also presented to demonstrate the 

capability of the model to simulate the behavior in heterogeneous porous media. 

Keywords: Multiphase flow, Geomechanic, Hybrid solution, Fully coupled model 

1. Introduction 

Numerical simulation of multiphase fluid flows and mass transports in a deforming porous medium is of 

great interest in widely different fields of engineering. Areas of application include hydrocarbon 
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reservoirs analysis [1], soil contamination problems [2], land subsidence due to ground fluids pumping 

[3] and consolidation analysis of partially saturated soils [4]. The governing equations of this system can 

be derived within the framework of averaging theory [5, 6] and consist of the conservation equations of 

mass and linear momentum in addition to appropriate constitutive and state equations. 

Coupled multiphase hydro-mechanical problems have been modeled using a number of different 

numerical approaches which provide specific benefits for their intended fields of application (e.g. [3, 4, 7-

19]). Sequential coupling of a multiphase flow finite difference (or finite volume) simulator with a finite 

element stress simulator is widely used in the field of reservoir engineering (e.g. [10, 12, 20]). Sequential 

coupling of different codes offers wide flexibility in software development perspective and can be less 

costly than a fully coupled scheme from the computational standpoint [15]. However, accuracy, stability 

and convergence properties of the solution can be affected by this kind of coupling [21]. In addition, since 

the physical discretization of two separate simulators can be different, a certain mapping of solutions 

might be required. 

Full coupling of flow-deformation processes has the advantages of unconditional stability and internal 

consistency as the full system of the equilibrium and continuity equations are solved simultaneously. The 

Galerkin-type finite element method is usually employed for spatial discretization of the flow-

deformation equations (e.g. [3, 4, 7-9, 11, 14, 21, 22]). Despite the advantages of this method in dealing 

with complex geometries and unstructured grids, it does not conserve mass locally and can produce some 

nonphysical oscillations.  

Considering the different types of differential equations in coupled flow and deformation processes, i.e. 

elliptic displacement equation and parabolic pressure equation, hybrid methods of different numerical 

schemes can be employed to fulfill the requirements of each type of the equations. As already mentioned, 

there are several hybrid models in the literature proposed for sequential coupling, whereas a few hybrid 

approaches have been reported regarding the fully coupled methods. 



To satisfy local mass conservation in the fully coupled solution of flow-deformation problems, some 

researchers proposed a hybrid solution with the mixed finite element discretization for flow and the 

Galerkin finite element method for deformation equations [16, 23-25]. The mixed finite element method 

is known to satisfy local conservation of mass and is able to deal with complex geometries and 

heterogeneities. The main difference of this method is that the velocity field is considered as a primary 

unknown variable rather than obtaining from the pressure solution. Although, the direct calculation of the 

velocity field provides more accurate description of the velocity solution, but increasing the number of 

primary unknowns results in a larger system of algebraic equations and thus, the computational cost could 

be the issue which may make the method inefficient.  

In this paper, to reduce the number of primary unknowns in a fully coupled flow- deformation problem, 

the mixed finite element solution is proposed to be replaced by the control volume based finite element 

method. The control volume based finite element method is widely used in multiphase flow simulations 

(e.g. [26-33]). It combines the mesh flexibility of the finite element method with the local conservative 

characteristic of the finite volume scheme at the level of control volumes. The proposed method has the 

advantages of the mixed finite element solution in satisfying the mass conservation principle and in 

dealing with complex geometries and material discontinuities, but it is less costly from the computational 

standpoint, since the velocity filed is not included in the primary unknown variables. However, separate 

approximation of the pressure and velocity variables in the mixed finite element method, in general, 

provides more accurate flow results than the control volume based finite element method with the same 

number of elements. 

The efficiency comparison between the mixed and control volume based finite element solution of the 

flow equations has been reported by Durlofsky [34]. Through several numerical examples, he showed that 

for systems with moderate degree of heterogeneity, the control volume based finite element method is the 

more computationally efficient alternative. It means that for a given number of unknown variables, it 

provides more accurate flow results. While, for higher degree of heterogeneity, for instance in sand/shale 



systems, the mixed finite element method has been shown to predict more accurate results for flow 

equations than the control volume based finite element method with the same number of unknowns. 

