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Abstract: Autonomous vehicles can obtain navigation information by observing a source with
a camera or an acoustic system mounted on the frame of the vehicle. This information properly
fused provides navigation information that can overcome the lack of other sources of positioning.
However, these systems often have a limited angular field-of-view (FOV). Due to this restriction,
motion along some paths will make it impossible to obtain the necessary navigation information
as the source is no longer in the vehicle’s FOV. This paper proposes both a path planning
approach and a guidance control law that allows the vehicle to preserve a certain object or
feature inside the FOV while at the same time converging to the proposed path.
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1. INTRODUCTION

One of the challenges that autonomous vehicles face is
navigating in environments where information from the
global positioning system (GPS) is not available. This is
a challenge that affects vehicles and systems that operate
indoors, inside mines, or underwater. An alternative to the
GPS is often computer vision or acoustic systems.

Although computer vision and acoustic systems have
proven to be able to produce accurate information, they
sometimes rely on a single source of information, either
because camera information tracks only a single visual
landmark, or because there is only a single node available
of an acoustic network. In such cases the ability to navigate
depends on the constant observation of the source.

Unfortunately the sensors receiving these signals are often
limited by the FOV, an angular restriction to observe the
target. In some configurations the sensors have the ability
to change their direction and therefore partially overcome
this limitation (Stolle and Rysdyk (2003); Rysdyk (2006)).
Other setups may instead have these sensors fixedly at-
tached to the vehicle’s frame and then the observability
of the target becomes dependent on the vehicle’s trajec-
tory. This restriction make some paths blinded because by
following them the vehicle loses vision of the target. (See
Fig.1) In some setups this can compromise the navigation
capabilities of the vehicle. The path planning problem
thus becomes more challenging, as it should not only
find a feasible collision-free path to connect the start and
end points but also preserve the view of the target. This
restriction is often referred as the field-of-view constraint.
In Boyadzhiev (1999); Tucker (2000) it is observed that
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Fig. 1. llustrative example of how two different paths can
affect the observability of a target (a) based on the
FOV.

certain animals moving with respect to prey or a light
source, follow a logarithmic spiral. This kind of spiral
enables them to maintain the prey or light source in their
field-of-view at all time during their motion. The existence
of such trajectories in nature have inspired solutions to
the FOV constraint. A formal definition of FOV is defined
in Bhattacharya et al. (2007), where following a simi-
lar approach as the Reeds-Sheep car (Reeds and Shepp
(1990)) describes a combination of straight lines and vision
saturated curves that connect any two points in the plane.
Later the optimal combination of trajectories is found
and proven by Salaris et al. (2010). This work is further
extended by Salaris et al. (2012) for side facing sensors.

Maniatopoulos et al. (2013) proposes a control law that
guides the vehicle towards a desired point by using model
predictive control (MPC). In Lépez-Nicolas et al. (2010);
Salaris et al. (2011) different control schemes are proposed
to follow the optimal path with an underactuated robot
that can turn on the spot.
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A common approach for path following control of under-
actuated vehicles is also the line-of-sight (LOS) guidance
(Fossen (2011); Healey and Lienard (1993); Breivik et al.
(2008)). The LOS guidance approach has the advantage of
being simple and has a very small computational load (Fos-
sen et al. (2015)). This guidance law was also generalized
for curved paths in Bgrhaug and Pettersen (2006) using
a Serret-Frenet frame and extended to handle currents in
Moe et al. (2014). However, the different versions of LOS
guidance and its variants do not deal with restrictions in
the FOV.

