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Abstract

Wave-induced hydroelastic response of a circular plastic collar used as a floater of
a net cage in aquaculture is studied by means of theory, model tests and numerical
simulations.

A low-frequency linear slender-body theory for vertical radiation loads on an
elastic semi-submerged torus based on matched asymptotic expansions is devel-
oped. Low frequency means that the corresponding wavelength is long relative to
the cross-sectional radius. Linear vertical excitation load is calculated by either
solving the diffraction problem with a cross-sectional averaged vertical incident
wave velocity along the torus or by using a generalized Haskind relation. A curved
beam equation with tension effects is used to predict the vertical wave-induced
response of a semi-submerged torus in the frequency domain. The theory is veri-
fied by comparing with WAMIT. The analysis shows that three-dimensional flow,
strong hydrodynamic frequency dependency and hydroelasticity are essential for
the considered vertical wave loads and responses of the torus.

Model tests of both an elastic and a nearly rigid torus were performed in regular
waves of different wave periods and steepness in order to validate the low-frequency
slender-body theory. The bending stiffness of the elastic model was Froude scaled.
Vertical accelerations along the torus, mooring line forces and the free-surface ele-
vation at four positions in the wave tank were measured. Overtopping and out of
water of parts of the torus models occurred in steep waves. Experimental precision
errors and bias errors, for instance, due to tank-wall interference are discussed.

There is reasonable agreement between experiments and theoretically/numer-
ically predicted linear response. The agreement between numerical methods and
experiments is generally unsatisfactory for the nonlinear response. The two sets of
experimental results show that the second, third and fourth harmonic vertical ac-
celerations of the torus matter and cannot be explained by a perturbation method
with the wave steepness as a small parameter.
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Nomenclature

General Rules

• Only the most used symbols are listed in the following sections

• Meaning of symbols are given when introduced in the thesis

• Sometimes the same symbol is used to indicate different quantities

• Vectors are represented by bold symbols

Abbreviations

2D Two-dimensional

3D Three-dimensional

BEM Boundary Element Method

CFD Computational Fluid Dynamics

COG Center of gravity

DFT Discrete Fourier Transform

Exp Experimental values

FPS Frames per second

HDPE High-density polyethylene

RAO Response Amplitude Operator

Bold Symbols

n Normal vector

u Water velocity vector

UB Vector of instantaneous body velocity

x Position vector

Greek Letters

(ρ, β, z) Cylindrical coordinate system

αn Phase angle of mode n

δ Dirac delta function

η1 Surge motion

η2 Sway motion

v



vi Nomenclature

η5 Pitch angle

λ Wave length

µ Mean value or dynamic viscosity of water

ν Wave number or kinematic viscosity of water

Ω Water domain

ω Circular frequency

ωi Natural frequency associated with 2D transverse sloshing modes

ρ Mass density of water

σ Standard deviation

ε Nondimensional slenderness parameter

ϕ Velocity potential

ϕF Far-field velocity potential

ϕN Near-field velocity potential

ϕ0 Incident wave potential

ζ Free-surface elevation

ζa Wave amplitude of incident waves

Mathematical Operators

∇× Curl

∇ Gradient

∇· Divergence

∇2 Laplacian∑
Summation

Roman Letters

H0 Struve function of zero order

SB Wetted body surface

S̄B Mean wetted body surface

a Radius of the cross-section of the torus

a
(n)
33 Sectional vertical added mass coefficient of mode n

an Generalized coordinate of vertical motion of mode n

b
(n)
33 Sectional vertical damping coefficient of mode n

bn Generalized coordinate of radial motion of mode n

btank Width of wave tank

c Radius of the torus

E Sum of the kinetic and potential energy in the water domain

EI Bending stiffness



Nomenclature vii

f
(n)
3 Sectional vertical wave excitation force of mode n

fD3 Vertical diffraction force per unit length

fFK3 Vertical Froude-Kriloff force per unit length

Fv Viscous force

G Green function

g Acceleration of gravity

H Wave height of incident waves

h Depth of wave tank

Jn Bessel function of the first kind of the n-th order

Kn Modified Bessel function of the n-th order

ks Spring stiffness

KC Keulegan-Carpenter number

Ltank Length of wave tank

m Torus mass per unit length

Or′θ Polar coordinate system

OxByBzB A body-fixed Cartesian coordinate system with origin at COG

Oxyz Earth-fixed Cartesian coordinate system

Oy′z′ Local Cartesian coordinate system

p Pressure

Q Source density

ra Amplitude of relative vertical motion

s Arc length along a structure

S∞ Vertical circular cylindrical control surface at infinity from the struc-
ture

SC Mean wetted cross-sectional surface of the torus

T Wave period of incident waves

t Time

Tas Axial stiffness

Tp Pre-tension of the mooring lines

Ua Flow velocity amplitude

vr Radial motion

w Vertical motion

wa Amplitude of absolute vertical motion

Yn Bessel function of the second kind of the n-th order

Super-scripts
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(nω) n-th harmonic

(n) Mode n

Sub-scripts

S̄B On mean wetted body surface

SC On mean wetted cross-sectional surface of the torus
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Chapter 1

Introduction

1.1 Background and motivation

Fishing in oceans, lakes and rivers has historically been a major source of food.
However, with the increased knowledge and development of fisheries and aqua-
culture, it was realized that living aquatic resources, although renewable, are not
infinite and need to be properly managed. The Food and Agriculture Organization
of the United Nations (FAO) reported that the increasing demand for marine food
production has put a strain on natural populations (FAO, 2010). According to
FAO, the ocean’s ability to produce enough seafood has diminished over the years
and only 20% of wild seafood stocks have a sustainable capacity, the rest are at or
beyond the limit of what they can produce.

Aquaculture is important in bridging the gap between the decreasing capture of
wild fish and the increasing world demand for food. During the past three decades,
global aquaculture production expanded at an average annual rate of more than
8%, from 5.2 million tons in 1981 to 62.7 million tons in 2011. Aquaculture’s
contribution to total food fish supply grew from 9% in 1980 to 48% in 2011 (FAO,
2014). Worldwide, the rapid and massive growth of aquaculture production makes
seafood become the most heavily traded food commodities, with 38% of all fish
produced being exported in 2010. World trade of fish and fish products increased
from $8 billion in 1976 to $128 billion in 2012, which translates into an average
annual growth rate of 4.0% (WBG, 2014). Fish farming is the principal form of
aquaculture and farm-raised fish are mainly used for human consumption. However,
fish farms also produce ornamental fish, roe, fish oil, bait fish and fish for pet food.
Worldwide, the most important fish species used in fish farming are carp, salmon,
tilapia and catfish. People will continue to depend on fish farming for food sources
as populations increase and the rapid expansion of global aquaculture production
has continued with no sign of peaking. Aquaculture can be broken down into
two basic categories: marine-based aquaculture and land-based aquaculture. The
following description is based on marine-based aquaculture.
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2 Introduction

1.1.1 Aquaculture in Norway

Aquaculture in Norway dates back to 1850 when the first brown trout were hatched.
By around 1900 rainbow trouts were imported from Denmark and the first attempts
at pond culture were initiated. An increasing interest was shown after World War
II, followed by a breakthrough in the early 1960s when for the first time rain-
bow trout was successfully transferred to sea water. The first successful feeding of
Atlantic salmon also took place during this same period. A technological break-
through came around 1970 when the first cage was constructed. Norway’s long and
sheltered coastline surrounded by cold, fresh seawater, with its thousands of islands
and inlets, as well as the Gulf stream providing a reliable and stable temperature,
provide excellent opportunities for fish farming. Since the advent of commercial
salmon farming around 1970 (see Figure 1.1), the aquaculture industry has grown
to become an industry of major importance. Not just to the Norwegian economy
at large, but especially to the many communities found along the coast where oth-
er economic opportunities are sometimes limited. Today, farming of salmon and
rainbow trout is taking place in close to 160 municipalities all along the Norwegian
coast, from Lillesand in the south to South-Varanger in the north. Along with the
growth in salmon and rainbow trout farming, interest has also become oriented
towards other marine species such as the Atlantic cod and the Atlantic halibut
(FAO, 2005).

Figure 1.1: Manufacturing of the floater of the first Polarcirkel cage in 1974. (AK-
VA group)

There are also challenges related to the Norwegian fish farming industries.
Spread of waste materials from the fish farm, introduction of non-indigenous species
caused by escaped fish, and the disease burden influence the marine environment.
Salmon lice and fish escape are considered by the industry to be the two most im-
portant problems. Close collaboration between researchers and industry has made
the Norwegian fish farming industry become the chief developer of modern marine
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aquaculture, both in Norway and internationally. Today, advances in technology
coupled with improvements in design that yield more productive operations have
significantly increased the practice of fish farms and there is no other form of an-
imal food production where such a high biomass is gathered in such a small area.

(a) Fixed cage (www.thefishsite.com) (b) Floating cage (PMM Marine)

(c) Submersible cage (InnovaSea) (d) Submerged cage (InnovaSea)

Figure 1.2: Four basic types of fish cages.

1.1.2 Fish cage classifications and common components

Cages have developed a great deal since their inception and today there is a di-
versity of types and designs. There are also different ways to classify types of
cages. Figure 1.2 shows four basic types proposed by Beveridge (2008): a) Fixed
cages, which consist of a net supported by posts driven into the bottom of a lake
or river. They are comparatively inexpensive and simple to build, but their use
is restricted to sheltered shallow sites with suitable substrates. b) Floating cages,
which have a buoyant frame or collar that support the net cage. They are less
limited than most other types of cages in terms of site requirements and can be
made in a great variety of designs, and are the most widely used ones. c) Sub-
mersible cages, which rely on a frame or rigging to maintain shape. The advantage
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over other designs is that its position in the water column can be changed to take
advantage of prevailing environmental conditions. Generally these cages are kept
at the surface during calm weather and submerged during adverse weather. d) Sub-
merged cages, which can be boxes with gaps between the slats to facilitate water
flow. They are anchored to the substrate by stones or posts and used in flowing
waters. On the other hand, Loverich and Gace (1997) classified the cages into four
classes according to the effects of the currents and waves. a) Gravity cages, which
rely on buoyancy and weight to hold the shape of the cage and volume against
externally applied forces. b) Anchor tensioned cages, which rely on anchor tension
to hold their shape. c) Self-tensioned and supporting cages, where the self-tension
structure resists net deformations. d) Rigid cages with self-supporting structures
made of jointed beams and trusses.

The different classes of cages can be built in several types and sizes. However
most of them present the following common components as illustrated in Figure 1.3:
floating system, net, services system, mooring system and anchor system (Olivares
and Brynjolfsson, 2003).

The floating system provides buoyancy and holds the system at a suitable level
in the water. In some cages this component is an important part to hold the
shape of the cage. Common flotation materials include high-density polyethylene
(HDPE) pipes, metal or plastic drums, rubber tires and metal drums coated with
tar or fiberglass. The buoyant force varies depending of size and materials used.
The assembly of the system can be by connectors, stitching or tying.

The function of the net is to contain and protect the fish and to provide a
marine habitat. The net is normally flexible and made of synthetic netting of
nylon or polythene fibers reinforced with polythene ropes, although recently new
stronger materials like Spectra or Dyneema have appeared. The nets are kept
stretched vertically with weights at the bottom of the cage or fastened by rope to
the framework depending of the type of cages. Rigid cages made of metal netting
mounted on rigid metal frameworks are also used. The flexible net cage is most used
due to cost. The netting may have 10 million meshes, which prohibits complete
Computational Fluid Dynamics (CFD) and structural modeling.

The services system provides operating and maintenance services, for example:
feeding, cleaning, monitoring or grading. One way to provide this is by a catwalk
around the cage or along part of the cage. Some cages use their flotation collars
like catwalks and access for these services. Alternative methods to provide these
services are by access from a boat or a more stable platform such as a barge or a
raft.

The mooring system holds the cage in the suitable position according to the
direction and depth decided in the design, and sometimes helps to maintain the
shape of the cage. The mooring joins the cage at the anchor system. The materials
used in the mooring systems are sea steel lines, chains, reinforced plastic ropes and
mechanical connectors. The mooring force capacity depends on both the material
and size, and can be adjusted to the requirements. Attachment to the system is
by metallic connectors and ties.

There are basically three types of anchor systems: pile anchors, dead weight
anchors and mooring anchors. Pile anchors are buried piles in the seabed. They
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Floating system

Net

Services system

Mooring system

Anchor system

Figure 1.3: Principal components of the cage for fish farming. (Upper figure:
SINTEF Fisheries and Aquaculture; lower figure: Toford Plastic Manufacturing
Corporation)

are effective, especially for systems where a small space is necessary. Dead weight
anchors are usually concrete blocks. Their one big advantage is that they are fairly
consistent in holding power. The third type is mooring anchors which have to hold
into a particular seabed when pulled from one direction only. The anchors are
joined to the mooring system usually by chains and metallic connectors.

Fish cages can be installed in close proximity to one another, to form clusters
that can be fed from a single feeder platform and withstand strong currents and
waves as shown in Figure 1.4. Square cages are typically clustered together in a
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steel platform with between 4 and 28 cages per site with little distance (2 to 4m)
between adjacent cages. Circular cages (typically 6 to 12 per site) are arranged
in mooring grids in single, double or triple rows but with typically greater space
between them (> 10m) than square cages. Initially, cage arrangements within
sites are chosen based on logistical considerations such as moorings, shelter and
accessibility. Nowadays, cage arrangements have moved towards positioning cage
grid mooring systems perpendicular to the dominant current direction to maximize
water flow, oxygen supply and the removal of wastes from individual cages (Jensen
et al., 2010). Recently, membrane-type and closed cages have been proposed.

Figure 1.4: Left figure: square cages (www.undark.org); right figure: circular cages
(www.worldfishing.net).

1.1.3 HDPE floaters

The detailed studies in the thesis relate to cages with high-density polyethylene
(HDPE) floaters. They are highly flexible structures and currently widely used
in industrial marine aquaculture in many parts of the world due to the versatility
of the materials used, the simplicity in the various farming operations and the
relatively contained investment capital required. Main structural elements of these
cages are the HDPE pipes, which can be assembled in various ways in order to
produce collars of different sizes and shapes. There may be one to three such pipes
making up a frame. Figure 1.5 shows that the HDPE pipes are held together by a
series of brackets with stanchions disposed throughout the entire circumference in
order to form the floating collar ring, which is the main structure on which the fish
net pen is secured. The presence of the floating filler in the pipes ensures that the
cage floats, even if the pipes become damaged and flooded. When used to build
circular cages, HDPE pipes are limited by their torsion. Generally, the minimum
radius to close and weld a round cage is approximately 25 times the pipe’s external
diameter. A narrow working platform can be built on top of the circular frame. In
Atlantic salmon farming, the floaters currently being installed have a circumference
of at least 100m, in general. In the Mediterranean, the most common floaters have
a circumference of 40 to 50m, but cages with a circumference of around 200m are
used for tuna farming. These gravity cages maintain the net pen shape and volume
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through a system of weights, also known as a sinker system, fixed at the bottom
end of the net.

Figure 1.5: Details of HDPE floaters. The straight pipes in the upper photo (FAO)
are forced into circles and squares and welded together to become the floaters in
the lower photos (www.worldfishing.net).

There are several different HDPE materials used for pipes (FAO, 2015). Those
used for cage construction are mainly PE80 or PE100. These codes, according to
ISO 4427, relate to the minimum required strength (MRS) of the pipe, measured
after 50 years at a temperature of 20◦C, and expressed in Bar: PE80 (=MRS 8.0);
PE100 (=MRS 10.0). PE80 indicates an HDPE grade where the pipe will rupture
at a pressure of at least 8.0MPa over a 50 year service life at 20◦C. In the case of
the PE100 pipe, the pressure would be at 10.0MPa. This means that, assuming
we have pipes of the same dimensions, pipes made of PE100 material may function
at a higher operating pressure than pipes made of PE80. The density of PE80 is
slightly lower than that of the PE100, with specific-gravity values of 0.945g/cm3

and 0.950g/cm3, respectively. Therefore, a cage built with PE100 HDPE will be
more rigid and stronger than a cage made with PE80 HDPE assuming both pipes
are of the same dimensions. However, it will be slightly less flexible in handling
dynamic loads. The external diameter of HDPE pipes used for cage building is
usually expressed in millimeters. The diameter of the pipes will determine the
buoyancy of the cage collar. The more exposed the site, the more buoyancy will
be needed and the pipe diameter will need to be larger. Another factor of HDPE
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is wall thickness. Different pressure-resistance grades imply a different pipe wall
thickness and as a consequence, cage weight, strength, resistance and flexibility will
be different. Therefore, the higher the pipe pressure-resistance is, the thicker the
pipe wall thickness will be. HDPE pipes use the standard dimension ratio (SDR)
as a method of rating the piping. The SDR is the ratio of pipe outside diameter D
in mm to wall thickness s in mm. The pipe wall will be thinner with a high SDR
ratio. Therefore, a high SDR pipe has a lower pressure rating, and a low SDR pipe
has a higher pressure rating.

1.1.4 Environmental factors and challenges for fish farms

Wave, wind and current loads have to be considered in design and installation
of fish farms. Table 1.1 shows classification of significant wave height and current
speed by the Norwegian government (Klebert et al., 2015).

Table 1.1: Norwegian aquaculture site classification scheme for waves and currents.
Hs: wave height; Tp: wave period; Vc: current speed.

Wave Hs(m) Tp(s)
Degree of
exposure

Current Vc(m/s)
Degree of
exposure

A 0.0-0.5 0.0-2.0 Small a 0.0-0.3 Small

B 0.5-1.0 1.6-3.2 Moderate b 0.3-0.5 Moderate

C 1.0-2.0 2.5-5.1 Medium c 0.5-1.0 Medium

D 2.0-3.0 4.0-6.7 High d 1.0-1.5 High

E >3.0 5.3-18.0 Extreme e >1.5 Extreme

The current affects water exchange, feed dispersion, cage net weights and sinker-
s, net shape and rearing volumes and design of mooring system. Current accounts
for 70− 75 percent of total forces on a typical mid-size fish cage (i.e. with a pro-
duction between 3000 − 4000 tonnes/year) in medium current conditions defined
in Table 1.1.

Wind accounts for approximately 5 − 10 percent of the total forces on a cage
mooring system. Wind can generate pull on the jump net and also have an indirect
influence on cages through wind-driven current and wind-generated waves.

Waves account for approximately 20 − 25 percent of the total forces affect-
ing the mooring and the equipment on a typical mid-size fish cage (3000 − 4000
tonnes/year). Five factors influence the formation of wind-generated waves: wind
speed; the uninterrupted distance of open water over which the wind blows without
significant change in direction (called the fetch); width of area affected by fetch;
time duration-the wind has blown over a given area; water depth. All of these
factors work together to determine the waves. Currents also indirectly influence
the waves, as winds against currents generate shorter and steeper waves.



1.1. Background and motivation 9

The loads on the fish farm are divided into two types: a) vertical static loads due
to weight and buoyancy. They depend on area and density of the netting, weights
of frame components, weight of rigging, weight of ballast and, in opposition, the
flotation force. b) dynamic loads, which are caused by the currents, winds and
waves with reaction in the moorings and anchors of the cage. These depend of
material used, shape of panel, size of the mesh, current velocity and density of
water.

Figure 1.6: Collapsed fish farms due to harsh weather. (www.thetower.org)

Figure 1.7: Bending stress distribution in the floater in harsh weather with current
velocity U∞ = 0.6m/s, wave height-to-wave length ratio H/λ = 1/60 and two wave
periods T = 6s and 9s. (Yugao Shen)

One of the greatest environmental and/or economic challenges that the fish
farming industry experiences is the escape of farmed fish. There are many causes
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of escape: ranging from poor operating routines, boat collisions, attacks by preda-
tors to technical installation failures and structural failure of one or more of the
components of a fish farm. Structural failure as shown in Figure 1.6 is the domi-
nant cause for escapes. Snap loads in the netting due to relative vertical motions
between the floater and the sinker tube can cause net rupture (Bardestani and
Faltinsen, 2013). Shen et al. (2016) analyzed the effect of a well boat at a fish
farm and showed that the bending stress in the floater in harsh weather could ex-
ceed the yield stress at the contact area between the well boat and the floater and
at the connections between mooring lines and floater. Figure 1.7 shows the stress
distributions along the floater from 0◦ to 360◦ for two cases with current velocity
U∞ = 0.6m/s, wave height-to-wave length ratio 1/60 and two wave periods T = 6s
and 9s. Blue line represents the yield stress 26MPa. The peak stress appears at
the positions where the mooring lines at 117◦ and 143◦ are attached. The stresses
are 25MPa and 27.5MPa for T = 6s and 9s at 117◦ and 143◦, respectively. There
are also local peak values in the contact region between the well boat and the fish
farm (180◦) which are 22.3MPa and 19.5MPa for T = 6s and 9s, respectively.

1.2 Previous floater studies

In this study, the focus is on the wave-induced response of the floating collar with-
out the net cage and a complete mooring system. The floating net cage aquaculture
system is normally circular or square with floating HDPE pipe as shown in Fig-
ure 1.5. The floater experiences direct environmental loads as well as forces from
the mooring system and the net cage (Kristiansen and Faltinsen (2012) and Kris-
tiansen and Faltinsen (2015)). Wave forces acting on the floater are complex, not
only because of the special shape but also because its large motion, making the
calculation of correct hydrodynamic loads difficult. Figure 1.8 illustrates that the
circular floater of HDPE can be considerably deformed in bad weather and has a
tendency to follow the waves.

Figure 1.8: Open cage fish farm of circular floating collar of HDPE in bad weather.
Large elastic deformations of the floater are clearly seen. (Left: Fusion Marine;
right: Hvalpsund Net AS)
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Many studies of wave and current induced loads on the floater are based on strip
theory by using Morison’s equation with mass (CM ) and drag (CD) coefficients or
by using 2D linear potential flow theory with drag-force corrections from Morison’s
equation and by assuming a rigid floater. The Morison’s equation (Faltinsen, 1990)
is used widely in offshore engineering for cylinders with small cross-sectional size
relative to the incident wave length. Strip theory means that the floater is divided
into many mini-segments and that the flow at each segment is assumed hydro-
dynamically independently of each other. The cross-section of the mini-segment
corresponds to the cross-section of the floater. The forces on the whole floater can
be obtained by summing the forces on each mini-segment. Huang et al. (2006),
Li et al. (2007) and Zhao et al. (2009) have used Morison’s equation. Ormberg
(1991) used frequency-dependent 2D added mass, damping and wave excitation
loads similarly as is done in seakeeping analysis of ships by strip theory. Viscous
effects on the horizontal forces were accounted for as drag-force corrections from
Morison’s equation.

Newman (1977b) investigated the forces on a floating rigid torus by using
slender-body theory and explained peaks in the hydrodynamic forces to near-
standing waves within the torus. 3D flow interactions were thereby included. In
addition the heave, surge and pitch motions of the torus due to incident waves were
calculated.

In reality, hydroelasticity matters in the analysis of wave-induced loads on
floaters made by HDPE. Hydroelasticity means that there is mutual interaction
between inertial, hydrodynamic and elastic forces (Heller and Abramson (1959)
and Bishop and Price (1979)). Dong et al. (2010) proposed an analytical method
to investigate the elastic deformations of a circular ring subjected to second-order
waves based on the curved beam theory. Wave-induced forces on a mini-segment
was calculated using Morison’s equation. Li et al. (2013) combined the effect of
hydroelasticity with Morison’s equation. A low-frequency slender-body theory for
the wave-induced response on an elastic semi-submerged torus was derived by Li
and Faltinsen (2012).

The acceptable accuracy of linear potential flow theory assumes that both the
wave height and the response are small compared to the cross-dimension. This is
typically not the case for the floater in harsh weather. As a step towards using a
rational method to combine nonlinear wave effects and flow separation, 2D studies
were made by Kristiansen and Faltinsen (2008a) and Kristiansen and Faltinsen
(2008b). They developed a Computational Fluid Dynamics (CFD) numerical wave
tank (NWT) for fully nonlinear wave body interaction problems for a 2D moored
semi-submerged circular cylinder. Laminar flow were assumed and the Navier-
Stokes equation with incompressible fluid were applied. The motivation for their
studies was analysis of the floater of a fish farm. Also, two sets of model tests
have been conducted. Results were compared with linear potential flow theory,
semi-empirical theories and simulations with the Constrained Interpolation Profile
(CIP)-based numerical wave tank. An instability phenomenon was observed both
in the experiments and in the numerical simulations when the wave frequency was
two times the natural frequency in sway. Higher order harmonics of the wave loads
can be significant when resonance oscillations are excited and should be taken into
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account when fatigue life of fish farms are designed. Tang et al. (2011) developed
a two-dimensional fully nonlinear numerical wave tank based on the boundary
element method (BEM) to calculate the wave forces on a semi-submerged circular
cylinder. The latter method does not account for flow separation. Numerical and
physical models were adopted to investigate the dynamic properties of the circular
cylinder with and without a fish net. The first- to third-order of sway, heave and
roll response amplitude operator of the semi-submerged circular cylinder with or
without a fish net were also investigated.