In this study, a hybrid solution with combining the control volume based finite element and the standard 

Galerkin finite element schemes is presented for full coupling of the multiphase flow and deformation 

equations. The capability of the flow solution for solving two-phase flow equations in highly 

heterogeneous porous media containing discontinuous material properties has been discussed in details in 

[32]. This method represents the discretized form of the equations at the level of elements, and 

consequently, similar to the classical finite element method, the complete system of algebraic equations 

can be obtained by assembling the element-wise equations. Effects of grid orientations and the application 

of the flow model for solving the black oil equations have been presented in [33]. 

2. Governing equations 

The system of concern is a mixture of a deformable porous medium saturated with two (wetting and non-

wetting) immiscible fluids. The system is described as the superposition of all phases, i.e. in the actual 

configuration, any spatial point ( )x  in the domain spanned by the solid skeleton is simultaneously 

occupied by material points ( )X  of all phases, while, the motion state of each phase is described 

independently. 

Macroscopic state parameters and balance equations are obtained by integrating their microscopic 

counterparts based on the local averaging theory introduced by Hassanizadeh and Gray [5, 6]. In deriving 

the balance equations, the Lagrangian form is used for the solid skeleton, while motion of the fluid phases 

are described relative to the motion of the solid skeleton, i.e. the Eulerian form of the balance equations 

with respect to the motion of the solid skeleton are used for the fluid phases. Therefore, relative velocities 

of the fluids should be described referring to the motion of the solid skeleton: 

,     s s    w v v   (1) 



where w  is the relative velocity of phase   with respect to the solid skeleton, v  and sv  are the absolute 

velocities of phase  and solid skeleton, respectively. Moreover, the material time derivative of any 

differentiable function ( , )f t x , given in its spatial description, should be referred to the solid skeleton: 
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where 
( )sD f

Dt
  indicates the material time derivative of function f  (in phase  ) with respect to the solid 

skeleton and   denotes the vector gradient operator. 

In the following, quasi static condition with irrotational velocity field in addition to small displacements 

and displacement gradients are assumed. So, the following expressions are considered: 
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where f  is an arbitrary differentiable function, x  denotes the spatial coordinate, X  stands for the 

material coordinate, u  is the displacement vector of the solid skeleton, T  indicates the divergence 

operator, and ε  , L  and Tm  are defined as: 
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where a superscript T  refers to transpose. Note that throughout this paper, compressive stress and strain 

are assumed to be positive. 

2.1. Mass balance equations 

The mass balance equation for the solid phase can be written as: 
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where s  is the solid phase density and n  is the porosity of the medium. Substituting equation (4) into 

equation (9), variation of the porosity can be expressed by: 

(1 ) Tdn n d   m ε  (10) 

Similarly, the mass balance equations for wetting and non-wetting fluid phases can be written as: 
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where n  represents the volume fraction of phase   and M
  is the source/sink term. The relative 

velocities of the fluids can be described with the generalized Darcy’s law: 
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where g  is the acceleration vector due to gravity, p  denotes the fluid pressure in phase   , K  is the 

absolute permeability tensor,   stands for the dynamic viscosity of phase   and rk   is the relative 

permeability of phase  . The relative permeability of each phase can be expressed by [35]: 
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where wsatn  is the volume fraction of the wetting phase at zero suction, wresn  is the residual volume 

fraction of the wetting phase at very high suction,   is a fitting parameter related to the pore size 

distribution and subscripts w  and n  refer to wetting and non-wetting phases, respectively. 

Another equation can be derived by considering the fact that when two fluid phases flow in a porous 

medium, flow of each phase is affected by the other phase. The most practical method for considering this 

interacting motion is to use empirical correlations relating the capillary pressure ( c n wp p p  ) to the 

volume fraction of the wetting phase [36]. In this paper, the relation proposed by Brooks and Corey [37] 

is employed: 
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where dp  is the displacement pressure for the non-wetting phase and   is the fitting parameter 

introduced in the relative permeability relations (Eqs. 13 & 14). In addition, It is assumed that the entire 

pore spaces are filled up with the fluids, i.e. 

w nn n n   (16) 

Differentiating (15) and (16) with considering (10), one can obtain: 
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Substituting equations (4), (5), (12), (17) and (18) into equation (11), the final form of the flow equations 

are obtained: 
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The last term in the left-hand side of equations (19) and (20) shows the dependency of the flow pattern on 

the deformation of the solid skeleton. 

