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Summary

The decrease in frequency quality seen in the Nordic power system over the past
two decades is a clear token of the major changes that power systems all around the
world are facing. These changes are to a large extent connected to the green shift in
energy production, which results in less controllable power production. Addition-
ally, there are bottlenecks in the Nordic transmission grid, which at times exclude
some of the resources from participating in frequency control, and the power trad-
ing between the Nordic and the Continental European system is increasing, which
means that the Nordic system is being subjected to higher and more unpredictable
consumption.

One important mean for improving the frequency quality is to improve the load
frequency control (LFC), which is the continuous operation of keeping produced
and consumed power equal all times. With the Nordic power system in mind,
an important task will be to implement a fully operable automatic generator con-
trol (AGC), which automatically controls the power-production set point of each
generator. AGC was first implemented in the Nordic system in 2013, and due to
unexpectedly high expenses, it is still not fully up and running. This thesis aims at
investigating model predictive control (MPC) as a control design method for AGC,
with application to the Nordic power system. It is believed that the natural han-
dling of multiple inputs and system constraints, as well as the optimizing nature of
MPC makes it a promising candidate for AGC.

The main contribution of this thesis is an MPC-based solution to the LFC/AGC
problem, where state feedback is achieved through a state estimator and a simplified
system model is used both in the MPC predictions and the state estimator. System
constraints include production limits and limits on generation rate of change, as well
as constraints on tie-line power transfer capacity. In order to include constraints
on the individual generating units, and not only on the aggregated generating units
of the simplified model, the participation factors of each generator are included as
optimization variables. Simulations on a proxy model show that the MPC-based
solution outperforms a traditional PI-based solution. In order to make the controller
more robust against fluctuations in produced wind power, a multi-stage nonlinear
MPC (MNMPC) is also presented. Based on estimates of the worst-case deviation
in produced wind-power, the MNMPC makes sure there is enough available transfer
capacity on tie lines to make use of all resources in case of large deviations in wind-
power production. The approach of stochastic NMPC (SNMPC) is also tested as an
alternative to the MNMPC. The SNMPC has the theoretical advantage of stochastic
guarantees for constraint fulfillment in the presence of disturbances (deviations in
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produced wind power), while the MNMPC shows better tractability and is less
likely to encounter feasibility issues.

Using the power transfer in high voltage direct current (HVDC) lines as con-
trollable inputs to the system is also investigated as a method for improving angle
stability, which is a different part of power system stability. The method of back-
stepping was applied in this part of the thesis, which is a control-design method that
is not based on online optimization, contrary to the MPC. The work shows that
HVDC-lines can contribute in stabilizing the overall stability of a power system.

ii



Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). The research has been conducted at the Department of Engineering Cy-
bernetics (ITK) from August 2011 to October 2016. Funding for the research has
been provided by the Research Council of Norway Project 207690 Optimal Power
Network Design and Operation, for which I am very grateful.

First of all, I would like to show my gratitude to my supervisor Professor Lars
Imsland for all his encouragement, guidance and valuable inputs throughout this
period. I am very grateful for his support, and would like to thank him for always
taking the time to answer all my questions and offering his advise. It has been very
inspiring to have a supervisor who is so committed, and takes a genuine interest in
my work. I would also like to thank my co-supervisor Professor Kjetil Uhlen for all
his guidance, comments and suggestions. His eminent knowledge and experience
within power systems has been a very important contribution to this thesis, and I
have learned a great deal from cooperating with him.

During the spring of 2013 I had the privilege of visiting Professor Nina F. Thorn-
hill at Imperial College London. This was a very inspiring time, and I would like
to thank both Professor Thornill and Dr. Davide Fabozzi for close collaboration
and very valuable inputs to my work. In many ways it defined the path I took in
my research, and this thesis would not have been the same without it.

I would also like to thank the members of my thesis committee, Professor Bikash
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Chapter 1

Introduction

This chapter presents some background information on power systems in general,
and the Nordic power system in particular. Power systems all around the world
are currently facing large changes, much because of the green shift seen in power
production, and the challenges related to this will be discussed. This aim of this
thesis is to investigate model predictive control (MPC) as a mean to solve some of
these challenges, and the basics of MPC and nonlinear MPC (NMPC) will therefore
be presented as well.

1.1 Introduction to Power Systems

Modern power systems are large, complex, dynamical systems whose main task is
to provide electric energy to the end user, i.e. the industry, households, agriculture
and so on. The structure of these power systems can be divided into four main
parts: Generation, transmission, distribution and demand, see Figure 1.1.

Since the 1990s the energy markets have been liberalized. In a typical liberalized
model, there are several private companies who generate power using their own
individual power stations, and who compete against each other in selling it. The
transmission of the power is usually operated by one transmission system operator
(TSO), which has monopoly and is independent of the generation companies. The
distribution of power to the end users is also handled by several private companies,
which own and manage the distribution network in their area. Finally there are
the companies who are responsible for retail, by buying power from the generation
companies and selling it to the end users.

Generation

The main sources of electrical energy to the power system is the kinetic energy of
water and the thermal energy derived from fossil fuels and nuclear fission (Kundur,
1994). The task of the prime movers (often turbines) is to convert this kinetic
energy into mechanical energy, which in turn is converted into electrical energy
by the synchronous generators. A synchronous generator is a generator where, at
steady state, the frequency of the delivered output current is synchronized with the
rotation of the generator rotor. When many such generators work together in a
network, they will all synchronize with the same network frequency at steady state.

1



Chapter 1 Introduction

Generation

Transmission
Distribution

Demand

Demand

Generation

Figure 1.1: Overview of power system structure.

Transmission

Traditionally, the large power plants have been placed near the primary source of
energy and the produced electricity is transmitted over long distances to the end
users. To minimize the energy loss, which is proportional to the current squared, the
transmission lines operate at very high voltages. The transmission network usually
has a mesh structure, which allows for flexibility and redundancy in transporting
power from source to end users. The transmission network is what connects all the
generating units and loads together, so that an action of any individual component
influence all the other components of the system (Machowski et al., 2008).

Distribution

The distribution network brings the energy to the consumers, operating at lower
voltages than the transmission network. Traditionally, there has not been any
generating units connected to the distribution network, but this is changing, as
smaller, renewable-energy based power plants enter the market.

Demand

The power demand from the end users is ever-changing and can, individually,
change quite rapidly and in an unpredictable manner. However, when adding all
this individual power demands into one total power demand, the changes are less
fluctuating and more predictable. The variations in total power demand depends
on the season, weather conditions, time of day and so on.

2



1.1 Introduction to Power Systems

Power system stability

Rotor angle stability Voltage stability

Small

angle stability

Transient
stability

Large

voltage stability

Small

voltage stability
disturbance disturbancedisturbance

Frequency stability

Figure 1.2: Classification of power system stability (Machowski et al., 2008).

1.1.1 Power System Stability

In Kundur et al. (2004), the definition of power system stability is given as:

The ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being sub-
jected to a physical disturbance, with most system variables bounded
so that practically the entire system remains intact.

When discussing power system stability, it is normal to divide the concept into three
parts: rotor angle stability, frequency stability and voltage stability, see Figure 1.2.

The rotor angle stability is the system’s ability to maintain synchronization of
the generators after a severe (transient angle stability) or smaller (small distur-
bance angle stability) momentary disturbance. These faults are often caused by
short circuits in the transmission network, and are often cleared without having to
interfere with the amount of mechanical power provided by the prime movers. The
rotor angle stability is fairly well preserved using power system stabilizers (PSS),
thyristor exciters, fast fault clearing and so on (Bevrani et al., 2011).

Voltage stability is the system’s ability to maintain the voltages of the system
at acceptable levels after being subjected to a disturbance. The voltage stability
is strongly coupled with the reactive power balance in the power system, and it
is stabilized by the automatic voltage regulator (AVR) which controls the internal
voltage of the generators.

Contrary to rotor angle stability, the frequency stability of a system is related
to long-term imbalance between generation and consumption of active power. This
active power imbalance will initially be covered by the kinetic energy of the rotat-
ing masses in the system (turbines, generators, motors), causing the frequency to
change in a similar manner to the level in a water tank: as the water level rises/falls
when there is a surplus/shortage of supplied water, so does the frequency of a power
system when there is a surplus/shortage of produced power. However, this is no
permanent solution, and such a power imbalance requires actions to be made so

3



Chapter 1 Introduction

that the mechanical input from the prime movers match the network loads, which
in turn will restore the frequency back to the wanted level. This is what is referred
to as load frequency control (LFC), which is the main topic of this thesis. Since
this thesis focuses on frequency stability and not voltage stability, the term power
will in the following refer to active power.

1.1.2 Power markets

The balancing of power supply and demand are in most systems managed by power
markets. In these markets, production and consumption are balanced for each hour
of the upcoming twenty-four hours, and they take into account known variations in
power production as well as daily/weekly/annually deterministic load variation pat-
terns. However, there are still several factors that are uncertain, mainly connected
to temperatures, wind and unforeseen system errors (Statnett, 2012). Because of
this, there are also intra-day markets where power is traded up to one hour before
the operating hour. Even though these intra-day markets contribute to correct pos-
sible deviations from the original market balance, there will always be unforeseen
system faults and changes in generation or load also within the operating hour.
The imbalance caused by these unforeseen factors is continuously covered by the
LFC, which is operated and maintained by the TSO.

1.1.3 Load Frequency Control

The main task of LFC is to maintain frequency stability, which means keeping the
system frequency at a desired level when changes in consumption or generation
appear. This is done by continuously adapting the power production against the
consumption during the operating hour. Since storing of large amounts of power
in general is inefficient (Machowski et al., 2008), the power must be produced as it
is consumed. In addition to this main control task, another incentive is to keep the
costs associated with LFC at a minimum. LFC of interconnected power systems
is often implemented as a three-level hierarchical control structure. These three
levels, in increasing hierarchical order, are often referred to as primary, secondary
and tertiary control1 (Machowski et al., 2008). Secondary control is often referred
to as automatic generator control (AGC), and this term will be applied in the
following. Figure 1.3 shows the nature of how primary control, AGC and tertiary
control cooperate to compensate for a power imbalance. It also shows the timescales
of when they are required to activate in the Nordic power system.

Primary control

Primary controllers, often referred to as governors, are local, continuous, automatic
controllers situated at the generating units. They are proportional controllers which

1Also known as frequency containment reserve (FCR), frequency restoration reserve (FRR) and
replacement reserve (RR) (ENTSO-E, 2012).
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1.1 Introduction to Power Systems

0− 2 min
2− 15 min

15 min →

Time

Power

Frequency

Power imbalance

Primary

Secondary/AGC

Tertiary

Figure 1.3: Activation of primary, secondary/AGC and tertiary control after power imbalance.

alter the mechanical input power from the turbine based on the deviation in angular
speed from a given nominal speed, and they are required to act instantaneously.
For stable operations the governor much ensure that an increase in shaft speed will
reduce the turbine mechanical output and vice versa. In steady state, the following
relationship is desirable

∆c

∆ωm
= −1

ρ
(1.1)

where ∆c is the change in valve positioning, ∆ωm the deviation in generator angular
speed from the nominal angular speed, and ρ a positive constant called the speed-
droop coefficient. The effective gain of the governing system is K = 1/ρ. It is
the droop which decides how much the output power should adjust (trough the
input c) when the shaft speed changes. Or put in another way, it decides how
much the speed should change when there is a demand for higher or lower power
delivery from the turbine. Preferably, the change in speed should be small, which
is achieved with a small droop. However, depending on the type of turbine, there
are limitations on the droop connected to how rapid changes in c they can handle.
If generators connected to the same system all have ρ > 0, there will always be a
unique load-sharing frequency.

AGC

When the system is subjected to a long-term power imbalance, the primary con-
trollers alone will not be able to restore the frequency to its initial state. The
primary control will stabilize the frequency with an offset, unless replaced by the
AGC. This is done by altering the set point to the governor and thus changing the
power output at ∆ωm = 0. The AGC is slower than primary control, and it is
centralized, often automated, and dispatch the control signal in a discrete manner.
In most systems today, AGC is implemented as proportional integral (PI)-based
controllers (Bevrani, 2014) which produce one input per area. This is then dis-
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Chapter 1 Introduction

tributed to the generating units of each area using participation factors, α, which
define the contribution of the individual generating units to the total generation
(Machowski et al., 2008).

When there are multiple areas connected by tie lines with given power-flow set
points, the AGC also tries to restore the power flow on the tie lines to these set
points. The control input is then a combination of the frequency offset and the tie-
line offset called the area control error (ACE). Because the Nordic power system
is operated as a unity with common markets, there is no need to minimize tie-line
offsets, as long as the power flow is kept within the tie-line boundaries. Hence, such
tie-line set points will not be included in this work.

Tertiary control

Tertiary control is additional to, and slower than, AGC and primary control. It is
mainly executed manually by the TSO, and its purpose is to ensure (Machowski
et al., 2008)

• Adequate AGC spinning reserves2.

• Optimal dispatch of units participating in AGC.

• Restoration of bandwidth of AGC.

Tertiary control is executed either via changing the AGC set point or by connecting
or disconnecting generating units that participate in tertiary control.

1.1.4 The Nordic power system and challenges within LFC

In Europe there are two isolated systems (Cyprus and Iceland) and five synchronous
areas: the Continental European, the Baltic (which is synchronized with Russia),
the Nordic, the British, and the Irish synchronous area (ENTSO-E, 2015), see Fig-
ure 1.4. In a synchronous area, the power systems of each country are connected
to each other using alternating current (AC) lines, and all the generators are syn-
chronous; sharing a common system frequency. This has the effect that every
component of a synchronous area will be affected by faults or disturbances appear-
ing anywhere in that area. The individual synchronous areas are again connected
to each other using direct current (DC) interconnection which does not spread the
effect of faults etc.

This thesis focuses on the Nordic power system, which consists of Norway, Swe-
den, Finland, and the eastern part of Denmark, that is the island of Zealand. In the
Nordic system, there has been a negative trend with regards to frequency quality
and LFC over the past two decades. The aim is to keep the frequency between
49.9 and 50.1 Hz, however, as seen in Figure 1.5, which displays the minutes spent

2Spinning reserves is the difference between the sum of the power ratings of all operating units
and their actual load, i.e. “available” power of on-line generating units.
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1.1 Introduction to Power Systems

Figure 1.4: Synchronous and isolated areas in Europe (ENTSO-E, 2015).
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Chapter 1 Introduction

Figure 1.5: Minutes per week spent outside 49.9− 50.1 Hz in the Nordic system (Statnett, 2015).

outside this band per week, this has shown to be increasingly difficult. There are
many factors that contribute to this development, and some of the main challenges
will be further elaborated in the following. They all share the feature that they are
connected to the great changes seen in power systems all around the world.

Traditionally, power systems has been supplied by large power stations consisting
of mainly hydro-, nuclear-, coal-, or gas turbines. Except for nuclear energy, these
are all sources of energy which results in flexible power production: As long as there
is water in the reservoirs, coal to burn, etc., you can produce as much power as you
want, only limited by the dimensions of the turbine. This power was then consumed
by traditional consumers, such as households and industry, and there were not much
trading of power between different synchronous areas, such as between the Nordic
system and the Continental European system. This situation has changed a lot
over the past two decades, much because of the climate changes. It is believed
that the dominant cause of the climate changes is the CO2 emission from human
activities, which is largely dominated by combustion of fossil fuels in power stations
around the world. This has led to a growth of new renewable energy, such as wind,
solar, wave, etc., and the European Union has stated that by 2020, 20% of the
energy consumption in Europe should come from renewable energy. Figure 1.6
shows the development of generating capacity in the Nordic power system over
the past 15 years, divided into hydro, thermal (nuclear and fossil), and renewable
energy sources excluding hydro (RES-H). It shows that during the past 15 years,
the percentage of RES-H has increased, and the environmental aim is for it to
increase even further. This poses great challenges with regards to LFC, since RES-
H is mainly uncontrollable power production, which means that the TSO cannot
simply ask e.g. a large wind farm to produce more power. It all depends on the
amount of wind at the time. With less controllable power available in the system,
the task of continuously balancing production against consumption becomes more
difficult, and this is one of the main reasons for the decrease in frequency quality
(Statnett, 2015).

8



1.1 Introduction to Power Systems

Figure 1.6: Installed generation capacity in the Nordic power system (Nordel, 2008; ENTSO-E,
2014).

This increase in uncontrollable power production is present all across Europe,
and one way of making all the synchronous areas of Europe less affected is by
increasing the DC-connections between them, allowing them to cooperate in the
task of fading out non-renewable energy. One idea is to use the hydro-dominant
Nordic system as a battery for the increasingly wind- and sun influenced Continental
European system. This means more power transfer in and out of the Nordic system,
resulting in higher and more unpredictable consumption, which also contributes to
the decrease in frequency quality (Statnett, 2015).

In addition to the challenges related to the green shift in energy production, the
Nordic system has not been expanded concurrent with the increasing energy need
and the tighter connection to Continental Europe, leaving it under-dimensioned
and operating close to its maximum transfer capacity (Statnett, 2015). This has
led to an increasing amount of of bottlenecks, which at times excludes some of
the resources from participating in LFC, and according to Statnett (2015) there
is a tendency to a strong correlation between frequency incidents (i.e. minutes
spent outside 49.9− 50.1 Hz) per week and the number and duration of bottleneck
congestions that week.

The last challenge mentioned here is the challenge of the hourly production set-
point shifts. The change in power-production set points happens on the hour in
the Nordic system, while the change in consumption naturally happens during the
hour. This leads to a large deviation between production and consumption at every
hour shift, resulting in large frequency deviations. In addition, the change in power
flow on the connecting DC lines also happens on the hour, which amplifies the
problem as the connection and trading with Continental Europe increase.

Figure 1.5 also shows that the number of frequency incidents has stabilized and
decreased some since 2011. This is mainly because of actions taken by the Nordic
TSOs since 2008, some of which temporary, resulting in better market solutions,
more flexible power exchange with Continental Europe, and also an improved LFC.

9
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In fact, the Nordic system did not practice AGC until 2013, and it is still not fully
up and running, much because of unexpectedly high expenses due to incomplete
AGC market solutions (Statnett, 2015). This is however an ongoing project, and
the frequency quality is still far from the wanted levels. It is expected that the
temporary solutions will be replaced by among others a fully operable AGC in
the years to come, which is considered to be an important part of improving the
frequency quality. It is therefore of interest to find methods of conducting AGC
which aid the power system in resolving some of the issues related to bottlenecks
and the increasing amount of uncontrollable power production, and it is believed
that MPC could be an efficient solution.

1.2 Introduction to model predictive control

Model predictive control (MPC) is an advanced control method which has its roots
in optimal control, and it is one of the few advanced control methods that has made
a significant impact on industrial control engineering (Maciejowski, 2002). MPC
comes in many shapes and sizes, however, they all share the same basic concept:
a model of the system to be controlled is used to predict and optimize the future
system behavior. This is done by solving an optimal control problem (OCP), which
forms the heart of an MPC. A general discrete-time OCP is as follows

min
xk,uk∀k=1,...,M

J (xk, uk) (1.2a)

subjected to

x0 − xinit = 0 (1.2b)

xk+1 − f (xk, uk, wk) = 0 ∀ k = 1, . . . ,M (1.2c)

g (xk, uk) ≤ 0 ∀ k = 1, . . . ,M (1.2d)

r (xM) ≤ 0 (1.2e)

where xk are the dynamic system states, uk the controllable system inputs, and
wk the system disturbance. Equation (1.2b) is the fixed initial state, (1.2c) the
system model, (1.2d) the path constraints, and (1.2e) the terminal constraints.
The objective function

J (xk, uk) =
M−1∑

k=0

L (xk, uk) + E (xM) (1.3)

is a central part of the OCP, and it consists of a stage cost L (xk, uk) and a ter-
minal cost E (xM) (often referred to as the Lagrange term and the Mayer term,
respectively). When solving the OCP, one finds the inputs uk which minimize the
objective function J(·) over the control horizon M , while fulfilling all system con-
straints (1.2b)-(1.2e). The objective function J(·) and the control horizon M are

10
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x∗k

t

t+ 1

t+M

Past Future

t+M + 1

x∗k

xk
u∗k

xk

u∗k

Figure 1.7: The receeding-horizon principle, k = 1, . . . ,M .

the main tuning variables of the OCP. The objective function states what is actu-
ally regarded as optimal and what should be prioritized, while the control horizon
dictates how much of the future system behavior that should be included. In the
objective function it is common to punish deviations from a wanted steady state
or state trajectory x∗k, so that the optimal input u∗k steers the state to this value.

The solution to the OCP are optimal inputs M timesteps into the future, and if
the system model was perfect, and no unknown disturbances acted on the system,
these inputs would steer the system towards x∗k as predicted. However, no system
model is perfect, and even if it was, the OCP only provides optimal input M
timesteps into the future. What should the input be when M timesteps have
passed? This is solved by what is known as the receding-horizon principle, see
Figure 1.7: At each time step, the first optimal input from the OCP, u∗0, is applied
to the system, and at the next timestep measurements from the system are used
to update the system model, and a new OCP is solved, giving an updated optimal
input. Again, only the first of these inputs is applied to the system. This is repeated
at every timestep, which introduces feedback to the controller, and the result is the
MPC. Figure 1.8 depicts the general composition of an MPC, with the system
model, measurements yk, and the OCP. The figure also includes the Kalman filter,
which produces the state and disturbance estimates {x̂k, ŵk}. The Kalman filter is
discussed in the next section.

The path constraints (1.2d) can include constraints on both states and inputs,
and this intuitive inclusion of constraints is one of the benefits of an MPC. In
addition to this, it naturally handles multivariable control3, and feedforward from
known or measurable disturbances are easily included through wk in (1.2c). An
MPC will also often make it possible to operate closer to the constraints, which
leads to more profitable operation in many cases.

3Control systems with multiple inputs and/or multiple outputs.
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OCP

u∗0

System

yk

Kalman filter
x̂k, ŵk

MPC

x∗k

wk

xk+1 = f(xk, uk, wk)
yk = h(xk, uk)

u∗k
Constraints

Figure 1.8: General composition of an MPC.

1.2.1 Feedback and updating the system model

The MPC predicts and optimizes the behavior of the system model, not the actual
system itself. And in order for the MPC to function properly it is important that
the model accurately (enough) reflects the most interesting properties of the actual
system. However, it is also important that the model is not too detailed and
complicated, as the OCP must be solved in time for the next timestep. One must
therefore expect model errors and unknown/unmodelled disturbances in an MPC,
and updating the system model in order to maintain good quality predictions is
always necessary. One way of achieving this is through Kalman filtering.

The original Kalman filter (KF) was published by Rudolf E. Kalman in 1960,
and it is a method for estimating the states of a linear system. A KF is a recursive
algorithm which exploits knowledge of both the system as well as the disturbances
it is subjected to, in order to estimate the state vector so that the mean squared
estimated error is minimized. The KF is run at each time step, and it involves
four main steps: the incrementation of time, the integration, the computation of
the Kalman gain, and the measurement update. After the time is incremented,
the estimate is integrated forward in time using a system model. This estimate
is then refined during the measurement update, using the current measurement
and the Kalman gain. The Kalman gain is the solution to the Riccati equation
(Simon, 2006), and it will in general decide how much to trust the model and how
much to trust the measurements (through provided information of their respected
accuracy). The Kalman filter (KF) has become popular within many areas of ap-
plication, especially since the extended Kalman filter (EKF) for non-linear systems
was introduced in the late 1960s (Simon, 2006). The KF adapts the state estimate
to fit the measurements from the true system response, and thereby updating the
system model. The KF can also be modified to include estimation of unmeasurable,
time varying disturbances, so that they can be included in the feed-forward part of
the MPC.
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1.2.2 Solving the OCP

Solving an OCP is the same as solving a general optimization problem where (1.2b)-
(1.2e) are all seen as equality and inequality constraints. A general optimization
problem can be defined as

min
υ

Γ(υ) (1.4a)

subject to

Θ(υ) = 0 (1.4b)

Σ(υ) ≤ 0 (1.4c)

where υ are the optimization variables, Γ(υ) the objective function, Θ(υ) the equal-
ity constraints, and Σ(υ) the inequality constraints. Comparing to the OCP (1.2),
(1.2b) and (1.2c) are equality constraints, while (1.2d) and (1.2e) are inequality
constraints.

