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Abstract— This paper presents a fault-tolerant economic
model predictive control scheme for proactive handling of
incipient actuator faults. The scheme applies an `1 exact penalty
function with a set of switching rules in order to steer the system
by a minimum-time approach inside a controlled invariant set
where stability of the system can be preserved during loss of
actuation from the faulty actuator. We consider the approach
for linear control systems, thereby allowing computation of a
lower bound for the penalty parameter to ensure exactness of
the penalty function. We prove nominal asymptotic stability of
the modes of the proposed model predictive control scheme,
and illustrate the approach by a numerical example.

I. INTRODUCTION

Fault tolerance in optimal control of dynamic systems is
important both for safety and economic optimality of opera-
tions. A structured and effective fault-tolerant control (FTC)
scheme can improve the reliability and continuity of system
operations, both for safety-critical processes and for chemical
production and manufacturing. Dynamic optimization-based
control, on the other hand, requires the ability to handle
complex systems with hard control constraints and many
inputs and outputs. This has caused model predictive control
(MPC) to become a widely adopted control scheme [1].
Since MPC is an optimal-control scheme solved online,
these controllers also enable direct adaptation to faults in
the system [2]. Recently, there has been increased focus on
economic model predictive control (EMPC) which, contrary
to separated real-time optimization (RTO) and MPC, merges
dynamic economic operations with the feedback properties
of conventional MPC [1], [3], [4], [5]. The objective of
this paper is as such to integrate actuator fault tolerance in
economic MPC towards the design of efficient fault-tolerant,
economically optimizing control schemes.

Reconfigurable (active) FTC methods can broadly be
classified as reactive or proactive [6]. Reactive approaches
basically rely on controller reconfiguration after a fault
occurs, while, in comparison, a proactive scheme seeks to
utilize information about an incipient fault in the system,
indicated by slowly developing performance degradation,
to proactively manipulate the inputs and thereby minimize
negative impact of a possible future fault. In this context, it
is evident that proactive FTC schemes are not intended to
replace a reactive scheme capable of handling abrupt faults
in the system. However, proactive (or preventive) FTC is
emerging as a complement to reactive schemes, and can, if
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designed properly, be efficiently applied to ensure sustainable
process operations, minimize down time and prevent shut-
downs for certain types of faults in the system, as well as to
perform scheduled maintenance.

In this paper, we develop a fault-tolerant MPC (FTMPC)
scheme for handling incipient actuator faults. We choose
to focus on economic MPC, in conjunction with the rapid
developments of this scheme, while the approach can be
extended to tracking MPC as well. The proactive FTMPC
scheme assumes that a fault detection and isolation unit (FDI)
is able to detect an incipient fault in one of the actuators, and
provide a conservative estimate of a time window between
the warning about an incipient fault and the likelihood of
complete failure of the actuator. See [7] for an example on
these types of fault-prediction schemes. To prevent possible
loss of controllability and system destabilization, a proactive
FTMPC scheme seeks to steer the system inside a safety re-
gion upon receiving warning about an incipient actuator fault.
In [6], this is obtained by using Lyapunov-based tracking
MPC, assuming that predesigned stabilizing Lyapunov-based
controllers exist. Their approach, however, does not provide
guarantees on the convergence rate to the safety region, as
this depends on tuning of the predesigned controllers. In [8],
a hybrid FTMPC scheme is developed with scenario-based
safety constraints and reconfigurable control.

The novelty of this paper lies in the construction of
a proactive FTMPC scheme that applies an exact penalty
function to steer the state inside a controlled invariant safety
set with the suspect control actuator inactive, allowing the
system to retain economic operation during the time of loss
of actuation, and resume nominal operations once repaired.
The paper is organized as follows: In Section II we present
the problem and the set-up of the proposed proactive FTMPC
scheme. Section II-A outlines the computation of an exact
penalty parameter, and Section III analyzes stability prop-
erties of the controllers. Section IV presents a numerical
example to illustrate the proposed scheme, while Section V
ends the paper with concluding remarks.