2.2. Linear momentum balance equations 

The linear momentum balance equation for the solid phase can be written as: 
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where st  is the inter-granular stress and s
sT  represents the rate of the linear momentum transferring to the 

solid phase due to its mechanical interaction with the motion of phase  . Similarly, the momentum 

balance equations for wetting and non-wetting fluid phases can be written as: 
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where 
T  represents the rate of the linear momentum transferring to phase   due to its mechanical 

interaction with phase  . The total linear momentum transferring from   to   is always equal to that 

from   to  , i.e. 
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Considering equation (23), the momentum balance equation for the whole system can be obtained as the 

sum of equations (21) and (22): 
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where   and σ  are defined as [38]: 
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where σ  is defined as the effective stress of the multiphase medium. It is assumed that the effective 

stress is responsible for all major deformations in the solid skeleton and can be linked to its strain by 

means of a constitutive relation: 

Td d σ D ε  (27) 

where TD  is considered as the tangential stiffness matrix. 

Based on the assumptions of this study, acceleration terms of equation (24) and also the terms that depend 

on the gradient of the fluid velocity can be neglected. Time differentiating of the remains with 

considering equations (5), (10), (17), (18), (26) and (27), the final form of the linear momentum balance 

equation can be obtained: 
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2.3. Initial and boundary conditions 

Equations (19), (20) and (28) represent a system of highly nonlinear and strongly coupled partial 

differential equations defined on a domain   bounded by the boundary  . The fluid pressures ( &w np p ) 

and skeleton deformations ( u ) are selected as the primary unknown variables. In order to complete the 

system of equations, the initial and boundary conditions associated with the primary variables should be 

defined. The initial conditions should specify the full field of fluid phase pressures and skeleton 

deformations at time 0t  : 
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The Dirichlet boundary conditions are imposed as the prescribed values of the primary variables on the 

boundaries: 
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and the Neumann boundary conditions are imposed as the prescribed fluxes and tractions: 
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where wq  and nq  are the imposed mass fluxes of wetting and non-wetting phases, respectively, t  is the 

imposed traction, n  denotes the unit outward normal vector to the boundary: 

T
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and the matrix l  is defined as: 
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The conditions of u t    , 
w wp q     and 

n np q     should hold on the complementary parts of 

the boundary. 

3. Numerical solution 

As mentioned earlier, in this study, a control volume based finite element scheme is employed for spatial 

discretization of the fluid equations, while the standard Galerkin finite element method is used for the 

equilibrium equation. Hexahedral elements are employed for discretization of the physical domain and the 

numerical solution is implemented by expressing the primary unknown variables ( , , )w np pu  in terms of 

their corresponding nodal values ( , , )w nU p p : 

,      ,      w w n np p  u NU Np Np  (34) 

where N  represents the standard finite element shape functions for hexahedral elements. 



3.1. Fluid equations 

In order to create the computational control volumes around the nodes of the finite element mesh, the 

centroids of the elements in the transformed space are joined to the midpoints of the corresponding sides 

(Fig. 1). Integrating equations (19) and (20) over a control volume, applying Gauss’s theorem, using the 

interpolatory representation of the primary unknown variables (Eq. 34) and implementing the boundary 

conditions (Eq. 31), the weak form of the mass balance equations can be derived as: 
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where C.V.  indicates the domain of a control volume bounded by C.V. , and ( )B LN  is the strain-

displacement matrix. 

Equations (35) and (36) present the discretized form of the mass balance equations at the level of control 

volumes. In order to represent the equations at the level of elements, each control volume around a node 

should be divided to number of sub-control volumes, each sub-control volume belongs to a specific 

element associated with the node (Fig. 2). Similarly, each face of a control volume should also be divided 

to sub-control volume faces. Integration over a control volume or a control volume face can be calculated 

by summing up the individual integrations over the associated sub-control volumes or sub-control volume 

faces, accordingly. Hence, discretized form of the equations are represented at the level of elements and 

the complete form of the balance equations can be obtained by assembling the element-wise formulation 

similar to the classical finite element method. The element-wise representation of equations (35) and (36) 

are 



s s s
w n

ww w ww wn wn w

D D D

Dt Dt Dt
   

p p U
P p P C C f  (37) 

s s s
w n

nn n nw nn nu n

D D D

Dt Dt Dt
   

p p U
P p C P C f  (38) 

where the coefficients are described as: 

S.C.V. qw

.

