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Abstract: Wireless sensor networks (WSNs) will play a fundamental role in the realization of Internet
of Things and Industry 4.0. Arising from the presence of spatially distributed sensor nodes in a
sensor network, cooperative diversity can be achieved by using the sensor nodes between a given
source-destination pair as intermediate relay stations. In this paper, we investigate the end-to-end
average bit error rate (BER) and the channel capacity of a multi-hop relay network in the presence of
impulsive noise modeled by the well-known Middleton’s class-A model. Specifically, we consider
a multi-hop decode-and-forward (DF) relay network over Nakagami-m fading channel due to its
generality, but also due to the absence of reported works in this area. Closed-form analytical
expressions for the end-to-end average BER and the statistical properties of the end-to-end channel
capacity are obtained. The impacts of the channel parameters on these performance quantities are
evaluated and discussed.

Keywords: wireless sensor network; cooperative relay; decode-and-forward; fading channel; harsh
environment; impulsive noise; system performance; channel capacity; bit error rate

1. Introduction

In recent years, technological concepts such as Industry 4.0, smart home, and smart grid are set to
reshape the landscape of future industry and people’s lifestyle more than we ever thought possible.
The common vision of such systems is generally connected to one single concept, the Internet of Things
(IoT), where through the use of wireless sensor networks (WSNs), the entire physical infrastructure
is closely coupled with the achievement of intelligent monitoring and management [1,2]. WSNs
can provide great operating effectiveness through low installation and operating costs, installation
flexibility, and scalability. They have be used in a broad range of scenarios such as smart home
services [3], disaster detection and relief [4], and industrial automation [5,6].

A sensor network typically consists of a number of inexpensive low-power sensor nodes, which
are distributed across a large area and can perform the tasks of data sensing, simple information
processing, and communication over short distances [7]. Arising from the presence of spatially
distributed sensor nodes in a sensor network, cooperative diversity can be achieved by using the
sensor nodes between a given source-destination pair as intermediate relay stations. This kind of
communication scheme provides significant robustness against the adverse effects of shadowing
and fading in wireless communications, which leads to broader coverage, enhanced mobility, and
improved system performance compared to the direct transmission [8–10]. Depending on the nature
and complexity of the relaying technique, the relaying strategies can be generally classified into two
categories, namely decode-and-forward (DF) and amplify-and-forward (AF) [11–13].

The performance analysis of DF and AF relaying systems under different channel conditions
has been the topic of a wealth of papers. In the most recent work, the analytical expressions of the
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end-to-end average bit error rate (BER) for DF relaying systems over Rayleigh and Nakagami-m
fading channels with additive white Gaussian noise (AWGN) have been derived in [14,15], respectively.
The ergodic capacities of the DF relaying systems in Rayleigh, Rician, and Nakagami-m fading channels
have been analyzed in [16–18], respectively. However, the analyses are made for the particular case of
only two consecutive hops, which limits the use of the results. The ergodic capacity for multi-hop AF
relaying systems over Rayleigh fading channels was investigated in [19]. In [20], the authors derived
a tight lower bound for the error rate and the outage probability of cooperative diversity networks
over independent non-identical Nakagami-m fading channels with AF relaying and maximum ratio
combining (MRC) at the destination node. In [21], an upper bound for the ergodic capacity of multi-hop
cooperative relaying channels over independent non-identically distributed (i.n.i.d.) Nakagami-m
fading was derived assuming AF relays. From the aforementioned up-to-date reported works, it is
fairly evident that the ergodic capacity for multi-hop DF relaying systems over Nakagami-m fading
channels is not explored from the analytical point of view.

Meanwhile, the vast majority of the analyses on the performance of wireless communication
systems in the open literature have been based on the assumption of interference amplitude following
Gaussian distribution with flat power spectral density (i.e., AWGN) owing to its simplicity for analysis.
However, the AWGN channel model does not cover the behavior of a large class of commonly
occurring interference signals such as electromagnetic interference and man-made noises, which
cannot be ignored in many scenarios ([22], pp. 84–90). For example, in harsh industrial environments
where WSNs will play a vital role in the Industry 4.0 era, the effects of noise and interferences are
significant due to the wide operating temperatures, strong vibrations and excessive electromagnetic
noise caused by large motors and other equipment [23–25]. Therefore, the impulsive noise should be
taken into consideration while analyzing the performance of WSNs for industrial applications. To this
regard, a more practical model is the Middleton’s Class-A (MCA) model, which has shown to provide
excellent fits to a variety of noise and interference measurements [26–28]. The advantage of this model
lies in its generality to represent a number of interference signals with arbitrary impulsive effects. By
varying model parameters, we can model a wide class of interferences ranging from pure AWGN to
highly impulsive noise [29,30].

In light of this, we present the performance analysis of multi-hop DF relaying system over
Nakagami-m fading channels in the presence of impulsive noise. The justification for the choice
of Nakagami-m distribution as the small-scale fading in our analysis is threefold. Firstly, a large
number of field measurements show that the small-scale fading in indoor environments follows
Nakagami-m fading [31–33]. Secondly, Nakagami-m distribution describes via the m parameter a
wide range of fading distributions. For instance, it converges to one-sided Gaussian distribution with
m = 1/2, to Rayleigh with m = 1, and to purely Gaussian as m approaches infinity. Given appropriate
bounds on the parameters, the lognormal and Weibull distributions can also be well approximated
by the Nakagami-m distribution in some ranges ([34], pp. 284–288). Furthermore, it can also closely
approximate the Nakagami-n (Rice) and Nakagami-q (Hoyt) distributions with appropriate parameter
mappings ([35], p. 25). Thus, our results can be readily extended to other fading scenarios by simply
varying the model parameters. Last but not least, to the best of our knowledge, it is still an open
research question on the capacity performance of multi-hop DF relaying systems over Nakagami-m
fading channels. In this paper, we intend to fill this gap.

