
Video QoE Killer and Performance Statistics
in WebRTC-based Video Communication

Doreid Ammar⇤, Katrien De Moor⇤, Min Xie†, Markus Fiedler‡, Poul Heegaard⇤
⇤Department of Telematics,

NTNU, Norwegian University of Science and Technology, Trondheim, Norway
{doreid.ammar|katrien.demoor|poul.heegaard}@item.ntnu.no

†Telenor Research, Next Generation Services, Trondheim, Norway
{Min.Xie}@telenor.com

‡Blekinge Institute of Technology, Karlskrona, Sweden
{markus.fiedler}@bth.se

Abstract—In this paper, we investigate session-related per-

formance statistics of a Web-based Real-Time Communication

(WebRTC) application called appear.in. We explore the char-

acteristics of these statistics and explore how they may relate

to users’ Quality of Experience (QoE). More concretely, we

have run a series of tests involving two parties and accord-

ing to different test scenarios, and collected real-time session

statistics by means of Google Chrome’s WebRTC-internals tool.

Despite the fact that the Chrome statistics have a number of

limitations, our observations indicate that they are useful for

QoE research when these limitations are known and carefully

handled when performing post-processing analysis. The results

from our initial tests show that a combination of performance

indicators measured at the sender’s and receiver’s end may help

to identify severe video freezes (being an important QoE killer)

in the context of WebRTC-based video communication. In this

paper the performance indicators used are significant drops in

data rate, non-zero packet loss ratios, non-zero PLI values, and

non-zero bucket delay.

I. INTRODUCTION

Applications and services enabling synchronous, audio- and
video-mediated communication have become more and more
popular over the last years, as reflected in the wide range
of video-chat and -conferencing solutions, each with their
own features and affordances, that are available today (e.g.,
Skype, Google Hangouts, appear.in, Cisco WebEx, AnyMeet-
ing, etc.). Such solutions are commonly used, not only in
a professional setting, but also in a more private context,
e.g., for socialising with friends and family that are not co-
located. As the term ‘videoconferencing’ is mainly associated
with business contexts, [1], [2] proposed to use the term
‘telemeeting’ to encompass both business and private contexts
in which audiovisual mediated communication takes place.

Even thought the performance of such telemeeting systems
and applications is continuously improving and even though
some very basic real-time video quality optimisation strategies
are already being employed [3], [4], it remains very challeng-
ing to offer users an excellent Quality of Experience (QoE)
with real-time audio- and video-mediated communication, all
the time and in all circumstances. First of all, multi-party
audiovisual conversations are often characterised by a certain
technical asymmetry: the technical circumstances under which

the call takes place may differ from party to party (e.g., device,
network connection, etc.). This has important implications
from a Quality of Experience (QoE)-point of view: 3 out
of 4 parties may from a technical point of view participate
under ideal conditions for positive and pleasurable QoE, yet
still, their actual QoE might be very bad because one of
the parties is connected through a weak mobile network,
resulting in a very distorted conversation. Factors such as the
context and nature of the call (e.g., business vs. leisure), the
conversation dynamics and interactivity patterns, features and
functionalities of the used videoconferencing system, etc. may
also play an important role. A number of recent studies (see
Section II) already pointed in this direction. Yet, the actual
influence of these technical and non-technical factors and their
implications for telemeeting QoE are still poorly understood.

Additionally, and despite the high processing power of
current devices, there is always some inherent and unavoidable
delay due to the technology-mediated character of telemeet-
ings. The messages of sender and receiver (audio and video
input) need to be recorded, prepared and encoded for trans-
mission, transmitted over a network, decoded by the receiving
device and finally presented to the other party [5]. During each
of these steps, delay and additional technical artefacts that may
impact the produced and experienced audio and video quality,
as well as the synchronisation between both modalities [6]
may be introduced. However, whether and to which extent
different types of quality degradations are problematic during a
conversation (e.g., in which circumstances, why, how) and how
they interplay with other impact factors still requires further
investigation. The root causes of impairments and indicators
of bad QoE may also differ depending on the service’s
underlying technology and protocols: e.g., Web Real-Time
Communication (WebRTC) in the browser that is realised by
RTP (real-time transport protocol) over UDP (user datagram
protocol) vs. proprietary IP telephony architectures as used by
e.g., Skype (requiring additional software support).

