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Summary

This thesis is motivated by recent interest in nonlinear observers for navigation.
The field of navigation is dominated by the Kalman filter and its variants. However,
nonlinear observers offer some advantages, compared to the Kalman filters, which
will be highlighted in the thesis.

Nonlinear observers for navigation estimating the position, linear velocity and
attitude of a vehicle is of interest. The navigation solutions presented in the follow-
ing are vehicle independent and can be used for ground, surface and air vehicles,
or any moving body in general. However, for the experimental verifications small
aircraft will be used as they have fast dynamics and can be seen as worst-case
scenarios. The proposed observers will be benchmarked against state-of-the-art
Kalman filters to ascertain performance and robustness.

The proposed navigation solutions use inertial measurements to propagate the
navigation states, while global navigation satellite system (GNSS) measurements
are used for correction of the states. The GNSS measurements will be considered
in position as well as range space, allowing for loosely- and tightly-coupled in-
tegration. A modular structure is used for the nonlinear observers consisting of
an attitude estimator and a translational motion observer (TMO). The attitude
estimator represents the attitude as a unit quaternion ensuring resistance to singu-
larities while allowing for semi-global exponential stability results of the observer
structure. Global exponential stability results can be obtained by use of hybrid
theory and switching. The TMO will be developed to accommodate loose or tight
integration without altering the attitude estimator.

The main part of the thesis covers four variants of the nonlinear observer struc-
ture. Initially the loosely-coupled observer will be introduced and compared to an
extended Kalman filter. Implementation issues, attitude reference vectors and ob-
server gains are considered, while the performance comparison confirms that the
nonlinear observer can be used instead of a state-of-the-art state estimator.

The second observer structure to be presented deals with the time delay in-
troduced by the use of GNSS receivers. Due to the computational time and the
dissemination time of the electronic signals of the receiver the GNSS measurements
are delayed. A measuring approach for the delay is proposed based on timing using
satellite time. Two versions of the loosely-coupled observer structure are proposed
where the inertial measurements are delayed to correspond with the GNSS mea-
surements, followed by fast simulation for propagating the estimates to current
time. Experimental data confirms a significant performance impact compared to
uncompensated systems.
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Summary

The third observer structure introduces a tightly-coupled structure where aiding
range and range-rate measurements are utilized. The receiver clock bias is included
as a slowly time-varying state. Semi-global exponential stability is achieved by use
of nonlinear injection terms. The only linearization takes place when determining
the TMO gains by solving a slowly time-varying Riccati equation. Experimental
verification confirms the performance to be comparable with the performance of
a multiplicative extended Kalman filter. Furthermore, the computational load of
the observer is seen to significantly lower the number of operations compared to
the state-of-the-art estimator, allowing for implementation on smaller and cheaper
platforms.

The fourth observer structure introduces an additional GNSS receiver to be used
as a reference base station. The inertial navigation is aided by double-differenced
pseudorange, carrier-phase and carrier phase derived Doppler measurements be-
tween the two receivers thereby cancelling dominating environmental disturbances.
A real-time-kinematic (RTK) solution is thereby formed ensuring high accuracy.
Using experimental data the observer using double-differenced GNSS measure-
ments is confirmed to obtain centimetre level accuracy during a 20 minutes flight
where high dynamic behaviour is experienced.

The advantages of nonlinear observers compared to Kalman filters cover; proven
stability results, reduced need for linearization, and lower computational load, while
ensuring high performance. A disadvantage is that the nonlinear observer does not
propagate covariance estimates.
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Chapter 1

Introduction

1.1 Motivation

Navigation considers the current position, linear velocity and attitude of an object,
and has been an integral part of explorations of all magnitudes, from how to get
home from the store, to discovering new continents and visiting other planets. It is
important to have reliable and appropriate sensors depending on the application.
It might be excessive to have military grade inertial sensors on your step counter,
just as it is insufficient for a satellite to only have a map of your home town.

In everyday life navigation is coupled to vehicles, e.g. cars, ships and planes,
which commonly use inertial sensors for dead reckoning aided by global navigation
satellite systems (GNSS). This is often sufficient for determining position and linear
velocity, as long as there is an unobstructed view of the sky. For attitude estimation
additional sensors might be required such as; magnetometers, flow sensors, camera
systems, specific force, etc.

In recent years interest in Unmanned Aerial Vehicles (UAVs), Autonomous Un-
derwater Vehicles (AUVs), and Unmanned Surface Vehicles (USVs) have been in-
creasing for applications such as mapping and monitoring. The advantages of UAVs
are the low cost compared to a manned flight and the reduced risk to personnel.
The motivation for accurate navigation is here reflected by the possible applications
for UAVs.

The applications for UAVs are diverse and abundant with innovative solutions
to previously costly challenges. In the oil and gas industry the interest for using
UAVs in monitoring of platforms and areas of interest is motivated by an ambition
to reduce the number of surface vessels. A reduction of surface vessels in favour of
UAVs will result in lower emissions and a reduction in cost. UAVs can also be used
to expand the area of operation. In Fig. 1.1 some applications connected to Arctic
drilling for oil are illustrated. Some general applications for UAVs include:

Planning: As shown in the top right corner of Fig. 1.1 UAVs can be used for
planning in challenging areas, allowing for snap shot georeferencing over areas of
interest. This can be used for mission aiding such as navigation of large vessels in
Arctic regions where a UAV might provide an overview of upcoming obstacles and
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1. Introduction

help plan avoidance of ice fields. This application presents a significant cost saving
as a the number of mission hours and manned flights can be reduced. A challenge
in Arctic regions is the limited satellite coverage, often resulting in GNSS outage
facilitating the need for robust navigation solutions.

Surveillance: The UAV might be preferred for surveillance in dangerous or in-
accessible environments to eliminate the risk of human injury or loss of life. Such
surveillance can be used to aid in search and rescue operations from house fires to
catastrophes such as reactor decay or volcanic eruption.

Transport: Precision drop of packages, such as sensor payloads on icebergs (see
Fig. 1.1 top left) facilitates large scale deployment. In such applications as iceberg
drift monitoring the UAV can also be used to transfer information by broadcasting
or receiving data when flying over areas with deployed sensory payloads. This can
also be used between vehicles or vessels in areas of sparse satellite coverage or when
using short range transmitters.

Monitoring: Monitoring of off-site structures, such as wind turbines, is of inter-
est both in offshore and land applications where manned inspection of the propeller
is costly and time consuming. This application require high accuracy and precision
to guarantee operational safety for the equipment.

Figure 1.1: Arctic exploration and drilling assisted by UAVs, Copyright: Bjarne
Stenberg, NTNU.
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1.1. Motivation

For all of these applications automated landing of the UAV is of interest to en-
sure repeatability and safe operations. Automated landing of UAVs can be achieved
using vertically placed nets at landing sites or on the side of ships, and requires
high accuracy.

In high latitude regions the satellite coverage is sparse due to the trajectories
of the satellites not crossing the pole, thereby leaving a large area around the poles
uncovered. In Fig. 1.2 sky plots over the North pole and Trondheim depicts the
GPS satellite trajectories, where the receiver is at the center and the concentric
circles show the elevation of the satellites. It is clear that operation at high latitude
is limited by poor satellite coverage. The navigation systems must therefore be
equipped to handle satellite outages and low numbers of available satellites, in
order to safely operate in high latitude areas.
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(a) Satellite coverage at the North Pole.
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(b) Satellite coverage at Trondheim.

Figure 1.2: Satellite paths (azimuth and elevation) over two locations for 10 hours.
(Thanks to Hans-Martin Heyn, NTNU AMOS, for the North Pole data.)

The objective of this thesis is to develop state estimators for use in the air, sea
surface or on ground for mapping and monitoring. The focus will be on naviga-
tion using nonlinear observers as an alternative to Kalman filters. The nonlinear
observers proposed will be compared to Kalman filters ensuring that the perfor-
mance is at least comparable, while also the computational load will be investi-
gated. A reduction in computational load will allow for implementation on smaller
and cheaper platforms. Both loosely- and tightly-coupled systems will be consid-
ered where a inertial navigation system (INS) is aided by satellite measurements.
In the loosely-couple scenario the focus will be the time-delay introduced by the
GNSS receiver and how to improve performance by taking the delay into account in
the observer. A tightly-coupled observer will be proposed and further augmented to
include an additional base station receiver to counteract atmospheric disturbances.

The nonlinear observers and methods proposed here are vehicle independent
and can be used for all types of vehicles and moving bodies in general. In the
following the performance of the proposed methods will be tested on small aircraft
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as they have fast dynamics and can be considered worst-case scenarios.

1.2 Background

Navigation of vehicles often rely on sensory information from multiple sources, and
can include measurements of a vehicle’s acceleration, angular rate and velocity. The
measurements are diverse and covers different aspects of the vehicle behaviour. By
including multiple sensors it is possible to estimate the position, linear velocity and
attitude of the vehicle. The position and velocity can be determined directly by a
satellite receiver, however, these are vulnerable to outages, e.g. a car going through
a tunnel. The navigation of vehicles is therefore based on inertial navigation where
high rate sensors are used to determine the difference in position, while satellite
receivers can be employed to help the navigation system by correcting when the es-
timation diverges off course. In the following the most common ways of integrating
the various sensors will be introduced.

1.2.1 State-of-the-art of state estimators
Many physical systems are considered partly closed systems with no means of mea-
suring internal signals, where only the inputs and outputs are available. However,
it is often of interest to know the current value of the internal states, e.g. such that
appropriate action can be taken using a control element. There might be multiple
internal states and only a few measured outputs due to lack of appropriate sensors,
cost, or insufficient data rate. The state estimation problem describes the need to
estimate variables of interest in a model that are not otherwise directly observable,
Farrell [52].

The model states describe the dominating dynamics of the system, while less
important dynamics might be removed for simplicity. The states for navigation
systems often include position, linear velocity and attitude of the vehicle, while in-
clusion of auxiliary states is possible. These auxiliary states might describe specific
force of the vehicle or inertial sensor errors, Groves [76].

State estimators consists of two categories; "filters" and "observers". Filters take
the stochastic approach to finding the current state values and consider the mea-
surement and state noise as well as the covariance estimate of the states. Observers
use a deterministic approach based on control theory focusing on the stability of
the proposed dynamics equations. In both cases a model of the physical system is
duplicated to propagate the states while comparing with the system outputs. In
the literature the terms "filter" and "observer" are used somewhat interchangeably.

The following sections will include a review of previous work on Kalman filters
and nonlinear observers for navigation.

Kalman filter review

Modern filtering theory began around 1959-60 with publications by Swerling [163],
and Kalman [105], presenting error propagation methods using a minimum variance
estimation algorithm for linear systems. The discrete method presented by R. E.
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Kalman have received large attention and is now a coined term in multiple fields,
Hendricks et al. [90].

The Kalman filter (KF) introduced a recursive algorithm for state estimation of
linear systems, which is optimal in the sense of minimum variance or least square
error. Changing from analytical solutions to a recursive algorithm had the advan-
tage of being easily implementable in digital computers. Another advantage was
that the previous non-recursive estimation methods used the entire measurement
set, whereas the recursive estimation of the KF use current measurements as well
as prior state estimates to propagate the states from an initial value. The KF is
therefore more computational efficient as it can discard previous measurements and
update the state estimates with only the present measurements, Groves [76]. The
KF theory was expanded upon in 1961 by Kalman and Bucy [106], introducing a
continuous-time variant.

The Kalman filter’s stochastic approach to the state estimation problem as-
sumes noise on the measurements as well as the state equations of the filter. This
is a well-established state estimation approach, Dissanayake et al. [47], which ex-
cels in working with normal-distributed inputs characterized by their mean and
covariance values and a linear time-varying state space model in its basic form. A
requirement is that the measurements have to be functions of the states, as the
residual measurement (the difference between measured and estimated measure-
ments) is used to update the states and keep them from diverging. The process
and measurement noise is assumed to be Gaussian white noise. In some cases where
the noise of the physical system can not be confirmed to be white, the KF might be
augmented, by so called "shaping filters", with additional linear state equations to
let the coloured noise be driven by Gaussian white noise, Farrell [52]. In addition
to the recursive estimation of the model states the Kalman filter also propagates a
covariance matrix describing the uncertainties of the state estimates as well as the
correlation between the various states, Groves [76].

Even though the Kalman filter was designed for linear systems, it can be applied
to nonlinear systems without changing the structure or the operational principles.
However, the optimality of minimal variance of the errors is lost, and the filter is
no longer an optimal estimator. The kinematic equations for navigation are inher-
ently nonlinear and must be addressed by nonlinear techniques or approximations
to maintain the performance and stability of the modeled system. Nonlinear prob-
lems are commonly handled by the Linearised KF (LKF), Extended KF (EKF)
or sample-based methods such as unscented KF (UKF) Chen, Gustafsson et al.
[37, 80]. The UKF is an extension to nonlinear systems that does not involve an
explicit Jacobian matrix, see e.g. Julier and Uhlmann [104]. Probably the most
popular of the mentioned methods is the EKF, which has been applied in an enor-
mous number of applications where it achieved excellent performance, p. 210 in
Grewal et al. [69]. In the time propagation of the state estimates the EKF uses the
nonlinear model. However, for the time propagation of the covariance estimates
and in the gain computation the EKF linearises the model around an estimate of
the current state using multivariate Taylor expansions to adapt to the nonlinear
model; this makes the EKF more susceptible to errors in the initial estimates and
modelling errors compared to the KF.

The KF and EKF are seen as the standard theory and are therefore used as
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benchmark for comparison when developing new methods. The KF and its vari-
ants are widely used in the navigation related literature where a few examples
are mentioned here: An introduction to choice of states and sensor alignment con-
sideration can be found in Stimac and Kennedy [162], while Markley [122] con-
siders alternative attitude error representations. For extensive details on Kalman
filtering see Brown and Hwang, Farrell, Fossen, Gelb et al., Grewal et al., Groves
[28, 52, 55, 62, 69, 76]. Among the extensions to nonlinear systems other examples
can be found, e.g. Draganov et al. [50], where a method for evaluating the linearisa-
tion quality is presented alongside a Kalman filter extension for nonlinear systems.
Studies on time-correlated noise, as opposed to the white noise assumption, with-
out state augmentation have been carried out in e.g. Schmidt [153], Petovello et al.
[141]. The adaptive Kalman filter might be used in applications where tuning of
the Kalman filter is uncertain at initialization, see Magill, Mehra, Mohammed and
Schwarz [118, 125, 129]. If the application is not real-time critical, such as sur-
veying, the estimate can be enhanced by use of a smoother. In Fraser and Potter
[56] a forward-smoother was proposed while in Rauch et al. [146] a backwards-
smoother was introduced. When nonlinear systems are considered another alter-
native to the EKF is the particle filter. Particle filters are based on sequential
Monte Carlo estimation algorithms, which compared to the Kalman filter are more
computationally demanding, however, they are noise distribution independent, see
e.g. Doucet and Johansen, Doucet et al., Gordon et al., Gustafsson et al., Ristic
et al. [48, 49, 65, 80, 148]. The advantage of the particle filter is its use in nonlin-
ear non-Gaussian systems. However, since this approach is computationally heavy
in current navigation systems it is not often used. Therefore, the particle filter is
considered outside the scope of this chapter.

Nonlinear observer review

In comparison to the Kalman filter the nonlinear observers have a shorter his-
tory, motivated by drawbacks of the KF when applied to nonlinear systems. These
drawbacks include: unclear convergence properties, difficulty of tuning, and large
computational load.

Nonlinear observers are contrary to the Kalman filters based on a deterministic
approach. The noise is not assumed to have specific properties, except that the
difference between the measured and estimated signal is smallest when the estimate
reflects the true signal. Like the Kalman filter, nonlinear observers commonly utilize
an injection term consisting of the difference between measured and estimated
system output to drive the observer states toward the true values.

The field of nonlinear observers have expanded within groups dealing with spe-
cific problems. Nonlinear attitude estimation has been the focus of extensive re-
search, Batista et al., Batista et al., Grip et al., Mahony et al., Thienel and Sanner
[12, 13, 71, 120, 172], see in particular Crassidis et al. [39] for an extensive survey
including EKF methods. One method used have centred on the comparison of two
attitude measurement vectors in the Body-frame with two corresponding vectors
in an Earth-fixed or inertial frame. One such attitude observer was proposed by
Salcudean [150], and was later expanded upon by Vik and Fossen [176] to include a
gyro bias estimate. A vector-based attitude observer was proposed by Hamel. and

6



1.2. Background

Mahony [81] which depended on inertial measurements, magnetometer readings
and GNSS velocity measurements. Expanding on this framework Hua [94] intro-
duced an attitude observer that utilized the derivative of the GNSS velocity as the
vehicle acceleration allowing for comparison with accelerometer measurements.

Where the Kalman filter computes new gains for each iteration some nonlinear
observers have proven convergence with fixed or slowly time-varying gains, e.g. Grip
et al. [72]. This is a computational improvement as the dominating computational
burden of the KF is the covariance update which in turn is used for the gain
determination, see Section 5.6.1 in Farrell [52].

One of the design challenges of nonlinear observers is the requirement for proven
stability. The Kalman filter is globally exponentially stable and optimal in the
sense of minimum variance under some conditions for linear systems, while non-
linear approximations, e.g. the extended Kalman filter, in general loose optimality
due to linearization of the system around the estimated state trajectory. Nonlinear
observers, while presenting strong stability results, are often designed without opti-
mality objectives regarding disturbances. Recently the eXogeneous Kalman Filter
(XKF) has been proposed to account for these drawbacks, by use of a two-stage
estimator framework, see Johansen and Fossen [99]. In the XKF a cascade is formed
by a globally stable nonlinear observer and a linearized Kalman filter, where the
KF is linearized about the state estimate of the nonlinear observer. The XKF re-
tains global stability properties while also estimating the covariance of the states,
thereby combing the advantages of the nonlinear observer and the KF. While the
stability properties are proven for nonlinear observers, stochastic properties can
only be experimentally verified, as no stochastic model is assumed.

The field of nonlinear observers is recent and rapidly expanding. A few publica-
tions within navigation are mentioned here: Considerations of a nonlinear attitude
estimator for use on a small aircraft was presented in Hua et al. [95], while a glob-
ally exponentially stable observer for long baseline navigation was presented in
Batista [10] with clock bias estimation in a tightly-coupled system.

1.2.2 Loosely- and tightly-coupled systems
The most common integration scheme is the loosely-coupled approach where iner-
tial measurements are integrated with GNSS position and velocity estimates. The
position and velocity estimates used in a loosely-coupled system are supplied by
a GNSS receiver, where the navigation solution is determined by an integration
algorithm, most typically a Kalman filter. Due to the unknown tuning of the filter
in the GNSS receiver it can be preferred to use the measurements from the satel-
lites directly in navigation systems to optimize its performance. A tightly-coupled
integration scheme can be utilized where inertial measurements are integrated with
pseudorange, carrier-phase and Doppler measurements, thereby correcting the state
estimates using measurements in range domain rather than the position domain.
The measurement vector is expanded as measurements from all available satellites
are considered, whereas for the loosely-coupled system the receiver would take care
of the satellite signals. In general tightly-coupled systems have higher performance
than loosely-coupled systems as a higher level of control of the nuisance and noise
terms can be accounted for. A further advantage of the tightly-coupled system
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is that aiding from even a few satellites can be used, whereas for loosely-coupled
systems at least four satellites must be available for position determination in the
receiver and thereby aiding. This increases the robustness of tightly-coupled solu-
tions to satellite obstruction. When using carrier-phase measurements in a tightly-
coupled system an offset represented by a fixed number of wavelengths, denoted
the integer ambiguity, is introduced in the range measurement.

Tightly-coupled multi-sensor systems using filters, as the Extended Kalman
Filter (EKF), have been subject of extensive research, see Groves [76] and Farrell
[52]. In George and Sukkarieh [63] enhancements for a tightly-coupled integration
on small unmanned vehicles (UAVs) are presented. A low-cost integrated GPS/IMU
system using a Micro-Electro-Mechanical System (MEMS) IMU while adopting a
nonlinear KF is developed in Li et al. [117], while Grejner-Brzezinska et al. [67]
considers a tightly-coupled integration using a Kalman filter for accurate mapping
using an aerial platform. A comparative study of loosely, tightly and ultra-tightly
coupled systems was investigated by Gautier and Parkinson [61] using a wide range
of inertial sensor grades, and the GIGET tool.

Higher accuracy can be achieved by taking atmospheric disturbances into ac-
count, such as ionospheric and tropospheric delay of the satellite signals. These
disturbances can, to some extend, be modelled in nominal conditions, or mitigated
by using dual or multi frequency GNSS receivers. Multi-frequency receivers facili-
tate estimation and compensation of the ionospheric delay, see Section 8.6 in Farrell
[52] or Grejner-Brzezinska and Toth [66]. However, for low-cost applications the
high cost of the necessary receiver front-ends presently prevents wide applicability
of multi-frequency systems.

Inclusion of the carrier-phase measurement allows for achieving higher accuracy
if the introduced integer ambiguities can be resolved. In Hirokawa and Ebinuma [91]
a low-cost multiple GNSS antenna configuration is utilized to aid in the ambiguity
resolution performed on the basis of the estimated attitude. Multiple approaches
for estimation of the integer ambiguities have been studied, e.g. Teunissen [169],
Teunissen. et al. [170], Teunissen et al. [171] proposing the widely used LAMBDA
method, or Chen et al. [36] where a computationally efficient method was proposed
using a common-position-shift approach. In Chen et al. [33] an approach using
an aiding INS to resolve the ambiguities was investigated, while Chen et al. [34]
proposes a near-real-time method based on measurements from multiple epochs.
Another method is the real-time-kinematic (RTK) solution where a dual-receiver
configuration with a stationary base station and a static or moving rover (i.e. a ve-
hicle) is used. The base station broadcasts its satellite measurements to the rover,
which in turn performs differencing of the measurements for use in the navigation
system. With a known base station position precise positioning of the rover is pos-
sible. It is also possible to utilize a moving base station: if the base station position
is always known the precision can be retained, otherwise inertial sensors might be
added to the base station to offer similar state estimation as for the rover. The RTK
solution operates under the assumption that the separation between the rover and
base station (called the baseline) is short such that the atmospheric signal delays
observed by the two receivers are similar. In Takasu and Yasuda [164] and Takasu
and Yasuda [165] a low-cost open source RTK solution is developed. Some environ-
ments can decrease the accuracy of the acquired solution due to satellite blockage,

8



1.3. Publications

which is the topic of Bahrami and Zeibart [6] where Doppler measurements are
used to aid in the RTK computations. Multipath caused by reflected satellite sig-
nals can also cause errors in the pseudorange and carrier-phase measurements, but
can to some extent be remedied, e.g. by the proposed method of Miura et al. [127].
In Wendel et al. [179] the time differenced carrier-phase measurements are used
instead of delta-range measurements in a tightly-coupled single receiver system,
showing improvements to velocity and attitude estimation, while introduction of
a base station was encouraged to obtain centimetre accuracy. Other approaches
include the precise point positioning (PPP), see e.g. Watson et al. [177], or differ-
ential GNSS, see e.g. Farrell et al. [53], which can give results with precision similar
to RTK systems.

When low-cost sensors are used, care should be taken to avoid long time periods
of satellite obstruction, as the inertial sensors will introduce fast diverging state
estimates. The measurement noise levels will be higher for low-cost sensors, which
will introduce large output noise and might prevent correct resolution of the phase
ambiguities.

Applications for tightly-coupled RTK GNSS/INS integration focused on UAVs
could include monitoring of wind turbines or oil and gas platforms requiring high
accuracy, where a base station could be placed on the platform ensuring short base-
lines. Applications such as automated landing in vertically placed nets at landing
sites or on ships could also be of interest. Another example might be mapping and
surveying of an area in front of a ship in Arctic regions, thereby allowing for path
planning around ice fields. These applications facilitates the UAV being close to
the base station making the assumption of similar experienced atmosphere valid.

Previously only loosely-coupled GNSS/INS nonlinear observers have been pro-
posed, leaving the EKF based observers to dominate the field of tight integra-
tion. However, recently nonlinear observers have gained interest for tightly-coupled
GNSS/INS integration e.g. Batista [10], Batista [11], Batista et al. [14], Batista
et al. [17], where long baseline configurations have been considered.

1.3 Publications

The results presented in this thesis are based on the following book chapter, journal
papers and conference papers:

1.3.1 Book chapter
• [85] J. M. Hansen, J. Roháč, M. Šipoš, T. A. Johansen and T. I. Fossen,

"Validation and Experimental Testing of Observers for Robust GNSS-Aided
Inertial Navigation", chapter 6 in "Recent Advances in Robotic Systems"
edited by Guanghui Wang, ISBN 978-953-51-2571-6, Print ISBN 978-953-51-
2570-9, InTech, September 9, 2016.

1.3.2 Journal papers
• [87] J. M. Hansen, T. A. Johansen, N. Sokolova and T. I. Fossen, "Nonlinear

Observer for Tightly-Coupled Integrated Inertial Navigation Aided by RTK-
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GNSS Measurements", IEEE Transactions on Control Systems Technology,
(submitted).

• [86] J. M. Hansen, T. I. Fossen and T. A. Johansen, "Nonlinear Observer De-
sign for GNSS-Aided Inertial Navigation Systems with Time-Delayed GNSS
Measurements", Control Engineering Practice, 2017, (to appear).

• [31] T. H. Bryne, J. M. Hansen, R. H. Rogne, N. Sokolova, T. I. Fossen and
T. A. Johansen, "Nonlinear Observers for Integrated INS/GNSS Navigation
- Implementation Aspects", IEEE CSM, 2017, (to appear).

• [101] T. A. Johansen, J. M. Hansen and T. I. Fossen, "Nonlinear Observer
for Tightly Integrated Inertial Navigation Aided by Pseudo-Range Measure-
ments", ASME Journal of Dynamic Systems, Measurement and Control, Vol.
139, 2017.

1.3.3 Conference papers

• [83] J. M. Hansen, T. I. Fossen and T. A. Johansen, "Nonlinear Observer
for INS Aided by Time-Delayed GNSS Measurements: Implementation and
UAV Experiments", Proc. of International Conference on Unmanned Aircraft
Systems, Denver, 2015, pp. 157-166.

• [84] J. M. Hansen, T. A. Johansen, T. I. Fossen, "Tightly Coupled Integrated
Inertial and Real-Time-Kinematic Positioning Approach Using Nonlinear Ob-
server", American Control Conference, Boston, 2016, pp. 5511-5518.

• [77] K. Gryte, J. M. Hansen, T. A. Johansen, T. I. Fossen, "Robust Navigation
of UAV using Inertial Sensors Aided by UWB and RTK GPS", Proc. of the
AIAA Guidance, Navigation, and Control Conference, 2017, (to appear).

• [100] T. A. Johansen, A. Cristofaro, K. L. Sørensen, J. M. Hansen and T. I.
Fossen, "On Estimation of Wind Velocity, Angle-of-Attack and Sideslip Angle
of Small UAVs using Standard Sensors", Proc. of International Conference on
Unmanned Aircraft Systems, Denver, 2015, pp. 510-519.

1.4 Contributions of the Thesis

The thesis is organised into seven chapters and four appendices. The topic and
contribution of the chapters are presented in the following.

Chapter 2

Topic: This chapter serves as a background for the following chapters and includes
introduction of; the utilized coordinate frames, the strapdown navigation
equations, and the signal structure and error sources of GNSS measurements
in position and range domain.
The content of this chapter is based on literature by other authors; [55], [76],
[52], [126], [175], and is included here as background material.
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Chapter 3
Topic: Inertial navigation aided by position and velocity measurements provided

by a Global Navigation Satellite System (GNSS) receiver is widely used for
navigation of various vehicle types. The integration of the inertial and global
position measurements has previously been achieved by use of Kalman filters.
However, a recent trend from control theory is to propose nonlinear observers
for estimating the position, velocity and attitude of a vehicle.

Contributions: This chapter presents a comparative study of the Extended
Kalman filter and a previously published nonlinear observer. The two state
estimators will be compared on performance using experimental data from
flights with Unmanned Aerial Vehicles (UAVs). Furthermore, implementation
issues will be discussed for the nonlinear observer. The content is based on
[31] and [85].

Chapter 4
Topic: Global navigation satellite system receivers suffer from an internal time-

delay of up to several hundred milliseconds leading to a degeneration of po-
sition accuracy in high-dynamic systems. The delay is due to the translation
and computation of the satellite measurements to position information. The
effect of the delay depends on the velocity of the receiver, i.e. with high ve-
locity the distance between the actual and measured position is large. For
pedestrian use the error introduced by the delay is insignificant whereas for
high speed applications, such as cars or planes, the error can be several me-
ters.

Contributions: This chapter presents a nonlinear observer structure for estimat-
ing position, linear velocity, and attitude (PVA) as well as gyro bias, using
inertial measurements and time-delayed GNSS measurements. The observer
structure consists of four parts; a) attitude and gyro bias estimation, b) time-
delayed translational motion observer estimating position and linear velocity,
c) input delays for inertial and magnetometer measurements, and d) a faster
than real-time simulator. The delayed PVA and gyro bias estimates are com-
puted using a semi-globally exponentially stable (SGES) nonlinear observer.
The high-rate inertial measurements are delayed and synchronized with the
GNSS measurements in the state observer. The fast simulator integrates the
inertial measurements from the delayed state estimate to provide a state es-
timate at current time. The sensor measurements are carefully synchronized
and the estimation procedure for the GNSS receiver delay is discussed. Ex-
perimental data from a small aircraft are used to validate the results. The
chapter is based on the publications [83] and [86].

Chapter 5
Topic: In a tightly-coupled system the inertial navigation is aided by the range

and range-rate measurements from the GNSS receiver rather than the posi-
tion and velocity estimates. The aiding measurements are thereby changed
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from position to range domain, with the advantage of circumventing the
unknown filters in the GNSS receiver. The tightly-coupled system requires
information about the placement of the satellites in the constellation and
corrections for the measurements are needed to obtain accurate position es-
timates.

Contributions: A nonlinear observer for inertial navigation aided by GNSS range
and range-rate measurements is proposed. The attitude estimator presented
with the loosely-coupled nonlinear observer is utilized with a translational
motion observer based on range and range-rate measurements from a satellite
constellation, making the observer tightly coupled. An initialization method is
proposed for the observer, and experimental data from a UAV flight are used
for verification and comparison with a Multiplicative Extended Kalman Filter
(MEKF). Furthermore, the computational load of the proposed nonlinear
observer is compared to the MEKF. The results of this chapter has been
published in [101].

Chapter 6
Topic: In GNSS/INS systems the atmospheric disturbances contribute with sig-

nificant error sources to the range measurements. By introducing a base sta-
tion, consisting of a GNSS receiver, close to the area of interest the atmo-
spheric effects can be cancelled by differencing the measurements between
the vehicle and base station receivers.

Contributions: In this chapter a nonlinear observer for inertial navigation aided
by dual receiver pseudorange, carrier-phase and carrier phase derived Doppler
measurements is proposed. A double-differenced scenario is considered where
satellite measurements are differenced between the vehicle and base station,
and additionally differenced with a reference satellite to cancel the clock range
bias. The proposed observer is experimentally verified using flight data from
a UAV. The results of this chapter is based on [84], [77] and [87].

Chapter 7
This chapter presents concluding remarks and offers some suggestions for further
work.

Appendix A
The equations relevant for determination of satellite position and velocity is in-
cluded for completeness.

Appendix B
A description of the navigation payload used for acquiring experimental data is
explained. Component overview, hardware design and accurate timestamping is
introduced.

12



1.4. Contributions of the Thesis

Appendix C
Implementation schemes for the loosely- and tightly-coupled translational motion
observers, as well as the attitude observer are presented.

Appendix D
This appendix offers larger copies of previously included figures for ease of reading
and detailed viewing.
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Chapter 2

Navigation Kinematics and
GNSS/INS Preliminaries

Estimating the position, linear velocity and attitude (PVA) of a vehicle is the
foundation of navigation. This chapter will introduce the required background for
the thesis and understanding of the observers proposed in the following chapters.
The observers proposed are vehicle independent and can be used for any type
of vehicle satisfying the fundamental requirements: a) its movement and rotation
are governed by the general kinematic equations, b) inertial measurements from a
strapdown unit are available, and c) global positioning measurements are acquired.

The position of the vehicle is either determined as a local or global coordinate
in 3D space while the attitude relates the orientation of the vehicle relative to some
origin. The various coordinate frames used for describing the vehicle position and
the obtained measurements will be introduced, as well as the kinematic equations
for PVA estimation of the vehicle based on inertial measurements.

The GNSS signal structure and satellite measurements will be presented for use
as aiding measurements when integrating inertial navigation with global measure-
ments.
Organization of this Chapter: This chapter is organized as follows. In Section

2.1 the coordinate frames are defined, followed by the general notation used
in Section 2.2. Section 2.3 intoduces MEMS-based inertial sensors while Sec-
tion 2.4 presents the kinematic equations describing vehicle movement and
attitude. The GNSS signal structure and positioning is described in Section
2.5, where also the common error sources are described. In Section 2.6 the
integration between measurements from inertial sensors and GNSS receivers
are explained.

The material in this chapter is largely gathered from [55], [76], [52], [126], [175],
and is included here as background to the following chapters.

2.1 Coordinate Frames

The position and attitude of a vehicle can be expressed in various coordinate frames
depending on the measurements and the recipient. Some sensors such as GNSS
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2. Navigation Kinematics and GNSS/INS Preliminaries

receivers measure a global position whereas inertial measurements can be used
to determine a relative local position increment. Four coordinate frames will be
considered (see e.g. [55], [52]):

• ECI: The Earth-Centered-Inertial frame, denoted by {i} = [xi; yi; zi], is a
non-accelerating frame with origin at the Earth’s centre of mass. The zi axis
points up through the terrestrial North Pole, with xi pointing towards the
vernal equinox and yi completing a right-handed coordinate system. The xi
and yi axis lie in the equatorial plane. The ECI frame does not rotate with
the Earth.

• ECEF: The Earth-Centered-Earth-Fixed frame, {e} = [xe; ye; ze], has origin
at the Earth’s centre of mass and rotates with the Earth such that the xe-
axis always extends at the intersection of the prime median and equator. The
rate of rotation, relative to the inertially fixed ECI frame, has angular velocity
ωie = 7.2921 · 10−5 rad/s around the ze-axis which is always coinciding with
the zi-axis.

• NED: The North-East-Down frame is a local reference frame, where the
Earth is approximated to a flat surface in a small area, despite the curvature
of the Earth. The {n} = [xn; yn; zn] has origin at some chosen point which
serves as the basis for the tangent plane approximation. The xn-axis points
towards the North pole, zn points towards the centre of the Earth, and yn

completes a right-handed coordinate system. Alternatively the East-North-
Up (ENU) frame can be used. The relation between the e and n origins is
given by the two angles latitude and longitude.

• Body: The body-frame, {b} = [xb; yb; zb], is fixed to the vehicle of interest
at the centre of mass, and moves with the vehicle. The position and attitude
is therefore expressed relative to another coordinate frame, while linear and
angular velocities can be expressed in the body-frame. The three principle
axes of a vehicle are depicted in Fig. 2.1, to illustrate the free rotations: roll,
pitch and yaw.

A vector in one coordinate frame can be transformed into another frame by
multiplication with a 3× 3 rotation matrix. The rotation matrix can either be rep-
resented by a set of Euler angles or by a four parameter quaternion representation.

2.2 Notation

A column vector with three elements, x ∈ R3, has a transpose xᵀ and vector norm
‖x‖2, and is denoted x := [x1;x2;x3]. The skew-symmetric matrix, S(·), of the
vector x is given as:

S(x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , (2.1)

such that the cross product of two vectors, xa and xb, is xa×xb = S(xa)xb. A unit
quaternion, q = [rq; sq], consisting of a real part rq ∈ R and a vector part sq ∈ R3,
will have the quaternion norm ‖q‖2 = 1. A vector x ∈ R3 can be expressed as a
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xb

yb

zb

roll, φ

pitch, θ

yaw, ψ

Figure 2.1: The body-frame coordinate system, {b} = [xb; yb; zb], with the three
principle axes of inertia.

quaternion with zero real part; x̄ = [0;x]. The product of two quaternions, q1 and
q2, is given by the Hamiltonian product denoted q1 ⊗ q2:

q1 ⊗ q2 :=
[

sq1sq2 − rᵀq1
rq2

sq1rq2 + sq2rq1 + rq1 × rq2

]
. (2.2)

In the following 0 denotes a zero-matrix of appropriate dimensions, and Ia is an
identity matrix with a diagonal elements.

Vectors in one frame can be transformed to another frame by use of a rotation
matrix, R ∈ R3. For example, a vector in body-frame, vb, can be related to the
corresponding vector in NED-frame, vn, by;

vn = Rnb v
b, vb = Rbnv

n, (2.3)

where the rotation matrix belongs to the special orthogonal group, R ∈ SO(3),
with det(R) = 1 and R−1 = Rᵀ. The subscript denotes the frame from which the
rotation is initiated, while the superscript denotes the resulting frame.

Rotation between coordinate frames may be represented by either Euler angles,
Θc
a, or quaternions, qca, describing the rotation from coordinate frame a to c. The

Euler angles are given as roll, pitch and yaw; Θ = [φ, θ, ψ]ᵀ, as seen in Fig. 2.1.
The rotation matrix Rca can be determined as Rca = R (Θc

a) = R (qca), where:

R(Θc
a) :=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 , (2.4)

Here the trigonometric functions have been abbreviated, e.g. sin(φ) = sφ and
cos(φ) = cφ. The rotation matrix determined from quaternions are given as;
R (qca) := I3 + 2sqc

a
S(rqc

a
) + 2S(rqc

a
)2.
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2. Navigation Kinematics and GNSS/INS Preliminaries

It can be difficult for an operator to get an intuitive understanding of position
and attitude related to the ECEF-frame, which often facilitate a transformation
from ECEF- to NED-frame, when displaying results. The rotation matrix, R(Θe

n),
required to rotate a vector from NED- to ECEF-frame depends on the latitude, µ,
and longitude, l, of the position, [55]:

R(Θe
n) =

−clsµ −sl −clcµ
−slsµ cl −slcµ
cµ 0 −sµ

 , (2.5)

where abbreviations for the trigonometric functions have been used. The position
used in the rotation matrix determination serves as the origin of the NED approx-
imation to the ECEF-frame.

Quaternions can be converted from ECEF- to NED-frame by using the esti-
mated latitude, µ̂, and longitude, l̂, of the NED origin, see [72]:

q̂l =


cos(l̂/2)

0
0

− sin(l̂/2)

 , q̂µ =


cos(µ̂/2 + π/4)

0
sin(µ̂/2 + π/4)

0

 , q̂nb = q̂µ ⊗ q̂l ⊗ q̂eb . (2.6)

The Euler angle representation of attitude is often preferred by operators as they
are intuitively understandable, however, the time derivatives are limited to pitch
not being ±90◦ which introduces singularities. Due to the singularities the Euler
angles can only give local stability results when proposing nonlinear observers.
The four parameter representation of the quaternion does not have singularities.
However, due to rq = 1 and rq = −1 representing two equilibrium points it is
possible to obtain almost- and semi-global stability results, see [21, 122].

Two terms are often used interchangeably when evaluating the performance
of state estimators; precision and accuracy. In the following these concepts will
be distinguished by their definitions; a) precision: the consistency of the results
(low spread equate high precision), b) accuracy: the proximity to the correct an-
swer (short distance equate high accuracy). In a statistical sense high precision
is achieved with low standard deviation, whereas high accuracy is attained with
small mean error. When testing observers it is important to have both precision
and accuracy.

2.3 Inertial Sensors

In the following inertial sensors suitable for cost-efficient navigation systems will
be introduced as well as topics concerning deterministic and stochastic sensor pa-
rameters.

Navigation systems providing the tracking of an object’s attitude, position, and
velocity are vital in a wide range of applications, e.g. in aeronautics, astronautics,
robotics, automotive industry, underwater vehicles, or human motion observation.
Commonly, navigation systems are based on dead reckoning using inertial sen-
sors aided by some sensor supplying position, range or velocity measurements.
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2.3. Inertial Sensors

One technique for dead reckoning is to use an initial position, linear velocity, and
attitude to consecutively update the estimates based on specific force and angu-
lar rate measurements. These measurements are generally provided by three axial
accelerometers and angular rate sensors forming an Inertial Measurement Unit
(IMU). The aiding systems in navigation applications commonly provide correc-
tions for position, velocity, or attitude. Those systems might be based on; satellite
systems, electrolytic tilt sensors, pressure based altimeter, odometer, laser scan or
vision based odometry.

The quality of inertial sensors span a wide range from cheap sensors used in
mobile phones to highly accurate ring laser gyros used for missiles, where price
increases with quality. The inertial sensors should be chosen according to the re-
quired accuracy of the application, as they are a major source of errors in the
navigation system. The accuracy of the performed navigation is related to the
characteristics of inertial sensors such as; bias instability, scale factor nonlinear-
ity, measurement noise, etc. Undesired deterministic behaviour can be reduced by
calibration whereas stochastic parameters such as initial offset and bias instability
can be described by statistical values. Stochastic sensor parameters can generally
be estimated via Power Spectral Density (PSD) analyses or with Allan Variance
Analysis (AVAR).

The price of accelerometers and angular rate sensors depends on the technology
used in the sensors, e.g. solid-state or moving parts. In Fig. 2.2 and Fig. 2.3 the
current state of gyroscope and accelerometer technology are depicted. Recently
the Micro-Electro-Mechanical-Systems (MEMSs) have progressed with increased
sensitivity of the angular rate sensors, which allow for performance comparable
with traditional gyros such as Fibre Optic Gyros (FOGs). The advantage of the
MEMS technology is a decrease in cost and size compared to the FOG and Ring
Laser Gyros (RLGs). MEMS gyros can be purchased with bias stability around
5◦/h, e.g. ADIS 16488 or STIM300. For military applications a bias stability of
less than one nautical mile per hour is often required.
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Figure 2.2: Gyro technology and performance, inspired by [152, Fig. 4].

For applications without aiding measurements the accelerometer is required
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Figure 2.3: Accelerometer technology and performance, inspired by [152, Fig. 6].

to have low stability, to prevent fast drift and diverging navigation estimates. For
military applications such as self-aligning missiles a bias stability of less than 1µg is
required, whereas autonomous submarine navigation use accelerometers with bias
stability around 10µg. The consumer products is in the cheap end of the spectrum
with bias stability around 1.000− 10.000µg.

For accelerometers the quartz-resonators can be used in low-cost applications
requiring high accuracy, whereas the MEMS-based accelerometers have slightly
poorer bias stability. For applications requiring higher accuracy mechanical ac-
celerometers are advised. Typically the mechanical inertial sensors presents an in-
crease in size, power-consumption and price, compared to the MEMS sensors, which
is the trade-off for higher accuracy. For low-cost applications, such as navigation
of small aircraft and unmanned vehicles both terrestrial and aerial, where size and
power-consumption are of limited availability the MEMS sensors are preferred. In
contrast, MEMS based systems might suffer from low resolution, noisy output,
bias instability, temperature dependence etc. Nevertheless, their applicability in
navigation is wide due to fast technology improvements, applied data processing
algorithms, and aiding systems.

The current MEMS technology cannot compete with high-performance types
and cannot be implemented to stand-alone inertial navigation systems due to their
drawbacks. Generally, this type of IMU is used in navigation systems where a
GNSS receiver is also implemented to compensate position errors, or in attitude
and heading reference systems in which the position is not required and thus the
IMU is used just for attitude estimation.