General optimization problems are solved through numerical optimization us-
ing iteration-based algorithms, and there are many different types of optimization
problems, which can be solved by many different algorithms. There are however
some common classifications, and optimization problems sharing the same classifi-
cation can in general be solved by the same algorithms. It is common to classify
optimization problems using two different axes: convex vs. non-convex and linear
vs. non-linear. An optimization problem such as (1.4) is said to be convex if the
objective function and the inequality constraint function are convex and the equal-
ity constraint function is linear, otherwise it is non-convex (Nocedal and Wright,
2006). A convex optimization problem is in general much easier to solve than a
non-convex optimization problem, and all local optima are global optima, hence
a global solution is always found (if a solution exists). Non-convex optimization
problems can be more challenging, as they tend to have several stationary points
and local optima. In a non-convex optimization problem one can find either a lo-
cal or a global solution, the former can however be a quite challenging task, and
many algorithms return a local optima. The axis of linear vs. non-linear is based
on whether the system constraints (including the system model of an OCP) and
the objective function are linear or nonlinear, which results in the following three
classifications

• Linear programming (LP). In an LP formulation, the objective function is
linear, and so are all system constraints. Optimization problems of this type
are always convex, and they are probably the most widely solved optimization
problems, especially within financial and economic applications (Nocedal and
Wright, 2006). They are easily solved with well known algorithms, and will
always produce a global optimum.

• Nonlinear programming (NLP). In an NLP formulation, either the sys-
tem constraints or the objective function are nonlinear. These problems tends
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to arise naturally in physical systems, however, they are more difficult, and
hence more time consuming, to solve. An NLP can be either convex or non-
convex, and this is what decides the difficulty of the NLP and which al-
gorithms that can be used to solve it. A convex NLP can often be solved
efficiently using the same type of algorithms that are efficient for LP formu-
lations.

• Quadratic Programming (QP). The QP formulation is a special case of
NLP, where the system constraints are linear, while the objective function
is quadratic. The characteristics of a QP can be exploited to find efficient
algorithms, and if a QP is convex it is often similar in difficulty to an LP
(Nocedal and Wright, 2006). Convexity of a QP is rather simple to identify,
as it is given by positive semi-definiteness of the Hessian H of the objective
function Γ(υ) = cTυ + υTHυ. A QP can always be solved or shown to be
infeasible in a finite amount of computations (Nocedal and Wright, 2006).

An OCP with a linear system model is often either an LP or a QP (unless there
are other nonlinear constraints), while an OCP with a nonlinear system model as
equality constraint always will be a non-convex NLP. The distinction between linear
and nonlinear system model is therefore important when it comes to the solvability
and efficiency of an OCP, and it is the most important classification for an MPC:
linear MPC and nonlinear MPC (NMPC). In this thesis, NMPC is applied, and
hence a non-convex NLP is solved at each time step. The two most common
classes of algorithms used to solve NLPs are sequential quadratic programming
(SQP) methods, and interior-point (IP) methods. See Nocedal and Wright (2006)
for more information on numerical optimization.

Continuous-time OCP

It is from now on assumed that the system model of (1.2) is nonlinear, and hence
that the discrete-time OCP is an NLP. As seen from (1.2a), the OCP has 2M
optimization variables consisting of both the states xk and the inputs uk, k =
1, . . . ,M , and the NLP solver actually solves both the simulation problem and
the optimization problem at the same time. When dealing with system models
and objective functions that are continuous, forming a continuous-time OCP, there
will be infinitely many optimization variables: x(t), u(t), ∀t ∈ [0, T ], where T
is the continuous-time control horizon. There are in general two approaches for
solving continuous-time OCPs: indirect or direct approaches (Biegler, 2010). The
indirect approach is often described as “first optimize, then discretize”. This leads
to a boundary value problem, which is often quite difficult to solve. The direct
approach can be described as “first discretize, then optimize”. Here, the control
trajectory is parameterized in finite dimension, leaving a discrete-time OCP, which
can be solved as an NLP. The most common methods for parameterization is single
shooting, multiple shooting, and collocation (Biegler, 2010).
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Collocation has been the method of choice in this thesis, and the details for the
collocation setup is therefore presented here. Given a general continuous-time OCP

min
x(t),u(t)∀t=0,...,T

J (x(t), u(t)) (1.5a)

subjected to

x(0)− xinit = 0 (1.5b)

ẋ(t)− f (x(t), u(t), w(t)) = 0 ∀ t = 0, . . . , T (1.5c)

g (x(t), u(t)) ≤ 0 ∀ t = 0, . . . , T (1.5d)

r (x(T )) ≤ 0 (1.5e)

With collocation this OCP is discretized in both control and states on a fixed grid.
The optimization horizon T is first divided into N elements of length h, and within
each element the state profile is approximated using polynomial representation
of order K + 1. A common choice of polynomial representation is the Lagrange
interpolation polynomial, and with K + 1 interpolations points in element i, the
state in element i is approximated as (Biegler, 2010)

t = ti + hiτ (1.6)

xK(t) =
K∑

j=0

lj(τ)xij (1.7)

where

lj(τ) =
K∏

k=0,6=j

τ − τk
τj − τk

(1.8)

and t ∈ [ti, ti+1], τ ∈ [0, 1], τ0 = 0, τj < τj+1 and j = 0, . . . , K − 1. This approxi-
mation has the property that the approximated states xK and the actual states x
are equal at each interpolation point τj, see Figure 1.9.

The same can be done for the state time derivative, and by using these ap-
proximations one can get equations which ensures that the equation for the time
derivative is fulfilled at the collocation points. These are called the colloctaion
equations, and for the Lagrange polynomial they are as follows

K∑

j=0

xij
dlj(τk)

dτ
= hif(xik, uik) (1.9)

for k = 1, . . . , K and i = 0, . . . , N − 1.
In order to ensure continuity of the state profile in the element junctions, conti-

nuity equations are needed. For Lagrange interpolation profiles they are as follows
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Figure 1.9: Polynomial approximation of state profile for one finite element (Biegler, 2010).

xi+1,0 =
K∑

j=0

lj(1)xij (1.10a)

x0,0 = x0 (1.10b)

for i = 0, . . . , N − 1.

Combining all of these equation results in the following NLP

min
xik,ui∀i=0,...,N−1,k=0,...,K

J (xik, ui) (1.11a)

subjected to

x00 − x0 = 0 (1.11b)

K∑

j=0

l̇j(τk)xij − hif (xik, ui, wik) = 0 ∀ i = 0, . . . , N − 1, k = 0, . . . , K (1.11c)

xi+1,0 −
K∑

j=0

lj(1)xij = 0 ∀ i = 0, . . . , N − 1 (1.11d)

g (xik, uik) ≤ 0 ∀ i = 0, . . . , N − 1, j = 0, . . . , K (1.11e)

r(xN0) ≤ 0 (1.11f)

Note that the input ui is constant over each element i. The continuous-time OCP
(1.5) is thus transformed into a discrete-time OCP (and in the case of a nonlin-
ear system model, an NLP). It is mentioned that (1.11) contains implicit system
equations, while the general discrete-time OCP formulation (1.2) has explicit sys-
tem equations. This will not, however, affect the algorithms solving the OCP.
Throughout this thesis, the number of elements N is chosen so that their length h
is consistent with the control signal dispatching, and within each of these elements,
the state profile is approximated using a Lagrange polynomial of order 3.
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Feasibility

An important concept for all constrained optimization problems is that of the fea-
sible region. The feasible region for the optimization problem (1.4) are those values
of υ where the constraints (1.4b) and (1.4c) are fulfilled. If this region is non-empty,
the optimization problem is feasible, and if there exists no values of υ where all
constraints are fulfilled, the optimization problem is infeasible, i.e. it cannot be
solved. Translated to OCP and MPC: If no system input can be found that fulfills
all input constraints, and at the same time results in a system trajectory which
fulfills all state constraints, the OCP is infeasible. This is a severe situation, as no
updated optimal input can be produced, and it is important to have a strategy for
dealing with infeasibility. One possible solution is to reuse the input calculated at
the previous timestep. Either by keeping the input unchanged, or by using the con-
trol signal u∗1 from the previous timestep. This provides no guarantees for neither
feasibility nor optimality, but it will work just fine in many situations.

Another possibility is to add slack variables to the soft constraints. Soft con-
straints are often state constraints connected to control quality, i.e. violating them
will not cause any immediate danger. On the contrary, there are hard constraints,
which are often related to input constraints that cannot be physically violated. One
example being a valve, which cannot open more than 100%. The slack variables ε,
which must be positive, are added to the soft constraints, and they are also added
to the optimization variables

gs (xk, uk) ≤ εk (1.12a)

εk ≥ 0 (1.12b)

where k = 1, . . . ,M . In order not to use the slack variables unless absolutely
necessary, use of ε is penalized in the objective function

J (xk, uk, εk) =
M−1∑

k=0

L (xk, uk) + E (xM) + γεk (1.13)

where γ is a constant of appropriate dimension. In this way, the soft constraints
gs (xk, uk) are allowed to exceed zero in severe situations. In (1.13), ε is linearly
included in the objective function, resulting in what is known as an exact penalty,
which means that as long as γ is large enough, the constraint will not be violated
unless there is no feasible solution to the original problem (Maciejowski, 2002).

Other possible solutions for dealing with infeasiblity is to actively manage the
horizon or the constraints definition at each timestep, and through this avoid in-
feasiblity.

1.2.3 Nominal stability of nonlinear MPC

It is common to consider nominal stability of an NMPC, which is stability of the
NMPC with no model uncertainty or unmeasurable disturbance. If one could have
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an infinite optimization horizon in the NMPC, one could prove nominal asymptotic
stability using Lyapunov theory (Grüne and Pannek, 2011). But solving an infinite
horizon optimization problem is difficult in general, and the closed-loop NMPC
with finite horizon (as described in Section 1.2) is not necessarily stable. First of
all, it does not make sense to look at the stability of the solution to the OCP, as this
is not what is actually implemented. What is actually implemented is only the first
of the optimized inputs, before a new OCP is solved. In addition it only considers
the system behavior M timesteps into the future, and does not care what happens
after that. Because of this, methods for ensuring nominal asymptotic stability of
an NMPC with finite optimization horizon has developed.

One way is to add stabilizing constraints to the NMPC. Either as equilibrium
terminal constraints, demanding that the final state of the optimization horizon is
equal to the systems steady state xM = x∗, or as regional terminal constraints and
terminal cost (Grüne and Pannek, 2011). In the latter, the terminal cost (Mayer
term) E(xM) which is added to the objective function, is defined so that there
exists a controller uk = κ (xk)∀k ≥M such that: (a) E(xM) works as a Lyapunov
function for the closed loop system on a region X0 around x∗, (b) ensures that X0

is a forward invariant set for the closed loop system. In order to guarantee that the
controller uk = κ (xk) is feasible for all k ≥ M , one must add a regional terminal
constraint, ensuring that the predicted state at timestep M is inside X0. This is also
known as recursive feasibility; ensuring that a feasible solution exists at the next
timestep. Recursive feasibility is an important part of nominal stability analysis, as
no stability can be proven without feasibility guarantees. With recursive feasibility
it is guaranteed that as long as the OCP is feasible at the first timestep, it will also
be feasible for all future timesteps. By applying either of these methods, asymptotic
stability can be proven using Lyapunov theory (Grüne and Pannek, 2011).

The methods described above are often good for theoretical purposes, but there
are some practical issues related to implementing them, and they are seldom applied
in industry. For terminal equilibrium constraints the system needs to be controllable
to x∗ in finite time, and for regional constraint set and terminal cost a Mayer term
which can be used to prove stability might be difficult to find. Unison for both the
methods is that the optimization horizon often becomes relatively large.

Grüne and Pannek (2011) provides another method to prove asymptotic stability
through the choice of objective function J and optimization horizon T . By designing
the Lagrange term of the objective function so that it fulfills certain bounds, a
lower bound for the optimization horizon which guarantees stability can be found.
Finding both these lower bounds as well as the Lagrange term which fulfills them,
can be a difficult task. The method can however be used to design a good objective
function, even though it may not necessarily prove stability (Grüne and Pannek,
2011).
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1.2.4 Robust MPC

The previous section treated the question of stability when no model uncertainty
or unmeasurable disturbances are present. A system model is an approximation
of a real life system, and it is often desirable that the model is rather simple and
low dimensional. This is often achieved by designing the model to reflect certain
important system properties, rather than modeling every detail of the system. This
approach results in a model-plant mismatch that naturally introduces uncertainty.
In addition, there are also other external disturbances which influence the real
system, and in order to perform a meaningful control analysis and design, these
uncertainties need to be described by an uncertainty model (Levine, 2010). Such
uncertainty models often define an admissible set of plant models F , and an ad-
missible set of uncertain external input signalsW , which allows for system analysis
such as: Is closed-loop stability guaranteed for every system model in F? Will all
system constraints be fulfilled for every external disturbance in W? It is also com-
mon to divide between stochastic and deterministic disturbance models, where the
elements of F and W are assigned different probabilities with a stochastic model,
and seen as equally likely to occur in a deterministic model (Levine, 2010).

Within MPC, the issue of uncertainty is often addressed through robust MPC
(RMPC), which considers uncertainties that are deterministic and lie in a bounded
set (Mesbah, 2016; Bemporad and Morari, 1999). The work on RMPC has been
dominated by min-max OCP formulations:

min
xw,f
k ,uk∀k=1,...,M

[
max

w∈W,f∈F
J
(
xw,fk , uk

)]
(1.14a)

xw,f0 − xinit = 0 ∀ w ∈ W , f ∈ F (1.14b)

xw,fk+1 − f(xw,fk , uk, wk) = 0 ∀ k = 1, . . . ,M,w ∈ W , f ∈ F (1.14c)

g(xw,fk , uk) ≤ 0 ∀ k = 1, . . . ,M,w ∈ W , f ∈ F (1.14d)

r(xw,fM ) ≤ 0 ∀ w ∈ W , f ∈ F (1.14e)

In these OCP formulations, the optimization seeks to find minimizing inputs for
the disturbances in F and W that maximize the objective function, while fulfill-
ing system constraints for all possible disturbances, see for example Rawlings and
Mayne (2009); Mayne et al. (2000); Löfberg (2003). Under certain assumptions
and modifications, open loop min-max MPC (one common input sequence for all
possible uncertainties) can be proven to be robust asymptotically stable (Mayne
et al., 2000). This approach does however often results in large and complex opti-
mization problems, often leading to conservative results or infeasible optimization
problems (Scokaert and Mayne, 1998). To improve feasibility and ease compu-
tational load, various approaches has been proposed, e.g. using closed-loop (or
feedback) min-max where the concept of feedback is implemented in the control
horizon (Mayne, 2001), or tube-based MPC which is based on the precomputation
of invariant sets (Langson et al., 2004). However, as problem dimensions grow,
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closed-loop min-max and tube-based MPC still gives prohibitive complexity and
conservative results. Another approach which shows better tractability results,
is multi-stage MPC, which includes feedback, and where the disturbance is rep-
resented by a scenario tree where the scenarios are combinations of the extreme
values of the disturbance (Lucia et al., 2013).

An alternative approach considers the uncertainty to be of probabilistic nature,
i.e. it is stochastic and possibly unbounded. For many systems the stochastic
system uncertainties can be adequately characterized, and it is natural to explic-
itly account for the probabilistic occurrence of uncertainties (Mesbah, 2016). This
approach is commonly known as stochastic MPC (SMPC), and the stochastic de-
scription of the uncertainties are used to define chance constrains (Li et al., 2002;
Primbs and Sung, 2009):

min
xk,uk∀k=1,...,M

E [J (xk, uk)] (1.15a)

P [x0 − xinit = 0] ≥ 1− σ (1.15b)

P [xk+1 − f(xk, uk, wk) = 0] ≥ 1− σ ∀ k = 1, . . . ,M (1.15c)

P [g(xk, uk) ≤ 0] ≥ 1− σ ∀ k = 1, . . . ,M (1.15d)

P [r(xM) ≤ 0] ≥ 1− σ (1.15e)

where w ∈ W and f ∈ F are assigned probability distributions, and P [·] denotes
the dependencies on the stochastic variables w and f . These chance constraints en-
able systematic use of the stochastic description of uncertainties to define stochastic
levels of acceptable closed-loop constraint violation through σ (Mesbah, 2016), i.e.
a small constraint violation probability is allowed. Chance-constrained optimiza-
tion problems are hard to solve in general, and establishing theoretical properties
such as recursive feasibility and stability, poses a major challenge (Mesbah, 2016).
To obtain tractable solutions, sample-based approximations such as the scenario
approach (Campi et al., 2009) has been presented as an alternative. In the scenario
approach only a finite number of uncertainty realizations are considered, and the
chance-constrained optimization problem is approximated by replacing the chance
constraint with hard constraints associated with the extracted disturbance realiza-
tions only.

1.3 Software

All models and controllers in this thesis are implemented in Python using Casadi.
Casadi is a framework for solving dynamic OCPs, and it has been developed with
focus on allowing users to implement their method of choice with any complexity,
rather than being a black-box OCP-solver (Andersson, 2013). The name Casadi
originates from its form as a minimalistic computer algebra system (Cas) with a
general implementation of automatic differentiation (ad). It is interfaced to various
NLP solvers, and in using these solvers from Casadi there is no need to implement
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functions for the derivatives, as they are automatically generated and interfaced by
Casadi using automatic differentiation (Andersson, 2013).

1.4 Research objective

The main contribution of this thesis is the development of MPC-based control
strategies to improve the frequency control of power systems, with the Nordic power
system as a case study. As discussed in Section 1.1.4, the Nordic system is facing
challenges related to an increasing amount of energy from intermittent energy re-
sources, a heavier loaded network with many bottlenecks, and an increase in power
trade with Continental Europe. These are all factors which has contributed to a
decrease in frequency quality over the past two decades, and the aim of this thesis
is to examine how use of MPC for AGC can help solve some of these challenges
and improve frequency quality.

1.5 Outline and Contributions

This thesis is divided into four main parts. The first two parts consider different
ways of improving LFC through the use of NMPC, the third part compares two
different approaches for achieving robustness of the NMPC, and the fourth part
considers the use of a backstepping controller to control power flow in high voltage
direct current (HVDC) lines to improve angle stability. In the three first parts, a
simulation model is used as a proxy for the physical system, as the transmission
grid is a critical infrastructure which cannot be used as a test-bed. The power
system model used as a proxy in this thesis was developed at SINTEF Energy
Research (Norheim et al., 2005), and it reflects the real production and most in-
teresting bottlenecks in the Nordic power system. All of the presented NMPCs are
based on continuous-time nonlinear system models which are simplifications of the
proxy model, and the method of collocation is applied to form an NLP which is
solved using the IPOPT algorithm (Wächter and Biegler, 2006). Since the func-
tions for the derivatives are automatically generated by Casadi (using automatic
differentiation), the IPOPT is based on the exact Hessian. Each chapter contains a
peer-reviewed conference or journal paper, and is therefore self-contained and can
be read independently. As such, there will be some repetition in some of the chap-
ters, especially the introduction, the modeling and the basic MPC-introduction in
Chapter 2 and 3. As an explanatory comment, it is mentioned that the robustified
NMPC (RNMPC) of Chapter 3, and the multi-stage NMPC (MNMPC) of Chapter
4 is the same controller.

• In Chapter 2 a nominal NMPC, which does not take into account distur-
bances or uncertainties, is presented. The main contribution of this part is an
MPC-based solution to the LFC problem, where state feedback is achieved
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through a state estimator, and a simplified power system model is used both
in the NMPC predictions and the state estimator. The participation factor
of each generating unit is included as optimization variables, and suggestions
are made as to how one can ensure tie-line power transfer margins through
slack variables. An approach for including pricing information in the objec-
tive function is also presented.

This part consists of Ersdal et al. (2016a), which is based on preliminary
results in Ersdal et al. (2013) and Ersdal et al. (2014).

• In Chapter 3 the NMPC from Chapter 2 is made more robust against vari-
ations in produced wind power. The main contribution of this part is using
knowledge of estimated worst-case variations in wind-power production to
ensure available power-transfer capacity between different areas, where the
wind-power capacity is concentrated in one area, leaving that area vulnerable
to deviations in wind-power production.

This part consists of Ersdal et al. (2016b), which is based on preliminary
results in Ersdal et al. (2014).

• In Chapter 4 a stochastic NMPC is implemented, which is an alternative ap-
proach for achieving robust NMPC. This approach is compared to the multi-
stage NMPC of Chapter 3. The main contribution is the comparison of these
two scenario-based approached, the discussion of their pros and cons, and
how they are connected to solving the issue of robust LFC.

This part consists of Ersdal and Imsland (2017).

• Chapter 5 concerns a different subject than the previous chapters. It is pos-
sible to directly control the power flow in an HVDC line, and this is exploited
to use HVDC lines that connect different power systems as a mean to increase
the angle stability of the power systems. The controller is also designed using
a different approach than in the previous chapters, namely the method of
backstepping. Even though this is a different subject than LFC, angle stabil-
ity is still an important aspect within power system stability, and it is vital
for safe operation of a power system that they both are attended to. It is also
worth mentioning that controlling the power flow through HVDC-lines, also
can be used within LFC, even though this is not the subject of this chapter.

This part consists of Ersdal et al. (2012).

• Chapter 6 concludes the thesis.
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Chapter 2

Model predictive load-frequency control

The work in this chapter was published in Ersdal et al. (2016a), which is an exten-
sion of the work in Ersdal et al. (2013) and Ersdal et al. (2014).

Summary

A nonlinear model predictive controller (NMPC) for load frequency
control (LFC) of an interconnected power system is investigated. The
NMPC is based on a simplified system model of the Nordic power system,
and it takes into account limitations on tie-line power flow, generation
capacity, and generation rate of change. The participation factors for
each generator are optimization variables, and suggestions are made as
to how one can ensure tie-line power transfer margins through slack-
variables, and pricing information through the objective function. The
solution of NMPC for LFC is completed by including a Kalman filter
for state estimation. The presented NMPC is compared against a con-
ventional LFC/AGC scheme with proportional integral (PI) controllers.
Simulations show that the NMPC gives better frequency response while
using cheaper resources. This chapter illustrates that NMPC could be a
realistic solution to some of the LFC problems power systems are facing
today.

2.1 Introduction

During the last two decades, power systems around the world has seen great de-
velopment and change. First with the liberalizations of the power markets during
the 1990’s, and in the later years as an increasing amount of renewable energy
resources and distributed generation enters the systems. In addition, the energy
need around the world is steadily increasing, and all of these factors are causing
challenges, especially with regards to load frequency control (LFC).