The remainder of this paper is organized as follows. In Section 2, we introduce the cooperative
transmission system under investigation as well as the fading channel and noise model. In Section 3,
closed-form expressions for the end-to-end average BER of the relaying system under the considered
channel condition are derived. The analytical expression for the end-to-end average capacity and the
statistics of the end-to-end instantaneous capacity are derived in Section 4. Analytical and simulation
results are presented and discussed in Section 5. Section 6 concludes the paper and discusses about
future work.
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2. System and Channel Model

2.1. Notation

A number of notations are used throughout the paper, here we highlight the following notations
and their corresponding meanings: fx(·) denotes the probability density function (PDF) of the random
variable (RV) x; Fx(·) represents the cumulative distribution function (CDF) of the RV x. The symbols
PTx,` and PRx,` are the transmitted power and the received signal power by node R`, respectively.
The RV z` represents the noise of the `-th link modelled by MCA model. The symobl P` represents the
average BER of the `-th hop transmission; and PE

` denotes the average BER after the `-th transmission
compared with the bits transmitted by source node R1.

2.2. System Model

In our work, we consider a multi-hop wireless relay system with L hops using DF relaying strategy.
Figure 1 illustrates the investigated scenario, where the nodes R1 and RL+1 correspond to the source
node and destination node, respectively; and the link between the nodes R` and R`+1, ` = 1, . . . , L,
is denoted as `-th hop with separation distance d`. Full-duplex mode of communication is assumed,
in which the nodes can transmit and receive at the same time employing frequency division duplexing
(FDD). In FDD mode, each node R` use frequency bands Bu

` and Bd
` to transmit and receive data,

respectively. Altogether, there are L such non-overlapping frequency pairs; and only a subsequent
node can listen to the signal transmitted by a previous node, thus avoiding the interference in any hop
owing to the transmissions occurring in the surrounding hops. The channels between adjacent nodes
R` and R`+1, ` = 1, . . . , L, are mutually independent and undergo Nakagami-m fading.

Figure 1. Illustration of a multi-hop relay system with L hops.

Data transmission is done using the M-ary phase shift keying (M-PSK) symbols with equal
a priori probabilities. The node R`, ` = 1, . . . , L, transmits the unit-energy M-PSK symbol s`
(i.e., Eb = E[|s`|2] = 1) with power PTx,`. The corresponding received signal r`+1 at node R`+1
and the total transmit power PTx of the relay system can be written as

r`+1 =
√

PRx,`+1 · h` · s` + z`, ` = 1, . . . , L (1)

PTx =
L

∑
`=1

PTx,`, (2)

where PRx,`+1 is the received signal power by node R`+1; h` and z` are the channel fading amplitude
and the additive noise of the `-th hop, respectively. The received signal power PRx,`+1 by node R`+1
depends on the transmitted signal power PTx,` by the previous node R` and the distance d` between
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the two nodes. A widely used model for the signal attenuation is the one-slope path-loss model [33].
According to the one-slope model, the relationship between PRx,`+1 and PTx,` can be expressed as

10 log10(PRx,`+1) = 10 log10(PTx,`)− 10 · ξ · log10(d`), ` = 1, . . . , L (3)

where ξ is the path-loss exponent, which reflects the rate at which the received power decreases with
distance. The value of the parameter ξ in a specific environment could be simply obtained by field
measurement [36–38] or estimated using numerical algorithms [39,40]. The overall performance of
the DF relaying network is limited by the worst link, it is thus straightforward to show that in order
to obtain the best performance, the total power should be allocated among different hops in a way
such that the received signal power is equal for each receiving node, i.e., PRx,` = PRx,`+1 = PRx,
` = 2, . . . , L. From (3), this constraint of the received powers translates into the following relationship
on the transmitted power of each node

PTx,1

(d1)ξ
=

PTx,2

(d2)ξ
= · · · = PTx,L

(dL)ξ
. (4)

2.3. Channel Model

The channel fading amplitudes h` (` = 1, . . . , L) in (1) are modelled as independent and identically
distributed (i.i.d.) Nakagami-m RVs. The PDF fh`(h) of the RVs h` (` = 1, . . . , L) is expressed as

fh`(h) =
2mmh2m−1

ΩmΓ(m)
· exp

(
−mh2

Ω

)
, h ≥ 0 (5)

where Γ(·) represents the complete Gamma function defined as Γ(τ) =
∫ ∞

0 tτ−1 · exp(−t) dt,
Ω = E[|h`|2] is the expectation of |h`|2; and m is the Nakagami-m fading parameter, which determines
the severity of fading channels and ranges from 0.5 to ∞.

