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Abstract. This paper presents an approach for detecting primitive geo-
metric objects in point clouds captured from 3D cameras. Primitive
objects are objects that are well defined with parameters and math-
ematical relations, such as lines, spheres and ellipsoids. RANSAC, a
robust parameter estimator that classifies and neglects outliers, is used
for object detection. The primitives considered are modeled, filtered
and fitted using the conformal model of geometric algebra. Methods
for detecting planes, spheres and cylinders are suggested. Least squares
fitting of spheres and planes to point data are done analytically with
conformal geometric algebra, while a cylinder is fitted by defining a non-
linear cost function which is optimized using a nonlinear least squares
solver. Furthermore, the suggested object detection scheme is combined
with an octree sampling strategy that results in fast detection of multi-
ple primitive objects in point clouds.

1. Introduction

There has been an increase in the use of 3D cameras in robotic vision appli-
cations due to the availability of commercial products with high accuracy.
The advantage of 3D cameras compared to 2D cameras is the additional
depth information, which can provide information about size and position of
objects in a scene, where a scene is the environment captured by the camera.
The depth information from 3D cameras can be represented as point clouds,
which is a set of points in Euclidean space given by the x, y, z coordinates
for each point. Object detection in point clouds can be difficult due to noise,
outliers and complexity in the data.
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There exists several approaches for describing the underlying features
and geometry represented in a point cloud. In [10] features such as curvature,
surface normals and edges are extracted and objects are described in terms
of such features. In [2] the focus is on extracting edges by constructing a
covariance matrix for each point. In [13] a point distribution tensor is used,
which is similar to calculating the covariance matrix, to describe regions
of linear, planar and isotropic structure. These methods are well suited for
describing arbitrary and complex geometry as sets of features.

Methods such as RANSAC [6] and the Hough transform [12] are well
suited for detecting primitive objects in point clouds, such as lines, planes,
spheres and cylinders. RANSAC is an iterative method for estimating param-
eters of a mathematical model from experimental data, while the Hough
transform maps points to the parameter space, and classification is done
based on voting schemes. Parameter space is in this context defined as the
set of all possible combinations of parameters of a mathematical model.
These methods handles outliers well, and has been widely used to recognize
primitive objects in 2D and 3D images. Computer software libraries such as
PCL [14] and OpenCV [3] contain a wide range of methods for detecting
objects in point clouds.

In [15], the authors show that a general point cloud can be described
accurately with a set of primitive shapes. They organize the point cloud in an
octree structure, which is a recursive division of 3D space into octants. They
continue by applying RANSAC within each subspace of the octree for five
different primitives (plane, sphere, cylinder, cone, torus). This allows them
to transform the data set from a point cloud to a set of primitive shapes. The
number and variety of primitives depend on the geometry represented by the
point cloud.

In this paper we focus on the detection of primitive geometric models in
point clouds using RANSAC. In contrast to [15], we introduce the framework
of the conformal model of geometric algebra [5,9], so that primitives can
be constructed in a simple manner. Furthermore, a combination of these
primitives in the conformal model can be used to construct a cylinder.

A central step in the RANSAC algorithm is to classify inliers and out-
liers. We show that conformal geometric algebra (CGA) enable filters with
geometrical interpretation for inlier/outlier classification. The last step of
the RANSAC algorithm is fitting the primitive to its inliers. This can be per-
formed analytically with CGA, and the method is identical for both planes
and spheres. Inspired by [15], we show that our suggested object detection
method can be extended to multiple object detection, based on an octree
sampling strategy.