The path planning and path following problems with the
FOV constraint are tackled in two steps in this paper.
The first step is the design of a path by using logarithmic
spiral paths, which are a particular type of trajectories
that appear as general solutions in FOV problems being
discussed in Lépez-Nicolds et al. (2010); Salaris et al.
(2012); Bhattacharya et al. (2007); Salaris et al. (2010).
The second step is a guidance and path following control
law for underactuated vehicles which is an extension
of LOS guidance laws. This control law is specifically
designed to follow the logarithmic spirals generated in the
first step, and in addition it ensures that the vehicle’s
maneuvers preserve the view of the target. Compared to
Salaris et al. (2011) the proposed solution trades some
optimality in path length for the sake of robustness.
Furthermore, since underactuated vehicles are considered
as opposed to mobile robots, the vehicles are only allowed
to move in the forward direction, avoiding zero velocity
which would make the vehicle uncontrollable. By using
Lyapunov theory we prove that the proposed guidance
control law makes the vehicles converge to the path. In
particular, we prove that the closed-loop error dynamics
are globally asymptotically stable.

The paper is organized as follows: In Section II we propose
a logarithmic spiral that connects two points with a path
along which the landmark/transponder is kept within the
vehicle’s FOV. In Section III, we discuss the Serret-Frenet
frame, a relative frame that moves along this path, and
which is used in order to describe the guidance control law
and examine the stability properties. Section VI formalizes
the control objectives and describes the proposed guidance
and control system. Section VII examines the stability
properties of the closed-loop system and Section VIII
simulates the behavior of the system for two cases: a
ground vehicle and an underwater vehicle.

2. VISION PRESERVING PATH

The first objective of this section is to describe the reach-
able set of points I' € R? that can be connected with at
least one path, for an underactuated vehicle that moves
only with forward velocity, and the motion restricted by a
FOV.

The start point of this path is denoted pj, and the
path should satisfy the condition that during the whole
path a certain target: (4) (landmark/transponder) must
be preserved inside the FOV. When the set of reachable
points T' is defined, the next goal is to mathematically
describe a vision preserving path that connects the starting
point point p to another point pr1 € T'.
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Fig. 2. On the left a representation of the FOV restriction:
the angle 6 the between the vehicle centerline and the
target () should be kept within the FOV boundary
Omax- The right figure shows the limit trajectories
TR+ T+ along which the target (a) is always at
the FOV limit. The region inside the boundaries
TF+ TI+ contains the reachable set, and the black
path is the proposed logarithmic-spiral trajectory.

The field-of-view is a solid angle in which a sensor can
operate. Cameras and acoustic sensor tend to have this
type of limitation. In this paper we assume that the
origin of the earth-fixed coordinate system is defined at
the landmark/transponder position. The objective is that
the landmark/transponder is kept inside the FOV of the
vehicle’s sensor and can thus be expressed as follows:

Condition 1. 0] < |Omax| < 7/2

where 0 is the bearing angle (See Fig. 2, left) between
the vehicle centerline and the visual landmark/acoustic
receiver.

For both objectives we assume:

Assumption 1. The FOV is forward looking, symmetric
with maximum bearing |fimax| < 7/2 and aligned with the
vehicle’s centerline.

Assumption 2. The vehicle moves only with a forward
speed U where, upin < v < umax and the sway speed
v is bounded by |v| € Umax < Umin-

This last is a necessary assumption for the path planning
and control of underactuated vehicles, as they lose con-
trollability when the velocity approaches zero.

2.1 Reach Set

In Salaris et al. (2010) the limit trajectories are described
for a forward moving non-holonomic vehicle when the
motion is restricted by the FOV. Such trajectories are
logarithmic spirals and are also referred as: 7%+ and TE+
(See Fig. 2 on the next page). These two trajectories
represent the boundaries of the space that can be reached
by a vehicle that only moves forward without violating the
FOV restriction. These boundaries can also be expressed
in a compact form as:
o]
L hy s = { (10 + 8yl = rpe” ™D g € [~m, 7]}

(1)
To reach any point at the boundary under the FOV restric-
tion stated in Equation 1, the only possible trajectory is by
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following a logarithmic-spiral. The rest of the points inside
the boundaries, on the other hand, have endless combina-
tions of possible trajectories. In Salaris et al. (2010) it was
found that the optimal trajectory with respect to path
length is a combination of straight lines (ST) and limit
spirals (TR+ TE+),

While this solution is optimal in terms of path length, it
also requires the vehicle to move in such a way that the
target (a) is kept exactly at the boundaries of the FOV,
and therefore any small disturbance making the vehicle
drift outside the boundary, would make the target (a)
disappear from the field of view. It is for this reason that a
suboptimal trajectory must be followed in order to achive
a most robust control and always preserve the target (a)
inside the FOV. In this paper we thus propose a path that
allows the vehicle to navigate safely within the boundaries.