The additive noise z` (` = 1, . . . , L) in (1) are i.i.d. RVs modeled by the MCA model. The PDF
fz`(z) of the RVs z` is given by [41]

fz`(z) =
∞

∑
n=0

αn√
2π σn

· exp
(−z2

2σ2
n

)
(6)

=
∞

∑
n=0

αn ·N(z; 0, σn), (7)

where N(z; 0, σn) denotes a zero-mean Gaussian PDF with variance σ2
n ; and the parameter αn is the

Poisson-distributed probability expressed by

αn =
exp(−A) · An

n!
. (8)

The variance σ2
n in (6) and (7) is defined with the auxiliary RV βn as follows:

σ2
n = (σ2

g + σ2
i ) · βn (9)

βn =
(n + Aρ)

A · (1 + ρ)
, (10)

where ρ represents the ratio of the Gaussian noise power σ2
g to the impulsive noise power σ2

i .
The parameter A is called the impulsive index and defined as the product of average rate of impulsive
noise and mean duration of the impulsive interference. The impulsive index determines impulsiveness
the noise: a smaller value of the impulsive index implies a higher level of impulsive interference. It is
known that as A approaches a value around 10 or larger, the MCA distribution is very close to a
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Gaussian PDF; while for A and ρ lower than 1, the PDF gets very heavy tails and the interference can
be seen as very impulsive [26]. The extraction of MCA model parameters from real measurements
can be done with the algorithms developed in (e.g., [42,43]). It should be noted that the MCA model
includes both the impact of impulsive interference as well as thermal noise in the communication
systems [41]. Figure 2 shows the difference between pure AWGN and impulsive noise generated with
the MCA model and Figure 3 illustrates the effects of the parameters A and ρ used in the MCA model.

As can be seen from (7), the MCA model can be interpreted as a Gaussian-mixture model [44].
Therefore, it is straightforward to show that the mean of the noise uz` = E[z`] = 0; and the average
power N0 of the noise, i.e., the variance of z`, is calculated as

N0 = E[z2
` ] =

∞

∑
n=0

exp(−A) · An

n!
√

2πσn

∫ ∞

−∞
z2 · exp

(
− z2

2σ2
n

)
dz (11)

=
exp(−A) · σ2

g

ρ
·

∞

∑
n=0

An

n!
·
( n

A
+ ρ
)
= σ2

g + σ2
i . (12)

Alternatively, the generation of MCA noise can be interpreted as a stationary random process:
for each channel realization, the probability of experiencing an interference noise with distribution
N(z; 0, σn) (n = 0, . . . , ∞) is αn given in (8). Despite the PDF in (7) has an infinite number of terms,
we can safely restrict our analysis to the first N terms without significant loss by noticing that
as n increases, the probability αn approaches zero and is thus negligible. The number N can be
obtained from

N = arg min
N

(
1−

N

∑
n=0

αn

)
≤ ε, (13)

where ε is an arbitrary positive number.
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Figure 2. Absolute values of AWGN samples with N0 = 1 (top figure) and Middleton’s Class-A noise
samples with N0 = 1, A = 0.01, ρ = 0.1 (bottom figure).
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Figure 3. Absolute values of Middleton’s Class-A noise samples with N0 = 1, A = 0.1, ρ = 0.1
(top figure) and with N0 = 1, A = 0.01, ρ = 0.01 (bottom figure).

3. Bit Error Rate Performance Analysis

3.1. The Instantaneous SNR

To derive the BER and channel capacity of the relaying system, we first derive the statistics of
the signal-to-noise ratio (SNR). Let γ` be the instantaneous SNR pertaining to the `-hop transmission,
which is given by

γ` =
PRx,`+1 · h2

` · Eb

N0
. (14)

As the fading amplitude h` is Nakagami-m distributed with PDF given in (5), we can obtain
the PDF fγ`

(γ) of the instantaneous SNR γ` by applying the concept of transformation of random
variables ([45], pp. 182–193) and obtain the following expression:

fγ`
(γ) =

(mN0)
m · γm−1

(ΩEb · PRx,`+1)m · Γ(m)
· exp

(
− mN0γ

ΩEb · PRx,`+1

)
γ ≥ 0. (15)

From (15), we could also obtain the average SNR γ` of the `-th hop as γ` = (ΩEb · PRx,`+1)/N0.
The CDF Fγ`

(γ) of the instantaneous SNR γ` can be obtained from its relationship with the PDF fγ`
(γ)

in (15) as follows:

Fγ`
(γ) =

(mN0)
m

(ΩEb · PRx,`+1)m · Γ(m)

∫ γ

0
γm−1 · exp

(
− mN0

ΩEb · PRx,`+1
γ
)

dγ

= Γ̃
(

m,
mN0

ΩEb · PRx,`+1
γ
)

, (16)

where Γ̃(·, ·) is the normalized lower incomplete Gamma function defined by
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Γ̃(τ, y) =
1

Γ(τ)

∫ y

0
tτ−1 · exp(−t) dt. (17)

3.2. The End-to-End Average BER

Proposition 1. The average BER P` of the M-ary phase shift keying (M-PSK) for the `-th hop over the
Nakagami-m fading channel in the presence of impulsive noise is given by

P` =
∞

∑
n=0

exp(−A) · An

n!
· (m · N0)

2m

(ΩEb · PRx,`+1)2m ·
1

ζM

max( M
4 ,1)

∑
ι=1

[
1−

√
2A(1 + ρ)mN0 · η2

ι

π(n + Aρ)ΩEb · PRx,l+1

·
(ΩEbPRx,`+1

m · N0

)(m+ 1
2 ) · 2F1

(
1, m +

1
2

;
3
2

;
A(1 + ρ)ΩEbPRx,`+1 · η2

ι

2mN0(n + Aρ) + ΩEbPRx,`+1 A(1 + ρ)

)
·

Γ(m + 1
2 )

Γ(m)
· 1(

mN0
ΩEbPRx,`+1

+ A(1+ρ)η2
ι

2(n+Aρ)

)m+ 1
2

]
, (18)

where ζM = max(log2 M, 2), ηι = sin
(
(2ι−1)·π

M

)
and 2F1(a, b; c; x) represents the Gauss hypergeometric

function ([46], p. 1005) defined by

2F1(a, b; c; x) =
∞

∑
p=0

(a)p(b)p

(c)p

xp

p!
, (19)

with (g)p = g(g + 1) · · · (g + p− 1) denoting the ascending factorial.

