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Abstract

A method for measuring downstream concentration effects through electrochem-
ical impedance spectroscopy at double channel electrodes is demonstrated. An
ac current perturbation is applied at an upstream working electrode and the
resulting ac potential response at a downstream sensing electrode is measured.
This generator-detector scheme is implemented with a single potentiostat. Ex-
perimental data for a reversible redox couple are presented and good agreement
is found with numerical simulations. A qualitative explanation of the features
is given which lays the foundation for a more rigorous theoretical treatment.
Relationships with flow rate and frequency are found that can scale the data to
lie on a universal curve.
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1. Introduction

The simplicity of fabrication offered by soft lithography using polydimethyl-
siloxane (PDMS) has led to a large increase in the use of microfluidic flow cells
in the last decade. For electrochemists, the laminar flow regime offers the possi-
bilities of making membraneless fuel cells [1], membraneless water electrolysers
with automatic gas separation [2], and various sensor technologies [3]. A se-
ries of electrodes in a microfluidic channel can serve as an electroanalytical tool
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analogous to the rotating ring-disc electrode (RRDE), with an upstream gener-
ator electrode and downstream detector electrodes. Used in this way, channel
electrodes allow for more flexible configurations, high collection efficiencies, and
use of much smaller amounts of analyte compared to the RRDE.

A mathematical treatment of channel electrodes is more complicated than
for the RRDE, as channel electrodes are not uniformly accessible. However,
solutions for various kinetics and mass transport problems at a single channel
electrode are available including transient current response [4–7] and impedance
response [8–11]. For double channel electrode configurations, dc collection effi-
ciency calculations are available for a single species [12–15] and for more com-
plicated reaction mechanisms [16–18]. The case of impedance or frequency re-
sponse at double channel electrodes has not been treated in the literature, but
the analogous RRDE system has been treated by Albery and co-workers where
a solution for the ac collection efficiency based on the Laplace transform method
was presented [19, 20]. However, numerical approximations were required, and
a qualitative analysis as we present below was not attempted.

In this work, an impedance method is described that uses a single potentio-
stat to apply a current perturbation at an upstream electrode and measure the
potential response at a downstream electrode. We define a new quantity, the
downstream impedance, Zdn, as the ratio of the ac potential at the downstream
sensing electrode (SE) to the ac current density at the upstream working elec-
trode (WE), Eq. (1), where the ac quantities are frequency-dependent complex
number phasors in the usual way.

Zdn =
ẼSE

j̃WE

(1)

This quantity was measured for a fast reversible redox couple over a wide
range of flow rates, and experimental, numerical, and approximate analytical
solutions are compared.

The phase and magnitude of Zdn are given a simple interpretation in terms
of an ac concentration wave traveling from the WE to the SE, with the phase
related to the time delay and the magnitude related to the diffusive spread
across the channel during the travel.

2. Methods

2.1. Microfluidics

The production of the microfluidic cells has been described previously [11].
In short, soft lithography methods were used to make the microfluidic flow cell
where the electrodes were vapour deposited onto clean glass slides while the
channels were made using PDMS. The geometry of the cell is shown in Fig.
1a, with electrode widths, w = 100 µm, channel height, h = 100 µm, channel
breadth (distance between channel walls perpendicular to flow direction), d =
1 mm, and distance between the midpoint of the upstream and downstream
electrodes, l = 200 µm. For the inlet and outlet, a hole punch was used to
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make it possible to fit the inlet teflon tube (OD = 0.51 mm). At the outlet, a
reservoir was fitted, all seen in Fig. 1a. The electrolyte was pumped by using a
syringe pump (Harvard Apparatus PHD 2000), where the flow rates applied in
this work were between 30 and 300 µL min−1.
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Figure 1: Schematic of the cell (a), and the 2D geometry modelled in this work (b). The
arrows indicate the flow direction in the channel and the electrodes are marked as reference
electrode (RE), working electrode (WE), sensing electrode (SE), and counter electrode (CE).
In (b), flow is from left to right, passing the WE and SE electrodes in the bottom of the
channel. The parabolic fluid velocity profile is shown, together with the relationship between
the average and maximum velocities.