II. PROBLEM DESCRIPTION

We consider proactive fault-tolerant MPC for discrete
linear time-invariant (LTI) systems,

xk+1 = Axk +Buk, (1)

where xk ∈ X⊆ Rn is the state, uk ∈ U⊆ Rm with m > 1 is
the input, and where A ∈ Rn×n and B ∈ Rn×m. We denote
k ∈ I[a,b] as the discrete time index, where I is the set of
integers on the interval [a,b]. During nominal operations, the



EMPC controller optimizes the economics of the system by
solving at each sampling time t the finite-horizon optimal-
control problem Pnom(x):

V nom
N (x) = min

N−1

∑
k=0

l(xk,uk) (2a)

s.t. xk+1 = Axk +Buk, k ∈ I[0,N−1] (2b)

x0 = x, (2c)
(xk,uk) ∈ Znom, k ∈ I[0,N−1] (2d)

xN = xnom
s , (2e)

where x is the current state of the system, and where the
compact set

Znom ⊆ X×U (3)

defines point-wise in time polytopic constraints on the states
and inputs.
Assumption 1. The economic stage cost l(x,u) is convex.

The terminal equality constraint (2e) is defined by the
solution (xnom

s ,unom
s ) to the steady-state problem

min{l(x,u) | x = Ax+Bu, (x,u) ∈ Znom}. (4)

We assume that (xnom
s ,unom

s ) uniquely solves (4) with objec-
tive value l(xnom

s ,unom
s ). Operation of the system in faulty

and nominal mode imposes different state and/or input
constraints, as well as a modified control matrix, denoted
B j, when the fault occurs. These varying constraints give dif-
ferent optimal steady-state points. Let u = (u0,u1, . . . ,uN−1)
denote a feasible input sequence for (2). The set X nom

N of
admissible states for Pnom(x) is then obtained by project-
ing the set of admissible inputs and initial states Znom

N =
{(x,u) | ∃ x1, . . . ,xN satisfying (2b)–(2e)} onto Rn. The sys-
tem (1) may be unstable, but we make the following N-step
controllability assumption.
Assumption 2. The nominal system (A,B) and the faulty sys-
tem (A,B j) are both controllable, and N is chosen sufficiently
large such that all admissible initial states x ∈ X nom

N can be
steered to an admissible economic steady-state (xs,us) within
N steps while satisfying the given state and input constraints.

Assumption 2 ensures that the system can be steered from
any admissible initial state x to an admissible steady-state
xs in N timesteps. It is important to emphasize that we
assume this condition to hold for any admissible economic
steady-state point, as the latter changes by introducing safety
constraints. By the conventional MPC control law, only the
first move of the optimal input sequence u∗ from solving
Pnom(x) is applied to the system, defining an implicit feed-
back law unom

e (x) := u∗0. At each sampling time t, Pnom(x)
is repeatedly reoptimized in a receding-horizon manner with
the current state (2c) updated through measurements of x. We
assume that the full state is measurable, i.e. we consider state
feedback MPC. Note that the set X nom

N is positive invariant
due to the imposed terminal constraint (2e), i.e. x ∈ X nom

N
implies (Ax+Bunom

e (x)) ∈ X nom
N [5].

The objective of this paper is to construct a proactive
fault-tolerant economic MPC controller that allows continued

(suboptimal) economic operations of the system in the pres-
ence of an incipient actuator fault. We consider the following
fault scenario illustrated in Fig. 1. At time tfw, the system is
operating at the economic optimal steady state xnom

s , when an
FDI unit sends a fault warning (fw) indicating an incipient
fault in actuator j ∈ {1 . . .m}, together with a conservative
estimate tf− tfw of a time window between the warning of
an incipient fault and the time when the fault is likely to
occur. To prevent possible destabilization due to a future
dropout of the faulty actuator, the EMPC controller must
steer the system from xnom

s to a controlled invariant safety
set S j ⊂Rn containing the steady-state point xsafe

s, j , within the
time window tf− tfw. When inside this safety set, the EMPC
controller can safely continue operating the system despite a
dropout of actuator j. If the faulty actuator eventually fails
or is taken out of action, the system should be steered from
the steady state xsafe

s, j to a new ”fault” steady state xfault
s, j ,

where the faulty actuator is repaired before resuming nominal
operations.