2.2 Logarithmic Spirals

In this paper we propose to use logarithmic spirals to
design a path that connects point px to point piy1. Due
to the nature of the problem, spirals are defined in polar
coordinates where r is the radius and ¢ is the angular
coordinate. The logarithmic spiral path is parametrized
by w € [0,1], that connects pr = (ry,¢r) to point
Pr+1 = ("k+1, Pr+1) with a constant bearing angle.

r(w) =w(reer — k) + 7k

o(w@) = + tan(0y) In[w(rg41/rx — 1) + 1] (2)

where 5 5
_ k+1 — Pk
0 = atan <ln(r;€+1/rk)) (3)

This spiral-path has the distinctive property that it keeps
the same bearing angle 6 along the whole trajectory.

3. PATH PLANNING AND REFERENCE FRAME

In this section we transform the path equations into a
tracking reference and use a relative frame that moves
along the path, in order to later describe the guidance
and control laws and examine the stability properties.

3.1 Path Description

The logarithmic Spiral described in the previous section
will be used to describe the path to connect two waypoints
pr and pgi1. The position on this path will here be
parameterized based on the distance traveled along the
path, which is given by a parameter s. This will be used
later in the control design as a tracking point py(s) =

(r(s), ¢1(s))-

r¢(s) =rk — (s + s0) cos(6)
¢7(s) =¢i + tan(fy) In (1 -

where sq is a starting point that will be introduced later.
The logarithmic spiral results from solving the differential
equation:

(s + s0) cos(@k)> (4)

Tk

r
E = tan 9k; (5)
d¢

And the described path is among all the different possible

logarithmic spirals that connect py and pg1, the one with

the smallest bearing angle 0.
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Fig. 3. The inertial frame (fixed at the landmark) a-
axis points north and y-axis points east. The Serret-
Frenet frame has axes denoted T and N. This frame
is anchored to the desired path. The distance traveled
along the path is described by s. The position of the
body-fixed frame relative to the Serret-Frenet frame
is denoted by (¢, ys/f)

3.2 Serret-Frenet frame

The position of the vehicle is calculated relative to a frame
that moves along the logarithmic spiral path parametrized
by s (see Fig.3), and in order to describe the dynamics of
the vehicle with respect to this relative frame we use a
Serret-Frenet frame. In this frame the relative position is
denoted by /¢, yp ¢ and vy p = 9 — 1y is the yaw angle
relative to the frame (see similar approach in Moe et al.
(2014) and Encarnagao and Pascoal (2000)).

The kinematics of the body frame relative to the Serret-
Frenet frame (Encarnacao and Pascoal (2000)) can be
described by the following the notation (Bgrhaug and
Pettersen (2006)).

i et | g [

In Figure 3 it can be seen that when ;¢ goes to zero, this
corresponds to the vehicle converging to the path.

Assumption 8. The difference v between the angular co-
ordinate of the vehicle’s position ¢ and the angular coor-
dinate of the point on the Serret-Fernet ¢(s) does not
influence the limits of the FOV.

The reason for this assumption is because the guidance
laws that ensure that the landmark/transponder is kept
inside the FOV computes the desired yaw angle with
respect to the angular coordinate of a point in the Serret-
Frenet frame. This difference in the angular position of
both could make the vehicle lose vision of the target if it
becomes too large.