In this paper, we investigate session-related performance
statistics linked to the use of an off the shelf, WebRTC-
based application called appear.in. This application enables
video communication for up to 8 parties and can be accessed

using browsers that support WebRTC (e.g., Chrome, Firefox).
When using Google Chrome, data from both the sending
and receiving parties in a WebRTC-based telemeeting can be
gathered via the WebRTC internals page (chrome://webrtc-
internals/), thus making it possible to get a more complete
overview of the conversation. Such session-related statistics
may help to identify root causes and track the origins of
performance issues in multi-party conversations, and as a
second step, to better understand how these technical factors
may impact user behaviour and users’ QoE as a conversation is
unfolding. Gathering such insights is crucial and may steer the
development of real-time, intelligent optimisation strategies in
the future. However, the characteristics of the gathered Chrome
stats and their relevance for QoE issues are currently poorly
understood. Our aims with this paper are therefore to (1)
explore the properties and potential value of session statistics
gathered by Google Chrome for research on QoS and QoE
of WebRTC-based telemeetings and (2) explore which factors
may say something about the QoE during a session.

The paper is organised as follows: Section II briefly points
to related work on telemeeting QoE. In Section III the set-up
of the conducted measurements is described. It is followed by
Section IV, which shares our main findings on the character-
istics of the Chrome Stats and a number of additional results
and observations from the conducted measurements. Finally,
Section V concludes the paper.

II. RELATED WORK

Current research on QoE of telemeetings and video-
mediated multi-party conversations is focusing on influence
factors situated at three different levels, namely the human
level (e.g., role and involvement of a person in the con-
versation, previous experiences with telemeetings, personality
traits), the system level (e.g., network conditions, application-
level aspects, type of device) and context (e.g., purpose and
setting of the call, acoustic and visual environment) [7],
[2], [8]. Due to this multitude of potential influence factors,
the evaluation of quality and users’ QoE in the context of
multi-party telemeeting situations is particularly challenging.
New methods and approaches (beyond those described in [9])
are therefore under development in ITU-T Study Group 12
(Question 18). Several methodological issues and questions
need to be addressed in this respect, e.g., how to assess and
take into account potential asymmetric call conditions? Which
type of ‘task’ is most suitable (natural, free conversation
vs. scripted approaches)? Which quality aggregation level /
perspective should be used? How to include and evaluate the
impact of interactivity and contextual factors?

Despite the lack of agreed quality assessment methods for
multi-party video conversations, several studies have already
been conducted in this area. In [1], Berndtsson et al. report
on a series of both one-way and conversational tests to assess
subjective quality for different types of telemeeting scenarios.
A two-party, conversational audiovisual test indicated that the
synchronisation between audio and video is very important,
and that it is even better to delay the audio a bit to ensure

better synchronisation in case the delay is below 600 ms.
Another set of multiparty telemeeting tests indicated that 800
ms end-to-end delay is considered as unacceptable and showed
to affect the experienced interaction quality in a negative way.
Some interesting nuances were made however: the tolerance
towards delay was higher in the audio test. Tolerance levels
also differed according to the type of task (free conversation
vs. a quiz-alike task) and according to the social context (alone
in a room vs. together with others) [1]. In [10] it was found that
also the level of involvement in the conversation (listening task
vs. being part of the conversation) influences the experienced
telemeeting quality. For their specific set-up, they found that
this influence can moreover be even larger than the impact
of the considered technical factor (i.e., different packet loss
rates).

In [7], a flexible and customisable testbed for investigating
QoE of video-mediated group communication in controlled
lab settings was introduced. This testbed was subsequently
used in a number of studies. In [5], the impact of asymmetric
delay on QoE was investigated for multi-party telemeetings.
The study findings confirmed the assumed negative impact
of asymmetric delay: if a delay of more than 500 ms is
introduced for only one participant, this has a severe negative
impact on the QoE of the whole group. Interestingly, they also
found that the impact of delay depends on the involvement in
the conversation: less active participants were more tolerant
towards delay and hardly noticed it up to 650 ms, whereas
active participants became aware of a delay between 100 and
600 ms. In [11], the impact of network limitations, different
layout and stream (low vs. high quality) configurations was
studied. The results indicated that packet loss and packet-loss
based distortions have a larger influence on users’ QoE than
a reduction of the video quality.