1.3 Outline of the present study

This chapter first introduces the background and motivation of the thesis and then
give a review of previous floater studies. The structure and the main contributions
of the present work are outlined afterwards. In Chapter 2, the mathematical formu-
lation of the physical problem is presented first, next a low-frequency slender-body
theory for the vertical added mass, damping and wave excitation loads on an elastic
semi-submerged torus is derived based on linear potential flow. The verification
studies of the low-frequency slender-body theory are presented in Chapter 3. An
elastic and an rigid torus model tests are described in Chapter 4 with focus on the
wave-induced vertical accelerations of a moored torus in regular deep-water waves.
In Chapter 5, experimental and numerical results are compared for linear horizon-
tal motion, linear vertical accelerations and sum-frequency vertical accelerations of
the rigid torus. In Chapter 6, experimental linear vertical accelerations of the rigid
torus are compared with a linear frequency-domain method and a weak-scatter
method. The weak-scatter method also predicts the second harmonic acceleration
component. Experimental higher-harmonic torus accelerations are presented in
Chapter 5 and Chapter 6. Finally, a summary of the present work and suggestions
for further work are given in Chapter 7.

1.4 Main contributions

We summarize the main contributions of the present work as follows.

• A low-frequency linear slender-body theory is derived by matched asymptot-
ic expansions with a near-field and far-field solution to study wave-induced
vertical elastic response of an elastic semi-submerged torus in the frequency
domain. The effect of current is neglected. Low frequency corresponds to a
wave length that is long relative to the cross-dimension of the torus. Gen-
eralized added mass, damping and wave excitation loads are derived. The
diffraction loads are either based on a mean vertical incident wave velocity
along the torus or by using a generalized Haskind relation. The theory is
verified by comparing with WAMIT.

• The low-frequency linear slender-body theory combined with a curved beam
equation with tension for the floater shows that hydroelasticity is important
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and that 3D effects cause pronounced frequency-dependent hydrodynamic
interaction on the scale of the torus diameter. The latter fact means that a
strip theory and Morison’s equation are not applicable.

• Two model test series have been performed in regular waves of different wave
periods and steepness and used to validate the low-frequency slender-body
theory. One model is an elastic circular torus and another model is a nearly
rigid circular torus. The bending stiffness of the elastic model has been
Froude scaled. Error analysis has been performed.

• The experiments show that the second, third and fourth harmonic measured
accelerations of the torus matter and cannot be explained by a perturbation
method with the wave steepness as a small parameter.
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Chapter 2

Linear analytical
wave-induced vertical elastic
response of a
semi-submerged torus

2.1 General assumptions

We consider incident regular waves on a semi-submerged elastic torus in water of
infinite depth and infinite horizontal extent. Potential flow of incompressible wa-
ter is assumed. A linear frequency-domain solution for vertical responses will be
analytically derived based on a long-wave length assumption and matched asymp-
totic expansions. A long-wave length assumption means that the considered wave
lengths are long relative to the cross-sectional diameter of the torus. Matched
asymptotic expansions involves defining a far-field and near-field solution that are
matched. In the far-field solution we do not see the details of the cross-section
of the torus while we in the near-field see the cross-sectional details. We define a
Cartesian coordinate system (x, y, z) and a cylindrical coordinate system (ρ, β, z)
with the mean free-surface at z = 0. The z-axis coincides with the torus axis and is
positive upwards. The incident waves propagate along the x-axis. A far-field view
where we cannot see the cross-sectional details is presented in Figure 2.1 where
c means the radius of the circular center-line curve of the torus. The definitions
of the local Cartesian coordinate system Oy′z′ and polar coordinate system Or′θ
used in analyzing the near-field solution are presented in Figure 2.2.

2.2 Governing equations

The water velocities are denoted u(x, t) = (u, v, w), which are a function of location
x = (x, y, z) and time t in a Cartesian coordinate system fixed in space (Faltinsen,

15
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Figure 2.1: Far-field view of one torus with parameter and coordinate definitions.
(x, y, 0) is the field point and (ξ, η, 0) is a point on the torus. c is the torus radius,
β is the angle and ρ is the distance to the field point from the origin.

z

y

a r

Figure 2.2: Cross-section of a torus with local coordinate systems.

1990). Since the flow is irrotational, i.e. ∇ × u = 0, the water velocities can be
defined as a gradient of a velocity potential ϕ(x, t), i.e.

u = ∇ϕ ≡ i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
(2.1)

Since the water is incompressible i.e. ∇·u = 0, it follows that the velocity potential
ϕ has to satisfy the Laplace equation (Eq. 2.2) in the water domain, i.e.

∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (2.2)

We assume that the structure has no forward speed and that the current velocity
is zero.
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2.3 Boundary conditions

The complete mathematical problem of finding a velocity potential consists of the
solution of the Laplace equation with relevant conditions along the boundaries of
the potential flow domain. Since we consider a frequency-domain solution, initial
conditions are not needed. However, we need to specify a radiation condition
specifying outgoing waves caused by the torus.

Free-surface boundary condition

The free-surface boundary condition consists of two parts, i.e. the kinematic and
dynamic conditions. The kinematic free-surface condition follows by assuming
that a liquid particle on the free surface remains on the free surface z = ζ(x, y, t).
Then, the kinematic free-surface condition can be written using that the substantial

derivative
D

Dt
(z − ζ) = 0, i.e.

∂ζ

∂t
+
∂ϕ

∂x

∂ζ

∂x
+
∂ϕ

∂y

∂ζ

∂y
− ∂ϕ

∂z
= 0 on z = ζ (x, y, t) (2.3)

Here ζ is the wave elevation. The dynamic free-surface condition is simply that the
water pressure is equal to the constant atmospheric pressure on the free-surface.
Then, the dynamic free-surface condition can be written using Bernoulli’s equation
as

gζ +
∂ϕ

∂t
+

1

2
(∇ϕ · ∇ϕ) = 0 on z = ζ (x, y, t) (2.4)

The free-surface conditions Eq. (2.3) and Eq. (2.4) are difficult to satisfy on
the free surface due to nonlinearities. Assuming small wave steepness and small
vertical body motions relative to the wave amplitude, Eq. (2.3) and Eq. (2.4) can
be linearized to the mean free surface at z = 0. The result is

∂ζ

∂t
=

∂ϕ

∂z
on z = 0 (2.5)

gζ +
∂ϕ

∂t
= 0 on z = 0 (2.6)

Eq. (2.5) and Eq. (2.6) can be combined to give

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 on z = 0 (2.7)

When the velocity potential ϕ is oscillating harmonically in time with circular
frequency ω, we can write Eq. (2.7) as

− ω2ϕ + g
∂ϕ

∂z
= 0 on z = 0 (2.8)
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Body boundary condition

The body boundary condition within potential flow theory expresses that the body
velocity in the normal direction of the body surface is equal to water velocity in the
normal direction of the body surface. In the linearized problem, the body boundary
condition is satisfied on the mean wetted position of the body surface, i.e. on S̄B .
This can be expressed as

∂ϕ

∂n
= UB · n on S̄B (2.9)

Here ∂/∂n denotes differentiation along the normal to the body surface. The
positive normal direction is defined to be into the fluid domain. Furthermore, UB

is the body velocity and n = (n1, n2, n3) is the unit normal vector.

2.4 Curved beam equation with axial stiffness

The prediction of the vertical motion w of the torus is based on a generalized
Euler-Bernoulli beam equation that accounts for curvature and axial stiffness. The
equation is

m
∂2w

∂t2
+ ρgbww + EI

∂4w

∂s4
+
EI

c2
∂2w

∂s2
− ∂

∂s

(
Tas

∂w

∂s

)
= f3 (s)

added mass + damping
+ f3 (s)

wave excit
+ fmoorings

3

(2.10)

Here the differentiation ∂/∂s = c−1∂/∂β is along the center line of the torus
where β is defined in Figure 2.1, and m is the torus mass per unit length. EI is

the bending stiffness and the bending stiffness term
EI

c2
∂2w

∂s2
is a consequence of

curvature effect of the torus (see Appendix A). The term is needed together with

EI
∂4w

∂s4
in order to describe a rigid torus when EI → ∞. fmoorings

3 denotes the

vertical component of the mooring line forces that formally must be expressed in
term of Dirac delta functions since it is not uniformly distributed along the torus.
Tas is the axial stiffness following from a static analysis of the moored torus. The
details of the mooring line arrangement is illustrated in Appendix B. Furthermore,
fadded mass + damping

3 is the vertical added mass and damping force per unit length
of the torus and fwave excit

3 is the vertical wave excitation force on the torus per unit
length of the torus. The term ρgbww is caused by the change of the buoyancy force
due to the motion w. Here ρ is the mass density of water, g is the gravitational
acceleration. Since we consider a semi-submerged torus, bw is 2a with a as the
radius of the cross-section of the torus. Since structural damping is unknown, it
was not included. However, it is believed to be small for the lowest structural
modes.

Since the response is symmetric about the x-axis for waves propagating in the
positive x-direction, the vertical motion w of the torus can be expressed as the
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following Fourier series:

w = a0 (t) +

∞∑
n=1

an (t) cos (nβ) (2.11)

The x- and y-coordinates of the center line of the torus is given by x = c cosβ,
y = c sinβ. a0 and a1 cosβ describe heave at the torus axis and vertical motion
due to pitch motion, respectively. The other terms in Eq. (2.11) are purely elastic
modes. Mode n has the mode shape cosnβ in the following studies.

In order to obtain the wave-induced elastic responses of the circular plastic
collar of a fish farm, Eq. (2.11) is inserted into Eq. (2.10), and then Eq. (2.10) are
multiplied successively by cos (mβ) ,m = 0, 1, ... and integrated from β = 0 to 2π.
This leads to, for instance, generalized added mass, damping and wace excitation
forces on the torus. The equations of motion for each mode amplitude an(t) are
then obtained.

We will start with studying the radiation problems, that means forced vertical
motions of the torus associated with the different Fourier components (modes).
There are no incident waves. Then the wave excitation problem with the torus
restrained from moving is examined.

2.5 Low-frequency slender-body theory

Many vessels of interest in marine hydrodynamics are slender, with one length di-
mension exceeding the others by an order of magnitude. For ships, submarines,
sailboats, and fish, this shape is generally a consequence of the advantage of a
streamlined body form that minimizes the resistance, with the longitudinal length
scale substantially greater than the cross-dimensional lengths. For these vessels it
is logical to simplify the hydrodynamics analysis by suitable approximations based
on the slenderness of the body. Slender-body theory is a methodology that can
be used to take advantage of the slenderness of a body to obtain an approxima-
tion to the flow field surrounding it. Slender-body theory originated in the field of
aerodynamics, first as a technique for predicting the stability characteristics of di-
rigibles. Newman and Tuck (1964) developed the slender-body theory in analyzing
wave-induced heave and pitch of a rigid ship with zero or forward speed at small
frequencies.

The geometry of the torus meets the requirement of the fundamental assumption
of slender-body theory that the diameter 2a of the cross-section of the torus is much
smaller than the length 2πc of the torus. To formalize this assumption, we define
the nondimensional slenderness parameter a/c = ε � 1. Before describing the
slender-body theory applied on the torus, it is convenient to rewrite Eq. (2.2) from
Cartesian coordinate form to cylindrical coordinate form as follows

∇2ϕ =
1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+

1

ρ2

∂2ϕ

∂β2
+
∂2ϕ

∂z2
= 0 (2.12)

The boundary value problem Eq. (2.8), Eq. (2.9) and Eq. (2.12) can be simplified.
Geometrically, the components of the unit normal vector n = (nρ, nβ , nz) in the
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cylindrical coordinate system have the following order

nρ = O (1) , nβ = O (ε) , nz = O (1) (2.13)

The consequence is that the normal derivative in the body boundary condition
given by Eq. (2.9) can be approximated by the two-dimensional normal derivative
in the ρ−z plane. A consequence of the slenderness assumption is that the Laplace
equation can be approximated in the near field of a cross-section of the torus. We
adopt an inner region reference frame, fixed with respect to the scale of the cross-
section. From this viewpoint, a = O(1) whereas c = O(1/ε). As ε → 0, the
cross-section scale remains fixed while the diameter or perimeter of the torus tends
to infinity. The water velocity field then appears nearly constant in the tangential
direction, with ∂/∂β = O(ε). In this inner region it follows that∣∣∣∣1c ∂ϕ∂β

∣∣∣∣� (∣∣∣∣∂ϕ∂ρ
∣∣∣∣ , ∣∣∣∣∂ϕ∂z

∣∣∣∣) (2.14)

with a similar result for the second derivatives. Thus 3D Laplace equation reduces
to a 2D Laplace equation in the polar coordinate system defined in Figure 2.2, i.e.

∂2ϕ

∂r′2
+

1

r′
∂ϕ

∂r′
+

1

r′2
∂2ϕ

∂θ2
= 0 (2.15)

Similarly, the body boundary condition of Eq. (2.9) can be replaced by

∂ϕ

∂r′
= UBr′nr′ on r′ = a (2.16)

Here UBr′ is the normal component of local cross-section of the torus velocity UB

and nr′ is the normal component of local cross-section of the unit normal vector n.
The near-field solution will in addition satisfy the linear free-surface condi-

tion Eq. (2.8). The radiation condition will be taken care of by matching with the
far-field solution. It is not appropriate to apply the radiation condition in the inner
region, nor to the inner solution, since the radiation condition holds only at a large
distance compared to all the cross-sectional body dimensions. Since the radiation
condition cannot be applied to the inner solution, the inner solution, at this stage,
is not unique, nor is it well-behaved at infinity.

This deficiency results from the assumption of two-dimensional flow, and thus
a three-dimensional solution of the Laplace equation is required to bridge the gap
between the inner solution and the condition at infinity which corresponds to the
outer solution. Since we consider vertical motions of a free-surface piercing body,
the appropriate outer solution is a distribution of three-dimensional sources, along
the center line of the torus, which satisfy radiation condition at infinity and can
be matched with the inner solution near the torus. The near-field (inner) and
far-field (outer) solutions will be consistent provided they can be matched in an
overlap region εc � ρ � c far from the torus in the inner region but very close
to the torus in the outer region. The approach outlined here is essentially the
method of matched asymptotic expansions. This method is useful because the two
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separate problems are simpler to solve analytically, compared to the exact solution
valid everywhere throughout the fluid. The inner solution is simplified because it
is two-dimensional, whereas the outer solution is simplified by neglecting the body
boundary condition.

We start with deriving frequency-dependent generalized added mass and damp-
ing coefficients for different vertical modes which can be used in a long-wavelength
approximation of the generalized vertical wave excitation loads. Matched asymp-
totic expansions explained above are applied with a far-field solution and a near-
field solution valid at the cross-section of the torus.

2.6 Far-field flow description due to forced verti-
cal motions

The velocity potential ϕF in the far-field satisfies the 3D Laplace equation with
radiation conditions and the classical linear free-surface condition Eq. (2.8). All
oscillatory quantities are assumed to be time-harmonic with circular frequency ω.
The governing equation and the free-surface condition are:

∇2ϕF = 0 (2.17)

− νϕF +
∂ϕF

∂z
= 0 on z = 0, ν = ω2/g (2.18)

The velocity potential due to a body can be represented in terms of flow singu-
larities satisfying the free-surface condition Eq. (2.18) and the radiation condition
(Newman, 1977a). The flow singularities will be sources in our problem. Since we
do not see the details of the cross-dimensions of the torus in the far-field, the flow
appears as a line distribution of sources along the center line of the torus. The
torus as seen in the far-field is shown in Figure 2.1. The coordinates of the center
line can be expressed as:

ξ = c cosα, η = c sinα, ζ = 0 (2.19)

The field point has coordinates (x, y, z) and a source point has coordinates (ξ, η, ζ).
In the far field view, ζ = 0. We consider forced vertical torus separately for each
Fourier mode. The associated source density varies as Q cos (nα) exp (−iωt) along
the center line of the torus. Here i is the complex unit. That means the far-field
velocity potential is

ϕF =
Q exp (−iωt)

4π
c

∫ 2π

0

cos (nα)G (x, y, z; ξ, η, 0) dα (2.20)

Derivations by Havelock (1942, 1955) (see Faltinsen (1990)) give the following
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source expression (Green function) G (x, y, z; ξ, η, ζ) exp (−iωt) with

G (x, y, z; ξ, η, ζ) =
1

R
+

1

R′

− 4ν

π

∫ ∞
0

[ν cos k (z + ζ) − k sin k (z + ζ)]
K0 (kr)

k2 + ν2
dk

− 2πν exp (ν (z + ζ))Y0 (νr)

+ i2πν exp (ν (z + ζ)) J0 (νr)

(2.21)

Here R =

√
(x− ξ)2

+ (y − η)
2

+ (z − ζ)
2

is the distance from the field point to the

source point, and R′ =

√
(x− ξ)2

+ (y − η)
2

+ (z + ζ)
2
, r =

√
(x− ξ)2

+ (y − η)
2
.

We should note that the expression is the same if we simultaneously interchange x
with ξ, y with η and z with ζ. Further, J0 is the Bessel function of the first kind
of zero order; Y0 is the Bessel function of the second kind of zero order; K0 is the
modified Bessel function of zero order (see Abramowitz and Stegun (1964)).

We will now derive an inner expansion of the far-field expansion by assuming
that νa is small. Here a is the radius of the cross-section of the torus. When we
analyze vertical motions, we are as a first approximation interested in symmetric
terms relative to a vertical center surface going along the center line of the torus.
We have divided the Green function (Eq. 2.21) into three parts and studied each
part separately, i.e.

G (x, y, z; ξ, η, ζ) = G1 + G2 + G3

G1 =
1

R
+

1

R′

G2 = −2πν exp (ν (z + ζ))Y0 (νr) + i2πν exp (ν (z + ζ)) J0 (νr)

G3 = −4ν

π

∫ ∞
0

[ν cos k (z + ζ) − k sin k (z + ζ)]
K0 (kr)

k2 + ν2
dk

(2.22)

We first study the two first term of Eq. (2.21) which is G1 (x, y, z; ξ, η, 0) and
define x = ρ cosβ, y = ρ sinβ. Then the far-field velocity potential associated with
G1 (x, y, z; ξ, η, 0) is

ϕF1 =
Q exp (−iωt)

4π
c

∫ 2π

0

cos (nα)

(
1

R
+

1

R′

)
dα

=
Q exp (−iωt)

2π
c

∫ 2π

0

cos (nα)√
ρ2 + c2 + z2 − 2ρc cos (α− β)

dα

(2.23)

If we introduce µ = α− β, Eq. (2.23) can be rewritten as

ϕF1 =
Q exp (−iωt) cos (nβ)

2π
c

∫ 2π

0

cos (nµ)√
r′2 + 2ρc (1− cosµ)

dµ (2.24)

Here r′ =
√

(ρ− c)2 + z2 is the radius in a local polar coordinate system Or′θ with
origin at the center line of the torus (see Figure 2.2). In order to find the inner
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expansion of Eq. (2.24), the integral in Eq. (2.24) can be rewritten as follows

c

∫ 2π

0

cos (nµ)√
r′2 + 2ρc (1− cosµ)

dµ =

c

∫ 2π

0

1√
r′2 + 2ρc (1− cosµ)

dµ − c

∫ 2π

0

1− cos (nµ)√
r′2 + 2ρc (1− cosµ)

dµ

(2.25)

The first integral on the right hand side of Eq. (2.25) can be transferred to the
complete elliptic integral of the first kind K and the lowest order term of the inner
expansion around r′ = 0 is a symmetric term relative to the cross-section of the
torus which we are interested in. It can be expressed as

4c√
r′2 + 4ρc

K

(
2

√
ρc

r′2 + 4ρc

)
≈ 2 ln

(
8c

r′

)
(2.26)

Similarly, the lowest order term of the inner expansion of the second integral on
the right hand side of Eq. (2.25) is found by performing Taylor expansion around
r′ = 0 which leads to

1√
2

∫ 2π

0

1− cos (nµ)√
1− cosµ

dµ (2.27)

The lowest order term of the inner expansion of the two first term of Eq. (2.21)
which is G1 (x, y, z; ξ, η, 0) associated with G (x, y, z; ξ, η, 0) is obtained by using E-
q. (2.26) and Eq. (2.27). We get

ϕFI1 =
Q exp (−iωt) cos (nβ)

π

[
ln

(
8c

r′

)
− Kn

]
Kn =

1

2
√

2

∫ 2π

0

1− cos (nµ)√
1− cos (µ)

dµ

= 2

(
1 +

1

3
+

1

5
+ ...+

1

2n− 1

)
, n ≥ 1

(2.28)

This expression is the same as the result shown in Faltinsen (2011), which considers
the limiting case that the forcing frequency ω → 0.

We discuss now the two last terms G2 (x, y, z; ξ, η, 0) in the Green function,
which contains the effect of far-field waves. The distance r from the field point
(x, y, 0) to the source point (ξ, η, 0) can be expressed as

r =
√
ρ2 + c2 − 2ρc cos (α− β) (2.29)

Then, we can write the first kind Bessel function J0 (νr) and the second kind
Bessel function Y0 (νr) using summation theorems of expansion in products of
Bessel functions according to Gradshteyn and Ryzhik (1994) on page 993. The
formula assumes that c < ρ and α− β > 0. If ρ and c are replaced by each other,
the result will be the same in Eq. (2.29). Considering this characteristic and the
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first kind Bessel function J0 (νr), only the second kind Bessel function Y0 (νr) has
to be written in the piecewise form as below

J0 (νr) = J0 (νc) J0 (νρ) + 2

∞∑
m=1

Jm (νc) Jm (νρ) cos [m (α− β)]

Y0 (νr) =


J0 (νc)Y0 (νρ) + 2

∞∑
m=1

Jm (νc)Ym (νρ) cos [m (α− β)] , ρ ≥ c

J0 (νρ)Y0 (νc) + 2
∞∑
m=1

Jm (νρ)Ym (νc) cos [m (α− β)] , ρ ≤ c

(2.30)

This means that we have to evaluate the integrals associated with the two last
terms G2 (x, y, z; ξ, η, 0) in the Green function of Eq. (2.20) as follows∫ 2π

0

J0 (νr) cos (nα) dα = 2πJn (νc) Jn (νρ) cos (nβ)∫ 2π

0

Y0 (νr) cos (nα) dα =

{
2πJn (νc)Yn (νρ) cos (nβ) , ρ ≥ c
2πJn (νρ)Yn (νc) cos (nβ) , ρ ≤ c

(2.31)

Since we in the near field consider a problem that is symmetric with respect to the
vertical center line of the cross-section, we focus on the symmetric term relative
to the cross-section of the torus. So a first term inner expansion of each of these
terms involves then

2π [Jn (νc)]
2

cos (nβ)

2πJn (νc)Yn (νc) cos (nβ)
(2.32)

However, we need to also examine the next order term which is the second term
of Taylor expansion of Eq. (2.31) about ρ = c involving the second kind Bessel
function Y0 (νr). This term involves the first derivative of the first kind Bessel
function Jn (νρ) and the second kind Bessel function Yn (νρ). Since the expression
has a discontinuity in the first derivative at ρ = c, we then define ρ = c + y′ and
have to make a Taylor expansion of Eq. (2.31) separately for y′ > 0 and y′ < 0.
The jump in the derivative at ρ = c is proportional to

d

dρ
[Jn (νc)Yn (νρ) − Jn (νρ)Yn (νc)]

∣∣∣∣
ρ=c

= −Jn (νc)Yn+1 (νc) ν + Jn+1 (νc)Yn (νc) ν =
2

πc

(2.33)

We have here used that %′n(γ) = −%n+1(γ) +
n

γ
%n(γ) where %n(γ) is Jn(γ) or

Yn(γ) and that the Wronskian W {Jn(γ), Yn(γ)} =
2

πγ
(Abramowitz and Stegun,

1964). The two lowest order expressions involving Eq. (2.31) can then be expressed
as Eq. (2.32) plus a linear term in y′ and a linear term in |y′|. According to the
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statement above we define:

f (y′) = ay′, y′ ≥ 0

f (y′) = by′, y′ ≤ 0

f (y′) = c1 |y′| + c2y
′

(2.34)

We can get c1 and c2 from the equation system for all y′:

c1 =
a− b

2
=

1

πc

c2 =
a+ b

2
=

1

2
Jn (νc) ν

[
−Yn+1 (νc) +

n

νc
Yn (νc)

]
+

1

2
Yn (νc) ν

[
−Jn+1 (νc) +

n

νc
Jn (νc)

] (2.35)

As mentioned above, only the symmetric terms relative to the cross-section of the
torus are kept. It follows that the inner expansion of the far-field expression due
to the two last terms G2 (x, y, z; ξ, η, 0) in Eq. (2.21) can be expressed as

ϕFI2 =
Q exp (−iωt) cos (nβ)

π
(1 + νz) νcπ2

×
{
−Jn (νc)Yn (νc)− 1

πc
|y′|+ i [Jn (νc)]

2

} (2.36)

The term associated with |y′| causes a discontinuity in the derivative at y′ = 0.
We will by examining all parts of the velocity potential show that there is not an
unphysical discontinuity in the derivative of the total velocity potential.