TT

T rw
ww w

w

k
d

 

        
   


K

P W N n  (39) 

S.C.V. qn

.

TT

T rn
nn n

n

k
d

 

        
   


K

P W N n  (40) 

e

T w
ww w w w

w

d
n n d

dp

 


 
   

 
P W N  (41) 

e

T n
nn n n w

n

d
n n d

dp

 


 
   

 
P W N  (42) 

 
e

T
wn w wn d


 C W N  (43) 

 
e

T
nw n wn d


 C W N  (44) 

 
e

T T
wu w wn d


 C W m B  (45) 

 (1 )
e

T T
nu n n nn n d 


   C W m B  (46) 

q S.C.V. qw w

2 .
e

T

T T Trw
w w w w

w

k
M d q d d

   

  
       

   
  

K
f W W g n W  (47) 

q S.C.V. qn n

2 .
e

T

T T Trn
n n o n

n

k
M d q d d

   

  
       

   
  

K
f W W g n W  (48) 

where e  and S.C.V.  indicate the domain of the elements and the boundaries of the sub-control volumes, 

respectively, and W  is the vector of weighting functions. The weighting functions in this method are 



chosen such that the ith weighting function of an element takes a constant value of unity over the sub-

control volume associated with node i and zero elsewhere in the element (Fig. 3), i.e.  

1        in the sub-control volume belongs to node i

0             elsewhere                                               iW


 


 (49) 

Hence, the equations are presented at the level of elements, while calculations are actually performed at 

the control volume level. Consequently, discontinuity of the velocity field between adjacent elements 

does not affect the local conservative characteristic of the calculations over the control volumes (Fig. 4). 

3.2. Equilibrium equations 

Applying the standard Galerkin finite element discretization technique to equation (28) along with the 

boundary condition (Eq. 31), the discretized form of the equilibrium equation can be derived in the form 

of: 
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The Gaussian quadrature approach is employed for calculating the integrals in coefficients (39)-(48) and 

(51)-(54). 



3.3. Time discretization 

Since spatial discretization has been carried out, equations (37), (38) and (50) represent a set of ordinary 

differential equations in time: 
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The time discretization of the equations is performed by the fully implicit first order accurate finite 

difference scheme 

1 11 1

0 0

0 0

0 0 0

ww ww wn wu w w ww w

nw nn nn wn n n nn n

uw un uu un n nn n

t

t t t

  

          
                      
                

P P C C p f P p

C P P C p f P p

C C K U f U

 (56) 

where 1( )n nt t t    is the time step increment and 1 1(*) (*) (*)n n n    .  

Equation (56) represents a system of highly nonlinear algebraic equations which is solved using the 

Global Inexact Affine Invariant Newton Technique (GIANT) [39]. This requires calculating the residual 

and requiring it to vanish. To continue, equation (56) and its residual form are rewritten in the following 

simple format 
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Linearizing the residual using Taylor series expansion about X  and neglecting higher-order terms gives 
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X
 is called the Jacobian matrix. To complete the description of the solution, it is 

necessary to evaluate the Jacobian matrix. The complete form of the Jacobian is expressed as 
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However, due to classification and discussion made by Settari and Aziz [40], the following approximation 

of the Jacobian is generally enough for solving the system of the equations 
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Finally, it should be noted that the system of linearized equation may become ill-conditioned as the 

diagonal terms in uuK  can be many orders of magnitude greater than the terms in wwP  and nnP . Indeed, in 

case of very steep slope of the capillary curve, very small terms may appear in wnC  and nwC . To avoid ill-

conditioning it is possible to scale the various terms in equation (56). This approach is suggested by Reed 

[41] and successfully used in Lewis and Schrefler [42] and Sloan and Abbo [43]. 