Traditionally, LFC has had a hierarchical structure with primary, secondary, and
tertiary control1. The primary and secondary control is automatic, often PI-based,
and tuned based on operator practice (Bevrani, 2014), while tertiary control is

1Also known as frequency containment reserves (FCR), frequency restoration reserves (FRR)
and replacement reserves (RR).
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Figure 2.1: Number of frequency incidents, i.e. minutes spent outside 49.9 and 50.1 Hz, in the
Nordic system (Whitley and Gjerde, 2011).

manually executed by the transmission system operator (TSO). Secondary control
is often referred to as automatic generator control (AGC), and this term will be
applied in the following. In the Nordic network, consisting of Norway, Sweden,
Finland and the eastern part of Denmark, hydro power is the main provider of
primary control, while other generating units such as thermal and nuclear power
generators as well as some controllable loads participate in tertiary control (Stat-
nett, 2012). AGC was first implemented in 2012/2013 in the Nordic system and it
is still not fully up and running. However, it is likely that hydro power will be the
main provider for AGC as well.

In the Nordic system the aim of LFC is set to keep the frequency within 49.9
and 50.1 Hz. However, during the last decades the minutes spent outside this band
has been steadily increasing, as seen in Figure 2.1. According to Statnett, the Nor-
wegian TSO, two of the main reasons for this is a heavier loaded network with an
increasing amount of bottlenecks, which at times excludes some of the resources
from participating in LFC, and also an increasing amount of uncontrollable produc-
tion, such as intermittent energy resources (Statnett, 2012). The latter is especially
important during night and summer, when there is less traditional production which
can participate in LFC and balance out any unpredicted power imbalance.

Due to the development seen the last decades, there has been many suggestions
to how power systems can be equipped to better cope with these challenges. In
Chang-Chien et al. (2011) it is suggested how wind generators can participate in
LFC, while others concentrate on effective energy storage (Suvire et al., 2012), or
how network loads can be included in LFC (Short et al., 2007). There has also been
suggestions to new methods for executing LFC, such as including primary control
in local decentralized generators (Marinovici et al., 2013), or improving LFC by
applying fuzzy logic (Yousef et al., 2014), sliding mode control (Vrdoljak et al.,
2010), internal model control (Saxena and Hote, 2013), and various PID tuning
methods (Tan, 2010).
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Model predictive control (MPC) is another possibility for LFC which has re-
ceived attention. In McNamara et al. (2013) MPC is used for controlling power
flows in high voltage direct current (HVDC) links to improve LFC, and in Halv-
gaard et al. (2012) MPC is applied for building climate control to benefit LFC.
MPC has also been used for preventing severe line-overloads in power systems. In
Otomega et al. (2007); Carneiro and Ferrarini (2010) MPC is proposed as a special
protection scheme aimed at preventing thermal overloads on network lines during
emergencies. In Otomega et al. (2007) the MPC relies on a direct current (DC)
approximation of the actual power flows, whereas Carneiro and Ferrarini (2010)
has added a thermodynamical model of the conductors and weather information to
determine possible thermal overloads. In Almassalkhi and Hiskens (2015) a hierar-
chical MPC control scheme is suggested, where the upper-level controller finds the
optimal energy schedule and the lower control level serves as a cascade mitigation
corrective scheme in case of large disturbances. Also here the MPC relies on a DC
approximation of the network power flow.

In this work MPC will be applied for AGC in a larger power system, which is also
the topic in Shiroei et al. (2013); Mohamed et al. (2012), but there the MPC is based
on a model equal to the one used for simulation. In this work the MPC is based on
a simplified equivalent of the full power system, and constraints on the generation
capacity and generation rate of change are included, as well as constraints on tie-line
power transfer capacities. A solution to how one can guarantee available transfer
capacity on the tie-lines is also presented, and a proposal to how economy can be
considered in the MPC and AGC decision making is included. Any participation
from loads in LFC is omitted in this work, and hydro generators are the sole provider
of primary control and AGC.

This chapter is an extension of the work presented in Ersdal et al. (2013, 2014).
In Ersdal et al. (2013) a single-area model is considered and there is no model-plant
mismatch, and in Ersdal et al. (2014) this is extended to a two-area model with
tie-line limitations. In Ersdal et al. (2014) the MPC is also extended to take into
account uncertainty in wind power production. This topic is not further addressed
here, in part due to considerations related to computational complexity, but such
uncertainty-aware intelligence can also, in principle, be included when the hourly
set-points to the AGC are calculated (unit commitment), see for example Dvorkin
et al. (2015) and the references therein. Such an approach would be compatible with
the MPC-based AGC controller presented here. In this work, the implementation
of slack variables are relevant in this context, as they enable the MPC to exploit
back-off margins to important constraints to handle uncertainties.

The main contribution of this chapter is the presentation of a solution to the
LFC problem, where

• The participation factor of each generator is included in the optimization
problem.

• State feedback to the MPC is achieved through a state estimator.
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Figure 2.2: An overview of the generators in the SINTEF model (Norheim et al., 2005).

• A simplified power system model is used both in the MPC predictions and
state estimation.

The MPC will not function as an emergency protective scheme, but as an everyday
LFC controller which corrects production set-points both during normal and more
severe operating conditions. In other words, this is a scheme for frequency restora-
tion. The technical solution is analyzed without discussion of the market aspect of
it. However, we believe that this could be implemented as an auction-based scheme
similar to the present LFC implemented in the Nordic system.

The remainder of the chapter is organized as follows. In Section 2.2 the proxy
model used to represent the Nordic power system is presented, followed by a simpler
model to be used in the MPC. The details of the controller is given in Section 2.3,
before the case study of the Nordic system is presented in Section 2.4 along with
some simulation results. Section 2.5 gives a short discussion about the results,
before the conclusion in Section 2.6.

2.2 Modelling

The Nordic power system is represented by a proxy model, which is a reduced
version of a model developed by SINTEF Energy Research, where the placement
of the generators and transmission lines reflects the real production and the most
interesting bottlenecks in the Nordic power system (Norheim et al., 2005). The
version implemented here consists of 15 hydro generators, 5 non-hydro generators,
21 composite loads, and 36 nodes. The placement of the generators can be seen in
Figure 2.2.
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Governor Turbine
cr

∆f
c Pm

ξ1, ξ2, ξ3 q

Figure 2.3: Overview of governor and turbine states, inputs and output.

2.2.1 Proxy Model

The proxy model is described by a differential algebraic equation (DAE)

ẋ = f(x, z, u, w) (2.1a)

0 = g(x, z, u, w) (2.1b)

where x are the dynamic system states, z the algebraic system states, u the con-
trolled inputs to the system, and w the system disturbance.

The Swing Equation

For each generator k, the generator dynamics are given by the swing equation

δ̇k = ωn∆ωk (2.2a)

∆ω̇k =
1

Hk

(
P k
m − P k

e −Dk
(
∆ωk −∆ωs

))
(2.2b)

where δ is the rotor angle, ∆ω the rotor angular velocity relative a reference frame,
∆ωs the inertial rotor angular velocity relative a reference frame, ωn the angular
velocity of this reference frame, Pm the mechanical power produced by the rotor,
Pe = Re

(
EgI

?
g

)
the electrical power acting on the rotor, H the inertia constant and

D the damping coefficient. The internal voltage of the generator is Eg = |Eg| ejδ,
and I?g is the complex conjugate of the current delivered from the generator into
the network. In this work, voltage control is assumed to be much faster than the
dynamics of interest, and is therefore not considered. Hence the internal generator
voltages |Eg| are assumed constant.

The Turbine and Governor Dynamics

Because hydro turbines are the main provider for primary control in the Nordic
network, and most likely will be the main provider for AGC as well, only the hydro
turbine and governor dynamics are modeled in this work. The remaining generating
units will produce a constant amount of power.

A simplified diagram of the hydro turbine and governor dynamics are given in
Figure 2.3. They are modeled as the nonlinear model of Machowski et al. (2008),
usually denoted HYGOV, and has the states q, ξ1, ξ2, and ξ3. The valve opening
is c, and cr is the valve opening set point provided to the generating unit by the
TSO. Given a large power system consisting of m generators, where mh of these
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are hydro turbines, the total system dynamics can be written as (2.1a) with

x =
[
δk ∆ωk qi ξi1 ξi2 ξi3

]T
(2.3)

u = cir (2.4)

where k = 1, . . . ,m and i = 1, . . . ,mh. In total 2m+ 4mh dynamic states, and mh

controllable inputs.

Network Current Equation

The current flow in the network is found using the internal node representation.
Defining all currents as positive into node k, Kirchoff’s current law for each node
gives

Ikg + IkL +
n∑

i=1

YkiUi = 0 (2.5)

where Ikg is the current delivered from generator k, IkL the load current from load
k, Yki the systems admittance matrix at position (k, i), Ui the voltage at node i,
and n the number of nodes in the network. The current injected from generator k
into node k is

Ikg =
Ek
g − Uk

jx′d
k

(2.6)

where x′d
k is the generator transient reactance. The active power load at node

k is modeled as a constant current Ikl and the reactive power load as a constant
admittance Y k

l , such that the total current from load k is

IkL = −Ikl − UkY k
l (2.7)

This means that the power flow is dependent on the nodal voltage, but not de-
pendent on the system frequency. System loads are in general often both voltage
and frequency dependent, however it could be argued that some of the frequency-
dependency of the loads are modeled through the damping term of the swing equa-
tion (2.2). In addition, the frequency-dependency of the loads in the Nordic power
system is relatively low compared to the total power consumption.

Combining (2.5) - (2.7) gives an equation with two unknown: |U | and θ, the mag-
nitude and angle of the nodal voltages, respectively. This makes up the algebraic
system equation (2.1b), with a total of 2n algebraic states z. The disturbances w
acting on the system are the absolute values of the active load currents as well as
the produced power from non-hydro generators, resulting in a total of n+m−mh

disturbances.

z =
[∣∣Uk

∣∣ θk
]T

(2.8)

w =
[∣∣Ikl

∣∣ P p
m

]T
(2.9)

where k = 1, . . . , n and p = mh + 1, . . . ,m.
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2.2.2 Prediction Model

The model presented in the previous section is a large and complex model, and in
many cases it can be both sufficient and beneficial to consider a smaller, simplified
power system model. One example is the prediction model (PM) used in an MPC.
To find this PM, the larger model of the previous section is first divided into N
areas connected to each other by tie lines. The states, inputs and disturbances of
the PM are defined as x̄, ū, and w̄. These are all given relative an initial steady state
where the power supply and demand in the system are balanced, both with regards
to active and reactive power. This initial steady state is also used for linearization
points when this is needed.

The dynamics affecting the frequency response of a power system are rela-
tively slow, and neglecting the fast dynamics reduces the complexity of the model
(Bevrani, 2014). The nodal voltages and the electromechanical dynamics of the
swing equation are considered to be fast dynamics, and can therefore be neglected.
The dynamics of area i, including the generators, can in this case be represented
by one single differential equation (Bevrani, 2014)

∆ ˙̄f i =
1

2H̄ i

(
∆P̄ i

m −∆P̄ i
D −∆P̄ i

tie

)
(2.10)

where ∆f̄ is the deviation from the nominal frequency fs, ∆P̄m the total change in
mechanical power from primary control and AGC combined, ∆P̄D the total change
in load power, ∆P̄tie the change in total power flow from the area on all its tie lines,
and H̄ the inertia of the rotating masses of the area. The change in total tie-line
power flow from area i is (Bevrani, 2014)

∆ ˙̄P i
tie = 2π

(
∆f̄ i

N∑

j=1,j 6=i
T̄ij −

N∑

j=1,j 6=i
T̄ij∆f̄

j

)
(2.11)

where ∆f̄ i/j is the local frequency in area i/j, and T̄ij the synchronizing torque
coefficient between area i and j. The frequency deviation of the entire system is
defined as

∆f̄ =

∑N
i=0 H̄

i∆f̄ i∑N
i=0 H̄

i
(2.12)

The equations for the hydraulic turbines and governors can be simplified by
modeling all the hydraulic power stations of an area as one aggregated hydraulic
turbine and governor. The dynamics of the turbine can in turn be represented by
a linearized version of the nonlinear model used in the proxy model. This gives the
following dynamic equation for the aggregated turbine of area i

∆ ˙̄qi = − 2

T̄ iwc̄
2
ss/q̄ss

(
∆q̄i − q̄i2ss

c̄i2ss
∆c̄i
)

(2.13a)

∆P̄ i
m = Āith̄

i
ss

(
3∆q̄i − 2

q̄i2ss
c̄i2ss

∆c̄i
)

(2.13b)
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where T̄w is the water starting time, and ∆c̄ and ∆q̄ the change in valve opening
and water flow rate from c̄ss and q̄ss, respectively. When modeling the aggregated
governor, one of the time constants can be neglected, as it is several times smaller
than the others. The resulting governor dynamic equations for area i are

∆ ˙̄ξi2 = − 1

T̄ ir
∆ξ̄i2 + ∆c̄i (2.14a)

∆ ˙̄ξi3 = satiċ

(
1

T̄ ig

(
∆c̄ir−∆f̄ i +

r̄i

T̄ ir
∆ξ̄i2 −

(
r̄i + ρ̄i

)
∆c̄i
))

(2.14b)

∆c̄i = satic
(
∆ξ̄i3

)
(2.14c)

where r̄ and ρ̄ are the transient and static droop coefficients, T̄r and T̄g time con-
stants, and satċ/c(·) saturations.

Depending on the number of areas N , the simplified system is represented by
one differential equation

˙̄x = f̄ (x̄, ū, w̄) (2.15)

which consists of 5N dynamic state variables x̄ =
[
x̄1 · · · x̄N

]T
, N controlled

inputs ū =
[
ū1 · · · ūN

]T
, and N disturbances w̄ =

[
w̄1 · · · w̄N

]T
, where x̄i =[

∆f̄ i ∆q̄i ∆ξ̄i2 ∆ξ̄i3 ∆P̄ i
tie

]T
, ūi = ∆c̄ir, and w̄i = ∆P̄ i

D. The bar notation
represents the simplified system states, inputs and parameters.

2.3 Controller

2.3.1 Control problem

The main task for the LFC is to maintain frequency stability, which means keeping
the system frequency at a desired level when changes in generation or load appear.
This is done by adjusting the produced power Pm so that it always matches the
system load. Maintaining this frequency stability also includes avoiding bottleneck
congestions, and staying within other system bounds.

In addition to this main control task, another incentive is to keep the costs
associated with LFC at a minimum. Lowering the use of all resources are important,
however, the cost of primary control is often higher than AGC, and lowering the
use of primary control by keeping the frequency closer to fn through use of AGC is
desirable. When using AGC, the TSO has to pay more per delivered MWh the more
they require the AGC-participating generators to deviate from the initial hourly
set point. This means that keeping the input ū in the prediction model as close to
its hourly set-point value ū0 as possible will minimize the costs of AGC.

2.3.2 MPC

MPC is a framework for advanced control that has seen widespread use, espe-
cially within chemical process industries, and it is believed that the optimizing and
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MPC System
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Figure 2.4: Overview of MPC-loop.

constraint-handling nature of MPC makes it suitable also for frequency control.
MPC uses a model of the system to predict how it will behave in the future, and
then optimizes the controlled input with regards to an objective function measuring
predicted performance. Mathematically, it can be formulated as a continuous time
optimal control problem on the form (2.16a) subject to (2.16b) - (2.16d) (Biegler,
2010)

min
x̄(·),ū(·)

J (x̄(t), ū(t)) (2.16a)

x̄(0)− x̄0 = 0 Fixed initial state (2.16b)

˙̄x(t)− f
(
x̄(t), ū(t), ˆ̄w(t)

)
= 0 System model (2.16c)

g (x̄(t), ū(t)) ≤ 0 Constraints (2.16d)

where x̄(t) are the system states, ū(t) the controlled inputs, ˆ̄w(t) the predicted
disturbances, and J (x̄(t), ū(t)) the control objective function.

Figure 2.4 shows the basics of how an MPC works. The idea is to solve an
optimization problem at each time step to find the optimal system input ū(t) over
a fixed time horizon with respect to the objective function J(·), and then apply the
first element of ū(t) as input to the system. The loop is closed by the measurements
y(t), and a state estimator is also included as the MPC needs knowledge of the entire
state vector x̄(t).

2.3.3 MPC Design for AGC

An MPC will be applied for AGC in this work. The MPC will be based on the
prediction model (PM) of Section 2.2.2, and it will control the Nordic power system
represented by the proxy model, from now on referred to as the plant replacement
model (PRM), of Section 2.2.1. This means that there is a natural model-plant
mismatch between the PRM and the PM, which always is the case when applying
MPC in real world situations. The control of, and contribution from tertiary control
is omitted in this work, as it is manually operated. The dynamic equation of the
PM (2.15) is implemented as the system model (2.16c), and the constraints (2.16d)
includes limitations on generation capacity and generation rate of change. In some
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of the examples of Section 2.4 limitations on the tie-line power transfer are also
included.

The saturations in (2.14) are nonlinear, implying that we have nonlinear equality
constraints (2.16c), and nonlinear MPC (NMPC) must be used. For the same
reason, the optimization problem in (2.16) is non-convex. The continuous time
optimization problem (2.16) in the NMPC is solved with direct methods, that is, it
is discretized and transformed into a nonlinear program (NLP) using collocation.
The NLP is then solved using the interior point optimizer IPOPT (Wächter and
Biegler, 2006) with exact Hessian, all implemented in Casadi (Andersson, 2013).

The saturations will not only introduce nonlinearity to the PM, they are also non-
smooth functions which can cause numerical problems when solving the NLP using
IPOPT. The problem is that the second-order derivative of the Lagrange function
(known as the Hessian) is not necessarily Lipschitz continuous2, which can prevent
the convergence of IPOPT. This problem can be dealt with by introducing smooth
approximations of the saturation functions. Given the saturation of a variable σ,
which is limited by the upper and lower limits σmax and σmin:

sat(σ) = min(σmax,max(σmin, σ)). (2.17)

In this thesis, the following approximation of Equation (2.17) is applied to approx-
imate the saturations in (2.14), where κ > 0 is an approximation factor.

sat(σ) ≈ min (σmax, σ̂) ≈ 1

2

(
σmax + σ̂ −

√
(σmin − σ̂)2 + κ2

)
(2.18a)

where

σ̂ =
1

2

(
σmin + σ +

√
(σmin − σ)2 + κ2

)
≈ max(σmin, σ) (2.18b)

This leads to a smooth saturation function which will have a second-order derivative
that is Lipschitz continuous.

The MPC implemented here is a centralized MPC (CMPC), i.e. it is based
on a model of the full system and it controls all the controllable inputs to the
system. An alternative approach would be a distributed MPC (DMPC) where
separate MPCs, based on single-area models, would be responsible for controlling
each area. A natural choice of areas could then be by country or by control area.
There are several examples where DMPC has been applied for LFC, such as Venkat
et al. (2008); Mohamed et al. (2011), and the main benefits of distributed control
are smaller optimization problems for each MPC, hence shorter optimization time,
and less demands for communication. This is very beneficial when considering
large power systems, such as in continental Europe or North America. The main
drawback of DMPC is that it may result in poor systemwide control performance

2A function is said to be Lipschitz continuous if it is limited how fast the function can change.
See e.g. Khalil (2002) for details.
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Figure 2.5: Illustration of generator participation factors, where mi
h is the number of hydro gen-

erators in area i.

if the subsystems interact significantly (Venkat et al., 2008), which is the case in
most power systems. When considering the Nordic power system it is important to
keep in mind that it is quite small compared to the Central European system or the
Eastern Interconnection in North America, and it is mainly Norway and Sweden
which supply primary control and AGC through hydro power. This means that in
this case there is not that much to gain by distributing the control when it comes
to optimization time, especially when considering that the CMPC presented here is
based on a simplified model with a rather small amount of optimization variables. In
addition to this, using a DMPC would complicate the tie-line constraint handling,
which is an important feature of the presented controller.

Including Participation Factors in the NMPC

In the PM, there is one input for each area of the system. This leads to N optimal
inputs from the NMPC: ∆c̄ir, where i = 1, . . . , N . These N inputs will then be
distributed to the hydro generators of each area by individual participation factors
αij. As described in Figure 2.5

cirj = cir0j + αij∆c̄
i
r (2.19)

where j = 1, . . . ,mi
h and mi

h is the number of hydro generators in area i. Bear in
mind that

∑N
i=0m

i
h = mh.

However, each of the inputs cr have individual constraints, and in order to be
able to account for each of them in the NMPC, the participation factors α are in-
cluded as optimization variables in the NMPC. In this way, individual constrains on
generation and generation rate of change for each hydro generator can be included
in, and accounted for by the NMPC. It also allows for greater flexibility and better
use of the NMPC’s strengths on coordination of multiple inputs. This is however
at the expense of a larger optimization problem. With this modification, the PM
now has 5N dynamic states, mh optimization variables (controllable inputs), and
N disturbances.
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Including Economics in the NMPC

One of the obvious opportunities of an NMPC is to include the pricing of AGC
in the objective function. Economic MPC refers to an MPC where the objective
function is an economic profit function, often linearly dependent on state and input
(Rawlings and Amrit, 2009), as opposed to the more widespread quadratic objective
function:

J (x̄, ū) =

∫ T

t=0

x̄TQx̄+ ūTRū dt (2.20)

Some previous work has focused on the use of economic MPC for LFC, such as
Hovgaard et al. (2010). In this work however, (2.20) is used, and pricing is included
in a quadratic manner through the matrix R by multiplying the price of activating

AGC in each generator, P =
[
p1 · · · pmh

]T
, with the diagonal terms of R. This

will not give a direct link between money spent and objective function, as in an
economic MPC, but it will provide good knowledge to the NMPC about which
generators that are more economic to use.

Using Slack Variables to Avoid Bottlenecks

Giving the NMPC constraints on the tie-line power transfer will result in a fulfill-
ment of the transfer limit, but the NMPC won’t care if it reaches the limit and
stays there. During normal operating conditions it can however be beneficial to
keep a certain amount of power transfer available, if a more severe situation were
to happen. This is something that might be solved by using slack variables in the
NMPC. Slack variables are often used to avoid infeasible solutions in an NMPC by
“softening” some of the state constraints (Maciejowski, 2002). The slack variable
ε, which must be positive, is added to the constraint which is to be softened, and
it is also added to the optimization variables.

g (x̄(t), ū(t)) ≤ ε (2.21a)

ε ≥ 0 (2.21b)

In order not to use the slack variable unless absolutely necessary, use of ε is penalized
in the objective function

min
x̄,ū,ε

J (x̄, ū, ε) = min
x̄,ū,ε

∫ T

t=0

x̄TQx̄+ ūTRū+ γε dt (2.22)

In this way, the constraints g (x̄(t), ū(t)) are allowed to exceed zero in severe sit-
uations. In (2.22), ε is linearly included in the objective function, and we have
what is called exact penalty, which means that as long as γ is large enough, the
constraint will not be violated unless there is no feasible solution to the original
problem (Maciejowski, 2002).

Such slack variables can also be used to achieve two levels of severity on the
tie-line limitations. One for normal operation, and one for severe cases. The orig-
inal constraints ∆P̄tie,max on the tie-line power transfer is set so that there still is
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available transmission capacity for emergencies. These are then implemented as
soft constraints through the use of slack variables ε. The choice of γ compared to Q
and R in the objective function will then determine when the NMPC finds it best
to use the emergency transfer capacity. In order to achieve an absolute maximum
limit on ∆P̄tie, ε can be limited accordingly

ε ≤ ∆P̄tie,MAX −∆P̄tie,max (2.23)

where ∆P̄tie,MAX is the absolute maximum limit.

2.3.4 State and Parameter Estimator

The NMPC needs knowledge of the entire PM state vector x̄. In this work, we
have assumed the PRM measurements to be y =

[
∆ωk ξi2 ξi3 |U |s θs

]
, where

k = 1, . . . ,m, i = 1, . . . ,mh, and s = 1, . . . , n. From this, an extended Kalman filter
(EKF) (Simon, 2006) based on the PM is used to estimate the PM state vector x̄ and
disturbance w̄ = ∆P̄D. An EKF is chosen because Casadi automatically generates
the system’s derivatives using automatic differentiation (Andersson, 2013), making
the EKF a simple and effective choice.