The paper is organized as follows: Sect. 2 introduces the conformal
model of geometric algebra, least square fitting in conformal space, RANSAC
and octrees, Sect. 3 describes how the considered primitives are constructed
from point data with CGA, followed by how inlier classification and scoring
is implemented in CGA. Section 4 shows how octrees can be used to find mul-
tiple primitive objects in a point cloud. Section 5 present the experimental
results, and finally Sect. 6 concludes the paper



Object Detection in Point Clouds Using CGA

2. Preliminaries

2.1. Conformal Geometric Algebra

The geometric algebra of the Euclidean space is denoted R3, while the
conformal model of geometric algebra is denoted R4,1, which is the geo-
metric algebra used in the conformal space R

4,1. A basis of the conformal
space is {e0, e1, e2, e3, e∞}. This basis is referred to as a null basis because
e2
∞ = e2

0 = 0. The basis vector e∞ represents the point at infinity, while
the basis vector e0 represents an arbitrary origin. The inner product of these
basis vectors is e∞ · e0 = −1.

A blade in geometric algebra is the term used for any outer product of
vectors. A vector is equivalent to a 1-blade, while a scalar is a 0-blade. A
2-blade is the outer product of two vectors A ∧ B, while the general k-blade
is the outer product of k vectors. The grade of a k-blade is k. A multivector
is the general term for a sum of blades.

The notation R
k
3 refers to the k-grade elements of R3. The highest grade

element of R3, the Euclidean pseudoscalar, is of grade 3 and is denoted I3.
The conformal pseudoscalar is denoted I and is of grade 5. In this paper the
representation of geometric objects and their duals is based on the formu-
lation in [5], where a geometric object has the direct form X and the dual
form X∗ = X · I−1. Note that an alternative notation is used in, e.g., [7],
where the direct form is termed the IPNS representation, and the dual is the
OPNS representation.

Vectors p ∈ R3 maps to points P ∈ R4,1 using

P = p +
1
2
p2e∞ + e0. (1)

The inner product between two points is

P 1 · P 2 =
1
2
(p2 − p1)

2 (2)

which means that it is dependent on the distance between the Euclidean
points.

Lines L ∈ R
3
4,1 are constructed through the outer product of two con-

formal points and the point at infinity

L = P 1 ∧ P 2 ∧ e∞. (3)

Planes Π ∈ R
4
4,1 are constructed through the outer product of three

conformal points and the point at infinity

Π = P 1 ∧ P 2 ∧ P 3 ∧ e∞. (4)

Unit dual planes are denoted Π∗ ∈ R
1
4,1 and defined as

Π∗ = n̂ + de∞ (5)

where n̂ is the normal of the plane and d is the distance from the plane to
the origin along n̂.

Spheres S ∈ R
4
4,1 are constructed through the outer product of four

points where at least one is not coplanar.

S = P 1 ∧ P 2 ∧ P 3 ∧ P 4 (6)



A. Sveier et al. Adv. Appl. Clifford Algebras

Dual spheres are denoted S∗ ∈ R
1
4,1 and defined as

S∗ = P − 1
2
ρ2e∞ (7)

where P is the center point of the sphere, and ρ is the sphere radius. The
radius of a sphere can be found with the inner product, where S∗ · S∗ = ρ2.

Circles are given by

C = P 1 ∧ P 2 ∧ P 3. (8)

In order to find the radius of the circle, a sphere which has the circle as an
equator can be constructed

S∗ =
C

C ∧ e∞
(9)

The radius can then be found using S∗ · S∗ = ρ2.
The dual of a circle C∗ is the outer product of two dual spheres C∗ =

S∗
1 ∧ S∗

2.

2.2. Least Squares Fitting in Conformal Space

Least squares fitting procedure of points to spheres and planes in conformal
space [8] can be obtained by minimizing the error function

min
n∑

i=1

(P i · X∗)2 (10)

where X is either a plane or a sphere in the conformal model. The inner
product P i · X∗ is a distance measure between a point P i and the plane or
sphere X∗.

The equations can be written in a bilinear form:

min(xT Bx), x = (x1, x2, x3, x4, x5)T , (11)

where B is a symmetric 5 × 5 matrix and the entries are

bj,k =
n∑

i=1

wi,jwi,k, wi,k =

⎧
⎪⎨

⎪⎩

pi,k if k ∈ {1, 2, 3}
−1 if k = 4
− 1

2p
2
i if k = 5.