We study the remaining term G3 (x, y, z; ξ, η, 0) in the Green function, i.e.

IG = −4ν

π

∫ ∞
0

[ν cos (kz) − k sin (kz)]
K0 (kr)

k2 + ν2
dk (2.37)

Eq. (2.37) is divided into two parts as follows, and we will study these two parts
separately.

IG = −4ν

π
(I1 − I2)

I1 = ν

∫ ∞
0

cos (kz)
K0 (kr)

k2 + ν2
dk

I2 =

∫ ∞
0

k sin (kz)
K0 (kr)

k2 + ν2
dk

(2.38)

We start with the following reformulation of I1 by using expression 9.6.21 in
Abramowitz and Stegun (1964) which uses integral to represent K0 (kr)

I1 = ν

∫ ∞
0

cos (kz)
K0 (kr)

k2 + ν2
dk

= ν

∫ ∞
0

∫ ∞
0

cos (k |z|)
k2 + ν2

cos (krt)√
t2 + 1

dkdt

(2.39)
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Then, further reformulation on integral of combination of trigonometric functions

cos(k |z|) cos(krt) and rational function
1

k2 + ν2
could be done according to expres-

sion 3.742(3) in Gradshteyn and Ryzhik (1994) as follows

I1 =
π

4

∫ ∞
0

dt√
t2 + 1

[
exp

(
−ν
∣∣|z| − rt∣∣) + exp (−ν (|z|+ rt))

]
(2.40)

We rewrite Eq. (2.40) as

I1 =
π

4
exp (−ν |z|)

∫ |z|/r
0

exp (νrt)√
t2 + 1

dt +
π

4
exp (ν |z|)

∫ ∞
|z|/r

exp (−νrt)√
t2 + 1

dt

+
π

4
exp (−ν |z|)

∫ ∞
0

exp (−νrt)√
t2 + 1

dt

(2.41)

This means

I1 =
π

4
exp (ν |z|)

∫ ∞
0

exp (−νrt)√
t2 + 1

dt +
π

4
exp (−ν |z|)

∫ ∞
0

exp (−νrt)√
t2 + 1

dt

+
π

4
exp (−ν |z|)

∫ |z|/r
0

exp (νrt)√
t2 + 1

dt − π

4
exp (ν |z|)

∫ |z|/r
0

exp (−νrt)√
t2 + 1

dt

(2.42)

We study now the term I2. Firstly, K0 (kr) is represented by an integral as follows

I2 =

∫ ∞
0

k sin (kz)
K0 (kr)

k2 + ν2
dk

= −
∫ ∞

0

∫ ∞
0

k sin (k |z|)
k2 + ν2

cos (krt)√
t2 + 1

dkdt

(2.43)

The integral of combination of trigonometric and rational functions could be rewrit-
ten similarly as Eq. (2.41) and Eq. (2.42) according to expression 3.742(5) in Grad-
shteyn and Ryzhik (1994), i.e.

I2 =
π

2

[
sinh (ν |z|)

∫ ∞
|z|/r

exp (−νrt)√
t2 + 1

dt− exp (−ν |z|)
∫ |z|/r

0

cosh (νrt)√
t2 + 1

dt

]

=
π

2

[
sinh (ν |z|)

∫ ∞
0

exp (−νrt)√
t2 + 1

dt− exp (−ν |z|)
∫ |z|/r

0

cosh (νrt)√
t2 + 1

dt

− sinh (ν |z|)
∫ |z|/r

0

exp (−νrt)√
t2 + 1

dt

]
(2.44)

Based on Eq. (2.42) and Eq. (2.44), the following expression can be obtained

I1 − I2 =
π

2
exp (−ν |z|)

∫ ∞
0

exp (−νrt)√
t2 + 1

dt

+
π

2
exp (−ν |z|)

∫ |z|/r
0

exp (νrt)√
t2 + 1

dt

(2.45)
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The first integral in Eq. (2.45) can be expressed as follows using expression 12.1.8
in Abramowitz and Stegun (1964), i.e.∫ ∞

0

exp (−νrt)√
t2 + 1

dt =
π

2
[H0 (νr) − Y0 (νr)] (2.46)

Here H0 is the Struve function of zero order. This leads to

IG = −4ν

π
(I1 − I2)

= −νπ exp (νz) [H0 (νr)− Y0 (νr)]− 2ν exp (νz)

∫ |z|/r
0

exp (νrt)√
t2 + 1

dt

(2.47)

We define t =
|z|
r
u, substitute it into Eq. (2.47) and change the integration variable

to u, then make Taylor expansion of exponential function of integral and keep the
first two terms. This means

IG = −νπ exp (νz) [H0 (νr)− Y0 (νr)]− 2ν exp (νz) |z|
∫ 1

0

exp (ν |z|u)√
(|z|u)

2
+ r2

du

= −νπ exp (νz) [H0 (νr)− Y0 (νr)]

−2ν exp (νz) |z|

∫ 1

0

1√
(|z|u)

2
+ r2

du+

∫ 1

0

ν |z|u√
(|z|u)

2
+ r2

du


(2.48)

The last two integral expressions follow from a Taylor expansion at u = 0 of the
exponential function exp(ν |z|u) in the integrand in Eq. (2.48). The two lowest
order terms 1 and ν |z|u are kept which are symmetric term and antisymmetric
term respectively in term of u in order to get continuous result. We now study the
contribution of the part IG to the inner expansion of the velocity potential, i.e.

ϕFI3 =
Q exp (−iωt)

4π
c

∫ 2π

0

cos (nα) IG dα (2.49)

We study the first part involving the Struve and Bessel functions close to the
torus. The first two order terms are obtained by making Taylor expansion at ρ = c
in Eq. (2.29) and defining µ = α − β. The term involving the Bessel function Y0

can be handled in the same way as led to Eq. (2.36) and will be combined with
this term. The term involving the Struve function can formally be rewritten as:∫ 2π

0

H0

(
ν
√
ρ2 + c2 − 2ρc cos (α− β)

)
cos (nα) dα

= cos (nβ)

∫ 2π

0

H0

(
ν
√
ρ2 + c2 − 2ρc cosµ

)
cos (nµ) dµ

(2.50)

We have here introduced the local coordinate system Oy′z′ defined in Figure 2.2.
Furthermore, we should note that z = z′. Special attention must be paid when
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calculating the inner expansion due to the two integrals in Eq. (2.48). The integral

− 2ν exp (νz) |z|
∫ 1

0

ν |z|u√
(|z|u)

2
+ r2

du = −2ν2 exp (νz)
[√

z2 + r2 − r
]

(2.51)

is the order of O(ν2z) which is a higher-order term due to low-frequency assumption
and can be neglected. The integral

−2ν exp (νz) |z| c
4

∫ 2π

0

∫ 1

0

cos (nµ)√
(|z|u)

2
+ r2

dudµ (2.52)

has been first derived for one asymptotic expression for small z when y′ = 0. We
now study the outer integral

c

∫ 2π

0

cos (nµ)√
(|z|u)

2
+ r2

dµ (2.53)

The procedure is similar as done for Eq. (2.25) which gives

4c√
r′2 + (u2 − 1) z2 + 4ρc

K

(
2

√
ρc

r′2 + (u2 − 1) z2 + 4ρc

)

≈ 2 ln

(
8c√

r′2 + (u2 − 1) z2

) (2.54)

and −2Kn. Then, we make a Taylor expansion of the exponential function and
keep the lowest order term. This means

−ν |z|
∫ 1

0

[
ln

(
8c√

r′2 + (u2 − 1) z2

)
− Kn

]
du

= −ν |z|
[
ln

(
8c

r′

)
− Kn + 1

]
− νθy′

(2.55)

When z = 0, Eq. (2.52) gives the asymptotic expression ν
π

2
|y′| for small y′. Then

the two asymptotic expressions are combined to get an asymptotic expression for
both small y′ and small z by requiring that 2D Laplace equation is satisfied. We
get correctly to O (Qνa)

ϕFI3 =
Q exp (−iωt) cos (nβ)

π

×

{
− νπc

4
(1 + νz)

∫ 2π

0

H0 (νr)

∣∣∣∣
ρ=c

cos (nµ) dµ

+
π2

2
(1 + νz) νc

[
Jn (νc)Yn (νc) +

1

πc
|y′|
]

− ν |z|
[
ln

(
8c

r′

)
− Kn + 1

]
+ ν

(π
2
|y′| − θy′

)}
(2.56)



2.7. Near-field solution and matching with far-field solution 29

The total inner expansion of the far-field expansion is combining Eq. (2.28), E-
q. (2.36) and Eq. (2.56), i.e.

ϕFI =
Q exp (−iωt)

π
cos (nβ)

×

{
(1 − ν |z|)

[
ln

(
8c

r′

)
− Kn

]
− ν |z| − νθy′

+ (1 + νz) νcπ2

{
−1

2
Jn (νc)Yn (νc) + i [Jn (νc)]

2

}
− νπc

4
(1 + νz)

∫ 2π

0

H0 (νr)

∣∣∣∣
ρ=c

cos (nµ) dµ

}
(2.57)

We see that the term involves |y′|, which causes a discontinuity in the derivative
at y′ = 0 in Eq. (2.36) is canceled to the order of Qν by the terms involving |y′|
in Eq. (2.56). This means no discontinuity in the derivative of the total velocity
potential.

2.7 Near-field solution and matching with far-field
solution

As described in Section 2.5, the details of the torus cross section are seen in the
near-field description. The draft of the section is assumed to be equal to the radius
a of the cross section. Since the first and second derivatives with respect to the
tangential direction are much smaller than the first and second derivatives respect
to the other two directions which are radial and vertical directions of the torus
(Eq. 2.14), the near-field velocity potential appears nearly constant in the tangential
direction of the torus. An implicit assumption is that we do not consider a high
Fourier mode. Thus the governing equation for the near-field velocity potential
ϕN is the 2D Laplace equation in the cross-sectional plane as shown in Eq. (2.15).
The boundary conditions are linearized and the free-surface and body-boundary
conditions are:

− νϕN +
∂ϕN

∂z′
= 0 on z′ = 0 (2.58)

∂ϕN

∂r′
= −ȧn cos (nβ) cos θ on r′ = a, z′ ≤ 0 (2.59)

The two terms of free-surface condition in Eq. (2.58) are of different orders. The

first term −νϕN is the order of ϕN and the second term
∂ϕN

∂z′
is the order of ϕN/ε

which is much larger than the first term. However, we still keep the order of ϕN

arisen from
∂ϕN

∂z′
in order to satisfy the linearized free-surface condition and will

later make approximations. The boundary conditions in Eq. (2.59) demand that
there is no water flow through the boundaries of the circle.
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In order to obtain the velocity potential in the near-field, we start with Ursell
(1949)’s study. Ursell (1949) considered the heave motion of a semi-submerged
circular cylinder in infinitely deep water. He assumed that the amplitude of forced
heave motion was small and then the amplitude of radiated wave was proportional
to it. Since both the cylinder and torus are circular section, we will use the local
coordinate systems shown in Figure 2.2 to introduce his expressions. In order to
find the velocity potential, firstly, a series of infinite-fluid multipoles are combined
to satisfy the linearized free-surface condition and the symmetry condition which
is ∂ϕU/∂θ = 0, at θ = 0. The expression is

gb

πω

∞∑
m=1

A′2ma
2m

[
cos (2mθ)

r′2m
+

ν cos (2m− 1) θ

(2m− 1) r′2m−1

]
exp (−iωt) (2.60)

Since Eq. (2.60) goes to zero as r′ →∞, a 2D wave source (Green function G2D,U )
which satisfies the linearized free-surface condition, symmetry condition and 2D
radiation condition is added. The source singularity is at the center of the circular
cylinder. The velocity potential ϕU can be then presented as follows.

ϕU =
gb

πω

{
G2D,U +

∞∑
m=1

A′2ma
2m

[
cos (2mθ)

r′2m
+

ν cos (2m− 1) θ

(2m− 1) r′2m−1

]}
exp (−iωt)

(2.61)

The source G2D,U can be approximated as Newman (1978) did for small νa.
In addition,we introduce constants Kn and Cn in order to get a near-field solution
that matches with the far-field. This means the velocity potential in the near-field
is expressed as:

ϕN = ȧn cos (nβ)

×

{
A0

{
(1 + νz′)

[
ln

(
8c

r′

)
− Kn + Cn

]
+ νz′ − νy′θ

}

+

∞∑
m=1

A2m

[
cos (2mθ)

r′2m
+

ν cos (2m− 1) θ

(2m− 1) r′2m−1

]} (2.62)

A0 and A2m are complex unknowns which must be determined from the body
boundary conditions Eq. (2.59). In practice the terms of A2m will lead to an infinite
system of simultaneous equations, which can be truncated and solved by numercial
methods. Ursell (1949) proved that this process is convergent for a circular body
profile. r′ is the radial distance from the center of the section. Eq. (2.62) satisfies
correctly the free-surface condition and the 2D Laplace equation with an error(
ν2a2

)
.

The coefficient Cn in Eq. (2.62) for the near field potential can be found by
matching asymptotic expansion of the far field with Eq. (2.57) and the near field
velocity potentials. The matching is performed by setting the expression for the far
field potential equal to the near field potential. r′ goes to infinity in the near field
expression. This procedure demands the two potentials to be equal. The far field
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expression is used as close to the torus as possible, while the near field description
is used as far out from the section as possible. The result is

Cn = πνc

{
− π

2
Jn (νc)Yn (νc) + iπ [Jn (νc)]

2

− 1

4

∫ 2π

0

H0

(
νc
√

2 (1 − cosµ)
)

cos (nµ) dµ

} (2.63)

We can evaluate the Struve function by Eq. (2.50). The body boundary condition-
s Eq. (2.59) lead to the following equation

A0

{
−ν cos θ

[
ln

(
8c

a

)
− Kn + Cn

]
− 1

a
− νθ sin θ

}
−
∞∑
m=1

A2m

[
2m cos (2mθ)

a2m+1
+
ν cos (2m− 1) θ

a2m

]
= − cos θ

(2.64)

The complex values of A0 and A2m follow by satisfying Eq. (2.64) at given values of
θ when 0 ≤ θ ≤ π/2. The solution is consistent with previous asymptotic solution
for νa → 0 by Faltinsen (2011) but contains additional terms which make the
solution applicable to a broader frequency range. However, it is not valid for high
frequencies.

The main difference between Eq. (2.62) and the near field velocity potential
by Newman (1978) is the constants Kn and Cn, which influence strongly the low-
frequency asymptotic. The reason of this difference is due to that a straight line
distribution of sources has been applied to represented the geometry of the ship by
Newman (1978) in the far field, while a line distribution of sources along the center
line of the torus has been applied to represented the geometry of the torus in the
far field in our study.

The 2D vertical added mass and damping coefficients a
(n)
33 and b

(n)
33 for mode n

can be determined by integrating the linearized hydrodynamic pressure force due
to the pressure term −ρ∂ϕN/∂t over the mean wetted surface of the cross-section.
The torus section is given a forced harmonic oscillation with velocity ȧn cos(nβ) of
mode n. The dynamic pressure −ρ∂ϕN/∂t is found by differentiating the near field
velocity potential ϕN for vertical motion mode n with respect to t. The dynamic
pressure is multiplied with the negative z′−component of the body normal vector
cos θ and the radius a of the cross section and then integrated over the mean wetted
surface from θ = −π/2 to θ = π/2. The result is the added mass and damping
loads in z′−direction per unit length on the torus due to the forced motion of mode
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n. This leads to the following 2D vertical force due to the forced motion:

f3 = −ρ
∫ π/2

−π/2

∂ϕN

∂t
cos θadθ = fN3 än cos (nβ)

fN3 = −ρ
∫ π/2

−π/2
adθ cos θ

{
A0

{
(1 − νa cos θ)

[
ln

(
8c

a

)
− Kn + Cn

]
− νa cos θ − νaθ cos θ

}
+

∞∑
m=1

A2m

[
cos (2mθ)

a2m
+
ν cos (2m− 1) θ

(2m− 1) a2m−1

]}
(2.65)

The expression of fN3 can be analytically integrated.

fN3 = −ρa

{
A0

{(
2 − 1

2
πνa

)[
ln

(
8c

a

)
− Kn + Cn

]
− 3

4
πνa

}

+ A2
πν

2a
−

∞∑
m=1

A2m
2 cos (mπ)

a2m (4m2 − 1)

} (2.66)

The 2D vertical added mass and damping coefficients are formally defined by

fadded mass + damping
3 = −a(n)

33 än cos (nβ) − b
(n)
33 ȧn cos (nβ) (2.67)

By equalizing Eq. (2.65) and Eq. (2.67) we get

fadded mass + damping
3 = fN3 än cos (nβ)(

iωa
(n)
33 − b

(n)
33

)
ȧn cos (nβ) =

[
−iωRe

(
fN3
)

+ ωIm
(
fN3
)]
ȧn cos (nβ)

(2.68)

This means that

a
(n)
33 = −Re

(
fN3
)
, b

(n)
33 = −ωIm

(
fN3
)

(2.69)

When ω → 0, we get that

a
(n)
33

0.5ρπa2
=

4

π

{
2

π

[
ln

(
8c

a

)
− Kn

]
+

3− 4 ln 2

π

}
, b

(n)
33 = 0 (2.70)

The generalized added mass and damping coefficients of the torus associated
with the modes cos (nβ) , n = 0, 1, ... are:

A
(n)
33 = a

(n)
33 c

∫ 2π

0

cos2 (nβ) dβ

B
(n)
33 = b

(n)
33 c

∫ 2π

0

cos2 (nβ) dβ

(2.71)
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2.8 Generalized vertical excitation force

The torus is semi-submerged and assumed to be at rest. We consider incident deep-
water regular waves with wave amplitude ζa propagating along the positive x-axis.
According to linear wave theory for deep water, deep water implies h > λ/2 (Dean
and Dalrymple, 1991). h is the water depth and λ = 2π/ν is the wave length. We
assume long wave theory, that is, the waves are much longer than the cross-sectional
diameter of the torus, i.e. λ/a� 1. The incident wave potential is expressed as

ϕ0 =
gζa
ω

exp (νz + iνx − iωt) (2.72)

The wave elevation is found by differentiating ϕ0 with respect to time and
inserting the expression in the dynamic linear condition gζ+∂ϕ0/∂t = 0 on z = 0.
The wave elevation ζ is then expressed as

ζ = iζa exp (iνx − iωt) (2.73)

It is understood that it is the real part of the expression that has physical mean-
ing. We divide the vertical wave excitation loads into a Froude-Kriloff part and a
diffraction part.

Linear Froude-Kriloff force

The linear Froude-Kriloff force is obtained by properly integrating the undisturbed
incident dynamic pressure

pFK = ρgζai exp (νz + iνx − iωt) (2.74)

from the incident waves over the mean wetted surface of the torus. We make a
Taylor expansion at z = 0 of the exponential function exp(νz) and keep the two
lowest order terms 1 and νz. Therefore, an approximation of the Froude-Kriloff
pressure on the torus is

pFK = ρgζai (1 + νz) exp (iνxCL − iωt) (2.75)

where xCL = c cosβ is the x-coordinate of the center line of the torus. Since mode
superposition will be used to calculate the response of the torus, and each modal
equation will have a generalized added mass and damping coefficient, generalized
restoring coefficient and generalized excitation forces. It will then be most practical
to express the wave forces as a Fourier sum involving Bessel functions. We can write

exp (iνc cosβ) = J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ) (2.76)

We denote SC as the mean wetted cross-sectional surface of the torus and note
that for one torus that

−
∫
SC

(1 + νz)n3 ds = a

∫ π/2

−π/2
(1− νa cos θ) cos θ dθ = 2a (1− πνa/4) (2.77)
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This means that the vertical Froude-Kriloff force per unit length on the cross-
section of the torus can be approximated as

fFK3 = ρgζai

[
J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ)

]
× bw (1− πνa/4) exp (−iωt)

(2.78)

We can interpret Eq. (2.78) as follows. There is one term shown by Eq. (2.79)
representing the change in buoyancy force per unit length due to the incident wave
elevation.

ρgbwζai

[
J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ)

]
exp (−iωt) (2.79)

The other term shown by Eq. (2.80) is the mean displaced mass per unit length
times the vertical acceleration of the incident waves at the mean free-surface.

−ρgbwζa
πνa

4
i

[
J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ)

]
exp (−iωt) (2.80)

Linear diffraction force

Fundamentally, the linear diffraction force can be obtained by integrating the d-
iffraction pressure which changes the pressure filed due to the presence of the torus
over the mean wetted surface of the torus. The diffraction potential ϕD can be
found in a similar way as the radiation problem by solving a boundary value prob-
lem. The diffraction potential ϕD must also satisfy the Laplace equation and the
free-surface condition. In order to compensate for the disturbance of the inciden-
t wave around the torus by an additional condition at the body boundary, the
normal gradient of the diffraction potential is equal but opposite in sign to the
normal gradient of the incident potential. In this way we ensure that the normal
component of the total velocity on the torus is equal to zero as follows

∂ (ϕ0 + ϕD)

∂n
= 0 on SC (2.81)

Since the radiation problem has already been solved in our study, an approxi-
mation of the diffraction force involving forced oscillations with minus the incident
vertical wave velocity and acceleration at z = zm along the torus can be applied.
Here zm is a weighted z-coordinate of the torus and obtained as follows

zm =

2

∫ 0

−a
z′fy′ (z′) dz′

πa2 (2.82)

where fy′(z
′) is the function that describes the width of the cross section of the

torus for different z′. The latter choice of zm has not been rationally justified. The
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vertical diffraction force per unit length is then a
(m)
33 a3ζ + b

(m)
33 wζ . a3ζ and wζ are

the vertical acceleration and velocity of the incident waves at z = zm, respectively.
Here

wζ =
∂ϕ0

∂z
, a3ζ =

∂2ϕ0

∂z∂t
(2.83)

where

wζ = −ωζa exp (νzm + iνxCL − iωt) =

−ωζa exp (νzm − iωt)

[
J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ)

]
(2.84)

and similarly for a3ζ . Since Eq. (2.84) is a Fourier-series in β, we can use the
results from the forced vertical motion problem. The vertical diffraction force per
unit length is therefore

fD3 = ζa exp (νzm − iωt)

[
J0 (νc)

(
−iω2a

(0)
33 + ωb

(0)
33

)
+

∞∑
m=1

2imJm (νc)
(
−iω2a

(m)
33 + ωb

(m)
33

)
cos (mβ)

] (2.85)

Another way to express the diffraction force is by using Green’s second identity
in a similar way as is done in deriving the Haskind relationship (Haskind, 1948). We
then avoid the ambiguity in specifying zm in Eq. (2.85). We denote the diffraction
potential ϕD and introduce a velocity potential ϕ3 that satisfies the body boundary
condition ∂ϕ3/∂n = n3 and the same free-surface and radiation conditions as ϕD.
The vertical diffraction force is first expressed as

fD3 = −ρiω
∫
SC

ϕDn3 ds = −ρiω
∫
SC

ϕD
∂ϕ3

∂n
ds (2.86)

Applying Green’s second identity, we can get:

fD3 = −ρiω
∫
SC

ϕD
∂ϕ3

∂n
ds = −ρiω

∫
SC

∂ϕD
∂n

ϕ3 ds (2.87)

We now use that the incident wave potential ϕ0 and the diffraction potential ϕD
satisfies the body boundary condition Eq. (2.81). The vertical diffraction force can
then be finally expressed as:

fD3 = −ρiω
∫
SC

∂ϕD
∂n

ϕ3 ds = ρiω

∫
SC

∂ϕ0

∂n
ϕ3 ds

≈ ρiω

∫
SC

n3
∂ϕ0

∂z
ϕ3 ds ≈ ρiω2ζa exp (−iωt)

∫
SC

n3 (1 + νz)ϕS3 ds

(2.88)

We have here introduced the velocity potential

ϕS3 =

[
J0 (νc) +

∞∑
m=1

2imJm (νc) cos (mβ)

]
ϕ3 (2.89)
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The solution can be expressed by Eq. (2.62), i.e.

ϕS3 = J0 (νc)ϕN0 +

∞∑
m=1

2imJm (νc) cos (mβ)ϕNm

ϕNm =A0

{
(1 + νz′)

[
ln

(
8c

r′

)
− Km + Cm

]
+ νz′ − νy′θ

}
+

∞∑
n=1

A2n

[
cos (2nθ)

r′2n
+
ν cos (2n− 1) θ

(2n− 1) r′2n−1

] (2.90)

Here A0 and A2n are a function of the mode m. Eqs. (2.86) to (2.88) involve
integrations over the mean cross-sectional wetted area.

The theoretical solution of Eq. (2.88) is:

fD3 ≈ ρiω2ζa exp (−iωt)
∫
SC

n3 (1 + νz)ϕS3 ds

= − ρaiω2ζa exp (−iωt)

[
J0 (νc) (Z1 − Z3)

+

∞∑
m=1

2imJm (νc) cos (mβ) (Z2 − Z3)

] (2.91)

The expressions of Z1, Z2 and Z3 are as follows.