2.4 Case Study

Based on the information given in the first paragraph of Section 2.2, the PRM (2.1)
has a total of 100 dynamic states, 72 algebraic states, 15 controllable inputs, and 21
disturbances. This system is then divided into two areas in the PM (2.15), hence
N = 2. Area A covers South Sweden and Eastern Denmark, and Area B covers
Norway, North Sweden and Finland. Between the two areas there is a tie line which
represents the total power flow between the areas. In total the PM has 10 dynamic
states, 15 controllable inputs, and 2 disturbances, which is a considerable reduction
from the PRM. In both the PRM and the PM the AGC control signal is dispatched
every 10 s.

2.4.1 Tuning the NMPC

The main tuning variables of the NMPC are the prediction horizon T , and the
objective function J(·). The objective function is set to

J (x̄, ū, ε) =

∫ T

t=0

x̄TQx̄+ (ū− ū0)T R (ū− ū0) + γε dt (2.24)

The matrices Q and R are tuning matrices, where Q is real, symmetric and positive
semidefinite, and R is real, symmetric and positive definite, while γ is a tuning
vector containing elements greater than or equal to zero. The non-zero elements

of Q are chosen as q11 = β
(H1)

2

(H1+H2)2
, q66 = β

(H2)
2

(H1+H2)2
, q16 = q61 = β H1H2

(H1+H2)
, where
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β = 105. This choice of Q originates from punishing deviation in overall system
frequency (2.12). The matrix R is given as R = diag (mbase · P ), where mbase is a
vector containing the hydro generators’ base rating and P is a vector containing the
price of activating AGC. By including mbase in R the actual produced power from
each power plant is included in the objective function, and not only the per unit-
based ū, and there is also the possibility of including pricing information through
P . The use of primary control is driven by ∆f , so lowering the frequency deviation
will also lower the use of primary reserves.

As mentioned in Section 2.3.3, the choice of γ compared to Q and R decides
when the NMPC will find it beneficial to break the constraints. In this work, slack
variables are included for the tie-line between Area A and B, which means that γ
is a vector of dimension 2. The tuning of γ differs in the examples given in Section
2.4.3, depending on whether we want to achieve exact penalty or a two-level tie-line
limit. The exact value of γ will therefore be stated for each case.

In order to match the control signal dispatching in the system, the NMPC was
set to have a time step of 10 s, and the optimization horizon T was chosen to be
3 minutes, a decision based on a compromise between system time constants and
complexity.

2.4.2 PI Controller

The presented NMPC will be tested against conventional PI controllers, where one
is situated in each of the two areas. These two are given by

ūA = KA
p ∆f̄A +KA

i

∫
∆f̄Adt (2.25)

ūB = KB
p ∆f̄B +KB

i

∫
∆f̄Bdt (2.26)

where Kp is the proportional constant and Ki the integral constant. The control
signals from the PI controllers, ūA and ūB, are distributed to the hydro generators
through the participation factors α, which are constant. The PI controllers are
tuned based on the SIMC method presented in Skogestad (2003). In order to
compare the two controllers, a control performance measure (CPM) is applied.
It basically measures the average frequency deviation, and it is calculated in the
following manner: First, ∆f is averaged over windows of 30 s to filter out fast
fluctuations. Then, the CPM is found by again averaging ∆f over all these windows.
This CPM is inspired by the CPS1 and CPS2 performance criteria used by the
North American electric reliability corporation (NERC) (Gross and Lee, 2001).

2.4.3 Simulation Results

In Case A-C, the AGC pricing P is equal for all generators, and γ1 = γ2 = 105 so
that exact penalty for the slack variables are achieved. Hence there is no two-level
limit for the tie-line in these cases.
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Figure 2.6: Case A: Frequency response during hourly set-point changes. The change is spread
over 15 minutes, and 9 smaller intervals.

Case A

The change in production set point Pm,sp takes place on the hour in the Nordic power
system, while the changes in power demand happens during the hour (Statnett,
2012). This leads to large frequency deviations at these hourly set-point changes.
In Case A, such a situation is recreated, and Figure 2.6(a) shows how PD changes
continuously over the hour from 06 : 30 to 07 : 30, while Pm,sp changes in smaller
steps over 15 minutes at 07 : 00. Figure 2.6(c) and 2.6(b) shows the resulting
frequency response and the deviation in Pm from Pm,sp, and Table 2.1 displays the
CPM and reserve usage. From Figure 2.6(c) it is seen that the NMPC manages to
keep the frequency closer to 50 Hz than the PI controller, and this is also supported
by the CPM in Table 2.1. The reason the NMPC performs better than the PI
controller is that the NMPC is able to take the actions of the primary controller
(governor) into account when planing the optimal input. This results in a better
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Figure 2.7: Case A: Use of primary control and AGC at one of the smaller set-point changes.

cooperation between primary control and AGC, as seen in Figure 2.7. The NMPC
is much less aggressive, which results in a lower frequency overshoot. From Table
2.1 it is seen that the PI controller uses less AGC than the NMPC. This is because
the NMPC in this case has to use more AGC than the PI controller to lower both
the CPM and the use of the more expensive primary control reserves.

Case B

In Case B, the disturbance pictured in Figure 2.8(a) is imposed on the system, and
in addition it is assumed that there is an upper limit of 300 MW on the tie-line
power transfer from Area A to Area B. This limit is included as a constraint in the
NMPC. In a PI solution, such limits would be fulfilled by the TSO through pricing,
but this is not included here since such a solution is not automatic and hence not
part of the automatic AGC control. Note that the Nordic system has a common
market, hence there is no control of the tie-line power transfers. The only issue of
interest is that they keep within their limitations. In this example, the disturbance
is generated using the same method as in Cećılio et al. (2013), hence it is more
realistic and fluctuating than in Case A.

In Table 2.1 it is seen that the NMPC performs better than the PI controller
according to the CPM, and as seen in Figure 2.8(b) the PI controller eventually
violates the tie-line limit whereas the NMPC does not. This illustrates how the
NMPC is able to take into account tie-line limitations in the network in an auto-
matic manner, which is not easily done with a PI controller. Figure 2.9(a) shows
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Table 2.1: CPM and reserves usage (given in MWh).

CPM Primary Control AGC

Case A

PI 1.28 · 10−4 58 359

NMPC 1.15 · 10−4 55 371

Difference −10% −5% +3%

Case B

PI 2.1 · 10−4 541 173

NMPC 1.9 · 10−4 529 159

Difference −10% −2% −8%

Case C

PI 6.7 · 10−8 492 182

NMPC 6.3 · 10−8 489 169

Difference −6% −0.6% −7%

how the NMPC initially lets Area B cover most of the power imbalance (since Area
B has more available resources than Area A), and then switches to use more of the
resources in Area A and less in Area B once the tie-line limit is reached. In this
way, the NMPC is able to fulfill the tie-line limit. From Figure 2.8(b) it is seen
that with the PI controller it takes longer time for the tie-line power transfer to
reach its limit. This is because the PI controller divides the responsibility of cov-
ering the power imbalance equally between Area A and Area B, as seen in Figure
2.9(b). Eventually, Area A needs so much help from Area B, that the tie-line limit
is violated. From Table 2.1, it is seen that the NMPC actually uses less of both
primary control and AGC to achieve better results, with a decrease of respectively
2% and 8%. The use of primary control is much higher in this example due to the
fluctuating nature of the disturbance.

In this specific case, the fact that the PI controller divides the load equally
between Area A and Area B has the positive effect that it takes longer before the
tie-line limit is violated. However, there are disadvantages connected to such a
rigid allocation. In this specific case there are less available resources in Area A,
and the equal load sharing between Area A and B leads to a higher percentage of
the available resource being allocated in Area A than Area B. This is not always
optimal, and as seen from the example the PI controller uses more resources, and
hence money. In general, a rigid allocation also leads to the controller being less
able to adapt to individual cases, since each case is treated equal.

Case C

The NMPC should also improve frequency stability during normal operating con-
ditions, and in order to compare the performance of the NMPC against the PI-
controller, a Monte Carlo simulation is performed, where disturbances based on
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(a) ∆PD for Area A, Area B and the two combined.
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Figure 2.8: Case B: ∆PD and tie-line power flow.
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Figure 2.9: Case B: ∆Pm for Area A, Area B and the two combined.
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random numbers are imposed on the system loads. These disturbances are smaller
in size compared to the previous examples, so that they resemble normal load vari-
ations. The average numerical results from 200 simulations can be seen in Table
2.1. It shows that the NMPC uses less resources than the PI controller, especially
AGC which has a decrease of 7%. This demonstrates that there is potential for re-
ducing the expenses associated with both primary control and AGC during normal
operating conditions. Table 2.1 also shows that the NMPC performs better than
the PI controller, according to the CPM. The PI controller does however perform
close to the NMPC, which supports that it is tuned reasonably.

Case D

In Case D the potential of including pricing information in the NMPC is illustrated.
The slack variables still have exact penalty, while P is changed so that there is a
difference in the AGC pricing of the generators. This is illustrated through a
situation where a generator in South Sweden suddenly is disconnected. It is first
simulated without there being any economic difference between the generators,
then information is added to the NMPC that using AGC from the generator at
node 5500 is more expensive than the other generators. In Figure 2.10 the total
use of ∆u and the use of ∆u in generator 5500 is depicted, and it shows that
the NMPC lowers the use of AGC from generator 5500 (Figure 2.10(b)). Figure
2.10(a) shows that the total amount of activated resources stays approximately
the same, hence most of the shortage from generator 5500 is covered by the less
expensive generators. This is of course a simplified example, however it shows how
the NMPC can include pricing information in an automatic manner when executing
AGC. This is something which would be difficult to achieve with a PI controller
without interference from the TSO.

Case E

In Case E, P is again equal for all generators, but now γ1 = γ2 = 103 and a two-
level limit on the tie-line power transfer is included. To illustrate the idea, a large
generator in South Sweden is suddenly disconnected. The soft transfer limit from
Area B to Area A is set to 400 MW and the hard transfer limit to 800 MW. As
seen from Figure 2.11, the NMPC allows the ∆P̄tie,max-limit to be violated for a
couple of time steps. This is because it in total gives a better system behavior,
both with regards to frequency response and use of AGC. However, the NMPC will
bring ∆P̄tie back to the soft transfer limit after the situation has calmed, and the
clearance up to the hard transfer limit is restored.

2.5 Discussion

The simulations presented in Section 2.4.3 show that the presented NMPC works in
a satisfying manner. The PM in the NMPC is a smaller and simplified version of the
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(a) Total ∆u for all generators combined.

(b) ∆u for the generator at node 5500.

Figure 2.10: Case D: How the input from the NMPC changes when one generator is more
expensive.

Figure 2.11: Case E: Use of slack variable ε to achieve two sets of tie line limits. The figure shows
tie line power flow from Area B to Area A.
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PRM used for simulation. This causes a model-plant mismatch, which the NMPC
is robust against. An EKF is used to estimate the PM states and disturbance,
hence it adapts the PM to the PRM and through this it helps the NMPC deal with
the model-plant mismatch. There is not given a measurement or direct information
to the NMPC about the PM system disturbance ∆P̄D, it is only estimated using
the EKF, which is applied as the future ∆P̄D when predicting the system behavior.

The simulations still show that the NMPC is able to both perform better than
the PI controller, and to do so using less resources. In addition the NMPC is able
to take into account system limitations such as limitations on generator capacity,
generator rate of change, and tie-line power transfer.

One of the reasons that the NMPC is performing well is that it is able to take
into account the actions of the governor, and coordinate the inputs with regards to
this. In addition it can coordinate the inputs with respect to each other in a more
flexible manner than the PI controller. It is also able to use the information from
the disturbance estimate to plan ahead.

With the computer and software used here, the NMPC based on a two-area
PM keeps well within the range of the real time requirements, with an average
optimization time of less than 10 s. As an example the maximum and average
optimization time for Case B in Section 2.4.3 is 0.73 s and 0.66 s, respectively.
It is therefore believed that it will stay within these requirements if the PM is
augmented to more than two areas.

2.6 Conclusion

An NMPC based on a simplified system model is used for AGC in the Nordic
power system, represented by a larger, more complex proxy model. Both descriptive
examples and extensive simulation has shown that applying NMPC to AGC can
lead to both better control performance as well as a reduction in use of reserves,
which again will reduce the costs associated with LFC. Ideas to how NMPC can be
applied to include economics in the AGC as well as methods for ensuring tie line
capacity, are also presented.

The work presented here shows some of the benefits an NMPC can provide with
regards to LFC, such as flexibility and coordination between multiple inputs, taking
into account system limitations, and exploiting knowledge about the disturbance
acting on the system. All of these are qualities which could help in bringing about
a more flexible AGC which is able to deal with the challenges that power systems
are facing. It is also the authors’ opinion that since the prediction model in the
NMPC is a significant reduction of the plant replacement model, it is reasonable
to believe that an NMPC-based solution for AGC could work in a real situation.
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Chapter 3

Model predictive load-frequency control taking into
account imbalance uncertainty

The work in this chapter was published in Ersdal et al. (2016b), which is an exten-
sion of the work in Ersdal et al. (2014).

Summary

Nonlinear model predictive control (NMPC) is investigated for load
frequency control (LFC) of an interconnected power system which is
exposed to increasing wind power penetration. The robustified NMPC
(RNMPC) proposed here uses knowledge of the estimated worst-case
deviation in wind-power production to make the NMPC more robust.
The NMPC is based on a simplified system model that is updated using
state- and parameter estimation by Kalman filters, and takes into ac-
count limitations on among others tie-line power flow. Tests on a proxy
of the Nordic power system, shows that the RNMPC is able to fulfill sys-
tem constraints under worst-case deviations in wind-power production
in cases where the nominal NMPC is not.

3.1 Introduction

Power systems around the world have been through great development during the
last two decades. First with the liberalization of the power markets in the 1990’s,
and second with the increasing amount of renewable energy resources, distributed
generation, and increasing energy need seen around the world. These are all ele-
ments which cause challenges for the operation of power systems, and especially
with regards to load frequency control (LFC).

LFC is a term applied to describe the continuous operation of keeping the fre-
quency of a power system stable. The frequency of a power system is connected
to the balancing of produced and consumed power in the way that if there is a
surplus of produced power the frequency will rise, and if there is a lack of produced
power the frequency will fall. It is very important that this power balance is main-
tained, if not the generators could lose synchronism, and the power system would
collapse. Traditionally, LFC has a hierarchical structure with primary, secondary,
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Figure 3.1: Activation of primary, secondary (AGC) and tertiary control after a power imbalance.

and tertiary control1, see Figure 3.1. Primary control is continuous, automatic con-
trol placed locally at the generators. It is often based on proportional control, and
it instantaneously covers the power imbalance between produced and consumed
power. It does not, however, ensure that the frequency is restored to its set point.
For this, secondary control is needed. Secondary control is a slower, centralized,
and automatic controller which releases primary control. It is often referred to as
automatic generator control (AGC), and this term will be applied in the following.
Tertiary control is an even slower, centralized controller, which again releases the
AGC. This is manually operated by the transmission system operator (TSO). In
the Nordic network, consisting of Norway, Sweden, Finland, and the eastern parts
of Denmark, hydro generators are the main provider for primary control, while
other generating units such as thermal and nuclear power generators as well as
some controllable loads participate in tertiary control (Statnett, 2012). AGC was
first implemented here in 2012/2013, and it is assumed that hydro generators will
be the main provider for this as well.

In the Nordic Network, the TSOs aim at keeping the frequency between 49.9 and
50.1 Hz. This has proven to be increasingly difficult, and as seen from Figure 3.2,
the number of frequency incidents (minutes spent outside 49.9 and 50.1 Hz) has
increased concurrently with installed wind power capacity over the last decade. It is
confirmed by Statnett, the Norwegian TSO, that the increasing amount of intermit-
tent energy resources is part of the reason for the decreasing control performance,
along with a heavier loaded network and an increasing amount of bottlenecks, which
at times excludes some of the resources from participating in LFC (Statnett, 2012).

There have been many suggestions to how LFC can be improved to better cope
with these challenges. In Short et al. (2007) and Fabozzi et al. (2013) loads are
included in LFC, while Suvire et al. (2012) concentrate on effective energy storage,
and Chang-Chien et al. (2011) suggests how wind generators can participate in LFC.

1Also known as frequency containment reserves (FCR), frequency restoration reserves (FRR),
and replacement reserves (RR).

48



3.1 Introduction

1995 2000 2005 2010
0

2

4

6

W
in
d
p
o
w
er

in
st
a
ll
ed

ca
p
a
ci
ty

[G
W

]

Time [Year]

 

 

1995 2000 2005 2010
0

500

1000

N
u
m
b
er

o
f
fr
eq

u
en

cy
in
ci
d
en

ts
[m

in
]

Wind power
Incidents

Figure 3.2: Number of frequency incidents per month (Whitley and Gjerde, 2011) and installed
wind power capacity (Nordel, 2008) in the Nordic system.

Others concentrate on new control methods for LFC, such as including primary
control in local decentralized generators (Marinovici et al., 2013), or improving LFC
through fuzzy logic (Yousef et al., 2014), sliding mode control (Vrdoljak et al., 2010),
internal model control (Saxena and Hote, 2013), and various PID tuning methods
(Tan, 2010). Many have also investigated model predictive control (MPC) as a way
of improving LFC, e.g. through building climate control (Halvgaard et al., 2012),
or control of power flows in high voltage direct current (HVDC) lines (McNamara
et al., 2013). In Otomega et al. (2007); Carneiro and Ferrarini (2010) MPC is used
as a special protection scheme to prevent severe line-overloads.

Some have also investigated MPC for AGC, for example Venkat et al. (2008);
Shiroei et al. (2013); Mohamed et al. (2012). However, none of these consider
model-plant mismatch. Others discuss robust MPC (Shiroei et al., 2013), but this
is mainly against system parameter uncertainties, and the fulfillment of system
constraints is not considered. Other control methods have also been suggested for
robust LFC, such as H∞ control (Singh et al., 2013; Bevrani et al., 2011), fuzzy logic
(Çam and Kocaarslan, 2005), and robust PD tuning methods (Khodabakhshian and
Edrisi, 2008).

Rather generally, robust MPC is formulated in a min-max framework, where
the optimization seek to find minimizing inputs for the disturbances that maxi-
mize the objective function. See for example Rawlings and Mayne (2009), Mayne
et al. (2000) (nonlinear systems), Löfberg (2003) for linear systems, and various
approaches to ease the computational load, e.g. based on precomputation of invari-
ant sets (e.g. tube-based MPC (Langson et al., 2004)). Despite recent progress,
min-max MPC still gives prohibitive complexity as problem dimensions grow. In
this chapter, a simple approximation is chosen as the maximizing disturbances that
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gives reasonable computational performance, but will not give recursive feasibility
and guaranteed stability in general. The work presented in this chapter shows
that this approach will still be able to handle many, or most, disturbances in the
proposed setup.

In Ersdal et al. (2016a) a nonlinear MPC (NMPC) based on a simplified sys-
tem model was designed for AGC of the Nordic power system and tested against
conventional PI controllers. Through both descriptive examples and Monte Carlo
simulations, it was shown that an NMPC can be beneficial in AGC, both with re-
gards to control performance and reserve usage. It was also shown how the NMPC
can take system constraints into account, such as limitations on tie-line power
transfers. This is something which is not easily done with a PI controller. Ersdal
et al. (2014) presented an NMPC for AGC which is robustified against variations in
produced wind power. This robustified NMPC (RNMPC) was tested without any
model-plant mismatch, and it showed how the RNMPC was able to plan produc-
tion so that it could handle a worst-case wind-power production scenario without
breaking any system constraints.

This chapter is an extension of the work presented in Ersdal et al. (2014, 2016a).
The RNMPC from Ersdal et al. (2014) is implemented and tested with the proxy
system and prediction model from Ersdal et al. (2016a), hence there is a more real-
istic test of the controller on a large, realistic simulator. Ersdal et al. (2016a) pre-
sented a complete solution to the LFC problem by including generator participation-
factors in the optimization problem as well as state estimation for full state feed-
back. This chapter will be an extension of this by including knowledge of worst-case
predictions of future wind power production to robustify the NMPC. If the RNMPC
can plan so that there always is enough transfer capacity on important tie-lines to
handle some worst-case scenario, all generators are able to participate in LFC at
all times, which will improve the system frequency.

In this work a centralized MPC (CMPC) is implemented, i.e. it is based on a
model of the full system and it controls all the controllable system inputs. There
are several examples where distributed MPC (DMPC) has been applied for LFC,
such as Venkat et al. (2008); Mohamed et al. (2011). In DMPC separate MPCs,
based on single-area models, controls the inputs to each area, and the main benefits
are less demands for communication and smaller optimization problems for each
MPC, hence shorter optimization time. The main drawback of DMPC is that
it may result in poor systemwide control performance if the subsystems interact
significantly (Venkat et al., 2008). For large power systems, such as the Central
European system or the Eastern Interconnection in North America, the benefits of
DMPC are very relevant. With a considerable smaller network, such as the Nordic
network, on the other hand, there is not that much to gain by applying DMPC
compared to CMPC, especially when considering that the CMPC presented here is
based on a simplified model with a rather small amount of optimization variables. In
addition to this, using a DMPC would complicate the tie-line constraint handling,
which is an important feature of the presented controller.

The remainder of this chapter is organized as follows. In Section 3.2 the proxy
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Figure 3.3: An overview of the generators in the SINTEF model (Norheim et al., 2005).

system used to represent the Nordic power system and the prediction model used
in the NMPC are presented. The nominal NMPC (NNMPC) is then discussed in
Section 3.3, before the details of the RNMPC are given in Section 3.4. In Section
3.5 the case study is presented along with the results from the tests on the proxy
system, which then are discussed in Section 3.6. Final conclusions on the presented
work are given in Section 3.7.

3.2 Modeling

The proxy system and the prediction model used in this work are the same as the
ones used in Ersdal et al. (2016a). This section is therefore a condensed version of
Section 2.2. All variables, in both the proxy system and the prediction model, are
given in per unit [p.u.], see Appendix A in Machowski et al. (2008) for details.

The transmission grid is a critical infrastructure which cannot be used as a test-
bed. For research in grid transmission control, it is therefore always necessary to
use a simulation as a proxy for the physical system. The power system model used
here is a model of the Nordic power system developed by SINTEF Energy Research
(Norheim et al., 2005). It includes 15 hydro generators, 5 non-hydro generators,
21 composite loads, and 36 nodes. The placement of the generators can be seen in
Figure 3.3, and they are chosen so that the model reflects the real production and
most interesting bottlenecks in the Nordic power system (Norheim et al., 2005).

3.2.1 SINTEF Proxy System

In general a power system can be modeled by a differential algebraic equation

ẋ = f (x, z, u, w) (3.1a)

0 = g (x, z, u, w) (3.1b)
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Figure 3.4: Overview of states, inputs and outputs of the dynamic system equation.

where x are the dynamic system states, z the algebraic system states, u the con-
trollable input and w the system disturbance.

The dynamics of the model consists of the electromechanical dynamics of the
rotor as well as the dynamics of the turbines and their governing systems (primary
control). Since it is mainly the hydro turbines which provide primary control in the
Nordic network, and most likely will provide the majority of AGC as well, only the
hydro turbine and governor dynamics are included. Note that the rotor dynamics
of the synchronous generator are modeled for all generators of the network.