Proof. See Appendix A.1.

Remark. The average BER P` of equiprobable binary phase shift keying (BPSK) modulated symbols for the `-th
hop over the Nakagami-m fading channel in the presence of impulsive noise can be readily obtained from (18)
as follows:

P` =
∞

∑
n=0

exp(−A) · An

2n!
· (m · N0)

2m

(ΩEbPRx,`+1)2m ·
[

1−
√

2A(1 + ρ)mN0

π(n + Aρ)ΩEbPRx,`+1
·

Γ(m + 1
2 )

Γ(m)

·
(ΩEbPRx,`+1

m · N0

)(m+ 1
2 )

2F1

(
1, m +

1
2

;
3
2

;
A(1 + ρ)ΩEbPRx,`+1

2mN0(n + Aρ) + ΩEbPRx,`+1 A(1 + ρ)

)
· 1(

mN0
ΩEbPRx,`+1

+ A(1+ρ)
2(n+Aρ)

)m+ 1
2

]
. (20)

Proposition 2. If the average BER per hop is the same for all hops (namely, P` = P0, ` = 1, · · · , L), then the
end-to-end average BER PE

L of L-hop the wireless DF relaying system can be expressed as:

PE
L =

1
2

[
1− (1− 2P0)

L
]
. (21)

Proof. See Appendix A.2.

Figure 4 shows the relationship between the end-to-end average BER of the L-hop relay system
and the single-hop average BER in log-log representation assuming the identical statistical behavior
for all single hops. From Figure 4, we can observe a nearly linear relationship between the two BERs
when the single-hop average BER is below some threshold. This linearity can be theoretically proved
by noticing that the linear term will dominate for low values of P0 after extending the power series
in (21) ([46], p. 25).
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Figure 4. End-to-end average BER of the L-hop relay network versus individual-hop average BER.

4. Channel Capacity Performance Analysis

By comprehending the MCA noise channel as a Gaussian-mixture channel in (7), the instantaneous
channel capacity per unit bandwidth C`(γ) of the `-th link can be obtained according to the theorem
of total probability ([45], p. 23), i.e.,

C`(γ) =
∞

∑
n=0

αn · log2

(
1 +

γ

βn

)
, (22)

where αn and βn are given in (8) and (10), respectively.
According to the well-known max-flow min-cut theorem, the maximum achievable channel

capacity of a multi-hop relay system from the source node to the destination node is bounded by the
minimum of the capacities of each individual hop ([47], pp. 587–595). Therefore, the instantaneous
channel capacity C(γe) of the end-to-end full-duplex relay network can be written as

C(γe) = min
`=1,...,L

{C`(γ)} =
∞

∑
n=0

αn

ln(2)
· ln
(

1 +
γe

βn

)
, (23)

where γe = min{γ1, . . . , γL} is the effective SNR equivalent to one-hop transmission channel with the
same capacity as the L-hop DF relay channel.

Proposition 3. The PDF fγe(γ) of the equivalent SNR γe of the L-hop relay system is expressed as

fγe(γ) =
L

Γ(m)
·
[

Γ̂
(

m,
mN0

ΩEbPRx,`+1
γ
)]L−1

·
( mN0

ΩEbPRx,`+1

)m
· γm−1 · exp

(
− mN0

ΩEbPRx,`+1
γ
)

. (24)
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Proof. Under the power allocation scheme in (4), the instantaneous SNR γ` (` = 1, . . . , L) of each hop
are i.i.d. RVs with PDF and CDF given in (15) and (16), respectively. The CDF Fγe(γ) of the equivalent
SNR γe is given by

Fγe(γ) = Pr[γe ≤ γ] = 1− Pr[γe > γ]

= 1− Pr[min{γ1, . . . , γL} > γ] = 1−
L

∏
`=1

Pr(γ` > γ)

= 1−
L

∏
`=1

[1− Pr(γ` ≤ γ)] = 1−
L

∏
`=1

[1− Fγ`
(γ)]

= 1−
[

Γ̂
(

m,
mN0

ΩEbPRx,`+1
γ
)]L

, (25)

where Γ̂(·, ·) is the normalized upper incomplete gamma function defined as

Γ̂(τ, y) =
1

Γ(τ)

∫ ∞

y
tτ−1 · exp(−t) dt. (26)

The PDF fγe(γ) of the equivalent SNR γe follows immediately by differentiating (25) and is
expressed as in (24).

4.1. The End-to-End Average Capacity

The end-to-end average channel capacity Cavg of the relay network can be obtained from

Cavg =
∫ ∞

0
C(γe) · fγe(γe) dγe, (27)

where C(γe) is the instantaneous capacity in (23) and fγe(·) is the PDF of the equivalent SNR γe given
in (24). The closed-form expression for the average capacity is given below.