2.2. Electrochemistry

The preparation and setup is similar to the one reported previously [11]. The
aqueous solution was a nominally equimolar (5 mM) mixture of RuII(NH3)6Cl2
and RuIII(NH3)6Cl3 in 0.1 M K2SO4 electrolyte. The potentiostat used was a
Gamry Ref. 600. The first electrode upstream (of a total of four) was the ref-
erence electrode (RE), whose potential was established by the Ru(II/III) redox
couple. The second electrode was the working electrode (WE), the third elec-
trode was the sensing electrode (SE) and the fourth electrode was the counter
electrode (CE), as described in Fig. 1a. The experiment was conducted by
running galvanostatic electrochemical impedance spectroscopy (GEIS) with a
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100 nA amplitude (rms). The amplitude used was determined by running the
experiment and making sure that the resulting potential amplitude at the up-
stream electrode was less than 10 mV (rms). The working electrode connector
was connected to the WE while the working sense connector was connected to
the SE to measure the SE potential vs RE. Only a single potentiostat was nec-
essary. The impedance measurements were done under varying flow rates from
30 µL min−1 to 300 µL min−1. The real part of the resulting experimental data
was adjusted to ensure that Z(ω →∞) = 0.

2.3. Numerical modelling

The mass transport in the channel is approximated by the 2D convective-
diffusion equation, Eq. (2) and Fig. 1b, with the flow rate being the fully
developed flow v(y) = 6vavy(h− y)/h2.

∂ci
∂t

= Di
∂2ci
∂x2

+Di
∂2ci
∂y2

− v(y)
∂ci
∂x

(2)

Here, vav is the average velocity in the channel, h is the full channel height,
Di is the diffusivity of species i, ci is the concentration of species i, t is time,
and x and y are the directions parallel and perpendicular to the channel flow
direction, respectively. This treatment makes the usual assumptions used for
electrode kinetics in supporting electrolytes, e.g., neglect of electric field and
double-layer effects. Eq. (2) has to be solved in the electrolyte volume for an
applied current perturbation at the working electrode.

A finite element method solver (COMSOL Multiphysicsr [21]) was used to
numerically solve the 2D problem described above without further simplifica-
tions. This model is similar to the one used in our previous work on channel
electrodes [11]. However, at the working electrode, the boundary condition
used was an oscillating with linear kinetics giving the same ac current as in
the experimental work (100 nA(rms)). The downstream electrode has the same
boundary condition as the walls, i.e., a zero flux boundary condition. The mesh-
ing was based on the ac diffusion length at the highest frequency used (1 kHz),

xdiff =
√
DRu(II)f

−1
max, and was set to 0.1 xdiff at the working and sensing elec-

trodes and allowed to grow up to 10 times this value in the channel at a growth
rate of 1.05. The software uses the ac current to determine the ac fluxes, and
solves for the ac concentration profile. The ac potential at the downstream elec-
trode was then calculated from the linearized (small signal) Nernst equation,
Eq. (3), averaged over the electrode surface, and finally used to calculate the
impedance according to Eq. (1).

ẼSE =
RT

F

c̃RuIII

cRuII,ss

− RT

F

c̃RuII

cRuII,ss

(3)

Here cRuII,ss and cRuIII,ss are the dc concentrations at the electrode surface,
which are not necessarily equal to the bulk concentrations, cbRuII and cbRuIII .
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3. Results and discussion

3.1. Experimental results and numerical simulation

The experimental downstream impedance (boxes) and the numerically mod-
elled solution (full lines) are shown in Fig. 2. The experimental impedance
decreases with increasing flow rate but the features of the impedance response
are similar for all flow rates. The flow rate dependence is similar to that of the
impedance at a single channel electrode [9–11]. The Nyquist representation, Fig.
2a, shows spirals, similar to those observed on rotating ring-disk electrodes [22].
The magnitude, Fig. 2c, decreases to zero at high frequencies. Simultaneously,
the phase angle, Fig. 2b, increases from zero at low frequencies to a maximum
of about 3π. At higher frequencies, experimental error leads to uncertainty as
to which rotation of the spiral the data belongs, and absolute phases could not
be reliably determined.