2.4 Strapdown Navigation Equations

Inertial navigation utilize measurements of specific force and angular velocity in
the body-frame to estimate the change in position and attitude of a vehicle. The
specific force is measured by an accelerometer, while a gyroscope supplies the an-
gular rate measurements. It is common to have magnetometers included in the
IMUs, to measure the magnetic field, which can be employed for aiding in attitude
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estimation. In the following the term inertial measurements will cover all mea-
surements from an IMU, including the magnetic field measurements, even though
magnetometers are not inertial sensors.

The navigation of vehicles, will in the following, be expressed in the ECEF-
frame, to attain higher model accuracy, with the attitude represented as a unit
quaternion describing the rotation from body-frame to ECEF-frame. The kinematic
vehicle model describing the position, pe, linear velocity, ve, and attitude, qeb , is
given as:

ṗe = ve, (2.7)
v̇e = −2S(ωeie)ve + fe + ge(pe), (2.8)

q̇eb = 1
2q

e
b ⊗ ω̄bib −

1
2 ω̄

e
ie ⊗ qeb , (2.9)

where fe is the specific force, ge(·) is the position-dependent gravitational vector
found by e.g. [123], and ωbib is the angular velocity experienced between the body-
and ECI-frame decomposed in the body-frame.

An Inertial Navigation System (INS) typically consists of accelerometers, gy-
roscopes and embedded software estimating PVA based on the dead reckoning
equations: (2.7)–(2.9). INS solutions span a wide price range based on the quality
of the sensors.

The navigation equations considered here are related to strapdown navigation,
where the inertial sensors are mounted directly to the vehicle, preferably at the
body frame origin. The lever arm between the origin of the body-frame and the
sensor frame can be considered negligible for smaller vehicles. An alternative to the
strapdown approach is the gimbal system, where the inertial sensors are mounted
on a stabilized platform, which retains it orientation relative to the inertial frame
regardless of the motion of the vehicle. In a gimbal system only the vertical compo-
nent of the accelerometer considers the gravitational field, whereas for strapdown
systems the gravity affects all components of the measured specific force. Strap-
down systems are easier to maintain and cheaper to install.

2.4.1 Navigation errors caused by biases
Inertial sensors suffer from multiple systematic error sources; bias (constant offset),
scale factor (slope on sensor output), nonlinearities (higher order effects), etc. These
systematic errors can often be eliminated by thorough calibration of the IMU,
except for the turn-on bias which will have a random magnitude each time. It
is vital to take these errors into account, as the performance of the sensor and
thereby the navigation system depends on it. As an example: for an uncompensated
constant accelerometer bias the integration to velocity introduces a linear error over
time, while the error for position, when further integration is applied, results in a
time dependent quadratic error. Moreover, an uncompensated accelerometer bias,
bf , contributes to position errors with ∆p = 1/2bf t2, where t is time. Even small
deviations in sensed acceleration will cause unbounded error in position with time.
For instance, if bf = 0.1 mg is considered, the position error will be 0.05 m after
10 s, and increase to 177 m after 600 s.
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Table 2.1: Inertial sensor performance
grades based on gyro bias stability, [114].

Grade Bias Stability

Consumer 30− 1000◦/hr
Industrial 1− 30◦/hr
Tactical 0.1− 1◦/hr
Navigation 0.01− 0.1◦/hr
Strategic 0.0001− 0.01◦/hr

The gyroscope bias will introduce a
small misalignment of the accelerome-
ter resulting in a projection of the ac-
celeration vector. For small angles the
error introduced in acceleration will ap-
proximately be proportional to time,
leaving the error in velocity quadratic
and the error in position cubic. The ac-
curacy of the estimated navigation so-
lution rapidly degenerates in the pres-
ence of accelerometer and gyroscope biases. The accuracy of an INS depends on
time and the rate of increase depends on the bias magnitude. Increasing the quality
of the sensor will ensure a slower error growth. In Table 2.1 the performance grades
of IMUs have been summaried based on the gyroscope stability, [114]. The transi-
tion between the grades is constantly changing as new technologies are developed
and cheaper sensors become available to the consumer.

The bias stability indicates how much the measurement drift over one hour. For
consumer products such as mobile phones the measurements are not required to
be highly accurate, however, for precision critical systems such as driverless cars
or weapons systems, the sensors need to be of high quality to ensure safety and
performance. The price of the IMU follow the performance grade, where cheap
MEMS-based sensors are available for use in tactical grade, whereas expensive
FOGs are required for strategic applications. Using low-cost sensors in navigation
applications necessitate the estimation of gyroscope biases.

2.5 GNSS Signals and Positioning

This section will introduce the general signal structure used in a Global Naviga-
tion Satellite System (GNSS) and how pseudorange, carrier-phase and Doppler
measurements can be utilized to estimate receiver position and velocity. Multiple
GNSS constellations are available, the most commonly used being the American
Global Positioning System (GPS), but also the Russian GLONASS, the European
Galileo, and the Chinese BeiDou are prominent. The presentation will strive to be
general to cover all GNSSs when possible, however, details will be supplied on GPS
as this system was used in the experimental verification of the included papers.

A GNSS system consist of three segments; user, control, and space. The user
segment is comprised of antennas and receivers, tracking and processing the satel-
lite signals. The user segment can typically output either raw pseudorange, carrier-
phase or Doppler measurements, as presented in Section 2.5.3, or as processed
measurements in the form of global position and velocity estimates. The processed
measurements are more commonly utilized by the user segment as they can be
used directly in a standalone solution, whereas the raw measurements require im-
plementation of a navigation filter. The receiver position and velocity are often
estimated by some variant of the Kalman filter, which will be unavailable for tun-
ing by the user. The accuracy of the position estimates provided by standalone
GNSS receivers are commonly within 10 m, where [126, Section 6.1.5] shows a 24
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hour dataset with median error of 4 m. A limitation of the user segment is that the
signal path from satellite to receiver must be unobstructed. A GNSS receiver needs
line-of-sight of the satellites and will therefore not work underwater or in some
indoor environments. For some houses consisting primarily of wood or non coated
glass windows the High Sensitivity GNSS (HSGNSS) receivers might be used.

The control segment consists of several stations well spread around the globe
supplying orbital, timing and correction information to the satellites while moni-
toring the health and status of the satellites. The space segment covers the orbiting
satellites which continuously broadcast signals to the user and control segments.
Each GNSS has different constellation structure, orbital patterns, and control seg-
ment locations. For the GPS the satellites have an orbital period of 11 hours and
58 mins corresponding to two rotations per sidereal day (the time it takes Earth
to rotate 360 degrees). The satellites are spaced to 6 nearly circular orbital planes
with (normally) four satellites unevenly placed in the planes. The satellites travel
at an altitude of approximately 20200 km, in the planes with a 55◦ inclination
angle to equator. The inclination angle results in an uncovered area at both poles,
see Fig. 1.2. The Medium Earth Orbit (MEO) satellites in the BeiDou and Galileo
systems have similar inclination angles, whereas the GLONASS system covers the
higher latitude areas better with an inclination angle of 64.8◦. The BeiDou Phase III
(completion due 2020) constellation will consist of three types of satellites, [76]; the
MEO (similar to GPS and Galileo), Geosynchronous Orbit (GEO) satellites which
in this case will serve as geostationary transmitters, and Inclined Geosynchronous
Orbit (IGSO) satellites which will trace an analemma (elongated figure-of-eight)
in the sky. This composition of satellites is intended to ensure better coverage over
the Asia-Pacific region.

A main difference between GPS and GLONASS is the multiple access method.
GPS, as well as Galileo and BeiDou, use Code Division Multiple Access (CDMA)
which allows the satellite to transmit on the same frequency by encoding an identi-
fication signal into the transmitted data, thereby allowing for identification of the
satellite. GLONASS use the Frequency Division Multiple Access (FDMA) where
each satellite transmits on an individual frequency for identification purposes. Re-
cently GLONASS has begun to undergo development to change to CDMA allowing
for increased interoperability with other GNSS.

2.5.1 GNSS signals
In this thesis only the single-frequency GPS L1 constellation will be considered,
with few expansions to dual-frequency applications, see Section 5.4, and when de-
termining high accuracy reference for the experimental trajectories, as in Section
4.7. However, other constellations and frequencies can be used instead or in ad-
dition. The GPS satellites broadcast on the L1 and L2 frequencies, which will be
considered in the following. A conceptual illustration of the components in the sig-
nal structure of the GPS L1 and L2 signals is shown in Fig. 2.4, where

⊕
signifies

the modulo-2 addition (if both signals are 0s or both are 1s the result is 0, otherwise
1) and

⊗
is the binary phase shift keying (BPSK) modulation (if the entering bit

is 0 the carrier signal is unchanged, if the bit is 1 the carrier signal is multiplied
with -1).
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Figure 2.4: Structure and components of the GPS L1 and L2 signals.

The frequencies of the signals in Fig. 2.4 are not to scale, but illustrate the
carrier signals having a higher frequency than the code signals, which in turn have
a higher frequency than the navigation data.
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Figure 2.5: BPSK modulation of carrier, [76].

An example of a BPSK modulated signal is shown in Fig. 2.5, where the general
model of a GNSS signal can be expressed as, [76]:

y(t) =
√

2PC(t)D(t) cos(2πfcat+ φ0), (2.10)

where the signal y(t) has carrier power, P . The ranging code and navigation data
are denoted C and D, and can switch between the values ±1. The phase offset
is φ0 and fca is the centre frequency of the carrier. For the legacy L1 signal the
frequency is fL1 = 1575.42 MHz and wavelength λ1 = fL1/c ≈ 0.1903 m, where c
is the propagation speed of light.
The GPS signal consists of components divided into three categories:

• Carrier : The carrier are sinusoidal with high frequency. The other compo-
nents are modulated onto the carrier.

• Code: The code consists of a pseudo random noise (PRN) signal, which is
individual for each satellite and known by the receiver.
– C/A Code: The Coarse/Acquisition PRN signal has period of 1 ms. The

PRN codes are highly orthogonal to each other, making it possible to
distinguish between satellites. One receiver can therefore obtain signals
from multiple transmitters on the same frequency.
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– P(Y) Code: The P code is more precise than the C/A code, and is
the only code signal modulated onto the L2 signal. This code can be
encrypted for military use, in which case it is denoted the Y-code. The
P(Y) PRN code is 267 days long with each satellite having one week of
the PRN code each.

• Navigation Data: The navigation data includes almanac (satellite health and
status), ionospheric correction terms, satellite clock information, ephemeris
data, etc. The ephemeris data can be used to determine the position and
velocity of the satellites.

When the GNSS receiver is turned on it searches for satellites, and correlates
the received signals with the locally generated signal replicas to determine which
satellites are present in the constellation. The correlation is performed in phase,
frequency and code. Once the acquisition of the satellite signal is complete the
receiver changes to tracking mode, which in general can operate in worse signal-
to-noise conditions, [76]. Determining the position of the available satellites can be
done using the navigation data, by decoding the transmitted ephemeris data and
using the algorithms summarised in Appendix A. With known satellite positions the
receiver clock error and position of the receiver can be determined. If the receiver
has been turned off recently, e.g. within a couple of hours, it might (depending on
receiver settings, and age of ephemeris) be able to estimate the satellite position
from stored ephemeris data.

2.5.2 Present GPS generation

Table 2.2: GPS satellite generations, [76,
Section 8.2.1]

Satellite Block Dates SVs

Block IIA 1990-1997 19
Block IIR 1997-2004 12
Block IIR-M 2005-2009 7
Block IIF 2010-2015 12
Block III 2015-2024 24†

GPS offers two navigation services; the
civilian Standard Positioning Service
(SPS) and the restricted Precise Po-
sitioning Service (PPS) for licensed
users, e.g. military forces. The horizon-
tal and vertical accuracy of the SPS is
around 3.8 m (1σ) and 6.2 m (1σ), re-
spectively, while the PPS has accura-
cies of 1.2 m (1σ) and 1.9 m (1σ), [76,
Section 8.2.1].

In Table 2.2 the present and
planned generations of the GPS satel-
lite network is shown, with launch
dates and number of satellite vehicles (SVs). Here † indicates the planned number
of satellites in the coming Block III expansion, which will broadcast new signals
and increase the power of other signals, [76, Section 8.2.1].

The C/A- and P(Y)-code described above are called the legacy GPS signals, as
they are present in all of the GPS generations. Presently ten GPS navigation signals
are broadcasted on the L1, L2, and L5 bands, where the L5 bands were introduced
in the IIF block. The motivation for introducing more frequencies is; frequency
diversity allows for ionospheric delay estimation, increases performance of carrier-
phase positioning, and reduces the interference on the individual frequencies.
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In the IIR-M block the M-code and L2C signals were introduced, where the M-
code is a military signal using a Binary Offset Carrier (BOC) modulation in contrast
to the BPSK modulation. The advantage of the M-code is spectral separation from
the SPS signal thereby offering increased robustness to jamming compared to the
Y-code, [8].

The L2C signal consists of two components; the civil-moderate (CM) code and
the civil-long (CL) code. The CM code has faster acquisition than the CL code,
which in turn has better performance in poor signal-to-noise conditions and more
accurate carrier tracking, [76, Section 8.3.2]. Compared to the C/A code the CM has
better correlation properties with the trade-off of being more difficult to acquire.

The L5 signal was introduced with the IIF block to supply a third civilian signal
to increase safety-of-flight applications. The advantages of using the L5 are; wider
bandwidth and better interference management compared to the L2 signal, [135].

2.5.3 GNSS measurements
In the following the pseudorange, carrier phase and Doppler measurements from
the L1 signal will be introduced in detail. The measurements will utilize different
components of the transmitted L1 signal; pseudorange measurement considers the
C/A Code, whereas the carrier-phase measurements employ the carrier.

Pseudorange

The pseudorange measurement, ρ, is determined as the time between signal trans-
mission from the satellite to the signal acquisition at the receiver, multiplied with
the speed of light; ρ = c∆t. The speed of light, c, is constant in an inertial frame,
e.g. ECI, [76, Section 8.5.3]. In the following it will be assumed that c can be con-
sidered constant in the rotating ECEF-frame. The time difference is estimated by
time shifting the known PRN codes until it matches the received C/A Code signal.
The pseudorange measurements are also called code measurements to emphasize
the signal used and distinguish it from the carrier-phase measurements. Since only
the satellite has a high accuracy atomic clock, the estimated time difference will
include an offset due to the imprecise receiver clock. The measurement is called
"pseudo" to indicate that the time difference is not exactly known. The pseudorange
measurement from the ith satellite, ρi, can be written as:

ρL1,i = ψi + βi + fL2

fL1

I + T +ML1,ρ + E + nL1,ρ, (2.11)

where ψi = ‖pe− pei‖2 is the true geometric range between the receiver at position
pe and the ith satellite at pei . The clock range bias, β, covers the residual inaccu-
racy between the receiver and satellite clock when the satellite clock corrections
have been applied; β = c∆c, where ∆c is the clock bias. The satellite clock can
be corrected with ephemeris parameters, see A.2. The pseudorange measurement
is subject to delays imposed by the atmosphere and stochastic errors such as sig-
nal multipath, Mρ, and measurement noise nρ. The atmosphere is considered to
consist of two parts; the frequency dispersive ionosphere, I, and the non-dispersive
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troposphere, T . The ephemeris data, E, accounts for errors in the determination
of the satellite position.

Carrier-phase

The carrier-phase measurement is determined by counting the number of cycles
received of the (sinusoid) carrier-signal. The unit of the carrier-phase is therefore
given in cycles instead of meters, but can be converted by multiplication of the
wavelength. The measurement from the ith satellite is given as:

λL1ϕL1,i = ψi + βi +NL1λL1 −
fL2

fL1

I + T +ML1,ϕ + E + nL1,ϕ, (2.12)

where the ionospheric effect is opposite in sign compared to the pseudorange. The
multipath and noise term are complementary to the terms for the pseudorange
measurement. However, the multipath effect is maximum 25% of a wavelength,
and thereby much smaller than on the pseudorange measurement. The unknown
integer ambiguity, N , denotes an offset of a whole number of wave lengths and is
individual for the satellite. Furthermore, the ambiguity is constant as long as the
satellite is tracked by the receiver, i.e. if the tracking of the satellite is interrupted
the integer ambiguity will have assumed a different value.

The carrier-phase measurement is more precise than the pseudorange, which
might seem counter-intuitive when the integer ambiguity is unknown. However, it
is analogous to measuring the length of a room with a 19.03 cm ruler; you might
forget how many times you had to slide the ruler along the floor, but you know the
final fraction of the ruler very precisely.

Doppler

The range-rate measurement is the difference between received frequency and trans-
mitted frequency, and can be considered as:

λL1νL1,i =
(

pe − pei
‖pe − pei‖2

)ᵀ

(ve − vei ) + β̇i + fL2

fL1

İ + Ṫ + ṀL1,ν + nL1,ν , (2.13)

where νi is the Doppler measurement in Hz with noise term nν . The ionospheric
and tropospheric delay rates, İ and Ṫ , will generally be small as the atmosphere
will be slowly time-varying for most user applications. The multipath rate, Ṁ , is
a function of the receiver velocity denoted ve, while vei is the velocity of the ith
satellite.

For high-velocity applications additional correction terms due to the relativistic
frequency shift must be applied, see [76, Appendix G.5]. These terms cover time
dilation due to special and general relativity, and is considered outside the scope
of this thesis.

LN measurements

Introducing the LN as a common notation for the L2 and L5 signal the range and
range-rate can be expressed similarly to the L1 measurements. Some of the terms,
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such as geometric distance and clock range bias, are the same for the two frequency
measurements while others, including the multipath and noise terms, vary from the
two measurements. The LN measurements are given as:

ρLN ,i = ψi + βi + fL1

fLN

I + T +MLN ,ρ + E + nLN ,ρ, (2.14)

λLN
ϕLN ,i = ψi + βi +NLN

λLN
− fL1

fLN

I + T +MLN ,ϕ + E + nLN ,ϕ, (2.15)

λLN
νLN ,i =

(
pe − pei
‖pe − pei‖2

)ᵀ

(ve − vei ) + β̇i + fL1

fLN

İ + Ṫ

+ ṀLN ,ν + nLN ,ν .

(2.16)

The ionospheric effect on L2 can be scaled to L1 such that the ionospheric effect has
the inverse factor compared to the L1 signal, i.e. fL1/fL2 instead of fL2/fL1 . This
feature allows for creation of the ionospheric-free linear combination of the L1 and
L2 range measurements. The most common linear combinations will be introduced
in Section 5.4. In the following the L1 and LN notation will only be used when
dual-frequency measurements are considered, and leave the dropped notation for
describing L1 measurements, as these are most commonly considered.

2.5.4 Error sources and implementation considerations
The various error sources impacting the accuracy of the pseudorange, carrier-phase
and Doppler measurements will be introduced in the following with typical standard
deviations for pseudoranges, [52, Table 8.5]. Notice that even small errors in timing
can have a huge impact as the satellite signals propagate at the speed of light. The
error sources of the GNSS range and range-rate measurements are:

• Satellite clock bias (2 m): The satellite clocks will drift despite being
atomic clocks. The ephemeris data includes parameters for correcting the
satellite clock, see Appendix A.2. The pseudorange and carrier-phase mea-
surements can be corrected by adding cδtsat, where δtsat is the satellite clock
bias correction.

• Receiver clock bias: The receiver clock is imprecise compared to the satel-
lite clock, and estimation of the receiver clock bias is therefore required, and
is usually included in the navigation filter as a state. There are predomi-
nantly two ways of handling the bias in the receiver: a) accumulated clock
bias where the receiver clock bias is unbounded, and b) steered clock bias
where the clock bias is steered towards zero when exceeding a threshold.

• Ionospheric delay (7 − 10 m): The satellite signal is delayed in the iono-
sphere; top part of atmosphere (50− 1.000 km). The signal path can be ob-
structed by particles (free electrons and positively charged molecules) which
will act as a frequency dispersive medium and delay the signal. In the disper-
sive medium the propagation velocity will depend on the frequency, delaying
code and navigation data but advancing the carrier phase, [76, Section 9.3.2].
A linear combination of the L1 and L2 signals can be created to remove
the effect of the ionosphere. Additionally, several models (e.g. the Klobuchar
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and NeQuick models) exist and can describe the nominal ionospheric effect
based on time of day, user location, satellite elevation and azimuth, as well
as broadcast correction terms. Using only the broadcast correction terms it
is possible to remove approximately half of the ionospheric delay at midlati-
tude. Larger errors (> 10 m) can occur for low elevation satellites or during
additional environmental disturbance (e.g. solar storm).

• Tropospheric delay (1 m): The lower part of the atmosphere (< 50 km)
is the non-dispersive troposphere, which will affect the satellite signal time of
flight due to changes in temperature, pressure and humidity. Moreover, the
satellite elevation angle and the user position will affect the propagation path
length, and thereby the delay imposed by the troposphere. The tropospheric
delay can be modelled (e.g. the Saastamoinen troposphere delay model) based
on average parameters at the receiver position and weather forecasts. Larger
errors (> 3 m) can occur for low elevation satellites.

• Ephemeris errors (2 m): The satellite position and velocity is determined
based on the ephemeris data, which are valid for no more than two to four
hours, depending on the desired level of accuracy. However, the ephemeris
model, see Appendix A, is a curve fit, and variations might occur. An error
will result in a difference between estimated and true position of the satellite,
thereby introducing a small angle between true and estimated signal path
resulting in a range error due to the long distance from transmitter to receiver.

• Multipath (0.1− 3 m): The satellite signal might be reflected or refracted
by obstructions in the signal path thereby extending the range from satellite
to receiver. It is especially common in urban canyons where buildings will
reflect the signals to the receiver.

• Receiver noise (0.1− 0.7 m): Measurement noise caused by the receiver is
often considered random white noise, see [52, Section 8.4.8].

The error sources can be divided into two categories; systematic (satellite clock
bias, ephemeris errors, ionospheric and tropospheric disturbances) and stochastic
(multipath and receiver noise). The stochastic errors will be receiver and environ-
ment specific, whereas the systematic errors depend on the position of the receiver
compared to the satellite, and will be the same for multiple receivers placed closely
together.

When implementing GNSS-based navigation systems, care should be taken
when comparing the timing of various GNSS data, especially when comparing with
other sensors. Two time scales are used to timestamp the GNSS signals; the UTC
(Coordinated Universal Time) and the iTOW (integer millisecond Time Of Week)
time scales. The iTOW (e.g. 569134120 for approximately two hours after noon)
corresponds to the UTC (e.g. 14:05:34.12 same time on a Sunday), by counting the
number of milliseconds since Sunday midnight. However, there is a growing offset
between the two time scales in the form of leap seconds. Currently the leap second
offset is 17 seconds which should be applied to the UTC in order to correspond
with the atomic time. The Russian version of the UTC, synchronized with Moscow
local time, applies leap seconds when timestamping in the GLONASS system.

Due to the large distance between transmitter and receiver it is vital to com-
pensate the range measurements for the rotation of the Earth during signal transit
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time. The range can either be over- or underestimated depending on the placement
of the satellite relative to the receiver as the receiver will either rotate closer or
further away from the position at initiated transmission. The Sagnac correction
can be employed to counteract this effect, which at the equator can result in a
range error of 41 m, [76, Section 8.5.3]. The range correction, rc, is determined
as rc = ωie/c(yixr − xiyr), where the satellite and receiver position are given as
[xi; yi; zi] and [xr; yr; zr], see [76, Section 8.5.3] for more details.

2.5.5 DGNSS and Real-Time-Kinematic solutions
Motivated by the systematic errors described in Section 2.5.4 it is often of interest
to include additional receivers in an area of operation, in order to estimate and
take the errors into account. The satellite clock bias is the same for all receivers
and the ephemeris error has very small spatial variation, [76, Section 10.1.2]. These
errors will therefore affect receivers similarly if the satellites are visible for both
receivers. Since the line-of-sight to the satellites is slowly changing relative to the
receivers and the atmosphere is somewhat uniform the effect of the ionospheric
and tropospheric errors on the measurements will be similar for receivers in close
proximity to each other.

In Differential GNSS (DGNSS) applications an additional stationary receiver,
often denoted reference or base station, is placed at a known location. The base
station estimates and broadcasts the corrections for the systematic errors, thereby
leaving only multipath and receiver noise errors to influence the measurements of
the moving receivers, often called rovers. A single base station can service multiple
rovers, with the separation between a rover and base station denoted the baseline. It
is possible for the position of the base station to be slowly time-varying, although
it is most common to be stationary. The base station is commonly placed in a
presurveyed position with minimal multipath effect to ensure accurate estimation
of the systematic errors.

Depending on the application, additional base stations can be placed to ensure
increased coverage and accuracy of the estimated errors. In local area applica-
tions only a single base station is exploited, where the quality of the corrections
depends on the baseline length. Shorter baselines supply higher accuracy, where
rovers within 150 km can get accuracy of 1 m, [76, Section 109.1.2]. In wide area
DGNSS applications multiple base stations are spread over a large area, e.g. a whole
country, to provide increased accuracy for rovers within the area. The method of
broadcasting the base station corrections is typically some type of radio signal. The
significant short-term correlation of the systematic errors facilitate the broadcast
of corrections rather than the full measurements at the base station receiver, to
increase efficiency, [52, Section 8.8.2].

Local area DGNSS can be utilized in mission critical areas such as airports or
along coastlines. A maritime DGNSS system has been operational since 1999 and
maintained by the U. S. Coast Guard. The differential corrections are broadcast
on maritime radio frequencies, and can give accuracy of 1-3 m with baselines of
100 km, [126, Section 2.5]. While such a system will not be cost efficient for global
coverage due to the large number of base stations required it can have a vital impact
in dangerous areas with large reefs or troublesome currents. A similar network has
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been proposed for covering airports for assisted landing of planes, [126, Section
2.5].

A special case of DGNSS is the real-time-kinematic (RTK) solution, where the
raw measurements are shared by the base station. The rover can then compute the
single-differenced measurements, as the difference between measurements acquired
by the base station and rover. Furthermore, the double-differenced measurements
can be determined by selecting a satellite as a reference satellite to further reduce
the effect of the receiver clock bias. The single- and double-differenced measure-
ments will be introduced in more detail in Chapter 6. In [103] a wide area RTK
solution based on reference stations throughout Europe used ionospheric correc-
tions as an additional constraint for faster carrier ambiguity resolution, resulting
in root-mean-square errors of 10 cm.

The quality of the RTK solution depends on the successful resolution of the
integer ambiguities of the carrier measurements, which will still be integer in the
single- and double-differenced measurements. Three categories for the RTK quality
are introduced; single, float, and fixed. When the quality is single the performance
of the RTK solution is similar to a standalone receiver application, whereas float
indicates that the ambiguities are estimated as real valued numbers. When the
quality is fixed the ambiguities of the double-differenced measurements have been
successfully resolved. It is customary to use the double-differenced measurements
in the injection terms of the navigation solution, thereby negating the need for
estimating the undifferenced ambiguities. With resolved ambiguities (fixed quality)
the RTK solution provides centimetre-accuracy, while float can give accuracy on
decimetre level.

Other DGNSS cases are available, such as relative DGNSS using pseudoranges
(see [52, Sectio 8.8.1.1]), however this has an accuracy approximately 100 times
worse than the RTK solution. In the following chapters RTK solutions will be used
as reference when evaluating the performance of the proposed nonlinear observers.
To achieve highly accurate position estimates the resolution of the carrier ambiguity
is of high importance.

High end and low cost receivers

Similar to IMUs GNSS receivers are available in a large price-range, from cheap
receivers used for mobile phones to expensive receivers used for mapping appli-
cations. The receivers can be purchased as chipsets for circuit board integration,
original equipment manufacturer modules, or as a complete solution with interface
and possibly integrated antenna, where the price increases with complexity.

The price will further depend on the desired application as some features might
be required. One such feature might be access to pseudorange, carrier-phase and
Doppler measurements which are typically not available on cheaper receivers only
suppling position estimates. Other features might include; multiple constellation
access, multiple frequency access or low cold start time. The receivers can be di-
vided into the categories; consumer-, professional- and military-grade, with increas-
ing complexity. For consumer-grade products low accuracy and limited number of
features can be tolerated for low price ($1-$100), whereas military-grade receivers
must robustly supply accurate estimates and have access to restricted signals for
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higher costs (>$10.000), [76]. High accuracy applications in the professional-grade
category presents a price-range around $100-$1.000, e.g. the u-Blox LEA series,
where multi constellations are supported and range and range-rate measurements
are available allowing use in tightly-coupled navigation systems. For UAV applica-
tions further design parameters might be considered, such as: dimension, weight,
and power consumption to insure long flight times.

2.5.6 Integer ambiguity
The ambiguity introduced in (2.12) needs to be resolved to get high precision
range measurements and thereby accurate position estimates. The ambiguity is
an integer number of cycles, N ∈ Z, and represents a large range offset. The
offset is constant in time as long as the carrier-phase tracking of the receiver is
maintained. If line-of-sight to the satellite is obstructed a new ambiguity will be
present when the satellite is reintroduced to the constellation. If the ambiguity is
unresolved the carrier-phase measurement is inaccurate and does not offer better
range information than the pseudorange. Moreover, the unresolved ambiguity will
present a large offset between the pseudorange and carrier-phase measurements.
However, if the ambiguity is resolved to the correct integer centimetre accuracy
can be achieved for position estimation. Applications are often divided into two
categories; static (e.g. surveing) or kinematic (moving receiver), where applications
such as real-time long-baseline kinematic solutions integrates the two categories,
[112]. However, most resolution methods can be used for both categories.

Extensive research has been carried our for single-frequency single-constellation
applications. One method consists of a bank of Kalman filters where multiple fil-
ters each hypothesizing a different ambiguity set, e.g. [89]. Another approach is the
Ambiguity Function Method (AFM) proposed in [38] (extended to dual-frequency
in [82]) which is insensitive to cycle-slip. Drawbacks of the AFM include long com-
putation time and possibly multiple maxima that must be descriminated between
to find the optimal position, [82].

The ambiguities can either be resolved using measurements from a single epoch,
or by averaging over multiple epochs. A single-epoch resolution method is the
Least-Squares Ambiguity Search Technique (LSAST), proposed in [88], utilizing
dual frequency measurements in a DGNSS setup. In [57] the Fast Ambiguity Res-
olution Approach (FARA) method uses the double-differenced code observations
to initialize the estimation based on carrier measurements. The float solutions are
then used to find a set of ambiguities that are then tested and possibly fixed if
accepted. A recursive filter approach was presented in [35] for the Fast Ambiguity
Search Filter (FASF), where the search range is determined recursively for each
ambiguity. The FASF method is based on Kalman filter theory and offers a sig-
nificant reduction in computational load compared to least-squares methods. The
modified Cholesky Decomposition Method offers an alternative to the quadratic
form of the residuals, and is based on decomposition of matrices, and will have
high computational time for fast data collection. It is therefore not advised for real
time applications. In order to save computational load the ambiguity search space
can be reduced. Extensive work has been done by P. J. G. Teunissen et al within
ambiguity resolution; e.g. in [167, 169] where a fast ambiguity estimation approach
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for GPS was proposed. In [168] the Least-Squares Ambiguity Decorrelation Adjust-
ment (LAMBDA) was proposed which uses downscaling of the integer search space.
Another method focused on faster solutions is the Optimal Method for Estimating
GPS Ambiguites (OMEGA) employing a scaling and screening process to reduce
the ambiguity search space, [111]. A comparitive study on the characteristics of
the methods is presented in [112].

For multi-frequency applications linear combinations of the carrier measure-
ments can aid the resolution. [54] considers the use of carrier-phase measurements
on three different frequencies to reduce the effect of the ionosphere and increase
the success rate of ambiguity resolution. The geometry-free linear combination of
the L1 and L2 signals was investigated in [42] and [43] presents an extensive survey
covering short and long baselines, as well as undifferenced, single- and double-
differenced configurations. A ratio test for future GNSS ambiguity resolution was
proposed in [174]. New methods for solving the ambiguities using multiple epochs
were presented in [34] and [36] with focus on the reduction in computational load.
Surveys on various methods for partial or full resolution were carried out in [25]
and [26]. On-the-fly resolution of the ambiguity was investigated in [67], where also
GPS error modelling is considered in an GNSS/INS setting. Further considerations
on the ambiguities can be found in [126], [52] and [76].

In the following a few methods will be introduced for resolving the ambi-
guity. Several of the presented methods are based on double differenced mea-
surements, where a reference base station receiver and reference satellite is used
to cancel most of the nuisance terms in the range equations, (2.11) and (2.12).
The single- and double-difference schemes will be introduced in detail in Chap-
ter 6. Double-differenced measurements will be denoted ∇∆·, e.g. ∇∆N being
the double-differenced ambiguity. Here the notation bN̂e = N̆ , from [52], will be
adopted for the rounding of floating valued estimate N̂ to the integer N̆ .

Average range measurements

The ambiguity can be solved individually for each satellite by differencing the
double-differenced pseudorange and carrier-phase measurements, and averaging
over time:

∇∆N̂ = 1
nλ

n∑
k=1

(λ∇∆ϕ−∇∆ρ) (2.17)

where k is the current epoch and n is the number of epochs used. In the averaging
it is exploited that the ambiguities are constant. This method takes a long time
to converge and the obtained ambiguity estimate is not precise, furthermore it has
to be carried out for all satellites in the constellation individually. Care should be
taken not to average over tracking loss where the ambiguity will reinitilise. The
standard deviation of the estimate is approximately 5 cycles (≈ 1 m), i.e. similar
to that of pseudorange measurements, see [126, Section 7.4.1]. According to [143]
the residual measurement error should be less than 25% of a wavelength for the
integer ambiguity resolution to have high probability of resolving to the correct
integer.
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Dual-frequency method

Utilizing a linear combination of the L1 and L2 signals it is possible to enhance
the ambiguity estimation. This method can be used in the non-differenced case
as well as single- and double-differenced configurations. Using the wide-lane linear
combination a new carrier-phase measurement is constructed by differencing the
L1 and L2 measurements:

ϕw = fL1

fL1 − fL2

ϕL1 −
fL2

fL1 − fL2

ϕL2 , (2.18)

where the ambiguity of the wide-lane combination; Nw = NL1−NL2 is still integer.
The wide-lane measurement have a longer wavelength making the ratio between
the ambiguity and uncertainty larger, and easier to resolve. The drawback of this
method is the increase in noise and that the wide-lane ambiguity is resolved instead
of the individual ambiguities.

Another option for use of dual-frequency measurements is to solve the two
carrier-phase measurements (for the two frequencies) with respect to the ambigui-
ties:

NL1 −
λL2

λL1

NL2 = ϕL1 −
λL2

λL1

ϕL2 + ε, (2.19)

where ε is a collection term for all the nuisance terms (e.g. multipath and iono-
spheric delay). By further utilizing the wide-lane ambiguity the L1 and L2 ambi-
guities can be determined as:

N̂L1 = λL1ϕL1 − λL2ϕL2 − λL2Nw
λL1 − λL2

, N̂L2 = λL2ϕ2 − λL1ϕL1 − λL1Nw
λL1 − λL2

Averaging can be applied to enhance the accuracy of the ambiguity estimates.

Geometry based

The ambiguities of multiple simultaneous carrier-phase measurements can be re-
solved by considering a vector of double-differenced ambiguity estimates, xN . By
resolving all ambiguities together the geometry of the satellite constellation can be
utilized when the navigation solution is overdetermined, [76, Section 10.2.3]. When
more than four satellites are available only certain solutions to the range ambiguity
will provide consistent solutions for all the measurements.

Here the float-and-fix method will be considered due to its high efficiency, [76,
126]. The process follows the general steps, [52, Section 8.9]:

• Initialization: The ambiguities are initially considered as floating values, later
to be fixed to integer for increase in precision. The initial estimates are based
on the difference between the carrier-phase and pseudorange, as with the
averaging method:

x̂N = ∇∆ϕ− λ−1∇∆ρ. (2.20)
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• Candidate generation: Candidate vectors for the fixed integer ambiguities are
generated in the vicinity of the estimates, based on the estimate covariance.
The candidate vectors, x̆N , cover all combinations of integer values around the
ambiguities estimates. The search space is therefore often large, and methods
for decreasing the search space are common use.

The candidates might be proposed based on the space:

S := {x̆N ∈ Zm−1|x̂N − crσN ≤ x̆N ≤ x̂N + crσN}, (2.21)

where σN is the variance of the ambiguity estimates determined by the diag-
onal elements of the ambiguity covariance matrix PN ; σN =

√
diag(PN ). The

constant cr denotes the confidence interval, which for the 99.9% confidence
interval will be considered as; cr = 3.29, assuming normal distribution.

• Candidate evaluation: The candidate vectors are evaluated by the test statis-
tic:

s2 = (x̆N − x̂N )ᵀP−1
N (x̆N − x̂N ), (2.22)

where the candidate vector that is closest to the estimates minimizes the test,
and is presumed to be the likeliest solution.

• Candidate validation: The candidate vector chosen based on the minimization
of (2.22) during the evaluation can be validated by ideally being significantly
smaller than the next best candidate vector. Due to measurement noise and
additional error sources the most consistent solution might not be the true
candidate set. The ratio between the s2 values of the most likely and second
likeliest candidate vectors can be used as a threshold test for verification.
Failure of the validation step will prompt the generation, evaluation and
verification of new candidate vectors for a new epoch.

Once the candidate vector have been validated the ambiguities can be assigned
to integer value; x̂N = x̆N , and can be kept constant. If satellites are lost and
reintroduced into the constellation a new iteration of the process has to be carried
out.

LAMBDA

The Least-squares AMbiguity Decorrelation Adjustment (LAMBDA) method is
a Mixed-Integer-Least-Squares (MILS) approach to limiting the search space by
transformation of the ambiguities. The intention is to utilize a change of variables
to transform the confidence interval of the ambiguities to cover a smaller area,
thereby reducing the search space. Collecting the double-differenced ambiguities in
the vector, x̂N , the ambiguities and the covariance matrix, PN , is transformed by
use of the decorrelation matrix, Z, see [76, Appendix G]:

x̂Z = Zx̂N , PZ = ZPNZ
ᵀ. (2.23)

The decorrelation matrix is determined from the Cholesky factorization of the
covariance matrix; PN = LDLL

ᵀ, where D is a diagonal matrix and L is a lower
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triangular matrix with unit elements in the diagonal. The decorrelation matrix is
then found as; Z = bL−1e.

After the ambiguity transformation the search space has decreased in size, leav-
ing fewer candidate sets to be tested, making for a faster evaluation. The LAMBDA
method is often used in connection with other resolution methods such as the
geometry-based approach. Once the ambiguities have been fixed the transforma-
tion can be reversed. A key feature of this approach is that due to the rounding
operation when determing Z an integer valued x̂N corresponds to an integer valued
x̂Z , and vice versa. Implementation aspects of the LAMBDAmethod are considered
in [44] and [102].

2.5.7 Least-squares: receiver position from pseudoranges
The position of a receiver can be determined from range measurements using a
least-squares method. In Fig. 2.6 a two dimensional example is introduced, includ-
ing a receiver, R, and three satellites; A, B, and C. The range measurements from
the satellites are depicted as solid circles extending from the center of the satellites,
whereas the true geometric range is shown as a dashed circle. This illustrates the
effect of the inaccurate range measurements offered by the pseudoranges. If the
true ranges were available the receiver position would be found at the intersection
of the three dashed circles. However, when using the pseudoranges the position es-
timation is uncertain, as the position is limited to an intersection area, here shown
in gray. The least-squares method can be used to find the most likely position of
the receiver in the restricted area.

A

ψa

ρa

B

C

R

M

Figure 2.6: 2D example of pseudorange positioning of receiver R using measure-
ments from satellites; A, B, and C.

In the two dimensional example three satellites are required to find the receiver
position. If only two satellites are used there are two possible positions for the
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receiver location; at the intersections of the two circles. If the true ranges from
satellite A and B are used the receiver can be either at R or M . It is often possible
to guess at the right option if fewer satellites are used, and multiple solutions to
the position estimation problem are presented, as one option often lies out in space
or inside the Earth. Prior knowledge of the receiver position at an earlier epoch
can also limit the options. In the three dimensional case, four satellites are needed
to estimate the receiver position, as four parameters must be estimated; the three
spacial coordinates of the receiver, and the clock range bias. The receiver position
is then found at the intersection of four spheres.

The accuracy of the position estimate is influenced by the constellation geom-
etry; if all the satellites used are clustered closely together in the sky the position
estimate will have a large error, as the intersection area will be large and follow the
curvature of the signal paths. However, if the satellites are spaced out over the sky,
with some satellites at high elevation and some at lower elevation the intersection
area will be smaller and the position can be determined with higher accuracy.

Considering the three dimensional case, the receiver position, p̂e = [x̂e; ŷe; ẑe],
and clock bias, β, can be combined to the state vector; x̂ = [p̂;β]. The cost function
to minimize is; J(x̂) = ‖ρ̂−ρ(x̂)‖, see [52]. Intuitively the cost function makes sense,
as it is desired to minimize the difference between the measured and estimated
pseudoranges. The iterative algorithm is:

x̂k+1 = x̂k + (Hᵀ
kHk)−1Hᵀ

k (ρ− ρ̂(x̂k)), (2.24)

where k = 1, 2, 3, . . . is the iteration index. A weight matrix can be introduced to
alter the algorithm to the weighted least square (WLS) problem. The estimated
pseudorange is determined as; ρ̂(x̂k) = ‖p̂ek − pei‖2 + β̂k, where the known position
of the ith satellite is denoted, pei . Assuming four linearly independent satellites
are available the H matrix is given by; Hk = [he1,k, 1;he2,k, 1; . . . ;he4,k, 1], where
hei,k = (p̂ek − pei )‖p̂ek − pei‖

−1
2 is the line-of-sight vector of the ith satellite.

The requirement of at least four linearly independent satellite measurements
ensures that the matrix inverse in (2.24) exist. The algorithm, (2.24), is iterated
until convergence. As shown in [52] this method can take several iterations to
converge to a position estimate, when initiated at Earth’s center. However, normally
a better initial guess can be provided and the algorithm will converge in fewer
iterations. The position precision using this method is low; an example in [52,
Section 8.2.2] shows errors after convergence of 90 meters. The least-squares method
suffers from several drawbacks; low precision and requires multiple iterations for
convergence. Additional accuracy can be achieved by implementing a Kalman filter,
however, the complexity of implementation and tuning will increase. The error
sources and degradation of the GNSS measurements motivate the integration of
satellite measurements with inertial sensors, such that higher sample rate of the
estimates can be achieved while the navigation solution becomes more robust to
outages in the GNSS signals.
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2.6 GNSS/INS Integration

Navigation using only inertial sensors lack long term stability, whereas navigation
using only GNSS measurements have low sample rate. The integration of GNSS
and INS navigation is motivated by the complementary features of the individual
systems. Complementary filtering can be used to obtain the advantages of both
approaches, by integrating two different measurements of the same signal with
different errors. The GNSS position and velocity measurements can be used to aid
the inertial estimates based on integration from acceleration measurements. The
advantages and drawbacks of navigation based on GNSS and INS is summarised
in Table 2.3, where the desired qualities are marked in green.

Table 2.3: Complementary features of GNSS/INS integration

GNSS INS

Bounded errors Unbounded errors
Good long-term accuracy Poor long-term accuracy
Poor short-term accuracy Good short-term accuracy
Requires external information Self contained
Attitude not estimated Attitude estimated
Low rate High rate

It should be noted that it is possible to estimate the attitude in a GNSS nav-
igation system when using multiple receivers on the vehicle. However, this is not
common practice and the attitude estimation is often done by compass or INS. By
aiding an INS with GNSS measurements the time dependent accuracy of the INS
can be limited by the uniform accuracy of the GNSS measurements.