In [8], QoE issues in the context of mobile multi-party
telemeetings via WebRTC were investigated. A series of inter-
active, three-party audiovisual telemeeting tests with different
smartphone and laptop configurations was conducted in a
natural environment. The results indicated amongst others that
especially for videoconferencing on smartphone, participants
have lower expectations. The authors also argue that it might
be necessary to shift the processing burden (or part of it)
required for multi-party telemeetings to a centralized confer-
ence media server (as opposed to a full-mesh topology), since
many smartphones may not be able to meet the high CPU
requirements needed to ensure a smooth QoE [8].

Even though the above-mentioned controlled lab studies
are highly relevant in order to gain a better understanding
of pertinent QoE issues in this context, we here take an
alternative approach. More concretely, we gather real-time
session statistics gathered by means of Google Chrome’s
WebRTC-internals tool and we explore their characteristics
and potential value for QoE research. To this end, we ran
a number of initial tests with different scenarios, which are –
along with other aspects of the measurement set-up – described
in detail in the next section.

III. MEASUREMENT SET-UP

A. Test Scenarios

We ran a series of tests in which we focused on two-party
video conferencing using the appear.in application. Google
Chrome was used as browser to access appear.in. Although
appear.in supports both media transmission (audio and video)
and screen sharing, the tests described here were limited to
media transmission, and specifically on video. In this initial
study, audio was not considered. Both parties involved in the
calls used a laptop and were connected to a WLAN.

The two parties were synchronized to start the appear.in
session and downloaded the Chrome stats at the same time.
Different scenarios were tested and we here report on two of
these cases.
Case 1: Both parties have good network conditions: Both

parties experienced good network conditions, and the
collected stats are used as a reference and further
evaluated in order to gain a better understanding of
the Chrome stats

Case 2: Both parties have bad network conditions: Both par-
ties experienced poor network conditions (e.g., when
moving around, taking the elevator, in weak spot of
WLAN connectivity)

The case where only one party has a bad connection is
not highlighted in this paper since the perceived effect on
QoE is the same as in the case where both parties have
a bad connection that leads to similar impairment in both
directions. Each scenario was ran several times with different
time intervals, ranging from 5 minutes to 20 minutes, to collect
as many performance variations as possible. In addition to
inherited network variations, different user behavior activities
were conducted such as refreshing the page, quitting and
then rejoining the session, or switching video from high to
low quality or vice versa. Throughout the tests, we observed
how these activities affect the gathered Chrome stats. In the
following, we provide more background on the collected stats.

B. WebRTC Statistics

In WebRTC services, audio, video, and data packets are
transmitted over a peer-connection. W3C specifies a set of
APIs that provide performance statistics of these peer connec-
tions. A data channel is a connection between two browsers
for data exchange, and a track is a media specific channel
(audio, video, screen sharing) inside the data channel. The
W3C WebRTC statistics defines objects to observed RTP
statistics for the data channels and tracks. The statistics can be
classified with respect to codec used, certificate used, transport
protocol used, and contains counters, such as number of peer
connections. For a comprehensive description see [12].

Here we share some more details about the selection of
statistics (referred to as stats), which we regard as useful for
detecting potential QoE killers in this paper:

• RTP Stream Stats - Codec, Inbound and Outbound
RTP statistics, such as packets received/sent, bytes re-

ceived/sent, packets lost, jitter, round trip time, target bit
rate

• Media Stream Stats - stream property and track
identity, and media stream track statistics, including
audio-stream performance (audio level, echo return
loss) and video-stream statistics (frame width/height,
frames per second, frames received/sent, frames de-
coded/dropped/corrupted).

• Data channel Stats - statistics for data channels, including
bytesReceived/sent, messagesReceived/sent (over API),
protocol used

Other stats do not directly reflect the performance of packet
transmissions, but are nevertheless relevant to the quality of
WebRTC services. For example, ICE Candidate stats contain
information from the TURN or STUN server, which may have
a significant influence on the end-to-end delay and should
be considered in the overall QoE study. The specification of
WebRTC APIs is work in progress so extensions and changes
are to be expected in the future. Both browsers and WebRTC
application developers can collect these statistics. The cases
presented in this paper are primarily based on performance
statistics collected via the statistics collection functionality
called webrtc-internals, embedded in Google Chrome. In the
following, we take a closer look at the stats that can be
obtained from webrtc-internals, focusing more particularly
on those stats that may be useful to detect potential QoE
killers. All browsers supporting WebRTC (i.e., Chrome, Opera
and Firefox) provide API to developers for tracking statistics.
Currently only Chrome and Opera provide such an interface
to external users to access the statistics.