The following equation describes the distance from the
current position of the vehicle to a point on the path:
2y 0
d=ryg+ a’e” Ty — 2roae ®0 cos(y) (7)

where a = rpe=(Po—9x)/tan(0x) We find the point on the
path closest to the vehicle’s position by minimizing the
distance d, i.e. solving d%d =0

0=— qe ™o + ro [cos(y) + sin(7y) tan(6x)] (8)
With Assumption 3 the following approximations can be
made:
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.
tan(6y) )

0
e tan(0g) ]_ _

sin(a) ~ a;  cos(y) =~ 1;
Solving for v in (8) we then find
_ %0—%k
rLe tan(6y) — 70

_P0—%k

rotan?(0y) + rre rr)

Then the point of the path where we initialize the Serret-

Frenet frame is:

~v* ~ tan(6y) (10)

po+v* —wy
S0 = Tk <1 —e Wl )/cos(@k) (11)

4. CONTROL OBJECTIVE AND CONTROL SYSTEM

The control objective is to make the vehicle converge to,
and follow the logarithmic spiral path C = {(z/(s),ys(s)},
defined by an initial point py and an endpoint py 1. Based
on the Serret-Frenet frame described in Section 3.2 the
control objective is formalized as:

lim 2/¢(t) =0

sy ) =0 12
Jim ¢ (2) =
We propose a yaw controller to guarantee convergence to
the path, i.e. to fulfill the control objective (12), which can
be divided in the following three components:

4.1 Serret-Frenet Frame update law

The following equation describes the update law that will
drive the Serret-Frenet frame along the path.

§ =wucos(Vy ) —vsin(hy/ ) — koxy/g (13)
The first two terms are the projection of the vehicle
forward velocity onto z;,;. By doing so, the frame moves as
fast as the vehicle in x;/; direction. Therefore, the velocity
at which the frame moves along the path equals the
velocity of the vehicle. This projection makes the guidance
a path following problem where y,/; will determine the
distance to the path. Based on that distance a guidance
law will be derived in the next section. It is thus important
that z,/; remains close to 0 because then the frame is
located at the closest point to the vehicle. Since the first
two terms regulate the speed of the vehicle, a third term
—kgxyp is introduced, which acts as a restoring spring,
ensuring the convergence to z;,; = 0. This allows the
update law to overcome errors in the initialization of
sp or numerical errors caused by the integration of s,
maintaining always z;,; = 0.

4.2 Guidance Law

The following guidance law is an extension of the well-
known LOS guidance laws, and has been designed for
underactuated vehicles that have no independent control
input in the sideways direction. It commands a desired
yaw angle that we will prove later that makes the system
described by (6) converge to the desired path. In partic-
ular, this guidance law makes the vehicle converge to any
path described by Eq. (4) and at the same time preserve
the desired landmark/transponder (a) inside the FOV.

ol

Target bearing Angle (8)

o

I I
o
Distance from the path (yb/7)

Fig. 4. Visualization of the behavior of the saturation
controller. This prevents the trajectory to exceed the
maximum field of vision defined by 0,,.x. It also offsets
the function in order to guarantee the desired course
when the vehicle is following the path.

tan(@max) (yb/f + d‘gk)
\/AQ + () + doy)?

Saturation controller

Ya = 1y — 0 — atan (%) — atan

(14)

where A > 0 is a design parameter inspired by the line-
of-sight guidance method proposed by Papoulias (1991),
dp,, is a shifting parameter that makes the heading angle
at y,/r = 0 the same as the desired constant path angle 6
while — atan(v/u) compensates for the crab angle:

do, = Atan(8)/y/tan? (Bnar) — tan(6,)  (15)

Based on Assumption 3, the yaw controller described in
Equation (14) does not consider the angle v between the
angular coordinate of the tracking point on the Serret-
Frenet frame and the angular coordinate of the vehicle’s
position.