It can be shown that the solution of the minimization problem is given
by the eigenvector of B which corresponds to the smallest eigenvalue [8]. Since
B is symmetric, the eigenvector can be found by singular value decomposition

B = UΣUT (12)

where U is a matrix where each column represents an eigenvector of B, and
Σ is a diagonal matrix where each diagonal value represent the corresponding
eigenvalue of the eigenvectors in U.
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2.3. RANSAC

RANdom SAmple Consenus (RANSAC) [6] is an iterative method for esti-
mating model parameters from a data set containing several outliers. For
each iteration the steps of the RANSAC algorithm are as follows

1. Randomly sample a minimal subset of points required to generate a
model. This is called the model candidate.

2. Categorize all the data points either as inliers or outliers. Inliers support
the model candidate, while outliers oppose the model candidate.

3. If the model candidate has more inliers than the current best model
estimate, it becomes the current best model estimate.

In addition to the data set and the specified model, the RANSAC algo-
rithm requires three parameters:

• The error tolerance ET , used to determine whether or not a point is an
inlier.

• The number of iterations, k.
• The threshold t, which is the number of compatible points used to imply

that the correct model has been found.

The iteration is terminated if a candidate has more than t inliers or
after k iterations. After the last iteration, the model estimate is fitted to its
inliers using least squares techniques.

2.3.1. Performance. Performance considerations [15] of the RANSAC algo-
rithm can be made by assuming a point cloud P of N points containing a
object X of n points. A subset of q points is randomly sampled, where q is
the minimum number of points that will define the object. The probability
of detecting the object X in a single pass of the RANSAC algorithm is:

P (n) =

(
n
q

)
(
N
q

) ≈
( n

N

)q

. (13)

The probability of detecting the object after k iterations is:

P (n, k) = 1 − (1 − P (n))k. (14)

The number of iterations K required to detect a object of size n with a
probability P (n,K) ≥ pt:

K ≥ ln(1 − pt)
ln(1 − P (n))

, (15)

where pt is the probability of detection given K iterations. The denominator
can be approximated by its Taylor series if P (n) is sufficiently small:

K ≈ − ln(1 − pt)
P (n)

. (16)

Thus, the number of iterations required to detect a object is directly corre-
lated to the fraction n

N .
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2.4. Octree

Octrees are used to recursively subdivide 3D space into octants. Each octant
is called a node, and each node can be subdivided into exactly eight nodes
at the lower level of the octree. The largest node is called the root node and
contain all other nodes.

By placing the root node of an octree over the space spanned by a point
cloud, the points in the point cloud is organized into the nodes of the octree.
The multiple levels of the octree allows for systematic searching of different
sized point clusters in the point cloud.

The depth h of the octree is the number of levels of the octree. The
resolution hres of an octree is the length of the sides of the nodes at the
lowest level of the octree. An octree is fully defined when the length l of the
sides of the root node is specified along with the depth or resolution. The
relation between the root node, depth and resolution can be expressed as:

l

2h
= hres. (17)

The number of nodes nn present in an octree is:

nn = 1 + 81 + 82 + · · · + 8h−1. (18)

3. Object Detection

RANSAC can be implemented for object detection of primitives in point
clouds using the Conformal model of Geometric Algebra as the mathematical
framework. Planes, spheres and cylinders are considered and the steps are
described below.

3.1. Planes and Spheres

A minimal sub-sample of q points are randomly sampled from the point
cloud. Planes and spheres are constructed according to (4) and (6), where
q = 3 and q = 4, respectively. This means that no further processing is
required to construct the plane or sphere.