C. Statistics in Chrome

The webrtc-internals1 functionality has been used by We-
bRTC application developers to understand the features and
functions of their WebRTC services. To the best of our
knowledge, it is relatively new to explore and utilize these
stats to study Quality of Experience aspects of WebRTC ser-
vices. The webrtc-internals functionality enables observation
of the performance of the WebRTC connections locally in the
browser.

In webrtc-internals, a JSON file contains all PeerConnection
objects defined in W3C APIs as well as some Google-specific
stats. The reports include several media and network statistics,
such as (video)frame rate, packet loss, and bitrate. End users
can view these statistics in real-time or download them in
a single file any time during a session, or download the
statistics immediately after a session (however, in that case
it has to be downloaded before closing the browser window
or before quitting the session in the application). The statistics
are collected per browser, which means that in order to assess
the performance of a multi-party session, the statistics from all
browsers used in the session need to be recorded, downloaded,
and (manually) combined and synchronized.

1Crome: chrome://webrtc-internals, and in Opera: opera://webrtc-internals

In a two-party video conference call, each end point’s media
stats contains at least four tracks, identified by SSRC ID,
including two audio tracks (one for sending and one for
receiving), and two video tracks (one for sending and one for
receiving)2. See Fig. 1 for an illustration. In a Peer Connection

T1 T2Network

SSRC 1

SSRC 2

SSRC 3

SSRC 4

SSRC 1

SSRC 2

SSRC 3

SSRC 4

audio

video

send
send
rec

rec

Figure 1: A two-party video conference call opens four tracks

we have c = 2�
audio

+2�
video

+2�
screen

tracks, where �

x

= 1
if track type x is active, 0 otherwise. An n-party conversation
consists of n(n�1)

2 Peer Connections which requires n(n�1)
2 ⇥c

tracks (SSRCs). SSRC is a key ID that links the two parties of
one WebRTC connection. For a Peer Connection between peer
A and B, c SSRC ID (one per track) is shared between them.
Peer A, identified as a sender, has stats labeled as sent (e.g.,
bitsSentPerSecond) whereas peer B, identified as a receiver,
has stats labeled as received (e.g., bitsReceivedPerSecond).
The stats that can be paired as sent and received include:
bitsPerSecond, bytes, packets, packetsPerSecond, and frame
rate for video streams. There are many other stats such as
RTT, jitter, packetsLost that can not be paired but that may
still be useful to determine the service quality.

D. Other WebRTC Analytics tools

As indicated earlier, the performance statistics provided
through the the WebRTC API can also be used by We-
bRTC application developers. Appear.in recently launched a
customized and customizable WebRTC Analytics interface
called getstats.io. It provides real-time visualization of We-
bRTC service performance stats. This interface integrates the
performance stats of all parties involved in a call. The stats
files collected from Google Chrome and getstats.io are both
stored in a JSON format, but with a different structure and to
some extent a different content. In our tests, we also collected
the stats from getstats.io for all scenarios. These stats are not
presented or discussed in more detail here, but for the statistics
that are gathered by both used tools, we compared Chrome
stats and getstats.io in order to verify the accuracy of the data
gathered by the former. Considering that the collected statistics
are time sequences, we calculated two measures: normalized
dynamic time warping (DTW) and ratio of norm-2[13]. The
former gives an absolute distance between the two sequences
whereas the latter shows how different are the two sequences
in magnitude. DTW and norm-2 are used to validate Chrome
webrtc-internals against getstats.io. They are acquired from the
same source of WebRTC API, so it is expected that they are
highly correlated (DTW close to 0, and norm-2 value close to
1) [13].

2In appear.in screen sharing is possible and activating this will create
another pair of video tracks

For the three parameters (bytes received/sent, packets re-
ceived/sent, packets lost) common in both Chrome stats and
getstats.io, the normalized DTW distance ranges from 0.03 to
0.07 and the ratio of norm-2 is between 0.98 and 0.995, both
of which indicate that the two sets of data are highly similar
and that the Chrome statistics can be used for our purpose.