X nom
N

xnoms

xsafes,j

Sj

xfaults,j

Fig. 1. Schematic illustration of the proposed proactive FTMPC scheme.

To steer the system state xk inside a safe, controllable set
within the estimated time tf of failure of actuator j, we apply
an exact penalty-function formulation [9]. Let

S j = {x | G jx≤ f j} (5)

be a polyhedral safety set with actuator j rendered inactive,
defined by G j ∈ Rp×nand f j ∈ Rp. This set can either be
defined by operators of the plant or system, in terms of
known, conservative safety constraints on the state or a set
of controlled variables, or it may be set as the maximum
controlled invariant set with actuator j inactive. We apply
this latter definition of S j. Methods to compute controlled
invariant sets for LTI systems can be found in for instance
[10].
Remark 1. For simplicity, we consider only the fault scenario
where the control actuator is rendered entirely inactive at
time tf. The scheme can, however, readily be extended to
fault scenarios where the actuator loses a fraction of its
maximum actuation, by incorporating this in the definition
and computation of the safety set S j.

The set S j may often be a strict subset of X nom
N , and

thereby possibly render (2) infeasible when operating at
steady state xnom

s if imposed directly as constraints for all k ∈
I[0,N−1] in Pnom(x) at time tfw. Consequently, we must impose
the constraints (5) through soft constraints and a penalty



function. To this end, we introduce time-varying, nonnegative
vectors εk ∈ Rp of slack variables for the polyhedral safety
set (5), together with an `1 penalty norm and soft constraints.
At time tfw when the EMPC controller receives warning
about an incipient fault in actuator j, we then apply a
switching rule to switch from the nominal EMPC problem
Pnom(x) to the safe-transition problem Psafe(x) defined by

V safe
N (x) = min

N−1

∑
k=0

(
l(xk,uk)+µ

p

∑
i=1

εik

)
(6a)

s.t. xk+1 = Axk +Buk, k ∈ I[0,N−1] (6b)

x0 = x, (6c)
(xk,uk) ∈ Znom, k ∈ I[0,N−1] (6d)

G jxk ≤ f j + εk, k ∈ I[0,N−1] (6e)

εk ≥ 0, k ∈ I[0,N−1] (6f)

εk+1 ≤ εk, k ∈ I[0,N−1] (6g)

xN = xsafe
s, j . (6h)

In (6), µ ≥ 0 is a penalty parameter for the `1 penalty norm.
The new steady-state point xsafe

s, j must satisfy xsafe
s, j ∈ S j, and

is obtained by solving the constrained steady-state problem

min{l(x,u) | x = Ax+Bu, (x,u) ∈ Znom∩S j}. (7)

Assuming (7) is feasible, we denote its optimal objective
value l(xsafe

s, j ,u
safe
s, j ). Solving Psafe(x) on a receding horizon

defines an implicit feedback control law usafe
e (x) := u∗0, sim-

ilarly as described for Pnom(x) above.
The soft-constraint formulation (6) is equivalent with opti-

mizing the nonsmooth penalty function min∑
N−1
k=0 l(xk,uk)+

µ ∑ ||max(0,cI(x))||1 subject to the remaining constraints
in (6), where cI(x) is a vector-function representation of
the constraints G jxk − f j ≤ 0 in (5) for all k ∈ I[0,N−1]. A
penalty function F(x,µ) is termed exact if, for a parameter
choice µ > µ̄ , where µ̄ is a nonnegative threshold value, the
local minimizer of an unconstrained problem minx F(x,µ) is
either a KKT point of the original constrained problem, or
an infeasible stationary point [9]. For reformulated penalty
functions with slack variables and soft constraints where the
hard-constrained problem is convex, then exactness of the
penalty function implies that the soft and hard constrained
problem only differs if the hard-constrained problem is
infeasible.