Z1 =A0

{(
4

3
ν2a2 − νaπ + 2

)[
ln

(
8c

a

)
+ C0

]

+ νa

(
16

9
νa− 3

4
π

)}
+A2

πν

4a

Z2 =A0

{(
4

3
ν2a2 − νaπ + 2

)[
ln

(
8c

a

)
−Km + Cm

]

+ νa

(
16

9
νa− 3

4
π

)}
+A2

πν

4a

Z3 =

∞∑
n=1

A2n

[
2 cos (nπ)

a2n (4n2 − 1)
+

4ν2 cos (nπ)

a2n−2 (16n4 − 32n3 + 8n2 + 8n− 3)

]

(2.92)

2.9 Equations of vertical motions

We substitute w given by Eq. (2.11) into Eq. (2.10) and use the fact that ∂/∂s =
c−1∂/∂β. The resulting equation are then multiplied successively by cos (mβ) ,m =
0, 1, ... and integrated along the center line of the torus which means multiplying
the equation with the torus radius c and integrating from β = 0 to 2π. Eq. (2.10)
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becomes as follows∫ 2π

0

{
m

[
ä0 +

∞∑
n=1

än cos (nβ)

]
+ ρgbw

[
a0 +

∞∑
n=1

an cos (nβ)

]

+
EI

c4

∞∑
n=1

(
n4 − n2

)
an cos (nβ) +

Tas
c2

∞∑
n=1

n2an cos (nβ)

}
cos (mβ) cdβ

=

∫ 2π

0

(
f3 (β)

added mass + damping
+ f3 (β)

wave excit

+

8∑
i=1

Tp,3δ (β − βi)

)
cos (mβ) cdβ

(2.93)

Here Tp,3 is the vertical component of pre-tension of the mooring lines. βi
describes the attachment positions between mooring lines and torus. δ is the Dirac
delta function. Due to the property of orthogonal functions shown in Eq. (2.94)

∫ 2π

0

cos (mβ) cos (nβ) dβ


= 0, m 6= n

= 2π, m = n = 0

= π, m = n = 1, 2, ...

(2.94)

The coupled second order differential equation system arises by using Eq. (2.78)
and Eq. (2.85) to express the wave excitation loads. We get

(
m+ a

(0)
33

)
ä0 + b

(0)
33 ȧ0 + ρgbwa0 =

1

2π

∫ 2π

0

8∑
i=1

Tp,3δ (β − βi) dβ+[(
1− πνa

4

)
ρgbw −

(
ω2a

(0)
33 + iωb

(0)
33

)
exp (νzm)

]
ζaJ0 (νc) i exp (−iωt)

(
m+ a

(m)
33

)
äm + b

(m)
33 ȧm +

[
ρgbw +

EI

c4
(
m4 −m2

)]
am

+
1

πc2

∞∑
n=1

8∑
i=1

n2T (i)
as

∫ βi+1

βi

cos (nβ) cos (mβ) dβan =

1

π

∫ 2π

0

8∑
i=1

Tp,3δ (β − βi) cos (mβ) dβ

+
[(

1− πνa

4

)
ρgbw −

(
ω2a

(m)
33 + iωb

(m)
33

)
exp (νzm)

]
× ζa2Jm (νc) im+1 exp (−iωt) , m = 1, 2, ...

(2.95)

The axial tension Tas is treated in a simplified manner. This allows for simplifica-
tion of calculations, rather than solving the structural problem by a finite element
model. The simplified calculation procedure is explained in detail in Appendix B.
In summary, Tas is assumed to be piecewise constant along the torus, divided in
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eight sections defined by the crow foot mooring arrangement. In calm conditions,
the set-up is symmetric with respect to the x− z plane, and the values are found
in static conditions from the pre-tensions in the moorings. The term representing
the axial stiffness in Eq. (2.95) is given analytically by∫ βi+1

βi

cos (nβ) cos (mβ) dβ

=


(βi+1 − βi) [m sinm cosn− n cosm sinn]

m2 − n2
, m 6= n

sin (2mβi+1)− sin (2mβi) + 2m (βi+1 − βi)
4m

, m = n

(2.96)

Alternatively and more accurately we can use Eq. (2.91) to express the diffrac-
tion force part of Eq. (2.95). The modal equations are found by dividing the
resulting expressions in Eq. (2.93) with 2πc and πc for n = 0 and n = 1, 2, ...
respectively. Eq. (2.95) shows that the curved Euler-Bernoulli beam equation (E-
q. 2.10) which involves the vertical motion represented by Fourier series could be
decomposed to individual modal equations. Since the axial tension Tas on the left
hand side of Eq. (2.95) is assumed to be piecewise constant along the torus and
integrated piecewise, the term associated with the axial tension Tas will provide
coupling effect between different modes. The vertical motion of each mode n can
be obtained from Eq. (2.95) by using the generalized added mass, damping and
excitation force that we have already derived. Then, the total vertical motion at
any point on the torus just simply superposes the vertical motion of each mode
multiplied with cos(nβ) which defines the point position in Figure 2.1.

2.10 Summary

A low-frequency slender-body theory for the vertical added mass, damping loads on
an elastic semi-submerged torus has been derived by matched asymptotic expan-
sions with a near-field and far-field solution. Linear Froude-Kriloff force is obtained
by property integrating the undisturbed incident dynamic pressure from the inci-
dent waves over the mean wetted surface of the torus, and linear diffraction force
is approximately obtained by forcing oscillations with minus the incident vertical
wave velocity and acceleration at a mean position, then multiplied with damping
and added mass respectively. A Haskind-type expression for linear diffraction force
is also presented.



Chapter 3

Verification studies of the
low-frequency slender-body
theory

In this chapter, the most important verification tests performed in the developmen-
t of the low-frequency slender-body theory are presented. Before getting into the
various forms and strategies of testing and checking studies, we must understand
what is meant by verification and validation and what is the difference between
the two. Verification of a computer program means to check that the program is
actually a correct representation of the mathematical model that forms the basis
for it. Validation is the demonstration that the verified computer program is an
adequate representation of the physical reality (ITTC, 1990). Another definitions
of verification and validation is that verification is intended to check whether the
program conforms to specifications or solves its equations correctly. While valida-
tion is intended to ensure the program meets the expectations and requirements
or solves the correct equations. The latter is with respect to the physical problem
being studied. Thus, verification is a purely mathematical exercise that does not
address the physics.

We will in the following present some of the verification test studies that have
been performed for testing the low-frequency slender-body theory.

The low-frequency slender-body theory has been verified by using WAMIT.
WAMIT is a computer program based on the linear and second-order potential
theory for analyzing floating or submerged bodies, in the presence of ocean waves.
The boundary integral equation method (BIEM), also known as the panel method,
is used to solve for the velocity potential and fluid pressure on the submerged
surfaces of the bodies. Separate solutions are carried out simultaneously for the
diffraction problem, giving the effects of incident waves on the body, and the ra-
diation problems for each of the prescribed modes of motion of the bodies. These
solutions are then used to obtain the relevant hydrodynamic parameters including
added-mass and damping coefficients, exciting forces, response amplitude operators

39
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(RAO’s), the pressure and fluid velocity, and the mean drift forces and moments.
Specifically, the radiation and diffraction velocity potentials on the body wetted
surface are determined from the solution of an integral equation obtained by using
Green’s theorem with the frequency-domain source-potential satisfying the free-
surface and radiation conditions as the Green function. In addition to the conven-
tional six degrees of rigid-body motion WAMIT is also able to handle generalized
modes to represent a wide variety of physical phenomena including hydroelastic
deformations.

WAMIT includes two options to consider the wave-body interaction which are
low-order method and higher-order method. The conventional low-order method,
where the body geometry is represented by small quadrilateral panels and the veloc-
ity potential is assumed constant on each panel, often require a fine discretization of
the body. As the panel size decreased and the number of panels increased, the rep-
resentation of the body geometry and the hydrodynamic results will become more
accurate. One way to check the accuracy of the results is to perform convergence
study. However, the computational time will increase with increasing number of
panels. In order to reduce the computational time and increase the accuracy of the
results a higher-order method is introduced, where both the body geometry and
the velocity potential are represented by B-splines.

The higher-order method first divides the body into sub-surfaces that are dis-
continuous between the common edge (corner) as ‘patch’, then, each patch will
be further divided into panels by using B-splines. The other important subject
to consider is the manner in which the velocity potential is represented on each
patch. Desirable properties of this representation are that it should be smooth
and continuous, corresponding to the physical solution for the fluid flow over the
surface, with control over the accuracy. B-splines here are used to provide a contin-
uous representation of the solution, so the order of B-splines should be selected to
ensure continuity of derivatives as well as higher-order derivatives on each patch.
More specifically, on each patch the velocity potential is represented by a tensor
product of B-spline basis functions

φ (u, v) =

Mv∑
j=1

Mu∑
i=1

φijUi (u)Vj (v) (3.1)

Here a pair of parametric coordinates (u, v) are used to define the position on each
patch. Ui and Vj are the B-spline basis functions of u and v, and Mu and Mv are
the number of basis functions in u and v, respectively. The unknown coefficients
φij are determined ultimately by substituting this representation in the integral
equation for the potential. The total number of unknowns on a patch is Mu×Mv.
In the low order panel method, the accuracy of the numerical solution depends on
the number of panels. In the higher-order method the accuracy depends on two
parameters: the order of the basis functions and their number Mu and Mv. Order
is defined as the degree of the polynomial plus one.

An elastic semi-submerged torus used in model tests which is detailed described
in Chapter 4 with torus radius c = 0.75m and cross-sectional radius a = 0.019m is
studied. One quarter of the torus model is established in WAMIT because a torus
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has two planes of symmetry. This can be exploited to minimize computing time
and to increase the accuracy of calculation since large number of panel subdivisions
on each patch can be used. The non-dimensional results are functions of the non-
dimensional wave number νa and a/c which is 0.0253 in our case.

The 3D generalized added mass and damping coefficients obtained by WAMIT

are transformed to the equivalent sectional values a
(n)
33 and b

(n)
33 by means of E-

q. (2.71). The 3D generalized forces obtained by WAMIT is done similarly and the

sectional vertical wave-excitation force amplitudes are denoted f
(n)
3 . We have con-

sidered twenty modes. The comparisons of generalized added mass, damping coef-
ficients, vertical excitation forces and response amplitude operators (RAO’s) of the
torus for the modes number n = 0, 1, ..., 11 are shown in this chapter. The compar-
isons of generalized added mass, damping coefficients, vertical excitation forces and
response amplitude operators of the torus for the modes number n = 12, 13, ..., 19
are shown in Appendix C.

3.1 Verification of generalized added mass and
damping coefficients

The sectional added mass and damping are made non-dimensional as a
(n)
33 /m and

b
(n)
33 /mω, respectively. Here m = 0.5ρπa2. The added mass and damping coeffi-

cients for the twelve lowest modes are presented in Figures 3.1 to 3.3 and in Fig-
ures 3.4 to 3.6, respectively, in the practical interest frequency range correspond
to νa from 0 to 0.279 showing good agreement between low-frequency slender-
body theory and WAMIT. There is also as expected an increasing difference with
increasing νa.

The strip theory results are presented in Figure 3.7 in order to illustrate together
with Figures 3.1 to 3.6 the fact that there are important 3D wave effects on the
scale of the torus radius. The strip theory calculations have been done with a
Boundary Element Method (BEM) using 100 panels on the mean wetted body
surface. Strip theory predicts that added mass goes to infinity when the frequency
goes to zero while the 3D calculations approach a finite value, which is mode
number dependent and equal to 4.758m in heave for the studied case. The strip-
theory calculated damping coefficient approaches zero when the frequency goes
to zero but with a different asymptotic behavior than low-frequency slender-body
theory and WAMIT.

The strip theory does not predict the strong oscillatory behavior as a function
of νa as the 3D theories do. The oscillatory behavior are due to hydrodynamic
interaction on the scale of the torus radius c. The added mass may become negative
for certain frequencies according to the 3D theories. Furthermore, the damping
coefficients become zero for certain values of νa by the 3D methods. The zeroes
depend on the mode number. Zero damping means that there are no radiated
far-field waves. When νa > 0, the zeroes of the damping coefficients correspond
to zeroes of the Bessel function Jn(νa) according to low-frequency slender-body
theory. Strip theory calculations are common in engineering calculations of wave-
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Figure 3.1: Comparison of sectional vertical added mass coefficients a
(n)
33 of a torus

for the modes number n = 0, 1, 2, 3 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure 3.2: Comparison of sectional vertical added mass coefficients a
(n)
33 of a torus

for the modes number n = 4, 5, 6, 7 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure 3.3: Comparison of sectional vertical added mass coefficients a
(n)
33 of a torus

for the modes number n = 8, 9, 10, 11 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure 3.4: Comparison of sectional vertical damping coefficients b
(n)
33 of a torus for

the modes number n = 0, 1, 2, 3 with a/c = 0.0253 by means of the low-frequency
slender-body theory (LST) and WAMIT versus nondimensional wave number νa.
m is displaced cross-sectional mass.
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Figure 3.5: Comparison of sectional vertical damping coefficients b
(n)
33 of a torus for

the modes number n = 4, 5, 6, 7 with a/c = 0.0253 by means of the low-frequency
slender-body theory (LST) and WAMIT versus nondimensional wave number νa.
m is displaced cross-sectional mass.
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Figure 3.6: Comparison of sectional vertical damping coefficients b
(n)
33 of a torus for

the modes number n = 8, 9, 10, 11 with a/c = 0.0253 by means of the low-frequency
slender-body theory (LST) and WAMIT versus nondimensional wave number νa.
m is displaced cross-sectional mass.
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induced loads on the floater of a fish farm. The presented results illustrate the
limitations of such an approach.
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Figure 3.7: Strip theory calculations of 2D heave added mass and damping co-
efficients versus nondimensional wave number νa. m is displaced cross-sectional
mass.

We have in Figures 3.8 and 3.9 illustrated the wave field due to forced heave
motion by plotting the wave amplitude as a function of radial distance ρ from the
torus center for selected frequencies by means of WAMIT. The wave amplitude
ζra caused by heave oscillation is made non-dimensional by forced heave motion
amplitude as ζra/η3a and the radial distance ρ defined in Figure 2.1 is made non-
dimensional by the radius of torus as ρ/c. The evaluation of the free-surface requires
special caution close to the body surface since this analysis requires a higher degree
of numerical precision. Within a distance on the order of the dimensions of the
adjacent panel, field-point quantities cannot be computed reliably (Newman and
Lee, 1992). One should notice that the discontinuity of radiated wave amplitude
around ρ/c = 1.0 is due to the present of torus. In general, the wave amplitude
inside the torus increases with the increasing of frequencies and the maximum
amplitude appears at the center of the torus for the studied cases. Figure 3.8 shows
the wave field due to forced heave motion for frequencies with zero damping which
are νa = 0, 0.061, 0.139, 0.216. The far-field wave amplitudes outside the torus are
zero as expected. Figure 3.9 shows the wave field due to forced heave motion for
frequencies with maximum damping which are νa = 0.025, 0.109, 0.195, 0.277. The
far-field radiated wave amplitude outside the torus decays as 1/

√
ρ as expected

from the source expression G1 in Eq. (2.21).
The comparisons between WAMIT and the low-frequency slender-theory theory

of the generalized added mass coefficient as illustrated in Figures 3.1 to 3.3 show
increasing differences with increasing mode number. These differences appear from
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Figure 3.8: Radiated wave amplitude due to forced heave motion as a function of
radial distance ρ from the torus center for selected frequencies with zero damping
which are νa = 0, 0.061, 0.139, 0.216 by means of WAMIT.
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Figure 3.9: Radiated wave amplitude due to forced heave motion as a function
of radial distance ρ from the torus center for selected frequencies with maximum
damping which are νa = 0.025, 0.109, 0.195, 0.277 by means of WAMIT.
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ω = 0 in the added mass coefficients and remain of similar magnitude for all
frequencies. We have illustrated the differences in vertical added mass coefficients
for ω = 0 as a function of mode number n in Figure 3.10. A reason to the differences
for higher modes may be that the near-field solution should have satisfied 2D
Helmholtz equation instead of 2D Laplace equation. The 2D Helmholtz equation
follows by substituting solution form ϕN = ϕN cos(nβ) in the 3D Laplace equation
which gives

∂2ϕN

∂y′2
+
∂2ϕN

∂z′2
− n2

c2
ϕN = 0 (3.2)
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Figure 3.10: Prediction of vertical added mass coefficients a
(n)
33 of a torus with

a/c = 0.0253 at frequency ω = 0 as a function of mode number n by means of
the low-frequency slender-body theory (LST) and WAMIT. m is displaced cross-
sectional mass.

We have also compared WAMIT with Newman (1977b) who derived an asymp-
totic theory for a floating rigid torus by means of matched asymptotic expansions
with different assumptions than ours. He assumes the wavelength is the order of
the cross-sectional radius and small relative to the torus radius. Linear theory
with the same free-surface condition as ours is assumed. The far-field solution of
the velocity potential inside the torus is expressed as AnJn(νρ) exp(νz) cos(nβ).
Here n = 0 and 1 correspond to forced heave and pitch, respectively. The inner
expansion at the cross-section is expressed by the following asymptotic expression
valid for large νρ.

An

√
2

πνρ
cos (νρ − 0.5nπ − 0.25π) exp(νz) cos(nβ) (3.3)
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The inner domain solution contains strip theory results with the consequence that
heave and pitch added mass are singular when νa→ 0. The comparisons of heave
and pitch sectional added mass and damping with WAMIT for our analyzed torus
are presented in Figures 3.11 and 3.12.
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Figure 3.11: Comparison of sectional added mass coefficients a
(n)
33 of a torus for

heave and pitch with a/c = 0.0253 by means of WAMIT and Newman (1977b)’s
theory versus nondimensional wave number νa. m is displaced cross-sectional mass.
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Figure 3.12: Comparison of sectional damping coefficients b
(n)
33 of a torus for heave

and pitch with a/c = 0.0253 by means of WAMIT and Newman (1977b)’s theory
versus nondimensional wave number νa. m is displaced cross-sectional mass.

The agreement is good except for small values of νa. When considering the
heave and pitch response, Froude-Kriloff forces and hydrostatic terms are dom-
inant. So the disagreement in added mass and damping for small values of νa
may be secondary for heave and pitch response. Newman (1977b)’s theory can
easily be generalized to flexible modes. However, the asymptotic expansion given
by Eq. (3.3) for n ≥ 2 becomes then poor for our considered range of νa with
unsatisfactory predictions of added mass and damping as a consequence.
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Figure 3.13: Comparison of sectional vertical wave excitation force amplitude f
(n)
3

of a torus for the modes number n = 0, 1, 2, 3 with a/c = 0.0253 by means of the
low-frequency slender-body theory (LST) with and without Haskind relationship
and WAMIT versus nondimensional wave number νa.

3.2 Verification of generalized vertical excitation
forces and response amplitude operators

The sectional vertical wave excitation force amplitudes are made non-dimensional

as f
(n)
3 /ρgcζa. Calculated values of the sectional vertical wave-excitation force am-

plitudes f
(n)
3 , n = 0, 1, ..., 11 by means of the low-frequency slender-body theory

with and without Haskind relationship and WAMIT versus nondimensional wave
number νa are presented in Figures 3.13 to 3.15. The diffraction part of the force
by means of the low-frequency slender-body theory has been calculated by mean-
s of Eq. (2.85) with zm = −4a/3π. The agreement between the low-frequency
slender-body theory with and without Haskind relationship and WAMIT is similar
as for the added mass and damping coefficients. The excitation force amplitudes
are according to the low-frequency slender-body theory zero for certain frequencies
corresponding to zeroes of the Bessel function Jn(νa).

We should note that the phases of excitation force are different due to different
definitions of incident wave between the low-frequency slender-body theory and
WAMIT. The incident wave potential and incident wave elevation have been defined
as Eqs. (2.72) and (2.73) respectively in our study while they are defined as follows
in WAMIT

ϕ0 =
igζa
ω

exp (νz + iωt − iνx) (3.4)
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Figure 3.14: Comparison of sectional vertical wave excitation force amplitude f
(n)
3

of a torus for the modes number n = 4, 5, 6, 7 with a/c = 0.0253 by means of the
low-frequency slender-body theory (LST) with and without Haskind relationship
and WAMIT versus nondimensional wave number νa.
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Figure 3.15: Comparison of sectional vertical wave excitation force amplitude f
(n)
3

of a torus for the modes number n = 8, 9, 10, 11 with a/c = 0.0253 by means of the
low-frequency slender-body theory (LST) with and without Haskind relationship
and WAMIT versus nondimensional wave number νa.
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ζ = ζa exp (iωt − iνx) (3.5)

The linear excitation force is obtained by integrating the dynamic pressure due
to incident wave potential ϕ0 and diffraction potential ϕD over the mean wetted
cross-sectional area of the torus as follows

fwave excit
3 = −ρ

∫
SC

∂ (ϕ0 + ϕD)

∂t
n3 ds (3.6)

This leads to that the amplitude of the excitation forces which are complex values
agree well between the low-frequency slender-body theory and WAMIT, but the
phases of excitation force are different, more specifically, the real and imaginary
parts of excitation force are different. This must be accounted for when calculate
the transfer functions of absolute vertical motion.

The calculated damping coefficients by the low-frequency slender-body theory
and WAMIT have been also verified by generalizing the relationship between global
damping and the wave excitation force (moment) amplitude derived by Newman
(1962) to include elastic modes. This means we can write

F
(n)
3 = ζa

√
2AB

(n)
33

ρg3

ω3
, n = 0, 1... (3.7)

where A = 1 for n = 0 and A = 2 for the other modes, B
(n)
33 is the 3D damping

coefficient and F
(n)
33 is the vertical excitation force (moment) amplitude. Further,

F
(n)
3 = f

(n)
3 c

∫ 2π

0
cos2(nβ)dβ and B

(n)
3 = b

(n)
3 c

∫ 2π

0
cos2(nβ)dβ. The generalized

Newman’s formula does not tell us what the phase of the wave excitation forces are
relative to the incident waves. It has been controlled in Figure 3.16 that both the
low-frequency slender-body theory and WAMIT predictions satisfy the generalized
Newman’s relationship.

Figures 3.17 to 3.19 show predicted values of the RAO’s of the twelve low-
est modes by means of the low-frequency slender-body theory with and without
Haskind relationship and WAMIT versus nondimensional wave number νa. The

RAO’s are defined as RAO
(n)
3 = |an,a/ζa|, where |an,a| is the motion amplitude of

mode n and can be obtained as follows.

w (β, t) =

∞∑
n=0

an,a cos (nβ) exp (−iωt)

a0,a

ζa
=

[(
1− πνa

4

)
ρgbw −

(
ω2a

(0)
33 + iωb

(0)
33

)
exp (νzm)

]
iJ0 (νc) + TA

−ω2
(
m+ a

(0)
33

)
− iωb(0)

33 + ρgbw

an,a
ζa

=

[(
1− πνa

4

)
ρgbw −

(
ω2a

(n)
33 + iωb

(n)
33

)
exp (νzm)

]
2in+1Jn (νc) + TB

−ω2
(
m+ a

(n)
33

)
− iωb(n)

33 + ρgbw +
EI

c4
(n4 − n2) + TC

(3.8)
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Figure 3.16: Comparison of sectional damping coefficients b
(n)
33 of a torus for the

modes number n = 0, 1, 2, 3, 4, 5 with a/c = 0.0253 by means of the low-frequency
slender-body theory (LST), WAMIT and Newman relationship versus nondimen-
sional wave number νa. m is displaced cross-sectional mass.

The expressions of TA, TB and TC are as follows.

TA =
1

2π

∫ 2π

0

8∑
i=1

Tp,3δ (β − βi) dβ

TB =
1

π

∫ 2π

0

8∑
i=1

Tp,3δ (β − βi) cos (mβ) dβ

TC =
1

πc2

∞∑
n=1

8∑
i=1

n2T (i)
as

∫ βi+1

βi

cos (nβ) cos (mβ) dβ

(3.9)

an,a are complex values taking the phase angle between the incident wave and the
response of each mode into account. The lowest mode is rigid body heave and
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Figure 3.17: Comparison of RAO’s |an,a/ζa| of a torus for the modes number
n = 0, 1, 2, 3 with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa.
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Figure 3.18: Comparison of RAO’s |an,a/ζa| of a torus for the modes number
n = 4, 5, 6, 7 with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa.