E. Other performance measurement tools

Other performance measurement tools (such as WireShark
and even probing nodes) are definitely complementary to
WebRTC API stats and may be taken into account in the future
study. Compared to the data gathered from these network
performance measurement tools, WebRTC API stats are more
application-oriented and can be directly linked to user expe-
rience. The network performance measurement can be used
in the future for QoE troubleshooting and network diagnosis,
etc. (ref [14] is on network layer for video conferencing).

F. Data Acquisition

1) WebRTC statistics acquisition: As mentioned above,
the objective data3 (performance data related to the ap-
pear.in session) was gathered by Google Chrome. Chrome
webrtc-internals (chrome://webrtc-internals) must be activated
in Google Chrome by opening chrome://webrtc-internas in a
new tab or window. While the appear.in session is running you
might leave the webrtc-internals tab, but it must not be closed.
At the end of, or any time during, the appear.in session, click
on “Download the PeerConnection updates and stats data”
before closing the webrtc-internals tab, to make sure that the
JSON file is downloaded. For illustration, see Fig. 2 for a
screenshot take from Chrome browser with a webrtc-internals
tab open.

Activate logging in a new tab

Click here to download log file

Use this address

Figure 2: Chrome webrtc-statistics acquisition

2) Subjective data acquisition: In our subjective study, the
number of participants is limited to 4 (experts). More specif-
ically, the two parties involved in the calls each consisted of
two people. Whereas one of them was actively participating in
the call, the other one was observing (video) quality issues and
documenting the nature, timing and duration of the perceived
quality issues during each of the sessions.

The subjective data was documented using a traditional
pencil and paper approach, which is sufficient for our purpose
since we are not conducting a quantitative study but rather
investigating the applicability of WebRTC for QoE studies.
Several quality issues were documented, but in this paper, we
limit the focus to video-related quality issues (frozen image,

3The experimental data of our study is available online at:
https://github.com/doreidammar/webrtc-statistics#webrtc-statistics.

Table I: An example of the subjective data acquisition

Time Video

Start End Frozen image Slow movement Black/blank screen Screen flash

1800 2400 7
200100 202000 7

slow movement, black/blank screen, screen flash), and more
concretely, to severe video freezes. Table I shows an example
of the subjective data acquisition.

G. Notation and statistics

Table II: Key variables and notations used in the paper.

notation meaning

↵ set of attributes, ↵ = {bitsSentPerSecond, PacketLost,...}
a attribute, a 2 ↵

xat sample at t of attribute a

Xa sample set of attribute a

⌧ sample interval size

The statistics presented in next section are rate, ratio and
accumulated numbers of different attributes a 2 ↵ observed
over intervals of length ⌧ .

• accumulated numbers n

t

= (x
t

� x

t�⌧

)
• rate r

t

= n

t

/⌧

• ratio ⇢

t

= n

a1t/na2t

for t = 0, ⌧, · · · ,m⌧ , where m is the number of intervals in
the trace.

IV. OBSERVATIONS

A. Chrome stats in the plots

Chrome data can create performance statistics of a video
conference conversation by combining the JSON files down-
loaded by each of the peers in the conversation. End to end
statistics between peering pairs are obtained by integrating the
performance stats according to the tracks identifier SSRC ID.

For example, bitrate is observed as sendBitRate and re-
ceivedBitRate with the same SSRC ID. This means that we
have both original (or reference) data from the sender and
(potentially) distorted data from the receiver, which is similar
to the full reference scenario in general QoE methods. As
a consequence, insights may be gained by looking at the
difference between the original sending stats and the distorted
receiving stats.

However, the synchronization between different streams
needs to be carefully considered. When estimating the widely
used QoS parameter packet loss ratio (PLR), caution is needed
as the counters of received packets and lost packets are not
necessary synchronized. Note that packetsLost is a parameter
collected at the side of both sender and receiver, yet they
cannot be paired as sent and received because they represent
a loss of packets of different streams with different directions
(different SSRC ID). In case of the Picture Loss Indication
(PLI), a decoder informs the encoder about the loss of an
undefined amount of coded video data belonging to one or

more pictures [15]. The bucket delay is defined as “... the time
since the oldest queued packet was enqueued”. Note that, the
latter definition was found in the source code of the WebRTC
project [16].