The numerically modelled solutions (full lines in Fig. 2) indicate firstly that
Comsol can successfully be used to model this behavior. Secondly, the numerical
solution is better at low frequencies than at high frequencies. Especially, this
behavior is visible in the phase angle and magnitude plots (Fig. 2b-c) where,
for all flow rates, both the change in magnitude and phase angle starts at lower
frequencies in the numerical solution than in the experimental data. Similarly, in
the Nyquist representation, Fig. 2a, the modelled data fit well at low frequencies
but with significant error in the second and third quadrants. The error at higher
frequencies can have many sources such as double-layer charging and migration,
and these effects are discussed in more detail in Section 3.4.

3.2. A qualitative explanation of downstream impedance

The essential features of the impedance spectra can be understood readily
with some simple principles. From here on, we simplify by assuming that the
diffusivities are equal and therefore the principle of total unchanging concentra-
tion applies [23, 24]. That is, cRuIII + cRuII = constant, and c̃RuIII = −c̃RuII = c̃.
This reduces the linearized Nernst equation, Eq. (3), to Eq. (4), and implies
that the potential at the SE is a scaled version of the ac concentration at its
surface and is in phase with it.

ẼSE =
2RT

Fcss
c̃SE (4)

The key quantity in interpreting the data is the ac concentration relation
between the sensing and the working electrode, c̃SE/c̃WE, which may be related
to the experimental downstream impedance, Zdn by Eq. (5).

Zdn =
ẼSE

jWE
=

(
ẼSE

c̃SE

)(
c̃SE

c̃WE

)(
c̃WE

j̃WE

)
(5)

The first factor in Eq. (5), ẼSE/c̃SE, is constant, as follows from Eq. (4). The

third factor, c̃WE/j̃WE, is proportional to the known mass transport impedance
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Figure 2: Experimental data (boxes) and numerical model (full lines). Flow rates of 30 µL
min−1(red), 100 µL min−1(green), and 300 µL min−1(blue). The data are presented as an
impedance plane plot (a), a phase angle vs the logarithm of the frequency representation (b),
and a magnitude vs the logarithm of the frequency representation (c).
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at a single channel electrode. The phase of the mass transport impedance at a
channel electrode is in the low range 0 − π/4 [9–11], and a closer examination
(c.f. Fig. 4, Ref. 11) shows that except at the lowest frequencies, the total phase
angle of the downstream impedance is dominated by the phase of c̃SE/c̃WE.

The phase relationship between the WE and the SE can be understood in
terms of the time spent in the channel by a concentration wave that is traveling
downstream at an averaged velocity, vwave. This concentration wave is sensed
at the downstream electrode and the phase depends on the distance between
the electrodes, l, the velocity, vwave, and the frequency, f . Such a concentration
wave is illustrated in Fig. 3, where two cases, (a) and (c), are examples where
the WE and SE concentrations are in-phase and represent two full or four full
wavelengths between the electrodes. The last case (b) is a case where 2.5 full
wavelengths are between the electrode midpoints resulting in a fully out-of-phase
response (real negative value). This leads to the simple criterion for in-phase
response given in Eq. (6), where n is the number of full rotations. Of course,
these in-phase and out of phase relationships are part of a continuum.

l

ᵠ = 4̟ ≡ 0

ᵠ = 5̟ ≡ ̟

ᵠ = 8̟ ≡ 0

a

b

c

Figure 3: Figure demonstrating the principle of in-phase and out of phase concentrations.
The examples given are for in-phase concentration with n = 2 (a), out-of-phase concentration
with n = 2 (b), and in-phase concentration with n = 4 (c). Examples a and c result in a real
positive impedance, while example b results in a real negative impedance.

f =
nvwave

l
(6)

Eq. (6) can be derived mathematically if one ignores the diffusion terms
in the convective-diffusion equation, Eq. (2), and approximates the velocity as
independent of y, i.e., v(y) = vwave. The simplified equation is then converted
to small-signal form, Eq. (7), and solved to find that the phase delay changes
linearly with x, Eq. (8).
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iωc̃(x) = vwave
d c̃(x)

dx
(7)

c̃(x) = c̃(0) exp

(
iωx

vwave

)
(8)

The phase at x = l relative to that at x = 0, ωl/vwave, divided by 2π is the
number of rotations n, and we recover Eq. (6). This prediction of the phase
changing linearly with frequency is shown in Fig. 4 to be approximately true
for the data at 100 µL min−1. The accompanying decrease in magnitude is
attributed to diffusive spread across the channel, which weakens the coherence
of the wave, as the real velocities are different for different distances from the
bottom of the channel. The linear increase in phase with frequency combined
with the slow decrease in magnitude with frequency explains the spiral shapes
in the spectra.

f / Hz

|Z
| / 1

0
3
 Ωφ

 /
 r

a
d

Figure 4: Figure showing the angle (blue diamonds) and magnitude (red rectangles) vs the
frequency for the frequencies in the first half round of the spiral for the 100 µL min−1 exper-
imental data.