Proposition 1. If Assumption 1 and 2 hold, and µ > µ̄ ,
where µ̄ is a lower threshold value to ensure that the `1
penalty function is exact, then the solution (x∗,u∗,ε∗) to
the reformulated `1 penalty function in Psafe(x) will yield
an input sequence u∗ that steers the state xk inside S j in
minimum number of timesteps.

Proof. With a sufficiently large penalty parameter µ > µ̄ , if
(x∗,u∗,0) is infeasible for (6), then exactness of the penalty
function (6a) and convexity of problem Psafe(x) ensure
constraint satisfaction for those constraints in (6e) that can be
satisfied. Consequently, the `1 exact penalty function yields a
solution (x∗,u∗,ε∗) with ε∗k > 0 only for the first k̄ ∈ I[0,N−1]

(due to (6g)) that would otherwise cause infeasibility if the
corresponding hard constraints G jxk ≤ f j,∀k ∈ I[0,N−1] were
enforced, and thereby ensuring that these constraints are
violated only if necessary to provide feasibility for Psafe(x). It
hence follows that exactness of (6a) ensures an optimal input
sequence u∗ such that the constraints G jxk ≤ f j are violated
in minimum number of timesteps, and therefore steers xk
inside S j in minimum time.

Conditions for exactness of the penalty function and a
technique for computing µ is provided in Section II-A. For
the proposed proactive FTMPC approach, we distinguish
between two scenarios relating the estimated fault time tf
to the prediction horizon N: If tf > tfw +N, then feasibility
of Psafe(x) at time tfw will ensure xk ∈ S j within tf. Else, if
tf ≤ tfw+N, we must include a check of ε∗ from the solution
of Psafe(x) at time tfw. Let ε∗tf|tfw denote the value of slack
vector ε∗k at prediction time k = tf−tfw computed at sampling
time tfw. If ε∗tf|tfw > 0 and µ > µ̄ , then following Proposition
1, the state cannot reach the set S j within the estimated time
tf of actuator fault. In this case, the system must be shut down
or switched to some emergency mode. Otherwise, ε∗tf|tfw = 0,
and the state is steered inside S j within the estimated fault
time tf.

Remark 2. Enforcing hard constraints G jxk ≤ f j for k ≥
tf− tfw would not change the solution (x∗,u∗,ε∗) to Psafe(x)
when the penalty function is exact. If ε∗k = 0,∀k≥ tf− tfw is
a feasible solution to Psafe(x), then exactness of the penalty
function will ensure this indeed is the solution to Psafe(x).
Furthermore, if the required time to steer the state inside S j
is much less than the estimated time window tf− tfw, one
could consider delaying the transition to the safety set. This
approach is, however, generally less robust.

Provided that the EMPC controller with Psafe(x) is able
to steer the system inside S j within tf, the controller will
subsequently steer the system to xsafe

s, j as illustrated in Fig. 1,
where economic optimal operation inside this safety set can
be continued until the fault occurs. We will assume that a
separate FDI unit features separate techniques for indicating
and distinguishing incipient and actual faults, and as such
alerts the EMPC controller if or when the actuator actually
fails, or is taken out of operation to be replaced. At time
instant tf when the fault occurs or the actuator is set inactive,
the LTI model and input constraints must be updated to
account for the loss of actuation. At this time, the EMPC
controller switches to the optimization problem Pfault(x) ,
defined by the convex problem:

V fault
N (x) = min

N−1

∑
k=0

l(xk,uk) (8a)

s.t. xk+1 = Axk +B juk, k ∈ I[0,N−1] (8b)

x0 = x, (8c)
(xk,uk) ∈ Z j, k ∈ I[0,N−1] (8d)