The focus in this paper is on WebRTC performance at-
tributes that can be paired by common SSRC ID to provide
performance statistics per track. In this section we plot dif-
ferent statistics using WebRTC performance attributes from
observed Chrome stats. Fig. 3-5 plot the following statistics
for t = 0, · · · , 300 (⌧ = 10) [sec] for a specific SSRC ID:
(a) Throughput and bandwidth

• Available bandwidth: r
t

with
a = ‘bweforvideo-googAvailableSendBandwidth’

• Bits sent: r
t

with
a = ‘bitsSentPerSecond’

• Bits received: r
t

with
a = ‘bitsReceivedPerSecond’

(b) Packet lost
• Packets lost: ⇢

t

with
a1 = ‘send-packetsLost’ and
a2 = ‘send-packetsSent’

(c) Picture Loss Indication (PLI)
• PLIs received: n

t

with
a = ‘googplisreceived’

• PLIs sent: n
t

with
a = ‘googPlisSent’

(d) Bucket delay
• Bucket delay: n

t

with
a = ‘bweforvideo-googBucketDelay’

See Section III-G for the notation and the definition of
statistics.

B. Observations related to the test cases

1) Case 1: both parties have good network conditions:
In this scenario, both parties are located in an office with
good network conditions provided by the shared WLAN con-
nectivity. In most test cases, the media transmission between
two parties turned out to be smooth and users have a rather
good experience, despite of some minor disturbances such
as jerkiness, flickers and glitches. However, the parties also
encountered phases during which the quality was seriously im-
peded, potentially beyond acceptance. In Fig. 3(a)–4(d), these
phases are indicated with a yellow background. Obviously, the
direction from sender A to receiver B is affected to a higher
degree.

In particular, user group B perceived a short video freeze of
some seconds at around 20 seconds, and a rather long freeze
of about 5 seconds at 2 minutes since the start of the session.
The latter made one participant to remark that this problem
could have triggered that participant to terminate the session.
As shown in Fig. 3, the critical phases correlate well with
severe decreases of the throughput values both at 20 and at 120
seconds, respectively. These decreases are observed at both
sides, which means that they have most likely been caused
by sender A, and not by the network, cf. also [17]. This

((a)) Throughput and bandwidth ((b)) Packets lost

((c)) Picture Loss Indication (PLI) ((d)) Bucket delay

Figure 3: Case 1: both parties have good network conditions (sender A to receiver B). Critical phases of heavy picture quality
degradations and freezes are highlighted in yellow.

((a)) Throughput and bandwidth ((b)) Packets loss

((c)) Picture Loss Indication (PLI) ((d)) Bucket delay

Figure 4: Case 1: both parties have good network conditions (sender B to receiver A). Critical phases of heavy picture quality
degradations and freezes are highlighted in yellow.

observation is underpinned by the lack of loss at the critical
times, as seen from Fig. 3(b). Yet, the Picture Loss Indication
(PLI) reports a significant amount of loss at 130 seconds,
cf. Fig. 3(c), already at the sender. Furthermore, the bucket
delay indicates the most severe disturbance at 120 seconds,
cf. Fig. 3(d).

In the opposite direction, there are only two short glitches
at around 15 and 50 seconds, which correlate with temporarily
reduced throughput and bandwidth values, cf. Fig. 4(a). Yet,
later, such reductions at 100 seconds and beyond 200 seconds
did not coincide with any quality reductions that any of the
observers pointed out as a potential reason for abandoning
the session. In the direction from sender B to receiver A, no
other statistics (packets lost; PLI; and bucket delay) show any
deviation from normal behaviour, cf. Fig. 4(b)–4(d).

2) Case 2: Both parties have bad network conditions: In
order to provoke bad QoE, both groups left the meeting room
in favor of places that are known for bad WLAN coverage.
While group A went just outside the building (where WLAN
is not even supposed to provide coverage), group B was using
the elevator (a Faraday’s cage) in a non-stop manner during
the test. We are restricting ourselves to reporting the results
for one direction, namely from sender B to receiver A.

In general, both groups experienced many critical phases
of heavy picture quality degradations and freezes, which are
again highlighted with yellow background in Fig. 5. Generally,
both throughput values and bandwidth estimations are low;
typically, these data rates decrease just ahead of or during
those critical phases, and the receiver rate is most of the time
found below the sender rate, cf. Fig. 5(a). While the packet
loss as such colocates well with most of the critical phases,
cf. Fig. 5(b), the PLI does not at all, cf. Fig. 5(c). On the
other hand, the bucket delay again shows a nice correlation
with most of the critical phases, cf. Fig. 5(d).