Figure 3.4 shows a simplified diagram of the states, inputs and outputs of the
dynamic system equation. Generators are modeled by what is usually denoted
the swing equation, while the hydro turbines and governors are modeled as the
nonlinear model of Machowski et al. (2008), usually denoted HYGOV. The states
of the swing equation are the rotor angle and angular velocity, δ and ∆ω, the state
of the turbine is the penstock flowrate q and the governor has the internal states ξ1,
ξ2, ξ3, representing the valve opening of the pilot servomotor and main servomotor
(ξ1 and ξ3) as well as the integral of the controller part of the governor (ξ2). The
valve opening is c = sat(ξ3) = 0 ≤ ξ3 ≤ 1, and cr is the valve opening set point
provided by the TSO, while Pm and Pe are the mechanical and electrical power
outputs, respectively. It is the valve opening set-point cr which will be controlled
by the NMPC.

The algebraic system equations describe the current flow in the network, and
it is found using the internal node representation, where Kirchoff’s current law is
applied at each node. A node can contain only a junction of current flows, or it may
have an aggregated load and/or an aggregated generator connected to it. Figure
3.5 shows the currents flowing into a node with both an aggregated load and an
aggregated generator connected to it, where Ig is the current delivered from the
generator, IL the current from the load and Isys the current from all the other
nodes of the network. Based on the reactive power balance in the network, there is
also the resulting nodal voltage U = |U | ejθ. When applying Kirchoff’s current law
in all nodes, the result is one complex equation in polar form with two unknown:
|U | and θ, the magnitude and angle of the nodal voltages.

Given a large power system consisting of n nodes, where m of these have genera-
tors connected to them, and where mh of these are hydro turbines, the total system
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Figure 3.5: Internal node representation.

can be written as (3.1) with the following dynamic equations

δ̇k = ∆ωk · ωn (3.2a)

∆ω̇k =
1

2Hk

(
P k
m − P k

e (z)−Dk
g

(
∆ωk −∆ωn

))
(3.2b)

q̇i =
1

T iw

(
1−

(
qi

ci

)2
)

(3.2c)

ξ̇i1 =
1

T igT
i
p

(
cir −∆ωi +

ri

T ir
ξi2 −

(
ri + ρi

)
ci − T igξi1

)
(3.2d)

ξ̇i2 = − 1

T ir
ξi2 + ci (3.2e)

ξ̇i3 = satiċ(ξ
i
1) (3.2f)

for each generator k = 1, . . . ,m and each hydro turbine i = 1, . . . ,mh. Where

∆ωn =

∑m
j=1 H

j∆ωj∑m
j=1H

j
(3.2g)

ci = satic(ξ
i
3) (3.2h)

P i
m = Ait

(
qi/ci

)2 (
qi − qinl

)
−Di

tc
i
(
∆ωi −∆ωn

)
(3.2i)

and ωn is the nominal rotor-speed of the generator, H the rotor inertia, Dg the
generator damping coefficient, Tw the water starting time of the hydro turbine, Tg
and Tp time constants in the servo motor of the governor, Tr the time constant of the
transient droop, ρ the constant-droop coefficient, r the transient-droop coefficient,
satċ/c(·) saturations, qnl the no-load flow of the turbine, At a factor that accounts
for the different per-unit bases in the turbine and generator, and Dt the turbine
damping coefficient. The algebraic equation is as follows

0 = Pe(z)−Re
(
EI∗g

)

= Pe(z)−Re
(
E
(
Y ∗c |U | e−jθ + |Il| e−jθ

)) sbase

mbase

(3.3)
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where E is the internal voltage of the generators, I∗g the complex conjugate of the
current delivered from the generators, Y ∗c the complex conjugate of the network ad-
mittance matrix, Il the absolute value of the active load currents, sbase the network
base rating, and mbase the base rating of the generators.

This gives the following state, input and disturbance vectors

x =
[
δk ∆ωk qi ξi1 ξi2 ξi3

]T
(3.4a)

z =
[
|U s| θs

]T
(3.4b)

u = cir (3.4c)

w =
[
|Isl | P p

m

]T
(3.4d)

where k = 1, . . . ,m, i = 1, . . . ,mh, s = 1, . . . , n, and p = mh + 1, . . . ,m. This
means that for each generator k (regardless of type), there are two dynamic states,
for each hydro generator i there are in addition four extra dynamic states, and for
each node s there are two algebraic states. In total 2m + 4mh dynamic states, 2n
algebraic states, mh controllable inputs, and n+m−mh disturbances.

3.2.2 Prediction Model for Model Predictive Control

The prediction model (PM) is the model used by the NMPC to predict how the
system will behave in the future, based on the inputs to-be-optimized and a dis-
turbance model. In real-life situations, these models are always simplifications and
approximations to the actual processes which are being controlled. In this work,
the NMPC is based on a reduced and simplified version of the system presented in
the previous section. This is done to ease the computational load of the NMPC
and the state estimator, but it also incurs a natural model-plant mismatch in the
testing of the controller. To find the PM, the larger model of the previous section
is first divided into N areas connected to each other by tie lines. All states, inputs
and disturbances are given relative an initial steady state where both active and
reactive power supply and consumption are balanced.

The dynamics affecting the frequency response of a power system are rela-
tively slow, and neglecting the fast dynamics reduces the complexity of the model
(Bevrani, 2014). The nodal voltages and the electromechanical dynamics of the
swing equation are considered to be fast dynamics, and can therefore be neglected.
The dynamics of area i, including the generators, can in this case be represented
by one single differential equation (Bevrani, 2014)

∆ ˙̄f i =
1

2H̄ i

(
∆P̄ i

m −∆P̄ i
D −∆P̄ i

tie

)
(3.5)

where ∆f̄ is the deviation from the nominal frequency fn, ∆P̄m the total change
in power from primary control and AGC combined, ∆P̄D the total change in load
power and uncontrollable production, ∆P̄tie the change in total power flow from
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the area on all its tie lines, and H̄ the inertia of the rotating masses of the area.
The change in total tie-line power flow from area i is (Bevrani, 2014)

∆ ˙̄P i
tie = 2π

(
∆f̄ i

N∑

j=1,j 6=i
T̄ij −

N∑

j=1,j 6=i
T̄ij∆f̄

j

)
(3.6)

where ∆f̄ i/j is the local frequency in area i/j, and T̄ij the synchronizing torque
coefficient between area i and j. The frequency deviation of the entire system is
defined as

∆f̄ =

∑N
i=0 H̄

i∆f̄ i∑N
i=0 H̄

i
(3.7)

The hydraulic turbines and governor equations are simplified by modeling all
the hydraulic power stations of an area as one aggregated hydraulic turbine and
governor. The dynamics of the turbine can in turn be represented by a linearized
version of the nonlinear model used in the proxy system, where the reference points
for the PM system states are used for linearization. This gives the following dynamic
equation for the aggregated turbine of area i

∆ ˙̄qi = − 2

T̄ iwc̄
i2
ss/q̄

i
ss

(
∆q̄i − q̄i2ss

c̄i2ss
∆c̄i
)

(3.8a)

∆P̄ i
m = Āit

q̄i2ss
c̄i2ss

(
3∆q̄i − 2

q̄i2ss
c̄i2ss

∆c̄i
)

(3.8b)

where ∆c̄ and ∆q̄ are the change in valve opening and water flow rate from c̄ss and
q̄ss, respectively. In the governor equations, one of the time constants is several
times smaller than the others, and it can therefore be neglected. This results in the
following governor dynamic equations for area i

∆ ˙̄ξi2 = − 1

T̄ ir
∆ξ̄i2 + ∆c̄i (3.9a)

∆ ˙̄ξi3 = satiċ

(
1

T̄ ig

(
∆c̄ir−∆f̄ i +

r̄i

T̄ ir
∆ξ̄i2 −

(
r̄i + ρ̄i

)
∆c̄i
))

(3.9b)

∆c̄i = satic
(
∆ξ̄i3

)
(3.9c)

The manipulated input is still the valve opening set point ∆c̄r.

Disturbance Model

The balancing of power is managed by market transactions in most systems, and
through these markets the predicted power demand and supply are balanced on
slots of normally one hour. The markets take into account variations in production
from traditional power stations as well as the daily/weekly/annually deterministic
load variation patterns. Because
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1. load variation patterns as well as production from some generators are difficult
to predict in detail, and

2. changes in production set-point Pm,sp takes place on the hour, while changes
in power demand happens during the hour (Statnett, 2012)

there will always be deviations from the hourly market balance. In order to keep the
power system safe and stable, it is important that this unpredicted power imbalance
is covered by the primary control and the AGC.

By choosing the initial steady state of the PM as the marked balance, the dis-
turbance of the PM ∆P̄ i

D represents the total unpredicted power imbalance of each
area. This unpredicted power imbalance can roughly be divided into two different
dynamic components. One is a continuously, slowly varying imbalance due to in-
termittent energy resources and loads. The other is an imbalance caused by sudden
disconnections of loads or generators, which results in steep and sudden changes in
the power imbalance. Both of these components are important to consider when
dealing with robust LFC. However, here we focus on the effects of an increasing
wind-power penetration, and we will therefore concentrate on the former.

When dealing with power systems including a certain amount of wind power, such
as the Nordic grid, one can for simplicity assume that this intermittent unpredicted
power imbalance is dominated by the fluctuations in produced wind power. If, in
addition, it is assumed that the majority of wind power is situated in area p, ∆P̄D
of all the other areas can be neglected, and the model is affected by one single
disturbance ∆P̄D = ∆P̄ p

D. With the Nordic network in mind, Denmark and South
Sweden contribute with about 80% of the total wind power production (Statnett,
2012). In Ersdal et al. (2016a) the disturbance ∆P̄D was kept constant over the
prediction horizon. In this work however, the idea from Ersdal et al. (2014) to
make the NMPC more robust against fluctuations in produced wind power by using
different disturbance scenarios in the predicted system behavior, is implemented.

Depending on the number of areas N , the simplified system is represented by
one differential equation

˙̄x = f̄ (x̄, ū, w̄) (3.10a)

where

x̄ =
[
∆f̄ i ∆q̄i ∆ξ̄i2 ∆ξ̄i3 ∆P̄ i

tie

]T
(3.10b)

ū = ∆c̄ir (3.10c)

w̄ = ∆P̄ i
D (3.10d)

and i = 1, . . . , N . In total 5N dynamic state variables, N controllable inputs, and
one disturbance. The bar notation represents the simplified system states, inputs
and parameters.
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3.3 Controller

3.3.1 Control Problem

The main control task of the MPC is to balance the power production in the net-
work against the consumption at all times, and to do so while avoiding bottleneck
congestions and staying within other system bounds. When large, unexpected dis-
turbances appear, it is a problem in the Nordic network that some of the resources
participating in primary control and AGC are prevented from participating due to
bottlenecks in the network. For instance, the generators in the west may not be
able to participate in covering a disturbance in the east if the east-west transmission
lines are already transferring close to maximum.

In addition to this primary control task, the MPC should also keep the costs
associated with LFC at a minimum. The cost of primary control is often higher than
AGC, and lowering the use of primary control by keeping the frequency closer to fn
through use of AGC is desirable. When it comes to use of AGC, it is advantageous
to keep the input in the PM ū as close to its hourly set-point value ū0 as possible.
This is because the TSO has to pay more per delivered MWh the more they require
the generators to deviate from the initial hourly set point. In Ersdal et al. (2016a)
it was shown how a NMPC can lower the costs associated with LFC compared to
tradition PI-control. In this work the aim is not to further improve the reserve
usage, but rather expand the NMPC while maintaining the results from Ersdal
et al. (2016a).

3.3.2 MPC

MPC is a framework for advanced control that has seen widespread use, espe-
cially within chemical process industries, and it is believed that the optimizing and
constraint-handling nature of MPC makes it suitable also for LFC. MPC uses a
model of the system to predict how it will behave in the future, and then optimizes
the controlled input with regards to an objective function measuring predicted
performance. Mathematically, it can be formulated as a continuous time optimal
control problem on the form (3.11a) subject to (3.11b) - (3.11d) (Biegler, 2010)

min
x̄(·),ū(·)

J (x̄(t), ū(t)) (3.11a)

x̄(0)− x̄0 = 0 Fixed initial state (3.11b)

˙̄x(t)− f̄ (x̄(t), ū(t), w̄(t)) = 0 System model (3.11c)

g (x̄(t), ū(t)) ≤ 0 Constraints (3.11d)

where x̄(t) are the system states, ū(t) the controlled inputs, w̄(t) the predicted
disturbances, and J (x̄(t), ū(t)) the control objective function.

Figure 3.6 shows the basics of how an MPC works. The idea is to solve an
optimization problem at each time step to find the optimal system input ū(t) over
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Figure 3.6: Overview of MPC-loop.

a fixed time horizon with respect to the objective function J(·), and then apply the
first element of ū(t) as input to the system. The loop is closed by the measurements
y(t), and a state estimator is also included as the MPC needs knowledge of the entire
state vector x̄(t).

3.3.3 MPC Design for AGC

An MPC will be applied for AGC in this work. It will control the proxy system of
Section 3.2.1, from now referred to as the plant replacement model (PRM), while
using the prediction model (PM) of Section 3.2.2 to predict future system behavior.
Hence there is a natural model-plant mismatch between PM and PRM. The control
of, and contribution from tertiary control is omitted in this work, as it is manually
operated over a longer time scale.

The dynamic equation of the PM (3.10) is implemented as the system model
(3.11c), and the constraints (3.11d) includes limitations on generation capacity,
generation rate of change, as well as on tie-line power transfer. Since the satura-
tions in (3.9) are nonlinear, this will result in a nonlinear MPC (NMPC), and the
optimization problem is therefore non-convex. The continuous time optimization
problem (3.11) in the NMPC is solved with direct methods, that is, it is discretized
and transformed into a nonlinear program (NLP) (Biegler, 2010). This NLP is
then solved numerically by the use of collocation, where both the control inputs
and states are discretized on a fixed grid. In order to avoid convergence issues with
the NLP solver, related to the non-smooth saturation functions in (3.9), these are
replaced by smooth approximations as in Ersdal et al. (2016a).

In the PM, there is one input per area, which leads to N optimal inputs from
the NMPC: ∆c̄ir, where i = 1, . . . , N . These N inputs are then distributed to the
hydro generators of each area by individual participation factors αij. As seen from
Figure 3.7

cirj = cir0j + αij∆c̄
i
r (3.12)

where j = 1, . . . ,mi
h and mi

h is the number of hydro generators in area i. Bear
in mind that

∑N
i=0 m

i
h = mh. However, each of the valve set points of the PRM

cr has individual constraints, and in Ersdal et al. (2016a) the participation factors
α were included in the optimization problem as optimization variables. This both
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Figure 3.7: Participation factors αi
j , where mi

h is the number of hydro generators in area i.

allows for individual input constraints and greater flexibility and better use of the
NMPC’s strength on coordination of multiple inputs, however at the expense of
a larger optimization problem. This extension of the PM is also included in this
work, and the PM now has 5N dynamic states, mh optimization variables and one
disturbance.

3.3.4 State and Parameter Estimation

The MPC relies on knowledge of the entire PM state vector x̄ =
[
∆f̄ i,∆q̄i,∆ξ̄i2,∆ξ̄

i
3,

∆P̄ i
tie

]T
as well the current PM disturbances w̄ = ∆P̄ i

D. In order to find an estimate
of these, it is assumed that the following PRM states are measured

y =
[
∆ωk ξi2 ξi3 |U |s θs

]
(3.13)

where k = 1, . . . ,m, i = 1, . . .mh, and s = 1, . . . n. In practice |U | and θ are
measured using phasor measurement units (PMU), while ∆ω, ξ2, and ξ3 are mea-
surable at the generators and governors. From these, the equivalent PM states
∆f̄ i = 2π∆ω̄i, ∆ξ̄i2, and ∆ξ̄i3 can be calculated, and the power flow between all
network nodes, including ∆P̄ i

tie, can be found using |U | and θ. Hence the PM
measurements are

ȳ =
[
∆f̄ i ∆ξ̄i2 ∆ξ̄i3 ∆P̄ i

tie

]T
(3.14)

where i = 1, . . . , N .
An extended Kalman filter (EKF) (Simon, 2006) based on the PM is then applied

to estimate the full PM state vector as well as the PM disturbances, ∆P̄ i
D. In order

to estimate the change in load power and uncontrollable production of each area
(∆P̄ i

D), the PM is augmented to include ∆P̄ i
D as states with zero derivatives. To

illustrate the EKF, a simulation is performed using the proxy system. The PM
is set to have one area, hence N = 1. The resulting estimate of ∆q̄ and ∆P̄D,

∆ˆ̄q and ∆ ˆ̄PD, can be seen in Figure 3.8, and it illustrates that the implemented
EKF manages to estimate the unmeasured state and disturbance in a satisfying
manner. The EKF is chosen because the software used for implementation, Casadi
(Andersson, 2013), automatically generates the system’s derivatives, making the
EKF a simple and effective choice.
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Figure 3.8: Results from EKF: The estimate of ∆q̄ and ∆P̄D, ∆ˆ̄q and ∆ ˆ̄PD.
∆
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Figure 3.9: An example of how a worst-case estimate for ∆PD could look.

3.4 Robustified NMPC

3.4.1 Worst-Case Estimate of ∆PD

For a given wind farm, a worst-case estimate of the variation from the predicted
power output can be estimated, and Holttinen (2004) provides such data one second,
one minute and one hour into the future t. If this information is combined for several
wind farms, one can create a total worst-case estimate for the future variation in
wind-power production of one area, see Figure 3.9.

If the wind farms are distributed more evenly in the system, so that the as-
sumption in Section 3.2.2 no longer applies, the disturbance would enter at several
points and a worst case combination of the disturbances, where system dynamics
are considered, has to be calculated.

3.4.2 Robustified NMPC

In the RNMPC a new state vector is constructed by combining the original state
vector x̄ (3.10b) and input ū (3.10c) exposed to three different future disturbances:
The zero, negative, and positive worst-case estimate for ∆P̄D added to the current
estimated disturbance w̄ (3.10d), see Figure 3.10. The system equation for the
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Figure 3.10: Robustified NMPC. For simplicity, ū is considered to be scalar.

combined system used in (3.11c) is

˙̃x =




˙̄xz
˙̄xp
˙̄xn


 =



f̄ (x̄z, ūz, w̄z)
f̄ (x̄p, ūp, w̄p)
f̄ (x̄n, ūn, w̄n)


 = f̃ (x̃, ũ, w̃) (3.15)

where ũ =
[
ūz ūp ūn

]T
and w̃ =

[
w̄z w̄p w̄n

]T
. At each optimization it is

required that for the first element of ũ(t), ūz, ūn and ūp must be equal. After this,
they are free to vary in manners optimal for their designated system states, see
Figure 3.10. In this way the optimal input trajectory for all three scenarios, fulfills
all system constraints and is therefore a feasible input (on the control horizon).

3.4.3 Stability of the RNMPC

A common approach for achieving robust NMPC is the concept of min-max NMPC
(Rawlings and Mayne, 2009), which often results in large and complex optimization
problems. The RNMPC presented in the previous section is a simplified, nonlinear
version of the min-max feedback MPC presented in Scokaert and Mayne (1998). It is
well known that min-max approaches are computationally intractable, especially in
the nonlinear case. This motivates us to only consider predefined approximate worst
case scenarios instead of letting the optimizer find the real worst case disturbance,
which is an approach that has similarities to what is done in scenario-based NMPC
(Huang et al., 2009; Goodwin and Medioli, 2013). A drawback with doing this
is however that the recursive feasibility property is lost. This is important in
proving closed-loop stability of MPC schemes (Mayne et al., 2000), and stability
of the RNMPC can therefore not be guaranteed. In this work, stability is rather
approached by choosing long horizons and tuning weights to achieve convergent
behavior in simulations. “Stabilizing ingredients” such as terminal costs could
have been added, but this is not included in this study.

To handle possible instability/infeasible optimization problems, a supervising
agent must be devised that interferes when problems are detected, as a fallback
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mechanism. This could involve automatic fail-to-safe transitions, possible restart of
the NMPC, or switching to manual control. It can be argued that such a mechanism
will have to be installed in any case, since it is very hard (and conservative) to
include all thinkable disturbance scenarios in the prediction model. The role of the
robustified NMPC is then to handle the disturbances most likely to happen.

An exact solution to such a supervising agent is not implemented in this work.
However, some possible solutions are discussed in the following. The return codes
and warning signals from the numerical optimization solver can be applied to detect
convergence problems and other computational issues. Moreover, one may monitor
the performance of the NMPC alongside the fallback controller. Motivated by the
discussions in Johansen (2015) on dependable embedded MPC, an idea is a control
selection scheme where the value of the NMPC objective function evaluated in
simulations on a system model (in this case, the PRM would be natural, if available,
if not the PM should be used) is used as a measure to select either the NMPC or
the fallback controller. The idea is that unstable/infeasible and poor solutions from
the NMPC will be discarded in favor of the fallback controller. With regards to
the actual fallback controller, it could for example be conventional PI-based AGC,
or in some cases manual control. In any case, such an event must generate an
alarm to the TSO, so that the situation can be supervised in a proper manner. A
mechanism must also be devised for re-connecting the NMPC, this can for instance
be running the NMPC in open-loop for some time-steps to verify feasibility before
it is manually re-connected by the TSO.

while true do
1. Gather measurements, y;
2. Calculate PM measurements, ȳ;
3. Use EKF to find estimate of PM state vector and disturbance, ˆ̄x and
ˆ̄PD, for use in the NMPC;
4. Find optimal inputs u using NMPC based on PM;
5. Check the computed input for problems (numerical/performance),
e.g. as discussed above;
if Problems then

A. Calculate system input using fallback controller, ufb;
B. Apply ufb to system;

else
Apply input u from NMPC to system;

end

end
Algorithm 1: Implementation of NMPC.

The main parts of the controller are summarized in Algorithm 1. The reconnec-
tion of the NMPC is not included, as this would be a manual operation conducted
by the TSO.
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3.5 Case Study

The PRM (3.1) has a total of 100 dynamic states, 72 algebraic states, 15 controllable
inputs, and 21 disturbances. This system is divided into two areas in the PM (3.10),
hence N = 2. One area covers South Sweden and Eastern Denmark (area A), and
the other covers Norway, North Sweden and Finland (area B), and according to the
assumptions made in Section 3.2.2, ∆P̄B

D = 0 and ∆P̄D = ∆P̄A
D . There is also a

tie line between the two areas which represents the total power flow between them.
This tie line has a maximum power-transfer capacity of 2000 MW. With N = 2,
the PM has 10 dynamic sates, 15 controllable inputs, and one disturbance, which is
a significant reduction from the PRM. The AGC control signal is dispatched every
10 s for both the PRM and the PM.

The performance of the RNMPC is compared to the NNMPC, which is based on
˙̄xz = f̄ (x̄z, ūz, w̄z). In order to compare the two controllers, a control performance
measure (CPM) is applied. It is inspired by the CPS1 and CPS2 performance
criteria used by the North American electric reliability corporation (NERC) (Gross
and Lee, 2001), and it basically measures the average frequency deviation: first ∆f
is averaged over windows of 30 s to filter out fast fluctuations, then the CPM is
found by again averaging ∆f over all these windows.