Proposition 4. The end-to-end average capacity of the L-hop relay network under the balanced power allocation
scheme can be expressed as follows:

Cavg =
∞

∑
n=0

∞

∑
q=1

2q−1

∑
k=0

exp(−A) · An

ln(2) n!
· 2 · (−1)k

2q− 1
·
(

2q− 1
k

)
· E
[( 2βn

γe + 2βn

)k]
. (28)

where the k-th moments E
[(

2βn
γe+2βn

)k]
of 2βn

γe+2βn
can be expressed as follows

E
[( 2βn

γe + 2βn

)k]
=

(L−1)(m−1)

∑
ν=0

ων · Γ(m + v)

Γ(m) · L m+v−k−1
2

·
( 2βnmN0

ΩEbPRx,`+1

)m+v+k−1
2 · exp

( βnmLN0

ΩEbPRx,`+1

)
, (29)

with ω0 = 1, ω1 = L − 1, ω(L−1)(m−1) = 1
[(m−1)!]L−1 , and ων = 1

ν

Λ
∑

λ=1

λL−ν
λ! ων−λ, ν = 2, 3, . . . , (L −

1)(m− 1)− 1 are computed recursively with Λ = min{ν, m− 1}.

Proof. See Appendix B.1.
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4.2. Statistics of the End-to-End Instantaneous Capacity

The expression of the end-to-end instantaneous capacity C(γe) of the multi-hop relay network is
given in (23). To obtain the statistics of C(γe), we define an auxiliary variable C∗n called partial channel
capacity as follows:

C∗n(γe) =
αn

ln(2)
· ln
(

1 +
γe

βn

)
(30)

C(γe) =
∞

∑
n=0

C∗n(γe) ≈
N

∑
n=0

C∗n(γe), (31)

where N is calculated from (13). With the assumptions in Section 2, it is straightforward to show that
the auxiliary variables C∗n (n = 0, 1, . . . , N) are mutually independent.

Next, by applying the concept of transformation of random variables on (30) ([45], pp. 100–108),
the PDF fC∗n (c) of the variable C∗n (n = 0, 1, . . . , N) can be obtained from

fC∗n (c) = fγe(γ)
dγe

dC∗n

∣∣∣∣
γe=C∗−1

n (c)
=

ln(2) · βn · 2
c

αn

αn
· fγe(βn · 2

c
αn − βn), (32)

where the function fγe(·) is expressed in (24), αn and βn are given in (8) and (10), respectively.
Finally, it is known that the PDF of the sum of multiple independent random variables, each of

which has a PDF, is the convolution of their separate density functions ([45], pp. 182–186). Therefore,
from (31), the PDF fC(c) of the end-to-end instantaneous channel capacity C is expressed as

fC(c) = ( fC∗0
∗ · · · ∗ fC∗N

)(c)

=
∫
· · ·

∫
︸ ︷︷ ︸

N−fold

fC∗N
(cN) · fC∗N−1

(cN−1) · · · fC∗1
(c1) · fC∗0

(c− cN − cN−1 · · · c1) dc1dc2 . . . dcN , (33)

where ∗ denotes the convolution operator, and the expression of the PDFs fC∗n (c) (n = 0, 1, . . . , N) is
given in (32) and (13). There exists no closed-form solution to the convolution in (33), but it can be
numerically evaluated using mathematical softwares such as Mathematica and Matlab.

The variance of the channel capacity is a measurement of the spread of the instantaneous capacity
around the average capacity. The variance of the end-to-end instantaneous capacity, denoted as σC,
is defined as

σC =
∫ ∞

0
(c− Cavg)

2 · fC(c) dc, (34)

where Cavg is the end-to-end average capacity given in (A9), and fC(c) is the PDF of the end-to-end
instantaneous capacity expressed in (33). Closed-form analytical expression for the variance of the
channel capacity given in (34) is very difficult to obtain. Nevertheless, the result can be obtained
numerically, as will be presented in Section 5.2.

5. Numerical Results

In this section, we will present and discuss the analytical results obtained in the previous sections.
The validity of the theoretical results is confirmed with Monte Carlo simulations.

5.1. Results on Average BER

In Figure 5, we present the end-to-end average BER for BPSK modulation signals of an 8-hop
relay system against the average SNR of each hop over Nakagami-m fading channels with m = 3 in
the presence of impulsive noise with various levels of impulsiveness (i.e., from highly impulsive with
A = 5× 10−5, moderately impulsive with A = 5× 10−3 to rarely impulsive with A = 1, 10, the ratio ρ

is fixed as 0.2). The theoretical curves are obtained using the closed-form expressions given by (A5)
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and (18) and are found to agree well with the simulation results, thus validating our analysis. It can
be seen that when the parameter A is equal to 10, the corresponding curve is extremely close to the
result obtained under AWGN assumption, which is in accordance with our statement that when A
is equal to or greater than 10, the MCA channel degenerates to an AWGN channel. It can also be
observed from Figure 5 that the performance under impulsive noise is dramatically different from that
under the AWGN. Under a highly impulsive noise condition, a three-region performance behavior is
observed: the BER curve first decreases almost linearly with increasing SNR, and then remains almost
stagnant for some SNR region until finally decreases again after increasing the SNR to a larger value.
This phenomenon can be best explained by the envelop distribution analyses of the MCA interferences
in [43]. It has been observed that the distributions of the noise envelop z are divided into three parts,
the first corresponds to smaller values of z, in which the Gaussian noise component dominates; the
second corresponds to larger values of z, wherein the impulsive noise component dominates; and the
third corresponds to intermediate values of z, for which the CDF is virtually constant for these values.
The portion of the distribution corresponding to these intermediate values of z is termed the “null
region” [43]. Therefore, we can conclude that the first decrease in the BER plot is mainly affected by
the Gaussian noise component with small envelopes; and the second decrease is mainly determined
by the impulsive noise component while the stagnant flat-region in the BER plot is due to the existence
of the “null region” in the envelope distribution of the MCA noise.