C. Lessons learned so far

Two types of lessons were learned from this study. The first
lesson is on the collected chrome statistics. Chrome statistics
are acquired from WebRTC API and fully visualized when
observing in real-time. However, after we downloaded the
statistics for post-processing, some issues arise. For instance,
the downloaded statistics are limited to 1000 sample points.
If the appear.in (or WebRTC) session lasts longer than 1000
seconds, only the latest 1000 sample data is recorded, i.e., the
data older than 1000 seconds is lost. Moreover, the sampling
time of the downloaded statistics varies with device and OS.
Even though the real-time statistical visualization exhibits an
identical sampling time of one second, the recorded samples
at different devices demonstrate variance from 1 second to 3
or 4 seconds, which causes a problem with synchronizing the
data from different parties. These issues need to be carefully
handled when performing post-processing analysis.

The second takeaway we observed is on the candidate
parameters that could be used to represent unacceptable QoE:

• Dropping data rates at the receiver;

• Non-zero packet loss ratios that are applicable to WLAN
settings, while mobile links tend to turn loss into delays
[18]);

• Non-zero PLI values (potentially at both sides);
• Bucket delays that indicate freezes.

The findings on these parameters are not only consistent with
but also complementary to previous findings. For instance,
[14] presented a model focusing on outages on mobile links,
with a metric similar to bucket delay that can indicate freezing
for general services from sender-side buffer behaviour obser-
vations. Our findings extend to video conferencing services.
In [17], a study of network-layer performance metrics for
video conferencing revealed a similar behavior as what we
observed from the dropping data rates, in terms of throughput
and/or available bandwidth estimation. Our work exhibits
such as relationship from a perspective of application-layer
performance metrics.

Several of those indications may appear together, which
itself can be seen as an indication of nature and severeness of
the disturbance. Furthermore, the comparison between sender
and receiver statistics helps identifying the main contributor to
the problem [17]. The good news is that the rather coarse time
resolution of ten seconds does not hamper the interpretation;
indeed, that kind-of low-pass filter seems to highlight the
really bad conditions, while shorter and less critical issues
are suppressed.

V. CONCLUSION

In this paper, we explored the characteristics of session
statistics collected by Google Chrome’s WebRTC-internals
functionality and explored their potential relevance for identi-
fying QoE issues in the context of WebRTC-based video com-
munication. More concretely, we collected a set of statistics
related to two-party video conversations in different scenarios,
using the WebRTC-based video communication application
appear.in.

Our observations show that – despite the limitations of
the WebRTC-internals stats – several of the gathered session
statistics (in particular: throughput, packet loss, and bucket
delay) seem to be good candidate indicators of severe video
freezes, as a key QoE killer and are therefore worthy of further
in-depth investigation. The work presented here represents
however just a first step, which was limited to only one type
of video-related QoE killer and which did not consider audio
impairments, despite the fact that audio is often considered as
the natural fall-back solution in case of bad video quality.

In our future work, we therefore aim to extend the focus to
other types of video and audio quality impairments that can
be considered as key QoE killers. In addition, more complex
usage situations with multiple parties will be considered in
order to gain a better insight into common and realistic
problems, their causes, their implications for QoE and the
behavioral response that they trigger (by jointly analyzing
session statistics and behavioral measures). Moreover, we
aim to investigate the impact of performance-related potential
QoE killers not only in one single session, but over multiple

((a)) Throughput and bandwidth ((b)) Packets lost

((c)) Picture Loss Indication (PLI) ((d)) Bucket delay

Figure 5: Case 2: Both parties have bad network conditions (sender B to receiver A). Critical phases of heavy picture quality
degradations and freezes are highlighted in yellow.

sessions. Such more robust and in-depth insights are needed
in order to develop strategies that enable QoE improvement in
real time, so that the best possible experience can be enabled,
regardless of the circumstances of a call.

ACKNOWLEDGMENT

Doreid Ammar’s work was carried out during the tenure
of an ERCIM ‘Alain Bensoussan’ Fellowship Programme.
The work presented in this paper was also supported by the
NTNU - Telenor Research collaboration project on Deliver-
ing Robust End-to-End Differentiated Services (E2E DS), as
well as by the Swedish Knowledge Foundation through the
BigData@BTH research profile, involving BTH and Telenor
Research. Finally, the authors gratefully thank the appear.in
team and getstats.io team for their help and input.