4.8 Yaw controller

The yaw dynamics of the vehicle can in general be written:
(see. Fossen (2011)):

Y =r

16
7 =F.(u,v,7) + 7 (16)

A feedback linearizing controller is used to follow the
desired yaw angle 14 provided by the guidance law (14):

Tr = —Fr(u,0,7) + a — ky (¢ — Ya) — ke (¥ — ¥a) (17)
where ky, and k, are strictly positive constant controllers
gains. From (16) and (17) it can be seen that it ensures
exponential tracking. In particular, by defining 1% =1 —1y
and ¢ = ¥ — 14 and substituting the controller (17) into
Equations (16), the yaw error dynamics can be written:

e [3]-[2 219 -

The system (18) is linear and time-invariant. Since the
control parameters ky and k. > 0, A is Hurwitz and the
origin £ = 0 is uniformly globally exponentially stable
(UGES).

(18)
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5. STABILITY ANALYSYS

The controller proposed in this paper allows an underac-
tuated vehicle to follow a logarithmic spiral path while
at the same time preserves vision of a target. In order
to apply this controller on a large class of underactuated
vehicles, the stability proof has been restricted only to the
kinematic model. In order to prove the stability we redefine

the expression of ¥y = 1 — 1y
Vo p =P+ a — Uy

n t‘ enlax O, + d
=1) — O — atan <E> — atan ( an( U, Gk))
u

A2+ (yy 5 + do,)”
_ v/ A2 + (g5 + dek)Q + wtan(Omax) (/s + do,)
=1 — 0 — atan

A2 + (yb/f + dﬂk)z -v tZ’m(gmax)(yb/f + dg,)

a

(19)

Based on the definition of « in equation 20, the expressions
for sin(a) and cos(«) are:

(@) = - A2 + (g5 + doy)? = v tan(Omax) (Y5 + doy.)
cos(a) =
U2((tan?(Omax) + 1) (ye/ + do, )? + A?)
v (20)
in(a) O /A% + (o5 + dp, )2 + wtan(Omax) (U + do,.)
smlax) =
\/[]2 tan nnx) + 1)(yb/f + d@k) + A2)
where U = v/u2 + v2.

Then substituting the update law (13), the controller (17)

and the guidance law (14) into Equation (6) we obtain:
Itb/f = 7]4511‘1)/}0 + Sk Yo/ f (21)

Up/f = [See exp. below] (22)

Equation (22) can be further reduced to (23) by using the
expressions of sin(a) and cos(«) in (20). Then by using the
coordinates of the yaw error dynamics defined in (18), the

closed-loop system can be written as (18) together with:
szzb/f
[zb/f] |:Utan(6,,,ax)(yb/f +do,, ) —tan(0x) /A% +(yp s +do,, )? :|
Yol VAT (Lt tan? (00)) (9 7 +dag )2 <03(0r)
o 0 —kr -rb/f
’ [’f 0 ] [yb/f i

A9 it g o] [

H(U,£)¢

< <

(25)

203

The system composed by Equations (18),(24) constitutes
a cascaded system, where the nominal system (24) is
perturbed by the exponentially stable error dynamics (18)
through the interconnection term (25).

Theorem 1. Given an underactuated vehicle described by
the dynamical system (6) and (16). If Assumptions 1-3
hold, then the update law (13), the guidance law (14)
and the controller (17) guarantee the achievement of the
control objectives (12).

Proof: To prove stability of the nominal part of (24) we
choose the quadratic Lyapunov function candidate V' =
%(:rz/f + yg/f). The derivative of V' is then obtained as:

V= To/rTo/f + Yo/ Yo/
W (yu/5)

U [tan(Oone) g + o) — tan O A+ (g + do)? [y

\/AZ (1 + tan?( (0k)) (Y + do,.)?/ cos(Or) =1

(26)

The V equation has two terms. First: —k‘zxg/ 7 which is
always < 0, and a second one where the the denominator
is always positive, since Condition (1) restricts cos(f) to
always be positive in the range of 6j. Therefore, showing
that the numerator which we call W (y;/;) has one unique
solution of W (ys/s) = 0 at v,/ = 0 and that this solution

is also a maximum, will show that V is negative definite:

Wyss) = =U [taﬂ(emax)(yb/f + dg,,) — tan(0r )4/ A2 + (yy/5 + dek)2] Yb/f
Wiysp) =0 ypp =0