G jxk ≤ f j, k ∈ I[0,N−1] (8e)

xN = xfault
s, j . (8f)



The set Z j contains updated input constraints, and the new
optimal steady-state point, xfault

s, j , is computed from

min{l(x,u) | x = Ax+B ju, (x,u) ∈ Z j ∩S j}, (9)

with optimal objective value l(xfault
s, j ,ufault

s, j ). Observe that
xfault

s, j 6= xsafe
s, j only if the input from the faulty actuator is

nonzero at the steady state (xsafe
s, j ,u

safe
s, j ). We denote ufault

e (x) :=
u∗0 as the implicit feedback law obtained by solving Pfault(x)
on a receding horizon, where u∗0 is the first element from
the solution u∗ to Pfault(x) . The EMPC controller operates
the system in this fault-updated safe mode until the faulty
actuator has been replaced or inspected, in which nominal
economic operations of the system is resumed by again
switching to solving Pnom(x) .

A. Computing the penalty parameter
A critical criteria for the proposed FTMPC scheme is that

the system enters the safety set S j before the fault occurs.
To this end, following Proposition 1, we rely on assuring
exactness of the `1 penalty function (6) to obtain a minimum-
time transition to this safety set. Selecting a numerical value
for µ may, however, be difficult. It is generally undesirable to
assign an arbitrary high value to µ to ensure exactness of the
penalty function, as this may lead to violent control action,
possibly harmful to the actuators [11], as well as numerical
ill-conditioning. We therefore seek to find a lower bound on
µ in order to guarantee that the penalty function is exact.

A well-known result for the `1 penalty functions of an
NLP to be exact is that the penalty parameter µ needs to
be larger than the absolute value of the largest Lagrangian
multiplier for the hard constrained problem, i.e. µ > µ̄ =
max‖λ ∗‖

∞
[12, Th. 14.3.1]. Consequently, to compute µ̄ for

(6a), the maximum value of the `∞ norm of the Lagrangian
multipliers for the hard-constrained problem for all initial
states x ∈ S j must be calculated. To perform this computa-
tion, we use the mixed-integer linear programming (MILP)
approach developed by [11]. Note that this computation
must be performed for each safety set S j, corresponding to
isolated actuators faults as well faults in several actuators
simultaneously. However, the computation is done offline.
Furthermore, observe that in these computations, we only
need to consider the Lagrangian multipliers λ for the soft
constraints in (6) [13].

III. STABILITY ANALYSIS

Nominal stability of EMPC has been proved for systems
with a terminal equality constraint, satisfying strong duality
[5] or strict dissipativity [4], or with a terminal cost and set
for systems satisfying strict dissipativity [3]. In this paper,
we base the stability proof on the approach in [5], and make
the following assumption.
Assumption 3. If l(x,u) contains other than linear terms,
these must be strictly convex, and a constraint qualification,
e.g. Slater’s condition, must additionally be satisfied at the
optimal steady-state point.

If l(x,u) is a linear, economic objective function, the
EMPC problems (2), (6) and (8) resort to linear programs

(LPs), in which strong duality holds. If l(x,u) is quadratic,
e.g. uT

k Ruk, then R must be positive definite, in which the
additional assumption of a constraint qualification assures
strong duality to hold at optimal steady state. To analyze
the stability properties of the proposed FTMPC scheme, we
introduce “rotated” stage costs [5],

Lnom(x,u) = l(x,u)+(x−Ax−Bu)′λ nom
s −

l(xnom
s ,unom

s ),

(10a)

Lsafe(x,u,ε) = lsafe(x,u,ε)+(x−Ax−Bu)′λ safe
s, j −

l(xsafe
s, j ,u

safe
s, j ),

(10b)