54 Verification studies of the low-frequency slender-body theory

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

νa

R
A
O

(8
)

3

 

 

LST
LST Haskind
WAMIT

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

νa

R
A
O

(9
)

3

 

 

LST
LST Haskind
WAMIT

0 0.05 0.1 0.15 0.2 0.25
0

0.005

0.01

0.015

0.02

νa

R
A
O

(1
0
)

3

 

 

LST
LST Haskind
WAMIT

0 0.05 0.1 0.15 0.2 0.25
0

0.002

0.004

0.006

0.008

0.01

νa

R
A
O

(1
1
)

3

 

 

LST
LST Haskind
WAMIT

Figure 3.19: Comparison of RAO’s |an,a/ζa| of a torus for the modes number n =
8, 9, 10, 11 with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa.

the second mode is similar as rigid body pitch but coupled with elastic modes.
From Figures 3.17 and 3.19 it can be seen as expected that the heave motion
follows the waves for long waves and pitch and the elastic modes go to zero when
ω → 0. The RAO predictions of higher modes depend on the non-dimensional
parameter EI/ρgac4. The considered bending stiffness and mass density of water
are EI = 0.464Nm2 and ρ = 1000kg/m3, respectively. The value of bending
stiffness has been chosen according to an elastic semi-submerged torus used in
model tests which is detailed described in Chapter 4. The agreement between
the low-frequency slender-body theory with and without Haskind relationship and
WAMIT is very satisfactory. There is also as expected an increasing difference
with increasing of νa similar for the added mass and damping coefficients and the
vertical excitation forces.

The cancellation effect is pronounced at certain frequencies according to the
low-frequency slender-body theory which correspond to zeros of excitation force
amplitudes that is zeroes of the Bessel function Jn(νa). Although cancellations
appear for the different modes, the cancellation frequencies for the different modes
are different. Therefore, the total vertical response of the torus is not equal to
zero. The predicted values of the RAO’s start to decrease from n = 2 with the
increasing of mode number n and the values are close to zero for the modes number
n = 8, 9, 10, 11 for νa < 0.15. This means that when the wave-induced vertical
motions are considered for νa < 0.15, the eight lowest modes are dominant and the
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twelve lowest modes are dominant for νa > 0.15.

3.3 Verification of wave-induced vertical motions

Eq. (3.8) gives the absolute motion for each position β and time t on the torus
and is assumed to be on the form w(β, t) = wa(β, ω) exp(−iωt). The transfer
functions of absolute vertical motion by means of the low-frequency slender-body
theory without using Haskind relation are the absolute values of the amplitude
of absolute vertical motion wa(β, ω) divided by the amplitude of incident wave as
follows. ∣∣∣∣wa(β, ω)

ζa

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

an,a(ω)

ζa
cos (nβ)

∣∣∣∣∣ (3.10)

The transfer functions of absolute vertical motion by means of the low-frequency
slender-body theory using Haskind relation can be obtained in a similar way by
replacing the linear diffraction force in Eq. (3.8) by Eq. (2.91). Since the absolute
vertical motion at a given position β on the torus is the sum of each mode amplitude
multiplied with cos(nβ) and an,a are complex values taking the phase angle between
the incident wave and the response of each mode into account. Thus, the absolute
vertical motion w(β, t) will also account for the phase angle between the incident
wave and the total response.

For a fish farm it matters for possible fish escapeis very important to know
the relative vertical motion between the torus and the water surface in waves,
even though there is net cover the free-surface area of the fish farm. If parts of the
torus becomes completely submerged, the net might not give a complete protection
against fish escape. The transfer functions of relative vertical motion r(β, t) can be
estimated by subtracting the incident wave elevation ζ(β, t) = iζa exp(iνc cosβ −
iωt) from the total vertical displacement as follows.

r (β, t) = w (β, t) − ζ (β, t)

=

[ ∞∑
n=0

an,a cos (nβ) − iζa exp(iνc cosβ)

]
exp (−iωt)

(3.11)

The latter expression should ideally have accounted for the effect of the torus on the
free-surface elevation. Eq. (3.11) gives the relative motion for each position β and
time t on the torus and is assumed to be on the form r(β, t) = ra(β, ω) exp(−iωt).
The transfer functions of relative vertical motion are then the absolute value of the
amplitude of relative vertical motion ra(β, ω) divided by the amplitude of incident
wave as follows.∣∣∣∣ra(β, ω)

ζa

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

an,a(ω)

ζa
cos (nβ) − i exp(iνc cosβ)

∣∣∣∣∣ (3.12)

Figures 3.20 and 3.21 show the transfer functions of absolute vertical motion
and relative vertical motion at five positions of a torus, receptively, based on adding
the effect of twenty modes by means of the low-frequency slender-body theory with
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and without Haskind relationship and WAMIT versus nondimensional wave number
νa. However, it is only about twelve modes that matter based on the discussion of
RAO’s.

Figure 3.20 shows good agreement of the transfer functions of absolute vertical
motion between the low-frequency slender-body theory with and without Haskind
relationship and WAMIT at β = 0, β = π/4 and β = π/2 for the calculated range of
νa and at β = 3π/4 and β = π for νa / 0.15. Figure 3.21 shows good agreement of
the transfer functions of relative vertical motion between the low-frequency slender-
body theory with and without Haskind relationship and WAMIT at β = π/4 and
β = π/2 for the calculated range of νa and at β = 0, β = 3π/4 and β = π for
νa / 0.15. Figure 3.21 implies that the torus follows closely the incident waves for
small νa especially for νa / 0.05, since the pitch motion follows the incident wave
slope and the elastic modes make the torus follow the incident wave profile. We note
differences for both the transfer functions of absolute vertical motion and relative
vertical motion at the higher considered frequencies at some positions of the torus.
The differences were unexpected based on the good agreement demonstrated for
added mass and damping coefficients, excitation forces and RAO’s of individual
modes. One reason is that the absolute vertical motion is based on adding all the
individual modes multiplied with cos(nβ) which includes the information of any
position on the torus. The factor cos(nβ) may amplify the effect of phase differences
when the absolute and relative vertical motion are considered at different positions
on the torus. However, it is the results for νa / 0.15 that are of most practical
relevance.

3.4 Summary

The low-frequency slender-body theory for wave-induced response of an elastic
semi-submerged torus has been verified by the linear potential flow frequency-
domain panel code WAMIT with higher-order Boundary Element Method. Satis-
factory agreements between WAMIT and the low-frequency slender-body theory
have been obtained except for absolute and relative motions for large νa > 0.15.
There is as expected an increasing difference with increasing νa and a small in-
creasing difference occur with increasing mode number. The presented results
illustrate the strong limitations of strip theory and 3D effects cause pronounced
frequency-dependent hydrodynamic interaction on the scale of the torus diameter.
Wave amplitudes caused by heave oscillations have been studied for frequencies
corresponding to zero and maximum damping. The damping coefficients obtained
by low-frequency slender-body theory and WAMIT have been also verified by gen-
eralizing the relationship between global damping and the wave excitation force
(moment). The torus nearly follows the waves in long wave lengths.
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Figure 3.20: Transfer functions of absolute vertical motion |wa/ζa| at five positions
of a torus with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa. The twenty lowest modes are used. Here β = 0, β = π/2 and
β = π correspond to the aft, side and front of the torus.
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Figure 3.21: Transfer functions of relative vertical motion |ra/ζa| at five positions
of a torus with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa. The twenty lowest modes are used. Here β = 0, β = π/2 and
β = π correspond to the aft, side and front of the torus.



Chapter 4

Model tests of a floating
torus

In order to validate the low-frequency slender-body theory, two sets of model tests
have been performed. The Marine Cybernetics Laboratory at Norwegian University
of Science and Technology, in Trondheim, Norway was used during January 2013.
In both experiments the models tested were circular plastic collar used as a floater
of an aquaculture plant subjected to regular deep-water waves. In the first test a
nearly semi-submerged elastic circular torus was used, while in the second test we
considered a nearly semi-submerged rigid circular torus.

In the model tests, the wave-induced vertical motions of a moored torus in
regular deep-water waves were studied. Focus was on the vertical wave-induced
accelerations at different positions on the tori and nonlinear effects like wave over-
topping on the models. Results from these experiments have been published in Li
et al. (2014) and Li et al. (2016).

4.1 Model tests

Two sets of model tests of wave-induced vertical motions of moored torus subjected
to regular deep-water waves were conducted at the Marine Cybernetics Laboratory.
The wave tank is 40.00m long, 6.45m wide, and 1.50m deep. It is equipped with
a towing carriage, a flap-piston wave maker and a damping beach covered by a
rough, porous mat to increase its energy dissipation ability. The damping beach
showed, in general, to be effective for damping out waves and making the water
surface calm after each test run, reducing the waiting time between the runs. The
wave maker is digitally controlled by software, which applies linear wave maker
theory to estimate the necessary stroke of the piston for generating waves with a
given height and period. An active wave absorption control system (AWACS 2) is
included in the wave maker software. The wave maker has a DHI wave synthesizer
which can produce regular and irregular waves. The capacity of the wave maker
generating regular waves is wave height < 0.25m and wave period between 0.3s

59
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and 3.0s.

4.1.1 The models

Since gravity waves are involved in the experiments, Froude scaling must be applied.
Reynolds number scaling associated with viscous effects can, therefore, not be
satisfied. When flow separation does not happen, viscous effects are associated with
the boundary layer flow and negligible relative to potential-flow effects. Moreover,
since the Keulegan-Carpenter number is always small in our studies, the wave force
amplitude will be dominated by potential-flow effects. However, we cannot outrule
that viscous damping matters in case of flow separation. The latter may occur
in steep waves with overtopping, as demonstrated in 2D numerical studies of a
semi-submerged circular cylinder in waves by Kristiansen and Faltinsen (2008b).

Table 4.1: Main dimensions in the experiments. Model scale 1 : 25 and full scale.
Full scale dimensions are based on a typical circular collar of a floating fish farm.
E: Elastic; R: Rigid.

Description Parameter Model scale Full scale

Torus diameter D = 2c 1.5m 37.5m

Cross-sectional diameter of torus 2aE 38mm 0.95m

2aR 36mm 0.90m

Torus mass per unit length mE 0.602kg/m 376.0kg/m

mR 0.607kg/m 379.6kg/m

Torus bending stiffness EIE 0.464Nm2 4.53×106Nm2

EIR 23.74Nm2 2.32×108Nm2

Spring stiffness ks 17N/m 10.63kN/m

A model test scale of 1 : 25 was in mind for the two models in the experiments.
Corresponding full scale values are given in Table 4.1 for reference. The parameters
were chosen from typical values for existing circular collars of a floating fish farm.
The elastic torus model was made from a corrugated tube used by Kristiansen
and Faltinsen (2015) during the fall of 2011, which is the standard type used to
cover electric cables in houses. The plastic flexible tube and waterproof adhesive
electrical tape were covered to make the torus semi-submerged in calm conditions
and smooth respectively as shown in Figure 4.1 and upper right in Figure 4.2. In
order to get a cross-sectional diameter similar to the elastic torus model, i.e. 38mm,
a 32mm nearly rigid standard water pipe for houses was covered by a transparent
plastic flexible tube of thickness 1.5mm and a waterproof adhesive electrical tape
as shown in the lower left of Figure 4.2. The draft of the rigid torus model is
0.0214m.
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Figure 4.1: Part view of the elastic torus model (Left: corrugated tube covered
with plastic flexible tube; right: tube covered with waterproof adhesive electrical
tape).

Figure 4.2: View of the elastic and rigid torus models. Elastic torus model arranged
with five accelerometers with an equal interval of π/4.

Special attention was paid to the structural bending stiffness. A typical high-
density polyethylene (HDPE) type plastic has a Young’s modulus of elasticity
E ≈ 1000MPa. The combined bending stiffness of the HDPE plastic tube, flex-
ible tube and the adhesive electrical tape was found by static tests in the elastic
regime. This means that EI was estimated by using the static deflection equation
of a cantilever curved beam of length L and with a fixed end support at one end
and an increasing load F , whose range was comparable with the one recorded dur-
ing the tests in waves, applied at the other end of the beam. EI follows then from
measuring the deflection W at the free beam end. For a cantilever curved beam,
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the deflection is as follows (Love, 1906).

W (s) =
FR2

EI

[
L− s− cos

( s
R

)
L + sin

( s
R

)
R
]

(4.1)

Here R is radius of curvature and s is the arc length on the beam, respectively. We
should note that

lim
R→∞

W (s) =
Fs2

6EI
(3L− s) (4.2)

which agrees with result for a straight beam. For our tested elastic torus model
segment, L = 0.5m and R ≈ 2.6m, the vertical deflections at the free beam end
for the curved beam and the straight beam are 0.0415F/EI and 0.0417F/EI,
respectively. For our tested nearly rigid torus model segment, L = 0.47m and the
radius of curvature is much larger than elastic torus model segment’s which leads to
the vertical deflections at the free beam end for the curved beam and the straight
beam are closer. The static tests confirmed the linear behavior of the material and
the obtained bending stiffness for the elastic torus model is EI = 0.464Nm2 and
for the nearly rigid torus model is EI = 23.74Nm2. The bending stiffness of the
nearly rigid model is fifty-one times the bending stiffness of the elastic model and
two hundred times the bending stiffness used in the experiments by Kristiansen
and Faltinsen (2015). This model scale gave a realistic bending stiffness for the
elastic model according to Froude scaling. Alternatively, bending stiffness can
be obtained analytically according to Young’s modulus and the second moment of
area. The second moment of area of the nearly rigid standard water pipe in bending
is I = π

(
D4

2 −D4
1

)
/64, where the inner and outer diameter are D1 = 26mm and

D2 = 32mm, respectively. This means a bending stiffness EI = 23.23Nm2 of the
nearly rigid torus model. The reason to the difference of bending stiffness between
the static tests and analytical calculation is due to the influence of covered flexible
tube and the adhesive electrical tape. The yield stress (23◦C, 50mm/min) of the
nearly rigid pipe is 22MPa. The largest moment in the torus due to the dominant
elastic mode is about 10.3Nm. So, the largest stress in the cross-section is 6.2MPa,
which is much smaller than the yield stress.

4.1.2 Instrumentation

The vertical accelerations were measured by accelerometers at five points with an
equal interval of π/4 as shown in Figure 4.2, starting from the front of the torus.
The used accelerometers were Model 3032− 050 by Measurement Specialists, with
a sensitivity of 1.318mV/g. Four resistance wave probes were used to measure the
wave elevation. The wave probes were composed of two parallel steel rods, each with
3mm diameter, 7mm apart. The mooring line forces were measured in each of the
four moorings by four Hottinger Baldwin (18kg) force transducers that were fixed
to the rig. These force transducers with accuracy class C3 (OIML, 2000) are proved
to be very accurate and stable by Kristiansen (2010). Finally two cameras were
used to record the global behavior of the torus and the accuracy of overtopping and
out-of-water phenomena. One camera is underwater with a frame rate of 25fps and
a resolution of 768×576 pixels. The second, in air and almost perpendicular to the
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free-surface plane has a frame rate of 25fps and a resolution of 1920× 1080 pixels.
The measured signals from all sensors went through a Hottinger Baldwin amplifier
of type MGCplus. No filtering of the signals was performed before logging and the
acquisition data were stored with a sampling frequency of 100Hz. The Hottinger
Baldwin software Catman was used for logging of the measured data. All sensors
were calibrated before measurements.
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Figure 4.3: Experimental set-up of the elastic torus model. Upper: top view; lower:
side view. The damping beach is out of scale. Definition of Earth-fixed coordinate
system Oxyz and angle β.

4.1.3 Experimental set-up

The experimental set-up of the elastic torus model and the rigid torus model are
illustrated in Figures 4.3 and 4.4, respectively. The Earth-fixed Cartesian coordi-
nate system Oxyz is also defined in Figure 4.3 with the mean free-surface at z = 0.
The z-axis coincides with the torus axis at rest and is vertical with positive direc-
tion upwards. A body-fixed Cartesian coordinate system OxByBzB with origin in
the center of gravity (COG) of the torus is also introduced. When the torus is at
rest, the xB , yB and zB-axes are parallel with the x, y and z-axes, respectively.
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Figure 4.4: Experimental set-up of the rigid torus model. Upper: top view; lower:
side view. The damping beach is out of scale. Definition of Earth-fixed coordinate
system Oxyz and angle β.

Further, the COG at rest is right above or below the origin of the Oxyz system.
The experimental set-up of these two model tests are the same except the way of
connecting the mooring lines to the torus. The elastic torus model was attached to
the stationary carriage in the middle of the tank by means of four identical nearly
horizontal mooring lines, at front, aft, left and right. They were connected to the
torus through 12 attachment points with an equal interval of 30deg. The rigid
torus model was also attached to the stationary carriage in the middle of the tank
by means of four identical nearly horizontal mooring lines, at front, aft, left and
right and they were connected to the torus through 4 attachment points with an
equal interval of 90deg. Springs with stiffness ks = 17N/m were used to connect
the torus to the carriage. This corresponds to almost half of the full scale spring
stiffness (27kN/m) by Froude scaling. The pre-tension was Tp = 5N . The high
pre-tension was needed to avoid slack due to large horizontal motion when testing
large wave steepness and long wave periods and also to keep the elastic torus model
almost circular. The frictional coefficient in each individual pulley was low enough
and it did not matter for the motion of the model, i.e. such that any hysteresis
effect in the mooring system could be considered negligible. A snapshot of the
partly experimental set-up of the elastic torus model is shown in Figure 4.5 which
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includes mooring lines, five accelerometers and two wave probes.

Figure 4.5: Snapshot of the elastic torus model arranged with five accelerometers
with an equal interval of π/4 was attached to the stationary carriage in the middle of
the tank. The photo is taken towards the positive y direction defined in Figure 4.3.

4.1.4 Test conditions

We wanted the waves in the model tests to be representative for a typical design
wave condition for the floating fish farms. Incident waves with prescribed wave
steepnesses H/λ = 1/120, 1/60, 1/30 and 1/15 propagating along the x-axis were
tested. The wave period T = 2π/ω vary within [0.6, 1.6] s with a step of 0.05s. Here
ω is the circular frequency. Twenty one wave periods and four wave steepnesses
yielded eighty one different wave conditions, which are presented in Table 4.2.
All test cases are repeated two to four times in order to assess the experimental
errors. Each test-series was performed with constant wave steepness and gradually
increasing the wave period. The waiting time was chosen as at least 3 minutes
between each test to damp out waves. The time it took for the waves to decay was
longer for larger wave steepness and longer period waves due to that these waves
were strongly reflected by the beach. In general, nearly steady-state conditions are
reached after 10 wave periods.

No experimental vertical free-decay tests were done to identify wet natural
periods and damping for the elastic and rigid tori. Such tests are difficult to perform
because the strong frequency dependency of added mass as shown in Figure 3.1
causes several natural frequencies for the dominant modes, i.e. heave, pitch and
the lowest vertical elastic mode. The theoretical ten lowest undamped natural
frequency for uncoupled heave, pitch and the lowest vertical elastic mode of the
nearly rigid torus are presented in Table 4.3. They are calculated by setting the
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Table 4.2: Test wave conditions.

T [s] λ [m]
H/λ = 1/120 H/λ = 1/60 H/λ = 1/30 H/λ = 1/15

H [m] H [m] H [m] H [m]

0.60 0.562 0.0047 0.0094 0.0187 0.0375

0.65 0.660 0.0055 0.0110 0.0220 0.0440

0.70 0.765 0.0064 0.0128 0.0255 0.0510

0.75 0.878 0.0073 0.0146 0.0293 0.0585

0.80 0.999 0.0083 0.0167 0.0333 0.0666

0.85 1.128 0.0094 0.0188 0.0376 0.0752

0.90 1.265 0.0105 0.0211 0.0422 0.0843

0.95 1.409 0.0117 0.0235 0.0470 0.0939

1.00 1.561 0.0130 0.0260 0.0520 0.1041

1.05 1.721 0.0143 0.0287 0.0574 0.1148

1.10 1.889 0.0157 0.0315 0.0630 0.1259

1.15 2.065 0.0172 0.0344 0.0688 0.1377

1.20 2.248 0.0187 0.0375 0.0750 0.1499

1.25 2.440 0.0203 0.0407 0.0813 0.1626

1.30 2.639 0.0220 0.0440 0.0880 0.1759

1.35 2.845 0.0237 0.0474 0.0949 0.1897

1.40 3.060 0.0255 0.0510 0.1020 0.2040

1.45 3.282 0.0274 0.0547 0.1094 0.2188

1.50 3.513 0.0293 0.0585 0.1171 0.2342

1.55 3.751 0.0312 0.0625 0.1250 0.2501

1.60 3.997 0.0333 0.0666 0.1332 0.2665

damping equal to zero and finding numerically the zeros of the function F (ω)
defined as:

F (ω) = −ω2
(
m+ a

(n)
33

)
+ ρgbw +

EI

c4
(
n4 − n2

)
, n = 0, 1, 2 (4.3)

The natural frequencies are higher than the experimental frequency range of the
linear incident regular waves. The lowest theoretical undamped natural frequency
in uncoupled surge due to the mooring system is 2.17rad/s, which is clearly smaller
than the experimental frequency range.

Large vertical and lateral deformations and waves overtopping of the torus
were observed in several tests of both the elastic and nearly rigid torus models.
The linear, second, third and fourth order harmonics of the measured signals were
found from two sets of model tests. Hydroelastic effects of the nearly rigid model
were believed to be present.
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Table 4.3: The ten lowest numerically predicted undamped natural frequencies in
rad/s for the dominant vertical modes of nearly rigid torus.

Heave
22.63 23.49 24.35 25.17 25.97

26.37 26.89 27.65 28.39 29.11

Pitch
23.07 23.93 24.75 25.57 26.34

26.51 27.27 28.01 28.75 29.45

The lowest purely
vertical elastic mode

33.08 33.70 34.30 34.89 35.47

36.05 36.61 37.17 37.73 38.27

4.2 Check of the wave generation
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Figure 4.6: Top view of experimental set-up for wave measurements without the
torus present.

Analysis of the results from the wave probes after performing the model tests,
showed a discrepancy between the theoretical and achieved wave height given by
the wave maker. This introduced a practical problem when attempting to analyse
the model test results. To estimate the error in the generation of the incident
regular wave system with respect to the nominal values, tests without the torus
in the tank were carried out for all the tested wave periods and wave steepnesses.
Five resistance wave probes with rod diameter 3mm were positioned as illustrated
in Figure 4.6. Three wave probes were placed at the same longitudinal position
but at different positions in the transverse direction in order to check for two-
dimensionality of the waves. The waiting time between each test was 4−5 minutes.
Each test was repeated 2− 3 times showing good repeatability.

A zoomed view of the ratio between the measured first harmonic component
and the nominal wave amplitude is shown in Figure 4.7 for the different prescribed
wave steepness as function of the non-dimensional wave number νa where ν = ω2/g
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with g meaning acceleration of gravity. The mean values and the corresponding
standard deviations, estimated through the time histories of the five wave probes,
are reported. One reason to the disagreement between measured and nominal
wave amplitude is the flow due to leakage around the sides and bottom of the
paddle and the wave generation capability of the wave maker is in general less than
that predicted by two-dimensional potential theory, and decreases in practice with
decreasing water depth. Other possible reasons are wave reflections from the beach,
meniscus effect on the wave probe wire, calibration linearity error and nonlinear
effects in the wave propagation.
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Figure 4.7: Zoomed view of ratio between measured and prescribed wave amplitude
versus non-dimensional wave number νa without the torus present. ζam is the
mean wave amplitude of the five measurement positions in Figure 4.6. ζa is the
prescribed wave amplitude. The height of the experimental error bars is two times
the estimated standard deviation. The numbers 1/120, 1/60, 1/30 and 1/15 on the
top of each graph is the prescribed wave steepness.

4.3 Torus vertical acceleration measurements

Accelerations were measured along the body-fixed zB-axis, which coincides with
the vertical z-axis when the torus is at rest. Five positions along the torus cor-
responding to the angles β = 0, π/4, π/2, 3π/4, π as defined in Figure 4.3 were
used. They are referred to as aft, aft left, left, front left and front positions, re-
spectively. All test cases were repeated two to four times in order to check their
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repeatability. The time histories of all the sensor readings that acquired from each
repeated cases may best describe repeatability, and a maximum repeatability error
of about 1.0% was assessed. At least 3 minutes of waiting time between two con-
secutive tests was chosen to get almost calm water conditions. The time recording
started at least 20 seconds earlier than the wave maker to ensure the acquisition
of the longitudinal seiching mode effect, as well as of the residual waves generated
in the previous test. Seiching refers to the first sloshing mode for the longitudinal
direction in a wave tank. The seiching period of the Marine Cybernetics lab is
Tseich = 2Ltank/

√
gh ≈ 20.9s (Faltinsen and Timokha, 2009). Here Ltank is the

length of the wave tank and h is the depth of the wave tank. In particular, when a
small difference in the period between the previous and the actual incident waves
exists, weak beating effect arises in the actual time history of the torus motions.
Possible drift in the accelerometers was detected before the wave maker started
and used to correct the signal in the subsequent run. Time series of experimental
vertical acceleration at the front of the elastic torus model with wave steepness
H/λ = 1/30 and wave period T = 0.6s is shown in Figure 4.8.
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Figure 4.8: Time series of experimental vertical acceleration at the front of the
elastic torus model with wave steepness H/λ = 1/30 and wave period T = 0.6s.