An advantage of our analysis lies in its flexibility for the performance evaluation under various
channel conditions. For illustration purposes, Figure 6 shows the BER results of the Rayleigh fading
channels in various noise conditions and the purely AWGN channel by setting the appropriate
Nakagami-m and MCA parameters.

0 10 20 30 40 50 60

10-8

10-6

10-4

10-2

100

A = 5 10
-5

,  = 0.2

A = 5 10
-3

,  = 0.2

A = 1,  = 0.2

A = 10,  = 0.2

AWGN

o : Simulation

Figure 5. End-to-end average BER vs. average SNR per link over Nakagami-m (m = 3) channels with
various noise conditions.
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 (Rayleigh fading)

m = 1, A = 10 (Rayleigh fading, AWGN)

m = , A = 10 (no fading, AWGN)

o : Simulation  =0.5

Figure 6. End-to-end average BER v.s. average SNR per channel in the scenarios of Rayleigh fading
(m = 1) and no fading (m = ∞).

The effects of the impulsive index A and the ratio ρ on the end-to-end BER performance of the
multi-hop relay network are investigated in Figure 7. It shows the average BER under various values
of A and ρ for an 8-hop relay network with average SNR being 25 dB. It is observed that the BER is not
a monotonic function of the impulsive index A with fixed values of ρ. When the channel noise changes
from highly impulsive (A = 10−5) to approximately Gaussian (A = 10), the BER first increases for
some range of A before reaching a peak point; then with further increase of A to around 10, the BER
gradually decrease to the value under AWGN channel. The value of ρ = ∞ corresponds to the case of
purely AWGN channel, thus the BER value does not depend on A in this case and is always equal to
the value of AWGN case.

In Figure 8, we present the end-to-end average BER performance of a relay network against
total power consumption under two different power allocation schemes, i.e., the scheme of equal
power allocation among all transmitting nodes, and the scheme of balanced power allocation
taken into consideration the path loss of each hop. The following parameters are used for the
simulation: L = 8, m = 3, ρ = 0.2, (Ω · Eb)/N0 = 10; and the distances of each hop is set as
d{1,...,8} = {8.2, 6.1, 11.3, 7.2, 8.5, 6.8, 6.9, 9.8} meters. The BER results under the equal power allocation
scheme are calculated recursively using (A4). It can be seen that the performance under balanced
power allocation scheme is generally better than that under the equal power allocation scheme. Also,
the performance difference between the two schemes becomes larger when the path loss exponent is
greater. This is because under the balanced power allocation scheme, the performances of all hops are
always identical; while for the equal power allocation scheme, when the path loss exponent is larger,
the variance of the performances of each hop also becomes larger. This eventually leads to poorer
performance of the relaying system since the end-to-end performance of the DF relaying network is
dominated by the performance of the worst hop.
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Figure 7. End-to-end average BER vs. MCA impulsive index A for various values of ρ and the
Nakagami m parameter.
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Figure 8. End-to-end average BER vs. total transmission power for different values of MCA impulsive
index A and path-loss exponent ξ with (a) equal power allocation; (b) allocation scheme under (4).
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5.2. Results on Channel Capacity

Figures 9 and 10 sketch the end-to-end average capacity of the relay network employing the
full-duplex communication mode and balanced power allocation scheme as a function of the average
SNR for varying numbers of hops L. It can be seen that excellent fit is found between the analytical
results from the proposed closed-form expression and the simulation results. Figure 9 shows the
channel capacity of relay network under the Nakagami-m fading channels (m = 3) in the presence
of mediumly impulsive noise with A = 0.5 and ρ = 1. Figure 10 shows the channel capacity of the
relay network under Rayleigh fading channels (m = 1) in the presence of nearly Gaussian noise with
A = 10. As expected, the overall channel capacity degrades as L increases in exchange for broader
transmission coverage. A less impulsive channel (i.e., when A or ρ are large enough such that the
MCA channel degenerates to the AWGN channel) gives a capacity approaching that of the AWGN
channel. Since AWGN is known to be the worst additive interference in terms of channel capacity for
both point-to-point channels and relay channels, all values of the different MCA model parameter sets
provide higher capacity than the corresponding AWGN channel [48]. However, it should be noted that
the AWGN channel does not necessarily underperform the corresponding MCA channel in terms of
BER, as can be seen from Figure 7.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Analytical

Simulation

L = 1, 2, 5, 8

m = 3 (Nakagami-m channels)

A = 0.5,  = 1

Figure 9. The channel capacity of Nakagami-m channels (m = 3) with L = 1, 2, 5, 8 relay hops.

The PDFs of the end-to-end instantaneous capacity of the multi-hop relay system under Rayleigh
(m = 1) and Nakagami-m (m = 3) fading channels are presented in Figure 11. The following
parameters are considered: the impulsive index A = 0.5, the ratio ρ = 1, and the average SNR
being 10 dB. It can be found from Figure 11 that an increase of the severity of large-scale fading
(i.e., decreasing the value of the Nakagami-m parameter m) decreases the mean value of the channel
capacity. Similarly, an increase of the number of hops L also degrades the mean channel capacity.
These can also be evidenced by comparing Figures 9 and 10. It can also be observed that a decrease in
the parameter m or the number of hops L results in an increase of the variance of the channel capacity,
which will be reconfirmed in Figure 12.
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Analytical
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m = 1 (Rayleigh channels)

A = 10,  = 1

Figure 10. The channel capacity of Rayleigh channels (m = 1) and nearly AWGN (A = 10) with
L = 1, 2, 5, 8 relay hops.