(27)
By taking the first and second derivative of W (ys/s) it can
be seen that y,/; = 0 is a maximum value of W:

W’ (0) =0

W”(0) = —2U tan(fmax) [1 - M] <0 &

tan? (O max)

Therefore V < 0 is bounded by:

. —Unin [tan(anmx)(%’f +dp,) — tan(0)/ A2 + (yy/7 + do,)? | oy
V< — hatiyy
\/AZ (1 + tan®(0x)) (ysys + do, )%/ cos(0k)

(29)
V is shown to be negative definite and thus the nominal
system is UGAS. Theorem 1 from Sontag (1989) can
now be applied to prove stability of the entire cascaded
system. In particular, the nominal system is UGAS with
a quadratic Lyapunov-function. The perturbing error dy-
namics are UGES, and the interconnection matrix H (U, )

Yoyy = usin(typ) +veos(Pyp) — 8k Ty pP/p = cos(fx)(—usin(a) + v cos(a)) — sin(fy ) (u cos(a) + vsin(a)

) — $K .’K,,/er

(22)

+ cos(6y )Y [%(v cos(a) — usin(a)) + w ucos(a) + Usin(a))] + sin(ek)d;[%( ucos(a) —vsin(a)) + Sin[/&(—u sin(a) + vcos(a))}
b ) b
. ta1'1(9111'fn<)(?,/l7/f + d9k) - tan(()k) 2+ (?/b/f + dgk)2 .
Yoyp = —U — $K xp)p+
AJAZ (1 tan? (Bunan)) (05 + o, )?/ 05(6)
; [sin(d)) U— sin(0x) tan(0 ) (/5 + do,) + cos(0x)4 /A2 + (yu/5 + do,,)? cos(9) — 1Ucos(9k) tan(0r) (s s + do,) — sin(0y.) + (g + dek)z]
1/; \/AQ 1 + tdn max))(yb/f + dﬂk)z 1]} \/A2 1 + tdn mdx))(yb/f + dok)2

=h(U,€)

(23)
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is globally bounded under Assumption 2 which guarantees
that U is bounded by U < y/u2 .« + V2.5 Consequently,
the cascaded system in (24) and (18) is UGAS, and
Ty, Tp/p converge to zero with uniform global asymptotic

stability. Thus the control objectives (12) are satisfied.
6. SIMULATIONS

The effectiveness of the control strategy will be tested
using two different scenarios.

A) A ground vehicle with no side slip.
B) An underwater vehicle with side slip.

For both cases, the lack of a global positioning system is
assumed to be the reason for using alternative positioning
sources. Also, in each scenario the vehicle starts from two
different regions close to the path; The first ”outside”
(highlighted in blue in Fig. 2) the spiral, where the path
will always be between the vehicle and target (). In the
second scenario the vehicle starts ”inside” the spiral. In
this case during the steering towards the path the vehicle
must take a trajectory in which view of the target (a) is
closer to the FOV limits.

Note: If two new spirals were created from both regions
starting positions (in and out) to the end point pg41, then
the bearing angles 6, of these paths would be: 0y, < 8, <
O,, -

For both cases the vehicle will have a visual restriction of
Omax = % and start with a yaw angle that points directly at
the transponder/landmark (a), i.e. 8 = 0. Both cases also
will have a logarithmic spiral with the same bearing 0y, but
in different proportions according to their maneuvering

characteristics.

6.1 Ground Vehicle

We first consider a ground robot with zero side-slip angles
which obtains its navigation information by observing a
visual landmark (a) on the ground. The model used in
this paper is described in Fierro and Lewis (1995), which
describes the dynamics of a robot with two driving wheels
mounted on the same axis, and a free front wheel. Our
study case in particular has the body-fixed coordinate
system at the center of the axis.

q=_S)v

Mdb+ F(v) = B(y)T
The vector F(v) contains the surface friction forces, and
T contains a vector with the force applied to each wheel.

cos(y)) 0 m 00 1 [cos(¥) cos(¥)
S = {sin(w) O] , M = [0 m 0} ,B = — [sin(y) sin(v)
0 1 001 T

R -R

(30)

(31)
The ground vehicle is required to follow a path P described
by point P; [100,0] to a point P : [25,F], from
the inside starting point Fp,, : [95,0] and the outside
Po,,, : [100, 5], respectively. For this case the parameters
of the guidance control law were tuned to: A = 3,k, =
0.2,kq = 2.