When mounting the inertial sensors and GNSS receiver the lever arm in between
should be considered. For small vehicles such as Unmanned Aerial Vehicles this has
little effect. However, for large vessels where the IMU might be placed at the center
of gravity and the GNSS receiver on top of the bridge the lever arm can introduce
large errors if uncompensated. The GNSS measurement should be compensated for
the distance to the IMU, such that the GNSS measurements appear to be received
at the IMU location.

Multiple strategies for GNSS/INS integration have been proposed, where the
main categories are; uncoupled, loosely-coupled, tightly-coupled, and deep inte-
gration. The uncoupled system has the GNSS and INS navigation systems im-
plemented independently of each other. This integration scheme is not commonly
used due to the drawbacks of the individual systems as seen in Table 2.3. The
loosely-coupled integration scheme use position and velocity measurements from
a GNSS receiver to aid the inertial navigation. In the tightly-coupled integration
the GNSS receiver supplies the range and range-rate measurements, circumvent-
ing the unknown navigation system of the GNSS receiver, and aids the INS with
measurements in the range domain rather than the position domain. The deep in-
tegration utilize the GNSS range measurements to estimate INS errors while using
IMU measurements to aid the tracking loops of the GNSS receiver. This method
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requires access to the firmware of the GNSS receiver and IMU, and is therefore not
common due to the complexity of implementation and loss of interchangeability of
sensors.

In the following chapters nonlinear observers for estimation of position, lin-
ear velocity and attitude will be proposed for loosely- and tightly-coupled inertial
navigation systems aided by GNSS measurements.
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Chapter 3

Loosely-Coupled GNSS/INS
Integration

The topic of this chapter is the study of state estimators for robust navigation.
Navigation of vehicles is a vast field with multiple decades of research. A main
aim is to estimate position, linear velocity, and attitude (PVA) under all dynam-
ics, motions and conditions via data fusion. A comparative study of strapdown
inertial navigation methods for estimating PVA of aerial vehicles fusing inertial
sensors with global navigation satellite system (GNSS) based positioning will be
presented. The state estimation problem will be considered from two different per-
spectives using a strapdown kinematic vehicle model. First the Extended Kalman
filter (EKF) will be reviewed, as an example of a stochastic approach, secondly
a recent nonlinear observer will be considered as a deterministic case. The focus
will be on the loosely-coupled integration methods and performance analysis to
compare the state estimators in terms of their stability, robustness to vibrations,
and disturbances in measurements.
Contributions of this Chapter: The contribution of this chapter is dedicated

to comparison of two approaches suitable for navigation solutions and pro-
vides an understanding of the differences in the studied approaches. These
approaches are tuned to satisfy a certain level of accuracy and applied on
real flight data. The results are compared to an accurate referential attitude
obtained from a multi-antenna GPS receiver. The comparison with an inde-
pendent referential system provides a thorough evaluation of performances
of the studied approaches and shows their capabilities to handle sensor im-
perfections and vibration impacts of harsh environment on the accuracy of
attitude estimation in aerial applications.

Organization of this Chapter: This chapter is organized as follows: the pre-
liminary assumptions are introduced in Section 3.2, Section 3.3 presents the
EKF used for comparison of the nonlinear observer introduced in detail in
Section 3.4. In Section 3.5 the two state estimators are compared using UAV
flight data, while Section 3.6 summaries the chapter.

Publications: The material in this chapter is based on the journal Bryne et al.
2017 [31] and the book chapter Hansen et al. 2016 [85].
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3.1 Introduction

Inertial Navigation Systems (INSs) are widely employed with price being a cru-
cial factor predetermining the application. In case of unmanned vehicles "low-cost"
or "cost-effective" systems are preferred in general applications. As long as low-
cost Inertial Measurement Units (IMUs) use MEMS-based inertial sensors they
are small in dimensions, light weight, have low-power consumption and thus their
presence can be found for instance in mobile phones, terrestrial vehicles, robots,
stabilized platforms as well as in Unmanned Aerial Vehicles (UAVs), small aircraft,
and satellites. Even if the applications are cost-effective, the performance com-
monly requires data fusion from various sources due to the imperfections of the
inertial sensors, such as insufficient resolution for navigation purposes, bias insta-
bilities, noise etc. Therefore, special data treatment is required. In sense of aerial
applications the usage of UAVs has increased rapidly in recent years. UAVs can be
employed in many applications fulfilling a broad spectrum of assignments in fields
of reconnaissance, surveillance, search and rescue, remote sensing for atmospheric
measurements, traffic monitoring, natural disaster response, damage assessment,
inspection of power lines, or for aerial photography [166], [113]. These applications
generally require navigation to be carried out which includes the position, veloc-
ity, and attitude estimation and thus cost-effective solutions have been commonly
studied and implemented with advantage.

Current research and development in the area of low-cost navigation systems
are focused on small scale and integrated solutions [115]. As mentioned, as long
as MEMS-based IMUs are used the evaluation process requires data fusion from
other aiding sources available. These sources stabilize errors in navigation solutions
and thus increase navigation accuracy. For applications without absolute position
measurements provided by GNSS or radio frequency beacons, e.g. for indoor or low
altitude navigation, the use of cameras, laser scanners, or odometers are popular
[29], [178]. However, the solutions fusing inertial and GNSS measurements are still
preferable for aerial vehicles operating outside in large areas due to the properties
of the GNSS signals. The implementation of other aiding sensors, such as magne-
tometer or pressure sensors, can further enhance the overall accuracy, reliability,
and robustness of a navigation system, e.g. [181]. Attention is also paid to data
processing algorithms used for PVA estimation, where the extensive literature of
filtering techniques cover the use of complementary filters [51], particle filters [161],
or Kalman filters (KFs) [5], [39]. For Kalman filters the most widely used variant
is the Extended KF (EKF) since it provides accuracy and a reasonable computa-
tional load for nonlinear systems. Therefore, KF represents one of the most used
algorithms for UAV attitude estimation (see comprehensive survey of estimation
techniques in [132]) and is often complemented by other algorithms and decision-
based aiding [45].

3.2 Models and Preliminaries

Estimating the position, linear velocity and attitude of a vehicle is commonly
achieved through GNSS/INS integration, where the INS consists of an IMU provid-
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ing inertial navigation between updates from a GNSS receiver. The GNSS receiver
usually has a lower sample rate than the IMU, and is used to update the PVA
estimates by correcting for the drift of the inertial sensors.

The inertial navigation is governed by the strapdown equations of (2.7)–(2.9)
where the inertial measurements are used to propagate the navigation states. Some
measurement assumptions are required.

3.2.1 Measurement assumptions
It is assumed that the vehicle is equipped with an IMU and a GNSS receiver, as
well as a magnetometer. The following assumptions on the measurements are made:

Assumption 1. Position measurements from a GNSS receiver, peGNSS = pe, are
available.

Assumption 2. Velocity measurements from a GNSS receiver, veGNSS = Cvv
e, are

available.

Remark 3.1. The velocity measurement can be a full or partial measurement
where Cv can be zero.

Assumption 3. Specific force measurements are available, f bIMU = f b + bbf , with
bias bbf . Furthermore, knowledge of bounds on the magnitude of specific force,
denoted Mf , is assumed.

Assumption 4. Angular rate measurements are available, ωbib,IMU = ωbib+bb, with
bias bb. It is further assumed that the upper bound of the gyro bias, Mb, is known.

Assumption 5. Magnetic field measurements are available, mb
MAG = mb, of the

Earth’s magnetic field at vehicle position. The natural magnetic field at any posi-
tion is assumed known in NED- and ECEF-frame, as mn and me, respectively.

In the following the state estimators will be introduced. First the EKF will
be presented where stochastic noise considerations are used to tune the covariance
matrices. Secondly the nonlinear observer will be introduced consisting of two parts:
a nonlinear attitude estimator and a translational motion observer.

3.3 Extended Kalman Filter

Kalman filters have been extensively used in applications requiring sensor fusion.
Whereas the Kalman filter (KF) operates optimally on a linear system model the
Extended Kalman Filter (EKF) was introduced as an approximation for nonlinear
systems. The general system can be described by the differential equations:

ẋ(t) = f(x(t), u(t), t) +Gs(t)ws(t), y = h(x(t), t) + wm(t), (3.1)

where the system and output dynamics are described by the functions f(·) and h(·)
which can be linear or nonlinear. In the linear case the system function decomposes
into state, x(t), and input, u(t), multiplication with the transition and input matrix;

43
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flinear(x(t), u(t), t) = A(t)x(t) + B(t)u(t), which can be utilized in the linear KF
with:

A = ∂f(x(t), u(t), t)
∂x(t)

∣∣∣∣
x=x̂

, B = ∂f(x(t), u(t), t)
∂u(t)

∣∣∣∣
x=x̂

. (3.2)

The transition and input matrices are determined through linearization using a
current state estimate x̂. The input vector commonly consists of measurements
of specific force and angular rates. For nonlinear systems linearization should be
avoided to maintain a high level of detail. The Gs(t) matrix describe the influence of
the state noise ws(t) on the estimation states, while wm(t) denotes the measurement
noise. The system noise vectors consist of multiple error sources all considered to
be Gaussian white distributions, see [76, Section 3.2.2].

Formulating the state estimate x̂ as the estimate of the true state, the discrete
representation of the estimate is separated into an a priori and a posteriori state,
x̂− and x̂+, respectively. The a priori state denotes the predicted estimate deter-
mined from state transition while the a posteriori state is the updated (also called
the corrected) state. The discrete iteration counter k is used to distinguish between
current and previous states.
Remark 3.2. For linear systems x̂ expresses the expected value of the true state.
However, due to the nonlinearity of the system such an interpretation cannot be
made for the EKF.

Assumption 6. It is assumed that f(·) is constant over the IMU sampling interval
[tk−1, tk).

The predicted state is calculated using state propagation which can be formu-
lated from the system dynamics under Assumption 6:

x̂−k = x̂+
k−1 + f(x̂+

k−1, tk)T (3.3)

where T = tk − tk−1 is the time interval between IMU measurements.
Remark 3.3. Assumption 6 can in general be satisfied by employing the prediction
of (3.3) at a high enough sample rate. If the assumption is not valid the last term of
(3.3), i.e. f(x̂+

k−1, tk)T , should be substituted for an integral over the time interval,
see [76, Section 3.4.1].

The state is predicted with (3.3) at IMU frequency, e.g. at 200 Hz. Whenever
aiding measurements are available the state can be corrected. However, aiding
measurements are often provided at lower rates, e.g. GNSS receiver positions at
1 Hz. The prediction will therefore, in this example, run 200 times between two
consecutive aiding measurements, at which time the correction is carried out.

The corrected a posteriori state is determined using the measurement vector
as:

x̂+
k = x̂−k +Kk

(
yk − h(x̂−k , tk)

)
, (3.4)

where the current measurement yk and a priori state estimate is used. The mea-
surement is denoted yk to signify that it corresponds to the new measurement
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at time tk, although the counter k denotes the increment in IMU samples. The
correction in (3.4) is only used when new aiding measurements are available. The
Kalman gain, Kk, is multiplied by the injection term consisting of the difference
between measured and estimated output. If the estimation is perfect the difference
will consist exclusively of noise components, which would average to zero over time
as;

yk − h(x̂−k , tk) = h(xk, tk)− h(x̂−k , tk) + wmk. (3.5)

The Kalman filter propagates the state estimate along with the error covariance
matrix P , which indicates the expectation of the squared difference between true
and estimated states; Pk = E{(xk − x̂k)(xk − x̂k)ᵀ}, [76, Section 3.2.1]. The error
covariance matrix is symmetric and positive definite where the diagonal elements
are the variance of the estimated states, thereby indicating how trustworthy the
estimates are. The error covariance matrix can be used to determine the gain matrix
Kk to ensure reasonably good gain selection by solving the Riccati equation, [90]:

Pk = FkPkF
ᵀ
k +Gs,kRkG

ᵀ
s,k −K

ᵀHkPkF
ᵀ
k , (3.6)

where the discrete-time state transition matrix, Fk, and the discrete-time output
matrix, Hk, are:

Fk = eAT , Hk = ∂h(x, tk)
∂x

∣∣∣∣
x=x̂−

k

(3.7)

while Gs,k = Gs(tk). The initial conditions are: x̂0 = E 〈x0〉 and P0 = E 〈x0, x
ᵀ
0〉.

Assumption 7. The process noise and measurement noise are assumed to be
uncorrelated Gaussian white noise, ws ∼ N (0, Qk) and wm ∼ N (0, Rk). Further-
more, the process and measurement noise are uncorrelated with the state, xk, for
all k ≥ 0.

The matrices Qk and Rk describe the covariance of the state and measurement
noise respectively. The Qk and Rk matrices are determined from the power spectral
densities of the driving noise ws(t) and wm(t), respectively.
Remark 3.4. If the process and measurement noise cannot be assumed Gaussian
white the state model can be augmented to include noise models with white driv-
ing noise. Following this approach colored process and measurement noise can be
achieved, while satisfying Assumption 7.

Assumption 8. The system dynamics function, f(·), and the measurement func-
tion, h(·), are constant for small state increments.

Assumption 9. When the state estimates have converged to the true states the
injection term will be small.

Satisfying Assumption 8 and Assumption 9 the state residual, δxk = xk − x̂k,
can be described by the linear model:

δxk ≈ Fkδxk +Gkuk +Gs,kwsk, δyk ≈ Hkδxk + wmk, (3.8)

45



3. Loosely-Coupled GNSS/INS Integration

thereby allowing for implementation as an in-direct filter. In an in-direct filter
the residual state is estimated rather than the states as done in a direct filter.
The error covariance is propagated with the linearized model of (3.8), while the
nonlinear model is used for propagation of the state estimate, see (3.3).

The discrete input matrix Gk is determined through discretization of Bk as:

Gk =
∫ (k+1)T

kT

eA
(

(k+1)T−τ
)
B(τ)u(τ)dτ. (3.9)

Remark 3.5. Due to the linearization, and following discretization, of f(·) and h(·),
resulting in the matrices Fk and Hk, the error covariance and the gain matrices
will be functions of the state estimates. This can lead to stability issues and leave
the EKF more vulnerable to poor tuning of the P matrix compared to the KF, [76,
Section 3.4.1].
Remark 3.6. The validity of the linearization point, i.e. that the estimate is suffi-
ciently close to the true states, can be verified by the condition, [76, Section 3.4.1]:

∂Υ(x, tk)
∂x

∣∣∣∣
x=x̂+

k
+∆x+i

k

≈ ∂Υ(x, tk)
∂x

∣∣∣∣
x=x̂+

k
−∆x+i

k

, ∆x+i
k =

√
P+
k,ii (3.10)

which is tested for each state, i, and where Υ is a place-holder for either the
system dynamics function, f(·), or the measurement function, h(·). The condition
investigates whether the gradient of the function Υ varies significantly over the
uncertainty bounds of the state estimate, [76]. Failure of this condition commonly
occurs at initialization, where the initial conditions might have been too optimistic.
If the condition is compromised during iteration a higher order approach can be
employed, such as the unscented Kalman filter or a second-order KF, [76].
Remark 3.7. The validity of Assumption 8 is secured by re-linearization around
the estimated state for each iteration of the filter. However, this extension leads to
the loss of optimality offered by KF for linear systems. The stability results for the
general EKF is difficult to state theoretically. However, local exponential stability
can be acquired under some conditions, see [151].

Implementation

During implementation of the EKF in a discrete system the error covariance matrix
is also divided into a priori and a posteriori estimates. The a priori and a posteriori
state estimates and covariance matrices can be implemented as, [68]:

x̂−k = f(x̂+
k−1, uk−1) (3.11)

P−k = Fk−1P
+
k−1F

ᵀ
k−1 +Qk−1 (3.12)

Kk = P−k H
ᵀ
k

(
HkP

−
k H

ᵀ
k +Rk

)−1 (3.13)
x̂+
k = x̂−k +Kk

(
yk − h(x̂−k )

)
(3.14)

P+
k = (I −KkHk)P−k (I −KkHk)ᵀ +KkRkK

ᵀ
k . (3.15)

The estimation and correction stages of the EKF can be implemented at different
rates, where it is common to combine the correction stage, (3.13)–(3.15) with the
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measurement update. For navigation systems the measurement update might be
GNSS position measurements at 1 − 10 Hz. The estimation stage, (3.11)–(3.12),
must be implemented at high rates corresponding to the inertial sensor used, to
satisfy Assumption 6. Inertial sensors can supply measurements of specific force
and angular rate at 10− 2.000 Hz (or even higher for high-end applications).

The implementation procedure is visualized in Fig. 3.1 where Fig. 3.1a–3.1c
show the propagation through epoch one, while Fig. 3.1d–3.1f show the further
propagation through a second epoch. The example in Fig. 3.1 considers an esti-
mate of two states x1 and x2, where the covariance is visualized as a dashed region
around the estimate. The procedure follows; an initial estimate with large uncer-
tainty in epoch one is corrected with a linear measurement in Fig. 3.1b, where the
measurement is in the dashed uncertainty region. The estimate after the measure-
ment update, corresponding to (3.13)–(3.15), is shown to have smaller uncertainty
in Fig. 3.1c. The estimate is propagated from epoch one to epoch two by use of
(3.11)–(3.12), thereby extending the uncertainty, to account for possible movement
of the vehicle, as visualized in Fig. 3.1d. A new measurement supplying additional
information allows for the correction stage to arrive at a smaller uncertainty in Fig.
3.1f. This procedure will continue iteratively.

Case study: 12-state EKF

The EKF can be extended to include more dynamics by expanding the state vector,
the number of states can therefore often indicate the level of detail used in the
modelling of the system. Here a 12 state navigation EKF will be introduced for
comparison to the nonlinear observer structure presented later in this chapter.

The strapdown kinematic equations of a vehicle in NED-frame are used, which
differ from the ECEF-frame kinematic equations (2.7)–(2.9) by excluding the Earth
rotation:

ṗn = vn, (3.16)
v̇n = fn + gn(pn), (3.17)
Θ̇n
b = T (Θn

b )ωbnb, (3.18)
ḃb = 0, (3.19)

where the NED-frame has been assumed to be an inertial frame, such that ωbnb is
considered rather than ωbib. Here the attitude will be represented as Euler angles,
Θb
n = [φ; θ;ψ], where the transformation matrix is given by, [55]:

T (Θb
n) =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

 . (3.20)

The state vector is given as; x =
[
pn; vb; Θn

b ; bb
]
, with the loosely-coupled

GNSS/INS integration scheme visualized in Fig. 3.2. The inertial measurements
are low-pass filtered and used to construct an input vector u consisting of mea-
sured specific force and angular rates. The GNSS measurements are validated and
used for aiding of the inertial navigation in the EKF.
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Figure 3.1: Kalman filter procedure during two epochs, inspired by [76, Section
3.1.2].
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Figure 3.2: Block diagram of Extended Kalman Filter

The state estimates are propagated according to the observer model of the
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kinematic equations:

f(x̂, t) =



˙̂pn = R(Θ̂n
b )v̂b

˙̂vb = f b + v̂b ×
(
ωbib,IMU − b̂b

)
−R(Θ̂n

b )ᵀgn
˙̂Θb
n = T (Θ̂b

n)
(
ωbib,IMU − b̂b

)
˙̂
bb = 0,

(3.21)

y =
[
I3 0 0 0
0 I3 0 0

]
x+ wm (3.22)

where gn = [0 0 g]ᵀ is the known gravity vector. The injection terms for the ob-
server are based on the difference between measured and estimated position and
velocity. The process and measurement noise covariance matrices Q and R are
defined as follows, see (3.6):

Q = blockdiag
(
σ2
p, σ

2
v , σ

2
Θ, σ

2
b

)
, R = blockdiag

(
σ2
pGNSS

, σ2
vGNSS

,
)

(3.23)

where blockdiag(·) denotes a block diagonal matrix and σ2
? ∈ R3×3 are matri-

ces with diagonal elements of covariance for position, velocity, attitude, gyroscope
biases and GNSS based position and velocity.

Tuning of the EKF is done by determining appropriate values for the Q and
R matrices based on the power spectral densities of the driving noise. The driving
noise terms of the Q matrix can be interpreted as originating from the IMU noise.
The inertial noise propagates through the kinematic equations such that the noise
on position and velocity is the propagated noise from the acceleration and gyro
measurements. Due to this propagation σp and σv cannot be directly coupled to
IMU performance parameters, and are often chosen small. Even when properly
tuned, the state estimates rely strongly on the availability of the GNSS signal. If
the GNSS signal is obstructed the estimates begin to diverge quickly and estimates
may become unstable if the filter parameters are not adjusted. It is recommended
to augment the system model with accelerometer bias estimates if the application
is expected to experience GNSS outage.

3.3.1 Multiplicative EKF
The EKF introduced above estimates the attitude using the Euler angle repre-
sentation, which introduces singularities at pitch angles of ±90◦, corresponding to
vertical. In [122] a multiplicative EKF (MEKF) was introduced by inclusion of a
three-component attitude error vector, a(t) ∈ R3×1, while the global attitude is
parameterized as a quaternion. The quaternion parameterization cannot be used
directly in the state vector due to the nonlinear representation. However, by intro-
ducing the attitude error in the state vector it is possible to recreate the quaternion
representation. Only the attitude error vector, a(t), is included in the state vector,
thereby retaining the linear characteristics of the residual model. The concept re-
lies on the 4× 4 quaternion representation having rank three, and therefore can be
projected onto a 3× 3 rotation matrix without loss of information.
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A redundant formulation of the true nonlinear attitude state with some refer-
ence quaternion, qref (t), is presented as:

q(t) = δq(a(t))⊗ qref (t), (3.24)

where δq(a(t)) denotes the unit quaternion representing the rotation from the ref-
erence to the true attitude q(t). With the estimate of the error vector, â(t), the
estimated unit quaternion is:

q̂(t) = δq(â(t))⊗ qref (t), (3.25)

The redundancy can be removed by choosing qref = q̂ such that the expectation
of â(t) is zero when all information is included.

Several representations for the unconstrained attitude error are introduced in
[122], where the Gibbs vector might be preferred due to its infinite limiting value.
The Gibbs vector is given as:

δq(a) = 1√
4 + ‖a‖22

[
a
2

]
. (3.26)

Only the attitude error is included in the EKF, while the globally nonsingular
attitude representation of q is updated for each filter iteration. In addition to the
time propagation and measurement update of the EKF a reset of the attitude
error is introduced in the MEKF. The reset is included to avoid propagation of
two attitude representations by shifting the information of the attitude error to
the quaternion representation, following an assignment of a = 0, [122].

3.4 Nonlinear Observer

Numerous nonlinear observers have been proposed for integration of IMU and
GNSS data, however, in the following the observer proposed in [72] will be con-
sidered, estimating position and velocity in the ECEF-frame and describing the
attitude as a unit quaternion.

The nonlinear observer presented here has a modular structure consisting of
an attitude estimator and a translational motion observer. The two subsystems
are feedback interconnected, where the specific force estimate is fed back from the
motion observer to the attitude estimator. An advantage of the modular design
is that the stability properties of the subsystems can be investigated individually
leading to the stability result of the entire observer system using nonlinear stability
theory, see [72] for further details. The observer structure is depicted in Fig. 3.3.

An implementation overview of the attitude estimator can be found in Algo-
rithm 1, while the translational motion observer implementation is included in
Algorithm 2, in Appendix C. The attitude estimator and translational motion ob-
server (TMO) subsystems will be introduced in detail in the following sections.

3.4.1 Attitude estimation
The attitude of the vehicle is represented as a unit quaternion, q̂eb , describing the ro-
tation between body- and ECEF-frame. The attitude observer is a complementary
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v̂e

f̂e

Figure 3.3: Block diagram of nonlinear observer

filter fusing data from an accelerometer and gyroscope to estimate the vehicle atti-
tude. It can be further aided by other measurement and reference vectors. The non-
linear observer estimating the attitude and gyro bias, b̂b, is given as, [71, 72, 120]:

˙̂qeb = 1
2 q̂

e
b ⊗

(
ω̄bib,IMU −

¯̂
bb + ¯̂σ

)
− 1

2 ω̄
e
ie ⊗ q̂eb , (3.27)

˙̂
bb = Proj(b̂b,−kI σ̂), (3.28)
σ̂ = k1v

b
1 ×R(q̂eb)ᵀve1 + k2v

b
2 ×R(q̂eb)ᵀve2, (3.29)

where k1 > kP , k2 > kP , and kI > 0 are positive and sufficiently large tuning
constants, kP > 0. The projection operator, Proj(·, ·), limits the gyro bias estimate
to a sphere with radius Mb̂ where Mb̂ > Mb is a design parameter. In [72] it was
shown that the combined error variable ς̃ :=

[
r̃; b̃
]
converges exponentially to zero,

where b̃ := bb − b̂b and r̃ is the real part of q̃ := qeb ⊗ (q̂eb)∗ with (q̂eb)∗ being the
conjugate of q̂eb . The convergence of the combined variable can be ensured from an
arbitrarily large set of initial conditions.

The projection function is defined as Proj(x, y) = p(x, y)y where, [74]:

p(x, y) =
{
I − c(x)Λ xxᵀ

xᵀΛx , xᵀx > M2 and xᵀy > 0
I, otherwise,

(3.30)

c(x) = min
(

1, x
ᵀx−M2

M̂2 −M2

)
, (3.31)

where M and M̂ are bounds and Λ is a gain matrix.
The injection term, σ̂, consists of two vectors in body-frame and their corre-

sponding vectors in ECEF-frame, but can easily be extended to include additional
terms.

Assumption 10. The two attitude reference vectors are not collinear, i.e. their
cross product is non-zero. This is satisfied if there exists a constant cobs > 0 such
that ||ve1 × ve2||2 ≥ cobs.

Remark 3.8. Temporary violation of Assumption 10 can be tolerated since the
attitude estimate can be updated using only the angular rate measurements for
shorter periods of time.

In the following different configurations of the measurement, vb, and reference,
ve, vectors will be investigated based on the available sensors.
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Magnetometer

With a magnetometer a three dimensional magnetic field measurement can be
obtained and compared to the magnetic field of the Earth, thereby determining
rotation of the magnetometer in a global frame. The magnetic field can be affected
by hard- and soft-iron which can cause significant errors, if not compensated, when
used on large vehicles such as cars or vessels. For lightweight aircraft the amount
of metal and wiring is small and the magnetometer will be able to determine the
magnetic field around the aircraft. It can be advantageous to place the magnetome-
ter far from error sources or shield parts of engines and electronics such that the
effect on the magnetometer is minimized.

Using a magnetometer the normalized measurement and reference vectors can
be expressed as:

vb = mb
MAG

‖mb
MAG‖2

, ve = me(p̂e)
‖me(p̂e)‖2

, (3.32)

where mb
MAG is the magnetic field experienced by the magnetometer, and the ref-

erence magnetic field, me(p̂e) can be determined from look-up tables based on the
current position estimate, see e.g. [124]. As the magnetic field of the Earth is slowly
time-varying a small error in the position estimate will have negligible effect on the
magnetic field reference.

Specific force

The specific force exerted on the vehicle is measured by the IMU, f bIMU, while the
specific force in global frame is estimated in the translational motion observer. The
scaled vectors are then:

vb = f bIMU
‖f bIMU‖2

, ve = f̂e

‖f̂e‖2
. (3.33)

As an example: In a stationary scenario, such as prior to flight, the measurement
vector will approximately be; vb ≈ [0; 0;−1], as the complete measured specific
force will be in the Down direction. However, the use of (3.33) does not make any
assumption on stationarity.

Optical flow

In surveillance and georeferencing applications it is common to use aircraft with
cameras to take images of an overflown area. Using machine vision the optical flow
can be determined by object recognition in consecutive images and be used to esti-
mate the vehicle velocity, see e.g. [60]. The linear velocity of the vehicle determined
from optical flow is denoted vbF and can be used to construct measurement vectors
for attitude estimation. In [60] the attitude was determined as a rotation matrix
and the measurement and reference vectors where therefore matrices; V ∗ ∈ R3×3

determined as:

V b =
[
vbF vbF × f bIMU vbF × (vbF × f bIMU)

]
(3.34)
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V n =
[
v̂n v̂n × f̂n v̂n × (v̂n × f̂n)

]
. (3.35)

The reference matrix is here given in NED frame, with linear velocity and specific
force estimates, v̂n and f̂n, from the corresponding translational motion observer.
Similar vectors can be designed when the attitude is expressed as quaternions.

Velocity

The vehicle velocity can be used as a reference vector for the attitude estimation by
considering the forward velocity of the vehicle as a measurement. In the presence
of wind the velocity of the vehicle can be described by the wind triangle, see [19,
Section 2.4]. In Fig. 3.4 and Fig. 3.5 the vertical and horizontal components are
visualized, where the velocity with respect to the inertial frame, vg, is the sum of
the wind velocity, vw, and the velocity of the vehicle with respect to the surrounding
air, va. The point P specifies the vehicle position with initial direction along the
dashed line.

xb

P

vw

vg

va

γ

γa
θ

α

Figure 3.4: Vertical component of
the wind triangle, [19].

xn
xb

P

vw

vg

vaχc

χ

ψ β

Figure 3.5: Horizontal compo-
nent of the wind triangle, [19].

Considering the vertical component,
the dotted line denotes a level trajectory
corresponding to the horizontal plane,
while γ and γa are the flight path angles
and the air-mass-referenced flight path
angle, respectively. The angle-of-attack,
α, describes the positive angle between
the vehicle frame and airspeed vector.
For aircraft this angle is required to gen-
erate lift.

The horizontal component, shown in
Fig. 3.5, has a side-slip angle, β, between
the initial direction and the airspeed vec-
tor, such that the body frame can be ro-
tated by β around the zb-axis to obtain
the wind frame. The dotted line denotes
the north direction thereby determined
the yaw angle as the relative rotation of
the xb-axis. The course angle and crab
angle are denoted χ and χc, respectively,
and describe the rotation of the vehicle
velocity in inertial and air frame.

The vehicle velocity with respect to
the surrounding air decomposed in the
body frame can be expressed as, [19]:

vba = vbg − vbw = Rbwv
w
a = ‖va‖2

cos(α) cos(β)
sin(β)

sin(α) cos(β)

 , (3.36)

where vwa = [‖va‖2; 0; 0] is the velocity of the vehicle relative to the wind in the
wind frame, and Rbw is the rotation matrix from wind to body frame.
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3. Loosely-Coupled GNSS/INS Integration

In connection to the wind triangle the following relations can be expressed:

γa = θ − α, χc = χ− ψ, (3.37)

The side-slip angle cannot be readily expressed from the wind triangle relations.
However, from (3.36) the angle-of-attack and side-slip angle can be expressed as:

α = tan−1
(
wr
ur

)
, β = sin−1

(
vr
‖va‖2

)
, (3.38)

where the velocity vector has been decomposed into its three dimensional compo-
nents, vba = [ur; vr;wr].

Assumption 11. The wind vector can be ignored, i.e. vw = 0, β = χc, γa = γ.

If the angle-of-attack and side-slip angles cannot be assumed to be small an
estimation scheme using a pitot-static tube and altimeter, in addition to the IMU
and GNSS-receiver, can be employed. Such a sensor-based approach was proposed
in [100] where a Kalman filter using only kinematic relationships, negating the
need for aircraft parameters, was used to estimate wind velocity, angle-of-attack
and side-slip angles for small UAVs. Another approach is the model-base approach
proposed in [24] where a detailed model of a UAV is utilized to estimate angle-
of-attack, wind speed and side-slip angle. The proposed observer was shown to be
exponentially stable without requiring persistent excitation during flight.

Furthermore it is possible to utilize GNSS measurements to estimate γ and β.
Under Assumption 11 the angle-of-attack and side-slip angles can be expressed as:

α = θ − γ, β = χ− ψ. (3.39)

The course over ground can be determined from a GNSS velocity measurement as:

χ = tan−1
(
vnnorth
vneast

)
, (3.40)

with vnnorth and vneast being the velocity in North and East direction, respectively.
If the GNSS receiver only allows for position measurements the course can be
determined from two consecutive position measurements, pn1 = [xn1 ; yn1 ; zn1 ] and
pn2 = [xn2 ; yn2 ; zn2 ], as; χ = tan−1((yn2 − yn1 )/(xn2 − xn1 )).

The flight-path angle can be determined from the relation, [19]:

∂h

∂t
= ‖vg‖2 sin(γ) ⇔ γ = sin−1

(
‖vg‖−1

2
∂h

∂t

)
, (3.41)

where h is the altitude measurement from the GNSS receiver.
The body velocity vector can then be expressed as:

vba = ‖va‖2

cos(θ − sin−1(‖vg‖−1
2

∂h
∂t )) cos(tan−1( y2−y1

x2−x1
)− ψ)

sin(tan−1( y2−y1
x2−x1

)− ψ)
sin(θ − sin−1(‖vg‖−1

2
∂h
∂t )) cos(tan−1( y2−y1

x2−x1
)− ψ)

 . (3.42)
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The body velocity vector can be normalized and used in the attitude injection term
with the reference vector being based on the estimated velocity, ve = v̂e/‖v̂e‖2.

The use of pitch and yaw angles in the velocity estimation creates a feedback
which might introduce stability issues. It can therefore be advantages to approxi-
mate the velocity vector to a simpler expression.

Remark 3.9. (Small Angle Approximation) For small angles the relations in (3.38)
can be approximated to; α ≈ wr/ur and β ≈ vr/‖va‖2. The velocity vector can then
be rewritten as; vb = 1/ur [ur; vr;wr] ≈ [1;β;α], where β has been approximated
as β ≈ vr/ur.

Remark 3.10. (Roll and pitch) Using a pitot tube the magnitude of the airspeed
can be determined. In [96, 121] a small aircraft during a level turn is considered,
and it was shown that using a pitot tube estimation of roll and pitch was possible
with the recovered measurement: va = ‖va‖2 [cos(α); 0; sin(α)]. The yaw angle can
be estimated by inclusion of an additional sensor, e.g. a magnetometer. Only the
angle-of-attack is included as β is assumed negligible. Furthermore, [121] proposes
a method for estimation of angle-of-attack based on a linearized version of flight
dynamics; α̇ = −c0α/‖va‖2 + θ̇ + α0, where c0 and α0 are constants that can be
found with system identification and training data. A sensor-based approach such
as [100] or [24] can also be used to determine the angle-of-attack from pitot tube
measurements.

Remark 3.11. (Negligible Angles) A rough approximation, under Assumption 11,
considering negligible angle-of-attack and side-slip angles is β = χ − ψ = 0 and
α = θ−γ = 0 results in the normalized vehicle velocity in body frame; vb = [1; 0; 0].
The measurement vector for the attitude injection term is vb = vb.

Compass

Similarly to a magnetometer a compass can be used to determine heading by
measuring the local magnetic field relative to the magnetic north. In a classical
navigation sense a magnetometer offers the strength of a magnetic field, often in
three dimensions, whereas a compass offers a direction of the magnetic field. How-
ever, with recent advances within sensor technology the lines between products are
getting blurred. Here a compass is intended to consider a sensor given a heading
relative to the magnetic north. The declination, δ, is the angle difference between
geometric and magnetic north, and it is position dependent, ψ = ψMAG + δ, where
ψ is the heading. In analog compasses the heading is directly measured, whereas
modern digital compasses use a three dimensional magnetic field measurement. In
level flights only the two horizontal axes are necessary, whereas a vertical com-
ponent is required to compensate for the inclination angle of the magnetic field
relative to the horizontal plane, [19]. The magnetic heading can be determined as
ψMAG = tan−1(mh

y/m
h
x), where mh

x and mh
y are the x and y components of the

magnetic field measurement projected onto the horizontal plane, [19].
The measurement and reference vectors for the attitude injection term can be
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constructed as:

vb =

 cos(ψ)
− sin(ψ)

0

 , ve = Ren

1
0
0

 , (3.43)

where the reference vector is transformed from NED- to ECEF-frame by multipli-
cation of the rotation matrix Ren.
Remark 3.12. The heading angle can also be determined from GNSS measure-
ments if the wind can be assumed negligible, such that heading coincides with
course over ground, i.e. ψ = χ, similarly to the velocity measurement in (3.40).

3.4.2 Accelerometer bias estimation
The accelerometer bias, bbf ∈ R3, is an additive term to the specific force measure-
ments; f bIMU = f b+bbf , and can like the gyro bias be considered slowly time-varying,
i.e. ḃbf = 0. By comparing the vector norm of f bIMU and fe it is possible to con-
struct an exponentially converging estimator of the bias, see [74]. The main idea
is that the two norms will be equal if the bias is zero. Following the outline of [74]
a combination of parameters is considered Ξ =

[
‖bbf‖22; bbf

]
. Introducing the time-

varying vector ϑ =
[
1;−2f bIMU

]
it is assumed that the accelerometer is experiencing

persistently excitation: ∫ t+T

t

ϑ(τ)ϑᵀ(τ)dτ ≥ εI, (3.44)

where ε > 0 is a constant and the sample interval T > 0, such that for each t ≥ 0
the condition is satisfied and the persistently excitation assumption is valid.

Further assuming that a lower bound MΞ on the length of Ξ is known, the
estimate Ξ̂ has the bound ‖Ξ̂‖2 ≥ MΞ̂, where MΞ̂ > MΞ. An over-parameterized
observer was proposed by [71] and [74], to estimate the accelerometer bias similarly
to the gyro bias estimation presented in (3.28):

˙̂Ξ = Proj
(

Ξ̂,Γϑ
(
ŷf − ϑᵀΞ̂

))
, (3.45)

where Γ is a positive-definite symmetric gain matrix. If fe is estimated, e.g. in
the translational motion observer, the norm difference of the specific force can be
expressed as; yf = max{‖f̂e‖22,M2

f } − ‖f bIMU‖22, where ‖f i‖2 = ‖Ribf b‖2 = ‖f b‖2.
See [71] and [74] for extensive stability proof of the bias estimator.

3.4.3 Translational motion observer
The translational motion observer estimates the position and linear velocity of
the vehicle by using injection terms based on the difference between measured
and estimated position and velocity. The position and velocity measurements are
traditionally provided by a GNSS receiver, peGNSS and veGNSS. Additionally, the
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observer also estimates the specific force of the vehicle by introducing an auxiliary
state, ξ. The translational motion observer is described by, [72]:

˙̂pe = v̂e + θKpp (peGNSS − p̂e) +Kpv (veGNSS − Cv v̂e) , (3.46)
˙̂ve = −2S(ωeie)v̂e + f̂e + ge(p̂er) + θ2Kvp (peGNSS − p̂e)

+ θKvv (veGNSS − Cv v̂e) ,
(3.47)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU + θ3Kξp (peGNSS − p̂e) + θ2Kξv (veGNSS − Cv v̂e) , (3.48)
f̂e = R(q̂eb)f bIMU + ξ, (3.49)

where K∗ are gain matrices. The constant θ ≥ 1 serves as a tuning parameter that
should be sufficiently large to guarantee global stability of the feedback intercon-
nection of the translational motion observer and attitude observer. It was shown
in [70] that the velocity part of the injection term is not required to achieve stabil-
ity. This allows the velocity measurement matrix Cv to have less than full rank or
be zero. Details on the discrete-time implementation of the translational motion
observer will be presented in Section 3.4.7.

Gain selection

The gain matrices K∗ can be chosen to satisfy A−KC being Hurwitz with:

A =

0 I3 0
0 0 I3
0 0 0

 , C =
[
I3 0 0
0 Cv 0

]
, K =

Kpp Kpv

Kvp Kvv

Kξp Kξv

 . (3.50)

The translational motion observer is similar to the EKF, and the gain matrixK can
therefore be determined similarly to the EKF gain by solving a Riccati equation.
This will be considered in more detail in Section 3.4.5. However, an advantage of
this nonlinear observer is that the gain matrix is not required to be determined
each iteration, but rather on a slower time scale, see [72]. This time scale can be
slower than the GNSS update rate, decreasing the computational load substantially.
The load can be further reduce by considering the implementation as a fixed gain
observer only determining the gains at the initialization phase. It has been shown
in [30] that time-varying gains aids in sensor noise suppression and gives faster
convergence.

3.4.4 Stability considerations
The estimation errors are defined as the difference between the kinematic model,
(2.7)–(2.9), and the observer estimates, introducing the error states as; p̃ := pe−p̂e,
ṽ := ve−v̂e, and f̃ := fe−f̂e. Here the specific force has replaced the auxiliary state
by combination of (3.48) and (3.49). The combined state vector is then x̃ =

[
p̃; ṽ; f̃

]
.

Following the proof of [72] the estimation errors can be redefined to; η1 := p̃,
η2 := ṽ/θ, η3 := f̃/θ2 with η = [η1; η2; η3], such that the error dynamics in the
nominal case, where no sensor errors or noise is present, can be expressed as:

1
θ
η̇ = (A−KC)η + θ1(t, η) + θ2(t, ς̃), (3.51)
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where the perturbation terms are:

θ1(t, η) =

 0
− 1
θ2S(ωeie)η2 + 1

θ2 (ge(pe)− ge(pe − η1))
0

 , (3.52)

which in [72] was shown to be limited by; ‖θ1(t, η)‖ ≤ 1
θγ1‖η‖ for some constant

γ1 > 0. Furthermore, θ2(t, ς̃) =
[
0; 0; 1/θ3d̃

]
where:

d̃ = (I − R̃ᵀ)R(qeb)(S(ωbib,IMU)f bIMU + ḟ bIMU)− S(ωeie)(I − R̃ᵀ)R(qeb)f bIMU

− R̃ᵀR(qeb)S(b̃)f bIMU,

with R̃ = R(q̃). An upper limit can be expressed as; ‖θ2(t, ς̃)‖ ≤ 1
θ3 γ2‖ς‖, for some

positive constant γ2 > 0.
Proposing the Lyapunov candidate, U = 1

θη
ᵀPη, with the symmetric P > 0

being a solution to the Lyapunov equation P (A−KC) + (A−KC)ᵀP = −I, the
derivative along the trajectories of the systems is then:

U̇ ≤ −
(

1− 2‖P‖γ1
θ

)
‖η‖2 + 2‖P‖γ2

θ3 ‖η‖‖ς̃‖. (3.53)

Following the steps presented in [72] the stability results can be summarized to:
There exist a θ∗ ≥ 1 such that with θ ≥ θ∗ then for all initial conditions (p̃(0) ×
ṽ(0) × ξ̃(0)) ∈ K, q̃(0) ∈ D̃(ε̄), and ‖b̂b(0)‖ ≤ Mb̂, where K ∈ R9 is a compact set
containing the origin, ε̄ = [0; 1/2] is an arbitrary constant with D̃(ε) = {|q̃||s̃q| > ε},
the convergence is described by:√

‖x̃(t)‖2 + ‖ς̃‖2 ≤ Ke−λt
√
‖x̃(0)‖2 + ‖ς̃‖2, (3.54)

with positive time constant λ > 0 and some gain K > 0. The origin of the non-
linear observer has then been proven semi-global exponential stable (SGES). The
practical implication of the SGES stability properties is the robustness to arbitrar-
ily large initialization errors in both position and attitude since no linearization is
needed in the nonlinear attitude estimator.