The simple explanation based on Fig. 3 assumes there is a unique concen-
tration across the whole of the SE surface. However, at higher frequencies, the
combination of frequency and the flow rate yields cases where several wave-
lengths pass over the SE surface. This will give a perturbing concentration over
the electrode resulting in a very small total potential when average by using Eq.
(3). This leads to a breakdown of the simple explanation, which may contribute
to the deviation from linear phase behaviour and contribute to the decrease in
magnitude. At higher frequencies the assumption of a zero-flux boundary con-
dition and an averaged Nernstian response may break down due to kinetic or
double-layer charging effects.

3.3. Flow rate and frequency dependence
Inspection of Fig. 2 suggests that the impedances might lie on a commmon

curve if the frequencies and magnitudes were appropriately scaled by a function
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of flow rate. Limiting currents at channel electrodes scale as the cube root of
sweep rate, which suggests a cube root dependence might be appropriate here.
The cube root dependence is an outcome of making the common assumptions
that axial diffusion (in the x direction) may be neglected and that the flow ve-
locity may be approximated as proportional to y (the Lévêque approximation).
The simplified Eq. (2) then gives the small-signal Eq. (9).

iωc̃ = D
∂2c̃

∂y2
− 6vavy

h

∂c̃

∂x
(9)

The changes of variables X = x/w, C̃ = c̃/cb, Y =
√
ω/Dy, and Ω =

(h2w2/36v2
avD)1/3ω give the dimensionless Eq. (10).

iC̃ =
∂2C̃

∂Y 2
− Y

Ω3/2

∂C̃

∂X
(10)

This suggests that the ac concentration and quantities derived from it must
be functions of Ω3/2 (or of Ω itself), in which the flow rate appears to a 1/3
power.

Complete solution of this equation is nontrivial, but it is possible to solve it
at zero frequency for the constant ac flux boundary condition, which can then
be used to find the zero-frequency downstream impedance. In the literature,
the equivalent steady-state problem has been treated for the case of constant
concentration (collection efficiency) [12, 13, 15] and for the case of irreversible
kinetics at the electrode surface [25, 26]. However, the constant flux solution,
although much used in work on rotating ring-disc electrode [27–29], has to the
best of our knowledge not been solved for the channel electrode geometry.

Experimentally, an imposed constant ac current at the WE need not imply
that the ac flux is the same over the electrode surface [30], but a boundary
condition of constant ac flux across the electrode surface proves to explain the
results well. In the appendix, this boundary condition is used to find the ac
concentration along the bottom of the channel and thence the low frequency
limit of the downstream impedance, Eq. (11).

Z0 =
2RT

n2F 2DcbJ̃(X3 −X2)

(
Dhw

6vav

)1/3 ∫ X3

X2

C̃(X, 0)dX (11)

Here, J̃ = (j̃/nFDcb)(Dhw/6vav)1/3 is the dimensionless ac current applied,
cb is the bulk concentration, X = x/w, and X2 and X3 are the upstream and
downstream edges of the SE.

This zero frequency impedance can be compared with the numerical solutions
at different flow rates to check if the assumptions in the derivation, i.e., absence
of axial diffusion and the Lêvéque approximation, are valid. This is similar to
the approach used in our previous work on mass transport impedance at a single
channel electrode [11]. For the cell geometry used here, the analytical solution
was found to be within 10% of the full numerical solution for flow rates equal
to or higher than 10 µL min−1. This result also indicates that the assumption
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that the flux is constant across the WE surface gives a solution similar to the
constant total current boundary condition applied experimentally.