3.5.1 Tuning the NMPC

The main tuning variables of the NMPC are the prediction horizon T , and the
objective function J (·). The objective function is set to

J (x̄, ū) =

∫ T

t=0

x̄TQx̄+ (ū− ū0)T R (ū− ū0) dt (3.16)

where Q = diag
(
Q̄z, Q̄p, Q̄n

)
and R = diag

(
R̄z, R̄p, R̄n

)
for the RNMPC, and Q =

Q̄ and R = R̄ for the NNMPC. Q is real, symmetric and positive semidefinite, while
R is real, symmetric and positive definite. The non-zero elements of Q̄ are chosen so

that the deviation in overall system frequency (3.7) is punished: q̄11 = β
(H1)

2

(H1+H2)2
,

q̄66 = β
(H2)

2

(H1+H2)2
, q̄16 = q̄61 = β H1H2

(H1+H2)2
, where β = 105. The use of primary control

is actuated by ∆f , so minimizing ∆f will also minimize the use of primary reserves.
The matrix R is set to R = diag (ηmbase), where mbase is a vector containing the
hydro generators’ base rating, and η = 0.1. With mbase included in R, the actual
produced power from the hydro generators are included in the objective function,
and not only the per-unit based ū. In order to place more emhasis on deviations in
x̄z, Q̄z is set equal to Q̄, while Q̄p = Q̄n = 0.1Q̄. The three systems are all punished
equally when it comes to deviations in input: R̄z = R̄p = R̄n = R̄.

The control horizon T is 3 minutes, a decision based on a compromise between
system time constants and complexity, and the time step of the NMPCs is 10 s in
order to match the control signal dispatching in the system.
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(a) Nominal NMPC
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(b) Robustified NMPC

Figure 3.11: Case A: ∆f and ∆Ptie for NNMPC and RNMPC.

3.5.2 Software

The proxy system and both NMPCs were implemented in Python using Casadi.
Casadi is a framework for solving dynamic optimization or optimal control problems
(OCP). Casadi has been developed with focus on allowing users to implement their
method of choice with any complexity, rather than being a black-box OCP-solver
(Andersson, 2013). The name Casadi originates from its form as a minimalistic
computer algebra system (Cas) with a general implementation of automatic differ-
entiation (ad). It is interfaced to various NLP solvers, and in using these solvers
from Casadi there is no need to implement functions for the derivatives, as they are
automatically generated and interfaced by Casadi using automatic differentiation
(Andersson, 2013). In this work the interior point optimizer IPOPT (Wächter and
Biegler, 2006) is applied, using the exact Hessian.

3.5.3 Tests on the SINTEF proxy system

The NMPC has been tested on the SINTEF Nordic system model described earlier.
As discussed, it is normal practice in power system research to use high fidelity
validated models to test operational and research concepts since the transmission
system itself cannot be used for experimentation.

In Case A, the disturbance (entering in area A) is small enough so that ∆Ptie
does not reach its limit. Figure 3.11 shows the resulting ∆f and ∆Ptie, and it is
clear that in this case the response is very similar for the NNMPC and the RNMPC.
This is confirmed by the CPM in Table 3.1. It is also seen from Figure 3.11 that
there are oscillations in the system frequency. These oscillations are mainly caused
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Table 3.1: CPM and reserves usage (given in MWh).

CPM Primary Control AGC

Case A

NNMPC 3.73 · 10−5 26.0 768.7

RNMPC 3.75 · 10−5 25.9 769.2

Difference +0.5% −0.4% ≈ ±0%

Case B

NNMPC 1.28 · 10−3 88.2 2525

RNMPC 1.27 · 10−3 89.4 2518

Difference −0.8% +1% −0.3%

Case C

NNMPC 3.5 · 10−3 2298 746

RNMPC 3.9 · 10−3 2463 777

Difference +11% +7% +4%

by the fast, electromechanical dynamics of the system, which the NMPC is not able
to account for due to turbine time constants and NMPC sampling time.

In Case B the initial state of the system has ∆PD 6= 0 (and thus ∆Ptie 6= 0), and
after approximately 4 minutes, the disturbance (still entering in area A) follows
the negative worst-case scenario of Figure 3.10, w̄n. The test results can be seen
in Figure 3.12 - 3.14. Figure 3.12(b) shows that in the initial steady state, the
limit of ∆Ptie is reached by the NNMPC, while the RNMPC stabilizes the tie-line
power transfer at a lower level, ensuring that there still is some transfer capacity
left. This is very beneficial when the worst-case disturbance sets in, and Figure
3.12(b) clearly shows that the RNMPC manages to keep within the limit of 2000
MW while the NNMPC does not. Figure 3.13 illustrates how ∆Pm is allocated
between the two areas with the NNMPC and the RNMPC, and in Figure 3.14 the
total input

∑
u =

∑
cr of each area can be seen.

It is clear from both Figure 3.12 and 3.13 that the NNMPC experiences larger
system oscillations than the RNMPC. This is because the NNMPC is at the tie-line
constraint, causing the inputs to constantly having to adjust in an attempt to fulfill
the system constraints, see Figure 3.14(a). These input oscillations are not seen
with the RNMPC (Figure 3.14(b)), and they cause oscillations in generated power
as well as amplifying the oscillations in system frequency. They are not beneficial
for the hydro generators as they will cause wear and tear on their valves and other
mechanical parts.

The last case, Case C, is a Monte Carlo simulation where disturbances based on
random numbers, generated using the method of Cećılio et al. (2013) are imposed
on the system. These disturbances are much more fluctuating and smaller in size
compared to the previous cases, so that they resemble normal disturbance patterns.
The Monte Carlo simulation is included to show the average performance of the
RNMPC against the NNMPC, and the average results from 100 simulations can
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(a) ∆f

(b) ∆Ptie

Figure 3.12: Case B: ∆f and ∆Ptie for NNMPC and RNMPC.

(a) ∆Pm in area A.

(b) ∆Pm in area B.

Figure 3.13: Case B: total use of ∆Pm in area A and area B with nominal and robustified
controller.
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(a)
∑
u =

∑
cr in area A and B with NNMPC.

(b)
∑
u =

∑
cr in area A and B with RNMPC.

Figure 3.14: Case B: total input in area A and area B with nominal and robustified controller.

be seen in Table 3.1. It shows that the NNMPC in general performs slightly bet-
ter than the RNMPC, both with regards to frequency control and reserve usage.
This is however not very surprising, as robust control methods tends to be more
conservative, which often leads to poorer control performance.

3.6 Discussion

In Ersdal et al. (2016a) it was shown through both descriptive examples and thor-
ough simulation, that applying NMPC for AGC can be beneficial with regards
to control performance and reserves usage. In this work, the emphasis has been
placed on making the NMPC presented in Ersdal et al. (2016a) more robust against
fluctuating wind power production.

In Case A it was demonstrated that when no system constraints are met, the
NNMPC and RNMPC results in almost identical system behavior and reserve us-
age. On average however, the Monte Carlo simulation showed that the NNMPC
does perform better than the RNMPC while using less resources. This is however
something that must be expected when trying to robustify the NMPC. Another
result from the Monte Carlo simulation is data on how often the RNMPC results
in infeasible optimization problems. For 100 successful simulations, there where
12 that ended with infeasibility (hence 11%). With the NNMPC, the tie-line con-
straints were broken in these cases, and the only reason why infeasibility was not
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encountered is that the NNMPC has slack variables to handle this. Adding slack
variables to system constraints is a common way of avoiding infeasibility in opti-
mization problems (Maciejowski, 2002), as they allow the solution to break certain
constraints if absolutely necessary. Slack variables were not included in the RNMPC
because they would deteriorate the aim of keeping clearances to system constraints.

Even though the RNMPC showed to be more conservative when more realistic,
fluctuating disturances were imposed on the system, it is still less conservative than
the RNMPC in Ersdal et al. (2014). The main reason for this difference is that
in Ersdal et al. (2014) there was only one input per area, whereas here there are
several. Several inputs per area makes it easier for the RNMPC to fulfill the system
constraints, also in case of worst-case disturbance scenarios, and it does not need
to be as conservative.

In case B the difference between the NNMPC and RNMPC is displayed. When
the disturbance is at a level so that ∆Ptie approaches its limit, the NNMPC will
stabilize ∆Ptie at the limit, while the RNMPC will keep some clearance to it in case
of a new worst-case disturbance. And as seen from Figure 3.12(b), the RNMPC
manages to keep within the tie-line limit when the worst-case disturbance sets
in, while the NNMPC does not. In Figure 3.13 it is seen how the NNMPC and
RNMPC allocates ∆Pm in area A and area B differently. It shows that the two
controllers gives similar results, only that the RNMPC in general allocates more
of ∆Pm to area A where the disturbance enters, resulting in a lower ∆Ptie. Both
Figure 3.12(a) and Table 3.1 shows that the control performance of the NNMPC
and RNMPC in case B are very similar, and there is some increase in the use of
primary control while the use of AGC is lowered. However, these are very small
numbers, and for all practical purposes the two controllers performs equally with
regards to frequency restoration and reserves usage.

3.7 Conclusion

The negative trend seen in the quality of LFC in the Nordic power system over
the last decades indicates that something must be done to better cope with the
challenges of intermittent energy resources and network bottlenecks. In Ersdal
et al. (2016a) it was shown how applying NMPC for AGC can improve the LFC by
better coordination of AGC and primary control, as well as including power-transfer
limits as constraints in the NMPC. In this work, this has been extended to include
the robustified NMPC (RNMPC) from Ersdal et al. (2014), and simulations show
that also with a more realistic simulation setup (including model-plant mismatch
and state estimation), the RNMPC manages to keep transfer capacity available for
severe situations of unpredicted fluctuations in produced wind power from the area
of South Sweden and East Denmark. The behavior of the RNMPC was compared
to that of the nominal NMPC (NNMPC) from Ersdal et al. (2016a), and Monte
Carlo simulations show that the NNMPC is not able to avoid bottlenecks in the
same way as the RNMPC. The NNMPC does perform better than the RNMPC on
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average, but there will almost always be a trade off between system performance
and robustness of a controller. The difference in performance and reserve usage is
however not deterrent, and this work shows that the scheme presented here could be
a realistic way of dealing with bottlenecks in the Nordic network, ensuring available
transfer capacity so that all available resources are able to participate in the LFC.
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Chapter 4

Scenario-based approaches for handling uncertainty
in MPC for power system frequency control

The work in this chapter is submitted to IFAC World Congress 2017.

Summary

A stochastic nonlinear model predictive controller (SNMPC) is de-
signed for automatic generator control of a proxy of the Nordic power
system, and it is compared with a multi-stage nonlinear model predictive
controller (MNMPC). Both controllers are scenario based, but originate
in two different disturbance modeling paradigms; stochastic and deter-
ministic. A simulation study indicates that the two controllers behave
similarly. The MNMPC is however less exposed to infeasibility issues,
and it also has better tractability than the SNMPC. On the other hand,
the SNMPC gives probabilistic guarantees for constraint fulfillment; a
feature whose practical implications are debatable.

4.1 Introduction

Model predictive control (MPC) is a framework for advanced control that has its
roots in optimal control, and is one of the few advanced control methods that has
made a significant impact on industrial control engineering (Maciejowski, 2002). In
short, the MPC solves an optimal control problem (OCP) at each time step and
then implements the first instant of the solution in a receding horizon manner.

The MPC relies on good knowledge of the system it is controlling, and the system
model is very important. Full knowledge and 100% accurate models are however
extremely rare, and in practise the MPC must be able to account for uncertainties
and/or unmeasurable disturbances acting on the system. One way to systematically
address this issue is through robust MPC (RMPC), which consideres uncertainties
that are assumed to be deterministic and lie in a bounded set (Mesbah, 2016; Be-
mporad and Morari, 1999). The work on RMPC has been dominated by min-max
OCP formulations (Bemporad et al., 2003; Scokaert and Mayne, 1998), and relax-
ations such as tube-based MPC (Langson et al., 2004). The RMPC is designed so
that system constraints are fulfilled for all possible disturbances within the predic-
tion horizon, which often can lead to conservative results. A practical approach to
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achieve robust MPC which is not as conservative, is multi-stage MPC. The multi-
stage MPC is based on a representation of the evolution of the uncertainty as a
scenario tree (Lucia et al., 2013), where the uncertainty is assumed to be discrete.
The concept of future feedback is also included by allowing different inputs for dif-
ferent disturbance scenarios, reducing the conservativeness of the robust approach
(Lucia et al., 2013). Allowing feedback in the MPC results in what is known as
feedback MPC, and in the presence of uncertainty, feedback MPC is known to be
superior to nominal MPC, though resulting in a more complex OCP (Rawlings and
Mayne, 2009). An alternative approach to implementing feedback MPC is optimiz-
ing over control laws u = µ(x), rather than control actions (Rawlings and Mayne,
2009). This is used in e.g. tube-base MPC. For the general nonlinear case, there are
no guarantees that the multi-stage MPC results in robust constraints satisfaction
for scenarios that are not included in the scenario tree, but it has been shown to
give good results in practice (Lucia et al., 2013, 2014a).

An alternative to RMPC is stochastic MPC (SMPC), where the uncertainties are
considered to be of probabilistic nature. The probabilistic description of uncertain-
ties are used to define chance constraints (Li et al., 2002; Primbs and Sung, 2009)
which enable systematic use of the stochastic description of uncertainties to define
stochastic levels of acceptable closed-loop constraint violation (Mesbah, 2016), i.e.
a small constraint violation probability is allowed. Chance-constrained optimiza-
tion problems are hard to solve in general, and sample-based approximations such
as the scenario approach (Campi et al., 2009) has been presented as tractable alter-
natives. In the scenario approach only a finite number of uncertainty realizations
are considered, and the chance-constraint optimization problem is approximated by
replacing the chance constraint with hard constraints associated with the extracted
disturbance realizations only.

This work compares the performance of a stochastic nonlinear MPC (SNMPC)
inspired by Campi et al. (2009) and a multi-stage nonlinear MPC (MNMPC) similar
to the robustified NMPC in Ersdal et al. (2016b), for automatic generator control
(AGC) of the Nordic power system. AGC is currently facing challenges related to
stability and reliability due to more intermittent energy resources in the system as
well as an increasing power demand, and during the last decade there has been an
increasing interest in applying MPC for AGC, see for example Venkat et al. (2008);
Shiroei et al. (2013); Ersdal et al. (2016a,b). SMPC has also been investigated
as a method for reserve scheduling for power systems with wind power generation
(Rostampour et al., 2013). In this work, the uncertainty of the model is dominated
by the fluctuations in produced wind power, and the aim is to design an NMPC
for AGC which is robust against these fluctuations.

The remainder of this chapter is organized as follows. In Section 4.2 the system
model is presented, before the SNMPC and the MNMPC are discussed in Sec-
tion 4.3. In Section 4.4, the details of the case study are given, and the results
from simulations on the proxy model are presented. The concluding remarks are
summarized in Section 4.5.
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4.2 Model description

In large, complex power systems, such as the Nordic power system, one important
control aspect is load frequency control (LFC). This is a term applied to describe
the continuous operation of keeping the frequency of a power system stable, which
is strongly connected to the balancing of produced and consumed power. It is vital
for the power system that this power balance is maintained and that the produced
power matches the consumed power at all times, if not the generators could loose
synchronism and the power system would collapse.

AGC is the part of LFC that automatically controls the generator production
set points, and in Ersdal et al. (2016a) a NMPC is designed for AGC of the Nordic
power system. This is extended in Ersdal et al. (2016b) to a robustified NMPC
which is designed to be more robust against fluctuations in produced wind power, by
including worst-case scenarios of these. In both Ersdal et al. (2016a,b) the NMPC
is based on a simplified model, while tested on a more rigorous and realistic proxy
model. In this work, the same models will be used, however, only the equations
for the NMPC prediction model (PM) are repeated here. The interested reader is
referred to Ersdal et al. (2016b) for details of the SINTEF model, which is used as
a proxy for the physical system.

In the Nordic power system the hydro turbines account for nearly 100% of the
AGC, and so only the hydro turbine dynamics are included in the model. Other
turbines are included as constant power inputs. The PM model is divided into N
areas, and the equations for each area i are as follows

∆ ˙̄f i =
1

2H̄ i

(
∆P̄ i

m −∆P̄ i
D −∆P̄ i

tie

)
(4.1a)

∆ ˙̄qi = − 2

T̄ iwc̄
i2
ss/q̄

i
ss

(
∆q̄i − q̄i2ss

c̄i2ss
∆c̄i
)

(4.1b)

∆ ˙̄ξi2 = − 1

T̄ ir
∆ξ̄i2 + ∆c̄i (4.1c)

∆ ˙̄ξi3 = satiċ

(
1

T̄ ig

(
∆c̄ir −∆f̄ i +

r̄i

T̄ ir
∆ξ̄i2 −

(
r̄i + ρ̄i

)
∆c̄i
))

(4.1d)

∆ ˙̄P i
tie = 2π

(
∆f̄ i

N∑

j=1,j 6=i
T̄ij −

N∑

j=1,j 6=i
T̄ij∆f̄

j

)
(4.1e)

where

∆P̄ i
m = Āit

q̄i2ss
c̄i2ss

(
3∆q̄i − 2

q̄i2ss
c̄i2ss

∆c̄i
)

(4.1f)

∆c̄i = satic
(
∆ξ̄i3

)
(4.1g)

and ∆f̄ is the frequency, ∆P̄m the produced power, ∆P̄D the unpredicted power
imbalance, ∆P̄tie the total power flow from the area to all other areas, H̄ the inertia
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of the rotating masses of the area, T̄ij the synchronizing torque coefficient between
area i and j, ∆c̄ and ∆q̄ the changes in valve opening and water flow rate from
c̄ss and q̄ss, respectively, T̄w the water starting time of the hydro turbine, Āt a
factor that accounts for the different per-unit bases in the turbine and generator,
∆ξ̄2 the integral of the governor, ∆ξ̄3 the valve opening of the main servo motor of
the governor, T̄g the time constant of the servo motor, T̄r the time constant of the
transient droop, r̄ the transient-droop coefficient, ρ̄ the constant-droop coefficient,
∆c̄ the saturated valve opening, ∆c̄r the reference point for the valve opening, and
i = 1, . . . , N . All defined relative an initial steady state. The controllable input
to the system is the valve-opening setpoint for each area ∆c̄ir and the participation
factor for each generator j in area i, αij, and the disturbance acting on the system
is the unpredicted power imbalance for each area ∆P̄ i

D.

4.2.1 System disturbance

The only disturbance we consider is that of the unpredicted power imbalance ∆P̄ i
D.

The main components of the unpredicted power imbalance with regards to LFC
is the imbalance in production and consumption from intermittent generators and
loads, respectively. When dealing with power systems including a certain amount
of wind power, such as the Nordic system, one can for simplicity assume that ∆P̄ i

D

is dominated by the fluctuations in produced wind power. If, in addition, it is
assumed that the majority of wind power is situated in area p, ∆P̄D of all the
other areas can be neglected, and the model is affected by one single disturbance
∆P̄D = ∆P̄ p

D. With the Nordic network in mind, Denmark and South Sweden
contribute with about 80% of the total wind power production (Statnett, 2012).

The complete model is thus given by the nonlinear model

˙̄x = f̄ (x̄, ū, w̄) (4.2)

where x̄ =
[
∆f̄ i ∆q̄i ∆ξ̄i2 ∆ξ̄i3 ∆P̄ i

tie

]
, ū =

[
∆c̄ir αij

]
, w̄ = ∆P̄D, i = 1, . . . , N ,

j = 1, . . . ,mi
h, and mi

h is the number of hydro generators in area i. The system is
also subjected to both input and state constraints

ḡ (x̄, ū) ≤ 0 (4.3)

including generation constraints, generator rate constraints, and constraints on the
tie-line power transfer.

4.3 Controller

4.3.1 Disturbance modeling, deterministic vs stochastic.

When modeling a disturbance’s influence on a system, it is common to differentiate
between deterministic and stochastic modeling. A system disturbance w is in gen-
eral defined by an admissible set of disturbance signals w ∈ W , and the difference
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between deterministic and stochastic modeling is whether or not one attempts to
assign probabilities to the elements of the set W (Levine, 2010). With a determin-
istic disturbance model all realizations in W are bounded and considered equally
likely to occur, while they are appointed different probabilities P [w] and are not
necessarily bounded when applying a stochastic disturbance model.

The disturbance acting on the system presented in Section 4.2 is the unpredicted
power imbalance w̄ = ∆P̄D, which is assumed to be dominated by fluctuations in
produced wind power in area p. For each wind farm in area p, the probability
space of the future variation from the predicted power output can be estimated
(Holttinen, 2004), and from this one can find the probability space of the future
variation from the predicted power output for all wind farms in area p combined,
i.e. w̄ ∈ W , see Figure 4.2. The estimate of W is primarily based on weather
prognoses, which are stochastic by nature through the use of ensemble forecasting
and model output statistics (Barry and Chorley, 2003). Hence, it would in many
ways be natural to assign probabilities to the elements of W . However, it is not
necessarily the best choice when taking other aspects into account, and in this
chapter two scenario-based approaches are compared, the SNMPC that is based on
a stochastic disturbance model, and the MNMPC that is based on a deterministic
disturbance model. The aim of this chapter is to compare the two approaches,
and discuss their strengths and weaknesses in view of their performance in the case
study.

4.3.2 Stochastic NMPC

Given a system such as (4.2). If the disturbance signal w̄ is modeled as a stochastic
disturbance with probability space W and probability distribution P [w̄] over W ,
then it makes sense to replace hard constraints with chance constraints

Pw̄ [ḡ (x̄, ū) ≤ 0 ∀ t] ≥ 1− σ (4.4)

where σ ∈ (0, 1) is the admissible constraint violation parameter, t = 1, . . . , T ,
T is the optimization horizon, and Pw̄ denotes the dependency of ḡ (x̄, ū) on the
stochastic signal w̄. It basically states that the constraints are allowed to be violated
with a probability no higher than 1− σ.

In scenario-based approaches to stochastic NMPC (Campi et al., 2009), S inde-
pendent identically distributed samples of w̄ (w̄1, . . . , w̄S) are used to approximate
the chance constraint, where only the constraints corresponding to the extracted
disturbance realizations are considered. The result is the SNMPC which includes
a standard OCP with a finite number of constraints

min
ū,x̄j

S∑

j=1

J
(
x̄j, ū

)
(4.5a)

˙̄xj − f̄
(
x̄j, ū, w̄j

)
= 0 System model (4.5b)

ḡ
(
x̄j, ū

)
≤ 0 Constraints (4.5c)
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where j = 1, . . . , S, x̄j and w̄j are the state and disturbance associated with scenario
j, ū the input, and J(x̄j, ū) the following objective function.

J
(
x̄j, ū

)
=

∫ T

t=0

x̄jTQjx̄j + ūTRū dt (4.6)

For convex OCPs, the scenario approach can be used to find the number of
scenarios needed to guarantee that the optimal solution to (4.5), ū∗, satisfies all
constraints except a user-chosen fraction that tends rapidly to zero as S increases
(Campi et al., 2009). The OCP (4.5) in the SNMPC has a quadratic objective
function and linear state and input constraints. The constraints imposed by the
system model (4.5b) are however nonlinear because of the saturations in (4.1),
hence the OCP is non-convex. It can however be argued that this is a modest
nonlinearity, and we will apply the theory in Campi et al. (2009) as if we have a
linear model and hence a convex OCP.

Generating scenarios

The scenarios used in the SNMPC are found by applying random numbers to gen-
erate S independent and identically distributed disturbance realizations w̄j(t) =
∆P̄ j

D(t), j = 1, . . . , S, t = 0, . . . , T using the method in Cećılio et al. (2013) with
the probability space W as input. This method results in an unknown probability
distribution P , however, using the method of Campi et al. (2009) there is no need
to knowW or P explicitly, only S realizations fulfilling this probability distribution
is needed. When selecting the number of scenarios S, Theorem 1 in Campi et al.
(2009) states that given the number of optimization variables nu, if S fulfills

S ≥ 2

κ

(
ln

1

β
+ nu

)
(4.7)

the resulting solution to (4.5), ū∗, will satisfy the chance constraints (4.4) with a
probability no smaller than 1− β, except for at most an κ-fraction. Theorem 1 in
Campi et al. (2009) is developed with one common input ū for all scenarios, and so
ū is equal for all j in the SNMPC (4.5).