3.4.5 Continuous-time gain selection
The loosely-coupled translational motion observer can be written as a continuous-
time linear system:

˙̂x = Ax̂+Bu+D(t, x̂) +K(y − Cx̂), (3.55)

with the input vector u =
[
f bIMU;−S(σ̂)f bIMU

]
, and output y = [peGNSS;CvveGNSS],

and the matrices given in (3.50) and:

B =

 0 0
R(q̂eb) 0

0 R(q̂eb)

 , D(t, x̂) =

 0
ge(p̂e)− 2(ωeie)v̂e

0

 ,
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where the system (A,B,C) is controllable and observable.
The gain conditions of [72], reviewed above, are of limited practical use since

they are general and sufficient (not always necessary) conditions where a non-
conservative bound θ∗ may be difficult to find. Moreover, θ∗ also depends on the
attitude observer gains k1, k2, and kI . In a practical approach to tuning, the gains
in the matrix K of the TMO may be tuned using a minimum-variance estimation
criterion by taking into account the influences of noise on its measurements. This
is done by choosing θ = 1 and designing:

Q = blockdiag(σ2
p, σ

2
v , σ

2
f ), R = blockdiag(σ2

pGNSS
, σ2
vGNSS

),

as input and measurement noise covariance matrices, respectively. Regarding R,
the matrices σpGNSS and σvGNSS represents the covariance matrices of the position
and velocity measurement noise components, respectively. In practice the GNSS
position and velocity measurements are time-varying and correlated as the user
position estimates are used to determine the user-to-satellite line-of-sight (LOS)
vector in the velocity computation procedure. An alternative can then be to include
cross terms σpv such that

R =
[
σ2
p σ2

pv

σ2
vp σ2

v

]
,

where the GNSS subscripts have been dropped. Moreover, the covariance matrices
σpGNSS

and σvGNSS
are often considered as diagonal matrices, where the height

component might have a higher covariance than the horizontal components. The
covariance matrices the states σ2

p, σ2
v , and σ2

f are chosen to reflect the expected
level of noise on the states, similarly as to in an EKF.

A gain matrix that gives an approximately minimum variance estimate is given
by the Riccati equation solution P = P ᵀ > 0 motivated by the fact that the TMO’s
error dynamics are identical to the time-scaled error dynamics of the Kalman-Bucy
filter [106]:

K = PCᵀR−1, (3.56)
1
θ
Ṗ = AP + PAᵀ − PCᵀR−1CP +Q. (3.57)

One reason for (3.55)–(3.57) only being an approximately minimum variance esti-
mator is that q̂eb and σ̂ are correlated with f bIMU. The result of [98, Lemma 6] shows
that it is possible to choose θ independently from P , using the time-varying Ric-
cati equation (3.57) such that the SGES stability properties posed in [72] still hold
when calculating the gains with (3.56)–(3.57). However, choosing θ > 1 is subopti-
mal with respect to the minimum variance optimization problem the Kalman-Bucy
filter solves.

The TMO realization presented above can be referred to as a direct filter or
total state implementation in the navigation literature, [52, Ch. 7.4]. In practice,
this means that the filter’s Riccati equation (3.57) is implemented at the frequency
of the IMU and that the aiding sensors are used to correct the INS when available.
As a result, for high integration frequencies, the computational burden might be
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considerable. Therefore, more computationally efficient alternatives are desirable,
while still maintaining time-varying gains. This is possible to achieve since the
time-varying dynamics of (3.57) is slowly-varying. The gain matrix can be either
time-varying or constant.

Case study: time-varying and constant gains

The effect of time-varying gain selection as opposed to constant observer gains in
the translational motion observer is investigated in a simplified example. The ex-
ample considers simulated sensors at rest. The measurement noise of the inertial
sensors and position measurements are simulated as Gaussian white noise, although
the noise in general has colored spectral content. Furthermore, the nonlinear ob-
server will be considered in the NED-frame with only aiding of position measure-
ments. The inertial noise characteristics is chosen as εω ∈ N (0, 0.00252 [rad2/s2])
and εf ∈ N (0, 0.052 [m2/s4]), and the GNSS noise in NED-frame is chosen as
εp = (εpn ; εpe ; εpd

) with εpn ∈ N (0, 1.12 [m2]), εpe ∈ N (0, 1.12 [m2]), and εpd
∈

N (0, 1.652 [m2]) leaving the position measurements less accurate in the vertical
component.

By pre- and post-multiplying Q with the input matrix, B, the covariance of
the input vector can be considered instead of the covariance of the states. In this
case the Q matrix is based on the expected noise of f bIMU and −S(σ̂)f bIMU which
can be somewhat determined from the IMU characteristics. For this case study
the nonlinear observer is implemented with θ = 1 and covariance matrices; Q =
blockdiag(0.052I3, 0.5 · 0.052I3) [m2/s4] and σp = blockdiag(1.12I2, 1.652) [m2].
The unitless attitude gains where chosen as k1 = k2 = 0.5, and kI = 0.01. The
estimation is initialized with an offset from true values, as NED position and at-
titude errors of p̃(0) = [10;−7; 4]m and φ̃(0) = 10, θ̃(0) = 7, ψ̃(0) = −10 degrees,
respectively.

Three versions of the nonlinear observer is investigated; a) fixed gain observer,
b) time-varying gains, and c) time-varying gains with higher attitude gains. The
fixed gains for the observer in the first case where determined by solving the initial
algebraic Riccati equation. The third case was simulated with attitude gains of
k1 = k2 = 20 during the first 100 seconds. The transient responses of the position
and attitude errors are shown in Figs. 3.6 and Fig. 3.7 for the three observers.
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Figure 3.6: Position estimation error
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3.4. Nonlinear Observer

Here case a) is shown with dashed lines, case b) is shown with dot-dashed lines,
and case c) is shown with solid lines. The transient performance is improved by
using the time-varying gain selection. The fastest attitude convergence properties
are witnessed in case c) with both time-varying TMO gains and higher initial atti-
tude gains as seen in Fig. 3.7. However, the convergence properties of the position
estimates are not improved by higher attitude gains. The errors have not fully con-
verged after 100 seconds, as the gyro bias estimates have not converged to the true
gyro biases yet.

3.4.6 Colored position and velocity measurement noise
The position and velocity measurements from a GNSS receiver are subjected to
errors from various sources, as presented in Section 2.5.4. The measurement noise
is often considered white Gaussian, however due to time-varying error sources such
as atmospheric disturbances it should rather be considered colored noise, such that:

peGNSS = petrue + δp, veGNSS = vetrue + δv, (3.58)

where the δp and δv terms are colored noise terms described by:

ż = Fz +Gn, δ = Hz + ε, (3.59)

where z = [zp; zv] ∈ R6 are the noise state, δ = [δp; δv] ∈ R6 denotes the position
and velocity errors, and εepv ∈ R6 and n ∈ R6 are vectors with unity white noise
where n ∼ (0, 1) and εepv ∼ (0, σ2

pv). Additional Gaussian white noise can be in-
cluded for realistic measurements due to receiver noise. According to [130, 145] the
model describing the position measurements can be chosen as a first-order Gauss-
Markov process, hence the dynamic matrices F = diag(Fp, Fv) can be chosen as
F? = −1/T?, where T? is the correlation time constant for either the position or
velocity noise. The gain G = [Gp;Gv] on the driving noise, n, can be chosen equal
to an appropriate standard deviation.

For sufficiently long measurement periods the steady-state covariance of the
Gauss-Markov processes zp and zv can be obtained by solving solving:

F?Pz?
+ Pz?

F ᵀ
? +G?G

ᵀ
? = 0, (3.60)

where ? is a placeholder for p or v. Since the dynamic matrices are symmetric;
Fp = F ᵀ

p and Fv = F ᵀ
v , (3.60) can be rewritten as;

F?Pz? + F?Pz? +G?G
ᵀ
? = 0, (3.61)

2F?Pz? = −G?Gᵀ
? , (3.62)

Pz?
= −1

2F
−1
? G?G

ᵀ
? , (3.63)

thereby determining the steady-state covariances:

Pzp
(∞) = −1

2F
−1
p GpG

ᵀ
p , Pzv

(∞) = −1
2F
−1
v GvG

ᵀ
v . (3.64)
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3. Loosely-Coupled GNSS/INS Integration

The time constants of the Gauss-Markov process can be chosen large, e.g. Tp = 1100
s as in [145], [19, Section 7.5], while the time constant for the velocity can be
chosen small, e.g. Tv = 2 s. The small velocity time constant is based on the
assumption that the GNSS velocity measurements are based on the Doppler range-
rate measurements.

The translational motion observer can be augmented to include the colored
GNSS position domain noise. By defining the state vector as; xa = [x; z] the dy-
namics equation can be expressed as:

ẋa = Aaxa +B1u+B2n+Da, (3.65)

where the noise dynamics for the position and velocity measurements are:

˙̂z = F ẑ +Kpz(peGNSS − p̂e − δ̂p) +Kvz(veGNSS − v̂e − δ̂v). (3.66)

The TMO can then be described as:

˙̂xa = Aax̂a +B1u+Da(t, x̂) +Ka(y − Cax̂a), (3.67)

where the matrices of the augmented system are defined by

Aa =
[
A 0
0 F

]
, Ca =

[
C H

]
, (3.68)

B1 =
[
B
0

]
, B2 =

[
0
G

]
, (3.69)

Ka =
[
K
Kz

]
, Da(t, x̂) =

[
D(t, x̂)

0

]
, (3.70)

where Kz = [Kpz,Kvz]. The gain of the augmented system can be determined
as Ka = θL−1

θ K0Eθ where Ba = [B1, B2], Eθ = CLθC
† with the Moore-Penrose

pseudoinverse C†, and gain:

Lθ = blockdiag
(
I3,

1
θ
I3,

1
θ2 I3, Ilp ,

1
θ
Ilv

)
, (3.71)

The K0 gain can be determined from a augmented equivalent to (3.56)–(3.57)
with Qa = blockdiag(Q, Ilp , Ilv ). The dimensions of the position and velocity error
models are denoted lp and lv.

The matrix pair (Aa, Ca) is always observable for any time constants, Tp > 0
and Tv > 0, when the model in (3.59) is chosen as Gauss-Markov noise, since the
rank of the observability matrix will be full, thereby satisfying the rank condition
of observability for linear time-variant systems, [106].

3.4.7 Discretization and Implementaion of TMO
The main principle for the discrete-time implementation is to approximate the
continuous time behavior despite the finite data rate. It implies that the estimates
are only updated when the output measurements contained in the injection terms
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3.5. Experimental Verification

are valid, and otherwise integrate the model using measured inputs at their highest
available update rate. Measurement updates can be processed sequentially by a KF,
assuming the measurements are uncorrelated such that the R matrix is diagonal,
with benefits for processing structure and complexity [52, 76]. Due to the close
relationship between (3.56)–(3.57) and the KF, a similar strategy can be applied
also for NLOs. The TMO (3.55) is straightforward to discretize due to its linearity
and the simple A-matrix, allowing for exact discretization of the unforced dynamics:

Ad = eAT =

I3 TI3
T 2

2 I3
0 I3 TI3
0 0 I3

 . (3.72)

where the subscript d signifies the discrete nature of the matrix, such as to dis-
tinguish it from the continuous-time version. The discrete time index is denoted k
incrementing for each iteration of the implementation, and will be introduced in
subscript to keep track of the iteration. Assuming the specific force input, the rota-
tion matrix and the gravity vector are constant between the IMU sampling inter-
vals, f bIMU(t) = f bIMU,k, R(t) = R(qeb,k) and ge(pe(t)) = ge(p̂ek), for t ∈ [kT, (k+1)T ),
the discrete versions of the matrices in (3.55) are:

Bd,k :=
∫ (k+1)T

kT

eA
(

(k+1)T−τ
)
B(τ)u(τ)dτ =

T
2

2 R(q̂eb,k) T 3

6 R(q̂eb,k)
TR(q̂eb,k) T 2

2 R(q̂eb,k)
0 TR(q̂eb,k)

 ,
Dd,k :=

∫ (k+1)T

kT

eA
(

(k+1)T−τ
)
D(τ)dτ =

T 2

2
(
ge(p̂k)− 2S(ωeie)v̂ek

)
T
(
ge(p̂k)− 2S(ωeie)v̂ek

)
0

 .
This assumption can easily be satisfied by implementing the discrete system at
the highest sensor rate possible, typically the IMU rate, such that T = 1/fIMU.
The state and covariance matrix can be divided into priori and posteriori parts
and propagated similarly as for the Kalman filter, see Section 3.3. An outline
of the implementation of the discrete-time TMO in indirect form is presented in
Algorithm 2 in Appendix C.

Discretization of the attitude observer is straightforward as Euler integration
can be employed. An overview of the attitude estimator implementation be found
in Algorithm 1 in Appendix C.

3.5 Experimental Verification

Experimental measurements from flights with a fixed-wing Bellanca Super De-
cathlon XXL unmanned aerial vehicle (UAV) are used to verify and compare the
performance nonlinear observer with the EKF. The UAV (shown in Fig. 3.8) is
equipped with an ADIS 16375 IMU, supplying acceleration and angular rate mea-
surements, a HMR2300 magnetometer and a GARMIN 18X GPS-receiver. The
inertial data are sampled at 100 Hz while the position measurements are sampled
at 5 Hz. Furthermore, the UAV is equipped with a Polar X2@e (Septentrio) GPS
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3. Loosely-Coupled GNSS/INS Integration

system consisting of three antennas, placed at the wing tips and tale, providing
attitude and position estimates. The attitude accuracy is considered, based on the
antenna geometry and manufacturer documentation, of 1σ is 0.2◦ in roll angle, 0.6◦
in pitch angle, and 0.3◦ in yaw angle. The estimates of the Septentrio system is
considered highly accurate and is therefore used as a reference for comparison with
the estimates of the EKF and nonlinear observer.

Figure 3.8: Bellanca Super Decathlon XXL UAV used for experimetal verification.

The goal of the following experimental verification is to compare the perfor-
mance of the proposed nonlinear observer and EKF. Two datasets were used in
the verification where it was desired to use the same tuning for both datasets to
ensure the state estimators were not tuned specifically for a single dataset. The
performance has been evaluated by comparison with the reference position, speed
and attitude. For each of the datasets figures showing the estimation errors are
depicted comparing the state estimators.

3.5.1 Parameters and tuning variables
The state estimators have several parameters and tuning variables to be deter-
mined, which will be presented and explained here. In the case of coinciding naming
subscripts "EKF" and "NLO" will be used.

Tuning of the EKF consists of choosing reasonable QEKF and REKF matrices.
While the REKF matrix relies on the accuracy of the GNSS receiver, the QEKF
matrix describes the expected process noise due to accelerometer and gyro noise
and instabilities, and can be tuned for the application. Here only the GNSS receiver
position will be considered as velocity measurements were not available. The tuning
matrices are initialised as REKF = 14.40I3 [m2], with QEKF = blkdiag

(
03 [m2],

0.096I3 [m2/s2], 0.076 · 10−4I2[rad2], 0.305 · 10−4[rad2], 3.046 · 10−10I3[rad2/s2]
)
,

where the units have been given in square brackets. The state vector is driven by
measured angular rates and specific force by inertial sensors having particular noise
parameters. These parameters should be involved in the QEKF matrix.

Two versions of the fixed gain nonlinear observer is presented for comparison
with the difference being the vectors used for attitude estimation: a magnetometer
implementation (denoted NLO-Mag) and a version with velocity vectors (denoted
NLO-Vel), where the first set of attitude vectors are vb1 = f bIMU/‖f bIMU‖2 and
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3.5. Experimental Verification

ve1 = f̂e/‖f̂e‖2. The NLO-Mag utilize vb2 = mb/‖mb‖2×vb1 and ve2 = me/‖me‖2×ve1
while the NLO-Vel version utilize vb2 = [1; 0; 0] and ve2 = v̂e/‖v̂e‖2. This approach
assumes the heading and course to be coinciding, which is mostly true for straight
flight trajectories, ensuring uniformly semi-globally exponential stability through
[59]. For flights including numerous turns a magnetometer might be preferred as
loitering and cross-winds could affect the heading assumption.

The nonlinear observers include bound parameters which should be chosen suf-
ficiently large Mb = 0.0087 [rad/s], while the remaining unitless parameters are;
k1 = 0.2, k2 = 0.05, θ = 1, kI = 0.00005. The fixed gains are Kpp = 0.38I3,
Kvp = 0.44I3 and Kξp = 0.14I3. For the NLO-Vel the attitude injection gain is
substituted for k2 = 0.01.

The initial values of the state vectors are chosen from the first available measure-
ments, and are similar for the three estimators (EKF, NLO-Mag, and NLO-Vel).
It is important to tune the three state estimator equally thoroughly to keep the
comparison fair.

3.5.2 Results

Two datasets are available using the same UAV and sensor suite. The proposed
state estimators are tested on both datasets to verify that they are not tuned
exclusively for one dataset. The inertial measurements are preprocessed with a
low-pass filter whose bandwidth is set according to vibration spectrum.

Results of dataset 1 can be seen in Fig. 3.9, 3.10, 3.11, and 3.12, while the
results of dataset 2 are shown in Fig. 3.13, 3.14, 3.15, and 3.16. The EKF solution
is shown in red, the NLO-Mag is shown in dashed blue lines, while the NLO-Vel
is green, with the reference from the Septentrio system depicted in black. This
color scheme is used for all the figures in the verification. The occasional gap in
the attitude error is due to temporary loss of reference. The findings are evaluated
and summarised in Table 3.1 which compares the two estimators during the two
flights.

The trajectory of flight 1 is shown in Fig. 3.9, covering an area of approximately
0.7 km2 with a maximum altitude of 170m. The estimation errors of speed, attitude
and position are shown in Fig. 3.10, 3.11, and 3.12, where the speed estimation error
is centred around zero and includes a zoomed view for clarification. The attitude
errors shown in Fig. 3.11 have similar behaviour for roll and pitch for the state
estimators, whereas the nonlinear yaw estimate has some systematic offset. The
position errors of Fig. 3.12 are very similar for the state estimators attesting that
the nonlinear observers have comparable results to the EKF.
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Figure 3.9: Vehicle trajectory
(Dataset 1)
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Figure 3.10: Speed estimation error
(Dataset 1)
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Figure 3.11: Attitude error (Dataset
1)
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Figure 3.12: Position error (Dataset
1)

The second dataset consisted of approximately a third of the amount of mea-
surements compared to dataset 1. The speed and attitude estimation errors are
shown in Fig. 3.13 and Fig. 3.14, with comparable performance between the EKF
and nonlinear observers. The position errors depicted in Fig. 3.15 show that an
offset is present between the estimates, although the estimates follow the same
pattern. Finally, the gyro bias estimates are shown in Fig. 3.16. As there are no
reference for the gyro biases these are included to show the similarities across the
state estimators.
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Figure 3.13: Speed estimation error
(Dataset 2)
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Figure 3.14: Attitude error (Dataset
2)
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Figure 3.15: Position error (Dataset
2)
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Figure 3.16: Gyro bias estimation
(Dataset 2)

According to Table 3.1 and previous figures the EKF and nonlinear observers
are seen to have similar performance during both flights. The differences can be
assumed negligible and real flight conditions are considered. The attitude estimates
shown in Fig. 3.11 and Fig. 3.14 are very alike and correspond well to the reference,
although the nonlinear yaw estimation is seen to have a systematic difference.

The position estimation errors depicted in Fig. 3.12 and Fig. 3.15 are within
the expected bounds. From Table 3.1 it can be concluded that the three state
estimators have good performances with little variation between the estimators. It
can further be concluded that the tuning used gave good results for both datasets.

3.6 Chapter Summary

A nonlinear observer consisting of an attitude estimator and a translational mo-
tion observer have been introduced. The two parts of the observer are feedback
interconnected with the estimate of the specific force in a global coordinate frame.
The attitude is represented as a quaternion to avoid singularities. Issues connected
to gain selection, stability and implementation have been introduced.
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Table 3.1: Observer performance comparison (NED position in m, attitude in deg
and speed in m/s)

EKF NLO-Mag NLO-Vel

POS RMS: 3.43 2.71 2.62 3.37 2.62 2.50 3.37 2.63 2.50
POS STD: 2.60 2.44 2.46 2.48 2.41 2.44 2.48 2.42 2.44
ATT RMS: 1.83 2.59 5.50 2.02 2.69 5.46 1.93 3.01 6.88
ATT STD: 1.67 1.81 5.42 1.84 1.90 5.28 1.90 1.92 6.15
SPE RMS: 0.60 0.67 0.69D

at
as
et

1

SPE STD: 0.59 0.66 0.69

POS RMS: 4.43 4.40 3.43 3.38 5.00 3.63 3.37 5.00 3.63
POS STD: 2.53 4.35 2.86 2.46 4.20 2.82 2.46 4.20 2.82
ATT RMS: 1.76 1.87 6.39 2.09 1.87 7.85 1.56 1.94 6.36
ATT STD: 1.70 1.66 6.34 1.73 1.67 6.28 1.46 1.59 6.36
SPE RMS: 0.86 1.06 1.05D

at
as
et

2

SPE STD: 0.83 1.02 1.02

An Extended Kalman Filter was introduced for comparison with the nonlinear
observer. The advantages and drawbacks of the methods have been presented and
experimentally verified using flight data from a fixed-wing UAV. A reference system
consisting of a 3-antenna GNSS receiver with the antennas placed at the tail and
each wing tip was use for performance comparison of the presented state estimators.

The inertial sensors used in datasets are considered low-cost variants with re-
spect to the reference system utilized. As the performance of the presented meth-
ods estimating position, linear velocity, and attitude are reasonably close to the
reference it is concluded that the methods are able to overcome the vibrations,
disturbances and bias drift connected to low-cost sensors in a reasonable manner
and thus provide sufficiently stable and accurate navigation solution.

Furthermore, as the performance of the two state estimators are similar the
nonlinear observer is concluded to have high performance of the level of state-of-
the-art integration schemes commonly used for adverse applications. The following
chapters will therefore proceed to build on the nonlinear observer presented here.
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Chapter 4

Time-Delayed GNSS
Measurements

Global navigation satellite system (GNSS) receivers suffer from an internal time-
delay of up to several hundred milliseconds leading to a degeneration of position
accuracy in high-dynamic systems. With the increasing interest in GNSS naviga-
tion, handling of time-delays will be vital in high accuracy applications with high
velocity and fast dynamics. This paper presents a nonlinear observer structure for
estimating position, linear velocity, and attitude (PVA) as well as gyro bias, using
inertial measurements and time-delayed GNSS measurements. The observer struc-
ture consists of four parts; a) attitude and gyro bias estimation, b) time-delayed
translational motion observer estimating position and linear velocity, c) input de-
lays for inertial and magnetometer measurements, and d) a faster than real-time
simulator. The delayed PVA and gyro bias estimates are computed using a semi-
globally exponentially stable (SGES) nonlinear observer. The high-rate inertial
measurements are delayed and synchronized with the GNSS measurements in the
state observer. The fast simulator integrates the inertial measurements from the
delayed state estimate to provide a state estimate at current time. The sensor mea-
surements are carefully synchronized and the estimation procedure for the GNSS
receiver delay is discussed. Experimental data from a small aircraft are used to
validate the results.

Contributions of this Chapter: This chapter presents a method for handling
time-delayed GNSS measurement in a loosely coupled strapdown GNSS/INS
system. The observer structure is based on a SGES nonlinear PVA estima-
tor, Grip et al. [72], where the high-rate inertial measurements are delayed
to match the delayed GNSS measurements. A fast simulator uses inertial
measurements to compensate for the delay in the state estimate. The main
contribution is the modification and extension of the nonlinear observer to
time-delayed position measurements. The observer makes a correction to the
delayed state using the delayed GNSS measurement, which are integrated
with delayed INS position estimates. The method can be generally applied
to other GNSS/INS integration schemes that employ other state estimation
algorithms. The presented approach is verified through simulations and in a
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high-dynamic test environment using a small aircraft offering experimental
validation.

Organization of this Chapter: The chapter is organized as follows: Section 4.2
gives an introduction to the experienced time delay in GNSS receivers and
how it can be estimated. Section 4.3 states the delayed navigation problem
formally. Section 4.4 introduces the solution involving the nonlinear attitude
estimator, the translational motion observer and the fast simulator. Section
4.5 presents an alternative implementation of the observer structure, while
Section 4.6 presents simulation results. Section 4.7 contains experimental
results using an aircraft, while Section 4.8 gives the concluding remarks.

Publications: The material in this chapter is based on the conference paper
Hansen et al. 2015 [83] and the journal Hansen et al. 2017 [86].

4.1 Introduction

Aiding an inertial navigation system (INS) with position and velocity updates
from a Global Navigation Satellite System (GNSS) receiver is widely used for vehi-
cle navigation. The inertial measurement unit (IMU) contributes with high sample
rate linear acceleration and angular rate measurements, which are integrated to
obtain position, velocity and attitude (PVA) estimates. However, the error builds
up quickly resulting in poor accuracy for long-term predictions. The drift is com-
pensated by using low sample rate GNSS measurements. The resulting system is
a strapdown INS aided by GNSS measurements where the observer produces high
sample rate state estimates.

The integration of inertial and GNSS measurements have traditionally been
achieved using Kalman filters (KF) or extended Kalman filters (EKF) for nonlin-
ear systems, see e.g. Grewal et al. [69]. Within the last decade another approach
based on nonlinear observer design for estimating PVA has become increasingly
popular. The design of nonlinear observers is grounded in systems theory where
the stability properties are investigated. Thus the advantage of using nonlinear
observers compared to EKFs is a significant reduction in computational load, guar-
anteed stability properties and reduced need for linearization of the system model.
See e.g. Hua [94], Vik and Fossen [176], or Grip et al. [73] for recent attention of
nonlinear observers with significantly stronger stability results than nonlinear KFs.
The reduction in computational load when using nonlinear observers compared to
nonlinear KFs were investigated in Grip et al. [72] and Mahony et al. [119], and
especially in Johansen et al. [101], where a tightly coupled nonlinear observer was
shown to comprise less than 25% of the computational load of a multiplicative EKF
(MEKF). The smaller computational footprint allows for a reduction in hardware
requirements or increased availability of processing power for other applications.
Recent work by Mahony et al. [119], Roberts and Tayebi [149], Hua et al. [95], and
Kingston and Beard [113] as well as Grip et al. [71, 72, 73] use nonlinear observers
to estimate PVA, acceleration bias, and gyro bias.

GNSS receivers experience a time delay due to the computational time for
position estimation and the data communication time from the receiver to the
user. The time delay can be disregarded for low-dynamic applications (e.g. marine
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vessels and pedestrian use), but it has great impact on high-dynamic systems such
as high-precision automatic UAV and aircraft landing systems. For high-dynamic
applications the sensor measurements should have high sample rate and accurate
synchronization to minimize the estimation errors, Skog and Händel [158]. It is
therefore important to identify and compensate for sensor time delays.

The work presented here aims to combine a nonlinear attitude observer with
accurate position estimation taking the receiver time-delay into consideration. The
paper is motivated by the increased interest in highly accurate GNSS applications.
Due to the estimation inaccuracies introduced by time-delays in GNSS receivers
it is believed time-delay compensation will be mandatory in future GNSS/INS
applications with fast dynamics and high velocities.

Estimation in time-delayed systems have been subject to extensive research
e.g. Jacovitti and Scarano [97] who investigated discrete-time systems. Latency
determination and compensation are described by Solomon et al. [160] using an
experimental setup. In Li and Mourikis [116] a navigation system based on in-
ertial aided by delayed camera position measurements is investigated. The delay
between inertial and camera measurements is included in the Kalman filter state
vector, allowing for online estimation. The method proposed is verified through
simulations and indoor as well as outdoor experiments. The approach of using
Kalman filters for GNSS/INS systems with time delay have been investigated by
Raff and Allgöwer [144] and Skog and Händel [159]. Time synchronization errors
in GNSS/INS systems are discussed by Skog and Händel [158]. A Kalman filter
handling delayed or asynchronous measurements is considered in Blanke [22, 23],
where the focus is fault tolerant marine operations. Lyapunov functionals are used
for stability analysis by Papachristodoulou et al. [137]. Stability of delayed systems
is further investigated in Gu and Niculescu [78] and Albertos and Garcia [3]. Re-
cently, a quadrotor helicopter application with time delays in the feedback loops
was studied by Ailon and Arogeti [2]. In Battilotti [18] a class of nonlinear predic-
tors for delayed measurements with a known and constant delay is proposed. The
nonlinear observer consists of several couples of filters each estimating the state
vector at some delayed time instant differing from the previous by a small fraction
of the overall delay. By use of a small gain approach Ahmed-Ali et al. [1] presents a
class of global exponentially stable nonlinear observers with sampled and delayed
measurements, robust towards measurement errors and sampling schedule pertur-
bations. Also, Briat [27] and Fridman [58] present extensive research on stability
and control of time-delayed systems, and Khosravian et al. [108, 109, 110] propose
an observer-predictor approach to delayed GNSS and magnetometer measurements
where current position is determined from delayed position estimates. In Siccardi
et al. [157] timing issues in the pulse-per-second signals from GNSS receivers are
investigated.

4.2 Time Delay of GNSS Receivers

Using GNSS measurements as aid in inertial navigation systems is widely used.
However the inertial sensors commonly have a much (∼ 20–2.000 times) higher
sample rate than the GNSS receiver. Accurate time stamping of the measurements
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the rising edge of the PPS signal denoted as the time of validity (TOV), II) the first
rising edge of the data signal denoting time of transmit (TOT) from the receiver to
the user, and III) the time of arrival (TOA) defined as the final falling edge of the
data-package. Here data packages are defined as sets of binary values sent on the
data signal. The total time delay can then be estimated as the time between the
TOV and TOA edges. The situation is visualized in Fig. 4.2, with example times
for clarification.

τcal τdis τ
TOV

08:30:00.00
TOTTOA TOV

08:30:01.00
TOA TOV

08:30:02.00
TOT

PPS
DATA

Figure 4.2: Visualization of PPS and data signal on a time-scale, depicting the
time-delay estimation of a GNSS-receiver, see [173].

Fig. 4.2 shows the relation between when a GNSS measurement is valid, TOV,
and when it is received, TOA, where data is sent from the receiver to the user
between TOT and TOA. The data is shown for a receiver sample interval of
sGNSS = 1 s. Example time stamps of the TOV values are introduced; the first
TOV is registered at UTC 8:30:00, and the second TOV at UTC 8:30:01, with the
intermediate TOT and TOA belonging to UTC 8:30:00 but arriving τcal and τ
seconds later.

GNSS receivers usually offer position updates with a rate of 1–10 Hz, generating
the need for determining the delay for multiple data packages within one PPS
interval. This situation is shown in Fig. 4.3. When estimating the time delay for a
data signal with higher frequency than the PPS signal, the first delay is determined
as described in Fig. 4.2, and the consecutive delays are found as the time between
a time shifted PPS signal and TOA times, i.e. the time between PPS + nsGNSS
and the last falling edge of the data packages, where n = [0, 1, 2, . . . , sGNSS − 1].

τ1 τ2 1 s

PPS + sGNSSPPS
DATA

Figure 4.3: Visualization of time-delay for a GNSS receiver with data frequency
higher than 1 Hz.

If the data rate is much higher than the PPS-signal it will become difficult to
accurately determine the delays as the relation of a TOV and its corresponding
TOA will be obscured: If the data has a much higher frequency than the PPS
signal, it becomes uncertain which data package is the first of a PPS interval,
as the delay might displace a package into the next PPS interval. Having prior
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knowledge of the approximate delay is essential in determining the maximum data
rate the system can support without timing ambiguities.

GNSS receivers can output a multitude of GNSS related data and the magni-
tude of the time delay will depend on which kind of output is desired. Different
delays may be experienced with different data packages, e.g. the ephemeris pack-
age containing the satellite trajectories is often shorter than the package contain-
ing pseudoranges and carrier-phase measurements, leading to a shorter time delay.
Furthermore, some GNSS packages might change size according to the number
of satellites visible in the constellation, which will affect the dissemination delay.
Some packages, such as the receiver position packages, have high sample rates
(1 − 10 Hz), whereas environmental packages (e.g. the ephemeris packages) are
updated on a slower time scale (e.g. ∼ 30 min). The proposed method for deter-
mining the receiver delay does not depend on the sample rate, and can be used for
all types of packages.

4.2.1 Case Study: Time-delay measurement using u-Blox
LEA-6T

Let us consider the practical implications of measuring the receiver time delay.
One way of visualizing the delay is to use an oscilloscope on the PPS and data
signals, allowing for manual measurements of the delay, as shown in Fig. 4.2 and
4.3. Another approach is to use a timer to capture the rising edge of the PPS and
the falling edge of the data signal, this can be achieved using a micro-controller.

A test setup including a u-Blox LEA-6T GNSS receiver and a micro-controller
is utilized. The advantage of the LEA-6T receiver is that the PPS and data signals
are readily available as a digital signal and over a RS-232 connection, respectively.
The micro-controller is chosen such that the input capture method is available,
which time-stamp measurements without interrupting the execution when an input
is received. Additionally, large counters are available as well as a high-frequency
clock to ensure accurate time stamping of TOV, TOT and TOA. Three triggers
are used: one for PPS (determining TOV) and two for data signal (determining
TOT and TOA), all time stamping in micro controller clock cycles, which can be
converted to seconds with the known clock frequency.

GNSS measurements are collected using the test-setup with a sample frequency
of 5Hz, yielding the results shown in Fig. 4.4 and Fig. 4.5. The test is carried out
for the raw satellite data including the range and range-rate measurements. This
is chosen as worst case as the raw data package is the longest one available on the
u-Blox LEA-6T receiver.

The delays determined over time are shown in Fig. 4.4, where the time delay is
seen to be slowly time-varying. It is clear that τdis � τcal and that there is more
variation on the calculation delay than on the dissemination delay. The calcula-
tion delay and especially the dissemination delay are seen to be dependent on the
number of satellites in the constellation.
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Figure 4.4: The dissemination (yellow),
calculation (red) and total (blue) delay
over time, shown with the number of
satellites (dashed).

Figure 4.5: The delays over time and
the histogram of calculation (red)
and total (blue) delay for range and
range-rate data.

The histogram of the observed time delays shown in Fig. 4.5 conveys that the
calculation delay and thereby the total delay are not constant. The mean and
standard deviation of the time delays are summarized in Table 4.1.

Table 4.1: Characteristics of delay distribution, (unit: seconds).

τdis τcal τtotal

Mean: 0.0206 0.1281 0.1486
STD: 0.0020 0.0047 0.0062

A time delay of 150 ms will have small impact on e.g. pedestrian applications
(position error of < 0.5 m), whereas for cars or UAVs the position error can be
several meters (i.e. 5 m error at speeds of 120 km/h).

4.3 Problem Formulation

The objective is to estimate the current position of a vehicle based on strapdown
inertial navigation aided by time-delayed GNSS measurements. The inertial mea-
surements include accelerometer and gyroscope data, integrated with magnetome-
ter and delayed GNSS data in a loosely coupled nonlinear observer.

Assumption 12. The GNSS data will be time delayed with τp or τv seconds, for
position and velocity data respectively.

Remark 4.1. For some receivers these delays will be the same, however in the
following the general delay will be represented as; τ = max(τp, τv).

The position, linear velocity and attitude (PVA) of the vehicle are to be deter-
mined. The position, pe, and linear velocity, ve, are estimated in the ECEF-frame
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while the attitude is represented as a unit quaternion, qeb , describing the rotation
from ECEF- to Body-frame. Furthermore the gyro bias, bb, is estimated.

The kinematic equations of the vehicle given in (2.7)–(2.9), see [71] and [72],
will here be considered in a time-shifted version, where all measurements have
been delayed to coincide with the GNSS measurements. The time shifted kinematic
equations are:

ṗe(t− τ) = ve(t− τ), (4.1)
v̇e(t− τ) = −2S (ωeie(t− τ)) ve(t− τ) +R(qeb(t− τ))f b(t− τ)

+ ge(pe(t− τ)),
(4.2)

q̇eb(t− τ) = 1
2q

e
b(t− τ)⊗ ω̄bib(t− τ)− 1

2 ω̄
e
ie ⊗ qeb(t− τ), (4.3)

ḃb(t− τ) = 0. (4.4)

The specific force of the vehicle is denoted f b, while the local gravitation vector,
ge(pe), is assumed known.

The goal of this chapter is the design of a loosely-coupled nonlinear observer
integrating inertial measurements with time-delayed GNSS measurements, consid-
ering the delay as known such that the delay does not need estimating. Multiple
tests in simulation and with experimental data will confirm the observer structure
and investigate the impact of a time-varying or normally distributed delay.

4.3.1 Sensor configuration
The following measurements are assumed to be available:

Assumption 13. Global position estimate experiencing a time delay, peGNSS(t −
τp) = pe(t− τp), measured using a GNSS receiver.

Assumption 14. Global velocity estimates experiencing a time delay, veGNSS(t−
τv) = Cvv

e(t− τv), measured by a GNSS receiver.

Remark 4.2. The velocity measurements can be a full or partial measurement
veGNSS = Cvv

e, where the selection matrix Cv may be zero.

Assumption 15. Specific force, f b(t), as measured by the IMU: f bIMU(t) = f b(t).

Assumption 16. Angular velocity, ωbib(t), measured by the IMU, with a bias:
ωbib,IMU(t) = ωbib(t) + bb(t).

Assumption 17. Magnetometer measurement of the Earth magnetic field mea-
sured using a magnetometer, mb(t).

Assumption 18. It is further assumed that the positioning data is available with
a sample interval of sGNSS while the inertial and magnetometer measurements are
available with a higher frequency sIMU > sGNSS.
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e−τpvs

Fast Simulator
from t− τp to t

pe(t)

ve(t)

pe(t− τp)

ve(t− τv)

f bIMU(t)

ωbib,IMU(t)

mb(t)

f bIMU(t− τp)
σ̂(t− τp)
q̂eb(t− τp)

b̂b(t− τp)

p̃e(t− τp)
ṽe(t− τp)

f̂e(t− τp)

p̂e(t− τp)
v̂e(t− τp)

p̂e(t|t− τp)
v̂e(t|t− τp)
q̂eb(t|t− τp)

Figure 4.6: Block diagram structure of the proposed observer design, with; GNSS-
receiver, IMU, magnetometer, attitude estimator, time-delayed state observer, and
fast simulator.

4.4 Nonlinear Observer Design

The proposed observer structure consists of: an attitude estimator, delayed trans-
lational motion observer, delayed inertial measurements, and a fast simulator, see
Fig. 4.6. The proposed approach can be generally applied to GNSS/INS integration
schemes, and will here be demonstrated on a nonlinear observer. The fast (faster
than real-time) simulator is used to estimate the current position and linear veloc-
ity from the time-delayed states and a window of IMU data. The attitude observer
is developed by Grip et al. [72], and will here be time shifted from t to t − τ to
accommodate for the delayed position measurements by delaying the inertial mea-
surements at the input of the attitude observer. Since the signals are delayed at the
input to the observer and therefore affects the entire observer the stability proof
can be repeated by shifting the time argument. The origin of the error dynamics
of the presented observer structure is therefore semi-global exponential stability.
Consequently, the observer will be presented without proof. A similar observer
could be used, but the attitude observer from [72] was chosen based on the global
stability results. For the alternative implementation proposed in Section 4.5 it is
important that the observer structure is modular.

Even though the GNSS receiver measures both position and velocity, some
receivers will have different delays on the two outputs, as they are not subjected to
the same computational process. In the following the delayed GNSS measurements
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will have a distinction between the delay of the position measurement, τp, and the
velocity measurement, τv. The presented approach offers a solution when τp ≥ τv.
In Fig. 4.6 the linear velocity estimate is delayed to coincide with the measurement,
but since it is already delayed with τp the additional delay imposed is τvp = τp−τv.
If τv ≥ τp the position estimate should be delayed instead of the velocity estimate,
and the observer should be delayed with τv rather than τp as shown here.

4.4.1 Attitude estimation
The INS attitude estimator is based on [71] and [72]. The main idea is to estimate
the quaternion and gyro bias by using the rotation rate, ωbib,IMU, aided by two non-
parallel Body-frame vector measurements with known ECEF reference vectors.

The attitude and gyroscope bias are estimated by:

˙̂qeb(t− τ) = 1
2 q̂

e
b(t− τ)⊗

(
ω̄bib,IMU(t− τ)− ¯̂

bb(t− τ) + ¯̂σ(t− τ)
)

− 1
2 ω̄

e
ie ⊗ q̂eb(t− τ),

(4.5)

˙̂
bb(t− τ) = Proj

(
b̂b(t− τ),−kI σ̂(t− τ)

)
, (4.6)

where kI > 0 is a constant and Proj(·, ·) denotes the parameter projection where
the bias estimate is restricted to a compact set given as a sphere with constant
radius Mb, i.e. ‖b̂b‖2 ≤Mb. The injection term, σ̂, used in (4.5) and (4.6) is given
as:

σ̂(t− τ) : = k1v
b
1(t− τ)×R(q̂eb(t− τ))T ve1(t− τ)

+ k2v
b
2(t− τ)×R(q̂eb(t− τ))T ve2(t− τ),

(4.7)

where the gains k1 and k2 satisfy k1 ≥ kp and k2 ≥ kp for some sufficiently large
positive kp. The vectors vb1 and vb2 are two vectors in the Body frame with their
corresponding vectors ve1 and ve2 in the ECEF frame. The vectors can be chosen in
various ways. Here they will be considered as:

vb1 = f bIMU
‖f bIMU‖2

, vb2 = mb

‖mb‖2
× vb1, ve1 = f̂e

‖f̂e‖2
, ve2 = me

‖me‖2
× ve1, (4.8)

whereme is the local magnetic field of the Earth and f̂e is an estimate of the specific
force in the ECEF frame, which is provided as described by the translational motion
observer.

4.4.2 Translational motion observer
The objective of the translational motion observer is to integrate IMU acceleration
and GNSS position to produce estimates of position, linear velocity and specific
force. Since the GNSS measurements are delayed it is proposed to delay the IMU
measurements such that the measurements coincide in time, and estimate the de-
layed state. The delayed state observer becomes:

˙̂pe(t− τp) = v̂e(t− τp) + θKpp(pe(t− τp)− p̂e(t− τp)) +Kpv (ve(t− τp)
−v̂e(t− τp)) ,

(4.9)

78



4.4. Nonlinear Observer Design

˙̂ve(t− τp) = −2S(ωeie)v̂e(t− τp) + f̂e(t− τp) + ge(p̂e(t− τp))
+ θ2Kvp(pe(t− τp)− p̂e(t− τp))
+ θKvv (ve(t− τp)− v̂e(t− τp)) ,

(4.10)

ξ̇(t− τp) = −R(q̂eb(t− τp))S(σ̂(t− τp))f bIMU(t− τp) + θ3Kξp(pe(t− τp)
− p̂e(t− τp)) + θ2Kξv (ve(t− τp)− v̂e(t− τp)) ,

(4.11)

f̂e(t− τp) = R(q̂eb(t− τp))f bIMU(t− τp) + ξ(t− τp), (4.12)

where ξ is an auxiliary state to help in estimating the specific force, f̂e. Here θ ≥ 1
is a tuning parameter, and Kpp, Kvp, Kξp, Kpv, Kvv and Kξv are gain matrices
chosen to ensure that the error dynamics defined by A−KC is Hurwitz. See Chapter
3.4.3 or [72] for details. The matrices are:

A =

0 I3 0
0 0 I3
0 0 0

 , K =

Kpp Kpv

Kvp Kvv

Kξp Kξp

 , C =
[
I3 0 0
0 Cv 0

]
. (4.13)

The gain matrix K can be determined in various ways. An advantage of this ob-
server structure is that the gain K can be chosen constant, as shown in [72], lead-
ing to a small computational footprint. Another approach is to solve the discrete
time-varying Riccatti equation, thereby computing the gain and covariance matrix
similarly to the Kalman filter:

Pk|k = ΦPk−1|k−1Φᵀ +Q, (4.14)

Kk = Pk|k−1Cᵀ
(
CPk|k−1Cᵀ +R

)−1
, (4.15)

Pk|k = (I −KkC)Pk|k−1 (I −KkC)ᵀ +KkRKᵀ
k , (4.16)

where P , R and Q are the covariance matrices of the estimate, measurements and
process noises, respectively. The discretized system matrix, Φ = eAT , where T is
the IMU sample time and k is the time index signifying the discrete time update.
More details about the discretization and implementation of the nonlinear observer
can be found in Chapter 3.4 or [31].