3.2. Cylinders

A cylinder cannot be described by a blade in the conformal model, instead
a circle–line representation can be used. The line describes the center-axis of
the cylinder, while the circle radius describes the radius of the cylinder given
that the circle is parallel and coinciding with the center-axis. Two approaches
for constructing a cylinder from point data are considered and illustrated in
Fig. 1

1. A sub-sample of 3 random points, P 1, P 2 and P 3 is sampled and a circle
is constructed from the points through the relation C = P 1 ∧P 2 ∧P 3.
The cylinder’s radius is the radius of the circle and can be found by
constructing a sphere that has the circle as its equator, according to
(9). The cylinder axis, which goes through the circle center along the
normal of the plane that the circle lies on, is defined as L = C∗ ∧ e∞.
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Figure 1. The two approaches considered for construct-
ing a cylinder. a Circle–line construction, b sphere–sphere
construction

2. Two spheres are subsequently fitted to the cylinder using RANSAC
for spheres. The center of the spheres S1 and S2 will coincide with
the cylinder center-axis. Each sphere is constructed from four points
sampled from the cylinder surface. This approach is potentially more
robust than the one mentioned above, as it uses more information to
detect the cylinder. The cylinder center-axis is described by the line
L = S∗

1 ∧ S∗
2 ∧ e∞, which describes the line connecting the centers of

the two spheres. The cylinder radius is set to be the average of the radii
of the two spheres ρ = ρ1+ρ2

2 .

3.3. Inlier Classification

Inlier classification in RANSAC is based on the distance from a point to the
model surface. In conformal space, the inlier points that belong to a primitive
can be classified using a filter. The filter classifies all points P i ∈ P that lie
within the distances dmin and dmax from an object as inliers to that object.

For a plane, the filter is formulated as

dmin ≤ P i · Π∗ ≤ dmax (19)

where dmin and dmax are the distance from the plane Π. The points that
satisfies the equation are kept, while the others are discarded.

A similar approach can be used for spheres

dmin ≤ 2
√

−P i · P ≤ dmax (20)

where P describes the sphere center and dmin and dmax are the minimum
and maximum radius of the sphere, respectively.

For cylinders, the expression is

dmin ≤ 2

√
−P i · P i ∧ L∗

L∗ ≤ dmax (21)
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where L describes the cylinder center axis and dmin and dmax are the mini-
mum and maximum radius of the cylinder, respectively. The expression

P i ∧ L∗

L∗ (22)

describes a sphere with center coinciding with the cylinder center axis L and
the point P i lying on its equator.

3.4. Scoring

Once the inliers for a candidate are identified, the candidate is assigned a
fitness score f(I), where I is the number of inliers. The fitness function is
used to determine if the proposed model candidate is a valid model, or if it
is a subject to noise/outliers. The candidate is valid if f(I) ≥ t, where t is
the threshold parameter presented in Sect. 2.3.

The fitness function for planes is defined as

fΠ(I) = I. (23)

This means that iteration will continue until a plane with score fΠ ≥ t is
found. If no such plane is found the algorithm will terminate after k iterations
and the highest scoring plane will be returned as the plane estimate.

Since spheres have finite surface areas, the number of points that lies on
a sphere surface is related to the radius ρ and its distance z from the sensor.
This is used to calculate an estimate of inliers for a certain sphere, which is
compared to the actual number of inliers to decide the sphere’s fitness. The
estimate Î is defined as

Î = nAAS (24)
where nA is the number of points in the point cloud per unit area in relation
to the z-distance from the sensor and AS is the surface area of the sphere.
This gives

Î = ar2zb (25)
Here, r is the radius of the sphere, z is the z-distance of the sphere center from
the sensor and a and b are constant parameters that describes the density of
points in relation to the distance from the sensor. The a and b parameters are
sensor specific and could be found experimentally by placing three spheres
with different radius in the field of view of the camera. The inliers for each
sphere are then measured, along with their distance from the sensor and their
radius. The measurements could then be fitted to Î by optimizing a and b.
For the camera used in the experiments, these parameters were found to be
a = 439731.612 and b = −2.234.