The experimental impedances are normalized by dividing by Z0 and are
plotted as a function of Ω in Fig. 5. The experimental data fall on a universal
curve in all cases except at low frequencies for the 30 µL min−1 flow rate. This
anomaly in the 30 µL min−1 is likely an experimental artefact due to the slow
deterioration of the redox couple when small amounts of oxygen are present
in the solution. The numerical solutions also fall on a common curve, and
are in good agreement with experiment. As expected, the scaling relationships
for flow rate and frequency in Z0 and Ω correctly describe the mass transport
in the channel. In particular the magnitude of the downstream impedance is

proportional to the cube root of the flow rate, v
1/3
av .

With this scaling relationship in hand, we revisit the suitability of the linear
phase approximation for all flow rates. Fig. 6 shows the logarithm of the
phase angle vs the logarithm of Ω for the numerical and experimental data.
Two domains can be distinguished. For Ω < 1, the slope of the curve is 1 as
expected from our simple treatment above. Given that this model completely
neglects diffusion, it is remarkably successful.

For Ω > 1, the slope decreases both for the experimental and numerical data.
As already discussed, the averaging over the SE electrode likely contributes to
this. This is also the region where diffusion across the channel becomes signifi-
cant compared to convection. It is unlikely that the spread of molecules across
the channel to locations with different downstream velocities can be simply
treated.

3.4. Effects at high frequencies

In this section we consider effects beyond those used in the simulations in
order to investigate the discrepency between the model and experiment at higher
frequencies. At higher frequencies, double-layer charging currents become more
significant. At the SE, the net current is zero, and double-layer charging could
be balanced by an equal and opposite faradaic current. The consideration of
faradaic current implies that the finite reaction rate needs to be considered,
which is characterized by the charge-transfer resistance. Allowing the faradaic
and changing currents to oscillate causes a deviation from the proportional
relationship between oscillating concentration and potential given by Eq. (4),
which may be estimated by Eq. (12)

Ẽ = Ẽrev (1 + iωCdlRct)
−1

(12)

The time constant CdlRct estimated from the small semicircle in the impedance
at the WE corresponds to a frequency of about 10 kHz, and so this correction
is neglible at the much lower frequencies where the modelled and experimental
downstream impendances deviate.

Solution resistance effects may be estimated in a similar fashion. Although
the resistance between two electrodes can be high, the electrode area is low and
Rs has a typical value of about 1 Ω cm2. This is comparable to Rct, and so the
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Figure 5: Experimental and numerically calculated data for all flow rates shown as normalized
impedance, Z/Z0. The data is shown as an impedance plane plot (a), as phase angle vs the
logarithm of the dimesionless frequency, Ω (b), and as normalized magnitude vs the logarithm
of the dimensionless frequency, Ω (c). The experimental values are shown as boxes, while the
numerical results calculated using Comsol are shown as full lines. The flow rates are 30 µL
min−1 (red), 100 µL min−1 (green), and 300 µL min−1 (blue).
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Figure 6: Logarithm of the phase angle vs the logarithm of the dimensionless frequency, Ω,
for the experimental values (boxes) and the numerical solutions (full lines). Flow rates of 30
µL min−1(red), 100 µL min−1(green), and 300 µL min−1(blue). The dotted trend line has a
slope of 1.

effects should appear at similarly high frequencies. In the approximation that
the migration and convective-diffusive problems are uncoupled, this manifests
only in a real part offset to the downstream impedance.

These effects are estimated on the assumption that the SE does not interact
with the concentration field generated by the WE or the electric field generated
by the WE and CE. Other more subtle effects dependent on coupling between
migration, diffusion and reaction are possible, such as local faradaic currents
induced at the SE by the bipolar effect [31], or significant current carried by
the reactants or products. These effects, including extension to 3-D modelling.
will be considered in future work in the context of quasireversible kinetics. We
note, however, that the impedance at the WE is accurately modelled within the
present framework [11]. The fact that the normalized downstream impedances
fall on a common plot against Ω (Fig. 5) also argues that convective-diffusive
effects dominate over migration effects.

4. Conclusion

A new measurement technique, downstream electrochemical impedance spec-
troscopy, Zdn, is described. In this technique, the current at an upstream elec-
trode is modulated and the resulting modulation in the concentration is detected
at a downstream high-impedance sensor electrode.