4.4.3 Fast simulator
The outputs of the time-delayed translational motion observer are the delayed
position and linear velocity estimates. In order to get the current position and linear
velocity, p̂e(t) and v̂e(t), a fast simulator is implemented. The input to the fast
simulator is the bias-compensated gyro measurements, as well as the acceleration
measured by the IMU, without the gravitational component and rotated to the
ECEF frame, u(t) = ae(t) = R(q̂eb(t))f bIMU−ge(p̂e(t)). Moreover, the fast simulator
is implemented as,

v̂e(t|t− τp) = v̂e(t− τp) +
∫ t

t−τp

u(r)dr, (4.17)

p̂e(t|t− τp) = p̂e(t− τp) + τpv̂
e(t− τp) +

∫ t

t−τp

∫ s

t−τp

u(r)drds, (4.18)
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˙̂qeb(t− τp) = 1
2 q̂

e
b(t− τp)⊗

(
ω̄bib(t− τp)−

¯̂
bb(t− τp) + ¯̂σ(t− τp)

)
− 1

2 ω̄
e
ie ⊗ q̂eb(t− τp),

(4.19)

where p̂e(t− τ) and v̂e(t− τ) are estimated by the translational motion observer.
The fast simulator can be implemented offline where the attitude estimates

of (4.5) can be saved in a buffer, avoiding the need for (4.19), or online where
the attitude must be estimated in the fast simulator. Used online the fast simula-
tor must have a data buffer for storing measurements for use in the integrations.
The integral part of (4.17) can be implemented as a for-loop and can be used in
the double integral of (4.18) to save computational effort. The frequency of the
fast simulator is the runtime frequency of the implementation platform, with the
minimal requirement of being faster than the IMU sample rate. To further save
computations the latest value of u(t) can be determined and appended to an array.
The integrals can then be calculated by summing the elements in the array over
the relevant time horizon. This solution uses a running horizon method and will
limit the computational load as only one u is determined every iteration.

4.5 Alternative Implementation

An alternative implementation of the proposed observer can be designed by chang-
ing the placement of the delay that ensures the translational motion observer use
coinciding data. In the proposed observer structure the delay was placed before the
attitude estimator while in the alternative implementation, shown in Fig. 4.7, the
delay is implemented after the attitude estimator. The attitude estimator thereby
supply the present attitude estimate, negating the need for estimating the attitude
in the fast simulator.

The fast simulator for determining the present position and velocity is identical
to the fast simulator in the observer structure proposed in Section 4.4, and depends
on; v̂e(t− τp), p̂e(t− τp), f bIMU(t), and q̂eb(t− τp). However, it is no longer necessary
to estimate the present attitude.

The alternative implementation can be applied to any other modular GNSS/INS
integration scheme where the attitude and translational motion observers are sep-
arated. The alternative implementation approach alters the observer structure and
the stability proof is no longer valid. Here the alternative implementation is stated
without stability proof. There might exist an observer where the stability is not
violated by the structure of the alternative implementation. To the best of the
authors knowledge there is no modular observer where the stability results account
for a delay in the interconnection.

The delayed specific force estimate from the translational motion observer is
used in the attitude observer. An additional fast simulator could be introduced to
integrate the ξ state over the time delay horizon. However, to save computations
an approximation is introduced such that ξ and f̂e are estimated as:

ξ̇(t) = −R(q̂eb(t))S(σ̂(t))f bIMU(t) + θ3Kξp(pe(t− τp)− p̂e(t− τp))
+ θ2Kξv(ve(t− τp)− v̂e(t− τp)),

(4.20)
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Figure 4.7: Block diagram structure of the alternative implementation, with; GNSS
receiver, IMU, magnetometer, attitude estimator, time-delayed translational mo-
tion observer, and fast simulator.

f̂e(t) = R(q̂eb(t))f bIMU(t) + ξ(t), (4.21)

The approximation only lies in estimation of ξ(t), whereas (4.21) is identical to
(4.12) with the time shift from t− τp to t.

4.5.1 Computational load
The computational loads of the proposed observer and the alternative implementa-
tion are compared by counting the average number of multiplications and additions
required. The comparison is shown in Table 4.2, where the attitude estimator op-
erates at IMU frequency, 500 Hz, and the TMO gain computation runs at GNSS
receiver frequency, 5 Hz. Furthermore, the time delay is considered constant with
a ratio to the IMU frequency of 10, such that the integrals in the fast simulators
are determined over 10 elements. The proposed observer is denoted NLO, while the
alternative implementation is NLO-ALT. The observers are compared to a fixed
TMO gain implementation of the proposed observer, here denoted NLO-FIX, and
the uncompensated observer, denoted NLO-UNC, which does not take the time
delay into account.

The computational load of the NLO-UNC observer is used as reference when
determining the change in computational load of the proposed observers. The ratios
between the computational load of the observers and the NLO-UNC are listed in
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the table. The fixed gain method offers a significant reduction in computational
load despite inclusion of the fast simulator. The load of the proposed NLO is larger
than the uncompensated observer due to the addition of the fast simulator, while
the alternative implementation offers a reduction in load compared to the NLO,
due to the removal of the attitude estimate in the fast simulator.

4.6 Simulation Study

The implementation and effect of the proposed observer structures are verified in
simulation using the unmanned aerial vehicle (UAV) model of Beard and McLain
[19], estimating UAV position in NED, linear velocity, attitude, acceleration, and
angular velocity of the Aerosonde UAV.

The simulation setup will be the same for the three tests, with the reference po-
sition being a circular path with diameter of 1300 m. The simulated GNSS data is
supplied with a frequency of 5 Hz with added Gaussian white noise. The standard
deviation of the position measurements is 1 m, while the velocity measurements has
a standard deviation of 0.01 m/s. These standard deviations are reasonably realis-
tic with differential corrections chosen to better visualize the conceptual difference
in performance between the observers. The inertial measurements will be supplied
with a frequency of 500 Hz and Gaussian white noise comparable to the ADIS
16488 IMU (accelerometer: 1.5 · 10−3 g, magnetometer: 0.45 · 10−7 T , gyroscope:
0.0028 rad/s).

The observer parameters are chosen as;Mb = 0.0087 [rad/s], k1 = 1.8, k2 = 1.2,
kI = 0.004, and θ = 1. The parameters are tuned by the guidelines presented
in the stability proof in Grip et al. [72] where θ ≥ 1, and k∗ ≥ kp > 0 with
Mb being sufficiently large. Futher suggestions for tuning can be found in Chap-
ter 3.4 or in Bryne et al. [31]. The observer gain matrices are found by solving
the discrete time-varying Riccati equation, where the covariance matrices are se-
lected as: R = blockdiag(I3 [m2], 0.01I3 [m2/s2]), and Q = blockdiag(0I3 [m2], 1 ·
10−3I3 [m2/s2], 2.5 · 10−4I3 [m2/s4]). The observers are implemented using a cor-
rector-predictor representation of the discretized system [55] with two time scales:
GNSS data and the time-delayed IMU data.

The observers robustness towards errors in the time-delay estimate is tested by
distinguishing between the delay introduced by the GNSS receiver and the im-
plemented delays, where the GNSS delay (τp and τv) is the actual time delay
experienced in the GNSS receiver, whereas the implementation delay (τp,imp and
τv,imp) is the delay assumed in the observer. A perfect correspondence between the
two delays gives the best result, however the GNSS delay might vary over time
making a constant implementation delay inaccurate.

Several simulations are carried out comparing the proposed observer and the
alternative implementation with the traditional observer structure without time
delay compensation: I) the time delay is constant τp = τv = τp,imp = τv,imp =
150 ms, II) an inaccurate time-delay estimation is considered, where the observed
time delay does not match the time delay used in the observer implementation,
and III) a normal distributed observed delay while the implemented delay is fixed
at the mean value.
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4. Time-Delayed GNSS Measurements

4.6.1 Test I: Simulation with τ = 150 ms

The proposed observer and the alternative implementation are simulated with a
time delay of τ = 150 ms, matching the delay found from experimental data in Sec-
tion 4.2. The experienced and implemented delay coincide in this test; τ∗ = τ∗,imp.
The true position of the UAV is known, and the position estimation error is shown in
Fig. 4.8. The position error of three observers are shown: a) the proposed observer,
b) the alternative implementation, and c) an observer without delay compensation.

0 20 40 60 80 100
-5

0

5

x
 e

rr
o
r 

(m
)

0 20 40 60 80 100
-5

0

5

y
 e

rr
o
r 

(m
)

0 20 40 60 80 100

time (s)

-5

0

5

z
 e

rr
o
r 

(m
)

Figure 4.8: Position estimation error the proposed observer structure (red), the
alternative implementation (green) and the observer without time-delay compen-
sation (purple).

The observer without delay compensation is seen to introduce a sinusoid error
characteristic, whereas the proposed observer and alternative implementation have
estimation errors concentrated around zero. It is evident that taking the time delay
of the GNSS receiver into account increases performance of the observer structure.

The root-mean-square (RMS) and standard deviation (STD) of the estimation
error are summarized in Table 4.3. Since the GNSS receiver position measurements
have a standard deviation of 1 m the delay compensated observer improves the
accuracy compared to using only GNSS measurements, while the uncompensated
observer leads to higher standard deviation.

4.6.2 Test II: Simulations with inaccurate time delay

In order to test the performance of the proposed observer structures when the
magnitude of the time delay is not precisely known, a test is carried out where
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the implemented delay is larger than the experienced delay, i.e τ∗,imp = 1.5τ∗ =
225 ms. The position estimation errors are shown in Fig. 4.9.
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Figure 4.9: Position estimation error the proposed observer structure (red), the
alternative implementation (green) and the observer without time-delay compen-
sation (purple).

Comparing the position errors in Fig. 4.8 with Fig. 4.9 there is no difference
in the error of the observer without time-delay compensation (as expected), how-
ever the error from the proposed observer and the alternative implementation have
grown to a magnitude that is comparable to the error of the uncompensated ob-
server. While a good estimate of the receiver delay is desired the simulation show
that the estimate can be a factor of 1.5 larger than the true delay magnitude,
without the uncompensated observer becoming a better candidate for position es-
timation. The results are summarised in Table 4.3.

4.6.3 Test III: simulations with normally distributed delay

To investigate the performance of the observer structures with respect to a non-
constant time delay, the experienced delay is introduced as a time-varying de-
lay with a mean of 0.150 s and normal distribution with a standard deviation of
0.0075 s, while the implemented delay, τp,imp is fixed at the mean value of the
distribution. This case study will resemble the tendency of the experienced delay,
while opting for the straightforward implementation of a constant delay in the
observer structure.

The estimation errors can be seen in Fig. 4.10, closely resembling the perfor-
mance shown in Fig. 4.8 for a constant and perfectly known delay.
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Figure 4.10: Position estimation error the proposed observer structure (red), the
alternative implementation (green) and the observer without time-delay compen-
sation (purple).

The estimation error of the proposed observer and the alternative implementa-
tion is concentrated around zero, with clear advantages compared to the observer
without delay compensation. The results are summarized in Table 4.3.

Table 4.3: Simulation results, summarising the RMS and STD of position error
signals of considered observer structures, unit: m. Note that the simulated GNSS
position noise STD is 1 m.

RMS STD
x y z x y z

Proposed Observer 0.688 0.568 0.323 0.617 0.481 0.311
Alternative Implementation 0.663 0.584 0.317 0.601 0.508 0.302

Te
st

I

Uncompensated Observer 2.093 2.983 1.236 1.639 2.975 0.887
Proposed Observer 2.390 2.595 1.172 1.936 2.446 1.152
Alternative Implementation 2.360 2.662 1.156 1.931 2.528 1.139

Te
st

II

Uncompensated Observer 2.130 2.888 1.262 1.646 2.878 0.913
Proposed Observer 0.685 0.607 0.378 0.631 0.538 0.378
Alternative Implementation 0.659 0.620 0.366 0.629 0.560 0.365

Te
st

II
I

Uncompensated Observer 2.124 2.924 1.216 1.616 2.918 0.923
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From Table 4.3 it is clear that the proposed observer and the alternative imple-
mentation have similar performance, throughout the test cases, while performing
better than the observer without delay compensation. Furthermore, the perfor-
mances in test I and test II are very similar, suggesting that when the receiver
delay has a small standard deviation the implemented delay can be kept constant.
The average delay of the receiver can be determined prior to implementation, and
as test II showed, does not have to perfectly correspond to the experienced delays
throughout the test. Moreover, the average delay of the receiver can be determined
prior to use, possibly negating the need for online delay estimation for this specific
receiver and thereby the use of the PPS signal in the on-board autopilot. In gen-
eral it must be expected that other receivers and configurations might show larger
variations in the time-delay estimation.

4.7 Experimental Results

This section describes the data acquisition and experimental results achieved with
the introduced observers. A payload consisting of an ADIS 16488 IMU (1230 Hz),
a u-Blox LEA-M8T GNSS receiver (5 Hz) and custom hardware for accurately
time stamping the measurements with GPS clock was used for data acquisition. A
description of the payload can be found in Appendix B. The proposed observers
were implemented for post-processing of the acquired measurements. Both GNSS
position and velocity measurements are used for estimation. The dataset were
collected during flight with a GA Slingsby T67C, small manned aircraft, see Fig.
4.11, operated at an airfield in Prague.

Figure 4.11: Aircraft (GA Slingsby T67C)

The payload was mounted behind the passenger seat, powered by a car battery,
with the GNSS antenna mounted on the inside of the transparent cover, directly
above the payload to minimize the lever arm. The aircraft is highly manoeuvrable
with maximum speed of approximately 280 km/h.
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The trajectory reference was determined as a Real-Time-Kinematic (RTK) solu-
tion using dual frequency receiver onboard the aircraft with corrections from a local
base station. The RTK solution, computed by the open source RTKLIB, exploiting
carrier-phase measurements, provides more accurate data than the single-receiver
code-based GPS solution, with three quality categories; single (the solution is com-
parable with the single receiver solution), float (relative positioning but unresolved
ambiguities), and fixed (relative positioning with resolved ambiguities). The flight
had predominant (over 90% of the time) "fixed" quality indicating a highly accurate
reference. The remaining time the reference had "float" quality were the differential
corrections are used, without the resolution of the integer ambiguity, resulting in
approximately decimetre accuracy.

When comparing the observer position estimates with the RTK solution, the
position estimates are down sampled to match the frequency of the RTK solution.

The receiver delay was measured in real time throughout the flight. The time
delay was slowly time-varying over time, see Fig. 4.12, with distribution as shown
in Fig. 4.13. The receiver used in the experimental verification is a newer version
compared to the receiver presented in Section 4.2.1, which might account for the
smaller magnitude in total delay. The mean of the distribution is 0.0505 s with
standard deviation 0.0020 s. The error introduced at maximum speed of the aircraft
will be approximately 4 m.

0 200 400 600 800 1000 1200 1400 1600 1800

time [s]

0.045

0.05

0.055

0.06

d
e

la
y
 [

s
]

Figure 4.12: Total receiver delay (blue)
with depicted average (red).

Figure 4.13: Histogram of total receiver
delay.

When implementing the proposed observer structures the receiver delay is rep-
resented as an integer number of IMU samples. As the average receiver delay is
equivalent to 62 IMU samples the delay is considered sufficiently well represented.

The observer parameters are chosen as; Mb = 0.0087 [rad/s], k1 = 0.8, k2 =
0.2, kI = 0.004, and θ = 1. The gain matrices of the TMO are determined by
solving the discrete Ricatti equation with the noise covariance matrices; R =
blockdiag(14.4I3 [m2], 1 · 10−4I3 [m2/s2]), and Q = blockdiag

(
0I3 [m2], 0.096I3

[m2/s2], 2.5 · 10−2I3 [m2/s4]
)
. In the injection term for the attitude observer the

magnetometer measurements are exchanged for velocity estimates making; vb2 =
[1; 0; 0] and ve2 = v̂e/‖v̂e‖2.

In the following two tests are presented, both with the experienced delay as
the actual distributed delay as shown in Fig. 4.12 and Fig. 4.13, while; I) the
implemented delay is constant at the average value, and II) the implemented delay
follows the actual delay. In both test scenarios the velocity delay will be considered
the same as the position delay, τp = τv, since the information package used from
the receiver included both position and velocity measurements. Three observers
will be considered, as in the simulation study; a) the proposed observer, b) the
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alternative implementation, and c) the uncompensated observer. The results of the
observers will be summarised in Table 4.4, where they are compared using the RMS
and STD values using the RTK solution as reference.

The flight trajectory is shown in Fig. 4.14 covering an area of over 120 km2

with a flight duration of more than 25 min. Certain points of interest have been
marked during the flight, where; 1 denotes the take off, 2 marks a sharp turn with
small radius and high roll angle, 3 denotes a stall where the plane first climbed in
altitude and then went into stall, and 4 denotes the second stall, where the plane
experience accelerations from approximately 0.5 g to 2.1 g over a short time period,
during the climb following the stall. These points of interest have been marked on
the figures depicting the results for ease of comparison between the trajectory and
the signals of interest.

4.7.1 Test 1: Average delay
The implemented delay is considered constant and fixed at the average of the actual
experience delay, i.e. τp = τv = τp,imp = τv,imp = 0.0505 s. The estimated position
of the three observers are compared with the reference and the error in NED frame
can be seen in Fig. 4.15 (a larger version can be found in Fig. D.1).
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Figure 4.14: Measured (black) and
ground track (gray) trajectory of the
aircraft seen in NED frame.
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Figure 4.15: Position error the proposed
observer structure (red), the alternative
implementation (green) and the uncom-
pensated observer (purple).

During taxiing on the runway, prior to take-off, the position errors of the three
observers have comparable magnitude. However after take-off when the aircraft
moves with higher speeds than during taxiing the difference between the uncom-
pensated observer and the proposed observer is clear, with the proposed observer
structure having smaller error magnitude. There is little difference in the vertical
component (as the vertical velocity is small), whereas there is a significant improve-
ment in the North and East components, compared to using the proposed observer
instead of the uncompensated observer. The difference between the proposed ob-
server and the alternative implementation is almost indistinguishable. During the
sharp turn at 2 , which is predominantly in the North direction, the error of the
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proposed observer is seen to have a smaller magnitude than the uncompensated
observer, as expected due to the high velocity. During the two stall manoeuvres the
proposed observer also has better performance than the uncompensated observer.

4.7.2 Test 2: Actual delay
The actual time-varying receiver delay is considered for the implemented delay.
The position error of the observers are very similar to the once presented in Test 1,
as is the case for the attitude and gyro bias estimates shown in Fig. 4.16 (a larger
version can be found in Fig. D.2) and Fig. 4.17.
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Figure 4.16: Attitude estimates
of the proposed observer structure
(red), the alternative implementation
(green) and the observer without
time-delay compensation (purple).
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Figure 4.17: Gyro biases (solid)
and biases determined at standstill
(dashed) of the proposed observer
(top) and alternative implementation
(bottom).

The estimated attitude is seen to be very similar for the three observers, with
only small differences during the flight. Similarly, the difference in determined gyro
biases of the proposed observer and the alternative implementation very small, with
convergence towards the biases determined at standstill. The roll angle is seen to
be large during the sharp turn, while the pitch is small throughout the flight except
for during take-off and the two stall manoeuvres.

From the summarised results in Table 4.4, it is clear that the proposed observer
and the alternative implementation have similar performance, both being superior
to the uncompensated observer. The RMS of the error signal is decreased with
over 30% in the x and y direction by using the proposed observer structure (or the
alternative implementation) compared to the traditional observer structure. The
difference between considering the receiver delay constant (shown in Test 1) or time-
varying (shown in Test 2) is small. It can be concluded that the proposed observer
works well on highly accelerated vehicles experiencing fast dynamic manoeuvres.

4.7.3 Additional flights
To further verify the proposed observer additional flight data is tested. Here the
actual delay is used and two observers are examined; a) the proposed observer,

90



4.7. Experimental Results

Table 4.4: Summary on RMS and STD of error signals of the uncompensated and
proposed, and alternative observers for the test scenarios. Units: m.

RMS STD
North East Down North East Down

Proposed Observer 1.678 1.459 1.237 0.838 0.699 1.189
Alternative Implementation 1.679 1.460 1.237 0.839 0.700 1.189

Te
st

1

Uncompensated Observer 2.377 2.309 1.250 1.906 1.859 1.201
Proposed Observer 1.671 1.436 1.237 0.832 0.673 1.189
Alternative Implementation 1.674 1.439 1.237 0.836 0.678 1.189

Te
st

2

Uncompensated Observer 2.377 2.309 1.250 1.906 1.859 1.201

and b) the uncompensated observer. The alternative implementation will not be
considered as it has been shown perform similar to the proposed observer.

The additional flights considered are all performed with the same aircraft at the
same airfield on the same day. The difference between the flights are in manoeuvres
and flight time. In the first flight the aircraft covers a wide area with some points of
interest; 1 shows take off, 2 shows a sharp turn followed by 3 denoting a second
sharp turn, 4 marks the time with highest altitude. The trajectory and estimation
errors can be seen in Fig. 4.18 and Fig. 4.19 (a larger version can be found in Fig.
D.3).
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Figure 4.18: Trajectory of flight with
ground track.
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Figure 4.19: Estimation errors with
proposed (green) and uncompensated
(purple).

The second flight is longer, a total of approximately 44 minutes, and has the
highest altitude of all the considered flights. Four points of interest are; 1 denoting
take off, 2 shows a 360 degree turns with small radius, 3 marks the start of the
final ascent which has some turns before reaching point 4 showing the time of
maximum altitude. After 4 a sharp descent towards the landing area is performed.
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The trajectory and estimation errors are shown in Fig. 4.20 and Fig. 4.21 (a larger
version can be found in Fig. D.4).
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Figure 4.20: Trajectory of flight with
ground track.
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Figure 4.21: Estimation errors with
proposed (green) and uncompensated
(purple).

The performance of the proposed and the uncompensated observers are com-
pared in Table 4.5 where the root-mean-square and standard deviation are listed.
The first flight is given in the first two lines of the table, and the second flight is
given by the two last lines of the table.

Table 4.5: Summary on RMS and STD of error signals during the additional flights.
Units: m.

RMS STD
North East Down North East Down

Proposed Observer 0.734 1.424 1.150 0.706 0.557 1.147
Uncompensated Observer 3.595 2.705 1.150 3.589 2.398 1.148
Proposed Observer 1.302 1.333 2.186 1.291 1.142 1.489
Uncompensated Observer 2.195 2.418 2.188 2.185 2.313 1.484

The proposed observer is seen to perform better than the uncompensated ob-
server structure for both flights. Again it can be confirmed that for low veloci-
ties, such as taxiing on the runway, the difference between the observers is small.
However, at higher velocities the proposed observer ensures high performance. The
estimation of vertical position component is very similar between the two observers
as the vertical velocity is small.

For the first flight in Fig. 4.18 and Fig. 4.19 the horizontal estimation is sig-
nificantly better for the proposed observer, where even the sharp turns does not
impact performance. During the second flight in Fig. 4.20 and Fig. 4.21 harder
manoeuvres are performed and the errors of the proposed observer is larger than
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for the first flight. However, the proposed observer still performs better than the
uncompensated observer.

4.8 Chapter Summary

Nonlinear integration of INS and GNSS have been investigated where the GNSS
measurements are delayed due to computational time in the receiver and data
communication between receiver and the navigation computer. Initially the delay
was investigated and a method for determining the magnitude of the delay was
proposed.

An observer structure for compensating the time delay was introduced based on
a uniformly semiglobally exponentially stable nonlinear observer. The proposed ob-
server structure includes delaying the inertial and magnetometer measurements to
coincide with the GNSS measurements, estimating position, linear velocity, attitude
and IMU bias as delayed states, while a faster than real-time simulator supplies
current estimates based on the delayed states and current inertial measurements.

Additionally, an alternative implementation was proposed where the current
attitude is estimated with the delayed position and velocity. This approach offers a
reduction in computational load as the fast simulator does not need to determine
the attitude.

The two observer structures was compared to the uncompensated observer
structure, where the time delay is not taken into account, through simulations and
experimental data from a small manned aircraft. A significant improvement was
evident using the proposed observer structures compared to the uncompensated
observer.
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Chapter 5

Tightly-Coupled GNSS/INS
Integration

A modular nonlinear observer for inertial navigation aided by range and range-
rate measurements is designed and analyzed. The observer includes an attitude
estimator is based on a recent nonlinear complementary filter with magnetometer
and accelerometer vector measurements for correction of the quaternion attitude
estimate driven by gyro measurements. A tightly-coupled integrated translational
motion observer (TMO) is driven by accelerometer measurements, employs the
attitude estimates, and makes corrections using range and range-rate measurements
from a GNSS receiver.

The TMO estimates position, range bias errors, velocity and specific force in an
Earth-fixed Cartesian coordinate frame, where the specific force estimate is used
as a reference vector for the accelerometer measurements in the attitude observer.
The exponential stability of the feedback interconnection of the observer is ana-
lyzed and found to have a semi-global region of attraction with respect to attitude
observer initialization, and local region of attraction with respect to translational
motion observer initialization. The latter is due to linearization of the range and
range-rate measurement equations utilized in the gain selection for the injection
terms. In typical applications the pseudorange equations admit an explicit alge-
braic solution that can be easily computed and used to accurately initialize the
position and velocity estimates. Hence, the limited region of attraction is not seen
as a practical limitation of the approach for many applications. Advantages of the
proposed nonlinear observer are low computational complexity and a solid theo-
retical foundation.

Contributions of this Chapter: The main contribution of this chapter is the
proposal of a tightly-coupled nonlinear observer for inertial navigation aided
by range measurements from a satellite constellation. The nonlinear observer
structure consists of the nonlinear attitude estimator introduced and utilized
in the previous chapters, as well as a translational motion observer utilizing
the range measurements to correct the inertial navigation. Despite the non-
linearity of the range measurements the only linearization is in the output
matrix when determining the observer gains. Furthermore, an initialization
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method for the TMO is proposed. The computational complexity of the pro-
posed observer is compared to a multiplicative extended Kalman filter. The
observer is furthermore verified using experimental data from a UAV.

Organization of this Chapter: This chapter is organized as follows: Models
and preliminaries are described in Section 5.2, where existence, uniqueness
and computation of an algebraic solution to the pseudorange equations are
presented. In Section 5.3 the observers for attitude and translational motion
are presented, and the stability of their interconnections analyzed. Some pos-
sible extensions with dual frequency GNSS measurements are discussed in
Section 5.4. The method is compared, in Section 5.5, to a multiplicative EKF
using experimental pseudorange measurements before conclusions are made
in Section 5.6.

Publications: The material in this chapter is based on the journals Johansen
et al. 2017 [101] and Bryne et al. 2017 [31].

5.1 Introduction

Range measurement is the basis for global satellite navigation systems, hydro-
acoustic positioning systems, terrestrial radio navigation, and other positioning
systems. Such systems commonly detect the time-of-arrival (TOA) of signals en-
coded in electromagnetic or acoustic waves to estimate the range, and are therefore
prone to systematic errors such as clock synchronization errors or uncertain wave
speed. Since the range measurements do not directly correspond to the true geo-
metric range, they are often called pseudorange measurements.

Inertial sensors such as accelerometer and gyros can be used to estimate position
and velocity by integrating the kinematic equation. Since biases and other errors
are accumulated in this process, leading to unbounded errors on the estimates,
inertial navigation systems are usually aided by range or position measurements
that can be used to stabilize these errors using a state estimator. There are two
main design philosophies for these such estimators: Loosely- and tightly-coupled
integration, [52, 69, 76]. In a loosely-integrated scheme, a standalone estimator for
position and velocity in an Earth-fixed Cartesian reference coordinate frame is first
made using only the pseudorange measurements. These position and velocity esti-
mates are in turn used as measurements in a state observer that integrates them
with the inertial measurements. In a tightly-integrated scheme, the pseudorange
measurements are used directly in the state observer together with the inertial
measurements. While the advantage of loosely-coupled integration is a high degree
of modularity, the advantage of tight integration is increased accuracy and fault
tolerance, in particular in situations with highly accelerated vehicles and few range
measurements, weak or noisy signals, unknown wave speed, poor transponder ge-
ometry, or other anomalies, e.g. [52, 69]. More accurate models of measurement
errors can be used in the integration filter and a reduced number of pseudorange
measurements can be used for aiding when a standalone position estimate cannot
be determined, [52, 69, 76].

The state-of-the-art method for real-time fusion of the data from the individual
sensors are nonlinear versions of the Kalman-filter (KF), [52, 69, 79], including the
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extended KF, unscented KF, particle filter, and specially tailored variants such as
the multiplicative KF for attitude estimation using quaternions, [39, 122]. While
the KF is a general method that has found extremely wide applicability, it has some
drawbacks. This includes the relatively high computational cost and a rather im-
plicit and not so easily verifiable convergence properties that may require advanced
supervisory functions and accurate initialization, [147]. Its major advantages are
flexibility in tuning and application, as it is a widely known and used technol-
ogy with intuitive and physically motivated tuning parameters interpreted as noise
covariances, and providing certain optimality guarantees.

The objective of this chapter is to develop a low-complexity nonlinear ob-
server for inertial navigation aided by magnetometer and pseudorange measure-
ments, where the observer has properties founded on stability theory. The nonlin-
ear observer structure is inspired by [72], where a loose integration between GNSS
position and velocity measurements and inertial measurements was derived with
semiglobal asymptotic stability conditions. Its extension to tightly integrated iner-
tial navigation is non-trivial since the measurement equations are nonlinear when
considering pseudorange and range-rate measurements for aiding, instead of being
linear when position and velocity estimates in an Earth-fixed Cartesian coordinate
frame are used for aiding.

A similar research objective is pursued in the series of articles represented by
[9, 11, 15–17, 131]. Using a state transformation and a state augmentation they
derive a linear time-varying (LTV) model which is closely related to the nonlinear
model, and use this for the design of an estimator for attitude, position and velocity
using hydro-acoustic range measurements. In slight contrast, the objective here is
to avoid unnecessary computational complexity.

We base the design philosophy on the assumption that the line-of-sight (LOS)
vectors between the vehicle and the used transponders are relatively slowly time-
varying. This is a good assumption in many practical situations, such as terrestrial
navigation using satellites, and surface ship positioning in deep waters using hydro-
acoustic transponders at the seabed. In this case, time-varying observer gains mul-
tiplying pseudorange and range-rate errors in the injection terms can be designed
to shape the dynamics of the observer using a time-varying linearized relationship
between range and vehicle position. Note that the term transponder is used as a
general concept that also includes navigation satellites in space, as well as hydro-
acoustic navigation. Using the semiglobally exponentially stable nonlinear attitude
observer of [119], see also [71, 72], a slowly time-varying Riccati equation for gain
matrix updates to the translational motion observer is employed in contrast to
using a KF. This allows the integration of the Riccati equation to be performed
on a slower time-scale corresponding to the relative geometric configuration of the
transponders and the receiver, or even solved periodically at low rate as an alge-
braic Riccati equation. This ensures low computational complexity, and a rigorous
analysis of the observer error dynamics stability is made in the chapter.

A short and preliminary version of this paper is presented in [98], and some
recent contributions by the authors are found in [31, 84].
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5.2 Models and preliminaries

The kinematic vehicle model of (2.7)–(2.9) describing position, linear velocity and
attitude is used in the following. The position and velocity are given in ECEF-
frame, while the attitude is represented as a unit quaternion giving the rotation
between Body- and ECEF-frame.

5.2.1 Measurement models
The inertial sensor model is based on the strapdown assumption, i.e. the IMU is
fixed to the Body frame and supplies measurements of f bIMU = f b and ωbib,IMU =
ωbib + bb where bb ∈ R3 denotes the rate gyro bias that is assumed to satisfy
‖bb‖2 ≤Mb for some known bound Mb and is slowly time-varying:

ḃb = 0. (5.1)

It is further assumed that any accelerometer bias and drift is compensated for. The
magnetometer measures the direction of the 3-dimensional Earth magnetic vector
field mb

MAG = mb.
Range measurements are typically generated by measuring the TOA of known

signal waveforms (acoustic or electromagnetic). Due to errors in clock synchroniza-
tion and wave propagation velocity, such measurements often contain systematic
errors (biases) in addition to random errors, e.g. [40], and must therefore be treated
as pseudorange measurements. The range measurement model is:

ρi = ψi + ζᵀi β, ψi = ‖pe − pei‖2, (5.2)

for i = 1, 2, ....,m where ρi is a (pseudo-)range measurement, pei is the known
position of the ith transponder, m is the number of transponders, ψi is the geo-
metric range, β ∈ Rn is a vector of range error model parameters (biases) to be
estimated, and the coefficient vector ζi describes the influence of each element of
β on pseudorange measurement ρi. This framework allows for both individual and
common mode slowly time-varying errors such as receiver clock bias (i.e. ζi = 1
and β := c∆c where ∆c is the clock bias and c is the wave speed) or wave speed
variations to be taken into account:

β̇ = 0. (5.3)

Note that β̇ = 0 is the classical constant parameter assumption in adaptive estima-
tion and does not prevent us from estimating a slowly time-varying β in practice.
Also note that in [31] the model β̈ = 0 is applied instead.

Range-rate measurements are usually found by considering Doppler-shift or
tracking of features or codes in signals. Also here there may be systematic (bias)
errors in some cases, depending on the sensor principle and technology. The range-
rate (speed) measurement model is given by:

νi = 1
ψi

(pe − pei )
ᵀ (ve − vei ) + %ᵀi β, (5.4)
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where νi is the relative range-rate measurement, the coefficient vector %i describes
the effect of each element of β on range speed measurement νi, and the following
relation is defined vei := ṗei . Equation (5.4) follows from time-differentiation of (5.2),
assuming an independent error model. Hence, the term %ᵀi β will be used instead of
ζᵀi β̇ in (5.4) since it provides additional flexibility in modeling.

5.2.2 Algebraic range and pseudorange solutions
Despite the nonlinear form of the pseudorange measurement equation (5.2),the
quadratic structure is used to get a relatively simple algebraic solution, [7, 32, 40,
180]. Assume an arbitrary reference position p̂e is given, and define LOS vectors
p̆ei := p̂e−pei for every i. The following explicit procedure can be used to determine
a position estimate.

Lemma 5.1. Assuming available pseudorange measurements ρ1, ρ2, ρ3, and ρ4
where the three first transponder line-of-sight vectors p̆e1, p̆e2, and p̆e3 are linearly
independent, and:

ρ4 6= (ρ1, ρ2, ρ3)Ă−1p̆e4, (5.5)

where Ă =
(
p̆e1 p̆e2 p̆e3

)
. Assume ζi = 1 for all i = 1, 2, 3, 4 (i.e. a single

common mode error parameter β ∈ R), then pe = p̂e+p̃e is derived from z = (p̃e;β)
where:

z = řǔ+ v̌

2 , ǔ = Â−ᵀě, v̌ = Â−ᵀb̌ (5.6)

ř = −2− ǔᵀMv̌ ±
√

(2 + ǔᵀMv̌)2 − ǔᵀMǔ · v̌ᵀMv̌

ǔᵀMǔ
, (5.7)

where ě = (1; 1; 1; 1), b̌ ∈ R4 has components b̌i = ρ2
i −‖p̆ei‖22, M = diag(1, 1, 1,−1),

and:

Â =
(
p̆e1 p̆e2 p̆e3 p̆e4
y1 y2 y3 y4

)
. (5.8)

Proof. The proof is similar to those found in [7, 32, 40, 180]. �
The computations are analytic and the most complex operations are the inver-

sion of a 4× 4-matrix as well as the square-root computation. Note that there are
in general two solutions. This ambiguity can be solved in several ways. For exam-
ple, by using five or more pseudorange measurements, the problem can be solved
directly from a linear equation, cf. [7, 32, 40, 180]. The ambiguity may also be re-
solved using domain knowledge. One example is terrestrial navigation when there
is a large distance to the navigation satellites such that non-terrestrial solutions for
the vehicle position can be ruled out. Another example is underwater navigation
where all transponders are located on the seabed and the vehicle is at the surface
or at some distance from the seabed such that positions below the seabed can be
ruled out. Additional sensors for e.g. depth or altitude can also be used directly to
select the correct solution.
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Remark 5.1. The velocity can be estimated by solving a linear problem by in-
serting the position and bias parameter estimates in the measurement equation
(5.4).
Remark 5.2. If the condition (5.5) does not hold, the null-space of Â is given by
ρ4β + (ρ1, ρ2, ρ3)p̆e4 = 0. Solutions for pe may be estimated by fixing β, or solved
using another measurement if available.
Remark 5.3. With an error model that requires a vector β ∈ Rn rather than a
scalar β, the solution may require more than 4 measurements and up to n cou-
pled quadratic equations to be solved, possibly leading to additional ambiguity. A
related example is carrier-phase measurements, where additional unknown integer
variables are introduced, [84].

In typical range-measurements systems, the remaining measurement errors are
typically so small that a good position and velocity initialization of an observer
can be found using Lemma 5.1 such that a relatively small region of attraction
with respect to position, velocity and bias parameter initialization error can be
accepted.

Here it is chosen to only consider the effect of slowly time-varying systematic er-
rors (parameterized by β), such as biases, in this presentation and analysis. Rapidly
varying errors such as noise can possibly be handled by appropriate tuning of the
gains and may not influence the structure of the observer. In some cases, better
estimation accuracy can be achieved by further modeling of the errors using e.g.
Markov-like models, which are straightforward to include in the proposed frame-
work by augmenting the translational motion observer with the new states, see [31]
for more details.

5.3 Nonlinear observer

The overall structure of the observer is given in Fig. 5.1. Sections 5.3.1 and 5.3.2
describes the two main modules, i.e. the attitude observer and the translational
motion observer. In addition, the initialization based on the algebraic pseudorange
solver was presented in Section 5.2.2, and the Riccati solution and gain computation
in Section 5.3.3. An implementation overview of the nonlinear observer is included
in Algorithm 1 and Algorithm 3 in Appendix C.

5.3.1 Attitude observer
We use the attitude observer from [71, 119]:

˙̂qeb = 1
2 q̂

e
b

(
ωbib,IMU − b̂

b

+ σ̂

)
− 1

2ω
e
ieq̂

e
b , (5.9)

˙̂
bb = Proj

(
−kI σ̂, ‖b̂b‖2 ≤Mb̂

)
, (5.10)

σ̂ = k1m
b
MAG ×R(q̂eb)ᵀme + k2f

b
IMU ×R(q̂eb)ᵀsatMf

(f̂e), (5.11)

where ωeie and me have been assumed known. Proj(·) is a projection operator that
ensures ‖b̂b‖2 ≤ Mb̂ with Mb̂ > Mb, see [72]. Moreover, satMf

(·) is a saturation
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ρ1, · · · , ρm
ϕ1, · · · , ϕm
pe1, · · · , pem
ve1, · · · , vem

p̂e(0), v̂e(0), β̂(0)

K

fbIMU

ωbib,IMU

mbMAG me b̂b

ωbib

σ̂
q̂be

Figure 5.1: Block diagram of the tightly-coupled nonlinear observer.

operator, with Mf such that ‖fe‖2 ≤ Mf . The QUEST algorithm, [156], may be
used for initialization of the attitude.

The estimation error is defined as q̃ = qeb q̂
e∗
b and b̃b = bb − b̂b, and it is defined

that χ = (s̃; b̃b) where s̃ denotes the scalar part of the quaternion q̃. Semiglobal
stability of the origin χ = 0 of the error dynamics of the attitude observer can be
established under the following assumption:

Assumption 19. The acceleration f b and its rate ḟ b are uniformly bounded, and
there exist a constant cobs > 0 such that ‖f b ×mb‖2 ≥ cobs for all t ≥ 0.

Initial conditions are restricted to the following sets:

Assumption 20. q̂eb(0) ∈ D(ε), where D(ε) = {q̃ | s̃ > ε} represents a set of
attitude errors bounded away from 180◦ by a margin determined by an arbitrary
constant ε ∈ (0, 1

2 ). Moreover, b̂b(0) ∈ B = {b ∈ R3 | ‖b‖2 ≤Mb}.

Lemma 5.2. Assume f̂e = fe. Then for each ε ∈ (0, 1
2 ) there exists a k∗P > 0

such that if k1, k2 > k∗P and kI > 0 then:

‖χ(t)‖2 ≤ κae−λat‖χ(0)‖2, (5.12)
for some κa, λa > 0.

Proof. See [72]. �

5.3.2 Translational motion observer
The following observer for position, linear velocity, attitude and clock range bias
is proposed:

˙̂pe = v̂e +
m∑
i=1

(Kpρ
i eρ,i +Kpν

i eν,i) , (5.13)
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˙̂ve = −2S(ωeie)v̂e + f̂e + ge(p̂e) +
m∑
i=1

(Kvρ
i eρ,i +Kvν

i eν,i) , (5.14)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU +
m∑
i=1

(
Kξρ
i eρ,i +Kξν

i eν,i

)
, (5.15)

f̂e = R(q̂eb)f bIMU + ξ, (5.16)

˙̂
β =

m∑
i=1

(
Kβρ
i eρ,i +Kβν

i eν,i

)
, (5.17)

where the gain matrices K∗i are in general time-varying. While the structure is
similar to [72], the injection terms are different, and [72] does not include estimation
of parameters β. A common feature is that fe is viewed as an unknown input,
which is estimated using an auxiliary state in (5.15)–(5.16) to be used in (5.11).
The injection errors from pseudorange and range-rate measurements are defined as
eρ,i := ρi − ρ̂i and eν,i := νi − ν̂i, with estimated measurements:

ρ̂i = ψ̂i + ζᵀi β̂, ν̂i =
(
p̂e − pei
ψ̂i

)ᵀ

(v̂e − vei ) + %ᵀi β̂, (5.18)

where ψ̂i := ‖p̂e − pei‖2, and the estimation errors are p̃ := pe − p̂e, ṽ := ve − v̂e,
and β̃ := β − β̂. Next, a linearization of the injection terms is considered.

Assumption 21. At all time, ψ ≥ ψi ≥ ψ > 0.

Assumption 22. At all time, ‖ve − vei ‖2 ≤ ν.

Assumption 23. The transponder positions pei and their velocities vei are known.

Remark 5.4. In hydro-acoustic applications the transponders are usually station-
ary with known positions. In GNSS applications the transponders are constantly
moving where the position and velocity can be determined from the ephemeris
navigation data, allowing for accurate transponder position and velocity determi-
nation.
Remark 5.5. The only linearization made is with respect to the pseudorange
and range-rate measurement equations for the gain selection. This is similar to
the operations of an EKF if the covariance estimates are propagated with the state
estimates. However, for the nonlinear observer the covariance estimates are a design
choice and are not required for gain calculation.