REFERENCES

[1] G. Berndtsson, M. Folkesson, and V. Kulyk, “Subjective quality assess-
ment of video conferences and telemeetings,” in Packet Video Workshop
(PV), 2012 19th International, May 2012, pp. 25–30.

[2] J. Skowronek, K. Schoenenberg, and G. Berndtsson, “Multimedia
Conferencing and Telemeetings,” in Quality of Experience: Advanced
Concepts, Applications, and Methods. Springer, 2014.

[3] L. De Cicco, S. Mascolo, and V. Palmisano, “Skype Video Responsive-
ness to Bandwidth Variations,” in Proceedings of the 18th International
Workshop on Network and Operating Systems Support for Digital Audio
and Video, ser. NOSSDAV ’08. New York, NY, USA: ACM, 2008.

[4] M. Venkataraman and M. Chatterjee, “Inferring video QoE in real time,”
Network, IEEE, vol. 25, no. 1, pp. 4–13, 2011.

[5] M. Schmitt, S. Gunkel, P. Cesar, and D. Bulterman, “Asymmetric Delay
in Video-Mediated Group Discussions,” in International Workshop on
Quality of Multimedia Experience (QoMEX), Sep 2014, pp. 19–24.

[6] M. Vaalgamaa and B. Belmudez, “Audiovisual Communication,” in
Quality of Experience, ser. T-Labs Series in Telecommunication Ser-
vices, S. Moeller and A. Raake, Eds. Springer International Publishing,
2014, pp. 195–212.

[7] M. Schmitt, S. Gunkel, P. Cesar, and P. Hughes, “A QoE Testbed for
Socially-aware Video-mediated Group Communication,” in Proceedings
of the 2Nd International Workshop on Socially-aware Multimedia, 2013.

[8] D. Vucic and L. Skorin-Kapov, “The impact of mobile device factors on
QoE for multi-party video conferencing via WebRTC,” in Telecommu-
nications (ConTEL), 2015 13th International Conference on, July 2015.

[9] “ITU-T P.1301: Subjective Quality Evaluation of Audio and Audiovisual
Multiparty Telemeetings ,” Jul 2012.

[10] J. Skowronek, F. Schiffner, and A. Raake, “On the influence of involve-
ment on the quality of multiparty conferencing,” in 4th International
Workshop on Perceptual Quality of Systems, Vienna, 2013, pp. 25–30.

[11] S. Gunkel, M. Schmitt, and P. Cesar, “A QoE study of different
stream and layout configurations in video conferencing under limited
network conditions,” in Quality of Multimedia Experience (QoMEX),
2015 Seventh International Workshop on, May 2015, pp. 1–6.

[12] H. Alvestrand and V. Singh, “Identifiers for WebRTC’s Statistics API,”
W3C, W3C Working Draft, Feb. 2015.

[13] E. Keogh and A.Ratanamahatana, “Everything You Know About Dy-
namic Time Warping is Wrong,” in 3rd Workshop on Mining Temporal
and Sequential Data, in conjunction with the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2004.

[14] M. Fiedler, J. Shaikh, and V. Elepe, “Exponential on-off traffic models
for Quality of Experience and Quality of Service assessment,” Praxis
der Kommunikationstechnik (PIK), vol. 37, no. 4, pp. 297–3046, 2014.

[15] J. Ott and D. S. Wenger, “Extended RTP Profile for Real-time Transport
Control Protocol (RTCP)-Based Feedback (RTP/AVPF),” RFC 4585,
Mar. 2013. [Online]. Available: https://rfc-editor.org/rfc/rfc4585.txt

[16] Chromium, “The WebRTC project,” https://chromium.googlesource.
com/external/webrtc/.

[17] M. Fiedler, K. Tutschku, P. Carlsson, and A. Nilsson, “Identification of
performance degradation in IP networks using throughput statistics,” in
Proc. 18th International Teletraffic Congress (ITC 18), Sept. 2003.

[18] T. Minhas and M. Fiedler, “Quality of Experience Hourglass Model,” in
Proc. IEEE ComManTel, Jan. 2013.