Possible reflected waves from the tank walls will contaminate the test results.
The distance of the model to a tank wall is approximately 2.475m. The group
velocity of the generated surface waves can be calculated based on the oscillation
period and wave tank depth. The time before the reflected waves from tank wall
reach the plate can be estimated. However, it is more practical to examine the
vertical acceleration records of the torus model, as well as to check the time histories
from the wave elevation probes. Reflection from the beach is another error source
in the model tests. Incident waves generated by flap-piston wave maker do not fully
dissipate at the damping beach and reflect back to the torus models. When the
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possible reflected wave reaches the torus models is then dependent on the group
velocity of the incident waves.

Careful choice of the time series used for calculations of mean value and standard
deviation of measured vertical accelerations is important. The starting time of time
history used for the calculation should be away from the initial stage when the torus
model starts to oscillate, in order to minimize the transient effect. Transient effects
will exponentially decay with time. In general, nearly steady-state oscillations are
reached after 10 wave periods. The steady-state time window were band-pass
filtered in order to remove noise out of the prescribed frequency range. The lower
and upper cut-off frequencies are 0.95/T and 1.05/T , 1.95/T and 2.05/T , 2.95/T
and 3.05/T , 3.95/T and 4.05/T in order to get first, second, third and fourth-
order harmonics of acceleration, respectively. The sampling frequency was 100Hz.
The steady-state time window contained about 70− 130 wave periods. Figure 4.9
shows time series of the first harmonics of experimental vertical acceleration at the
front of the elastic torus model with wave steepness H/λ = 1/30 and wave period
T = 0.6s.
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Figure 4.9: Time series of the first harmonics of experimental vertical acceleration
at the front of the elastic torus model with wave steepness H/λ = 1/30 and wave
period T = 0.6s.

A sliding Discrete Fourier Transform (DFT) technique is used to determine the
time variation of each harmonic contribution. A time window corresponding to 20
wave periods is analyzed through DFT as shown in the rectangular of Figure 4.9;
then the time window is slid one wave period along the direction of arrow in Fig-
ure 4.9 and the DFT analysis is repeated for the new time interval. The procedure
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is repeated until the end of the steady-state region, enabling the evaluation of
the mean value and standard deviation of each harmonic component. A second
method was used to calculate mean values and standard deviation. It is based on
the envelope curve of the absolute values of the acceleration extrema (maxima and
minima) in the same steady-state time window as illustrated in Figure 4.9. The
corresponding mean and standard deviation values are used as the measurements
of the mean value and error estimation. Mean values obtained by the two methods
are very close, however differences on the standard deviations are relative large
since the second method only consider the peak in each period in the selected time
window of time series.

Large relative vertical motions with waves overtopping the torus locally and
local out-of-water effect of the torus were observed in the model scale experiments
of both elastic and nearly rigid torus models (see Figure 4.10). Similar phenomena
are demonstrated in Figure 4.11 for the torus of a fish cage without netting in
a storm. Overtopping occurs for all wave periods with wave steepness 1/15 and
for wave periods larger than T = 1.05s with wave steepness 1/30 in two sets of
model tests (see Figure 4.10). There is no overtopping occurring for wave steepness
1/60 and 1/120 in the two sets of model tests. To properly examine the nonlinear
features of the phenomena, first, second, third and fourth-order harmonics of the
measured acceleration signals were estimated. Harmonics higher than fourth-order
were small as shown in Figure 4.12.

4.4 Longitudinal and transverse motion measure-
ments

The longitudinal motions of the nearly rigid torus model were determined by using
the mooring load registrations at the front and aft positions of torus together with
the known stiffness (ks = 17N/m) of the springs. The transverse motions were
similarly estimated by using the mooring load registrations at the left and right
torus positions. The time series were analyzed as described above for the vertical
accelerations by considering only the first harmonic part.

4.5 Summary

An elastic and an nearly rigid torus model tests have been performed in order to
validate the low-frequency slender-body theory. Wave generation tests without the
torus present have been carried out for all test wave periods and wave steepnesses.
All the tests are repeated and show good repeatability. Overtopping and out of
water of parts of the torus models occur for some of the test conditions. Higher
order harmonics of the measured acceleration are important.
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Figure 4.10: Illustrations of overtopping and out of water of parts of the tori in two
sets of model tests. Upper: elastic torus model; lower: nearly rigid torus model.
Left: side view from underwater camera; right: top view from the camera in air.
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Figure 4.11: Illustrations of overtopping and out of water on the torus of a fish
cage without net in a storm. (Photo: Marius Dahle Olsen)
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Figure 4.12: Fourier experimental vertical acceleration amplitude spectra at the
front of the elastic torus model with wave steepness H/λ = 1/30 and wave period
T = 0.6s as a function of frequency in Hz.
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Chapter 5

A study of a floating nearly
rigid torus in regular waves

In this chapter we investigate theoretically and experimentally the longitudinal
motions and vertical accelerations of a floating nearly rigid torus in regular waves.
Wave motions inside the torus are also investigated. Comparisons of vertical accel-
erations are made with linear and partly with second-order potential-flow theory
for the smallest examined experimental wave steepness 1/120. Experimental third
and fourth harmonic accelerations of the torus have also been examined. This work
has resulted in one publication (Li et al., 2016).

5.1 Theoretical methods

Ideally, we need a fully nonlinear 3D CFD method that accounts for hydroelastic-
ity to compare with the experiments. We say 3D because the linear hydroelastic
calculations of vertical accelerations of a torus in regular waves described and veri-
fied in Chapters 2 and 3 showed significant 3D hydrodynamic effects. We say fully
nonlinear because the experiments show that even fourth order harmonics of the
measured torus vertical accelerations mattered in steeper waves and that perturba-
tion methods are only practical for linear (first-order) and second-order problems,
which determine only the first and second-harmonics of the torus acceleration in
regular waves. Furthermore, Navier-Stokes equation is needed because flow separa-
tion may matter for steeper waves. Kristiansen and Faltinsen (2009) demonstrated
the latter fact by 2D fully nonlinear CFD simulations of a semi-submerged circular
section in regular waves of relevance for fish farms. Laminar flow was assumed,
which is appropriate in model test conditions at least for the boundary layer flow.
The numerical method combined the Finite Difference Method and Chorin’s pro-
jection method with the Constrained Interpolation Profile (CIP) method in the
advection step. Furthermore, color functions were applied to capture the free-
surface. The numerical calculations agreed well with the presented experimental
results. However, the fully nonlinear 3D CFD method for our case will need very
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long CPU time with state-of-the-art computational resources. The more efficient
potential flow theory and codes have been used in the following study.

The two used numerical methods are based on potential flow theory for in-
compressible liquid and a perturbation scheme with the wave steepness as a small
parameter, which is most relevant for the smallest experimental wave steepness.
Surface tension is not included. Surface tension may affect the contact line be-
tween water and the torus. However, the difference appears as a thin layer of water
rising up, but it does not affect the loading. In order for surface tension to matter,
the wave length should be of the order of 1cm and smaller. These dimensions are
clearly out of the range for incident waves and important nonlinear waves generated
by the torus.

One solver is HydroStar, which is a low-order Boundary Element Method solv-
ing the linear and second-order frequency-domain potential-flow problem in bichro-
matic incident waves in a consistent way. Therefore, our needed first and second-
order response in monochromatic waves can easily be obtained. Deep-water condi-
tions were assumed. The effect of mooring lines was included in the linear problem,
but proved to be small. The commercial version of HydroStar accounts for tank
wall interference in the linear problem but does not account for hydroelasticity,
which matters in the experiments. The numerical results without tank wall inter-
ference were verified by convergence studies, which for the second-order problem
involved decreasing panel sizes on the mean free-surface as well as on the mean
wetted body surface. For the linear problem without tank wall interference, we
ensured that, the wave excitation force and moment by Haskind relationship and
direct pressure integration agreed as shown in Figures 3.13 to 3.15. Furthermore, it
was controlled that the Newman (1962) relationship between excitation force/mo-
ment amplitudes and corresponding wave radiation damping for an axisymmetric
vertical body was satisfied as shown in Figure 3.16.

The second used solver is WAMIT which uses a higher-order Boundary Element
Method (see Chapter 3). WAMIT provides linear generalized forces due to elastic
vibration modes. It was combined with the curved beam equation Eq. (2.10).
Because of the model set up (see Figure 4.4), there is no influence of the axial
tension term Tas. The hydroelastic model neglects mooring forces and coupling
with longitudinal motions. Separate numerical studies with a rigid model showed
small effects of mooring loads and coupling between surge and pitch. We do not
know the structural damping, which is of concern for the resonance oscillations of
elastic modes in case of small hydrodynamic damping. However, the numerical
studies by Li et al. (2014) for a similar problem as ours indicate that structural
damping within realistic limits have a small effect.

Due to the different theoretical features of the solvers, four different numerical
models are used in the following studies and are listed in Table 5.1.

5.2 Experimental and numerical results

The numerical (model A) and experimental longitudinal motions and vertical ac-
celerations were compared for the smallest tested wave steepness 1/120 when we
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can expect that a perturbation method is most appropriate.

Table 5.1: Numerical models used in this chapter to consider a rigid or an elastic
torus, tank wall interference, linear and second order hydrodynamic effects.

Rigid Elastic Tank wall Linear Second order

HydroStar (model A) YES NO NO YES NO

HydroStar (model B) YES NO YES YES NO

HydroStar (model C) YES NO NO NO YES

WAMIT (model D) NO YES NO YES NO

5.2.1 Linear frequency-domain horizontal torus motion

Estimates of the longitudinal and transverse motions have been obtained by con-
sidering the measured mooring line tensions together with the spring stiffness for
the mooring lines. It means that we for the longitudinal motion subtracted the
aft tension time series from the front tension time series then divided by two. The
tension time series for the transverse motion applies the same method but using
right and left tension time series. Due to small angles between the mooring lines
and calm water surface, this would give a good estimate of the longitudinal and
transverse motions. Applying the sliding DFT technique described in Section 4.3
for the mooring line forces as for the accelerations and wave elevations, an estima-
tion of the longitudinal and transverse motions of the nearly rigid torus model is
found as η1,2 = F1,2/k1,2, where η1 and η2 are longitudinal (surge) and transverse
(sway) motions, respectively, F1 and F2 are the mooring line tension time series for
longitudinal and transverse motions and k1 and k2 are the equivalent spring stiff-
ness which is found by the sum of the spring stiffness of the mooring line considered
in longitudinal and transverse directions respectively.

Figure 5.1 presents comparisons between experimental measurements and lin-
ear numerical (model A) predictions of longitudinal motion response-amplitude-
operators (RAO). The fact that experimental RAO’s obtained by measuring the
mooring lines forces in front and aft differ means that hydroelasticity matters, but
without being so clear as we will see for the vertical accelerations in the next sec-
tion. Hydroelasticity effects were also observed in the forces of the two transverse
mooring lines along with small transverse rigid-body motions. An error source is
that the presented torus is slightly deformed (see Figure 5.2). A satisfactory a-
greement between theory and experiments is shown in Figure 5.1. However, the
theoretical cancellation effect at certain frequencies is not so pronounced in the
experiments as in the numerical calculations. Figure 5.3 shows the experimental
values for transverse motions. The frequency of the peak at νa = 0.1132 is close to
the natural frequency of a transverse sloshing mode of the tank with a node at the
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center plane of the tank. Since roll and transverse motions are coupled, the results
in Figure 5.3 imply non-zero roll.
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Figure 5.1: Theoretical and experimental linear frequency-domain results of lon-
gitudinal motions versus non-dimensional wave number νa. RAO = longitudinal
motion amplitude divided by prescribed incident wave amplitude ζa. The height
of the experimental error bars is two times the estimated standard deviation. The
wave steepness H/λ = 1/120.

5.2.2 Linear frequency-domain vertical torus accelerations

Figure 5.4 shows the numerical predictions of the non-dimensional linear frequency-
domain vertical acceleration amplitude along five positions of the torus. Linear
numerical results from HydroStar (with and without tank wall interference, i.e.
model B and A, respectively, see Table 5.1) and WAMIT (with hydroelastic model,
i.e. model D in Table 5.1) are reported as a function of the non-dimensional wave
number νa, and compared with the corresponding experimental data.

The experimental results are given with an error bar whose height is two times
the standard deviation, which implies that the oscillations are not steady state.
The reason why the experimental results are not steady state can be wave re-
flections from the wave beach and the wave maker, build-up of transverse slosh-
ing due to tank wall interference as well as beating effects induced by residual
waves from the previous run with different period. The elastic modes cos 2β,
cos 3β and cos 4β influence the numerical hydroelastic results with the cos 2β-
mode giving the dominant contribution. The latter mode does not contribute
at the front left and aft left positions with the consequence that the rigid and
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Figure 5.2: Torus deformation in calm conditions. Red line: prescribed torus;
yellow colour: actual torus.
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Figure 5.3: Experimental linear frequency-domain results of transverse motions
versus non-dimensional wave number νa. RAO = transverse motion amplitude
divided by prescribed incident wave amplitude ζa. The height of the experimental
error bars is two times the estimated standard deviation. The wave steepness
H/λ = 1/120. Right is defined along positive y-axis in Figure 4.4.
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ẅ
(ω

)
a

c/
g
ζ
a

Acceleration Aft

 

 

Experiment 1/120
WAMIT Elastic (D)
HydroStar Rigid (A)
HydroStar Tank wall (B)

Figure 5.4: Comparison of linear frequency-domain results of vertical acceleration

amplitude ẅ
(ω)
a along the torus by means of HydroStar and WAMIT with experi-

ments versus non-dimensional wave number νa. WAMIT results are combined with
hydroelastic curved-beam theory. The height of the experimental error bars is two
times the estimated standard deviation. The wave steepness H/λ = 1/120.

elastic results are closest there. Bending stiffness matters and causes the theo-
retical results coming closer to the experiments except at the front left position.
The peaks in the numerical results with tank wall interference (model B) occurs
at νa = 0.0349, 0.0526, 0.0701, 0.0877, 0.1052, 0.1227, 0.1403, 0.1578, 0.1753, 0.1929,
which correspond to the natural frequencies ωi associated with 2D transverse s-
loshing modes that are symmetric with respect to the longitudinal center-plane of
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the tank. The expression for ωi is

ωi =

√
g

2πi

btank
tanh

(
2πi

btank
h

)
i = 1, 2, .... (5.1)

Here g is the acceleration of gravity, h is the depth of the wave tank and btank is the
width of the wave tank. The fact that the response is not infinite at the resonance
frequencies as a 2D linear frequency domain theory predicts is a consequence of
3D flow. However, the calculations with tank wall interference do not improve
the agreement between theory and experiments. For instance, the experimental
results at νa = 0.1715, which is close to the 2D natural sloshing frequency ω10 =
9.7740rad/s corresponding to νa = 0.1753, do not seem to be influenced by the clear
theoretical resonance demonstrated for the rigid torus. However, the experimental
time-domain results show a beating effect associated with the difference frequency
between the forcing frequency ω = 9.6662rad/s corresponding to νa = 0.1715 and
the sloshing frequency ω10 = 9.7740rad/s corresponding to νa = 0.1753, which
indicates that a build-up of resonance occurs.

Amplitudes äna and phase angles αn of the different acceleration modes de-
fined by än = äna cos (ωt+ αn) with the incident wave elevation given by ζ =
ζa sin (ωt− νx) were experimentally and theoretically (model D) identified. Exper-
imentally we determined amplitudes and phases for n = 0, 1, 2, 3, 4 by satisfying:

ẅ = ä0 (t) + ä1 (t) cosβ + ä2 (t) cos 2β + ä3 (t) cos 3β + ä4 (t) cos 4β (5.2)

at the five measurement points. The procedure was to consider the time instant
when the experimental vertical acceleration at the front point had a maximum
value close to the experimental mean amplitude. In more detail, it means that
we first expressed the experimental values of the different acceleration modes as
äna cos (ωt′ + γn) with t′ = 0 corresponding to when the front vertical acceleration
had the considered maximum. By selecting also the time instant ωt′ = π/2 we
have sufficient equations to determine the amplitudes äna and the phase angles γn.
Sensitivity to selecting different time instants was small. Since we did not measure
the incident waves, we used the theoretical values of the vertical acceleration at
the front point as a reference to determine the experimental phases relative to
the theoretical incident wave elevation. It means that we write t = t′ − δ in the
theoretical vertical acceleration at the front point with five modes, i.e.

ẅ|β=0 =

(
4∑

n=0

äna cosαn

)
cos (ωt′ − ωδ) −

(
4∑

n=0

äna sinαn

)
sin (ωt′ − ωδ)

=

[(
4∑

n=0

äna cosαn

)
cosωδ +

(
4∑

n=0

äna sinαn

)
sinωδ

]
cosωt′

+

[(
4∑

n=0

äna cosαn

)
sinωδ −

(
4∑

n=0

äna sinαn

)
cosωδ

]
sinωt′

(5.3)
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By requiring the theoretical vertical acceleration at the front point to behave as
A cosωt′, A > 0 we get the following requirements:(

4∑
n=0

äna cosαn

)
sinωδ −

(
4∑

n=0

äna sinαn

)
cosωδ = 0(

4∑
n=0

äna cosαn

)
cosωδ +

(
4∑

n=0

äna sinαn

)
sinωδ > 0

(5.4)

This determines δ. By substituting t′ = t+ δ into äna cos (ωt′ + γn) we determine
experimental phase angles αn. The comparison between theory (model D) and
experiments are presented in Figures 5.5 and 5.6 for n = 0, 1, 2, i.e. for heave,
pitch and the lowest elastic mode. The amplitudes for n = 3, 4 are small relative
to the values for n = 0, 1, 2 and are therefore not shown. The fact that the heave
motion should follow the incident wave elevation at x = 0 and pitch with a positive
value in an Oxyz coordinate system as defined in Faltinsen (1990) should be 180◦

out of phase with the incident wave slope at x = 0 when νa → 0 is confirmed.
General good agreement is obtained, in particular for pitch acceleration amplitudes.
Differences between theoretical (model D) and experimental accelerations of heave
and lowest elastic mode amplitude are noted for νa = 0.1715 and are the reasons
for the differences noted at this frequency in Figure 5.4. The difference is largest
for heave accelerations.
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Figure 5.5: Comparison of experimental and theoretical linear frequency-domain
results of vertical acceleration amplitudes äna of heave (n = 0), pitch (n = 1) and
lowest elastic mode (n = 2) versus non-dimensional wave number νa. The wave
steepness H/λ = 1/120.
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Figure 5.6: Comparison of experimental and theoretical linear frequency-domain
results of vertical acceleration phase angles αn of heave (n = 0), pitch (n = 1) and
lowest elastic mode (n = 2) versus non-dimensional wave number νa. The wave
steepness H/λ = 1/120.

We investigated in more detail possible tank wall interference effects by ana-
lyzing the wave amplitude due to torus motions at the tank walls along a wave-
propagation direction perpendicular to the tank walls by using theory without tank
wall effects. The analysis is done by relating the far-field wave amplitudes due to
forced oscillations of the different modes to the generalized damping coefficients
for the different modes by using conservation of kinetic and potential energy in the
water.

The far-field expression of the velocity potential for a given mode can be ob-
tained by a line distribution of sources along the centerline of the torus as shown
in Chapter 2. A frequency-domain analysis in infinite water depth and infinite
horizontal water extent was considered. The sources satisfy the classical linearized
free-surface condition and radiation condition. The far-field waves are expressed in
terms of Hankel functions. The analysis in Chapter 2 shows that the source density
associated with mode n varies as cosnβ. It follows by combining the latter fact
with properties of Bessel functions that the far-field velocity potential associated
with mode n can be approximated as:

ϕn =
g

ω

An cosnθ√
νr

exp (νz) cos (ωt− νr + δn) (5.5)

Here (r, θ, z) are polar coordinates with the angle θ having the same definition as
the angle β in Figure 4.4. Energy considerations based on a general formula within
potential flow of an incompressible liquid (see, for instance, Newman (1977b)) imply
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that:
dE

dt
=

∫
S̄B

(p− pa)Unds − ρ

∫
S∞

∂ϕn
∂t

∂ϕn
∂n

ds (5.6)

Here S̄B is the mean wetted body surface and S∞ is a vertical circular cylindrical
control surface at large r = R extending from z = 0 to z = −∞. E is the sum
of the kinetic and potential energy in the water domain Ω between S̄B and S∞.
The positive direction of the normal coordinate n is into the water domain Ω. p
is the pressure with subscript a indicating atmospheric pressure. Un means the
normal velocity of S̄B . We integrate Eq. (5.6) over the oscillation period T with
the consequence that the term on the left hand side does not contribute due to
periodicity of E. The first term on the right hand side leads to

ω2T

2
B

(n)
33 a

2
na, B

(n)
33 =

∫ 2π

0

b
(n)
33 cos2 nβcdβ (5.7)

The second term on the right hand side is

− ρg2A2
n

ω2ν

T

2
In (5.8)

where I0 = 2π, In = π when n = 1, 2, .... This means(
An
ana

)2

=
2B

(n)
33 ν

3

ρωIn
(5.9)

We consider now the wave propagation direction perpendicular to the tank wall,
i.e. θ = ±π/2. Eq. (5.5) shows no contribution from pitch at θ = ±π/2. The effect
of heave and the lowest elastic mode will be considered. The corresponding wave
amplitudes at the tank walls normalized by the incident wave amplitude can be
expressed as:

An

ζa
√
νbtank/2

= 2ν
ana
ζa

√
B

(n)
33

ρωInbtank
(5.10)

The results are shown in Figure 5.7 and should be interpreted as an excitation
of tank wall interference. The amplitudes are small relative to the incident wave
amplitude and show a strong frequency dependency with zeroes and peaks. For
instance, there is a peak at νa = 0.1792, which is close to the 2D sloshing frequency
corresponding to νa = 0.1753.

Even though the agreement between linear theory (model A, B and D) and ex-
periments presented in Figures 5.4 to 5.6 is generally satisfactory we investigated
error sources. It has already been mentioned that coupling between longitudinal
and vertical motions is present and is neglected in the hydroelastic analysis. An-
other error source is that the measured incident wave amplitude differed from the
intended wave amplitude as illustrated in Figure 4.7. Since small-amplitude sway
occurred in the experiments, small-amplitude roll must be present due to coupling
and cause a vertical motion.

Viscous effects matter when significant viscous flow separation occurs. A mea-
sure of flow separation for ambient oscillatory planar 2D flow with flow velocity
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Figure 5.7: Wave amplitude at the tank walls along a wave-propagation direction
perpendicular to the tank due to torus motions in heave and lowest elastic mode
(model D) normalized by incident wave amplitude walls versus non-dimensional
wave number νa. Note that the effect of the tank wall is not included in model D.

amplitude Ua and period T past a stationary circular cylinder of diameter 2a in infi-
nite fluid is the Keulegan-Carpenter number KC = UaT/ (2a). When KC < 2−3,
flow separation does not occur (Faltinsen, 1990). We can generalize these findings
to our case with a rigid torus and define the vertical and radial Keulegan-Carpenter
numbers KCvert. = πηrel.ver./a and KCrad. = urel.rad.T/ (2a). Here ηrel.vert. is the
amplitude of the relative vertical motion between the torus and the incident waves.
urel.rad. means the amplitude of the relative velocity component in the radial di-
rection between the torus and the incident waves. Since the torus follows the waves
when νa → 0, ηrel.vert./ζa and urel.rad.T/ζa go to zero when νa → 0. Calculated
values of KCvert. and KCrad. by HydroStar (model A) are presented in Figure 5.8
versus the non-dimensional wave number for five positions along the torus. Because
the wave height for a given wave steepness goes to infinity when νa → 0, KCrad.
does not tend to zero when νa → 0. The results indicate that flow separation is
insignificant for our considered small wave steepness and that we have an attached
boundary layer flow.

The attached viscous boundary-layer flow along the torus has been analyzed
by assuming laminar boundary-layer flow and ambient longitudinal flow velocity
Ua cosωt together with a rigid free-surface condition. The latter fact avoids the ne-
cessity to consider all the details of the frequency-dependent pressure distribution.
The torus is assumed semi-submerged. We apply the cross-flow principle together
with strip theory and well-established 2D results based on Stokes second problem
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Figure 5.8: Calculated vertical and radial Keulegan-Carpenter numbers versus non-
dimensional wave number νa for five positions along the torus. The wave steepness
H/λ = 1/120.

(Faltinsen, 1990), which gives:

F visc1 = Ua

√
ωµ

ρ
cos (ωt + π/4) 2acπ2 (5.11)

as the longitudinal viscous force on the semi-submerged torus. Here µ is the dynam-
ic viscosity coefficient. We consider the viscous force in phase with the acceleration
and compare it with the measure ρπ2a22cωUa sinωt of the sum of the mass and
added mass acceleration force on the torus. Here we have not accounted for the fact
that the added mass in surge is frequency dependent. The ratio of the viscous force
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amplitude and the measure of the mass and added mass force can be expressed as:

Fv
Fmass

=

√
µ

2ωρa2
(5.12)

The results are presented in Figure 5.9 as a function of νa in our considered

frequency range. Since the maximum value of
Fv

Fmass
is about 0.02, we confirm

that viscous effects are not dominant.
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Figure 5.9: The ratio Fv/Fmass of the amplitudes of viscous force in phase with
surge acceleration and a measure of the mass and added mass force in surge on the
torus as a function of non-dimensional wave number νa.