4. Numerical examples 

In this section, the proposed model is verified by resolution of three 1D problems for which analytical or 

numerical solutions are available. Firstly, the flow side of the model is verified using the 1D Van Duijn 

and De Neef problem [44]. The coupled solution is then validated against consolidation problems of a soil 

column saturated with one and two immiscible fluids. The effect of mesh orientation is then investigated 

using a benchmark water-flooding problem. Finally, the solution of a five spot water-flooding problem in 

a highly heterogeneous deformable porous medium is presented as the last example.  

4.1. Van Duijn-De Neef problem 

Countercurrent flow of two immiscible fluids in a 1D horizontal domain of length 200 m is considered. 

The domain is composed of two rigid porous media with equal lengths. Impermeable boundary condition 

is applied at the both ends of the domain. The left-hand side (part 1) and the right-hand side (part 2) of the 

domain are initially saturated with the wetting and non-wetting fluids, respectively. Due to the contrast in 

capillary pressure at the interface, redistribution of the fluids is expected. In this example, two cases with 



different permeability and capillary pressure distribution are considered. In the first case, same properties 

for the two parts of the domain are assumed, whereas in the second case, more permeable medium with 

lower capillary pressure is used for part 1. The material properties and model parameters for both cases 

are listed in table 1. Van Duijn and De Neef [44] provide a semi-analytical solution for this problem. The 

numerical and semi-analytical solutions at different times are compared in figure 5, and reasonable 

agreements are achieved. However, since water saturation is calculated on the integration points of the 

associated sub-control volumes and then it is mapped to the nodes, and due to the difference of water 

saturation on the sides of the interface of parts 1 and 2, an averaged value of water saturation is obtained 

at the interface (point a in figure 5). 

The problem is also solved in [45] using a hybrid mixed finite element-discontinuous Galerkin scheme. 

Figure 6 represents their results for case 2. Comparing figures 5 and 6, it can be seen that the mixed finite 

element scheme provides more accurate results by using the same number of elements, i.e. 100 elements. 

However, using a more refined mesh of 200 elements for the proposed model, both methods produce 

almost same accuracy (figure 7). 

4.2. One dimensional-one phase consolidation problem 

This problem consists of a porous column bounded by rigid and impermeable walls, except on its top, 

where it is loaded by a pressure p , and free to drain. Initially, the pore pressure in the domain is zero, but 

upon loading, it jumps to the maximum value. Immediately after loading, the fluid in the domain should 

begin to drain through the drainage boundary. The relevant data for this simulation is illustrated in figure 

8. Analytical solution of this problem can be found in [46]. Figure 9 shows the comparison of the 

analytical and numerical solutions at different times, and well agreement is achieved. 

To investigate the convergence of the proposed model, a non-dimensional time scale ( *t ) is introduced 

and the problem is solved with different meshes and time step sizes 
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where E  and   are the elastic modulus and Poisson’s ratio of the soil matrix and H  is the length of the 

system. The problem is solved with fixed * 3.6 5t E    and uniform meshes of 5, 10, 20 and 40 elements. 

In addition, to check the t -convergence, the problem is also solved with a fixed uniform mesh of 20 

elements and time steps equal to * 3.6 3t E   , 1.8 3E  , 7.2 4E   and 3.6 4E  . Figure 10 shows the 

results of the convergence study. 

It should be noted that the spatial stability of fully coupled solutions in the very initial stages of 

consolidation problems, or generally whenever almost undrained conditions are encountered, is always an 

issue. The required stability condition for this kind of problems has been investigated by Vermeer and 

Verruijt [47], which required the time steps to be larger than a certain value, otherwise oscillation will 

occur. Upon further study, Wan [48] showed that the mechanism behind this oscillation is what is 

generally called the saddle point problem, where the solution is a stationary value. To change the saddle 

point nature of the equations to a parabolic problem, he proposed to add two stabilizing terms to the 

coefficient matrix. In this study, the stability condition proposed by Vermeer and Verruijt [47] is followed 

for determining the time steps of the simulations.  

4.3. One dimensional-two phase consolidation problem 

In order to examine the coupled behavior of the model at the presence of two phase fluid flow, a poro-

elastic soil column problem, presented by Li et al. [7], is considered. The soil column is saturated with 

two immiscible fluids and subjected to a step loading with a ramp between 0t   and 1t   second (Fig. 