Figure 12 illustrates the behavior of the variance of the channel capacity with varying average SNR
per link. We calculate the variance for different number of hops and varying values of the Nakagami
m parameter. It is shown that the variance increases as the average SNR increases. More specifically,
it is found that the variance increase monotonically from low SNR to high SNR region and afterward
it continues to maintain approximately the same level in the high SNR region. The variation of the
channel capacity is also found to increase with the reduction of the Nakagami m parameter or increase
of the number of relay hops.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Channel capacity per unit bandwidth (bits/s/Hz)

0

0.2

0.4

0.6

0.8

1

1.2
Analytical, m = 1, L = 8

Analytical, m = 1, L = 5

Analytical, m = 1, L = 2

Analytical, m = 3, L = 8

Analytical, m = 3, L = 5

Analytical, m = 3, L = 2

Simulation

Figure 11. The PDF of channel capacity of Rayleigh channels (m = 1) and Nakagami-m channels
(m = 3) with L = 8, 5, 2 relay hops.
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Figure 12. The variance of channel capacity for the relay fading channels with different values of m
and L, A = 0.5, ρ = 1.

6. Conclusions

In this paper, we investigated the end-to-end average BER performance and the channel capacity of
a multi-hop DF relay system over Nakagami-m fading in the presence of impulsive noise. The analysis
were validated by showing the excellent agreement between the results obtained through the
closed-form expressions and the Monte Carlo simulation results. The analysis is very general and can
be easily extended to other channel conditions (e.g., the conventional Rayleigh fading over AWGN,
etc.) by changing the parameters of the fading and the noise models. The impacts of the path loss
exponent and the fading severity on the system performance are also investigated. It is shown that
the increase of the number of hops will degrade both the BER and channel capacity but also decrease
the variance of the channel capacity. In channel conditions with highly “impulsive” noise effects, the
BER curve will experience a stagnant stage against the increase of the SNR due to the characteristics of
the noise. As the path loss exponent of the propagation environment increases, the advantage of the
balanced power allocation scheme becomes more obvious compared to the equal power allocation
scheme with respect to the end-to-end BER.

Future work includes improvement of system performance under impulsive noise conditions by
noticing that the existence of impulsive noise significantly degrades the performance, especially in
the “null region”. This can be potentially achieved by predicting the occurrence of impulsive noise if
possible and adjust the power or coding rate accordingly.
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Appendix A. Bit Error Rate Performance Analysis

Appendix A.1. Derivation for the Average BER P` in Proposition 1

Let P`(e|γ) be the conditional BER of the `-th hop conditioned on SNR γ. By interpreting the
MCA channel as a Gaussian-mixture model, the BER for M-ary PSK signals as a function of the SNR
can be expressed as [49]

P`(e|γ) =
∞

∑
n=0

αn ·
2

ζM

max( M
4 ,1)

∑
ι=1

Q
(√

Aγ(1 + ρ)

(n + Aρ)
· ηι

)
, (A1)

where ζM = max(log2 M, 2), ηι = sin
(
(2ι−1)·π

M

)
, αn is given in (8) and Q(·) is the Gaussian Q-function.

The average BER P` of the `-th hop over Nakagami-m fading in the presence of impulsive noise is
given by

P` =
∫ ∞

0
P`(e|γ) · fγl (γ) dγ =

∞

∑
n=0

αn ·
(mN0)

m

(ΩEbPRx,`+1)mΓ(m)
· 2

ζM

max( M
4 ,1)

∑
ι=1

·
∫ ∞

0
γm−1

·Q
(√

Aγ(1 + ρ)

(n + Aρ)
· ηι

)
· exp

(
− mγN0

ΩEbPRx,`+1

)
dγ. (A2)

The indefinite integral in above expression is in the form of I(m, µ1, µ2) =
∫ ∞

0 γm−1 ·Q(µ1
√

γ) ·
exp(−µ2γ) dγ, which has the following solution [50]:

I(m, µ1, µ2) =
um

2 · Γ(m)

2
−

√
u2

1
2π
·

Γ(m + 1
2 )(

u2 +
u2

1
2
)m+ 1

2
· 2F1

(
1, m +

1
2

;
3
2

;
u2

1
u2

1 + 2u2

)
, (A3)

where 2F1(a, b; c; x) is the Gauss hypergeometric function.
Utilizing (A3) in (A2), we obtain the closed-form expression of the average BER P` of the `-th hop

as shown in (18) and (19).

Appendix A.2. Derivation for the BER Relationship in Proposition 2

In the investigated DF relay network, the transmitted information-bearing signal can be correctly
decoded at the destination node if the relay performs correct detection, or if a relay makes an erroneous
detection, which is rectified by further erroneous detection at subsequent relays [15]. Let PE

` denotes
the BER after the `-th hop transmission starting from the source node. Then, the end-to-end average
BER PE

L for the wireless relay system can be written as

PE
L = PL(1− PE

L−1) + PE
L−1(1− PL)

= PL − PE
L−1(2PL − 1), (A4)

where PL is the average BER of the L-th hop transmission and can be calculated from (18).
If the channel conditions are identical for all hops and transmission power of each hop fulfils the

constraint in (4), the average BER of all individual hops are equal (denoted as P0). Then, we can extend
the expression (A4) recursively and obtain the following relationship between the end-to-end average
BER and the average BER of individual hops:
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PE
L = P0 − PE

L−1(2P0 − 1)

= P0 − [P0 − PE
L−2(2P0 − 1)](2P0 − 1)

= P0 − P0(2P0 − 1) + PE
L−2(2P0 − 1)2

= · · · · · ·
= P0 + P0(1− 2P0) + · · ·+ PE

1 (1− 2P0)
L−1

=
L−1

∑
`=0

P0(1− 2P0)
` =

1
2

[
1− (1− 2P0)

L
]
, (A5)

where the last equality is obtained based on the properties of geometric progression ([46], p. 1).