Nonlinear effects may cause oscillations with frequency ω. For instance, if we
apply a third-order theory with steady-state oscillations in regular waves, there are
oscillations with frequencies ω and 3ω. The corresponding amplitudes are expected
to be of the same order of magnitude. Our arguments for saying this is that a third-

order analysis, for instance involves terms cos3 ωt =
1

4
cos 3ωt+

3

4
cosωt. Therefore,

we present in Figure 5.10 the experimental ratio ẅ
(3ω)
a /ẅ

(ω)
a versus non-dimensional

wave number νa for the five considered positions along the torus. Here ẅ
(3ω)
a and

ẅ
(ω)
a are the vertical acceleration amplitudes of the oscillations with frequencies

3ω and ω, respectively. The mean values obtained from the DFT analysis are
the basis for the estimates, i.e. we do not involve an error band associated with
the standard deviation. The results indicate that third order effects cannot be
neglected in estimating the experimental accelerations oscillating with frequency ω
for νa / 0.1. One contributing factor to the larger relative influence for small νa is
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Figure 5.10: Experimental ratio ẅ
(3ω)
a /ẅ

(ω)
a versus non-dimensional wave number

νa for five positions along the torus. Here ẅ
(3ω)
a and ẅ

(ω)
a are the vertical acceler-

ation amplitudes of the oscillations with frequencies 3ω and ω, respectively. The
wave steepness H/λ = 1/120.

that the incident wave amplitude-to-cross-sectional radius ratio ζa/a = (π/120) /νa
increases with decreasing νa.

5.2.3 Sum-frequency vertical torus accelerations

Since the measurements are relative to a body-fixed coordinate system OxByBzB ,
which coincides with the Oxyz-system at rest and the calculations by HydroStar
(model C) are in an inertial coordinate system, we have to add the sum-frequency

part of η̈1η5+
1

2
gη2

5 to the sum-frequency calculations of vertical accelerations. Here
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η̈1 and η5 are the surge acceleration and pitch angle, respectively. The influence of
the correction term was negligible.
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Figure 5.11: Second-order sum-frequency non-dimensional vertical acceleration am-

plitude ẅ
(2ω)
a c2/

(
gζ2
a

)
along the zB-axis for five positions of the torus by HydroStar

(model C) together with experimental results versus non-dimensional wave number
νa in the range of [0.023, 0.176]. The height of the experimental error bars is two
times the estimated standard deviation. The wave steepness H/λ = 1/120.

Figures 5.11 and 5.12 show numerically predicted second-order sum-frequency

non-dimensional acceleration amplitude ẅ
(2ω)
a c2/

(
gζ2
a

)
along the zB-axis for five

positions of the torus by HydroStar (model C) together with experimental results
versus non-dimensional wave number νa. The large differences in vertical scale of
the two figures should be noted. The agreement is not perfect but we should have in
mind the error sources discussed in the section on linear frequency-domain results,
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ẅ
(2
ω
)

a
c2
/
g
ζ
2 a

Acceleration Front

 

 

Experiment 1/120
HydroStar (C)

0.16 0.18 0.2 0.22
0

500

1000

1500

2000

2500

3000

νa

ẅ
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Figure 5.12: Second-order sum-frequency non-dimensional vertical acceleration am-

plitude ẅ
(2ω)
a c2/

(
gζ2
a

)
along the zB-axis for five positions of the torus by HydroStar

(model C) together with experimental results versus non-dimensional wave number
νa in the range of [0.16, 0.22]. The height of the experimental error bars is two
times the estimated standard deviation. The wave steepness H/λ = 1/120.

which implicitly have consequences for the second-order solution. Additional tank
wall interference effects occur for the second-order problem since the second-order
potential involves contributions from the non-homogenous free-surface conditions
over an infinite domain of the mean free-surface, which is in conflict with the
tank walls. We documented for the linear problem the fact that there was in the
experiments non-negligible oscillations with frequency 3ω meant that there were
contributing oscillations with ω from a third-order theory. In theory, we may
say that there are contributions with frequencies 2ω and 4ω from a fourth-order
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theory. However, since the measured 4ω-component was small, we anticipate that
the corresponding 2ω-component can be neglected. The numerical results show
clear peaks at the higher frequencies, but there are no experimental values at those
peak frequencies.

We can partly explain the numerical results by setting up the frequency-domain
equations of motions for the second-order response. The solutions contain the
factors:

R3 =
1√

[−4ω2 (M + A33) + C33]
2

+ [2ωB33]
2

R51 =
1√

Re2 + Im2

Re = −4ω2 (M + A11)
[
−4ω2 (I55 + A55) + C55

]
− 4ω2B11B55

− 16ω4 (MzG + A15) (MzG + A51) + 4ω2B15B51

Im = −2ωB11

[
−4ω2 (I55 + A55) + C55

]
+ 8ω3B55 (M + A11)

−8ω3B15 (MzG + A51) − 8ω3B51 (MzG + A15)

(5.13)

involving torus parameters as a function of νa and defined relative to the coordinate
systemOxyz (see Figure 4.4). Here A33 andB33 are added mass and wave-radiation
damping coefficients in heave as a function of 2ω, respectively. Aij and Bij , i = 1,
5; j = 1, 5 are added mass and wave-radiation damping coefficients in surge, pitch
and coupling between surge and pitch as a function of 2ω. M is the mass and I55 is
the mass moment of inertia in pitch, C33 and C55 are the hydrostatic restoring terms
in heave and pitch, respectively. zG is the z-coordinate of the center of gravity.
Heave and coupling motions between surge and pitch can be considered as single
and two-degree oscillating system, respectively. The second-order sum-frequency
heave and pitch amplitudes are proportional to R3 and R51, respectively.

The results are presented in Figure 5.13. The strongly oscillating behavior as
a function of νa is a consequence of the strong frequency dependency of the added
mass and damping coefficients as shown in Figures 3.1 and 3.4. The consequence
is many frequencies corresponding to peaks in the response curves, which differ
for heave and pitch. This behavior is also reflected in the calculations presented
in Figure 5.13. However, more frequencies ought to be experimentally studied to
reveal the strong oscillatory behavior as a function of non-dimensional wave number
νa. The peaks in the response curves are associated with peaks in the excitation
loads. There are no resonance effects caused by 2ω being equal to an undamped
natural frequency as listed in Table 4.3.

5.2.4 Wave elevation inside torus

The wave elevation inside the torus was investigated experimentally and theoreti-
cally. The linear potential flow theory predicts, for instance, zero heave and pitch
wave radiation damping at certain frequencies, which differ for heave and pitch.
The latter fact suggests that wave resonances inside are possible. Figure 5.14 shows



92 A study of a floating nearly rigid torus in regular waves

0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7x 10
−3

νa

R
3

0.05 0.1 0.15 0.2
0

2

4

6

x 10
−5

νa

R
51

Figure 5.13: The multiplying factors R3 for heave and R51 for pitch defined in E-
q. (5.13) versus non-dimensional wave number νa. R3 and R51 are calculated by
HydroStar and are proportional to the second-order sum-frequency heave and pitch
amplitudes, respectively.

the results. Linear potential flow theory for the rigid torus without tank wall inter-
ference (model A) has been applied. The left graph is for the center of the inside
of the torus. There is no evidence of resonance neither in experiments nor theory.
However, since linear resonant waves would have a node at that point, we have
numerically also studied the wave elevation at the front and aft of the inside of the
torus versus non-dimensional wave number (see Figure 5.14). Still we do not see
any clear evidence of resonance.
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Figure 5.14: Left drawing: Measured and numerically predicted wave amplitude
ηa in the center of the inside of the torus. Right drawing: Numerically predicted
wave amplitude in the front and aft of the inside of the torus. Linear potential flow
theory for the rigid torus without tank wall interference (model A) is used. The
height of the experimental error bars is two times the estimated standard deviation.
Experiments are for wave steepnesses 1/120, 1/60, 1/30 and 1/15.
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5.3 Experimental higher-harmonic torus acceler-
ations in waves of different steepness

Steady-state amplitudes of experimental non-dimensional harmonic acceleration

ẅ
(ω)
a , second-harmonic acceleration ẅ

(2ω)
a , third-harmonic acceleration ẅ

(3ω)
a and

fourth-harmonic acceleration ẅ
(4ω)
a along body-fixed zB-axis versus non-dimensional

wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
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ẅ
(ω

)
a

c/
g
ζ
a

Acceleration Front Left

 

 

Experiment 1/120
Experiment 1/60
Experiment 1/30
Experiment 1/15

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

νa

ẅ
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Figure 5.15: Steady-state amplitudes of experimental non-dimensional first-

harmonic acceleration ẅ
(ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.
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Figure 5.16: Steady-state amplitudes of experimental non-dimensional second-

harmonic acceleration ẅ
(2ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

positions of the torus in incident regular waves with frequency ω and amplitude
ζa have been presented in Figures 5.15 to 5.18. We decided to make the harmonic
terms non-dimensional in the same manner in order to compare the magnitudes
of the different harmonic terms. The results show significant contributions from
all the presented harmonic terms, in particular for larger wave steepnesses. The
contributions from higher than fourth-order terms were not significant and are not
presented as presented in Figure 4.12.

Since ẅ
(ω)
a , ẅ

(2ω)
a , ẅ

(3ω)
a and ẅ

(4ω)
a are according to a perturbation method



5.3. Experimental higher-harmonic torus accelerations in waves of
different steepness 95

0 0.05 0.1 0.15 0.2
0

1

2

3

νa

ẅ
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Figure 5.17: Steady-state amplitudes of experimental non-dimensional third-

harmonic acceleration ẅ
(3ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

mainly proportional to respectively ζa, ζ2
a , ζ3

a and ζ4
a , ẅ

(2ω)
a /ζ2

a , ẅ
(3ω)
a /ζ3

a , ẅ
(4ω)
a /ζ4

a

along body-fixed zB-axis versus wave number νa for different wave steepness for
five measured positions of the torus have been presented in Figures 5.19 to 5.21.

We should note that ẅ
(4ω)
a /ζ4

a is very large for high frequencies is because ζa is

very small. We start by examining ẅ
(ω)
a /ζa in Figure 5.15, which shows that

ẅ
(ω)
a is mainly proportional to ζa for the different wave steepness 1/120, 1/60, 1/30

and 1/15. However, there ought to be a dependence on ζ3
a as earlier argued, for
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Figure 5.18: Steady-state amplitudes of experimental non-dimensional fourth-

harmonic acceleration ẅ
(4ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

instance the term cos3 ωt =
1

4
cos 3ωt +

3

4
cosωt. When it comes to ẅ

(2ω)
a /ζ2

a

and we disregard the results for the highest wave steepness 1/15, ẅ
(2ω)
a is mainly

proportional to ζ2
a for the wave steepness 1/120, 1/60 and 1/30 at the front, front

left and aft of the torus (see Figure 5.19). However, there ought to be also a

dependence on ζ4
a as earlier argued. When it comes to ẅ

(3ω)
a and ẅ

(4ω)
a , we cannot

say that they are mainly proportional to ζ3
a and ζ4

a , respectively (see Figures 5.20
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and 5.21). It means that we cannot explain the behavior of ẅ
(3ω)
a and ẅ

(4ω)
a by a

perturbation method with the wave steepness as a small parameter.
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Figure 5.19: Steady-state amplitudes of experimental non-dimensional second-

harmonic acceleration ẅ
(2ω)
a /ζ2

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

The torus shape above the mean free-surface becomes a factor. Actually, ζa/a
ought to be considered as a small parameter. However, wave overtopping was ob-
served during the experiments as shown in Figure 4.10. An estimate of occurrence
of wave overtopping can be made by means of the vertical Keulegan-Carpenter
number KCvert. = πηrel.vert./a presented in Figure 5.8 for different frequencies
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ẅ
(3
ω
)

a
/
ζ
3 a

Acceleration Aft

 

 

Experiment 1/120
Experiment 1/60
Experiment 1/30
Experiment 1/15

Figure 5.20: Steady-state amplitudes of experimental non-dimensional third-

harmonic acceleration ẅ
(3ω)
a /ζ3

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

and torus positions and wave steepness H/λ = 1/120. We consider as an example
πηrel.vert./a = 1.5 from Figure 5.8, which means that wave overtopping occurs for
H/λ > 1.4/120. However, the latter estimate does not account for nonlinearities
and local free-surface effects at the torus. An attempt was made to follow a common
engineering approach in seakeeping analysis of ships by calculating correctly non-
linear Froude-Kriloff forces and unsteady hydrostatic forces in nonlinear incident
waves together with linear hydrodynamic forces. However, we could not explain
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Figure 5.21: Steady-state amplitudes of experimental non-dimensional fourth-

harmonic acceleration ẅ
(4ω)
a /ζ4

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

the experimental results by following such an approach. The fact that part of the
torus may go out of the water in cases with overtopping is also illustrated in Fig-
ure 4.10 together with a photo from a torus of a full scale fish farm without net in
a storm illustrating that the same phenomena occur in real life (see Figure 4.11).
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5.4 Summary

Longitudinal motions deduced from the measured mooring line forces and vertical
accelerations of a nearly rigid torus model in regular waves have been studied
based on model tests from 2013. The experimental results are compared with
numerical results computed by HydroStar. Reasonable agreements are obtained for
longitudinal motions and first-harmonic component of vertical accelerations but not
perfect agreement of second-harmonic component. Hydroelasticity is one reason of
the differences in the first and second harmonics response. Further, it was found
that higher order wave-body interaction effects cannot be neglected. Numerical
errors due to viscous effects are found to be secondary. The experimental and
numerical results show that resonant wave motion does not occur inside the torus.
The experimental results for different wave steepness in steady-state conditions
show that first, second, third and fourth harmonics vertical acceleration of the
torus matter. A perturbation method is only practical for first-order and second-
order problems and cannot explain the third and fourth harmonics response with
the wave steepness as a small parameter. A fully nonlinear 3D CFD method that
accounts for hydroelasticity to compare with the experiments may be needed and
requires future studies.



Chapter 6

A study of a floating elastic
torus in regular waves

In this chapter results from numerical simulations and experiments of an elastic
circular collar of a floating fish farm in regular waves are presented. The focus is
on the vertical accelerations along the torus as a function of wave frequency and
steepness. For the examined problem, hydroelasticity matters due to the relatively
small flexural rigidity of the torus and resonances are possible due to high-order
wave load excitation.

Our study on wave-induced vertical accelerations of the elastic torus-shaped
floater of a fish farm has resulted in one publication (Li et al., 2014).

6.1 Theoretical methods

In order to perform numerical simulations of the floating elastic torus subject to
regular waves as in the experiments from 2013, two solution strategies based on
potential-flow theory are used to predict the wave-torus interaction problem. We
applied in Chapter 5 the second-order numerical results for a rigid body based
on consistent potential-flow theory. We have not available such a method for
an elastic body. One applied method is the low-frequency slender-body theory
(see Chapter 2), which considers only the linear frequency-domain effects. A dif-
ference from the present linear frequency-domain theoretical calculation is that Li
et al. (2014) did not include the curvature effect on the bending stiffness. How-
ever, the latter effect is small for the studied elastic torus. The other method
generalizes the weak-scatter method (Greco and Lugni, 2012) with original theo-
ry due to Pawlowski (1991). The computer program was developed by Marilena
Greco. The weak-scatterer hypothesis assumes that the amplitudes of the incident
waves and body motions are large relative to wave amplitudes due to scattering
and radiation effects. The equations of motions are formulated in a body-fixed
reference frame OxByBzB and nonlinear Froude-Kriloff and hydrostatic restoring
loads are included. The nonlinearities are kept up to the second order. Elastic
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torus motions are accounted for in the low-frequency slender-body theory as well
as weak-scatter method. As in the model tests and the linear frequency-domain
method, the weak-scatter method assumes no current either.

The incident regular waves propagate along the x-axis and are described by a
second-order Stokes theory in deep water. For sinusoidal unidirectional progressive
deep water waves, the wave elevation is expressed as (Faltinsen, 1990):

ζ = ζa sin (ωt − νx) − 0.5ζ2
aν cos [2 (ωt − νx)] (6.1)

where ζa is the first-order wave amplitude. When the torus is at rest in calm
water, the torus is semi-submerged. The equations of rigid-body motions of the
torus follow from Newton’s second law (Faltinsen, 2005), which is heave, pitch and
surge motions in our studies. The external loads in the equations of rigid-body
motions are due to the mooring, nonlinear Froude-Kriloff and hydrostatic loads
as well as hydrodynamic loads associated with flow caused by the torus velocity
and scattering of the incident waves. The hydrodynamic loads are consistent within
linear theory but include nonlinear effects due to satisfaction of the body-boundary
conditions.

The flexible vertical (w) torus motion is described by Eq. (2.10) but do not

include the bending stiffness term
EI

c2
∂2w

∂s2
, which is a consequence of curvature.

The flexible lateral (radial, vr) torus motion is described by the following modified
beam equations with tension and curvature effects:

m
∂2vr
∂t2

+ EI
∂4vr
∂s4

+
EI

c2
∂2vr
∂s2

− ∂

∂s

(
Tas

∂vr
∂s

)
= fFK + hydrostatic

r + fhydrodynamic
r + f str.+ mooring

r

(6.2)

Here fFK + hydrostatic
r is the radial nonlinear Froude-Kriloff and hydrostatic forces

per unit length and fhydrodynamic
r is the radial hydrodynamic force per unit length

due to the torus velocity and scattering of the incident waves. Further, f str.+ mooring
r

describes the effect of structural damping and mooring. The flexible vertical motion
is expressed as Eq. (2.11) and starts with n = 2. The flexible radial motion is
expressed as:

vr =

∞∑
n=2

bn (t) cos (nβ) (6.3)

here b2 represents the first lateral elastic mode. The weak-scatter method follows
a similar procedure as linear frequency-domain method in re-expressing the verti-
cal and radial modified beam equations for the flexible modes by multiplying the
equations with cos (mβ) and integrating from 0 to 2π. This leads to an equation
system for the unknowns an and bn.

The nonlinear Froude-Kriloff and hydrostatic loads involve pressure integration
on the instantaneous wetted surface. The latter is found by approximating the
free-surface elevation at the torus as the incident wave elevation as shown in Fig-
ure 6.1. The effect of rigid-body and elastic torus motions is considered. Both
overtopping and dry cross-sections may occur due to large relative vertical torus
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motion. The difference between the water pressure and the atmospheric pressure
on the instantaneous position of the torus is −ρgz + p1 with

p1 =


−ρ∂ϕ0

∂t
− ρ

2
|5ϕ0|2 , z ≤ 0

−ρ∂ϕ0

∂t
, z > 0

(6.4)

Here ϕ0 is the incident wave potential.

w

a

a
z

Figure 6.1: Definitions related to calculations of submerged cross-sectional area of
a circular section. ζ is wave elevation, w is vertical displacement, a is the radius of
circular section and α is the sector angle of dry surface.

The rest of the hydrodynamic loads are partly linearized in the time domain
and represented in terms of convolution integrals (Cummins, 1962). A correction
of the linear scattering and radiation loads is obtained by satisfying averagely in
time the impermeability condition along the instantaneous wetted torus surface
defined by the incident waves and the torus motions. The frequency-domain added
mass and damping coefficients needed in calculating the retardation functions fol-
low by satisfying the body-boundary conditions on the mean oscillatory position
and properly integrating linear hydrodynamic pressure. The linear potential-flow
frequency-domain panel code WAMIT was used for both flexible and rigid-body
modes.

The effect of mooring on f str.+ mooring
3 is small and neglected. Since the struc-

tural damping associated with the different flexible modes is unknown, the following
strategy was tried out. A damping of the form [q1 +4q · (j − 1)]Bcr,j , is assumed
for each vertical and radial flexible mode j, with Bcr,j the corresponding critical
damping, q1 = 0.05 and 4q = 0.01. With this formula a structural damping equal
to the 5% of the critical damping is used for the first flexible vertical/radial mode
and increased with a step of 1% with the number of mode. This arbitrary choice is
qualitatively reasonable since it is expected a greater effect of the structural damp-
ing in limiting the higher modes. The comparison with a similar formula using
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q1 = 0.01 gave very close results for the longer incident-wave cases while indicated
higher-mode amplitudes much larger than observed in the physical case. Since the
experiments are performed with horizontal mooring lines, a restoring is caused for
the surge, sway and radial elastic modes. Using free-decay tests in surge with only
the two mooring lines in x-direction, the restoring and damping for surge and sway
(due to the symmetry of the body and of the mooring lines set-up) were obtained
(see Figure 4.3). In this way viscous-damping corrections were included in the
simulations.

Both linear frequency-domain method and weak-scatter method include the

tension effect. Tas is assumed constant and equal to T
(i)
as between each mooring

line as illustrated in Figure 4.3. The values of T
(i)
as used in the presented case

studies are
[
T

(1,3,5,7)
as , T

(2,4,6,8)
as

]
= [0.4108, 0.7071]×Tp, where Tp is the pre-tension

of the mooring lines.

The weak-scatter equations are solved numerically in time using a fourth-order
Runge-Kutta scheme. Convergence of the weak-scatter results has been checked
in terms of spatial body discretization, time step and number of modes. The dis-
cretization of the geometry must ensure that the variation of forces between the
discrete points on the torus give good approximation of the actual forces since
the wave elevation and torus motion are spatial dependent. The time steps in the
analysis need to be sufficiently small in order to get convergence and reliable re-
sults. However, many discrete points on the torus and very small time increments
will result in a long computational time. It was found that 24 panels along the
cross-sectional diameter and 988 panels along the global diameter of the torus were
suitable to have nearly converged results. ∆t = 0.0025T , with T the incident wave
period, was confirmed to be a suitable time step. Ten vertical and ten radial flexible
modes have been considered. Additional modes would have demanded increased
accuracy in the spatial discretization. The resulting weak-scatter solver is quite ef-
ficient if compared with more general fully-nonlinear potential-flow methods since
it requires in the time integration only the discretization of the instantaneous wet-
ted body surface, the estimation of nonlinear Froude-Kriloff and hydostatic loads
and the satisfaction of the nonlinear body-boundary condition in the hydrodynamic
problem.

An investigation of retardation functions show that if rigid motions dominate
the torus response, steady-state conditions would be reached quickly in time.
Things are different for the first vertical and radial elastic modes. In this case
the memory effects are of similar importance along the time axis, suggesting that
steady-state conditions require longer time to be reached when these modes are
important for the torus response. This behaviour of the retardation functions is
very special and probably connected with the ring shape of the elastic body and the
very complicated frequency dependency for added-mass and damping coefficients
with several peaks and troughs, and occurrence of negative added mass and almost
zero damping.

The weak-scatter method was applied to the cases with smallest, intermediate
and largest incident-wave periods, i.e. T = 0.6s, 1.05s and 1.6s. For longer incident
waves rigid motions tend to dominate the torus response, so we can expect that
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steady-state conditions are reached sooner than for shorter waves. The numerics
indicates that they are reached after 20T for the longest wave while the exper-
iments show important variation between the measurements done after 20T and
those made after 50T . For T = 1.05s, steady-state conditions are nearly reached
numerically and experimentally after 50T , while both of them indicate a difficulty
in reaching steady-state conditions for the shortest wave even after 100T . This is
consistent with the fact that in this case rigid motions are comparable with the
elastic motions and can interact with them, so memory effects need longer times
to die out. Each case is simulated 80T in our studies.

6.2 First-harmonic torus accelerations in waves of
different steepness

We will separately compare the frequency-domain experimental results with the
linear and weak-scatter theoretical methods. It is referred to Chapters 4 and 5 for
an extensive discussion of experimental error sources. Figure 6.2 compares ampli-
tudes of experimental and linear theoretical predictions of the first harmonics of
vertical accelerations along the torus as a function of nondimensional wave num-
ber νa and wave steepness. Twenty modes are used. Increasing number of modes
has a negligible effect. Experimental error bars defined as two times the standard
deviation are presented in the figure. The experimental mean value and total s-
tandard deviation are defined as µ and σ =

√
σ2
ea + σ2

re, respectively, where σea is
the standard deviation of each case due to the time-dependent amplitude variation
and σre is the standard deviation due to repeating the tests three or four times for
each wave condition. Relative error σ/µ caused by repetition was less than 0.01.
Thus, the obtained time series showed good repeatability and we use σ ≈ σea for
all the presented results.

The time series of the experimental accelerations obtained by filtering out higher
harmonics than ω was previously shown in Figure 4.9 when H/λ = 1/30 and
νa = 0.2125. It has been described in Section 4.3 that there are two strategies
to calculate the mean values µ and standard deviations σre. The more accurate
sliding DFT technique is used here. The maximum relative error is respectively
3.2%, 5.76%, 10.65%, 9.28% and 2.32% from front to aft at five positions on the
torus by examining all the test cases. However, there is in general a small relative
error, which means the standard deviation σea of each case is very small for first
harmonics of vertical accelerations. This can be understood as the time-dependent
amplitude variation is very small. The reason why the experimental results are not
steady state have been explained in Section 5.2.