11). The boundary conditions and the material properties of this simulation are also shown. Figure 12 

illustrates the distribution of pressure and vertical effective stress at different times. It shows that the 

results of the present model is in a reasonable agreement with those presented in [7]. 



4.4. Radial flow 

The problem analyzed in this section was originally proposed by Bajor and Cormack [49], and modified 

by Hurtado et al. [50] to evaluate the grid orientation effects in multiphase flow simulations, but it could 

be also appropriate to check the effect in a coupled geomechanics-multiphase flow simulator. The 

problem is schematically depicted in figure 13. The domain is initially oil saturated, and its initial 

pressure is equal to zero. The total pressure at the outflow boundaries is also equal to zero, so the 

following system of equations should be considered: 

(1 ) 0.w w
w o

n n
p p p

n n
     (63) 

c o wp p p   (64) 

These equations are iteratively coupled with the whole system to ensure the fulfillment of the above-

mentioned restrictions at the outflow boundaries. For the mechanical boundary conditions, it is assumed 

that displacements at the lower boundary of the domain are fixed to zero, while for the vertical 

boundaries, lateral displacements are fixed. The other relevant data of the simulation are listed in table 2. 

For a more sever example to investigating the grid orientation effects, the following relations are 

considered for the relative permeability functions [51]: 
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The problem is solved with two 20 20  regular and randomly distorted grids for both cases ( 2N   and 

3N  ). For the first case (i.e. 2N  ), the resultant water saturation fields after 0.2 PV (pore volume) of 

water injection are shown in figure 14. As shown in the figure, the results from the two meshes fitted 

reasonably well, with the predicted circle shapes for the water front showing minimal grid orientation 

effects. The water saturation contours for the second case (i.e. 3N  ) are illustrated in figure15. As 

shown in the figure, the shape of the water front deviated from the expected circle shape. Even with this 

instability of the water front, further investigation of the results for the water breakthrough time (figure 

16) shows that the results from the two meshes are in reasonable agreement with each other. 

4.5. Five spot water-flooding problem in a deformable continuous heterogeneous porous medium 

A quarter of a five-spot water-flooding problem in a deformable porous medium is considered in this 

example. The absolute permeability of the medium is defined by [52]: 

10log 7 sin(10 )sin(10 ) 0.7sin(3 )cos(6 ) 0.3sin(0.5 )sin( )K x y x y x y           (69) 

where / 300x x  and / 300y y . The physical domain, computational mesh and absolute permeability 

distribution are illustrated in figure 17. The initial and the mechanical boundary conditions of the 

reservoir are considered the same as those presented in section 4.4. Water is injected into the domain from 

the left well and with the rate of 300 ton/day. Equations (63) and (64) are considered as the boundary 

conditions of the production well. The other relevant data of the simulation are listed in tables 3 and 4. 

Figure 18 shows the contour plot of water saturation distribution and the streamlines after 100 days of 

injection. Due to the geomechanical coupling, variation of pore pressure results in deformation of the 

reservoir rock. At the same time, reservoir deformation affect the pattern of pressure and consequently the 

efficiency of the production plan. Figure 19 illustrates the x-direction and y-direction displacement 

distribution after 100 days of injection. 



5. Conclusions 

In the present paper, a hybrid numerical model was presented to simulate the coupling of geomechanincs 

and two immiscible fluids flow under isothermal conditions. The conservation equations of mass and 

linear momentum together with hydraulic and mechanical constitutive relations for the pore fluids and 

solid skeleton constituted the basis of the multiphase formulation. A fully coupled hybrid spatial 

discretization by means of control volume based finite element method for fluid equations, and Galerkin 

finite element method for equilibrium equations was performed. The fully implicit first order accurate 

finite difference scheme was employed for time discretization of the equations. The method preserves 

local conservation of mass and is capable of handling complex geometries and heterogeneities. In order to 

exemplify that the model is efficient and effective in simulating multiphase fluids flow in deformable 

porous media, it was successfully applied to several numerical examples. Three benchmark problems 

were chosen to illustrate the accuracy of the computational algorithm. Two representative examples were 

also presented in order to investigate the so-called mesh orientation effect and also to illustrate the 

capability of the model to simulate the behavior in heterogeneous porous media. 
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Table 1. Material properties and model parameters for Van Duijn-De Neef Problem 