Lemma 5.3. The injection errors satisfy:

eρ,i =
(
p̂e − pei
ψ̂i

)ᵀ

p̃+ ζᵀi β̃ + ερ,i, (5.19)

eν,i =
(
v̂e − vei
ψ̂i

)ᵀ

p̃+
(
p̂e − pei
ψ̂i

)ᵀ

ṽ + %ᵀi β̃ + εν,i, (5.20)
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where:

‖ερ,i‖2 ≤
1
ψ
‖p̃‖22, (5.21)

‖εν,i‖2 ≤
1
ψ
‖p̃‖2 · ‖ṽ‖2 + 3ν

2ψ2 ‖p̃‖
2
2. (5.22)

Proof. It follows by Taylor’s theorem that:

eρ,i =
(
p̂e − pei
ψ̂i

)ᵀ

p̃+ ζᵀi β̃ + 1
2 p̃

ᵀȞip̃, (5.23)

where:

Ȟi = 1
ψ̌i
I3 −

(p̌e − pei )(p̌e − pei )ᵀ

ψ̌3
i

, (5.24)

where p̌e is on the line between p̂e and pe, ψ̌i := ‖p̌e − pei‖2. The bound on ερ,i
follows using the triangle and Cauchy-Schwarz inequalities.

Applying Taylor’s theorem also gives:

eν,i = (p̂e − pei )ᵀ

ψ̂i
ṽ + (v̂e − vei )ᵀ

ψ̂i
p̃+ ϕᵀ

i β̃ + 1
2(p̃; ṽ)ᵀ

[
J̆i H̆i

H̆i 0

]
(p̃; ṽ), (5.25)

where H̆i is defined similar to (5.24), and it is straightforward to show that:

J̆i = 1
ψ̆3
i

((p̆e − pei )(v̆e − vei )ᵀ + p̆e − pei )ᵀ(v̆e − vei )I3)

− 3
ψ̆5
i

(p̆e − pei )(p̆e − pei )ᵀ(p̆e − pei )(v̆e − vei )ᵀ,

were ψ̆i = ‖p̆e − pei‖2 for some p̆e on the line between pe and p̂e, and v̆e is on the
line between ve and v̂e. The bound on εν,i follows using the triangle and Cauchy-
Schwarz inequalities. �

We define the state of the error dynamics as x := (p̃; ṽ; f̃ ; β̃), where f̃ := fe− f̂e
replaces ξ as a state by combining (5.15) and (5.16). Summarized, the equations for
the predicted measurement error can now be written in the linearized time-varying
form:

eρ,i = Cρ,ix+ ερ,i, (5.26)
eν,i = Cν,ix+ εν,i, (5.27)

where the 2m rows Cρ,i and Cν,i of the time-varying matrix C := (Cρ,1; . . . ;Cρ,m;
Cν,1; . . . ;Cν,m) are defined by Cρ,i := (d̆ᵀi , 0, 0, ζᵀi ) and Cν,i := (v̆ᵀi , d̆

ᵀ
i , 0, %ᵀi ).

The estimated line-of-sight vectors are d̆i := (p̂e− pei )/ψ̂i = p̆ei/ψ̂i and the normal-
ized estimated relative velocity vectors are v̆i := (v̂e − vei )/ψ̂i, for i = 1, 2, ...,m. It
is noted that:

C =
[
Gᵀ 0 0 Dᵀ

p

Bᵀ Gᵀ 0 Dᵀ
v

]
, (5.28)
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where G = (p̆e1, ..., p̆em) ∈ R3×m, B = (v̆e1, ..., v̆em) ∈ R3×m, and D = (Dp, Dv) with
Dp = (ζ1, ...., ζm) and Dv = (%1, ...., %m).

It is noted that the time-varying matrix C is known at the current time and can
be used for selection of gains. Furthermore it is observed that in typical applications
with large distance between the vehicle and transponders, their relative positions
and line-of-sight vectors will be slowly time-varying, and hence the measurement
matrix C will be slowly time-varying, since due to Lemma 5.1 the transients result-
ing from initialization of position and velocity are not expected to be significant.
Following similar steps as in [72] and Chapter 3.4.4, the error dynamics become:

ẋ = (A−KC)x+ θ1(t, x) + θ2(t, χ) + θ3(t, x), (5.29)

where:

A :=


0 I3 0 0
0 0 I3 0
0 0 0 0
0 0 0 0

 , K :=


Kpρ

1 . . . Kpρ
m Kpν

1 . . . Kpν
m

Kvρ
1 . . . Kvρ

m Kvν
1 . . . Kvν

m

Kξρ
1 . . . Kξρ

m Kξν
1 . . . Kξν

m

Kβρ
1 . . . Kβρ

m Kβν
1 . . . Kβν

m

 .
The perturbation terms are defined as θ1(t, x) := (0; θ12(t, x); 0; 0) with θ12(t, x) =
−2S(ωeie)x2 + (ge(pe)− ge(pe − x1)) and θ2(t, χ) := (0; 0; d̃; 0) with:

d̃ = (I −R(q̃)ᵀ)R(qeb)(S(ωbib,IMU)f bIMU + ḟ bIMU)
− S(ωeie)(I −R(q̃)ᵀ)R(qeb)f bIMU −R(q̃)ᵀR(qeb)S(b̃)f bIMU.

(5.30)

In [72] it is shown that ‖θ2(t, χ)‖2 ≤ γ3‖χ‖2 for some constant γ3 > 0. A fundamen-
tal difference compared to [72] is that the matrix C is time-varying (rather than
constant), and there is a third perturbation term θ3(t, x) := Kε(t, x) that results
from the linearization of the injection terms, where ε := (ερ,1; ...; ερ,m; εν,1; ...; εν,m).
From Lemmas 5.1 and 5.3 it is known that ε is small when ψ is large compared
to ‖p̃‖2, ‖ṽ‖2 and ν. Compared to [72] this means that a different strategy for
selection of gains is needed, and one can not hope for a global stability result. Nev-
ertheless, as in [72], it is desired to employ a constant parameter θ ≥ 1 in order to
assign a certain time-scale structure to the error dynamics (5.29). For this purpose,
the non-singular state-transform matrix is introduced:

Lθ := blockdiag
(
I3,

1
θ
I3,

1
θ2 I3,

1
θ3 In

)
, (5.31)

and the state transform η = Lθx.

Lemma 5.4. Let K0 ∈ R(9+n)×2m be an arbitrary time-varying gain matrix, and
θ ≥ 1 be an arbitrary constant. Define:

K := θL−1
θ K0Eθ, (5.32)

and assume the time-varying Eθ ∈ R2m×2m satisfies EθC = CLθ. Then the error
dynamics (5.29) is equivalent to:

1
θ
η̇ = (A−K0C)η + 1

θ
θ1(t, η) + 1

θ3 θ2(t, χ) +K0Eθε(t, L−1
θ η). (5.33)
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Proof. The transformed dynamics are derived by substituting (5.29) in η̇ =
Lθẋ. It is straightforward to show that the structure of A leads to LθAx = θAη.
Moreover,

LθKCx = θLθL
−1
θ K0EθCx = θK0CLθx = θK0Cη. (5.34)

The rest of the proof follows by change of variables according to η = Lθx. �
The existence of an Eθ satisfying EθC = CLθ depends on the null-space of C,

as shown next.

Assumption 24. i) The number of transponders is m ≥ 3 + dk/2e, where k =
rank(Dᵀ). ii) 3 of the estimated line-of-sight vectors are linearly independent, i.e.
rank(G) = 3. iii) 3 of the estimated normalized relative velocity vectors are linearly
independent, i.e. rank(B) = 3.

Lemma 5.5. Eθ = CLθC
† satisfies EθC = CLθ, where C† is the Moore-Penrose

right pseudo-inverse of C.

Proof. In order to characterize the null-space of C, let Z ∈ Rn×(n−k) have
n − k columns that forms an orthonormal basis for the null-space of Dᵀ and Y ∈
Rn×k have k = rank(Dᵀ) columns that forms an orthonormal basis for the range-
space of Dᵀ. It follows that DᵀZ = 0 and rank(DᵀY ) = k. Consider a vector
x = (x1;x2;x3;x4), where x1, x2, x3 ∈ R3 and x4 ∈ Rn. Let x4 = Zx4Z + Y x4Y
where x4Z ∈ Rn−k and x4Y ∈ Rk. The vector x belongs to the null-space of C if
Cx = 0, which is equivalent to M · (x1;x2;x4Y ) = 0 where:

M =
[
Gᵀ 0 Dᵀ

pY
Bᵀ Gᵀ Dᵀ

vY

]
. (5.35)

From Assumption 24 it follows immediately that M ∈ R2m×(6+k) has rank 6 + k
and 2m ≥ 6 + k. From M · (x1;x2;x4Y ) = 0 it follows that the null-space of C is
characterized by x1 = 0, x2 = 0, x4Y = 0 while x3 and x4Z can be arbitrary.

Now, consider a singular value decomposition C = USV ᵀ, where the Moore-
Penrose pseudo-inverse is given by C† = V S†Uᵀ, cf. [93]. From the characterization
of the null-space of C, thus:

C†C = V S†SV ᵀ = blockdiag(I3, I3, 03, J), (5.36)

for some matrix J ∈ Rn×n, and LθC†C = C†CLθ due to both C†C and Lθ sharing
the same block diagonal structure. The result follows from EθC = CLθC

†C =
CC†CLθ = CLθ since the Moore-Penrose pseudo-inverse satisfies CC†C = C, [93].
�

The assumption is reasonable and closely related to the assumptions underlying
Lemma 5.1, as well as observability that will be considered shortly. If there are no
range-rate measurements, it can be verified that condition i) can be replaced by
m ≥ 3 + k.
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5. Tightly-Coupled GNSS/INS Integration

5.3.3 Stability analysis
As the first step towards the stability analysis, the LTV nominal error dynamics is
considered:

1
θ
η̇ = (A−K0C)η, (5.37)

and analyze its stability and robustness before the effect of the perturbations in
(5.33) is considered.

Let R > 0 be a symmetric matrix that can be interpreted as the covariance of
the pseudorange and range-rate measurement noises. The observability Gramian
for the system (A,R−1/2C) is:

W(t, t+ τ) =
∫ t+τ

t

Φᵀ(T )Cᵀ(T )R−1C(T )Φ(T )dT, (5.38)

where the transition matrix is Φ(T ) = eAT , and it should be recalled (from e.g. [4])
that the LTV system is said to be uniformly completely observable if there exist
constants α1, α2, τ > 0 such that for all t ≥ 0 it is satisfied that α1I ≤ W(t, t+τ) ≤
α2I.

Assumption 25. The LTV system (A,R−1/2C) is uniformly completely observ-
able.

Remark 5.6. Assumption 25 is related to Assumption 24, as well as the conditions
of Lemma 5.1. This is further discussed in Section 5.3.4.

There may be many ways to choose a time-varying gain matrix K0 such that
(5.37) has desired performance and stability. A straightforward approach with con-
siderable flexibility for tuning is to use a Riccati-equation similar to the gain of
a Kalman-Bucy filter for the system (A,C) as described below. In this case, the
close relationship between the complete uniform observability conditions and the
boundedness of the covariance matrix estimate P is well known, e.g. [147], and can
be monitored in real-time without much additional computations.

Assumption 26. C is uniformly bounded.

Remark 5.7. It can be observed that the only terms in C that may not be uni-
formly bounded are of the form (v̂e − vei )/ψ̂i. Thus, unbounded C may only occur
if ṽ goes unbounded. While this can be dealt with in many ways, a simple ap-
proach is resetting of v̂e based on the velocity computed from range and range-rate
measurements (cf. Lemma 5.1) if v̂e grows out of bounds.

Lemma 5.6. Let:

K0 := PCᵀR−1, (5.39)

where P satisfies the Riccati equation:

1
θ
Ṗ = AP + PAᵀ − PCᵀR−1CP +Q, (5.40)
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for some positive definite symmetric matrices Q,R, and P (0). Then P is uniformly
bounded and the origin is a globally exponentially stable equilibrium point of the
LTV nominal error dynamics (5.37) with any constant θ ≥ 1.

Proof. The proof follows from [4, 106], and the main ideas will be repeated since
the Lyapunov function is needed later. Consider a Lyapunov function candidate
U(η, t) = 1

θη
ᵀP−1η, which is positive definite and well-defined due to the time-

varying matrix P satisfying (5.40) being symmetric, positive definite with some
margin, and bounded. It follows by standard arguments that along the trajectories
of (5.37) and (5.40) that U̇ = −ηᵀ(P−1QP−1 + CᵀR−1C)η and the result follows
by the positive definiteness of P−1 and Q. �

The structure of the observer is illustrated in the block diagram in Fig. 5.1. Two
feedback loops are present where one is due to the use of f̂e as a reference vector in
the attitude observer and the other is caused by linearization of the pseudorange
measurement equations to get the C-matrix in (5.39) and (5.40).

Initialization of position and velocity is based on the algebraic solution, cf.
Lemma 5.1. If the vehicle is not strongly accelerated during initialization, then
also the specific force initialization can be made accurately with ξ(0) = 0 that
gives f̂e(0) = R(q̂eb(0))f bIMU(0). Below, the conditions for exponential stability of
the origin of the estimation error dynamics is analyzed.

Assumption 27. Initial conditions are in the following sets:
1. X ⊂ R9+n is a ball containing the origin.
2. P ⊂ R(9+n)×(9+n) is an arbitrary compact set of symmetric positive definite

matrices.
3. D(ε) = {q̃ | s̃ > ε} represents a set of attitude errors bounded away from

180◦ by a (small) margin determined by an arbitrary constant ε ∈ (0, 1
2 ).

4. B = {b ∈ R3 | ‖b‖2 ≤Mb}.

Assumption 28. Observer gains are chosen according to
1. k1, k2 > 0 are sufficiently large, cf. [72].
2. kI > 0 is arbitrary.
3. K is chosen according to (5.32), (5.39) and (5.40) tuned by symmetric P (0),
Q, R > 0.

Proposition 1: There exists a θ∗ ≥ 1 such that for all θ ≥ θ∗, P is uniformly
bounded and: √

‖x(t)‖22 + ‖χ(t)‖22 ≤ κe−λt
√
‖x(0)‖22 + ‖χ(0)‖22, (5.41)

for some κ > 0 and λ > 0.

Proof. Using U(η, t) := 1
θη

ᵀP−1η, it follows from the proof of Lemma 5.6 that:

U̇ = −ηᵀ(P−1QP−1 + CᵀR−1C)η + 2
θ
ηᵀP−1θ1(t, η)

+ 2
θ
ηᵀP−1PCᵀR−1Eθε+ 2

θ3 η
ᵀP−1θ2(t, χ),
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≤ −γ1‖η‖22 + 2
θ
‖η‖2 · ‖CᵀR−1‖ ·

m∑
i=1
‖Eθ‖(ε2

ρ,i + ε2
ν,i)

+ 1
θ
γ2γ4‖η‖22 + 1

θ3 γ3γ4‖η‖2 · ‖χ‖2,

where γ1, γ2, γ3, γ4 > 0 are constants independent of θ. Note that a uniform bound
on P−1 that does not depend on θ is established in Lemma 6 in [98]. Next, using
Lemma 5.3, the derivative becomes:

U̇ ≤ −γ1‖η‖22 + 1
θ
γ5(ψ, ν)‖η‖32 + 1

θ
γ2γ4‖η‖22 + 1

θ3 γ3γ4‖η‖2 · ‖χ‖2, (5.42)

where γ5(ψ, ν) increases with ν and decreases with ψ, and is independent of θ.
Similar to [72], it can be shown that for any δ > 0 and T > 0 there exists a

θ∗1 ≥ 1 such that for θ ≥ θ∗1 there exists an invariant set X1 ⊂ R9+n such that for
‖η(0)‖2 ∈ X1 for all t ≥ T it is satisfied that ‖η‖2 ≤ δ. As argued in [72] this implies
|s̃| ≥ ε such that q̃ never leaves D(ε). Inspired by [72], the function is defined as:

W (t, r̃, s̃, b̃) :=
(
1− s̃2)+ 2`srR(qeb)b̃b + `

kI
(b̃b)ᵀb̃b, (5.43)

where ` > 0 is a constant [71]. Under the condition |s̃| ≥ ε, W is shown in [72] to
satisfy:

Ẇ ≤ −γ7‖χ‖22 + γ6θ
2‖χ‖2 · ‖η‖2, (5.44)

for some constants γ6, γ7 > 0 that are independent of θ. Next the Lyapunov-
function candidate is defined as V (t, η, χ) := U(t, η) + 1

θ5W (t, χ). Then:

V̇ ≤ −zᵀS(θ)z +
γ5(ψ, ν)

θ
‖η‖32, (5.45)

where z := (‖η‖2; ‖χ‖2) ∈ R2 is an auxiliary state, and the 2× 2-matrix:

S(θ) =
[
γ1 − γ2γ4

θ −γ3γ4+γ6
2θ3

−γ3γ4+γ6
2θ3

γ7
θ5

]
, (5.46)

Considering the first-order and second-order principal minors of S, S(θ) > 0 is
satisfied if:

θ > max
(
γ2γ4
γ1

,
γ2γ4γ7 + (γ3γ4 + γ6)2

γ1γ7

)
. (5.47)

Hence, a θ∗ can be chosen satisfying (5.47) such that for all θ ≥ θ∗ there exists an
invariant set X2 and α3, α4 > 0, where for all x ∈ X2 it is satisfied that:

V̇ ≤ −α3‖z‖22 − α4‖χ‖22 ≤ −2λV, (5.48)

for some λ > 0, and the result follows by choosing X as the largest invariant set
such that X ⊂ X1 ∩ X2, and application of the comparison lemma, [107]. �
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Remark 5.8. The translational motion observer is not a KF since the state es-
timate update equation contains certain nonlinear terms and the auxiliary state
ξ. It has the attractive feature that its error dynamics are accurately represented
by a nominal LTV system that is used as a basis for selection of the injection
gain matrices using the formulas for the Riccati-equation and gain matrix of the
Kalman-Bucy filter.
Remark 5.9. In some cases when the parameter vector β influences all measure-
ments in the same way, the variable β (or at least some of its elements) can be
eliminated from the estimation problem by forming new measurements that are
differences between original measurements. This is known as Time-Difference-of-
Arrival (TDOA) measurements, e.g. [40, 180], and can be employed in order to
further reduce the computational complexity of the estimator since an estimate of
β is not needed for most applications.

Since the LTV system (5.33) is slowly time-varying, it is possible to reap the
benefits of solving the Riccati equation on a slower time-scale than the estimator
updates, roughly speaking only when there is a significant change in the transpon-
ders’ LOS vectors due to the relative motion of the vehicle and the transponders,
or enabling or disabling some range measurements. In many practical applications
this can be implemented by solving the algebraic Riccati-equation periodically at
low rate. In the context of terrestrial GNSS this relates to the dynamics of the
satellites relative to the Earth, and in the context of a surface ship on dynamic
positioning using hydro-acoustic positioning this relates to the motion of the ship
relative to the transponders at the seabed. Hence, the proposed solution will in
many typical applications not incur much more computations than a fixed-gain
strategy and typically less than both a direct and indirect extended KF approach
that would require updating of the covariance matrix at a higher update frequency.

The rate of convergence of the estimation error depends on the tuning of the pa-
rameters, as well as the quality of the sensors. Bounds on the convergence rate and
magnitude of the estimation error depends on the bounds stated in the assumptions
above.

5.3.4 Observability analysis
Here the observability Gramian W(t, t + τ) is studied, where it is assumed with-
out loss of generality that R = I. The state transition matrix Φ(T ) = eAT is
straightforward to compute:

Φ(T ) =


I3 TI3 (T 2/2)I3 0
0 I3 TI3 0
0 0 I3 0
0 0 0 In

 . (5.49)

By multiplication with the C-matrix the expression becomes:

C(T )Φ(T ) =
[
Gᵀ TGᵀ T

2G
ᵀ Dᵀ

p

Bᵀ TBᵀ +Gᵀ T 2

2 B
ᵀ + TGᵀ Dᵀ

v

]
. (5.50)
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Let N(T ) := Φ(T )ᵀCᵀ(T )C(T )Φ(T ) ∈ R(9+n)×(9+n) be the integrand of the ob-
servability Gramian.

It is instructive to consider some special cases.

Special case: Only range measurements, no pseudorange error
parameters β.

Consider the case when n = 0 and there are only range measurements (i.e. no
range-rate measurements). Then:

C(T )Φ(T ) = Gᵀ
[
I3 TI3

T 2

2 I3

]
. (5.51)

With N(T ) = Ξ(T )⊗GGᵀ, where:

Ξ(T ) =

 1 T T 2

2
T T 2 T 3

2
T 2

2
T 3

2
T 4

4

 . (5.52)

The integral isW(t+ τ, t) =
∫ t+τ
t

Ξ(T )dT ⊗GGᵀ. It is observed that while Ξ(T ) ∈
R3×3 has rank one, it is straightforward to prove that rank

(∫ t+τ
t

Ξ(T )dT
)

= 3
for all τ > 0. Consequently, with three linearly independent transponder positions
forming G, the rank(GGᵀ) = 3 and rank(W(t + τ, t)) = 9 since rank(A ⊗ B) =
rank(A) · rank(B).

Special case: Only range measurements, with receiver clock bias.

In this case n = 1, and Dp = (1, 1, 1, 1) since the receiver clock bias is the same for
all measurements made by the single receiver. In this case W(t + τ, t) ∈ R10×10.
Compared to the previous case, it is straightforward to see that a fourth transpon-
der is needed such that GGᵀ ∈ R4×4 has full rank in this case.

5.3.5 Clock error model augmentation
The model of the clock bias range error can be extended from β = c∆c to consider
the clock error as being dependent on the clock oscillator frequency error. Moreover,
the clock bias range error can be determined from a state space model with clock
oscillator frequency error, fc, such that β̈ = 0, [52, Section 8.4.3.2], [76, Section
9.4.2.3]: [

β̇

ḟc

]
=
[
0 1
0 0

] [
β
fc

]
+
[
nβ
nf

]
, (5.53)

the driving process noise, nβ and nf , are assumed to be independent and white. The
standard deviation of the noise distributions should be chosen small, e.g. less than
0.02 m/s according to [52, Section 8.4.3.2]. The clock frequency error is modelled
as a slowly time-varying constant.
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5.4. Extension to Dual Frequency GNSS Measurements

By introducing the additional clock error state, (5.17) in the TMO is replaced
by:

˙̂
β = f̂c +

m∑
i=1

(
Kβρ
i eρ,i +Kβυ

i eυ,i

)
, (5.54)

˙̂
fc =

m∑
i=1

(
Kfρ
i eρ,i +Kfυ

i eυ,i

)
. (5.55)

Furthermore, the state space vector and matrices are augmented accordingly, where
the C-matrix is appended with Cf = [01×m; 11×m], such that the augmented C-
matrix becomes; Ca = [C,Cf ].

The augmentation of the clock bias range error estimation have limited im-
provements over the common mode modelling proposed in [98]. Moreover, β can be
considered a GNSS nuisance parameter in the TMO incorporating other common
uncompensated residuals, e.g. higher order effects of atmospheric errors, multipath,
etc. The modelling of (5.53) might simply move the residuals to fc instead of β.
Some improvements might be achieved when using receivers with resetting clock
bias rather than the accumulated clock bias used by the receiver investigated in
Section 5.5. However, the improvements are expected to be on sub-centimetre level.

5.4 Extension to Dual Frequency GNSS Measurements

A dual frequency GNSS receiver supplying measurements on the L1 and L2 band
can be used to aid the inertial navigation instead of a single frequency receiver, by
use of linear combinations of the pseudorange and carrier-phase measurements. An
advantage to using dual frequency measurements is that the linear combination can
be formed to enhance certain signal terms while suppressing others. Considering
the general range measurement in meters, y, introduced as a common term for
the code and phase range measurements, the linear combination of the L1 and L2
ranges can be stated as, see [140]:

ya,b = ayL1 + byL2 . (5.56)

The general linear combinations of the pseudorange and carrier-phase measure-
ments from the ith satellite are:

ρab,i = (a+ b) (ψi + β + Ti + E) + αIi + a (εL1,i +ML1,ρ)
+ b (εL2,i +ML2,ρ) ,

λL12ϕab,i = (a+ b) (ψi + β + Ti + E) + αIi + a (NL1,iλL1 + eL1,i +ML1,ρ)
+ b (NL2,iλL2 + eL2,i +ML2,ρ) ,

where the ionosphere constant is α = afL2/fL1 + bfL1/fL2 , and λL12 is the wave-
length of the combined carrier signal.

The linear combination is composed of common terms, such as geometric dis-
tance and atmospheric disturbances, which are enhanced by (a+ b), and frequency
individual terms, such as multipath and carrier ambiguity. It can be advantageous
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to assign the constants, a and b, based on the frequencies of the transmitted satel-
lite signals. If the constants are chosen such that a+b = 1 the range measurements
can be utilized in the nonlinear observer structure proposed above without altering
the stability results.

Apart from the single frequency case where (a, b) = (1, 0) or (a, b) = (0, 1) con-
sidered in the observer structure above there are several common combinations,
which will be introduced in the following with their advantages and drawbacks.
Some of the combinations can be used together to further strengthen some desired
terms, e.g. such the integer ambiguities are determined using the geometry-free
combination while the position is determined using the ionospheric-free combina-
tion.

5.4.1 Widelane combination
A signal with wide wavelength can be created by choosing the constants as; a =
fL1/(fL1−fL2) ≈ 4.53, and b = −fL2/(fL1−fL2) ≈ −3.53. The longer wavelength
is advantageous when detecting cycle-slips or fixing the phase ambiguities, which
can be written as N = NL1,i−NL2,i with wavelength; λ = c/(fL1 − fL2) ≈ 0.86m,
[140]. A drawback of the widelane combination is the increase in noise due to the
magnitude of a and b. In [140] it was shown that regardless of the constants chosen
the stochastic errors will increase as the standard deviation of the combination is:

σa,b =
√
a2σ2

L1
+ b2σ2

L2
, (5.57)

where σL1 and σL2 are the standard deviations for the L1 and L2 range measure-
ments of interest. It should be noted that the effect of the noise terms can be
averaged out over time.

5.4.2 Narrowlane combination
As opposed to the widelane combination the narrowlane constants are chosen to
obtain a shorter wavelength. The constants are a = fL1/(fL1 + fL2) ≈ 0.56, and
b = fL2/(fL1 + fL2) ≈ 0.44, resulting in a wavelength of λ = c/(fL2 + fL1) ≈
0.11m which also decreases the amplitude of the stochastic terms. The narrowlane
combination has better stochastic error performance than the L1 measurements,
see [140], however resolving the phase ambiguities will be more difficult due to
the shorter wavelength. This combination might therefore be preferred with code
measurements.

5.4.3 Ionosphere-free combination
The ionospheric effect on the range measurements introduce the largest error
source, as seen in Section 2.5.4, it is therefore desired to eliminate this distur-
bance. The first order ionospheric refraction bias of the range measurements can
be cancelled by manipulating the range observable, [92], [52]. The constants are
chosen as: a = f2

L1
/(f2

L1
−f2

L2
) ≈ 2.55, b = −f2

L2
/(f2

L1
−f2

L2
) ≈ −1.55, determining

α = 0.
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The ambiguity difference is rewritten to; NI,i = (fL1NL1,i − fL2NL2,i) which
is no longer integer and therefore cannot be resolved as accurately as the previous
combinations or the single-frequency measurement. The trade-off for cancelling the
ionospheric effect is the non-integer ambiguity. With more detailed models of the
atmosphere or satellite based augmentation systems such as WAAS and EGNOS
are increasing in performance the need for this combination might be reduced,
[139]. However, these models and augmentations are approximations and will not
be able to eliminate the ionospheric effect perfectly due to low resolution and
limited coverage.

5.4.4 Geometry-free combination
Common for the linear combinations above is that a + b = 1, ensuring that the
common terms, e.g. the geometric distance, are sustained. The geometry-free com-
bination assigns the constants to remove the geometric terms, thereby considering
only the integer ambiguity and the stochastic and systematic error sources. With
the constants chosen as; a = 1, and b = −1, the range measurements becomes:

ρG,i = fGIi + εL1,i − εL2,i, (5.58)
λGϕG,i = NL1,iλL1 −NL2,iλL2 − fGIi + eL1,i − eL2,i, (5.59)

where the combined wavelength is λG and the combined frequency is fG = (f2
L2
−

f2
L1

)/(fL1fL2) ≈ −0.504. This linear combination cannot be used as aiding for in-
ertial navigation as no range information is attained in the combined measurement.
However, it might be advantageous to include the geometry-free measurements as
additional aiding when estimating the integer ambiguities in a system with low
measurement noise, or when analyzing the error sources.

5.4.5 Multipath combination
The multipath disturbance experienced by a standalone receiver can be analyzed
with the multipath combination, created from dual-frequency phase measurements
and a single-frequency code measurement, see [43]. The first order ionospheric effect
and common geometric terms can be cancelled by the combination:

yM = ρL1 −
fL2 + fL1

fL2 − fL1

ϕL2 + 2fL1

fL2 − fL1

ϕL1

= ML1,ρ −
fL2 + fL1

fL2 − fL1

(ML2,ϕ +NL2λL2) + 2fL1

fL2 − fL1

(ML1,ϕ +NL1λL1),

where the noise terms have been neglected and the frequencies used can be changed
to accommodate other signal bands. In [43] the new GPS L5Q and Galileo E5aQ
signals are considered, and several linear combinations are considered in the analy-
sis of short and zero baselines. An assumption made in [43] is to neglect the phase
multipath and thereby considering the multipath combination to consist of a vary-
ing term due to the code multipath and a constant term due to the ambiguities
of the phase measurements, with some additional noise. By observing the linear
combination over long time intervals and removing the mean value, to compensate
for the phase ambiguities, the code multipath can be estimated.
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5.5 Experimental Results

Experimental data is acquired using a Penguin B fixed-wing UAV equipped with
a tactical grade IMU and GNSS receiver. The inertial and magnetometer mea-
surement are available from an ADIS 16488 IMU at 410Hz, whereas pseudorange
measurements are supplied by a u-Blox LEA-6T receiver at 5Hz. The measurements
are collected by the payload shown in Appendix B. In the following the time-of-
validity time stamps for the inertial and GNSS measurements will be used. The
pseudorange measurements are corrected for time of transmission between satellite
and receiver, as well as the tropospheric delay.

Additionally, a similar GNSS-receiver at a known and close location serves as a
base station for a Real-Time-Kinematic (RTK) solution for the UAV position. The
RTK position is determined using the open source program RTKLIB, and will be
used as reference since the RTK position is known to have decimeter-level accuracy,
[76], since a fix or float solution is achieved at every time during the experiments.
The flight trajectory is illustrated in Fig. 5.2.

The nonlinear observer parameters are chosen as: k1 = 0.25, k2 = 0.75, kI =
0.004, R = 0.12Im [m2], Q = blockdiag

(
0I3 [m2], 10−10I3 [m2/s2], 2.5 · 10−4I3

[m2/s4], 1 [m2]
)
.

A Multiplicative-Extended-Kalman-Filter (MEKF) is implemented for compar-
ison. The MEKF integrates acceleration and angular velocity measured by the
IMU with global ranges, see [39, 122]. The attitude is represented as a unit quater-
nion, see Chapter 3.3.1, where the attitude increment ũ is included in the state
vector resulting in 16 states, i.e. xMEKF = [p̂e; v̂e; f̂e; ũ; b̂b; β̂]. Note that the
MEKF estimates f̂e is to be used as an ECEF reference vector for the acceler-
ation measurement in the attitude measurement model. The parameters for the
MEKF are: RMEKF = blockdiag(0.12Im [m2], 0.001I3 [T 2], 0.01I3 [m2/s4]) where
the six last elements correspond to the use of the magnetometer and accelerometer
as aiding sensors for attitude, QMEKF = blockdiag(0I3 [m2], 10−10I3 [m2/s2], 2.5 ·
10−4I3 [m2/s4], 10−5I3 [rad2], 10−9I3 [rad2/s2], 1 [m2]).

It is interesting to note that the tuning of the TMO’s of the nonlinear observers
and the MEKF are compatible. The diagonal elements of the covariance matrices
Q and R can be chosen based on the variances of the various measurements, and
the same values can be used in the NLO and MEKF. This means that the nonlinear
observer approach can take advantage of the extensive experiences with Kalman-
filtering.

5.5.1 Estimation accuracy
Experimental results are depicted in Fig. 5.3, where the position estimation error is
shown for the first 350 seconds of the flight. The position estimation performance
of the proposed nonlinear observer is seen to be comparable to the MEKF, as
shown in Table 5.1. Two versions of the nonlinear observer are compared, where
the difference is related to the computation of the time-varying gain of the TMO:
A discrete-time version where the TMO’s Riccati-equation is updated at the 5 Hz
GNSS frequency (denoted NLO) and a version where instead the algebraic Riccati-
equation is solved periodically at 0.003 Hz (denoted NLO-ARE). It is easily seen
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Figure 5.2: Trajectory of the UAV.

that their estimates are very similar since the red and black curves are almost
indistinguishable in Fig. 5.3. Attitude estimates are shown in Fig. 5.5. Table 5.1
confirms that the performance of the two nonlinear observers is similar to the
MEKF performance.

Improved estimates could possibly have been achieved by all methods with more
realistic modeling of GNSS pseudorange measurement errors using Markov-models,
see [31].

Table 5.1: Comparison of estimation accuracy, averaged over whole flight trajectory.
Units: m.

RMSE (N,E,D) STD (N,E,D)
NLO 2.316 3.867 2.074 0.753 0.462 1.951
NLO-ARE 2.196 3.849 1.553 0.683 0.385 1.529
MEKF 2.308 3.908 2.184 0.789 0.477 1.973

In Fig. 5.4 the position estimation error using the algebraic range and pseudo-
range solution proposed in Section 5.2.2 is shown. Comparing it to the estimation
errors of the proposed nonlinear observer the algebraic solution is seen to have a
larger spread. The position estimation is quite close to the nonlinear observer with
a significantly computational lighter solution. However, it is important to note that
the algebraic only have solutions at the GNSS receiver rate and not at the higher
IMU rate, as the nonlinear observer. The algebraic solution cannot be used for
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Figure 5.3: Position estimation errors of nonlinear observer (red), nonlinear ob-
server with ARE (black) and MEKF (blue). The RTK solution is used as reference.

navigation on its own, but is confirmed to give a good initial position estimate
within a couple of meters of the true position.

5.5.2 Computational load
The computational load of the proposed nonlinear observer is compared to the
MEKF by counting the average number of arithmetic operations (additions and
multiplications) per second. The number of operations are summarized in Table
5.2 for the three state estimators of interest, where implementation categories have
been introduced based on implementation frequency. The computational load of
the MEKF is in accordance with the results in [76, Table 3.1], where a KF is
investigated, with some differences due to the change in structure. These results
show that the NLO and NLO-ARE computational loads are in average 23.6% and
21.6% of the MEKF, respectively.

The reduction in computational complexity for attitude estimation is primarily
related to the use of fixed gains and the exclusion of covariance estimation in the
NLO and NLO-ARE. This can for some applications present a trade-off as the
covariance estimates can be of importance.

For the TMO, the main difference in computational complexity is related to the
use of slowly time-varying gains in the nonlinear attitude observer. In addition, the
TMO’s multi-rate implementation of the gain computations and Riccati-equation
solutions allows some computations to be saved. The MEKF gain estimation runs
at GNSS frequency, i.e. 5Hz. On the other hand, the two versions of the nonlinear
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Figure 5.4: Position estimation errors of algebraic range and pseudorange solution.
The RTK solution is used as reference.

observer updates the gains either by solving the Riccati equation at 5Hz (NLO)
or an algebraic Riccati equation at 0.003Hz (NLO-ARE). The differences in esti-
mation accuracy documented in Section 5.5.1 indicates that no significant loss of
estimation accuracy results from updating the Riccati equation at 0.003Hz versus
5Hz.

The TMO correction and TMO gain computation depend on the number of
satellites in the constellation. In Table 5.2 a constellation consisting of five satellites
is considered. The dependence on the number of satellites is shown in Fig. 5.6,
where the computational load of the nonlinear observers compared to the MEKF
are depicted as functions of the satellites in the constellation. The dashed vertical
line indicates the situation depicted by Table 5.2.

The comparative computational load of the nonlinear observers in comparison
to the MEKF is shown for 4 to 12 satellites. It is uncommon to have more than 12
satellites in the available constellation, due to signal path obstruction. The compu-
tational load of the nonlinear observer with TMO gains updated at GNSS receiver
frequency is seen to approach the load of the MEKF with increasing numbers
of satellites, whereas the NLO-ARE solution decreases slightly compared to the
MEKF with more satellites. In the considered range of constellation size the non-
linear observers are always less than 32% of the computational load of the MEKF
and is therefore considered significantly more efficient.
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Figure 5.5: Estimated attitude of nonlinear observer (red), nonlinar observer with
ARE (black) and MEKF (blue).

5.5.3 Performance of loosely- and tightly-coupled observers

The performance of the proposed tightly-coupled observer is compared to the
loosely-coupled observer introduced in Section 3.4, using the experimental data
described above. The RTK position is used as reference for comparison of the per-
formance of the loosely- and tightly-coupled observer structures. To guarantee a
fair comparison, the standalone GNSS position solution used in the loosely-coupled
integration is based on the tightly-coupled observer using solely the pseudoranges
as observables. Hence, no IMU is used to generate the aiding position solution for
the loosely-coupled observer. The standalone solution will be denoted NLO-SA.
The position estimate from the GNSS receiver is not used as unknown tuning or
satellite prioritizing could take place.

The observers use the same constant attitude estimator gains: kI = 0.004,
k1 = 0.25, and k2 = 0.75. While the tuning parameters for the gain selection are
gathered in the Q and R matrices. For the loosely-coupled observer the matrices
are:Ql = blockdiag(03, 10−10·I3, 2.5·10−3I3), Rl = 2.5·I3, while the tightly-coupled
integration only utilizes the code measurements, leaving the tuning matrices: Qt =
blockdiag(Ql, 1) and Rt = Im. For ease of notation the loosely-coupled observer will
be denoted NLO-LO, while the tightly-coupled observer will be denoted NLO-TI.

The performance of the observers are compared in Fig. 5.7 and Fig. 5.8 showing
the position error and estimated attitude, respectively. The NLO-LO estimates are
shown in blue, while the NLO-TI estimates are shown in red with the standalone
GNSS solution (used as input to the NLO-LO) is shown in yellow. A larger version
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Figure 5.6: Computational load of the nonlinear observers compared to the MEKF.

of Fig. 5.7 is available in the Appendix as Fig. D.5. The position estimation is eval-
uated in Table 5.3 summarising the RMS and standard deviations of the position
errors relative to the RTK solution. The results presented in Fig. 5.7 and Table
5.3 indicate that the tightly-coupled integration using inertial measurements yields
more accurate position estimates compared to the loosely-coupled integration or
standalone GNSS.

The difference between the standalone GNSS solution and loosely-coupled inte-
gration is less evident form Fig. 5.7 and Table 5.1. This is expected as the estimation
error is only considered when the RTK solution is available, which is at lower rate
than the inertial measurements. The benefit of loosely-coupled integration relative
to a standalone solution is however evident from Fig. 5.10, where the relative po-
sition error for a small interval of the flight during a turn is shown. The position
error shown here is relative to the RTK solution but at IMU rate, where it becomes
evident that the loosely-coupled solution is more smooth estimate, as inertial data
is available between GNSS samples, compared to the standalone solution. The
loosely-couple solution is therefore better suited, than the standalone solution, to
be used in an autopilot that operate at high sampling rate. Moreover, one large
benefit of loosely-coupled GNSS/INS, relative to a standalone GNSS solution, is
that the attitude estimates also are obtained with high accuracy.

The gyro bias estimation is shown in Fig. 5.9 with the NLO-LO estimates in
dashed lines and the NLO-TI estimates in solid lines. The attitude and gyro bias
estimation of the observers are seen to be mostly similar, which was expected as
the attitude estimators used were identical and only the feedback of the specific
force were observer specific.
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Figure 5.7: Position estimation error
for NLO-LO (blue), NLO-TI (red),
and NLO-SA (yellow).
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Table 5.3: Navigation performance comparison, units: m.

RMSE (xn, yn, zn) STD (xn, yn, zn)

NLO-TI 3.412 3.341 1.106 1.067 0.561 1.005
NLO-SA 4.541 3.732 2.184 2.951 1.756 2.065
NLO-LO 4.442 3.818 2.264 2.836 1.868 2.177

Since the pseudoranges are directly integrated with the inertial measurements
in the NLO-TI, instead of calculating the GNSS position before using this as aid
in loosely-coupled integration, more of the colored noise, embedded in the GNSS
pseudoranges, is captured by the receiver’s clock bias estimate. This is possible
since the acceleration measurements are available between GNSS samples. Hence,
every new position and clock error calculation, made by the observer, is based on
the current predicted position between GNSS samples using inertial data rather
than using a 0.2 to 1 second old estimate obtained at the previous GNSS update.
If differential GNSS is utilized, more accurate position estimates can be obtained
for tightly-coupled observers.
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5. Tightly-Coupled GNSS/INS Integration

5.6 Chapter Summary

Position estimation based on pseudorange and range-rate measurements is an inher-
ently nonlinear problem. In order to design an estimator for fusing the pseudorange
and range-rate measurements with inertial and compass measurements, a nonlin-
ear observer have been designed where the only linearization is made with respect
to the pseudorange and range-rate measurement equations. The resulting observer
is semiglobally exponentially stable with respect to attitude and gyro bias initial-
ization errors, and locally exponentially stable with respect to position, velocity
and acceleration initialization errors. The practical validity of the linearization is
strongly motivated by the fact that a computationally simple analytic formula can
be used to explicitly solve the pseudorange equations in order to accurately initial-
ize (or reset, if necessary) the nonlinear observer position and velocity estimates.
Experimental results show that the accuracy can be comparable to an MEKF.

A key feature of the method is a time-scale separation that allows different
observer blocks to be updated at different rates:

1. Instantaneous resetting of position and velocity estimates using an alge-
braic solution to the pseudorange equations during initialization or change
of transponder configuration. This approach justifies that only a local region
of attraction may be required for the position and velocity estimates due to
the good initialization accuracy.

2. Attitude estimation using a Riccati-free fixed-gain nonlinear observer, includ-
ing gyro bias, on a fast time-scale driven by the sampling rate of the IMU
and magnetometer.

3. Estimation of position, velocity, acceleration and error parameters for the
pseudorange measurement system, using a nonlinear translational model ob-
server with time-varying gains operating on a slower time-scale driven by the
sampling rate of the range and range-rate sensors.

4. Computation of slowly time-varying gain matrices for the translational mo-
tion observer using a Riccati equation. These computations are made on the
slowest time-scale driven by the change in relative position between the vehi-
cle and the transponders, and for many applications it may be implemented
by solving an algebraic Riccati equation periodically at low rate.

The time-scale separation can be directly exploited for computational efficiency in
a multi-rate discrete-time implementation.
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Chapter 6

INS/RTK-GNSS Integration

The atmospheric disturbances on the satellite pseudorange and carrier-phase mea-
surements can have a large impact on the position accuracy. Utilizing a differential
processing with two GNSS receiver these disturbances can largely be removed by
differencing the measurements between a moving receiver and a base station. If the
base station transmits the obtained satellite measurements to the rover for pro-
cessing a real-time-kinematic (RTK) solution can be formed, where high accuracy
can be achieved by resolving the phase ambiguities.