Lfault(x,u) = l(x,u)+(x−Ax−B ju)′λ fault
s, j −

l(xfault
s, j ,ufault

s, j ),

(10c)

where lsafe(x,u,ε) := l(xk,uk)+ µ ∑
p
i=1 εik is the point-wise

in time stage cost (6a). Moreover, λ nom
s ,λ safe

s, j and λ fault
s, j are

Lagrangian multipliers for the LTI steady-state model such
that strong duality holds for the three steady-state problems
(4), (7) and (9), respectively. Note that strong duality holds
by Assumption 3, and that by requiring the steady-state
solution xsafe

s, j in (7) to be inside in S j, the steady-state
objective value l(xsafe

s, j ,u
safe
s, j ) in (10b) is independent of ε .

Lemma 1. The following relates the rotated costs (10) and
the respective EMPC problems:

1) Solving Pnom(x) in (2) with objective (2a) replaced
with Ṽ nom

N (x) = min∑
N−1
k=0 Lnom(xk,uk) gives equal so-

lutions.
2) Solving Psafe(x) in (6) with the objective (6a) replaced

with Ṽ safe
N (x) = min∑

N−1
k=0 Lsafe(xk,uk,εk) gives equal

solutions.
3) Solving Pfault(x) in (8) with the objective (8a) replaced

with Ṽ fault
N (x) = min∑

N−1
k=0 Lfault(xk,uk) gives equal so-

lutions.

Proof. All the three rotated costs are point-wise in time
summed from k = 0 to N − 1, and the respective EMPC
optimization problems all contain a terminal equality con-
straint. The results hence follow immediately from Lemma
2 in [5].

The above lemma is used directly to prove nominal
stability (perfect model, no disturbances) of the three EMPC
modes constituting the proposed proactive FTMPC scheme.

Theorem 1. (Nominal stability): If Assumption 1–3 hold, and
µ > µ̄ such that the `1 penalty function in (6) is exact, then
the following stability properties hold:

1) (Nominal economic operations): xnom
s is an asymp-

totically stable steady-state point of the closed-loop
system xk+1 = Axk +Bunom

e (x) with Lyapunov function
Ṽ nom

N (x) and region of attraction X nom
N .

2) (Safety-mode transition): At time tfw, if (a) tfw+N ≤ tf
and εtf|tfw = 0, or (b) if tf > tfw +N, the system will
be steered inside the safety set within tf, in which
xsafe

s, j is an asymptotically stable steady-state point of
the closed-loop system xk+1 = Axk + Busafe

e (x) with



Lyapunov function Ṽ safe
N (x) and region of attraction

X nom
N .

3) (Fault operations): xfault
s, j is an asymptotically stable

steady-state point of the closed-loop system xk+1 =
Axk +B jufault

e (x) with Lyapunov function Ṽ fault
N (x) and

region of attraction S j

Proof. A sketch of the proof is given for the three parts
individually.

Part 1): Recursive feasibility of Pnom(x) is ensured by the
terminal equality constraint xN = xnom

s and Assumption 2.
Furthermore, Assumption 3 ensures strong duality to hold
at steady state xnom

s . It can hence be verified that Ṽ nom
N (x)

satisfies the properties of a Lyapunov function [5, Th. 1],
and in particular that

Ṽ nom
N (Ax+Bunom

e (x))≤ Ṽ nom
N (x)−Lnom(x,unom

e (x)) (11a)
≤ Ṽ nom

N (x)−β (|x− xnom
s |)) (11b)

for all x ∈ X nom
N , and for a K∞-function β (·). This proves

part 1) of the theorem.
Part 2): Let 0 < k̄ ≤ tf − tfw be an integer, such

that ε∗k|tfw = 0 for all k ≥ k̄. At sampling time tfw, let
{ε0|tfw ,ε1|tfw , . . . ,εk̄−1|tfw ,0, . . . ,0} be a feasible sequence of
slack variables, and let u a feasible control sequence. By
applying the feedback control law usafe

e (x) at time tfw, then at
time tfw +1, the sequence {ε1|tfw , . . . ,εk̄−1|tfw ,0,0, . . . ,0} and
{u1,u2, . . . ,uN−1,usafe

s, j } will be feasible with (Ax+Busafe
e (x))

as initial condition. This follows from the terminal equality
constraint (6h) and by requiring zero slack on the constraints
G jx≤ f j at the end of the horizon. Feasibility of Psafe(x) for
all sample times t ≥ tfw and for all initial states x ∈ X nom

N
follows by induction.