 Case 1 Case 2 

Rock porosity 0.25n   0.25n   

Absolute permeability, darcy  
 

part 1

part 2

85.8

85.8

K

K





  

 
 

part 1

part 2

85.8

42.9

K

K





 

Fluids viscosity, cP 1.w n    1.w n    

Fluids density, ton/m3 1.w n    1.w n    

Relative permeability fitting parameter 2.   2.   
Displacement pressure for non-wetting phase, kPa  

 
part 1

part 2

10.

10.

d

d

p

p





 

 
 

part 1

part 2

10.

14.1

d

d

p

p





 

Wetting phase residual volume fraction 0.001wresn   0.001wresn   

 

Table 2. Material properties and model parameters for radial flow problem 

Elastic modulus, kPa 1. 7E E   

Poisson’s Ratio 0.3    
Rock porosity 0.208n   
Rock permeability, mD 15.k   
Oil viscosity, cP 1.o   

Water viscosity, cP 0.01w   

Oil density, ton/m3 
0 0.85   

Water density, ton/m3 1.w   

Relative permeability fitting parameter 0.8   
Displacement pressure for non-wetting phase, kPa 2.dp   

Water residual volume fraction 0.045wresn   

 

 



Table 3. Material properties and model parameters for continuous heterogeneous problem 

Elastic modulus, kPa 1. 7E E   

Poisson’s Ratio 0.3    
Rock porosity 0.208n   
Oil viscosity, cP 13.o   

Water viscosity, cP 0.97w   

Oil density, ton/m3 
0 0.75   

Water density, ton/m3 1.w   

Oil compressibility, vol/vol kPa 4. 8oC E   

Water compressibility, vol/vol kPa 4. 9wC E   

Relative permeability fitting parameter 0.8   
Displacement pressure for non-wetting phase, kPa 2.dp   

Water residual volume fraction 0.045wresn   

 

Table 4. Computational information for continuous heterogeneous problem 

No. Elements No. nodes No. Time steps CPU time (min) 

1424 2304 31 108 

 

 



 

Fig. 1. a) System of finite the element mesh in the physical space; and b) representation of a control 

volume around a node in the transformed space 

 



 

 

Fig. 2. Sub-control volume representation 

 



 

 

Fig. 3. The control volume finite element weighting function for node i (two dimensional case) 

 



 

 

Fig. 4. Schematic of pressure and velocity distribution for a one dimensional finite element mesh 

 



 

 

Fig. 5. Numerical and semi-analytical results for Van Duijn-De Neef problem 
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Fig. 6. Numerical and semi-analytical results for case 2 of Van Duijn-De Neef problem using mixed 

finite element-discontinuous Galerkin scheme (after [45]) 

 



 

Fig. 7. Numerical and semi-analytical results for case 2 of Van Duijn-De Neef using 200 

computational cells 

 



 

Figure 8. One dimensional-one phase consolidation problem 

 



 

Figure 9. Numerical and analytical results for one dimensional-one phase consolidation problem 

 



 

Figure 10. Convergence study for one dimensional-one phase consolidation problem 

 



 

Figure 11. One dimensional-two phase consolidation problem 

 



 

 

 

Figure 12. Numerical and analytical results for one dimensional-two phase consolidation problem 

 



 

Figure 13. The radial flow problem (after [50]) 

 



  

 

Figure 14. Water saturation contours after 0.2 PV of water injection for the radial flow problem on 

regular and randomly distorted grids (case 1) 

 



  

 

Figure 15. Water saturation contours after 0.2 PV of water injection for the radial flow problem on 

regular and randomly distorted grids (case 2) 

 



 

 

Figure 16. Water cut curves for the radial flow problem (case 2) 

 



 

Figure 17. Physical domain, finite element mesh and absolute permeability distribution for the 

continuous heterogeneous problem 

 



 

 

Figure 18. Water saturation distribution and streamlines for the continuous heterogeneous problem 



 

 

Figure 19. Displacement contours for the continuous heterogeneous problem 