This chapter offers a modular observer structure for estimating the position, ve-
locity and attitude of a moving vehicle, often called rover, while further estimating
the position of a stationary base station. The observer structure is based on results
by [119] and [94]. If the satellite measurements are double-differenced between the
rover and base station the phase ambiguities can be resolved.
Contributions of this Chapter: This chapter presents a modular nonlinear ob-

server for tight integration of inertial measurements aided by double-differen-
ced satellite measurements. A real-time-kinematic approach is utilized where
a rover and base station measures pseudo-ranges, carrier-phase, and Doppler,
to be used in a dual receiver configuration. The modular observer design
consists of a nonlinear attitude observer and a translational motion observer.
The attitude observer represents the vehicle attitude as unit quaternions
and estimates the gyro bias. A translational motion observer based on the
double-differenced measurements between the rover and base station receiver
is proposed. The ambiguities introduced by the carrier-phase measurements
are included in the state vector and are initially considered real valued, to
be later resolved to integer value. The proposed observer is verified using ex-
perimental data from flights with an unmanned aerial vehicle equipped with
low-cost sensors, where the position estimates are shown to be within 2-4
centimetres of a GPS L1 based real-time-kinematic reference solution.

Organization of this Chapter: This chapter is organized as follows. The prob-
lem is formally stated in Section 6.1 introducing the aiding measurements.
In Section 6.2 the noise levels of the double-differenced satellite signals are
investigated for use in later tuning. The observer structure is introduced in
Section 6.3 with the translational motion observer presented in Section 6.4
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which also presents gain selection and ambiguity resolution. An option for
augmentation of the measurement suite is discussed in Section 6.5. Experi-
mental results are presented in Section 6.6 using flight data with a fixed-wing
UAV. The chapter is summarised in Section 6.7.

Publications: The material in this chapter is based on the conference papers
Hansen et al. 2016 [84] and Gryte et al. 2017 [77], and the journal paper
Hansen et al. 2017 [87].

6.1 Problem Formulation

A dual receiver configuration consisting of a moving rover and a stationary base
station, each equipped with a GNSS receiver, is considered. The base station mea-
sures pseudorange, carrier phase and carrier phase derived Doppler and transmits
these to the rover for processing, followed by position and velocity estimation. The
rover will in addition be equipped with inertial sensors providing specific force and
angular rate measurements.

The objective is to estimate position, linear velocity and attitude (PVA) of
a moving vehicle by tightly-coupled integration of the mentioned measurements.
Estimation of the rover PVA as well as the baseline, i.e. the vector (displacement)
between rover and base station, are of interest.

The kinematic strapdown equations of the rover are given as (2.7)–(2.9) where
the notation is altered to distinguish between rover and base station:

ṗer = ver , (6.1)
v̇er = −2S(ωeie)ver + fe + ge(per), (6.2)

q̇eb = 1
2q

e
b ⊗ ω̄bib −

1
2 ω̄

e
ie ⊗ qeb , (6.3)

where the position, linear velocity and attitude of the rover are described by per,
ver and qeb , respectively. The Earth rotation rate in ECEF with respect to ECI
decomposed in the ECEF frame is denoted ωeie, and is a known constant. The
rotation rate ωbib describes the Body rotation rate with respect to the ECI frame.
The specific force is given by fe while ge(per) specify the position dependent plumb-
bob gravity vector.

Assumption 29. The base station is assumed to be stationary; ṗes = 0.

6.1.1 Measurement Assumptions
The following measurements are assumed available:

Assumption 30. Specific force measurements f bIMU = f b are available for the
rover.

Assumption 31. Biased rotation rate from an IMU, ωbib,IMU = ωbib+bb is measured
at the rover.

Assumption 32. The gyro bias, bb ∈ R3 is assumed to be slowly time-varying,
ḃb = 0, satisfying ‖bb‖2 ≤Mb for a known bound Mb.
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Figure 6.1: GNSS measurements for non-, single- and double-differenced configu-
rations.

Assumption 33. Amagnetometer measures the magnetic field vector at the rover,
mb

MAG = mb, while the position dependent Earth magnetic field me in ECEF is
assumed known.

Assumption 34. The rover and base station are assumed to be equipped with
GNSS-receivers measuring; pseudo-range, carrier-phase and Doppler, from at least
five common satellites, m ≥ 4.

Assumption 35. The satellite positions and velocities are assumed known, which
can be satisfied by determination using the broadcast ephemeris data.

The pseudorange and carrier phase measurements at a location pe transmitted
by the ith satellite, see Fig. 6.1a, can be generalized as:

ρi = ψi + β + γi + ερ + nρ,i, (6.4)
λϕi = ψi + λNi + β + γi + εϕ + nϕ,i, (6.5)

where the pseudo-range and carrier-phase measurements from the ith satellite are
denoted ρi and ϕi, for i = 1, 2, . . . ,m. The geometric range between receiver and
satellite is denoted ψi := ‖pe− pei‖2, where pei is the satellite position. The carrier-
phase integer ambiguity is denoted Ni with signal wavelength λ. The parameters
ερ and εϕ denote the combined orbital, ionospheric and tropospheric delays of
the satellite measurements. Furthermore, εϕ includes antenna induced errors. The
n? parameters cover individual stochastic errors such as measurement noise and
multipath effect. The noise terms have been explicitly included for the aiding mea-
surements to ensure that the measurement noise is not considered cancelled in the
differences introduced later. The measurement noise of the aiding measurement
will change magnitude when differenced which should be taken into account in
the tuning of the observer. The noise terms for the inertial measurements will not
be explicitly included as they will not undergo operations that will change their
characteristics. All noise sources will be systematically considered in the tuning of
the observer. The satellite clock error γi can be corrected by applying the clock
correction coefficients from the navigation data message. The receiver clock bias,
describing the timing difference between receiver and system time, affects all coin-
ciding range measurements similarly, [52, Section 8.4.3]. In the following the clock
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6. INS/RTK-GNSS Integration

range bias is treated as a common mode bias, β ∈ R, and is assumed to be slowly
time-varying.

The bias is expressed as β = c∆r,i with ∆r,i being the receiver clock bias and
c being the speed of light. Similarly, the satellite clock error can be expressed as
γi = c∆s,i with ∆s,i being the bias of the ith satellite clock.

Due to large measurement noise, the raw Doppler measurements are usually not
included as aiding information. The measurements can either be filtered, which has
the drawback of reducing the sample frequency, removing high frequency motion
and introduce phase lag, or a substitute can be determined as the time derivative
of the carrier-phase measurements. In [155] the carrier phase derived Doppler is
obtained by use of a finite impulse response filter, resulting in accurate velocity
measurements for a standalone GPS receiver. In the following the time derivative
of the carrier-phase will be considered, [128]:

λϕ̇i = ψ̇i + β̇ + γ̇i + ṅϕ,i, (6.6)

where the ambiguity and multipath terms have been eliminated due to the short
time horizon of the derivative. Furthermore, by assuming constant atmospheric
delays over the time interval between consecutive phase measurements these can
also be eliminated, where any residual delays will be absorbed by the noise term,
[128].

A generalized model for the time derivative of the phase measurement can be
expressed as:

λυi = hᵀi (ve − vei ) + β̇ + γ̇i + nυ,i, (6.7)

where the satellite velocity is denoted vei , and the line-of-sight vector is; hi =
(pe−pei )/ψi. The constructed carrier phase derived Doppler measurement is denoted
υi, while nυ,i describes the stochastic errors.
Remark 6.1. The carrier-phase measurements, ϕ, are given in units of cycles, and
can be converted to meters by multiplication with the wavelength. The carrier-
phase-derived Doppler measurements, υ, are given in Hertz and can be converted
to a velocity described in meters per second by multiplication with the wavelength.

There will be distinguished between satellite measurements and their compo-
nents at rover and base station by use of the superscripts r and s, respectively.
These superscripts are not to be confused with the coordinate frame as the satel-
lite measurements will always be given in the ECEF-frame.

Assumption 36. It is assumed that the rover is sufficiently close to the base station
that the ionospheric and tropospheric delays are spatially correlated between the
two receivers and will therefore cancel, i.e. εrρ = εsρ, εrϕ = εsϕ, εrυ = εsυ.

Remark 6.2. While it is possible to obtain centimetre accuracy of the position
estimates with baseline of 20 km for resolved ambiguities, see [52, Section 10.2],
maintaining high accuracy requires shorter baselines. Short baselines, less than
10 km, are preferred to reduce cycle-slips, while for longer baselines the accuracy
degrades due to decorrelation of the atmospheric propagation errors. This can
be mitigated by use of dual-frequency GNSS measurements and modelling of the
troposphere.
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6.2. Noise Analysis

The atmospheric disturbances can therefore be corrected for by differencing
measurements at rover position with measurements at the base station. The GNSS
measurement configuration is depicted in Fig. 6.1b showing two satellites, i and
j, and two receivers, r and b, where the baseline is shown as a dashed line. It is
vital when differencing measurements that the they are acquired at the same time
epoch.

The single-differenced (SD) measurements between rover and base station are
given as:

∆ρi = ∆ψi + ∆β + n∆ρ,i, (6.8)
λ∆ϕi = ∆ψi + ∆Niλ+ ∆β + n∆ϕ,i, (6.9)
λ∆υi = hr

ᵀ

i (ver − vei ) + hs
ᵀ

i v
e
i + n∆υ,i, (6.10)

where ∆ρi := ρri − ρsi , ∆ϕi := ϕri − ϕsi , ∆υi := υri − υsi , ∆Ni := Nr
i − Ns

i ,
∆β := βr − βs, and ∆ψi := ψri − ψsi is the geometric baseline between rover
and base station. The differenced noise terms are given as; n∆ρ,i := nrρ,i − nsρ,i,
n∆ϕ,i := nrϕ,i − nsϕ,i, and n∆υ,i := nrυ,i − nsυ,i. The normalised line-of-sight vectors
hri and hsi , between the ith satellite and rover and base station are given as:

hri = per − pei
‖per − pei‖2

, hsi = pes − pei
‖pes − pei‖2

. (6.11)

From (6.8) and (6.9) it is evident that ∆β is the same for all satellites so it can
be cancelled by further differencing the measurements this time between satellites.
This is typically achieved by selecting the satellite with highest elevation as refer-
ence. The double-differenced (DD) measurement principle is depicted in Fig. 6.1c
while the measurement model is given as:

∇∆ρij = ∇∆ψij + n∇∆ρ,ij , (6.12)
λ∇∆ϕij = ∇∆ψij +∇∆Nijλ+ n∇∆ϕ,ij , (6.13)
λ∇∆υij = hr

ᵀ

j

(
ver − vej

)
− hr

ᵀ

i (ver − vei ) + hs
ᵀ

j v
e
j − hs

ᵀ

i v
e
i + n∇∆υ,ij (6.14)

where ∇∆ρij := ∆ρj−∆ρi, ∇∆ϕij := ∆ϕj−∆ϕi, ∇∆υij := ∆υj−∆υi, ∇∆ψij :=
∆ψj − ∆ψi, and ∇∆Nij := ∆Nj − ∆Ni with the jth satellite representing the
reference satellite. The measurement noise is; n∇∆ρ,ij := n∆ρ,j −n∆ρ,i, n∇∆ϕ,ij :=
n∆ϕ,j − n∆ϕ,i and n∇∆υ,ij := n∆υ,j − n∆υ,i.

Due to measurement differencing between satellites, the number of available
observations will be m− 1, with m is the number of tracked satellites. The double-
differenced measurements will be used in injection terms of the proposed observer
structure. The single-differenced measurements are not utilized in the observer
structure due to the presence of the receiver clock bias.

When differencing GNSS measurements a rule of thumb is that the stochastic
error will increase in standard deviation by

√
2, while the systematic errors will

decrease, see [138].

6.2 Noise Analysis

A common assumption of the Extended Kalman filter is that the measurement
and process noise are Gaussian. The nonlinear observer structure proposed here
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6. INS/RTK-GNSS Integration

does not make any specific assumptions on the distribution of GNSS measurement
noise in; (6.4)–(6.7), (6.8)–(6.10) and (6.12)–(6.14), or the inertial measurement
noise introduced with the specific force, angular rate and magnetometer measure-
ments. However, when tuning the observer gains it is advantageous to have the
knowledge of the noise levels and types. It is therefore desired to investigate the
noise distribution and determine the standard deviation of the undifferenced (UD)
and double-differenced GNSS measurement noise. The noise type is the same for
all types and brands of receivers, whereas the standard deviations are receiver and
antenna specific. For the inertial measurement noise industrial data sheets offer
accurate noise characteristics and the state space can be augmented to include
non-Gaussian inertial measurement noise. The following section will therefore only
consider the GNSS measurement noise.

Experimental data was collected at 1 Hz, by two identical u-Blox LEA-6T re-
ceivers with a baseline of 1 m. The experiment was carried out at latitude 63.4◦
and longitude 10.5◦, Norway, on a rooftop. Some multipath effect is experienced
which affect the undifferenced measurements, while it can be mostly mitigated for
the double-differenced measurements due to the short baseline. The positions of
the receivers were determined by averaging over an 24 hour long data set. Some
satellites were occasionally obstructed and the noise levels of the GNSS measure-
ments are therefore found during a time interval with multiple common satellites
visible by both receivers. The satellites are commonly visible for 3−6 hours during
good open sky conditions.

In the case of the undifferenced measurements the raw pseudorange, carrier-
phase and carrier phase derived Doppler measurements are corrected for: time of
transmission (the satellite moves during the signal transmission time), atmospheric
disturbances, and receiver clock bias (estimated using a Kalman filter). Further-
more, the geometric range from satellite to receiver ψri and ψsi are computed. The
tropospheric delay can be modelled using e.g. [64], whereas the ionospheric de-
lay might be modelled using the Klobuchar model. For the UD noise terms some
residual errors will be present due to the imperfection of the applied models. Fur-
thermore, uncertainty of the estimated receiver clock and multipath effects remain.

For the double-differenced measurements the noise terms are found by isolation
of n? in (6.12)–(6.14). Given the short baseline (1 meter), the ionospheric and
tropospheric delays are considered to be completely removed, whereas the residual
atmospheric effects are negligible such that the noise term only consists of receiver
noise and multipath.

The noise estimates of the DD measurements are shown in Fig. 6.2a–6.2c, with 6
available satellites; resulting in 5 DD measurements. The noise estimates have been
de-trended to remove first order dependencies and initial offset, which is common
practice e.g. when determining scintillation effects, see [134] or [133]. The colors
indicate measurements from different satellites. The average standard deviations
of the estimated measurement noise are presented in Table 6.1, with the noise of
the UD measurements for comparison. The standard deviations corresponds well
with the results found in [76, Section 9.4.2.4] for an update rate of 1 Hz. Moreover,
according to [76, Section 9.4.2.4] the standard deviations might be increased with
higher receiver sampling rates.

To obtain a large time window for noise analysis some of the satellites have low
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6.2. Noise Analysis

elevation at the edges of the time window, this results in an increase in standard
deviation, as seen in e.g. the yellow and red graphs in Fig 6.2c around 9000−10000
seconds. Nevertheless these satellites have been included, to estimate an average
standard deviation of the noise terms under various conditions. Similar effects can
be seen in [20] where a filter for separation of the multipath components is proposed,
while also locating reflecting objects. Short and long baselines are considered in [42]
and [43], where undifferenced, single- and double-differenced GNSS signals from
several constellations are analysed.
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Figure 6.2: Noise analysis of double-differenced GNSS measurements, over a 3 hours
period, with a baseline of 1 m.

Table 6.1: Standard deviations of GNSS measurements.

UD DD
Pseudorange, ρ, [m] 1.560 1.597
Carrier-phase, ϕ, [m] 0.207 0.020
Derived Doppler, υ, [m/s] 0.682 0.055

The double-differenced pseudorange and carrier phase derived Doppler mea-
surements appear almost white, whereas the carrier phase measurements include
non-white behaviour. There are two common practices for handling this in ob-
server structures: a) augment the observer to model states for the non-white noise
processes, or b) assume a white distribution with larger standard deviation than
the actual distribution to over-bound the measurement noise. The over-bounding
method was proposed in [46], and used e.g. in [41] where multipath, receiver noise
and atmospheric delays were investigated for pseudoranges in a single-differenced
configuration. In general the code and phase noise can be represented by over-
bounding white noise, even though a Gauss Markov process is a more suitable
model it too should use slightly inflated noise characteristics. Additionally, the dis-
tributions cannot be expected to be stationary as several factors can cause changes
on the fly such as: multipath (especially at the rover), elevation angle, rover dy-
namics and C/N0 levels. In conclusion; it might be advantageous to use higher
values for the standard deviations when used for observer tuning to accommodate
for imperfect Gaussian white noise behaviour.
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6. INS/RTK-GNSS Integration

6.3 Observer Structure

In the following sections a nonlinear observer is proposed based on double-differen-
ced GPS L1 measurements. A modular observer structure consisting of a nonlinear
attitude estimator and a translational motion observer (TMO) is considered. The
framework is the same as presented in [101] and [84] although a different TMO
is used: here the dual receiver configuration is used leading to differenced mea-
surements, whereas in [101] a single receiver was used to obtain a tightly-coupled
navigation solution.

The observer structure can be seen in Fig. 6.3 consisting of; two GNSS receivers,
IMU, magnetometer (MAG), nonlinear attitude observer, a TMO, and a Riccati
solver with a gain estimator. Two feedback loops are present in the structure; the
feedback of f̂e from the TMO to the attitude observer, and a feedback of the
estimated rover position and velocity to the computation of gain matrices.

Rover
GNSS

Receiver

Base
GNSS

Receiver

MAG

IMU
Attitude
Observer

Riccati
Solver & Gain
Computation

Translational
Motion
Observer

ρri , ϕri , υri
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ρsi , ϕ
s
i , υ

s
i

K

fbIMU

ωbib,IMU

mbMAG

σ̂, q̂be

ω̄bib, b̂
b

p̂er, v̂er
β̂

f̂e

Figure 6.3: Block diagram of observer structure.

The GNSS measurements (ρri , ϕri , υri , ρsi , ϕsi , and υsi ) are measured by the
receivers in the ECEF frame, while the satellite positions and velocities (pei and
vei ) are computed from the ephemeris data, see Appendix A. These computations
are included in the "Base GNSS Receiver" block for convenience.
Remark 6.3. The carrier phase derived Doppler measurement is based on the
carrier-phase change, and expresses the change in geometric distance and clock
drift over a time interval, see [52, Section C.4.2]. The carrier phase derived Doppler
measurement therefore needs to be compensated for satellite motions during the
time interval when compared to vei . Several options are available for estimating the
average satellite velocity of the interval. Here vei will express the satellite velocity
averaged over the beginning and end of the relevant GNSS receiver sample interval.

The "Riccati Solver & Gain Estimator" block considers the choice of gain matrix
K for the TMO. In order to compute the injection terms the estimated position
and velocity of the rover and base station is fed back from the TMO.

When considering the stability of the observer structure it is advantageous to exam-
ine the individual parts of the modular structure. The nonlinear attitude observer
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6.4. Double-Differenced Nonlinear Observer

was proven to be semi-globally exponentially stable (SGES) with respect to atti-
tude initialization in [72]. Following the results of [101], the equilibrium point of the
double-differenced observer proposed in Section 6.4, is exponentially stable. The
complete observer structure will be exponentially stable with a semi-global region
of attraction with respect to attitude initialization due to the feedback intercon-
nection and the SGES properties of the attitude estimator. The observer position
and velocity estimates can be accurately initialized with the procedure proposed
in [101].

The nonlinear attitude observer is identical to the one introduced in Section 5.3.1,
while the TMO will be introduced utilizing the double-differenced receiver config-
uration in Section 6.4.

6.4 Double-Differenced Nonlinear Observer

Denoting the ith satellite as the reference satellite, the double-differenced measure-
ment errors can be used as injection terms in the proposed translational motion
observer:

˙̂per = v̂er +
m−1∑
j=1

(
Kpρ
j eρ,ij +Kpϕ

j eϕ,ij +Kpυ
j eυ,ij

)
, (6.15)

˙̂ver = −2S(ωeie)v̂er + f̂e + ge(p̂er)

+
m−1∑
j=1

(
Kvρ
j eρ,ij +Kvϕ

j eϕ,ij +Kvυ
j eυ,ij

)
,

(6.16)

ξ̇ = −R(q̂eb)S(σ̂)f bIMU +
m−1∑
j=1

(
Kξρ
j eρ,ij +Kξϕ

j eϕ,ij +Kξυ
j eυ,ij

)
, (6.17)

f̂e = R(q̂eb)f bIMU + ξ, (6.18)

˙̂pes =
m−1∑
j=1

(
Ksρ
j eρ,ij +Ksϕ

j eϕ,ij +Ksυ
j eυ,ij

)
, (6.19)

∇∆ ˙̂
N =

m−1∑
j=1

(
KNp
j eρ,ij +KNϕ

j eφ,ij +KNυ
j eυ,ij

)
. (6.20)

The gains to be determined, K??
i , are considered slowly time-varying. The advan-

tage of using double-differenced measurements is that the receiver clock bias is
cancelled and can therefore be excluded from estimation, while in single receiver
configurations it is included in the state vector, see e.g. [98]. The double-differenced
phase ambiguities, ∇∆N̂ , are represented as a vector with m − 1 elements de-
scribed as the difference between the single-differenced ambiguities of the ith and
jth satellite, i.e. ∇∆N̂ =

[
∆N̂1 −∆N̂i; ∆N̂2 −∆N̂i; . . . ; ∆N̂j −∆N̂i

]
. The ambi-

guity estimates are propagated by the translational motion observer as real valued
estimates and can after some convergence be fixed to integer value, which will be
discussed in detail in Section 6.4.2.
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6. INS/RTK-GNSS Integration

It is desired to include the base station position in the observer estimation, such
that the observer does not rely on access to a pre-surveyed position, but can be
initialized with a more inaccurate estimate of the base station position.

The structure of the TMO is similar to [84] with additional injection terms
based on the carrier phase derived Doppler measurements. The injection terms are
the difference between measured and estimated double-differenced satellite signals:
eρ,ij := ∇∆ρij − ∇∆ρ̂ij , eϕ,ij := λ(∇∆ϕij − ∇∆ϕ̂ij) and eυ,ij := λ(∇∆υij −
∇∆υ̂ij), where the estimated terms are:

∇∆ρ̂ij = ∇∆ψ̂ij , (6.21)
λ∇∆ϕ̂ij = ∇∆ψ̂ij −∇∆N̂ijλ, (6.22)
λ∇∆υ̂ij = ĥr

ᵀ

j

(
v̂er − vej

)
− ĥr

ᵀ

i (v̂er − vei ) + ĥs
ᵀ

j v
e
j − ĥs

ᵀ

i v
e
i , (6.23)

and the estimated double-differenced geometric baseline is:

∇∆ψ̂ij = ‖p̂er − pej‖2 − ‖p̂er − pei‖2 − ‖p̂es − pej‖2 + ‖p̂es − pei‖2, (6.24)

and the estimated line-of-sight vectors are:

ĥri = p̂er − pei
‖p̂er − pei‖2

, ĥsi = p̂es − pei
‖p̂es − pei‖2

. (6.25)

Investigating the observer stability, the error states are introduced as p̃r := per− p̂er,
ṽr := ver − v̂er , f̃ := fe − f̂e, p̃s := pes − p̂es, and ∇∆Ñ := ∇∆N − ∇∆N̂ , and the
state vector of the error dynamics is defined as; x = [p̃r; ṽr; f̃ ; p̃s;∇∆Ñ ]. Here a
combination of (6.17) and (6.18) is used to substitute the state ξ with f̂e, as done
in [98].

In order to determine the gains, K??
i , the injection terms are linearised with

respect to the observer states, see Section 6.7:

eρ,ij = Cρ,ij x̃+ ηρ,ij , (6.26)
eϕ,ij = Cϕ,ij x̃+ ηϕ,ij , (6.27)
eυ,ij = Cυ,ij x̃+ ηυ,ij , (6.28)

where η?,ij consists of measurement noise and higher order nonlinear terms, which
can be disregarded in the gain selection under the assumption that the TMO is
accurately initialized. The row vectors consists of elements according to: Cρ,ij =
[ĥrᵀij , 0, 0,−ĥs

ᵀ

ij , 0], Cϕ,ij = [ĥrᵀij , 0, 0,−ĥs
ᵀ

ij , λ1i,m−1] and Cυ,ij = [ĥrᵀv,ij , ĥr
ᵀ

ij , 0, ĥs
ᵀ

ij ,
0], where 1i,m−1 is a row of m−1 zeros with a 1 as the ith element. The differenced
line-of-sight vectors are described by:

ĥrij =
p̂er − pej
‖p̂er − pej‖2

− p̂er − pei
‖p̂er − pei‖2

, (6.29)

ĥsij =
p̂es − pej
‖p̂es − pej‖2

− p̂es − pei
‖p̂es − pei‖2

, (6.30)

ĥrv,ij =
v̂er − vej
‖p̂er − pej‖2

− v̂er − vei
‖p̂er − pei‖2

. (6.31)
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A time-varying measurement matrix consisting of 3(m−1) rows can be defined as;
C :=

[
Cρ,i1; . . . ;Cρ,i(m−1);Cϕ,i1; . . . ;Cϕ,i(m−1);Cυ,i1; . . . ;Cυ,i(m−1)

]
. The C ma-

trix is slowly time-varying as the relative motion of the satellites with respect to
the receivers is small due to the large separation.

The error dynamics can be determined as:

˙̃x = (A−KC) x̃+ θ1(t, x̃) + θ2(t, χ) + θ3(t, x̃), (6.32)

Here χ̃ is the combined error variable χ̃ := [r̃; b̃] consisting of the vector part of
the quaternion, r̃ = r − r̂, and the gyro bias error. The perturbation terms are
described as, [72]: θ1(t, x) := [0;−2S(ωeie)x2 + (ge(per) − ge(per − x1)); 0; 0; 0; 0],
θ2(t, χ̃) := [0; 0; d̃; 0; 0; 0], where:

d̃ = (I −R(q̃)ᵀ)R(qeb)(S(ωbib,IMU)f bIMU + ḟ b)
− S(ωeie)(I −R(q̃)ᵀ)R(qeb)f bIMU −R(q̃)ᵀR(qeb)S(b̃)f bIMU.

(6.33)

In [72] it is shown that ‖θ2(t, χ̃)‖2 ≤ γ3‖χ̃‖2, for some positive γ3. As in [84] the last
perturbation term is a result of the injection term linearisation; θ3(t, x) := Kη(t, x),
where η(t, x) := [ηρ,1; . . . ; ηρ,m; ηϕ,1; . . . ; ηϕ,m; ηυ,1; . . . ; ηυ,m].

The gain matrices should be chosen such that the nominal linear time-varying
closed loop dynamics (A−KC) is stable, see Section 6.4.1, where:

A =


0 I3 0 0 0
0 0 I3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (6.34)

K =


Kpρ

1 . . . Kpρ
m−1 Kpϕ

1 . . . Kpϕ
m−1 Kpυ

1 . . . Kpυ
m−1

Kvρ
1 . . . Kvρ

m−1 Kvϕ
1 . . . Kvϕ

m−1 Kvυ
1 . . . Kvυ

m−1
Kξρ

1 . . . Kξρ
m−1 Kξϕ

1 . . . Kξϕ
m−1 Kξυ

1 . . . Kξυ
m−1

Ksρ
1 . . . Ksρ

m−1 Ksϕ
1 . . . Ksϕ

m−1 Ksυ
1 . . . Ksυ

m−1
KNρ

1 . . . KNρ
m−1 KNϕ

1 . . . KNϕ
m−1 KNυ

1 . . . KNυ
m−1

 . (6.35)

The observer system (6.15)–(6.20) has a semi-globally exponentially stable region
of attraction with respect to attitude initialization errors and local exponential
stablility with respect to TMO initialization errors, following the results of [98].

Selection of the reference satellite has great impact on the performance of the
observer, as errors in the measurements from the reference satellite are propagated
to all double-differenced measurements. The reference satellite is therefore often
chosen as the satellite with the highest elevation since propagation and multipath
errors will generally be the smallest, [126, Section 7.3.4]. Another advantage of
choosing the satellite with the highest elevation is that this satellite is less likely to
be obstructed, thereby keeping phase-lock with the receiver. If the chosen reference
satellite is obstructed, a new reference has to be selected in order to construct the
double-differenced measurements.
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6.4.1 Gain Selection
The TMO gains can, like in [72], be chosen to be constant, thereby reducing the
computational load of the observer. However, better performance can be achieved
by considering the gains as time-varying, see e.g. [31]. Several options for gain se-
lection are available where in the following the Riccati equation will be considered.
In general, the method for determining the gain matrices will not affect the ob-
server stability as long as K satisfies the conditions imposed by the TMO stability
requirements. The method described here is similar to a Kalman filter where the
gain is chosen based on the solution of the discrete time-varying Riccati equation:

Pk|k−1 = ΦPk−1|k−1Φᵀ +Q, (6.36)

Kk = Pk|k−1C
ᵀ
(
CPk|k−1C

ᵀ +R
)−1

, (6.37)
Pk|k = (I −KkC)Pk|k−1 (I −KkC)ᵀ +KkRKk

ᵀ, (6.38)

where k is the discrete incrementing index and Φ = eAT is the discrete transition
matrix, with the sample rate and system order denoted as T and n, respectively.
The dynamics of the TMO is the same as for Kalman filters, and the P , R, and Q
matrices can therefore be interpreted as covariance matrices. The error covariance
matrix, P , has elements corresponding to the state vector, and will therefore vary
in size when the number of available satellites changes due to the inclusion of
the carrier phase ambiguities. The covariance of the ambiguities, PN , is found as
the lower right m − 1 ×m − 1 sub-matrix of P . The gain selection can be tuned
by choosing the measurement, R, and state, Q, covariance matrices, where it is
common to consider them as consisting of the elements pertaining to the covariance
of the states or measurements, σ2

?, [76, Section 14.4.2]:

Q = diag
(
σ2
pr
, σ2
vr
, σ2
f , σ

2
ps
, Q∇∆N

)
, (6.39)

R = blockdiag (R∇∆ρ, R∇∆ϕ, R∇∆υ) . (6.40)

The diagonal elements of the Q matrix correspond to the state vector elements
describing the expected level of noise in the state. Similarly for the R matrix, the
diagonal elements correspond to variances of the aiding double-differenced satellite
measurements. In [76, Section 9.4.2.4] a time-varying R-matrix is proposed where
the coefficients are determined based on the satellite elevation and range acceler-
ation. Here the matrices (6.39)–(6.40) are kept constant. Due to the differencing
with a reference satellite, R∇∆? has correlation elements such that the covariance
matrix is not diagonal. The sub-matrices of R are in general given as:

R∇∆? =


σ2
∇∆?

1
2σ

2
∇∆? · · ·

1
2σ

2
∇∆?

1
2σ

2
∇∆? σ2

∇∆? · · ·
1
2σ

2
∇∆?

...
... . . . ...

1
2σ

2
∇∆?

1
2σ

2
∇∆? · · · σ2

∇∆?

 , (6.41)

where ? is a placeholder for pseudorange, carrier-phase or carrier phase derived
Doppler measurements. The Q∇∆N is constructed in a similar way where the di-
agonal is σ2

∇∆N with the remaining elements being 1/2σ2
∇∆N .

134



6.4. Double-Differenced Nonlinear Observer

It is possible to reduce the computational load without jeopardizing the per-
formance significantly by determining the TMO gains on a slower time-scale, as
shown in [101]. The observer can be implemented using the corrector-predictor
architecture of [55, Section 11.3.4], where the observer estimates are propagated
at IMU frequency and corrected at the lower GNSS receiver frequency whenever
satellite measurements are available. The gain selection can then be implemented
on a third and slower time scale where the gains are updated for every 100-2.000
GNSS correction. This slower time-scale can be chosen since the C matrix is slowly
time-varying.

6.4.2 Integer Ambiguities
The ambiguities in the double-differenced observer are initially considered real
valued, however, the precision can be further improved by if they are correctly
resolved to integers. Several methods for fixing the carrier-phase ambiguity have
been proposed. Here the "fix and hold" method from [76] will be used to fix the
combined variable ∇∆N̂ :=

[
∇∆N̂1;∇∆N̂2; . . . ;∇∆N̂m−1

]
to integer values.

The initial estimate of the ambiguity vector can be determined as the difference
between carrier-phase and pseudo-range measurements, i.e. subtraction of (6.12)
from (6.13):

∇∆N̂ = 1
λ

(∇∆ϕ−∇∆ρ) , (6.42)

where the combined variables for pseudorange and carrier-phase measurements are
given by ∇∆ϕ := [∇∆ϕ1;∇∆ϕ2; . . . ;∇∆ϕm−1] and ∇∆ρ := [∇∆ρ1;∇∆ρ2; . . . ;
∇∆ρm−1]. The initialization offered by (6.42) can be used when new satellites are
introduced to the constellation. Initialization should also be carried out if a satellite
is re-introduced after a period of obstruction or loss-of-lock, as the ambiguity will
have changed.

The initial ambiguity estimates depend strongly on a good initial position of
the rover and base station. As these might be difficult to obtain prior to flight the
ambiguities should be iterated by the TMO before trying to fix to integer value, to
decrease the risk of fixing to the wrong integers. After initialization the ambiguities
will therefore be propagated by the TMO as real-valued estimates. The estimate
can be tested for convergence to integer values by minimizing, [76]:

Ω = min
∇∆Ň∈Zm−1

(
∇∆Ň −∇∆N̂

)ᵀ
P−1
N

(
∇∆Ň −∇∆N̂

)
, (6.43)

where PN ∈ Rm−1×m−1 is the covariance matrix of the ambiguities, and ∇∆Ň is
an integer candidate vector. The candidate vector belongs to the search space of:

S := {∇∆Ň ∈ Zm−1|∇∆N̂ − crσN ≤ ∇∆Ň ≤ ∇∆N̂ + crσN}, (6.44)

where σN is the variance of the ambiguity estimates determined by the diagonal
elements of PN ; σN =

√
diag(PN ). The constant cr denotes the confidence interval,

which in the following will be considered as; cr = 3.29 for 99.9% confidence interval,
assuming normal distribution.
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All possible candidate vectors in the search space is tested to see which mini-
mizes (6.43). The relation between the smallest and second smallest value of (6.43),
respectively called Ω1 and Ω2, is used to determined whether significant conver-
gence to a candidate vector is achieved. Here significant is used in a covariance
sense, as the search space depends on the covariance matrix of the ambiguities.
The convergence test consists of verifying that the best solution, Ω1, is sufficiently
far from the next best solution:

Ω2Ω−1
1 ≥ tN , (6.45)

where tN is a threshold value. If the ratio is larger than the threshold the test is
accepted and the ambiguities are fixed to the candidate set corresponding to Ω1.
This test can be carried out at every observer iteration until the ambiguities are
fixed. However, the search space, S, will initially be too large to computationally
feasibly search through all candidate sets, which encourages the use of methods
such as the LAMBDA method to decrease the search space. The Least-squares
AMbiguity Decorrelation Adjustment (LAMBDA) method was proposed by [169],
[170], [171] and uses a change in variables to transform the confidence interval of
the ambiguities to cover a smaller area, see Section 2.5.6.

There are two alternatives for handling the fixed ambiguities: a) Once the ambi-
guities are fixed to integer values they are removed from the state vector, decreasing
the A, C, K, Q and P matrices in size, or b) The fixed ambiguities are introduced
as an additional measurement augmenting the R matrix and the injection terms.
The result will be very similar for the two methods. Method a) might be preferred
to b) for the decrease in computational power.

According to [143] the residual measurement error should be less than 25%
of a wavelength for the integer ambiguity resolution to have high probability of
resolving to the correct integer. This implies that with high noise levels on the phase
measurements, or uncertainty in the estimated geometric distance the resolution
of the ambiguities might lead to the wrong integers resulting in a position error. In
the event of loss-of-lock of satellite signals the code measurements can be smoothed
by use of the raw Doppler measurements to reduce the convergence time.

6.5 Additional Aiding

A drawback of the RTK positioning is the sensitivity to agile manoeuvres and
obstructed GNSS signal path, which can lead to loss-of-lock of the satellite signals.
If the RTK positioning looses sight of a satellite in the constellation, the integer
ambiguity have to be determined again when the satellite is reintroduced. In order
to improve the resistance to precision deterioration when satellites are obstructed
the sensor configuration can be augmented with use of further aiding sensors, e.g.
cameras, air speed sensors, or ultra wideband transceivers. Ultra wideband (UWB)
technology has typically been used for indoor navigation due to its short range.
A setup consisting of a UWB receiver measuring the distance to one (or several)
UWB nodes acting as pseudo-satellites. The UWB cannot, in practice, substitute
the GNSS measurements in outdoor environment due to the short range, however
it can aid the inertial navigation in GNSS denied or challenged areas, e.g. the UWB
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nodes can be placed strategically around the landing area to aid during the final
part of a UAV flight. A conceptual setup is shown in Fig. 6.4, where the rover
and base station are denoted r and s, while satellites are marked S? and UWB
nodes are denoted N?. The UWB range measurements are given by µ, where the
horizontal coverage of the UWB notes are shown as gray circles.
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Figure 6.4: Conceptual setup of rover, base station, GNSS-satellites and UWB
nodes

UWB technology have been used in other outdoor applications such as in [142]
where inter-vehicle positioning was achieved using DGPS in combination with
UWB, or in [136] where position and heading of smoke divers equipped with
IMU and UWB was estimated. Other previous work include [75] where double-
differenced GPS measurements are coupled with a single UWB range measure-
ment in a tight manner, using an unscented Kalman filter and a two-frequency
GPS receiver. Their goal is to accurately determine the relative position between
two UAVs in formation flight, with increased robustness to GPS loss-of-fix.

The nonlinear observer structure presented in the sections above can be aug-
mented to include UWB aiding measurements, as shown in [77]. The main alter-
ations include additional injection terms and expansion of the TMO state vector
by inclusion of timing parameters for the UWB propagation. In [77] the UWB aug-
mentation was shown through simulations to enhance performance during GNSS
denied periods of flight. The UWB aiding will not be considered further in this
chapter.

6.6 Experimental Results

Experimental data from a flight with a fixed-wing Penguin B UAV, see Fig. 6.5, is
used to verify the proposed double-differenced observer structure. The flight was
carried out at Eggemoen airport in Norway (60◦12′52′′N, 10◦19′07′′E). The UAV
was equipped with an ADIS 16488 IMU (with internal magnetometer) collecting
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acceleration, rotation rate and magnetic field data at 410 Hz, while a u-Blox LEA-
6T receiver gathered navigation satellite measurements at 5 Hz coinciding with
measurements obtained at a stationary base station at the airport. The base station
receiver is of the same brand and type as the rover receiver. The base station
additionally logged the ephemeris data required for satellite position and velocity
computation. Throughout the flight the baseline is kept under 1 km, such that the
assumption of the atmospheric delays experienced by the two receivers are spatially
correlated holds.

Figure 6.5: Penguin B used for experimental verification.

The sensors (IMU, GNSS receiver and antenna) used are considered low-cost
and while even cheaper models are available these are thought to represent the
general level of sensors used for UAV flights. The resolution of the sensors and the
stability characteristics of the inertial sensors are seen as a limitation on the per-
formance. Better performance can be expected by including better inertial sensors,
especially increasing the performance of the navigation solution when GNSS sig-
nals are obstructed. Higher grade GNSS receivers might decrease the experienced
measurement noise, supply higher C/N0 ratios and offer higher sample rates. If the
measurements are not accurately synchronized errors in the GNSS/INS integration
will arise, as investigated in [86] and Chapter 4. Here synchronization is achieved
with custom printed circuit boards and a PIC32 micro-controller, see Appendix B.

In the following two versions of the presented observer structure will be inves-
tigated where the difference is in the included aiding measurements; Case A uses
pseudorange and carrier-phase measurements, while Case B additionally uses the
carrier phase derived Doppler measurements. For both cases the inertial measure-
ments are utilized. The structure of Case A was introduced and simulated by the
authors in [84].

To ascertain the performance of the proposed observer structure an RTK ref-
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erence solution is computed using the open source RTKLIB. No cycle slips were
present allowing the reference to maintain resolved ambiguities throughout the
flight thereby ensuring centimetre level accuracy. The initial 2.3% of the flight has
unresolved ambiguities resulting in a reference with decimetre level accuracy, while
the remainder of the flight has centimetre level accuracy. The RTK solution is de-
termined from the same GNSS data as is available to the observer implementations.
However, the sampling rate of the reference solution will be at GNSS receiver sam-
pling rate while the observer estimates will be at IMU sampling rate. The observer
solution will therefore be down-sampled when compared.

The tuning parameters for the Q matrix are chosen as: Q = blockdiag
(
03 [m2],

I3 [m2/s2], 0.00025I3 [m2/s4], 03 [m2], Q∇∆N
)
, where σ∇∆N = 0.01 [λ2], while the

parameters for R are chosen based on the standard deviations of Table 6.1; σ∇∆ρ =
1.1 [m2], σ∇∆ϕ = 0.03 [m2], and σ∇∆υ = 0.06 [m2/s2] increased to accommodate
for bounding Gaussian white noise and higher sample rate as discussed in [76, Sec-
tion 9.4.2.4]. The pseudorange standard deviation has been decreased compared to
Table 6.1 to ensure faster convergence. Units have been given in square parenthesis
such as not to confuse with variables or constants. The remaining parameters are:
Mb = 0.0087 [rad2/s2], k1 = 0.8, k2 = 0.2, kI = 0.004 and λ = 0.1903 m corre-
sponding to the GPS L1 wavelength. The ambiguity threshold is chosen as tN = 3,
as suggested by RTKLIB.

The position of the base station is initialized as an average of the receiver posi-
tion measurements determined over 25 minutes of logged data. This is considered
to be sufficiently accurate for this application. However, more accurate initial po-
sition estimates will increase the transient performance, encouraging to average
over longer periods when possible. Precise Point Positioning (PPP) can ensure a
decimetre accurate estimate of the base station, however the drawbacks are long
initialization time and access to preceise ephemeris and atmospheric data. The ini-
tialization process presented in [98] can be used to initialize the position of the
rover and base station, to ensure that the initial positions are close to the true
position.

In Fig. 6.6 the sky plot of the constellation throughout the experiment is shown.
The satellite trajectories are marked with individual colors and the last position has
been marked with the satellite ID indicating the direction. The reference satellite
is chosen as SV1 (shown in red) due to the high initial elevation to minimize atmo-
spheric delays. A minimum elevation requirement of 15◦ is enforced for dismissal
of satellites with high propagation errors.

The rover GNSS receiver antenna is placed on top of the UAV between the
wings. Due to the high dynamics of the flight, with sharp turns the rover looses
track of satellites with low elevation. Only five satellites are considered in the fol-
lowing test to ensure that the integer ambiguities do not require frequent resetting.
The satellites to be included are chosen as SV1, SV4, SV11, SV17, SV20, and
SV32, which all have high elevation angles. The dilution of precision (DOP) will
be large due to the clustering of the used satellites, and higher performance might
be expected when using a broader satellite constellation, especially in the vertical
component. Here the constellation can be considered akin to a worst-case scenario
with regards to the dilution of precision.
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Figure 6.6: Sky plot showing elevation and azimuth of satellites. The satellite IDs
are included for ease of reference.

The trajectory of the UAV includes several fast dynamic manoeuvres such as
figures-of-eights and circles with radius of approximately 210 m. Some points of
interest have been marked during the flight; 1 denotes take-off, 2 notes when the
UAV has reached the desired altitude beginning a figure-of-eight flight sequence, at
3 the flight pattern is changed to circles, followed by 4 marking the descent with
the reference reverting to lower accuracy making it unfit for further comparison
shortly prior to landing. These points of interest will be marked in the following
figures for ease of performance comparison throughout the flight. The take-off,
initial trajectory and landing was performed with manual control, whereas the
figures-of-eight and circles were operated by the autopilot.