The score is calculated as the relation between the estimated inliers and
the actual inliers

fS(I) =
I

Î
(26)

The algorithm will terminate and the sphere estimate will be returned when
a score above the threshold t is achieved or the number of iterations k is
reached.

Cylinders can have a finite surface area if the cylinder length is deter-
mined. Cylinders are, however, not invariant to rotation as spheres are. This
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means that in order to find the inlier estimate, one must first determine the
orientation of the cylinder, followed by the area which is visible by the cam-
era. Thus, for simplicity, a cylinder is scored solely based on the number of
inliers I that fall on the cylinder surface

fG(I) = I (27)

Consequently, the cylinder model candidate which has the highest number of
inliers will be accepted as the cylinder estimate, which is usually the largest
cylinder in the point cloud.

3.5. Fitting

Planes and spheres are fitted using the analytic least squares method
described in Sect. 2.2. Cylinders are fitted with nonlinear least squares meth-
ods using the optimization tool [17], which is a software library that enables
optimization through automatic differentiation of conformal entities [18] and
the Ceres Solver [1] by Google.

The cost-function to be minimized is defined as

min
n∑

i=1

(√
−P i ∧ L∗

L∗ · P i − ρ

)2

(28)

which describes the sum of squared distance between a set of points P i ∈
P and a cylinder with center axis L and radius ρ. The expression P i∧L∗

L∗

describes a sphere with the center coinciding with the line L and the point
P i lying on its equator. Taking the inner product between this sphere and
the point P i gives the negative squared distance between the point and the
line. The minimal sum of squared distances is found by optimizing L and ρ.

4. Multiple Object Detection

Using the presented RANSAC based object detection method as a foundation,
multiple objects can be detected in a point cloud by organizing it in an octree.
A method is suggested based on the sampling strategy of Schnabel et al. [15].

4.1. Overview

Given a point cloud P of points {P 1, . . . ,PN}, the point cloud is organized
in an octree structure. The size of the octree is set such that the root node
of the octree spans over the whole point cloud. The root node is subdivided
into smaller nodes until nodes with sides of length hres are obtained. The
resolution hres of the octree should be chosen such that there exist a node
that contains solely inlier points of the smallest object present in the point
cloud.

Model candidates are constructed by picking sub-samples from within a
single node. Inlier classification, scoring and fitting is performed as presented
in Sect. 3. The subset of inliers for a object PXi

∈ P is extracted from the
point cloud if the score is larger than some threshold t. Because there exist
a node of solely inlier points for every object present in the point cloud, it is
only necessary to iterate k = 1 time per node.
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Figure 2. A point cloud of 49,396 points showing a ping-
pong ball placed on the floor

By systematically repeating this procedure for every node at every level
of the octree, all considered objects are detected. Furthermore, by starting
the procedure at the highest level of the octree, large shapes are detected and
extracted from the point cloud first. When the procedure is conducted for all
the nodes in the octree, the extracted set of primitives X = {X1, . . . ,Xm}
are returned with their corresponding subsets of inliers PX1 , . . . ,PXm ∈ P.

4.2. Performance Considerations

The performance of this sampling strategy is best illustrated with an example.
A point cloud of 49,396 points is shown in Fig. 2. The point cloud contains a
sphere with radius ρ = 0.02 m and 109 inlier points, which is to be detected.
The point cloud fits inside an octree with a root node with sides of 2.56 m.
According to (18) a resolution of hres = 0.01 m suggest a total of 2,396,745
nodes, and setting k = 2 results in 4,793,490 iterations. In this case, only
10,118 nodes are occupied with more than four points, which is required to
construct a sphere, resulting in a total of 20,236 iterations. Assuming that
at least one of the nodes has a inlier ratio ≥0.95, detection of the sphere is
achieved with a probability of 0.966. Detecting the sphere with the same prob-
ability using the random sampling scheme of the original RANSAC algorithm,
would require 142,612,308,700 iterations according to (16). In this particular
case the octree sampling scheme is more than 7,000,000 times more effective.
This measure is highly dependent on the point density and the required depth
of the octree.