4.3.3 Multi-stage NMPC

In Ersdal et al. (2016b) an NMPC for AGC of the Nordic power system which
is robustified against fluctuations in produced wind power is presented. It is a
special case of the multi-stage NMPC (MNMPC) presented in Lucia et al. (2013),
and it is also inspired by the min-max feedback MPC presented in Scokaert and
Mayne (1998). In both Lucia et al. (2013) and Scokaert and Mayne (1998) the
concept of future feedback is included in the NMPC. The idea is that the future
control inputs can be adapted to the future disturbance measurements/estimates,
and that only decisions based on the same information must be equal (Lucia et al.,
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Figure 4.1: Scenario tree representation of the discrete uncertainty evolution for multi-stage
NMPC (Lucia et al., 2013).

2013). A scenario tree is presented in Lucia et al. (2013), where the uncertainty is
represented by discrete scenarios and the branches are combinations of values from
the assumed extreme values of the disturbance, see Figure 4.1. If future feedback
is not included, as is the case with the SNMPC, the input ū would have to be
equal for all disturbances and state evolutions in the scenario-tree. With a discrete
disturbance representation, as depicted in Figure 4.1, this means that

ū1
0 = ū2

0 = ū3
0 (4.8)

ū1
1 = ū2

1 = · · · = ū9
1. (4.9)

With the MNMPC, however, only the inputs originating in the same state must be
equal, i.e.

ū1
0 = ū2

0 = ū3
0 (4.10)

ū1
1 = ū2

1 = ū3
1 (4.11)

ū4
1 = ū5

1 = ū6
1 (4.12)

ū7
1 = ū8

1 = ū9
1 (4.13)

Hence, the future inputs are allowed to change in accordance with new information
received through feedback. This increases the flexibility of the NMPC and reduces
the conservativeness of the robust approach (Lucia et al., 2013).

The robustified NMPC from Ersdal et al. (2016b) is from now on referred to
as the multi-stage NMPC (MNMPC), and for this three disturbance realizations
are considered; one following the positive border of W , one following the negative
border of W , and one neutral in the middle. Compared to the scenario tree in
Figure 4.1, this means that three paths are included: w̄1 = {w̄1

0, w̄
1
1, w̄

1
2, . . .}, w̄2 =

{w̄0
2, w̄2

1, w̄
2
2, . . .}, and w̄3 = {w̄3

0, w̄
3
1, w̄

3
2, . . .}. These corresponds to w̄p, w̄z, and
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Figure 4.2: Sketch of how the MNMPC works. For simplicity of illustration, ū is considered to be
scalar.

w̄n in Figure 4.2. In accordance to Lucia et al. (2013), the first element of ū must
be equal for all three scenarios (ūp0 = ūz0 = ūn0 ), after this, they are free to vary in
manners optimal for their designated system states, see Figure 4.2.

The OCP solved at each time instant in the MNMPC is then

min
ūj ,x̄j

∑

j={p,z,n}
J
(
x̄j, ūj

)
(4.14a)

˙̄xj − f̄
(
x̄j, ūj, w̄j

)
= 0 System model (4.14b)

g̃ (x̄j, ūj) ≤ 0
ūz0 = ūp0 = ūn0

}
Constraints (4.14c)

where j = {p, z, n}, x̄j, w̄j, ūj the state, disturbance and input associated with
scenario j, and J(x̄j, ūj) the following objective function.

J
(
x̄j, ūj

)
=

∫ T

t=0

x̄jTQjx̄j + ūjTRjūj dt (4.15)

4.4 Case Study

The SNMPC is tested on the SINTEF Nordic power system test bed from Ersdal
et al. (2016b) and compared against the MNMPC. The PM is chosen to have 2 areas,
hence N = 2. One area covers South Sweden and Eastern Denmark (area A), and
the other covers Norway, North Sweden and Finland (area B), and according to the
assumptions made in Section 4.2, ∆P̄B

D = 0 and ∆P̄D = ∆P̄A
D . There is also a tie

line between the two areas which represents the total power flow between them, and
has a positive direction from area B to area A. The extended Kalman filter (EKF)
presented in Ersdal et al. (2016b) is also applied here to close the control loop. The
proxy system and both NMPCs were implemented in Python using Casadi, where
the continuous time OCPs (4.5) and (4.14) are discretized and transformed into
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nonlinear programs. Collocation has been used for discretization, and the OCPs
are solved using the interior point optimizer IPOPT (Wächter and Biegler, 2006),
using exact Hessian.

In order to obtain acceptable probability results in (4.7), the number of scenarios
in the SNMPC-OCP should approach S = 1000. With the hardware and software
used in this work, such a large number of scenarios imposes computer memory
issues that are difficult to handle. This seems to be a problem for others who have
implemented stochastic NMPC as well. In Rostampour et al. (2015), for example,
it takes more than 5 days to solve the OCP with S = 100, while the sampling
time of the NMPC is 15 s. We therefore limited us to S = 65. It is seen through
simulations that the behavior of the SNMPC in the test case does not change much
from S = 10 to S = 65, and so it is assumed that for the purpose of comparison with
the MNMPC, the simulation results from S = 65 can be used as a representation
of a stochastic NMPC scheme with more realistic values for β and κ.

In order to compare the performance of the two controllers, a control performance
measure (CPM) is applied. It is inspired by the CPS1 and CPS2 performance
criteria used by the North American electric reliability corporation (NERC) (Gross
and Lee, 2001), and it basically measures the average frequency deviation: first ∆f̄
is averaged over windows of 30 s to filter out fast fluctuations, then the CPM is
found by again averaging ∆f̄ over all these windows.

4.4.1 Tuning the NMPC

The main tuning variables for the NMPCs are the prediction horizon T and the
objective function J(·).

J
(
x̄j, ūj

)
=

∫ T

t=0

x̄jTQjx̄j + ūjTRjūj dt (4.16)

For both the SNMPC and the MNMPC, Q is real, symmetric and positive semidef-
inite, while R is real, symmetric and positive definite. The non-zero elements of
Q are chosen so that the deviation in overall system frequency is punished (Ers-

dal et al., 2016b): q11 = γ
(H1)

2

(H1+H2)2
, q66 = γ

(H2)
2

(H1+H2)2
, q16 = q61 = γ H1H2

(H1+H2)2
,

where γ = 105. The matrix R is set to R = diag (ηmbase), where mbase is a
vector containing the hydro generators’ base rating, and η = 0.1. For the MN-
MPC Qp = Qn = 0.1Qz in order to place more emphasis on deviations in xz.
The three systems are all punished equally when it comes to deviations in input:
Rz = Rp = Rn. For the SNMPC all scenarios have the same Q and R.

The control horizon T is 3 minutes for both NMPCs, a decision based on a
compromise between system time constants and complexity, and the time step of
the NMPCs is 10 s in order to match the control signal dispatching in the system.
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Figure 4.3: Case A: Frequency deviation ∆f for MNMPC and SNMPC.

Figure 4.4: Case A: Tie-line power flow ∆Ptie for MNMPC and SNMPC.

4.4.2 Simulation results

Case A

Both the SNMPC and the MNMPC are simulated with a disturbance w̄ = w̄n, see
Figure 4.2, and a maximum transfer limit from area B to area A at ∆P̄tie,max = 2000
MW. The resulting ∆f and ∆Ptie (without bar notation, as they are simulation-
results from proxy model) can be seen in Figure 4.3 and 4.4. They show that the
resulting frequency deviation and tie-line power flow is very similar in the two cases.
Both controllers brings the frequency back to 50 Hz while keeping a clearance to
the tie-line limit of 2000 MW in case of new disturbances. This is supported by the
CPM given in Table 4.1. It is assumed that the similarity in behavior will increase
concurrently with S, which makes sense as w̄p and w̄n defines the boundaries for
W and hence for the scenarios w̄j. When the number of scenarios S is increased,
so will the scenario’s coverage of W , resulting in a SNMPC which must take into
account disturbance scenarios similar to w̄n and w̄p. The SNMPC will also naturally
place more emphasis on the average disturbance scenario through a higher scenario
density near the center of W , while the MNMPC does the same by applying a

Table 4.1: CPM and average optimization time Topt for Case A.

Controller CPM (·10−5) Topt

Multi-stage 11.18 1.98 s
Stochastic 11.23 40.18 s
Difference +0.5% +1910%
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higher weight to Qn in the objective function.
However, as seen in Figure 4.3 and 4.4, the SNMPC results in a more “noisy”

system behavior than the MNMPC. There are two main reasons for this. First of
all, the scenarios used in the SNMPC fluctuate more than the smooth disturbance
scenarios used in the MNMPC. These high frequency fluctuations will excite the fast
system dynamics in the predictions, resulting in a more fluctuating and conservative
controller. Secondly, the fact that the SNMPC has one common optimized input
for all scenarios forces the input to fluctuate in order to fulfill system constraints
for all scenarios, which again excites the dynamics of the actual system.

Case B

In Case B the transfer capacity on the tie line is changed so that the transfer window
is more narrow than in Case A. The limits are now set to ∆P̄tie,min = −100 MW
and ∆P̄tie,max = 1000 MW, resulting in a transfer window of 1100 MW. Figure 4.5
shows the predictions associated with w̄p and w̄n from the MNMPC-optimization at
t = 0, and Figure 4.6 shows the predictions associated with two of the disturbance
realizations from the last attempt at solving the SNMPC-optimization at t = 0.

In this case, the SNMPC was not able to find a feasible solution, and the reason
for this is illustrated in Figure 4.6. It shows that the SNMPC is simply not able
to find a common input which fulfills the system constrains for all disturbance
scenarios over the entire prediction horizon. Up until approximately 2.5 minutes
into the prediction horizon, the tie-line power transfer associated with w̄31 and w̄40

are kept at, or within, the transfer limits by keeping the total input relatively low.
After this, however, it seems that some adjustments has to made, and the input is
increased, likely as an effort to keep ∆P̄ 31

tie within the lower transfer limit. This in
turn causes ∆P̄ 40

tie to increase, and violate the upper transfer limit, as seen in the
zoomed square of Figure 4.6(a).

The MNMPC is on the other hand able to find a feasible solution, and even
though both ∆P̄ p

tie and ∆P̄ n
tie stay at the limits, they never violate them. Figure

4.5(b) shows how the inputs associated with w̄p and w̄n are free to vary after the
first two time steps (this is increased from one because of delays connected to the
EKF), and this is the reason why the MNMPC is able to find a feasible solution
while the SNMPC is not.

4.4.3 Discussion

The benefit of the SNMPC is clearly the stochastic guarantees for constraint ful-
fillment given by Theorem 1 in Campi et al. (2009). With S ≈ 1000, it would be
guaranteed that with no probability smaller than 0.99, ū∗ would satisfy all system
constraints for all w̄ ∈ W except for a small fraction of them whose probability is
smaller than or equal to 0.07. These are theoretical guarantees which cannot be
made for the MNMPC. They are however made under unrealistic assumptions such
as perfect prediction model, and the practical implications are therefore arguable.
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(a) Predicted tie-line power flow associated with w̄p and w̄n.

(b) Sum of predicted input associated with w̄p and w̄n.

Figure 4.5: Case B MNMPC: Predicted input and tie-line power flow.

(a) Predicted tie-line power flow associated with w̄31 and w̄40.

(b) Sum of predicted input for both w̄31 and w̄40.

Figure 4.6: Case B SNMPC: Predicted input and tie-line power flow.
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It is the authors’ opinion that the constraints of the control problem presented
in this chapter are of such a nature that the practical difference with respect to
constraint fulfillment is not prominent. However, it should be mentioned that the
SNMPC does have the advantage of freedom to tune the conservativeness through
the choice of η and β (and hence S), which is not as easy for the MNMPC.

There are also some issues with the tractability of the SNMPC as S increases.
The MNMPC considers much fewer scenarios than the SNMPC, and therefore solves
a much smaller OCP. This is reflected in the maximum optimization time in Case
A, which was 2.1 s and 59.8 s for the MNMPC and the SNMPC, respectively, with
an average optimization time of 2.0 s and 40.2 s. If a successful simulation of
SNMPC with S = 1000 could be conducted, the optimization time would increase
even further, and with a time step of 10 s, this means that the MNMPC is able to
run in real time, whereas the SNMPC is not. It can be argued that some of these
tractability issues can be resolved using more memory etc., however, the MNMPC
will still solve the OCP in less time.

Another issue is the feasibility and recursive feasibility of the OCP. For both
the MNMPC and the SNMPC there are no guarantees for neither feasibility nor
recursive feasibility. However, in the MNMPC the optimization variable ū for
each disturbance realization {w̄z, w̄p, w̄n} only needs to be equal for the first in-
stant, before they are free to do what is optimal for their associated system states
{x̄z, x̄p, x̄n}, whereas for the SNMPC ū is equal for all disturbance realizations and
their associated system states. This complicates matters for the SNMPC with re-
gards to feasibility, as seen in Case B. When the scenarios included in the SNMPC
results in diverging system behavior and thereby diverging inputs needs, it becomes
increasingly difficult as S increases to find one common input to satisfy them all. It
could be argued that feedback could be included in the SNMPC as well, this would
however increase the already prominent tractability issues. If each of the scenarios
of the SNMPC were to have their own input, the size of the OCP would increase
substantially. In addition, since Theorem 1 from Campi et al. (2009) is developed
with one common input for all scenarios, it may not hold if feedback was included.
When it comes to recursive feasibility, the MNMPC results in a standard, nominal
NMPC, and recursive feasibility can be guaranteed using classical methods such
as terminal constraint regions which are control invariant (Maiworm et al., 2015),
provided that such terminal ingredients can be calculated a priori. In the general
nonlinear case it is however very challenging to find the necessary terminal ingredi-
ents, and if they can be found, they often lead to overly conservative control laws
(Lucia et al., 2014b).

The MNMPC and the SNMPC are based upon two different disturbance modeling
paradigms; deterministic and stochastic. And even though it could be argued that
it is intuitive to view the future variation from the predicted wind-power production
as stochastic, the robust control issue in this work is mainly handling the worst case
disturbance, since handling of the worst-case disturbance implies that less severe
disturbances can be handled as well. The case study presented in this chapter
illustrates that the SNMPC and the MNMPC have some similarities in practice,
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however, the MNMPC is less conservative and less likely to encounter feasibility
issues because it takes into account feedback in its predictions.

4.5 Conclusion

This chapter presents a stochastic NMPC (SNMPC) for frequency control of the
Nordic power system, and compares it with the multi-stage NMPC (MNMPC)
presented in Ersdal et al. (2016b). The nonlinearities of the SNMPC are very
modest, and the theory on stochastic assurance of constraint fulfillment from Campi
et al. (2009) is used as if the optimal control problem of the SNMPC was convex.

Simulations on a proxy of the Nordic power system show that the SNMPC and
the MNMPC behaves similarly, and it argued that the SNMPC and the MNMPC
share some properties in practice. However, the MNMPC does not give stochastic
guarantees for constraint fulfillment, such as the SNMPC. The practical conse-
quences of this are unclear, especially given that these guarantees does not take
into account other unknown disturbances and model errors. On the other hand,
the MNMPC is less likely to encounter infeasibility, and there are also tractability
and real-time issues with the SNMPC which are not seen in the MNMPC.
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Chapter 5

Coordinated control of multiple HVDC links using
backstepping

The work in this chapter was published in Ersdal et al. (2012).

Summary

This chapter regards a power system containing multiple High Voltage
Direct Current (HVDC) links. The topic is to exploit the HVDC lines’
ability to control the power supplied by them to increase the stability
of the system. The nonlinear controller-design method backstepping is
applied to design a controller for the direct current (DC) through each
HVDC link. The simulation results show that the controller increases
both transient stability and damping when some non-permanent errors
are imposed on the system.

5.1 Introduction

The electric power systems in Europe today are complex dynamical systems of
high dimension consisting of interconnected generators, transmission lines, loads
etc. In order to keep the power supply safe and stable, it is important that all
the generating units of an alternating current (AC) power system operate at the
same frequency. The recent and ongoing liberalization of the energy market as
well as increasing demand has in some cases reduced the stability margin of the
power systems (Morison et al., 2004), and it has become important to augment
their stability. Some of the possibilities for improving the power system stability
are:

1. building new transmission lines,

2. installing new generation capacity,

3. better utilize the existing equipment in the power system.

High Voltage Direct Current (HVDC) links are in general used to transmit large
amounts of energy over long distances. Norway is for example connected to the
Netherlands and Denmark with underwater HVDC cables. But HVDC lines also
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have the ability of direct control of its power flow (Casazza and Delea, 2003), and
the current through already existing HVDC lines can therefore serve as a control
input to help stabilize the AC network.

Improving system stability using a single HVDC link has been discussed in several
papers, examples being Smed and Andersson (1993) and Li (2003). Applying more
than one HVDC link for stability improvement allows for coordinated control of
the HVDC links, and perhaps improving the stability even more (Eriksson et al.,
2010). Coordinated control of several HVDC links is discussed in e.g. Eriksson
et al. (2010), Eriksson and Knazkins (2008) and Pilotto et al. (1995).

Even though the current through the HVDC lines can be directly controlled,
there are of course some restraints on both the amount of current that can pass,
as well as the rate of change. The limitation on the power transmission capac-
ity of HVDC lines is dominated by the maximum allowed conductor temperature
(Weimers, 2000). The NorNed transmission line between Norway and the Nether-
lands, for example, has a capacity of 700 MW which is transferred at 450 kV. This
gives a maximum current of approximately 780 A.

The problem investigated in this chapter is inspired by the work in Eriksson et al.
(2010) on utilization of HVDC links to enhance system stability and dampen system
oscillations. A major difference is that here the backstepping method will be applied
in designing the nonlinear controller, instead of input-output exact linearization.
Backstepping allows reduced control effort by not canceling damping terms.

The outline of the chapter is as follows. In Section 5.2 an overall system descrip-
tion is given, and the control problem is defined. Section 5.3 is devoted to designing
the state feedback law using the backstepping method. The specific network used
for simulation is presented in Section 5.4, along with the simulation results. These
are then discussed in Section 5.5 and the conclusion is drawn in Section 5.6.

5.2 System description

Consider two separated power systems connected by p HVDC links. Each of the
two power systems contains m and n nodes, respectively. Each of these nodes is
connected to a synchronous generator and a load, which represents the equivalent
of a larger, more complex network. Each of these separated power systems can
therefore represent systems of various size and complexity.

The swing equation for generator k is given as

δ̇k = ωk (5.1a)

ω̇k =
1

Hk

(
Pmk −Re

(
EgkI

∗
gk

)
−Dkωk

)
(5.1b)

where δk is the rotor angle and ωk the rotor angular velocity, both given in reference
to the 50 Hz reference frame, Pmk the mechanical power produced by the turbine,
Pek = Re

(
EgkI

∗
gk

)
the electrical power acting on the rotor, Egk the voltage of the
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internal bus, Igk the current from generator k, Hk the moment of inertia, and Dk

the damping coefficient.

From (5.1), it can be shown that the set of nonlinear differential equations for
several generators connected by a power grid and HVDC lines can be written

δ̇ = ω (5.2a)

ω̇ = ψ (δ, ω) + φ (δ) IDC (5.2b)

where δ =
[
δ1 · · · δm+n

]T
, ω =

[
ω1 · · · ωm+n

]T
, and IDC is a p×1-vector con-

taining the current through the HVDC lines. The connection between IDC =[
IDC,1 · · · IDC,p

]T
and the currents from the generators IG =

[
Ig1 · · · Ig(m+n)

]T
,

is given by the algebraic equations for the network, and the procedure is explained
in more detail in Section 5.4.

Since the networks are connected through DC lines, the frequencies can be dif-
ferent at each network. However, for stability reasons, they should be equal for the
generators working together in the same AC grid. The purpose of the controller
designed here is to make sure that this is fulfilled by asymptotically stabilizing the
generator frequency differences.

The system states to be stabilized for each AC network are therefore chosen as

ηi1 = δi1 − δi2
...

ηis−1 = δi1 − δis
ζi1 = ωi1 − ωi2

...

ζis−1 = ωi1 − ωis

where i = {1, 2} specifies the AC network, s = {m,n} is the number of nodes in
the AC network, and δij and ωij are associated with the generator at node ij. The
system dynamics for the two AC networks combined then become

η̇ij = ζij

ζ̇ij = Ψij (ηij, ζij, t) + Φij (ηij, t) IDC

With η =
[
η11 · · · η1m η21 · · · η2n

]T
and ζ =

[
ζ11 · · · ζ1m ζ21 · · · ζ2n

]T
,

we can collect

η̇ = ζ (5.3a)

ζ̇ = Ψ (η, ζ, t) + Φ (η, t) IDC (5.3b)

87



Chapter 5 Coordinated control of multiple HVDC links using backstepping

where

Ψ (η, ζ, t) =




Ψ11 (η, ζ, t)
...

Ψ1m (η, ζ, t)
Ψ21 (η, ζ, t)

...
Ψ2n (η, ζ, t)




, Φ (η, t) =




Φ11 (η, t)
...

Φ1m (η, t)
Φ21 (η, t)

...
Φ2n (η, t)




.

It is not possible to write ζ̇ merely as a function of η, ζ and IDC , there will also be
dependencies on the original system variables ω and δ. This is solved by regarding
δ and ω as time varying signals, hence the time-dependence in the system.

Since η does not necessarily have an equilibrium at the origin, a change of vari-
ables is made so that η̄ = η − η0:

˙̄η = ζ (5.4a)

ζ̇ = Ψ (η̄ + η0, ζ, t) + Φ (η̄ + η0, t) IDC (5.4b)

where η0 is the equilibrium of (5.3a) and

Ψ (η̄ + η0, ζ, t) = ΨR (η̄ + η0, ζ, t)−Dζ (5.5)

whereDζ contains the “good” damping terms of Ψ (η̄ + η0, ζ, t), and ΨR (η̄ + η0, ζ, t)
contains the remaining elements. The good damping terms consists of terms that
provides desirable damping to the system states. The matrix D is a r×r diagonal
matrix containing combinations of Dk

Mk
, where r = m + n. The equilibrium of ζ is

ζ = 0, and the system (5.4) therefore has its equilibrium at the origin.

Assumption 1. It is in the following assumed that Φ (η̄ + η0, t) is quadratic, that
is, ζ and IDC have the same dimension, and invertible.

This assumption is restrictive with regards to the configuration of the power
system, and future work should include relaxing this assumption and considering a
more general network configuration.

5.3 Controller Design

Backstepping is a recursive procedure for designing nonlinear controllers. It requires
full state feedback, and it is therefore assumed that all system states are either
measured by phasor measurement units (PMU) or that they are estimated by a
state estimator.

Consider systems on the form

η̇ = f (η) + g (η) ζ (5.6a)

ζ̇ = u (5.6b)
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The idea behind backstepping is to break the design problem for the full system
into a sequence of design problems for lower order subsystems (Krstić et al., 1995).
First ζ is viewed as a virtual input to stabilize η, then the stabilizing virtual input
is “backstepped” through the integrator to find the actual input u which stabilizes
both η and ζ.

Applying backstepping to systems on the form (5.6) is referred to as integrator
backstepping (Khalil, 2002). Backstepping may also be applied to systems on the
more general form

η̇ = f (η) + g (η) ζ (5.7a)

ζ̇ = fa (η, ζ) + ga (η, ζ)u (5.7b)

where η is known as the internal dynamics and ζ as the external dynamics. The
external dynamics must have the same dimension as the input u, and it is convenient
that the equilibrium point of the system is at the origin.

Since (5.4) is on this form, with IDC as input u, we can design a controller for it
using backstepping. This is summarized in the following Theorem, where we avoid
canceling the “good” damping terms.