The initial part of the trajectory can be seen in Fig. 6.7, while the attitude
estimation is shown in Fig. 6.8 with the points of interest marked. The attitude
is converted to Euler angles describing the rotation from Body to NED-frame for
more intuitive understanding. The attitude estimation is similar for both cases
considered, which is attributed to the modular observer structure where only the
specific force estimate changes with the case. The point of Fig. 6.8 is not to be
able to compare the attitude estimation between the two cases but rather to visu-
alize that there is little difference between the cases. It should be noted that the
oscillatory behaviour of the pitch estimate between 3 and 4 corresponds to the
observed behaviour during flight resulting in a slightly sinusoidal vertical trajectory
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during the circular flight pattern. This was due to an uncompensated issue in the
autopilot.
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Figure 6.7: Trajectory of rover (lines), projected ground (grey), and base station
(square) during first 400 sec.
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Figure 6.8: Rover attitude estimation; Case A (red) and Case B (blue).

The relative position between rover and base station is determined and com-
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pared to the relative position offered by the reference. The relative position esti-
mation errors for the proposed observer can be seen in Fig. 6.9. It is clear that the
integer ambiguities are resolved well in advance of take-off. The transient period
of 35 s is not visible in the figure, due to the initial offset. However, the transient
behaviour can be seen in Fig. 6.10. The performance of the position estimates are
compared in Table 6.2, where root-mean-square errors (RMSE) and standard devi-
ations (STD) are summarised. The values are determined after the initial transient
period of 35 s. An additional test case is included in Table 6.2 where the base sta-
tion position has been excluded from the state vector and is considered constant at
the initial position. This test will be denoted Case C and will utilize pseudorange
and carrier-phase aiding. The accuracy obtained by Case C is greatly dependent
on the quality of the base station position estimate, while Case A and B estimate
the base station position as part of the state vector.
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Figure 6.9: NED relative position estimation error for Case A (blue) and Case B
(red).

The performance of Case A and Case B are very similar and are not influ-
enced by the dynamics of the flight. Case B might have advantages in velocity
estimation, however, as no reliable velocity reference is available this cannot be
confirmed. Small drifts are present in the position estimation, e.g. of approximately
1.7 · 10−5m/s in North direction.

The fast convergence and high accuracy shown in Fig. 6.9 are attributed to the
ambiguity resolution. In Fig. 6.11 the ambiguities for Case A are shown for the first
35 s, with similar results obtained for Case B. The real-valued estimate is shown
in blue, with the RTKLIB reference integers in black. The rounded estimates are
shown in red and only serve as a visual comparison to the reference integers, as
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Figure 6.10: Transient behaviour of NED relative position estimation error for Case
A (blue) and Case B (red).

the resolved integers are not guaranteed to be the same as the rounded real-valued
estimates. The estimated ambiguities are seen to quickly converge to the reference
value, with one exception for SV17, where the stationary value is one wavelength
off. This is considered acceptable and will ensure high precision as seen in Fig. 6.9
and Table 6.2.

Table 6.2: Performance comparison of relative NED position estimation error (unit:
centimetre).

AIDING RMSE STD
ρ ϕ υ N E D N E D

Case A: X X 1.005 0.534 1.482 0.481 0.343 1.421
Case B: X X X 1.008 0.534 1.485 0.487 0.344 1.423
Case C: X X 1.005 0.533 1.482 0.481 0.343 1.421

Looking at Table 6.2 the RMSE and standard deviations are seen to be on
centimetre-level for all three cases, with sub-centimetre level STD for the horizontal
components. The vertical components are seen to have less performance than the
horizontal components for all three cases. This can be attributed in part to the
clustered satellite constellation, and the general result of less accurate vertical
channel offered by GNSS measurements. Case C has slightly better performance
than Case A. However, as the difference is on sub-millimetre level Case A and Case
C practically offers the same solution. It is therefore concluded that the inclusion of
the base station position in the state vector does not lead to poorer state estimates
and will be encouraged, especially in case of a slightly moving base station such
as a base station on a ship during station keeping. These performance results are
considered good in view of the low-cost sensors used and the clustered satellite
constellation.
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Figure 6.11: Example of real-valued ambiguity error for Case A (blue), rounded
ambiguities (red), with reference integer (black).

6.6.1 Float vs. Fixed Ambiguities

In order to ascertain the influence of the ambiguities a test with only real-valued
ambiguities is compared to Case A. This test will be denoted Case D, and will
not differ in any way from Case A, apart from the carrier-phase ambiguities being
unresolved. In Fig. 6.12 Case D and Case A are compared.

For Case D the RMSE value is [1.277; 0.942; 4.399] m with standard deviations
of [1.212; 0.865; 1.711] m, which is approximately two orders of magnitude larger
than with resolved ambiguities. It is clear that for applications with demands of
high accuracy the ambiguities need to be resolved, which is expected.
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Figure 6.12: NED relative position estimation for Case A (blue) and Case D (red).

6.6.2 Low Elevation Constellation

A low elevation test is carried out to evaluate the performance when using satellites
with low elevation angles. This can simulate a high latitude flight close to the poles
where the GPS constellation coverage is poor granting only access to satellites at
low elevation. The same data as used in the test above is utilized, here with an ele-
vation mask of 5◦. The atmospheric disturbances experienced will differ compared
to a high latitude flight, however, this test can give an impression on the possible
performance achievable.

In a high latitude, e.g. Arctic, setting the environment would be different from
the one considered here where major differences include: a) the terrain will in the
Arctic be completely open sky, whereas here some obstruction is offered by trees
and mountains, b) the ionospheric and tropospheric conditions, c) different number
of satellites, and d) choice of satellites, the best set of satellites based on e.g. DOP
and C/N will be selected, whereas here a poor subset of the satellites is chosen.

Satellites with high elevation are masked out. The satellites; SV4, SV6, SV11,
SV14, SV23 and SV31 are used, where SV11 has been included to satisfy the
m ≥ 4 assumption, as the low elevation satellites often are obstructed jeopardizing
the constellation size assumption. The satellite SV12 is excluded as several cycle
slips were detected. The ambiguities estimates are re-initialized if a satellite is
re-introduced in the constellation.

The proposed observer without carrier phase derived Doppler aiding (as in Case
A above) is tested with the low elevation constellation, where the performance is
shown in Fig. 6.13. Instances when m < 5 are marked with vertical grey lines,
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e.g. at time 1085 seconds. The test is shortened by a approximately 45 seconds,
compared to the previous tests, due to extensive loss of low elevation satellites
towards the end of the flight.
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Figure 6.13: NED relative position estimation error for Case A using low elevation
satellites.

It is not possible to resolve the ambiguities reliantly due to frequent loss of satel-
lite lock and re-introduction of the satellites. This has a clear impact on the per-
formance of the position estimation. The RMSE values are [2.200; 6.001; 3.961] m
with standard deviations [0.367; 0.821; 1.909] m which is significantly larger than
the values listed in Table 6.2 and for the real-valued test in Section 6.6.1. How-
ever, the horizontal accuracy for the rover is seen to be on meter level. This is an
improvement over standalone solutions where larger deviations would be expected
for a low elevation constellation.

6.7 Chapter Summary

A tightly-coupled GNSS/INS integration scheme using a dual GNSS-receiver con-
figuration between a stationary base station and a moving rover was proposed
where the position and linear velocity of a rover were estimated by a proposed
translational motion observer while attitude was determined with a nonlinear atti-
tude observer. The proposed translational motion observer utilizes the error of the
double-differenced pseudorange, carrier-phase and carrier phase derived Doppler
satellite measurements between the receivers as injection terms.
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The observer was verified using flight data from an UAV equipped with low-
cost sensors, where position estimates were shown to be within 2-4 centimetres
of the RTK reference solution throughout a 20 minutes long flight. Convergence
of the ambiguities introduced by the carrier-phase measurements was achieved by
inclusion in the state vector where they were initially considered real valued later
to be resolved to integer values.

Proof: TMO Injection Terms

The double-differenced injection terms are expressed as:
eρ,ij = ‖per − pej‖2 − ‖per − pei‖2 − ‖pes − pej‖2 + ‖pes − pei‖2

− ‖p̂er − pej‖2 + ‖p̂er − pei‖2 + ‖p̂es − pej‖2 − ‖p̂es − pei‖2,
eϕ,ij = eρ,ij +∇∆Ñijλ,

eυ,ij =
(
hrj − hri

)ᵀ
ver −

(
ĥrj − ĥri

)ᵀ
v̂er +

(
hsj − ĥsj

)ᵀ
vej −

(
hsi − ĥsi

)ᵀ
vei ,

Linearisation the injection terms as the first-order Taylor approximation yields:

eρ,ij =
(

p̂er − pej
‖p̂er − pej‖2

− p̂er − pei
‖p̂er − pei‖2

)ᵀ

p̃r

−

(
p̂es − pej
‖p̂es − pej‖2

− p̂es − pei
‖p̂es − pei‖2

)ᵀ

p̃s + ηρ,ij ,

eϕ,ij =
(

p̂er − pej
‖p̂er − pej‖2

− p̂er − pei
‖p̂er − pei‖2

)ᵀ

p̃r + λ∇∆Ñij

−

(
p̂es − pej
‖p̂es − pej‖2

− p̂es − pei
‖p̂es − pei‖2

)ᵀ

p̃s + ηϕ,ij ,

eυ,ij =
(

v̂er − vej
‖p̂er − pej‖2

− v̂er − vei
‖p̂er − pei‖2

)ᵀ

p̃r +
(

p̂er − pej
‖p̂er − pej‖2

− p̂er − pei
‖p̂er − pei‖2

)ᵀ

ṽr

+
(

p̂es − pej
‖p̂es − pej‖2

− p̂es − pei
‖p̂es − pei‖2

)ᵀ

p̃s + ηυ,ij ,

where the higher order terms are limited to:

ηρ,ij = 1
2 p̃

ᵀ
r

(
Ȟr
j − Ȟr

i

)
p̃r −

1
2 p̃

ᵀ
s

(
Ȟs
j − Ȟs

i

)
p̃s,

ηϕ,ij = 1
2 p̃

ᵀ
r

(
Ȟr
j − Ȟr

i

)
p̃r −

1
2 p̃

ᵀ
s

(
Ȟs
j − Ȟs

i

)
p̃s,

ηυ,ij = 1
2[p̃r ṽr]

[
J̌j − J̌i Ȟr

j − Ȟr
i

Ȟr
j − Ȟr

i 0

] [
p̃r
ṽr

]
+ 1

2 p̃
ᵀ
s

(
Ȟs
j − Ȟs

i

)
p̃s,

for some point p̌er between per and p̂er and:

Ȟr
? = 1

ψ̌r,?
I3 −

(p̌er − pe?)(p̌er − pe?)ᵀ

ψ̌3
r,?

,
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J̌? = 1
ψ̌3
r,?

((p̌er − pe?)(v̌er − ve?)ᵀ + (p̌er − pe?)ᵀ(v̌er − ve?)I3)

− 3
ψ̌5
r,?

(p̌er − pe?)(p̌er − pe?)ᵀ(p̌er − pe?)(v̌er − ve?),

with ψ̌r,? := ‖p̌er − pe?‖2, where ? is a placeholder for i or j. Similar expressions can
be found for Ȟs

? and ψ̌s,? by substitution of r with s. The higher order terms can
be bounded, as shown in [98]:

‖ηρ,ij‖2 ≤ ψ̌r‖p̃r‖22 − ψ̌s‖p̃s‖22,

‖ηϕ,ij‖2 ≤ ψ̌r‖p̃r‖22 − ψ̌s‖p̃s‖22,

‖ηυ,ij‖2 ≤ ψ̌r‖p̃r‖2 · ‖ṽr‖2 + 3
2 ψ̌r

2v‖p̃r‖22 + ψ̌s‖p̃s‖22,

where:

ψ̌r =
ψ
r,j
− ψ

r,i

ψ
r,i
ψ
r,j

, ψ̌r2 =
ψ2
r,j
− ψ2

r,i

ψ2
r,i
ψ2
r,j

, ψ̌s =
ψ
s,j
− ψ

s,i

ψ
s,i
ψ
s,j

.

with ψ
r,i

and ψ
s,i

being the lower bounds on the geometric distance between re-
ceiver and ith satellite, and ‖ver − vei ‖2 ≤ v.
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Chapter 7

Conclusive Remarks and Future
Challenges

7.1 Conclusions

The contributions are listed here in order of appearance.

Conclusions of Chapter 3 - Loosely-Coupled GNSS/INS Integration
A modular nonlinear observer was adapted for navigation using inertial and GNSS
measurements. The observer consists of an attitude estimator and a translational
motion observer. The attitude was represented as a unit quaternion allowing for
semi-global exponential stability results to be achieved for the observer. Gyro bias
estimation is included in the observer to increase performance. Furthermore, ac-
celerometer bias estimation can be included to increase robustness when facing
GNSS outage.

Implementation and discretization considerations have been presented, as well
as multiple attitude reference vectors for use in the attitude estimator. Reference
vectors were introduced for measurements of; magnetic field, specific force, optical
flow, velocity, and compass.

The nonlinear observer was compared to an Extended Kalman Filter using ex-
perimental data from a UAV, and was concluded to have similar performance for
attitude as well as position and velocity estimation. The nonlinear observer have the
advantage of fixed gains for the attitude observer and the option for fixed or slowly
time-varying gains in the TMO. The effect of fixed gains compared to time-varying
gains were investigated where the fixed gain solution did not reduce the perfor-
mance significantly. The gains of the TMO can furthermore, be tuned similarly as
for an EKF allowing for flexible tuning based on expected noise distributions in
the system.

Conclusions of Chapter 4 - Time-Delayed GNSS Measurements
GNSS measurements suffer from a time delay introduced by the computational
and dissemination time of the GNSS receiver. A nonlinear observer consisting of a
nonlinear attitude estimator and a translational motion observer was developed to
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take the time-delay into account. The proposed observer was proven to be semi-
global exponential stability with respect to initialization. Initially a method for
determining the time delay was proposed, followed by an analysis of the delay and
its distribution.

The nonlinear observer delays the inertial measurements such that they corre-
spond in time to the GNSS measurements, thereby ensuring the stability results
established for the nominal observer. A fast simulator was introduced to propa-
gate the delayed state estimates to current time by use of dead reckoning over
the time-delay horizon. As the time-delay is small and the propagation is reset for
each time-step the fast simulator does not diverge. An alternative implementation
was proposed without stability proof, where the delay was shifted from inertial
measurements to the attitude estimates. The alternative implementation thereby
allows for accurate attitude estimation and can limit the fast simulator propaga-
tion to only include position and velocity. The computational load of the proposed
and alternative implementation was compared to the nominal nonlinear observer,
where both had larger computational load due to the inclusion of the fast simu-
lator. However, if a fixed gain version of the proposed observer was used the load
was smaller than the nominal observer even with inclusion of the fast simulator.

The framework presented was general and can be used for other nonlinear ob-
servers. For the alternative implementation a requirement was a modular structure
allowing for insertion of delays between the attitude and translational motion ob-
servers.

The presented observers were studied using a UAV simulator where the effect
of accurate, inaccurate and distributed delays were investigated. Even with an im-
plemented delay a factor of 1.5 larger than the true delay the proposed method was
preferable to the uncompensated observer. The observers were furthermore tested
on experimental data from a small aircraft during high velocity manoeuvres. The
proposed and alternative observers were seen to outperform the uncompensated
observer during flight.

Conclusions of Chapter 5 - Tightly-Coupled GNSS/INS Integration
A tightly-coupled nonlinear observer was proposed. The modular structure of the
loosely-coupled observer was used with the same attitude estimator. The transla-
tional motion observer was altered to use range and range-rate GNSS measure-
ments rather than position and velocity measurements. The stability results of
the observer were presented as well as an algebraic initialization method ensuring
reasonable initial position estimates.

Observability requirement, and expansions to dual-frequency GNSS measure-
ments without altering the stability results were introduced. The computational
load of the tightly-coupled observer was compared to a MEKF, where the attitude
is represented as a unit quaternion. The nonlinear observer was, for this compar-
ison, considered in two variants where the TMO gains are updated either; on the
implemented time-scale (here the IMU time-scale), or on a lower time-scale (at a
fraction of the IMU frequency). Updating the TMO gains on a lower time-scale is
seen to decrease the computational load significantly, thereby allowing for imple-
mentation on smaller and cheaper platforms.
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The proposed methods were verified on experimental data from a UAV flight,
where the performance of the nonlinear observer was compared to the MEKF per-
formance, and was concluded to have similar estimation accuracy. Furthermore,
the tightly-coupled observer was compared to the loosely-coupled observer pre-
sented in Chapter 3, using experimental data, and was seen to offer a significant
improvement in position accuracy.

Conclusions of Chapter 6 - INS/RTK-GNSS Integration
The tightly-coupled nonlinear observer presented in Chapter 5 was here expanded
to consider the differential receiver configuration, where a stationary receiver was
introduced to serve as a reference for the GNSS measurements received at the mov-
ing rover. GNSS measurements are transmitted from the base station to the rover
allowing for creation of single- and double-differenced measurements. If the rover is
sufficiently close (< 10− 20 km) to the base station the atmospheric disturbances
on the GNSS measurements can be cancelled.

An approach was proposed where double-differenced measurements were uti-
lized in the translational motion observer, where a reference satellite was introduced
resulting in smaller noise terms on the measurements. The integer ambiguities in-
troduced by the carrier-phase measurements were included in the state vector and
initially considered real-valued, later to be fixed to integer values. The performance
of two versions of the proposed observer structure (with and without carrier phase
derived Doppler measurements) were investigated and experimentally verified us-
ing flight data from a fixed-wing UAV, where the estimated positions were shown
to be within 2− 4 centimetres of the GPS L1 RTK reference.

7.2 Future Work

The results presented in this thesis is focused on loosely- and tightly-coupled
GNSS/INS integration systems for navigation. The presented research can be ex-
tended to obtain even better results. This section offers some possible extensions:

• Multi-constellation: By allowing multiple GNSS constellations to be used
in the GNSS/INS integration better coverage can be achieved, especially in
high latitude regions by inclusion of GLONASS signals. Furthermore, the
geometry of the constellation available for each epoch could improve since
more satellites are available, which could improve the navigation solution in
areas with severe signal obstruction, such as urban canyons.

• Multi-frequency: If a multi-frequency GNSS receiver is used the ionospheric
disturbance could be cancelled thereby removing a severe disturbance on
the GNSS range measurements. The proposed tightly-coupled observers in
Chapter 5 and Chapter 6 directly allow for use of dual-frequency range and
range-rate signals. Experimental verification could be of interest.

• Combination: It could be of interest to investigate the performance in-
crease by implementing the differential GNSS receiver integration proposed
in Chapter 6 where the time delay on the GNSS measurements is taken into
account, as in Chapter 4.
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7. Conclusive Remarks and Future Challenges

• Rotation matrix: The attitude can be represented as a 3×3 rotation matrix
instead of a unit quaternion. This can give global stability results, in contrast
to the semi-global results achieved here.

• XKF; The results can be adapted to the eXogenous Kalman filter structure
thereby providing covariance estimates. It would be of interest to compare
this with an extended Kalman filter.
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Appendix A

Ephemeris - Satellite Position

When using GNSS systems it is vital to know the position of the satellites in view
of the receiver. In loosely coupled GNSS/INS integration, the satellite position
determination is carried out by the receiver. However, for tightly coupled systems
the computation must be carried out in the observer implementation. The position
of the satellites are determined from ephemeris data, either broadcasted or obtained
from reference stations. The sample rate of the broadcasted ephemeris data is
receiver specific, where it in some cases can be sampled up to every 30 seconds,
however the most common sample rate is approximately 30 min. The validity of the
ephemeris data is typically two to four hours, depending on the desired accuracy,
in which time interval the satellite orbit can be determined with high accuracy.
The only input to the algorithms, apart from the ephemeris parameters, is the
time, at which the satellite position is desired, which allows for determination of
the position at any time and sample rate.

The ephemeris algorithms consists of three parts; a) clock corrections to the
satellite clock, b) position determination of the satellite vehicle, and c) velocity de-
termination of the satellites. The term determination is used instead of estimation
to signify that the satellite position and velocity are found with high accuracy and
not subject to high levels of uncertainty. Each satellite broadcasts a set of param-
eters for the algorithms, and position and velocity has to be determined for each
satellite individually.

The algorithms for determining the satellite positions and velocities can be
found in several sources with slight changes in notation, e.g. [154], [175], and [126].
This appendix is written based on the equations found in [52], and has been in-
cluded for completeness.

This chapter will first introduce the ephemeris parameters and then state the
equations necessary for each of the three parts of the ephemeris algorithms.

A.1 Ephemeris Parameters

Each satellite broadcasts a set of ephemeris parameters, which includes the six
Keplerian elements; Inclination, eccentricity, semi-major axis, mean anomaly, rate
of right ascension, and longitude of the ascending node, in addition to correction
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A. Ephemeris - Satellite Position

terms for the pertubation model. The ephemeris parameters are listed in Table
A.1, see [52] for a more thorough description of the variables. Here sc denotes the
unit semi-circle.

Table A.1: Contents of the ephemeris packages

Name Unit Description
toc s Clock data reference time
af0 s Constant correction to satellite clock
af1 s/s First order correction to satellite clock
af2 s/s2 Second order correction to satellite clock
toe s Ephemeris reference time
Crs m Amplitude of sine harmonic correction to the orbit radius
Crc m Amplitude of cosine harmonic correction to the orbit radius
Cuc rad Amplitude of cosine harmonic correction, latitude
Cic rad Amplitude of cosine harmonic correction, inclination
Cus rad Amplitude of sine harmonic correction, latitude
Cis rad Amplitude of sine harmonic correction, inclination
i0 sc Inclination angle at reference time
e [ ] Eccentricity
ω sc The perigee argument√
A

√
m Semi-major axis square root

Ω0 sc Longitude of ascension node
M0 sc Mean anomaly
Ω̇ sc/s Rate of right ascension

∆n sc/m Mean motion difference
i̇ sc/s Rate of inclination angle

A.2 Satellite Clock Corrections

The time update corrects the satellite clock and determines the Keplerian eccen-
tricity anomaly, Ek, by use of the following equations:

∆tr = Fe
√
A sin(Ek) (A.1)

∆tsv = af0 + af1(tsv − toc) + af2(tsv − toc)2 + ∆tr (A.2)
t = tsv + ∆tsv (A.3)

A =
√
A

2
(A.4)

n0 =
√

µ

A3 (A.5)

tk = t− toe (A.6)
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n = n0 + ∆n (A.7)
Mk = M0 + tkn (A.8)
Ek = Mk + e sin(Ek), (A.9)

where F = −4.442807633 · 10−10 s√
m

is constant. The mean anomaly, Mk, is the
mean motion correction of the satellite. Notice that (A.1) depends on Ek, which
is first determined in (A.9), hence the equations (A.1)–(A.9) are iterated until Ek
saturates. According to [76] 22 iterations are sufficient for centimetre accuracy. The
input to the clock correction equations is the requested time, tsv, indicating the
time at which the corrections should be applied.

A.3 Satellite Position Algorithm

The position of the satellites in ECEF-frame given by; pek = [xek; yek; zek] for the kth
satellite, can be calculated individually by use of the equations:

vk = arctan
(√

1− e2 sin(Ek)
1− e cos(Ek) ,

cos(Ek)− e
1− e cos(Ek)

)
(A.10)

δuk = Cus sin(2vk + 2ω) + Cuc cos(2vk + 2ω) (A.11)
δrk = Crs sin(2vk + 2ω) + Crc cos(2vk + 2ω) (A.12)
δik = Cis sin(2vk + 2ω) + Cic cos(2vk + 2ω) (A.13)
rk = A(1− e cos(Ek)) + δrk (A.14)
Xk = rk cos(vk + ω + δuk) (A.15)
Yk = rk sin(vk + ω + δuk) (A.16)
Ωk = Ω0 +

(
Ω̇− Ω̇e

)
tk − Ω̇etoe (A.17)

xk = Xk cos(Ωk)− Yk cos(i0 + δik + i̇tk) sin(Ωk) (A.18)
yk = Xk sin(Ωk) + Yk cos(i0 + δik + i̇tk) cos(Ωk) (A.19)
zk = Yk sin(i0 + δik + i̇tk) (A.20)

The equations, (A.10)–(A.16), constitutes the ground station modelled corrections
an the Earth oblateness effects, where (A.11)–(A.13) are second order harmonic
perturbations to correct the radius, inclination and argument of latitude. The satel-
lite position is described in the orbital plane by Xk and Yk, where the satellite
position is converted to the ECEF frame by use of (A.18)–(A.20).

The only input, apart from the ephemeris parameters, required for the position
determination is the iterated eccentricity anomaly from the clock correction. It is
therefore possible to determine the satellite position at any time within the valid
time period of the ephemeris.
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A.4 Satellite Velocity Algorithm

By implementing the following equations the satellite velocity in ECEF-frame,
given as vek = [ẋek; ẏek; żek], can be estimated:

Ėk = n0 + ∆n
1− e cos(Ek) (A.21)

φ̇k =
√

1− e2

1− e cos(Ek) Ėk (A.22)

u̇k = (1 + 2Cus cos(2φk)− 2Cuc sin(2φk)) φ̇k (A.23)
ṙk = 2 (Crs cos(2φk)− Crc sin(2φk)) φ̇k +Ae sin(Ek)Ėk (A.24)
Ẋk = ṙk cos(uk)− rk sin(uk)u̇k (A.25)
Ẏk = ṙk sin(uk) + rk cos(uk)u̇k (A.26)
i̇k = 2 (Cis cos(2φk)− Cic sin(2φk)) φ̇k + i̇ (A.27)

Ω̇k = Ω̇− Ω̇e (A.28)
ẋk = Ẋk cos(Ωk)− Ẏk cos(ik) sin(Ωk) + Yk sin(ik) sin(Ωk)i̇k − ykΩ̇k (A.29)
ẏk = Ẋk sin(Ωk) + Ẏk cos(ik) cos(Ωk)− Yk sin(ik) cos(Ωk)i̇k + xkΩ̇k (A.30)
żk = Ẏk sin(ik) + Yk cos(ik)i̇k (A.31)

The ephemeris data logged by the receiver can be verified or replaced by data
logged at fixed GNSS receiver stations. Some of these offer free access, e.g.; at the
web page for the National Geospatial-Intelligence Agency: http://earth-info.
nga.mil/GandG/sathtml/PEexe.html precise ephemeris data can be downloaded
for each GPS satellite around the Earth. GLONASS ephemeris data can be down-
loaded at https://www.glonass-iac.ru/en/archive/index.php. It can be bene-
ficial to compare the implementation with copde provided by others when deter-
mining the satellite position. An implementation in C can be found at the web
page of National Geodetic Survey: http://www.ngs.noaa.gov/gps-toolbox/bc_
velo/bc_velo.c, which is part of the National Oceanic and Atmospheric Admin-
istration, American government.

158

http://earth-info.nga.mil/GandG/sathtml/PEexe.html
http://earth-info.nga.mil/GandG/sathtml/PEexe.html
https://www.glonass-iac.ru/en/archive/index.php
http://www.ngs.noaa.gov/gps-toolbox/bc_velo/bc_velo.c
http://www.ngs.noaa.gov/gps-toolbox/bc_velo/bc_velo.c


Appendix B

Navigation Payload

This appendix outlines the navigation payload used for the experimental verifica-
tion of the observers proposed throughout this thesis. The payload have undergone
numerous iterations, with several improvements. However, the general outline of
the payload has stayed the same for all the presented experiments. The payload
have been designed by Sigurd Mørkved Albrektsen, NTNU. The description of the
payload is included for better understanding of the high quality of the measure-
ments obtained, especially regarding the time stamping of the measurements.

B.1 Component Overview

The objective of the navigation payload is to obtain measurements from inertial
sensors and a GNSS receiver, while accurately time stamping the measurements
for precise relation of the sensor measurements despite different sample rates. The
payload includes the following components:

• STIM 300: tactical grade IMU measuring specific force and angular rate at
sample rates of 125, 250, 500, 1000, or 2000 Hz.

• ADIS 16488: tactical grade IMU measuring specific force, angular rate and
magnetic field, using a SPI interface.

• u-Blox LEA-M8T: GNSS receiver allowing logging of navigation data (glo-
bal position and velocity), range data (pseudo-range and carrier-phase), and
environmental data (ephemeris, satellite health, ionospheric parameters). In
early versions of the payload the LEA-6T was used. The GNSS receiver addi-
tionally has a pulse-per-second (PPS) signal synchronized with satellite time,
which is utilized for time stamping.

• Synchronization Board: A custom printed circuit board for accurately
time stamping the measurements of the inertial and GNSS sensors. The PCB
has undergone several iterations for inclusion of additional sensors, and con-
sists of a micro controller with the input capture method accurately time
stamping arriving measurements without affecting the runtime. The synchro-
nization board is the main component of the payload.
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B. Navigation Payload

• Data storage: Either SD card or SSD Harddrive depending on the amount
of data. It is vital that the storage unit is resistant to vibrations. All data is
stored in binary format and parsed offline.

• ODROID-XU4: Computer for handling, parsing and storing of data.
Compared to the ADIS IMU the STIM IMU has better performance, but is also
more expensive. It has been desired to compare the performance of the low-cost
ADIS sensor with the STIM sensor, in an attempt to design low-cost navigation
systems. This is the reason for including two IMUs in the payload.

Additional sensors can be included in the payload, e.g.; camera, altimeter, au-
topilot logging, wind speed sensor, etc.

B.2 Hardware Design

The framework of the payload is shown in Fig. B.1, where the interface between
the sensors, the synchBoard and the computer is shown.

Figure B.1: Payload framework and components; the synchronization board
(framed with a dashed line), and the sensors (striped edges).

The inertial and GNSS sensors are interfaced to the synchronization board,
which time stamps them compresses all the measurements into one data stream,
which is then parsed to the computer for handling and storing. The synchronization
board also handles the various interfaces to the sensors; SPI for the ADIS sensor,
RS-422 for the STIM sensor, and RS-232 for the u-Blox receiver. Furthermore, a
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trigger signal based on the PPS signal of the GNSS receiver, is created by the
synchronization board if a camera is included in the payload.

The synchronization board is powered externally with 5V, and also powers the
ADIS IMU with 3.3V. The STIM sensor and GNSS receiver are powered externally.

B.3 Time Stamping

The main feature of the synchronization board is the handling and time stamping
of the measurements from the inertial sensors and the GNSS receiver. Multiple time
stamps are considered; time-of-validity (TOV), time-of-transmit (TOT), and time-
of-arrival (TOA). A measurement from a general sensor is first valid at TOV, then
it is send from the sensor at TOT, and finally arrives at the synchronization board
at TOV, introducing a delay between when the measurement was valid and when
it was received for processing. For the inertial sensors the delay is insignificant,
and only the TOA measurements are considered. However, for the GNSS receiver
a delay is present, as discussed in Chapter 4, which require consideration when
handling the data. For the GNSS receiver the TOV time is indicated by the PPS
signal, the TOT signals as the arrival of the first bit in a data package, and TOA
as the arrival of the final bit in the data package.

The time stamps of TOV, TOT, and TOA are indicated by an integer number
of clock cycles of the micro controller, and can be related to seconds by division
with the clock rate of the micro controller. With the clock rate chosen high it is
possible to get sub-millisecond resolution of the time stamps.

Since the GNSS receiver data packages contains time stamps of Coordinated
Universal Time (UTC) and integer Time Of Week (iTOW) the time stamps of
the synchronization board can be related to more intuitive time scales. Moreover,
since all GNSS receivers are synchronized to UTC or iTOW time, it is possible to
accurately relate GNSS measurements from another receiver not in the payload to
the payload data. It is not possible to measure the time delay introduced by the
receiver if not included in the payload, however the TOV time stamps are direct
transferable. This feature allows e.g. ground station data to be accurately related
to the payload data, for use in a dual receiver configuration, which was utilized in
Chapter 6.

B.4 Pictures

The payload can be mounted in various ways depending on the vehicle limita-
tions such as connectivity (e.g. to an autopilot), power consumption (possible to
exclude some sensors), size, weight, etc. For some vehicles the required power for
the payload is readily available, whereas for others a power converter has to be
included.

In Fig. B.2 and Fig. B.3 the payload is shown mounted in a peli case 1400
(dimensions: 339×295×152 mm), to be water and shock resistant. This mounting
was used for experiments on boat (Maritime Robotics Telematron: 845 Polarcirkel)
and a small aircraft (GA Slingsby T67C). A mounting plate is placed inside the box
for ease of mounting the equipment while retaining the water resistant properties
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of the box. The two IMUs are placed on opposite sides of the plate at the center
in order to experience the same acceleration and rotation. A rotation of the sensor
measurements for one of the sensors is required to obtain corresponding measure-
ments. The ADIS 16488 with the magnetometer is placed as far from the power
converter as possible.

(a) Open

(b) Top

(c) Side

Figure B.2: The peli case 1400 payload.

(a) Top view of the mounting plate. (b) Bottom view of the mounting plate.

Figure B.3: The mounting plate with components.

For mounting on unmanned aircraft size and weight are strict limitations, en-
forcing a more compact solution, which often excludes the ADIS 16488 sensor as
the magnetometer readings might get affected by the proximity to power cables
and other hardware.
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Appendix C

Implementation

This appendix includes the implementation examples for the nonlinear observers
introduced in the thesis.

C.1 Attitude Estimator

The implementation for the nonlinear attitude estimator is included in Algorithm
1, where the magnetometer measurements are used in the attitude injection term.
Other vectors for the second pair of attitude injection vectors can be used, as
discussed in Section 3.4.1.

The global magnetic field can be determined from lookup tables, e.g. in Matlab
by the function igrfmagm(·).

C.2 Loosely Coupled

The implementation of the loosely coupled translational motion observer is shown
Algorithm 2, where a time-varying gain selection is employed. If a fixed gain ob-
server is implemented the steps (C.17), (C.19), (C.21), and (C.26) can be ignored.

C.3 Tightly Coupled

The implementation of the tightly coupled translational motion observer is shown
in Algorithm 3. There are many similarities to the loosely coupled implementation
with the differences being the C matrix, the content of the measurement vector
and satellite selection. The implementation is shown for the use of pseudo-range
measurements. If additional measurements are included the y vector, and C and
R matrices should be expanded accordingly.
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C. Implementation

Algorithm 1 Discrete-Time Attitude Observer in Indirect Form
Require: Initializing the observer,
1: q̂e

b [0] = q0(φ[0], θ[0], ψ[0]), b̂b
g = 03×1, where q0 is the quaternion mapping from the initial Euler

angles φ[0], θ[0], ψ[0].
2: Enforcing ‖q̂e

b [0]‖ = 1, using q̂e
b [0] = q̂e

b [0]/‖q̂e
b [0]‖.

3: Extracting sq [0] and rq [0] from q̂e
b [0] and calculating the initial rotation matrix

R(q̂e
b [0]) = I3 + 2sq [0]S(rq [0]) + 2S(rq [0])2 (C.1)

Ensure: k
4: Get f̂e[k] from the TMO,
5: Get fb

IMU[k], ωb
ib,IMU[k], and mb

MAG[k] from the IMU and calculated the attitude injection vectors,

v
b
1[k] = f

b
IMU[k]/‖fb

IMU[k]‖2, (C.2)

v
e
1[k] = satMf

(f̂e[k])/‖satMf
(f̂e[k])‖2, (C.3)

v
b
2[k] = m

b
mag[k]/‖mb

mag[k]‖2, (C.4)

v
e
2[k] = m

e
/‖me‖2, (C.5)

6: Calculate the attitude injection term:

σ̂[k] = k1[k]vb
1[k]× R(q̂e

b [k − 1])ᵀve
1[k] + k2[k]vb

2[k]× R(q̂e
b [k − 1])ᵀve

2[k] (C.6)

7: Calculating the attitude estimation update

δq̂
e
b [k] =

1
2
q̂

e
b [k − 1]⊗

[
0

ωb
ib,IMU[k]− b̂b[k − 1] + σ̂[k]

]
−

1
2

[
0
ωe

ie

]
⊗ q̂e

b [k − 1], (C.7)

8: Calculate the gyro bias estimate update

δb̂
b[k] = −kI σ̂[k]; (C.8)

9: Project the gyro bias estimate update.
10: Calculate the accelerometer bias estimate update

yf [k] = max(feᵀ
f

e
,M

2
f )− fb

IMU
ᵀ
f

b
IMU, (C.9)

ϑ[k] =
[

1
−2fb

IMU

]
, (C.10)

δΞ̂[k] = Γϑ[k]
(
yf [k]− ϑ[k]ᵀΞ̂[k − 1]

)
, (C.11)

11: Project the accelerometer bias estimate vector update.
12: Updating estimates,

q̂
e
b [k] = q̂

e
b [k − 1] + TIMUδq̂

e
b [k], (C.12)

b̂
b[k] = b̂

b[k − 1] + TIMUδb̂
b[k], (C.13)

Ξ̂[k] = Ξ̂[k − 1] + TIMUδΞ̂[k], (C.14)

13: Accessing the accelerometer bias, b̂b
f [k], as the lower three elements of Ξ̂[k].

14: Enforcing unit quaternion constraint, q̂e
b [k] = q̂e

b [k]/‖q̂e
b [k]‖,

15: Extracting sq [k] and rq [k] from q̂e
b [k] and calculating the rotation matrix

R(q̂e
b [k]) = I3 + 2sq [k]S(rq [k]) + 2S2(rq [k]) (C.15)

16: Provide R(q̂e
b [k]), b̂b[k], b̂b

f [k], and σ̂[k] to the TMO.
17: k ← k + 1.

164



C.3. Tightly Coupled

Algorithm 2 Discrete-Time Loosely Coupled TMO in Indirect Form
Require: Initializing the observer.
1: p̂e[0] = pe

0 ∈ R3, v̂e[0] = ve
0 ∈ R3, ξ[k] = 03×1, where p0 is the initial position and v0 is the initial

velocity.
2: x̂−[0]← [p̂e[0]; v̂e[0]; ξ[0]].
3: Assign

F =

[
I3 TIMUI3

T 2
IMU

2 I3
0 I3 TIMUI3
0 0 I3

]
, C =

[
I3 0 0
0 Cv 0

]
(C.16)

4: Get R and Q matrices.
Ensure: k,
5: if new GNSS measurement is available then
6: Get y[k] from GNSS receiver.
7: Correction is applied,

Kd[k] = P
−[k]C[k]ᵀ(C[k]P−[k]Cᵀ[k] + R[k])−1

, (C.17)

x̂
+[k] = x̂

−[k] +Kd[k]
(
y[k]− C[k]x̂−[k]

)
, (C.18)

P
+[k] = (I9 −Kd[k]C[k])P−[k]. (C.19)

8: else

x̂
+[k] = x̂

−[k] (C.20)

P
+[k] = P

−[k] (C.21)

9: end if
10: Store the state vector in available estimates

p̂
e[k] = x̂

+(1 : 3)[k], (C.22)

v̂
e[k] = x̂

+(4 : 6)[k], (C.23)

ξ[k] = x̂
+(7 : 9)[k], (C.24)

11: Get fb
IMU[k] from the IMU,

12: Get b̂b
f [k − 1] from the attitude observer.

13: Provide f̂e[k] = R(q̂e
b [k − 1])(fb

IMU[k]− b̂b
f [k − 1]) + ξ[k] to the attitude observer.

14: Get R(q̂e
b [k]), σ̂[k] from the attitude observer,

15: Update Bd,1[k], Bd[k], Dd[k], u[k].
16: Propagation in time,

x̂
−[k + 1] = Ad[k]x̂+[k] + Bd,1[k]u[k] +Dd[k], (C.25)

P
−[k + 1] = Ad[k]P+[k]Aᵀ

d
[k] + Bd[k]Qd[k]Bᵀ

d
[k]. (C.26)

17: Enforcing symmetry of P−[k + 1] = 1/2(P−[k + 1] + P−[k + 1]ᵀ).
18: k ← k + 1.
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Algorithm 3 Discrete-Time Tightly Coupled TMO in Indirect Form
Require: Initializing the observer.
1: p̂e[0] = pe

0 ∈ R3, v̂e[0] = ve
0 ∈ R3, ξ[k] = 03×1, where p0 is the initial position and v0 is the initial

velocity.
2: Get β̂[0] = β0, where β0 is the initial clock range bias.
3: x̂−[0]← [p̂e[0]; v̂e[0]; ξ[0]].
4: Discretize system matrix to F ∈ Rn.
5: Get R and Q matrices.

Ensure: k,
6: if new GNSS measurement is available then
7: Get y[k] = ρ[k] (code measurements) from GNSS receiver.
8: Select m ≥ 4 satellites based on signal strength and geometry.
9: Correct range measurements according to tropospheric disturbance etc.

10: Determine satellite positions, pe
i , i = 1..m.

11: Determine geometric range estimate, ψi = ‖p̂e − pe
i‖2, i = 1..m.

12: Determine C[k] ∈ R4×m matrix,

C[k] =

[ (p̂e − pe
1)/ψ1 1

...
...

(p̂e − pe
m)/ψm 1

]
(C.27)

13: Correction is applied,

Kd[k] = P
−[k]C[k]ᵀ(C[k]P−[k]Cᵀ[k] + R[k])−1

, (C.28)

x̂
+[k] = x̂

−[k] +Kd[k]
(
y[k]− C[k]x̂−[k]

)
, (C.29)

P
+[k] = (In −Kd[k]C[k])P−[k]. (C.30)

14: else

x̂
+[k] = x̂

−[k] (C.31)

P
+[k] = P

−[k] (C.32)

15: end if
16: Store the state vector in available estimates

p̂
e[k] = x̂

+(1 : 3)[k], (C.33)

v̂
e[k] = x̂

+(4 : 6)[k], (C.34)

ξ[k] = x̂
+(7 : 9)[k], (C.35)

β̂[k] = x̂
+(10)[k], (C.36)

17: Get fb
IMU[k] from the IMU,

18: Get b̂b
f [k − 1] from the attitude observer.

19: Provide f̂e[k] = R(q̂e
b [k − 1])(fb

IMU[k]− b̂b
f [k − 1]) + ξ[k] to the attitude observer.

20: Get R(q̂e
b [k]), σ̂[k] from the attitude observer,

21: Update Bd,1[k], Bd[k], Dd[k], u[k].
22: Propagation in time,

x̂
−[k + 1] = Ad[k]x̂+[k] + Bd,1[k]u[k] +Dd[k], (C.37)

P
−[k + 1] = Ad[k]P+[k]Aᵀ

d
[k] + Bd[k]Qd[k]Bᵀ

d
[k]. (C.38)

23: Enforcing symmetry of P−[k + 1] = 1/2(P−[k + 1] + P−[k + 1]ᵀ).
24: k ← k + 1.
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Appendix D

Figures

This appendix includes larger versions of figures included in the previous chapters,
to allow for ease of reading.
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Figure D.1: Position error the proposed observer structure (red), the alternative im-
plementation (green) and the observer without time-delay compensation (purple).
See page 89.
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D. Figures
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Figure D.2: Attitude estimates of the proposed observer structure (red), the alter-
native implementation (green) and the observer without time-delay compensation
(purple). See page 90.
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Figure D.3: Estimation errors with proposed (green) and uncompensated (purple).
See page 91.
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D. Figures
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Figure D.4: Estimation errors with proposed (green) and uncompensated (purple).
See page 92.
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Figure D.5: Position estimation error for NLO-LO (blue), NLO-TI (red), and stan-
dalone (yellow). See page 121.
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