5. Results

The suggested RANSAC based object detection methods were implemented
in a C++ software application developed in the Qt Integrated Development
Environment. The Versor [4] library was used for geometric algebra compu-
tations and PCL [14] was used for visualisations and handling point clouds.
Experiments were conducted on a computer running the Ubuntu 14.04 LTS
operating system with a Intel i7 3.50 GHz processor and 16 GB of memory.

The performance of the object detection methods was tested through an
experiment where CAD-models of a sphere and a cylinder were sampled to
point clouds and detection was performed. Noise/outliers were added to the
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Table 1. Results for object detection of a sphere

Outliers (%) Iterations Time (ms) Error (mm) Probability
of detection (%)

33 2 2.7 0.25 42.4
44 6 5.7 0.25 46.1
55 18 19.3 0.25 54.2
65 77 107.1 0.26 67.2
74 137 261.6 0.25 48.7
82 864 2588.4 0.26 62.2
90 6762 38634.9 0.81 51.8

The probability of detection is calculated according to (14)

sampled point clouds and detection was tested for several quantities of out-
liers. The number of iterations for successful detection was measured as the
main performance metric, where a successful detection was defined as a object
consisting of ≥90% of the points of the original sampled sphere/cylinder.
Moreover, the run-time of the object detection and the resulting geometrical
error were measured. For a sphere this geometrical error was defined as the
distance from the detected center to the true center, while for a cylinder the
geometrical error were defined as the deviance in angle between the detected
and true center axis. The variations in the results occurs due to the random
nature of RANSAC, but consistent trends can be observed.

Detection of a sphere was tested first and the results are shown in
Table 1. In addition to the metrics mentioned above, the probability of suc-
cessful detection based on the number of iterations according to (14) is tab-
ulated. The calculated probabilities lie in the range between 34.1 and 68.2%,
which is the range of 1 standard deviation in a standard normal distribu-
tion. This implies that the probabilistic relations presented in Sect. 2.3.1 are
valid for the implemented algorithm. It can be seen that there is a direct
correlation between the number of iterations and the time of computation.
In addition, the error metric was satisfactory for outlier levels up to 90%,
implying that successful detections can be made in these conditions.

The detection of a cylinder was then investigated in an experiment where
the two approaches of modeling a cylinder were considered, the results are
shown in Tables 2 and 3 . In addition, the results are plotted in Fig. 3 with the
outlier levels graphically illustrated. The sphere–sphere approach performed
significantly better than the circle–line approach on all metrics. This implies
that fitting spheres inside the cylinder gives a more accurate description of the
cylinder axis than constructing it from three points on the cylinder surface.
In order to accurately describe the cylinder axis from three points, the points
have to be sampled from the cylinder surface and the plane they are describing
needs to be normal to the center axis. The probability of achieving this with
a random sampling strategy is intuitively small, especially with the presence
of noise/outliers. Constructing two spheres from the surface of a cylinder
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Table 2. Results for object detection of a cylinder

Outliers (%) Iterations Time (ms) Error (◦)

0 1988 273.8 1.257
34 13505 1683.9 1.452
51 14003 1961.6 1.906
64 21598 3706.7 1.369
75 54311 11592.0 1.996
91 8404 4539.8 10.498

The cylinder is initialized using the circle–line approach described in
Sect. 3.1

Table 3. Results for object detection of a cylinder

Outliers (%) Iterations Time (ms) Error (◦)

0 557 11.9 0.657
31 1536 25.4 0.618
53 4035 69.5 0.913
65 6682 125.0 1.483
71 8567 188.5 1.298
91 63190 8652.8 8.949

The cylinder is initialized using the sphere–sphere approach described in
Sect. 3.1

includes more information about the cylinder, as a total of eight points are
used to describe the cylinder. Our results shows that this holds in practice.
Good detections were achieved with up to 80% outliers.