6.2 Marine Vehicle

In the second scenario a underwater vehicle, which receives
both range and bearing from a single transponder. The

dynamic model of Fossen (2011) is used. The vehicle is
required to follow the path P described by point P; :
[600,0] to a point P, : [150, 5]. Starting from the inside
position: Py, : [580,0] and the outside F,,, : [600, 5]
For this case the parameters of the guidance control law

were tuned to: A = 40, k, = 2, kg = 60;
n = R(Y)v
M3d + C(v)v+ Dv =Bf

The vector f contains the control inputs, i.e. the rudder
angle § and the surge force 7.

mi; 0 0 di; 0 O
M = 0 maog mog|,D=1]0 day dag

0 m3a ma3 0 dsz dss
b1 O 0 0 —maav — vagr
B=|0 by ,C(v) = 0 0 miiu
0 bs2 Moo + Ma3T MU 0

The coefficients of the matrices M, D, B,C were ex-
tracted from Healey and Lienard (1993).

(32)

(33)

6.3 Discussion

The results of the simulations are shown in Fig. 5-10. The
trajectory of the vehicle while approaching to the path for
the two different scenarios is shown in Fig.5,6. The vehicles
converge to the path in all the cases. The figures also
show that the ”inside” trajectory takes longer to converge
than the ”outside” trajectory. This is an expected result
because the steering capability becomes restricted by the
FOV limits.

Fig. 7 and Fig. 8 show the time evolution of the bearing
angle w.r.t. the landmark (a). The shaded area represents
the FOV. For both vehicles, the desired angle (dotted-red)
of the ”inside” trajectory remains close to fyax (steps 1-2).
This is due to the restriction that the guidance law imposes
to preserve FOV, making the vehicle converge slower in
comparison with the "outside” trajectory (dotted-blue),
where the vehicle is allowed to turn faster towards the
path, since turning towards the path entails turning to-
wards the landmark.

The effect of the side-slip angle can be observed in the
desired angle ("outside” /dotted red) of the underwater
vehicle. It creates an overshoot, almost reaching the limits
of FOV (O1ax). On the other hand, this overshoot does not
happen for the ground vehicle, in which the desired angle
gradually approaches to 6.

For this reason, the ground vehicle can be tuned with
a smaller A, allowing it to reach the path much faster
than the underwater vehicle. This can be seen in Fig.
9 and Fig. 10 which show the distance to the path.
The ”outside” (blue) trajectory converges notably faster
for the ground vehicle. However, this is not the case for
the ”inside” (red) trajectory, mainly because the FOV is
limiting how fast it can converge to the path.

Finally, for the ”inside” (red) trajectory, it can be seen that
both vehicles drift away from the path at the beginning.
The vehicles start with a bearing angle that points away
from the path and they do not start converging until
the bearing has been adjusted. For the ”outside” (blue)
trajectory the bearing points towards the path which
makes the vehicle converge since the beginning.
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7. CONCLUSIONS

In this paper we have shown the benefits of using log-
arithmic spirals paths for motion planning purposes of
underactuated vehicles that have a limited FOV. We have
proposed the description of a path that connects two
points, in which a vehicle moving along this path will
preserve the FOV of the given landmark /transponder.

A guidance and control system for a large class of under-
actuated vehicles is developed to solve the control objec-
tive of making the vehicle steer towards and follow the
spiral path and at the same time preserve the vision of a
transponder /landmark. This paper proves the convergence
to the desired path with asymptotic stability. A simulation
study confirms the theoretical results.

Future work will include other larger classes of spirals and
considerations on the effects of ocean currents/drag forces.
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