Theorem 1. Under Assumption 1, the origin of (5.4) can be asymptotically stabi-
lized by letting

IDC = Φ−1 (η̄ + η0, t)
[
−KT

2 z − η̄ −ΨR (η̄ + η0, ζ, t)−K1ζ
]

(5.8)

where z = ζ + K1η̄ and K1 and K2 are positive definite, constant matrices chosen
such that

Q =

[
K1 −0.5DK1

−0.5DK1 DT +K2

]
(5.9)

is positive definite.

Proof. Consider the Lyapunov function

V = 0.5η̄T η̄ + 0.5zT z (5.10)

where

z = ζ − γ (η̄) (5.11)

γ (η̄) = −K1η̄ (5.12)

Applying the controlled input IDC in (5.8) on the system (5.4) results in the fol-
lowing time derivative of the Lyapunov function

V̇ = −
[
η̄T zT

] [ K1 −0.5DK1

−0.5DK1 DT +K2

] [
η̄
z

]
(5.13)

= −qTQq < 0 (5.14)

Thus with (5.8) as input and (5.10) as Lyapunov function, it is clear that
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Figure 5.1: Power system consisting of four synchronous machines and two HVDC links (Eriksson
et al., 2010).

1. V (η̄, z) is positive definite and decrescent with respect to (η, ζ),

2. V̇ (η̄, z) is negative definite with respect to (η, ζ),

and according to Theorem 4.9 in (Khalil, 2002), the origin of (5.4) is uniformly
asymptotically stable.

5.4 Network example

Both the network model and the HVDC model described in the following are mainly
based on those presented in Eriksson et al. (2010), but differ somewhat in presenta-
tion. This section also serves to detail the modeling procedure outlined in Section
5.2.

The network used for testing the controller is shown in Figure 5.1. It consists
of four synchronous generators, four loads, four transmission lines and two HVDC
links. This network model is a special case of the model presented in Section 5.2,
with p = m = n = 2. The detailed model of the HVDC lines and the AC network
are presented in the following.
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5.4.1 HVDC model

As in Eriksson et al. (2010), the HVDC lines are of conventional type, meaning that
reactive power is consumed by them and that the active power through them can
be controlled via the DC current. It is assumed that the HVDC lines are lossless
and have ideal control capabilities. It is also assumed that the power factors on
both the inverter and rectifier side are equal. Positive direction for the current
through HVDC link 1 and 2 are from node 1 to node 2 and from node 4 to node
3, respectively. This means that the current injected from the HVDC links have
positive sign at node 2 and 3 and negative sign at node 1 and 4 of Figure 5.1.

Assuming that the absolute value of the node voltages at each side of the HVDC
links are approximately equal, the injected current at node k by HVDC link l is
given as

IHVDC,kl = IDC,kl · ejθk (5.15)

where θk is the voltage angle at node k, and IDC,l is the controlled DC current
through HVDC link l. Assuming that node k is directly connected to HVDC link
l, then IDC,kl = −IDC,l if node k is at the rectifier side, and IDC,kl = IDC,l if node
k is at the inverter side. If node k and HVDC link l are not directly connected,
IDC,kl = 0.

Defining IHVDC,k as the total current injected at node k by both HVDC-links,
leads to the following

IHVDC =




IHVDC,1
IHVDC,2
IHVDC,3
IHVDC,4


 =




−eiθ1 0
eiθ2 0
0 eiθ3

0 −eiθ4


 IDC (5.16)

where IDC =
[
IDC,1 IDC,2

]T
.

5.4.2 Network model

The algebraic equation for the current flow in the network is found using the internal
node representation, where it is assumed that the loads in the network are constant
resistances. Defining all currents as positive into node k, Kirchoff’s current law
gives

Igk + ILk + IHVDC,k +
n+m∑

l=1

YklUl = 0 (5.17)

where Igk is the current injected by generator k, ILk the current from load k, IHVDC,k
the current injected by the HVDC-links, Ykl the systems admittance matrix at
position (k, l), Ul the voltage at node l, and n + m the number of nodes in the
network.

The current injected from generator k into node k is given by

Igk =
Egk − Uk
jx′dk

, ∀ k = 1, . . . , 4 (5.18)
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where Egk is the voltage at the internal bus of generator k, and x′dk is the generators
transient reactance. The current from load k into node k is given by

ILk = −Uk
Rk

(5.19)

where Rk is the load resistance.

Combining (5.17)-(5.19) gives the following compact equation

[
IG

IHVDC

]
=

[
YA YB
YC YD

] [
E
U

]
(5.20)

where IG =
[
Ig1 . . . Ig4

]T
. Eliminating U from the equation yields

IG =
(
YA − YBY −1

D YC
)
E + YBY

−1
D IHVDC

= YRNME + YHVDCIHVDC (5.21)

Replacing Igk in (5.1) with (5.21), and assuming that the absolute value of the
generator’s internal voltage |Egk| is constant, the system can be written as a set of
nonlinear differential equations ẋ = h (x, IDC):

δ̇1 = ω1 (5.22)

δ̇2 = ω2 (5.23)

δ̇3 = ω3 (5.24)

δ̇4 = ω4 (5.25)

ω̇1 =
1

M1

[
Pm1 −D1ω1 −G11E

2
g1 (5.26)

− Eg1Eg4 (B14 sin (δ1 − δ4) +G14 cos (δ1 − δ4))

+ Eg1 (F11 cos (δ1 − θ1) +K11 sin (δ1 − θ1)) IDC,1

+ Eg1 (F14 cos (δ1 − θ4) +K14 sin (δ1 − θ4)) IDC,2
]

ω̇2 =
1

M2

[
Pm2 −D2ω2 −G22E

2
g2 (5.27)

− Eg2Eg3 (B23 sin (δ2 − δ3) +G23 cos (δ2 − δ3))

− Eg2 (F22 cos (δ2 − θ2) +K22 sin (δ2 − θ2)) IDC,1

− Eg2 (F23 cos (δ2 − θ3) +K23 sin (δ2 − θ3)) IDC,2
]

ω̇3 =
1

M3

[
Pm3 −D3ω3 −G33E

2
g3 (5.28)

− Eg3Eg2 (B32 sin (δ3 − δ2) +G32 cos (δ3 − δ2))

− Eg3 (F32 cos (δ3 − θ2) +K32 sin (δ3 − θ2)) IDC,1

− Eg3 (F33 cos (δ3 − θ3) +K33 sin (δ3 − θ3)) IDC,2
]
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ω̇4 =
1

M4

[
Pm4 −D4ω4 −G44E

2
g4 (5.29)

− Eg4Eg1 (B41 sin (δ4 − δ1) +G41 cos (δ4 − δ1))

+ Eg4 (F41 cos (δ4 − θ1) +K41 sin (δ4 − θ1)) IDC,1

+ Eg4 (F44 cos (δ4 − θ4) +K44 sin (δ4 − θ4)) IDC,2
]

where YRNM (k, l) = Gkl + jBkl, and YHVDC (k, l) = Fkl + jKkl, which easily can be

written as (5.2). The system is then written as (5.4) with η =
[
δ2 − δ3 δ1 − δ4

]T

and ξ =
[
ω2 − ω3 ω1 − ω4

]T
.

For this system, the “good” damping terms in D of (5.5) is equal to

D =

[D2

M2
+ D3

M3
0

0 D1

M1
+ D4

M4

]
(5.30)

These contribute to stabilization, and the controller should therefore not cancel
them.

Because of IHVDC,kl’s dependency on θk, it is not possible to entirely eliminate
the nodal voltages from the differential equations, but

IG = YAE + YBU (5.31)

from (5.20) may be applied to find U at each time step by knowledge of the previous
IG and E:

U(t) = Y −1
B (IG(t− 1)− YaE(t− 1)) (5.32)

5.4.3 Simulation

In this section the controller is tested with different types of faults imposed on the
system. None of these faults are known beforehand. During the simulations, Pmk is
kept constant for all generators, and the tuning parameters were in all four cases set
to K1 = 70I and K2 = 160I, where I is the 2×2 identity matrix. The maximum
current through the HVDC lines were set to be 1.5 pu.

Case A

First the controller is tested with no model-plant mismatch, and initial conditions
outside the equilibrium. The simulation results with and without controller can be
seen in Figure 5.2, and it shows that the controller clearly dampens the oscillations
in a satisfying manner, and makes the system states converge.

Case B

Second, the controller is tested with the system fault identified as Case III in
Eriksson et al. (2010): Load 4 is doubled for 100 ms at t = 0.5 s, while the controller
is based on the nominal load. Figure 5.3 shows simulations with initial condition
at the equilibrium, with and without controller. Clearly the controller handles the
fault satisfyingly, by both decreasing the amplitude and eliminating oscillations.
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Figure 5.2: Simulation results with error from Case A: Initial conditions outside the equilibrium.
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Figure 5.3: Simulation results with error from Case B: Load 4 is doubled for 100 ms.
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Figure 5.4: Simulation results with error from Case C: Three phase to ground error in line 4.

Case C

Next, a fault similar to that identified as case II in Eriksson et al. (2010) is intro-
duced to the system. Here, line 4 has a three phase to ground error at t = 0.5 which
lasts for 130 ms. The simulation results with and without controller, and with ini-
tial conditions at the equilibrium can be seen in Figure 5.4. The open-loop system
diverges, but also here the controller performs well and stabilizes the system.

Case D

Last the controller was tested with a permanent fault of 5% increase in the load at
node 4 occuring at t = 0.5 s. Since the fault is permanent the system’s equilibrium
is altered. This means that after t = 0.5 s, not only is the controller based on the
wrong system model but it is also trying to control the system to a state that is no
longer its equilibrium. Figure 5.5 shows the results from the simulations with and
without controller, and with initial conditions at the equilibrium. It shows that
the controller manages to stabilize the system, however at an equilibrium different
than that of the non-faulty system.

5.4.4 Current through the HVDC lines

For all the examples given above, the value of IDC is saturated due to the limitation
on power transmission capacity. If one were to simulate without these limitations,
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Figure 5.5: Simulation results with error from Case D: Permanent 5% increase in load 4.

one would see that the maximum value of IDC is dominated by current peaks,
often occurring during steady state. These peaks can also be seen when studying
the input during simulations including saturation, but naturally their amplitude is
then equal to the saturation limit. See for example Figure 5.6, which displays IDC
for Case B. It can be seen from Figure 5.3 that the system is at steady state from
t ≈ 0.8 s, and yet there are current peaks in the control signals at t ≈ 1.12 s and
t ≈ 1.28 s.

5.5 Discussion

When the faults imposed on the system only last for a short while, and the amount
of time where the controller is based on the wrong system is relatively short, the
controller both increases transient stability and dampening of the system. This is
because even though the Lyapunov function may grow during the fault, it is again
guaranteed to sink from the time the fault has passed, hence bringing the system
back to steady state.

When relatively small permanent faults are present, the controller brings the
system to a new steady state. The reason for this is that the controller does not
include integral control, resulting in a steady state error in η. However, for our
control objective it does not matter where the equilibrium of η is.

There is no guarantee that the controller will increase stability in the case of
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Figure 5.6: IDC from simulations with the error from Case B: Load 4 is doubled for 100 ms.

arbitrarily large permanent faults. In order for the controller to handle larger
permanent faults, the model should be properly updated when loads or network
configuration change.

Due to the saturation in IDC , it sometimes tends to rapidly shift between ±σ
when stabilizing the system, where σ is the saturation limit. Since there in real life
are limits on the current’s rate of change as well, these instant shifts will rather be
steep slopes limited by the current’s maximum rate of change. How this will affect
the controller is not investigated here.

The peaks occurring during steady state in IDC , seen in Figure 5.6, arise due
to singularities in Φ (η̄ + η0, t). These singularities appears at arbitrary moments
in time, often during steady state, because of the changes in the generator angles
δk(t). This means that Assumption 1 does not hold for these short moments. The
peaks do not affect the system states when the system is at steady state. However,
when the systems’ equilibrium is altered due to permanent faults, and it is at steady
state outside the origin, they lead to fluctuations from the equilibrium.

This is a significant problem with the presented controller. Even with saturation,
eliminating the high amplitude of these peaks, they still cause trouble especially
when there are permanent faults in the system. This is therefore an issue that
needs to be further addressed, and is an important part of the further work that
may be done with regards to this controller.

A nice feature of the presented controller which is not illustrated in the simula-
tions, is that when IDC does not reach saturation, only the part of the system that
is subjected to fault is affected by the controller. The reason for this is simply that
in the closed-loop dynamics, η̇1 and ζ̇1 are functions of η1 and ζ1 and η̇2 and ζ̇2 are
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functions of η2 and ζ2. This means that the rest of the systems stays at steady
state during a fault, while the “subsystem” where the fault occurred deals with the
stabilization.

5.6 Conclusion

The controller presented in this chapter is proven to asymptotically stabilize the
system in theory, as long as the controller is based on the correct system. Simula-
tions confirm that as long as the time the controller is based on an incorrect system
is limited, it increases the stability of the system and brings it back to steady state.

It is also shown that during small permanent faults, the controller increases
stability, but brings the system to a new equilibrium. However, it cannot necessarily
handle arbitrary large permanent changes in the system. To address this issue the
controller must work together with a good model updater, so that the model is
updated when larger changes in loads or network configuration appears.

The main challenge of the presented controller is however the restrictive nature
of Assumption 1, and the fact that the controller becomes singular for some combi-
nations of generator angles. These singularities in the controller is an issue which
must be resolved in order for the controller to function in practice. Another prob-
lem with Assumption 1 is of course that it confines the configuration of the network
it may be applied on, demanding that the number of external variables ζ and the
number of HVDC lines are equal.
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Chapter 6

Concluding remarks

In this thesis, the advanced control method known as model predictive control
(MPC) is used for automatic generator control (AGC) of the Nordic power system.
In Chapter 1 the composition of the Nordic power system was presented, and the
factors identified by the Norwegian transmission system operator (TSO) as the
main challenges with regards to load frequency control (LFC) were presented. The
Nordic power system has seen a decrease in frequency quality over the past two
decades, and the aim of this thesis has been to improve the frequency quality
and solve other issues related to this, such as avoiding bottleneck congestions and
minimizing the effect of hourly production and trading set-point changes.

In Chapter 2 a nonlinear MPC (NMPC) was presented, including an extended
Kalman filter (EKF) for state and disturbance estimation. The NMPC is based on
a simplified model of the proxy system, and the constraints include limitations on
tie-line power flow, generation capacity, and generation rate of change. Even though
the NMPC is based on a simplified system model (based on aggregated generators),
it is able to account for individual generator constraints by including the generator
participation factors as optimization variables. This is an important feature, as
the limitations on both total production and production rate-of-change vary a lot
between the individual generating units. Simulations showed that the NMPC is
able to coordinate the AGC with the primary control, resulting in reduced costs
and improved frequency quality both at hour-shifts and during normal operation
throughout the hour.

Performing LFC is a considerable expense for the TSO, and it is in many ways
intuitive to include pricing in the NMPC in order to minimize costs. A suggestion
to how this could be done is included in Chapter 2, where the cost of using the dif-
ferent generating units for AGC is included in the objective function in a quadratic
manner. In an economic MPC, the objective function is often an economic profit
function, which is linearly dependent on the state and input. The suggestion made
here is therefore not an economic MPC, but rather a suggestion to how it could be
included in the given framework. This was illustrated through simulations, showing
that the MPC will favor the cheaper generating units.

The Nordic power system has not been sufficiently expanded since the liberal-
ization of the power markets during the 1990s, which has led to a heavier loaded
network with an increasing amount of bottlenecks. At times, these bottlenecks
prevent some of the generating units in participating in LFC, which can lead to
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both poorer frequency quality and higher expenses connected to LFC. In Chapter
2 another suggestion concerns how slack variables can be used to ensure available
tie-line power-transfer capacity, and hence avoid tie-line bottlenecks. The presented
solution requires an a-priori calculation of the need for available transfer capacity
on the tie-lines. This is a somewhat rigid solution, and in Chapter 3 a more flexible
solution to this problem is presented in the form of robustified NMPC. Instead of
stating, for each tie-line, how much available transfer capacity is needed in case of
any unforeseen event, the focus is now on unforeseen changes in wind power produc-
tion, and the aim is to improve frequency quality in the presence of uncontrollable
power production, such as wind power. A choice was made to focus on the slowly
varying unpredicted power imbalance, and not on sudden changes caused by large
loads or generators disconnecting or connecting to the system. The choice to focus
only on the disturbance caused by unpredicted changes in wind power production is
based on the assumption that the general slowly varying unpredicted power imbal-
ance in the Nordic power system is dominated by unpredicted deviations in wind
power production in South-Sweden and Zealand. This is a realistic assumption
since (a) the overall consumption follows, to a large extent, a predictable consump-
tion pattern, and (b) South-Sweden and Zealand contribute with approximately
80% of the total wind power production in the Nordic system (Statnett, 2012). It
is assumed that a worst-case deviation from the predicted wind-power production
in South Sweden and Zealand can be estimated, and the NMPC from Chapter
2 is then made more robust against such deviations using a simplified version of
the multi-stage NMPC in Lucia et al. (2013) and the feedback min-max NMPC in
Scokaert and Mayne (1998). This NMPC is referred to as the robustified NMPC
(RNMPC) in Chapter 3 and as the multi-stage NMPC (MNMPC) in Chapter 4
and in the following. Simulations showed that the MNMPC keeps enough trans-
fer capacity available so that it is able to use all generating units in covering a
sudden drop or increase in wind-power production, resulting in better LFC. The
MNMPC from Chapter 3 is based on a deterministic disturbance model, and in
Chapter 4 it is compared to a stochastic NMPC (SNMPC) which is based on a
stochastic disturbance model. Even though it intuitively might make more sense to
view predictions of deviation in wind power production as stochastic, the results in
Chapter 4 shows that in this case, the MNMPC results in a similar control result
while showing better tractability and less chance of encountering infeasibility.

The prediction model (PM) used in the NMPCs divides the proxy system into
two areas, which are chosen so that one area contains the majority of wind-power
production. The tie-line constraints which are handled by the NMPCs are therefore
constraints on the total sum of power transfer on all tie-lines connecting the two
areas. If a more detailed control of power flow is wanted, the prediction model has
to be expanded into more areas, which will affect the size of the OCP, and hence the
time it takes to solve it. However, for the purpose of ensuring sufficient available
tie-line capacity into an area with high wind-power density, it is the authors opinion
that the PM used in this thesis sufficiently reflects the real power flow in the system.
For the results in Chapter 3 and 4, it is also an important assumption that the
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Number of optimization variables

Controller u x ε Total

Nominal NMPC 270 730 72 1072
RNMPC/MNMPC 810 2409 0 3219
SNMPC, s = 65 270 52195 0 52465
SNMPC, s = 1000 270 803000 0 803270

Table 6.1: Number of optimization variables of each NMPC. Specified for inputs u, states x and
slack variables ε.

majority of wind power is gathered in one area, so that the disturbance in the
other area can be neglected. If this is not the case, and the wind power is spread
more evenly in the system, the estimate of the worst-case deviation in produced
wind-power has to be adapted accordingly.

With regards to numerical issues encountered in the NMPCs of this thesis, it can
be mentioned that with the smooth approximation of the saturation function, the
PM is generally well behaved. With N = 2 areas, it is a fairly small model, and
there were not any significant numerical issues. The only exception is the SNMPC
from Chapter 4. With the number of scenarios included in the SNMPC approaching
100, it became very difficult to find a solution with the software and hardware used
in this thesis. The OCP simply became too complex. Table 6.1 shows the size of
the OCP for the different NMPCs.

With regards to nominal stability properties, none of the above NMPCs are
proven to be stable. Stabilizing ingredients such as terminal constraints and termi-
nal cost function could be added to ensure nominal asymptotic stability, this could
however deteriorate the control performance by making the NMPC more conser-
vative. In addition, terminal constraints and terminal cost functions that can be
used to prove stability can be difficult to find. Nominal stability is therefore rather
approach by choosing long horizons and tuning weights to achieve convergent be-
havior in simulations, and the Monte Carlo simulations presented in Chapter 2
and 3 supports this. However, since no stability proofs are given, it is important
that the presented NMPC-based control regimes are supported by appropriate fall-
back controllers which ensures safe operations in case of unstable/infeasible or poor
solutions from the NMPC.

The last contribution to the thesis, presented in Chapter 5, focuses on angle
stability. This chapter investigates the possibility of using HVDC lines to increase
angle stability in a power system, using a backstepping controller. The presented
backstepping controller is tested on an arbitrary system where two synchronous
power systems are connected by HVDC-lines, and simulations show that by con-
trolling the power flow through the HVDC-lines, the electromechanical oscillations
following a fault can be dampened. The same approach can also be used to stabilize
the frequency of the power systems, however operating at a higher time scale. In
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fact, if the controller for the power flow is properly designed, the power flow in
HVDC lines can be used as a resource for both angle and frequency stability. The
NMPCs presented in this thesis would however be to slow to handle the control
of angle stability. In to the Nordic power system, the HVDC lines connecting the
Nordic system to the Continental European system are appropriate candidates, and
the NMPC schemes presented in Chapter 2 and 3 could make use of them for LFC.
There are however some complicating issues that must be dealt with, one of which
is scheduled power flow. The power trading between synchronous areas decides how
much power that flow in the HVDC lines, which restricts how much they can be
used for power-system stability purposes. However, they can be utilized when pos-
sible, and perhaps especially during hour shifts when set points for both production
and power flow in HVDC lines change.

With regards to the control-design method used in Chapter 5, backstepping is
very different from NMPC. They share the features that they are advanced, model-
based control methods that are suitable for multivariable and nonlinear systems.
However, backstepping is a theoretical approach resulting in an explicit control law
which results in an asymptotically stable (nominal) system, whereas the NMPC is
a practical approach which often suffers from the lack of theoretical stability proof.
On the other hand, including and handling constraints and known/measurable
disturbances is much easier with an NMPC than with a backtepping controller. The
theoretical stability guarantees provided by the backstepping controller will also be
jeopardized in the presence of model-plant mismatch and unknown disturbances,
and as seen in Chapter 5, singularities in the controller is also a common issue
(Khalil, 2002). Another issue for the backstepping controller from Chapter 5, which
in general would not be a problem for an NMPC, is that of unequal number of inputs
and outputs. The backstepping controller from Chapter 5 is not able to deal with
such systems, which is a significant drawback.

Unresolved issues and possible future research directions

In this thesis, all of the NMPCs are tested under fairly realistic conditions, includ-
ing model-plant mismatch as well as state and disturbance estimation. There are
however some practical issues that are not yet resolved. One of these is communi-
cation. All of the NMPCs are centralized controllers which rely on measurements
made in different parts of the power system. It has however not been the scope of
this thesis to investigate proper solutions for safe, reliable and precise communi-
cation, this is never the less an important part of implementing the NMPCs on a
real power system. The NMPCs also rely on different TSOs being willing to share
measurements and information across borders.

When it comes to further development of the NMPCs, it is an evident possibility
to include the costs related to AGC in order to minimize the expenses for the TSO.
This was barely touched upon in Chapter 2, and it could be interesting to see if this
could be included in a more holistic manner, either by including it in the presented
NMPCs, or by approaching it in a hierarchic manner.
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Another possibility that has not been addressed in this thesis is the use of flexible
alternating current transmission systems (FACTS). FACTS are power electronics-
based devices that are able to enhance power system controllability and stability
and increase power transfer capability. They do so by facilitating power flow control,
power oscillation damping and transient stability improvement. Including these in
the NMPC would increase controllability and flexibility, at the expense of a larger
and more complex OCP.
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Vrdoljak, K., Perić, N., and Petrović, I. (2010). Sliding mode based load-frequency control
in power systems. Electric Power Systems Research, 80(5):514–527.
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