The multiple object detection method was implemented for spheres and
tested on a point cloud of 22,225 points showing three balls on a table. The
point cloud was obtained with a Kinect for Xbox One 3D camera that output
noisy point clouds. The Kinect have a time-of-flight depth sensor with a
512 × 424 pixel array with a pixel size of 10 × 10 μm. The accuracy error is
1% of the range for an average of 100 images [11]. The purpose was to test the
algorithm when inliers are noisy and do not lie on a perfect sphere surface.
Detection was performed 1000 times with an average run-time of 121 ms and
14,700 iterations. The results are presented in Table 4.

In the experiment all three spheres were detected 56.2% of the attempts.
For 42.8% of the attempts, one or more spheres were not detected. Lastly,
for 8.8% of the attempts false detections were made.

From Table 4 it can be seen that there is a correlation between detec-
tion rate and the number of inliers. An explanation can be that the scoring
function is not valid for low amounts of inliers or that noise in the inliers
causes poor representation of spheres with small radii/few inliers. For the
largest sphere, the detected radius is significantly smaller than the actual
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Figure 3. Detection of a cylinder with an increasing out-
liers percentage. The circle–line approach is plotted as the
blue line while the sphere–sphere approach is plotted as the
red. The performance of the algorithms is plotted logarith-
mically for an increasing outlier percentage. The outlier per-
centage is graphically illustrated below the plots

radius. This occurs because smaller spheres that are initialized on the sur-
face of the largest sphere are accepted. These spheres could be classified as
false detections, but are accepted because they are located correctly.

Detection rate can be improved by increasing the number of iterations
per node, at the cost of the run-time of the algorithm. False detections can
be avoided with a more robust scoring scheme.
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Table 4. Performance metrics for the algorithm for detec-
tion of three different spheres in a point cloud

Sphere 1 Sphere 2 Sphere 3

Inliers 202 141 73
Detection rate 0.989 0.872 0.707
Detected z-distance (m) 1.626 1.272 1.697
Uncertainty (mm) 6.81 4.79 5.74
Actual radius (mm) 33 20 20
Detected radius (mm) 28.94 18.97 19.85
Uncertainty (mm) 5.1 2.41 2.34

Figure 4. Setup of the robotic pick-and-place demonstra-
tion. Point clouds from the 3D camera is used for detecting
the plane, spheres and cylinder. The information is sent to
the robot arm, which is used to place the spheres in the
cylinder

5.1. Demonstration

A robotic pick-and-place experiment was performed for demonstrating the
suggested methods. A Kinect for Xbox One was used for obtaining point
clouds of the scene and the primitive objects present were detected. Their
positions and parameters were used for robot-camera calibration and robot
positioning. The goal was to pick-and-place arbitrarily positioned ping-pong
balls in a cylindrical tube. The setup of the demonstration can be seen in
Fig. 4.

A video of the demonstration can be found in [16]. From the video it
becomes clear that the suggested methods are satisfactory in the sense of
accuracy, speed and repetitiveness required for high accuracy robotic pick-
and-place applications, given raw data from consumer grade 3D cameras.
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6. Conclusion

We have outlined the procedure of the RANSAC algorithm and showed how
this paradigm combine with conformal geometric algebra to develop a robust
and geometrical intuitive object detection method for point clouds. Spheres
were successfully detected in point clouds with up to 90% outliers and cylin-
ders could successfully be detected in point clouds with up to 80% outliers. We
suggested two methods for constructing a cylinder from point data using CGA
and found that fitting two spheres to a cylinder gave performance advantages
compared to constructing a circle and line from 3 points on the cylinder sur-
face. For a outlier level of 53%, the sphere–sphere approach used 73% fewer
iterations, 96% less computation time and produced 52% less geometrical
error than the circle–line approach. In addition, an algorithm for detecting
multiple objects have been suggested and tested, with good results.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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