The technique is described and experimentally tested for the case of a re-
versible redox couple in solution. The Nyquist plots show spirals. Numerical
simulations were used to verify the results, and a simple qualitative analysis
is given for the phase dependence. Analytical approaches show that this is the
correct first-order explanation of the phase. An exact solution for the ac concen-
tration dependence along the bottom of the channel between electrodes is given,
under the assumption that axial diffusion may be neglected and the Lêvéque
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approximation applies. The flow rate dependence is analyzed and the influence
of the frequency and the convection on the concentration distribution can be
understood through a dimensionless frequency parameter Ω. Despite being an
upstream-generation/downstream-detection method, it was implemented using
only one potentiostat. The method is most useful for relatively small electrodes
compared to the distance between them, and for higher flow rates.

An exact solution is given for the zero-frequency limit of the downstream
impedance, which agrees with experiment, and could therefore be used to deter-
mine unknown experimental parameters such as flow rate. Future development
of the method may enable measurement of rate constants for homogenous re-
actions in the channel, in a similar manner to conventional collection efficiency
experiments.

5. Acknowledgements

Financial support from the Natural Sciences and Engineering Research Coun-
cil of Canada (discovery grant 37035), the Research Council of Norway (project
221899), the University of Victoria, and the Norwegian University of Science
and Technology is gratefully acknowledged. The Research Council of Norway is
also acknowledged for the support to the Norwegian Micro and NanoFabrication
Facility, NorFab (197411/V30). Thomas Holm thanks the Faculty of Natural
Sciences and Technology at Norwegian University of Science and Technology for
the award of a scholarship. We thank Rhonda Stoddard for synthesis of some
ruthenium(II) hexammine chloride.

Appendix A. Derivation of zero-frequency downstream impedance

The ac concentration of a generated species downstream along the bottom
of the channel can be found by solving the ac convective-diffusion equation, Eq.
(9), which neglects axial diffusion and makes the Lêvéque approximation. It is
solved only for the low-frequency limit (ω → 0), i.e., the left-hand side is set to

zero. By changing variables to X = x/w, Y = (6vav/Dhw)1/3y, and C̃ = c̃/cb,
we get the dimensionless Eq. (A.1). Note that Y here is different from Y in Eq.
10.

0 =
∂2C̃

∂Y 2
− Y ∂C̃

∂X
(A.1)

The ac concentration is zero upstream of the WE, C̃(0, Y ) = 0, and far above

the electrode, C̃(X,Y → ∞) = 0. The imposed ac current density at the WE,

j̃, in dimensionless form becomes J̃ = (j̃/nFDcb)(Dhw/6vav)1/3. The flux at
the bottom of the channel downstream of the WE (X > 0) is zero, and this
can be combined with the flux at the WE to give a single boundary condition
(∂C̃/∂Y )|Y =0 = J̃(1−H(X − 1)), where H(x) is the Heaviside function.

Taking the Laplace transform with respect to X and using the C̃(0, Y ) = 0
boundary condition gives Eq. (A.2)
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0 =
d2C(s, Y )

dY 2
− Y sC(s, Y ) (A.2)

The general solution is a linear combination of the Airy Ai and Bi functions,
and the requirement that the solution is zero at Y = ∞ means that the Bi
function does not contribute. That is, the solution is

C(s, Y ) = aAi(s1/3Y ) (A.3)

where a is to be determined by the flux boundary condition at Y = 0,
which in transformed form is (∂C/∂Y )|Y =0 = J̃(1− exp(−s))/s. Applying this
boundary condition, solving for a and then setting Y = 0 gives the surface
concentration in Eq. (A.4).

C(s, 0) =
2(1− exp(−s))J̃π31/6

s4/33Γ(2/3)2
(A.4)

The inverse Laplace transformation of Eq. (A.4) gives the concentration
profile along the bottom of the channel, Eq. (A.5).

C̃(X, 0)

J̃
=

{
32/3

Γ(2/3)X
1/3, for 0 ≤ X ≤ 1

32/3

Γ(2/3)

(
X1/3 − (X − 1)1/3

)
, for X ≥ 1

(A.5)

Averaging over the SE (from X2 to X3) and converting to a dimensioned
impedance gives the zero frequency downstream impedance of Eq. (11).
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