For the two scenarios of tf relative to N, the following
holds; (a) If tfw +N ≤ tf and ε∗tf|tfw = 0, then by the recursive
feasibility, exactness of the penalty term, and Proposition
1, the number of positive slack vectors will decrease by
one for each receding horizon iteration, decreasing the total
magnitude of the `1 penalty term. Hence if ε∗tf|tfw = 0, then xk
will be steered S j within tf, and indeed x∈ S j for all sampling
times t ≥ tf due to the invariance of S j. If tf > tfw+N, then it
follows immediately that xk ∈ S j within time tf by feasibility
of Psafe(x) at sampling time tfw, and by the same arguments
as above. Asymptotic stability of xsafe

s, j from switching to
Psafe(x) at time tfw can then be established by using Ṽ safe

N (x)
for all x ∈ X nom

N , and establishing an inequality similar to
(11) with Lsafe(xk,uk,εk) and a K∞-function β̃ (·).

Part 3): If EMPC controller Psafe(x) with control law
usafe

e (x) is able to steer the system state xk inside S j within
time tf, then for all initial states x ∈ S j, using the same
arguments as in part 1) and in [5, Th. 1], it holds that xfault

s, j
is an asymptotically stable steady-state point of the closed-
loop system xk+1 = Axk+B jufault

e (x) with region of attraction
S j.

We comment that asymptotic stability of Psafe(x) may also
be achieved by imposing a terminal set and terminal cost

rather than a terminal equality constraint, see [3].

IV. NUMERICAL EXAMPLE
In this section, we illustrate the proposed FTMPC scheme

with a two-dimensional example. The controlled invariant
set S j in (5) is computed using the toolbox from [14]. All
simulations are performed in YALMIP [15], while CPLEX
is used to solve the MILP to compute µ̄ by the approach
in [11], and hence define µ . The LTI system is open-loop
unstable with matrices

A =

[
1.3337 0.9443
0.5902 1.3337

]
, B =

[
−0.2572 −0.3817
−0.2665 −0.1954

]
, (12)

and economic stage cost l (xk,uk) =−q′xk +r′uk, where q′ =[
10 10

]
and r′ =

[
3 1

]
, and with N = 10. The constraints

on x and u are[
0
0

]
≤
[

x1
x2

]
≤
[

6
6

]
,

[
0
0

]
≤
[

u1
u2

]
≤
[

5
15

]
. (13)

We consider the following fault scenario: The EMPC con-
troller receives a warning about an incipient fault in actuator
j = 2 at sampling time tfw = 20, in which Psafe(x) is
invoked. At time tf = 40 the fault hits the system and u2
is rendered unusable, at which time the EMPC controller
switches to solving Pfault(x) . Finally, at tfix = 60, the
fault is repaired, and the EMPC controller resumes nominal
operations by switching to Pnom(x) . From the computation
of µ̄ = max

x∈S2
‖λ ∗‖

∞
, cf. Section II-A, we set µ = 20.

x1
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x
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xsafe
s,j

xfault
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X
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N

S2

t < tfw
tfw ≤ t < tf
tf ≤ t < tfix
t ≥ tfix
DMTC

Fig. 2. State-trajectory with the proposed FTMPC scheme applied to
the system in (12)–(13). The outer area represents the feasible set X nom

N
while the yellow triangle represents the safety S2. The red line shows the
state trajectory for an open-loop, discrete minimum-time control (DMTC)
solution to reach S2 from xnom

s , computed by (14) in the Appendix.