Appendix B. Channel Capacity Performance Analysis

Appendix B.1. Derivation of the Average Capacity in Proposition 4

To derive the closed-form expression for average capacity, we first obtain the following alternative
expression of the logarithm term in (23) by expanding it to Taylor series ([51], p. 68):

ln
(

1 +
γe

βn

)
=

∞

∑
q=1

2
2q− 1

(
1− 2βn

γe + 2βn

)2q−1

(A6)

=
∞

∑
q=1

2q−1

∑
k=0

2
2q− 1

(
2q− 1

k

)
·
(
− 2βn

γe + 2βn

)k

. (A7)

Substituting (A7) and (23) into (27), we can obtain the following expression for the end-to-end
average capacity Cavg of the multi-hop network:

Cavg =
∞

∑
n=0

αn

ln(2)
·
∫ ∞

0

∞

∑
q=1

2q−1

∑
k=0

2
2q− 1

·
(

2q− 1
k

)
·
(
− 2βn

γe + 2βn

)k

· fγe(γe) dγe (A8)

=
∞

∑
n=0

∞

∑
q=1

2q−1

∑
k=0

exp(−A) · An

ln(2) n!
· 2 · (−1)k

2q− 1
·
(

2q− 1
k

)
· E
[( 2βn

γe + 2βn

)k]
. (A9)

It is obvious from (A9) that to calculate the average capacity, we need to derive the moments of
the ratio 2βn

γe+2βn
. By definition, the k-th moment E[

( 2βn
γe+2βn

)k
] is formulated as

E
[( 2βn

γe + 2βn

)k]
=
∫ ∞

0

( 2βn

γ + 2βn

)k
· fγe(γ) dγ =

L
Γ(m)

·
( mN0

ΩEbPRx,`+1

)m
· Ia, (A10)

where the integral Ia is given as

Ia =
∫ ∞

0
γm−1 ·

( 2βn

γ + 2βn

)k
· exp

(
− mN0γ

ΩEbPRx,`+1

)
·
[
Γ̂
(

m,
mN0γ

ΩEbPRx,`+1

)]L−1
dγ. (A11)

To obtain the closed-form expression for integral Ia in (A10), we follow the similar rationale
in [52], namely, representing the Gamma function as a sum of terms. The normalized upper incomplete
Gamma function can be rewritten as an finite sum of terms ([46], p. 899), i.e.,

Γ̂
(

m,
mN0γ

ΩEbPRx,`+1

)
= exp

( −mN0γ

ΩEbPRx,`+1

)
·
[m−1

∑
ν=0

1
ν!

( mN0

ΩEbPRx,`+1
γ
)ν]

. (A12)

Next, we define ϕ = (mN0γ)/(ΩEbPRx,`+1) and ψν = 1/(ν!). According to the polynomial
theory, the finite series in (A12) corresponds to a polynomial Q1 in ϕ with degree (m − 1) and
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coefficient ψν ([46], p. 17). Then, the (L− 1)-th power of Q1 is equivalent to another polynomial Q2

with degree (L− 1)(m− 1) as follows

[m−1

∑
ν=0

ψν · ϕν
]L−1

=
(L−1)(m−1)

∑
ν=0

ων · ϕν, (A13)

where the coefficients ων are expressed as

ω0 = 1, ω1 = L− 1, ω(L−1)(m−1) =
1

[(m− 1)!]L−1 , (A14)

and

ων =
1
ν

Λ

∑
λ=1

λL− ν

λ!
ων−λ, ν = 2, 3, . . . , (L− 1)(m− 1)− 1 (A15)

are computed recursively with Λ = min{ν, m− 1}.
Using (A12) and (A13) for the integral Ia in (A10) and applying the equality [46, Eq. 3.384.3],

we can obtain the exact closed-form solution for the integral Ia as

Ia =
(L−1)(m−1)

∑
ν=0

ων ·
( mN0

ΩEbPRx,`+1

)ν
·
∫ ∞

0
γm+v−1

( 2βn

γ + 2βn

)k
· exp(− mLN0

ΩEbPRx,`+1
γ) dγ (A16)

=
(L−1)(m−1)

∑
ν=0

ων ·
Γ(m + v)

L
m+v−k+1

2
·
(ΩEbPRx,l+1

mN0

)m−v−k+1
2 · (2βn)

m+v+k−1
2 · exp

( βnmLN0

ΩEbPRx,`+1

)
. (A17)

Finally, the k-th moments E
[(

2βn
γe+2βn

)k]
of 2βn

γe+2βn
can be expressed as follows

E
[( 2βn

γe + 2βn

)k]
=

(L−1)(m−1)

∑
ν=0

ων · Γ(m + v)

Γ(m) · L m+v−k−1
2

·
( 2βnmN0

ΩEbPRx,`+1

)m+v+k−1
2 · exp

( βnmLN0

ΩEbPRx,`+1

)
, (A18)

where the parameters ων are given in (A14) and (A15).
Finally, the end-to-end average capacity of the L-hop relay network can be obtained by substituting

the expressions of the term E
[(

2βn
γe+2βn

)k]
given in (A18) into (A9).
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