The low-frequency slender-body theory agrees, in general, satisfactorily with
experiments at the front, front left and aft positions. An error source is that
the accelerometer is body-fixed and can only measure the acceleration in normal
direction while the theories predict vertical accelerations. However, theoretical
estimates of the latter effect showed a negligible error. There are clear differences for
the other positions when νa ' 0.0848. We note, for instance, a large relative error
on the left part of the torus at νa = 0.181. Wave lengths of practical interest are
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Figure 6.2: Steady-state amplitudes of experimental and numerical non-

dimensional first-harmonic acceleration ẅ
(ω)
a along body-fixed zB-axis versus non-

dimensional wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for
five measured positions of the torus in incident regular waves with frequency ω and
amplitude ζa. The height of the experimental error bars is two times the estimated
standard deviation.

of the order of the torus diameter but long relative to the cross-sectional diameter.
The wave length is 1.128m corresponding to T = 0.85s and νa = 0.1059. This
means that low-frequency slender-body theory can not give a very good prediction
for νa > 0.1.

The weak scatter results of the amplitude of the first harmonics of vertical
accelerations at the front, left and aft of the torus presented in Li et al. (2014)
are compared in Table 6.1 with experiments and the low-frequency slender-body
theory for νa = 0.0299, 0.0694, 0.2125 and different wave steepnesses. Ten vertical
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and ten radial flexible modes have been considered by weak-scatter method here.
The linear results shown in Table 6.1 for νa = 0.0694 at the front position and
νa = 0.2125 at the front and left positions of torus are smaller compared with
the same νa and positions results presented in Li et al. (2014). The other linear
results shown in Table 6.1 are larger than Li et al. (2014)’s results. The reason

to this difference is that the bending stiffness term
EI

c2
∂2w

∂s2
as a consequence of

curvature effect of the torus is included in Eq. (2.10). However, the differences
are small. It should be noted that the experimental mean values µ and standard
deviations σ between Table 6.1 and Li et al. (2014) are different as well. The reason
to this difference is that the experimental results presented in Li et al. (2014) were
obtained by the envelope curve method described in Section 4.3 while the more
accurate sliding DFT technique is applied in our present study. However, the
differences are negligible.

The weak-scatter method agrees well with the experiments under the same wave
conditions except for the results at the left position when νa = 0.2125. However,
the acceleration level is small relative to the values at the front and aft position of
torus. In general, the weak-scatter method tends to underestimate the experimental
first-harmonic accelerations under the same wave conditions. The underestimation
does not seem to be connected with the use of a too large structural damping for
the elastic modes. The weak-scatter results with two different structural damping
strategies are identical for the two lower frequencies cases, as expected since the
torus responses in these two cases are dominated by the rigid motions. Moreover
the reduction of the damping does not improve the agreement with the experiments
for the highest frequency case.
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6.3 Experimental higher-harmonic torus acceler-
ations in waves of different steepness

The steady-state amplitude of the second harmonics of vertical accelerations from
experiments and by the weak-scatter method are compared in Table 6.2 for the
same positions and the same νa as in Table 6.1. Similar like Table 6.1, sliding
DFT technique is applied in our present study, which leads to the experimental
mean values µ and standard deviations σ have small difference with the results
presented in Li et al. (2014). The maximum relative experimental error is respec-
tively 20.4%, 35.41%, 40.36%, 39.87% and 31.4% from front to aft at five positions
on the torus by examining all the test cases. As discussed already, relative error
caused by repetition was negligible. Thus, the main contribution comes from the
time variation of measured amplitude of vertical acceleration. The experimental
error is the same order of magnitude as for the amplitude of the second harmonics
of the accelerations for some cases.

The weak-scatter method has a reasonable agreement with experiments for wave
steepness 1/120 and in some cases for wave steepnesses 1/60 and 1/30. Similar
as the analysis of the first harmonics of vertical accelerations, the acceleration
level at the left position is small relative to values at the front and aft positions.
The differences are larger for the highest wave steepness 1/15, νa = 0.0299 at
the front position for wave steepness 1/30 and νa = 0.0694 and 0.2125 at the aft
position for wave steepnesses 1/60 and 1/30. A reason in the latter case can be flow
separation. Kristiansen and Faltinsen (2009) demonstrated by the CIP method that
flow separation occurs during overtopping of waves on a semi-submerged circular
cross-section. The method of nonlinear Froude-Kriloff and restoring forces does
not consider the effect of flow separation.

When linear effects dominate, the two considered potential-flow methods are
rational. However, the calculated effect of axial tension on flexible modes are
approximated by using constant tension between each mooring-line attachment
points. When nonlinear Froude-Kriloff and hydrostatic loads dominate, the weak-
scatter method is partially reasonable. An error source is that the local free-surface
elevation influenced by the flow caused by torus velocities and scattering has not
been used in finding the wetted surface. The semi-submerged torus surface is not
vertical in the free-surface zone, therefore, it is impossible with the considered
method to find the local free-surface elevation. Since higher-order harmonics of
wave loads can cause resonant excitation of flexible modes, structural damping
may matter at this stage. We do not know what the structural damping was
for the different modes of the tested model and, therefore, what the error due to
structural damping was in the weak-scatter method.
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As have been analyzed for experimental higher-harmonic accelerations of the
nearly rigid torus model in Section 5.3, two non-dimensional strategies are applied
in analyzing the experimental higher-harmonic accelerations of the elastic torus
model. One method is to make the harmonic terms non-dimensional in the same
manner as shown in Figure 6.2 in order to compare the magnitudes of the different
harmonic terms. Another method is based on a perturbation method. Therefore,
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(ω)
a , ẅ

(2ω)
a , ẅ

(3ω)
a and ẅ

(4ω)
a should be mainly proportional to ζa, ζ2

a , ζ3
a and ζ4

a ,
respectively.
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Figure 6.3: Steady-state amplitudes of experimental non-dimensional second-

harmonic acceleration ẅ
(2ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.
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Figure 6.4: Steady-state amplitudes of experimental non-dimensional third-

harmonic acceleration ẅ
(3ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

Steady-state amplitudes of experimental non-dimensional second-harmonic ac-

celeration ẅ
(2ω)
a , third-harmonic acceleration ẅ

(3ω)
a and fourth-harmonic accelera-

tion ẅ
(4ω)
a along body-fixed zB-axis versus non-dimensional wave number νa for

wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured positions of the
torus in incident regular waves with frequency ω and amplitude ζa have been p-
resented in Figures 6.3 to 6.5. It can be found that all the presented harmonic
terms have significant contributions compared with the first harmonic part pre-
sented in Figure 6.2, in particular for larger wave steepness for instance 1/30 and
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Figure 6.5: Steady-state amplitudes of experimental non-dimensional fourth-

harmonic acceleration ẅ
(4ω)
a along body-fixed zB-axis versus non-dimensional wave

number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

1/15. The magnitude of higher than fourth-harmonic acceleration were small as
presented in Figure 4.12 and are not presented. Predicted values of the amplitude
of the third and fourth harmonics of accelerations by the weak-scatter method for
different wave steepnesses were very low relative to the experimental results shown
in Figures 6.4 and 6.5.

We have presented ẅ
(2ω)
a /ζ2

a , ẅ
(3ω)
a /ζ3

a , ẅ
(4ω)
a /ζ4

a along body-fixed zB-axis versus
wave number νa for different wave steepness for five measured positions of the
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ẅ
(2
ω
)

a
/
ζ
2 a

Acceleration Left

 

 

Experiment 1/120
Experiment 1/60
Experiment 1/30
Experiment 1/15

0 0.05 0.1 0.15 0.2
0

1000

2000

3000

4000

5000

6000

7000

νa

ẅ
(2
ω
)

a
/
ζ
2 a

Acceleration Aft Left

 

 

Experiment 1/120
Experiment 1/60
Experiment 1/30
Experiment 1/15

0 0.05 0.1 0.15 0.2
0

2000

4000

6000

8000

νa

ẅ
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Figure 6.6: Steady-state amplitudes of experimental non-dimensional second-

harmonic acceleration ẅ
(2ω)
a /ζ2

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

torus in Figures 6.6 to 6.8. Same conclusion as for the first-harmonic acceleration

of nearly rigid torus model can be obtained by examining ẅ
(ω)
a /ζa in Figure 6.2,

which shows that ẅ
(ω)
a is mainly proportional to ζa for the different wave steepness

1/120, 1/60, 1/30 and 1/15. However, ẅ
(2ω)
a is mainly proportional to ζ2

a for the
different wave steepness at the front, front left and left of the torus by examining

ẅ
(2ω)
a /ζ2

a (see Figure 6.6). When it comes to ẅ
(3ω)
a and ẅ

(4ω)
a , we cannot say that

they are mainly proportional to ζ3
a and ζ4

a , respectively (see Figures 6.7 and 6.8).
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Figure 6.7: Steady-state amplitudes of experimental non-dimensional third-

harmonic acceleration ẅ
(3ω)
a /ζ3

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

It means that we cannot explain the behavior of ẅ
(3ω)
a and ẅ

(4ω)
a by a perturbation

method with the wave steepness as a small parameter as for the nearly rigid torus
model.

As discussed in Section 5.3, one reason is that the torus shape above the mean
free-surface matters since ζa/a ought to be considered as a small parameter. How-
ever, wave overtopping occurred during the experiments as shown in Figure 4.10.
Another reason may be that the elastic torus has an infinite number of natural
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Figure 6.8: Steady-state amplitudes of experimental non-dimensional fourth-

harmonic acceleration ẅ
(4ω)
a /ζ4

a along body-fixed zB-axis versus non-dimensional
wave number νa for wave steepnesses 1/120, 1/60, 1/30 and 1/15 for five measured
positions of the torus in incident regular waves with frequency ω and amplitude
ζa. The height of the experimental error bars is two times the estimated standard
deviation.

frequencies, and resonant oscillations can be excited when higher-order harmonics
of the wave loads nω is close to the natural frequency of a mode. Table 6.3 lists pre-
dicted undamped natural frequencies for different vertical modes. It increases from
left to right in each row and up to the largest value of 4ω in the model tests. There
are 100 natural frequencies from the first one 22.61rad/s to 45.15rad/s. The very
strong frequency dependency of generalized added mass for vertical modes causes
a small interval between successive natural frequencies. This increases the possi-
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Table 6.3: Predicted undamped natural frequencies in rad/s for vertical modes.

22.61 23.11 23.49 23.99 24.33 25.15 25.67 25.83 26.11 26.73

26.97 27.49 28.21 28.61 28.93 29.37 29.63 30.11 30.31 30.83

30.99 31.32 31.75 32.17 32.29 32.61 32.81 33.01 33.11 33.45

33.54 33.73 34.07 34.33 34.67 34.76 34.93 35.16 35.27 35.35

35.53 35.85 35.95 36.11 36.41 36.53 36.67 36.88 36.97 37.09

37.23 37.42 37.53 37.65 37.79 38.03 38.21 38.33 38.51 38.61

38.75 38.87 39.04 39.15 39.28 39.39 39.57 39.67 39.80 39.92

40.08 40.18 40.32 40.43 40.59 40.64 40.94 41.10 41.20 41.34

41.44 41.59 41.70 41.83 42.08 42.21 42.32 42.57 42.66 42.81

43.05 43.29 43.53 43.75 43.99 44.23 44.45 44.69 44.91 45.15
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Figure 6.9: Frequencies ω, 2ω, 3ω and 4ω in rad/s as a function of νa = ω2a/g.
The lower bond for the natural frequencies of vertical modes is indicated with the
horizontal pink line.

bility of encounter the wave frequencies testing in experiment. Figure 6.9 presents
frequencies ω, 2ω, 3ω and 4ω in rad/s as a function of νa = ω2a/g. The pink solid
straight line is the first natural frequency 22.61rad/s. When ω, 2ω, 3ω and/or 4ω
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is above the pink line for a given νa, it indicates that resonant oscillations may
occur depending on the magnitude of the generalized excitation force and damping.
If we relate this fact to the experimental results in Figures 6.3 to 6.5, we note that
not all large higher harmonic accelerations can be explained to be a consequence
of resonance.

6.4 Summary

The study on an elastic circular collar of a floating fish farm subjected to regular
waves has been presented. A linear frequency-domain method and a weak-scatter
method have been applied to compare with the results of model tests performed
in 2013. Satisfactory agreement was achieved for the first harmonic component of
measured vertical accelerations at the five measured positions on the torus for both
methods. Discrete Fourier Transform of the measured vertical accelerations show
that higher-order harmonic components are important. The second harmonic accel-
eration component is predicted well by the weak-scatter method for wave steepness
1/120 and in some cases for wave steepnesses 1/60 and 1/30. The differences are
larger for the highest wave steepness 1/15. It is speculated if higher-order wave
loads may cause resonant vertical accelerations of the torus. The analysis showed
that flexible motions, 3D flow and frequency dependency are important. Wave
overtopping may occur in steeper waves.



Chapter 7

Summary and further work

7.1 Summary of the present work

Wave-induced response of a circular collar of a floating fish farm have been inves-
tigated in regular deep-water waves based on a low-frequency slender-body theory,
model tests and numerical simulations.

Wave lengths of practical interest are of the order of the torus diameter. Hydroe-
lasticity plays a major role for the considered torus-shaped floater. The elasticity
effect of the torus is described by a curved beam equation with tension effects. A
low-frequency linear slender-body theory has been derived by matched asymptotic
expansions with a near-field and far-field solution. In the near field we see the
cross-sectional shape of the torus, while the flow in the far field appears as a line
distribution of 3D sources along the center line of the torus. The problem is solved
in the frequency domain with radiating waves. By low frequency is meant that the
corresponding wavelength is long relative to the cross-sectional radius a of the torus.
The derived theory can be used to calculate the generalized vertical added mass
and damping loads on an elastic semi-submerged circular collar used as a floater of
an aquaculture plant. Two types of expressions of the generalized vertical diffrac-
tion loads are also presented either based on solving the diffraction problem with a
cross-sectional averaged vertical incident wave velocity along the torus or by using
a generalized Haskind relation. The linear potential flow frequency-domain panel
code WAMIT with a higher-order Boundary Element Method has been used to
verify the theory. Satisfactory agreements between WAMIT and the low-frequency
slender-body theory have been obtained. There is as expected an increasing dif-
ference with increasing non-dimensional wave number νa and a small increasing
difference occur with increasing mode number which probably is due to the fact
that 2D Helmholtz equation should be used instead of the 2D Laplace equation in
the near-field problem. The results demonstrate pronounced frequency-dependent
3D hydrodynamic interaction on the scale of the torus diameter, which limits the
application of strip theory.

Two sets of model tests have been performed in 2013 in order to validate the low-
frequency slender-body theory. In these two sets of model tests, the elastic torus
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model was tightly moored by springs and mooring lines through 12 attachment
points while the nearly rigid torus model was connected with mooring lines through
4 attachment points. The bending stiffness of the elastic model was obtained
by Froude scaling of an elastic full-scale floater. Both of these two models were
subjected to regular waves. 4 wave steepnesses and 21 wave periods were examined.
The focus was on steady-state periodic response. Vertical accelerations along the
torus, mooring line forces and the free-surface elevation at four positions in the
wave tank were measured. The longitudinal and transverse floater motions were
estimated by means of the mooring loads together with the known stiffness of the
springs. Overtopping and out of water of parts of the torus models were observed
for some of the test conditions. In order to find the error between the theoretical
and achieved wave height given by the wave maker, incident regular wave tests
without the torus in the tank have been carried out. Satisfactory agreements were
achieved between the measured first harmonic component and the nominal wave
amplitude. Since the strong frequency dependency of added mass may cause several
undamped natural frequencies for the dominant modes, free-decay tests have not
been done to identify wet natural periods and damping. The theoretical ten lowest
undamped natural frequency for uncoupled heave, pitch and the lowest vertical
elastic mode of the nearly rigid torus are higher than the experimental frequency
range of the linear incident regular waves.

Two separate studies based on the two sets of model tests have been performed.
In the first study, the nearly rigid torus model has been considered. Linear exper-
imental longitudinal motions have been compared with computed results by the
potential-flow frequency-domain panel code HydroStar and reasonable agreement
were shown. The calculation with HydroStar assume a rigid body. Hydroelastici-
ty effects were experimentally observed in the longitudinal and transverse motions.
Linear experimental vertical accelerations for wave steepnessH/λ = 1/120 whereH
is the wave height and λ is the wave length have been also compared with numerical
results from HydroStar with and without tank wall interference and WAMIT with
hydroelastic effect. However, the calculations with tank wall interference do not
improve the agreement between numerical and experimental results. Investigations
showed that the lowest elastic mode matters. The study of Keulegan-Carpenter
number and viscous force indicate that flow separation and viscous effects are in-
significant for our considered small wave steepness H/λ = 1/120. We found that
third-order effects cannot be neglected in estimating the experimental first-order
component by analyzing the experimental ratio between third-harmonic acceler-
ation and first-harmonic acceleration and by using that third-order terms by a
perturbation theory will contain both first-harmonic and third-harmonic therms.
Numerically predicted second-order sum-frequency accelerations by HydroStar do
not agree well with the experimental results, which may be caused by hydroelastici-
ty and higher order wave-body interaction effects. The experimental and numerical
results show that resonant wave motion does not occur inside the torus. Higher
harmonic components of the experimental vertical acceleration for wave steepness
1/120, 1/60, 1/30 and 1/15 in steady-state conditions are also investigated and
found to matter. Third and fourth harmonics response cannot be explained by a
perturbation method with the wave steepness as a small parameter since the torus
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shape above the mean free-surface is likely to matter and the ratio between the in-
cident wave amplitude and the cross-sectional torus radius ought to be considered
as a small parameter.

The elastic torus model has been studied in the second study. The focus was
on the vertical accelerations along the torus as a function of wave frequency and
wave steepness. The linear low-frequency slender-body theory and the potential-
flow weak-scatter method with partly nonlinear effects were compared with the
measured vertical accelerations. Satisfactory agreements of the first harmonic com-
ponent of vertical acceleration are shown. The weak-scatter results of three typical
non-dimensional wave number νa demonstrate a reasonable agreement with exper-
imental second harmonic acceleration component for wave steepness 1/120 and in
some cases for wave steepnesses 1/60 and 1/30 but become invalid for 1/15. Pre-
dictions of third and fourth harmonic acceleration components are less satisfactory
which means the weak-scatter method can only partly explain the nonlinearities
present in the measured vertical accelerations.

7.2 Recommendations for further work

The present studies can be pursued further in many different perspectives and
several are presented here.

Further developments of the low-frequency slender-body theory can consider
radial modes by following the similar procedure for vertical modes for the added
mass, damping and wave excitation loads where 3D and frequency effects matter
but are less pronounced than for the vertical modes. The latter has been demon-
strated by using WAMIT. In the present study one torus has been considered, but
two concentric pipe circles that are linked together are often used in a fish farm.
The low-frequency slender-body theory can be further developed to consider two
tori. In order to improve the numerical model, the structural damping in the HDPE
plastic needs further investigation and should be included. Further challenges are
irregular waves as well as the fact that the torus can get an oval form in current.

Future studies of using a fully nonlinear 3D CFD method that accounts for
hydroelasticity should be attempted. We say fully nonlinear because the present
studies show that even fourth-order harmonics of the measured torus accelerations
mattered in steeper waves and that perturbation methods are only practical for
linear and second-order problems, which accounts only for first and second order
harmonics of the torus acceleration in regular waves. Difficulties with a pertur-
bation method may also arise because of singularities at the contact line between
the mean free-surface and the torus (Faltinsen and Timokha, 2010). Furthermore,
Navier-Stokes equation is needed because flow separation is likely to matter for
steeper waves.

A further step is to investigate a more complete fish farm set-up,including net
cage with bottom weight ring, chains, ropes and a realistic mooring system in waves
and current where all components behave under mutual influence. Therefore, the
total system needs to be considered simultaneously. In reality there are sever-
al closely spaced aquaculture net cages. The hydrodynamic interaction between



122 Summary and further work

different net cages is a matter of further investigations.
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Appendix A

Bending stiffness terms in
curved beam equation

Tore H. Søreide (personal communication, 2015) has made the following analysis.
We are not aware of similar published results. We consider a beam that is curved
in a plane with a curvature radius c and deforms w perpendicularly to the plane
in the z-direction. We introduce a coordinate system with curvilinear coordinate s
along the beam and a radial coordinate r with origin in the curvature center of the
beam when there is no beam deformation. A cut of small length ds of the beam
is considered (see Figure A.1). There is in the figure introduced the internal forces
and moments acting on the beam part. Those are bending moment Mr about the
r-axis, torsional moment Mt about the s-axis and vertical shear force V along the
z-axis.
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Figure A.1: A small section of length ds of a curved beam with definition of
coordinate system, bending moment Mr about the r-axis, torsional moment Mt

about the s-axis and vertical shear force V along the z-axis.
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We start with steady moment about the r-axis at s and must realize that the
moment axis at s and s + ds changes direction relative to a Cartesian coordinate
system. It means that we must be aware of contribution from Mt. We can write
as a first approximation:

V ds =
∂Mr

∂s
ds + Mt

ds

c
(A.1)

where the small angle ds/c is defined in Figure A.2. It follows that:

V =
∂Mr

∂s
+
Mt

c
(A.2)

We now consider the moment about the s-axis at s and note a contribution
from Mr due to changes in moment direction relative to a Cartesian coordinate
system. We can write:

∂Mt

∂s
ds = Mr

ds

c
(A.3)

It means by using the previous expressions that the internal vertical force ∂V/∂s·ds
on the considered beam section can be expressed by:

∂V

∂s
=

∂2Mr

∂s2
+
Mr

c2
(A.4)

Using the fact that Mr = EI
∂2w

∂s2
gives the bending stiffness terms in Eq. (2.10).
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Figure A.2: Contributions of terms in the equilibrium analysis of a curved beam.



Appendix B

Axial tension in the torus

The following simplified calculations is based on Kristiansen and Faltinsen (2015).
The torus is divided in eight segments as illustrated in Figure B.1. We assume that
the axial tension Tas is piecewise constant in each segment, denoted N1 to N5. Due
to symmetry about the x-axis, N6 to N8 are not explicitly needed.
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Figure B.1: Illustration of simplified calculation method for obtaining approximate
values of the axial tension Tas. Note that P2 is the y-component only of the line
tension.
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We define the following geometrical relations:

l1 sinβ = c sin θ (B.1)

l2 + c = l1 cosβ + c cos θ (B.2)

Global equilibrium of forces in the x-direction yields

P1 = P3 = Tp (B.3)

Here Tp is the pre-tension of the mooring lines. Global equilibrium of moments
around the origin yields

N1c − N5c = 0 (B.4)

Global equilibrium of forces in the y-direction yields

N1 + N5 = P2 −
P1 + P3

2
tanβ (B.5)

Combining the above equations, defining P2 = Tp and re-arranging terms gives the
axial tensions as

N1 = N3 = N5 =
Tp
2

(1− tanβ) (B.6)

N2 = N1 cos θ2 +
P1

2 cosβ
sin (θ2 + β) =

Tp
2

(sin θ2 + cos θ2) (B.7)

N4 = N5 cos (π − θ4) +
P3

2 cosβ
sin (θ4 − β) =

Tp
2

(sin θ4 − cos θ4) (B.8)



Appendix C

Verification of generalized
added mass and damping
coefficients, vertical
excitation forces and
response amplitude
operators
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Verification of generalized added mass and damping coefficients,

vertical excitation forces and response amplitude operators
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Figure C.1: Comparison of sectional vertical added mass coefficients a
(n)
33 of a torus

for the modes number n = 12, 13, 14, 15 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure C.2: Comparison of sectional vertical added mass coefficients a
(n)
33 of a torus

for the modes number n = 16, 17, 18, 19 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure C.3: Comparison of sectional vertical damping coefficients b
(n)
33 of a torus

for the modes number n = 12, 13, 14, 15 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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Figure C.4: Comparison of sectional vertical damping coefficients b
(n)
33 of a torus

for the modes number n = 16, 17, 18, 19 with a/c = 0.0253 by means of the low-
frequency slender-body theory (LST) and WAMIT versus nondimensional wave
number νa. m is displaced cross-sectional mass.
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vertical excitation forces and response amplitude operators
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Figure C.5: Comparison of sectional vertical wave excitation force amplitude f
(n)
3 of

a torus for the modes number n = 12, 13, 14, 15 with a/c = 0.0253 by means of the
low-frequency slender-body theory (LST) with and without Haskind relationship
and WAMIT versus nondimensional wave number νa.
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Figure C.6: Comparison of sectional vertical wave excitation force amplitude f
(n)
3 of

a torus for the modes number n = 16, 17, 18, 19 with a/c = 0.0253 by means of the
low-frequency slender-body theory (LST) with and without Haskind relationship
and WAMIT versus nondimensional wave number νa.
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Figure C.7: Comparison of RAO’s |an,a/ζa| of a torus for the modes number n =
12, 13, 14, 15 with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa.
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Figure C.8: Comparison of RAO’s |an,a/ζa| of a torus for the modes number n =
16, 17, 18, 19 with a/c = 0.0253 by means of the low-frequency slender-body theory
(LST) with and without Haskind relationship and WAMIT versus nondimensional
wave number νa.
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MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
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