Fig. 2 shows the system trajectory, while Fig. 3 shows
the input and state time series from applying the proposed
FTMPC scheme to the system (12)–(13). The yellow triangle
depicts the controlled invariant safety set S2 for u2 = 0.
The system operates at the economic optimal steady-state
xnom

s = (6.00,3.75) until the controller receives a warning
about the incipient fault in actuator u2. It is evident that
a reactive approach which keeps the system operating at
xnom

s until a fault renders u2 useless, will in this case



Time

0 10 20 30 40 50 60 70 80
0

2

4

6

x1

x2

Time

0 10 20 30 40 50 60 70 80
0

5

10

15
u1

u2

Fig. 3. Closed-loop response of the states and inputs. The warning about
an incipient fault is given at sample time tfw = 20, the fault occurs at time
tf = 40, and is repaired by time tfix = 60.

make Pnom(x) infeasible and thus destabilize the system.
In contrast, the proposed proactive scheme steers the state
inside S2 upon switching from solving Pnom(x) to Psafe(x) ,
and subsequently reaches the temporary steady-state point
xsafe

s, j = (0.60,1.69). Observe that the state enters S2 at a
different point than the steady state xsafe

s, j in order to minimize
the number of timesteps with nonzero slack variables. When
the fault occurs, the EMPC controller switches to solving
Pfault(x) , the faulty model is updated, and the system is
steered to the new economically optimal steady-state point
xfault

s, j = (1.86,0.71). At time tfix, actuator u2 is repaired,
nominal operation is resumed by switching back to solving
Pnom(x) , and the system is steered back to xnom

s . Observe
from Fig. 3 that there are no discontinuities in the states at
the times of switching between the EMPC modes.

In Fig. 2, we compare our proposed FTMPC scheme
with the solution to the open-loop, discrete minimum-time
control (DMTC) problem (14) in the Appendix, which gives
the control input required to reach the set S2 from xnom

s
in minimum time. The two approaches both require eight
timesteps to reach S2, demonstrating as such that the exact-
penalty formulation yields a time-optimal transition to S2,
while it can seen that the solution to minimum-time problem
(14) gives a different state trajectory. This follows from the
well-known property that discrete minimum-time control is
in general nonunique [16], and does not necessarily give a
control input that is bang-bang.

V. CONCLUDING REMARKS

The proactive FTMPC scheme proposed in this paper
ensures a minimum-time escape to a safety set, and thereby,
provided the set can be reached within the estimated fault
time, circumvents the infeasibility issues that may be en-
countered in reactive FTMPC approaches for actuator faults.
The approach allows continued economic operation of the
system during the subsequent actuator repair, and may thus
be a constructive and cost-saving supplement for handling

incipient actuator faults as a part of efficient fault-tolerant
MPC schemes.
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APPENDIX

The minimum time required to steer a linear system from
an initial given feasible state x0, inside a compact set S =
{x | Gx≤ f}, with the initial state x0 /∈ S, can be computed
by the following MILP:

min
N

∑
k=1
−wkyk (14a)

s.t. xk+1 = Axk +Buk, k ∈ I[0,N−1] (14b)

x0 = given, (14c)
(xk,uk) ∈ Znom, k ∈ I[0,N] (14d)

Gxk ≤ f +M(1− yk), k ∈ I[1,N] (14e)

yk = {0,1}, k ∈ I[1,N] (14f)

In (14), wk is a sequence of positive, strictly increasing
weights, e.g. wk := k, and M is a big-M parameter. If (14)
has a feasible integer solution with yk = 1 for some k, the
minimum time tmin to get the state xk inside the set S is
given by the integer kmin for which the binary yk first takes
the value 1, i.e. tmin = {kmin|yk = 1, ∀k≥ kmin}. Observe that
the negativity in (14a) ensures that the system stays in S for
all positive times when first inside.


