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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 
DET MEDISINSKE FAKULTET 

Shahram Bahrami 

Studier av egenskaper og klassifisering av humane transkripsjonsfaktorer 

Egenskaper og funksjonen av ulike celler bestemmes gjennom regulering av 
genuttrykket, og en rekke ulike mekanismer er aktive i den enkelte celle for å 
øke eller redusere genuttrykket. Blant annet transkripsjonsfaktorer er viktige for 
genregulering. Hensikten med dette arbeidet har vært å kartlegge spesifikke 
egenskaper ved transkripsjonsfaktorer for bedre å forstå hvordan de samspiller i 
genreguleringen, og hvordan deres egenskaper og endringer i disse egenskapene 
kan påvirke dette samspillet. Dette ble først gjort ved å lage en database med 
kjente transkripsjonsfaktorer og deres egenskaper, og gjøre statistiske analyser 
av dette. Den studien viste at et slikt datasett er en nyttig ressurs for å analysere 
andre datasett på genregulering, men at det også kan være en bias i slike 
analyser på grunn av ufullstendige data. Denne studien ble så utvidet ved å 
klassifisere transkripsjonsfaktorer i undergrupper basert på hvordan de åpner 
opp og binder til kromatin under genregulering, basert på eksperimentelle data. 
Det klassifiserte datasettet ble brukt til å analysere andre eksperimentelle data, 
og dette viste blant annet klare forskjeller i hvordan de ulike undergruppene av 
transkripsjonsfaktorer binder til DNA. Det ble så fokusert på en undergruppe av 
gener som reagerer veldig raskt på stimulering, for å få en bedre forståelse av 
hvordan slike gener blir regulert. Dette ble gjort delvis gjennom en litteratur-
studie, og delvis ved å gjøre statistisk analyse av et sett av slike gener og deres 
omgivelser i genomet. Dette studiet identifiserte blant annet flere transkripsjons-
faktorer som selv hører til under denne typen av gener, men som også er 
involvert i reguleringen av slike gener. Dette kan i fremtiden gi grunnlag for en 
modellering av regulatoriske interaksjoner i gener med rask aktivering. 
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During gene expression information from a gene is transcribed into RNA, which subsequently 
may be used directly (non-coding RNA), or translated into protein. Regulation of gene 
expression includes several steps, and these steps are controlled by several elements such as 
enhancers, activators, and transcription factors. Transcription factors are proteins that bind to 
specific DNA sequences and control the regulation of gene expression. Transcription factors 
are generally modular in structure, and often contain one or more domains. Most transcription 
factors are divided into two major classes; the general TFs and the site-specific TFs. The site-
specific TFs bind to specific DNA motifs through their DNA binding domains. The role of 
transcription factors as a fundamental part of the general regulatory system depends upon 
specific properties of the factors, including DNA-binding domains, protein-protein 
interactions (PPIs) and post-translational modifications (PTMs). 

Because of the importance of transcription factors in the regulation of gene expression, a 
transcription factor database including different properties of the transcription factors can be a 
very useful resource for researchers.  

In this thesis, we have first created a comprehensive list of human transcription factors which 
includes information on Pfam domains, DNA-binding domains, protein protein interactions 
and post-translational modifications. Then we have used this data set for enrichment analysis 
and investigated correlations within this set of features, and between the features.  

As part of this work, we have also expanded the annotated set of transcription factors and 
classified them with respect to their role in chromatin opening as Pioneers, Settlers, positive 
and negative Migrants. The results showed that the classification is a useful resource for 
analyzing data on gene expression and for better understanding of how transcription factor 
expression and the dynamics of chromatin structure are integrated at a functional level.  

In the final part of the thesis we have focused on the activation and regulation of immediate-
early genes (IEGs), since these genes have several interesting properties with respect to 
regulation. Immediate early genes are genes which are expressed transiently and quickly 
within minutes in response to a wide variety of stimuli. These genes play important role in 
several essential cellular systems, such as the immune system. We have first summarized 
current knowledge regarding regulation and selected key properties of these genes as a 
review, including the importance of genetic and epigenetic structure, and the role of poised 
genes and the importance of in particular strong enhancers. We have then developed a 
consensus set including 172 immediate-early response genes showing rapid activation with 
different types of stimulation. We have then done bioinformatics analysis of the gene list, and 
identified some of the key properties of these genes.  

The results showed that the consensus set has a good representation of immediate-early 
response genes and is largely consistent with previous results. Therefore the consensus set is a 
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useful resource for analyzing how genes involved in the immediate-early response are 
regulated. 
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An important aspect of the project described in this thesis has been to use property-based 
analysis of transcription factors as a basis for understanding how classes of transcription 
factors may have different roles in regulation of gene expression. This section will therefore 
provide an introduction to gene regulation and transcription factors, including relevant 
properties at the protein level, followed by a brief introduction to immediate-early genes, used 
as an example of a system where gene regulation is essential, and finally some machine 
learning methods and statistical approaches used in the analysis are introduced. 

 

Regulation of gene expression 
 

The structure of DNA 
Deoxyribonucleic acid (DNA) is a fundamental macromolecule to all living organisms as it 
carries the genetic instructions used in the development, functioning and reproduction. DNA 
is a double-stranded helix including two long polynucleotide chains composed of four types 
of nucleotide subunits. A nucleotide is made of a nucleobase, a five-carbon sugar 
(deoxyribose), and one or more phosphate groups. There are four different types of 
nucleobases in normal DNA; adenine (A), cytosine (C), guanine (G), and thymine (T). A 
nucleobase linked to a sugar is called a nucleoside, and a nucleoside linked to a phosphate 
group is known as a nucleotide.  

The nucleotides are joined together by a phosphodiester bond linking the phosphate groups at 
the 3´ carbon atom of one sugar to the 5´ carbon of the next sugar. The chain of repeated 
sugar-phosphate groups makes the backbone of the DNA strand. The direction of the 
nucleotides in one strand of a double helix is opposite to their direction in the other strand, so 
that the strands are antiparallel. 

In a DNA double helix the two strands are connected by hydrogen bonds, so that one type of 
nucleobase on one strand bonds with a complementary nucleobase on the other strand; 
adenine forms two hydrogen bonds to thymine, and cytosine forms three hydrogen bonds to 
guanine (see Figure 1). 
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Figure 1: DNA structure, showing the four nucleobases found in DNA.  

T is connected with A by two hydrogen bonds, whereas three hydrogen bonds connect G to C. The sugar-
phosphate backbones run anti-
make a double helix. The figure has been adapted from http://www.nature.com/scitable/topicpage/discovery-of-
dna-structure-and-function-watson-397. 

From genes to proteins 
Genes encode proteins and proteins are the main mediators of cellular function. The process 
by which information from a gene is used to synthesis a protein is covered by gene expression 
and translation. The subset of genes expressed in a specific cell determines what that cell can 
do. Transcription is the first step of gene expression, in this step the information in a strand of 
DNA is copied by RNA polymerase into messenger RNA (mRNA) for protein production. 
The mRNAs are the molecules that convey genetic information from DNA out of the cell 
nucleus to the ribosome, where they determine the amino acid sequence of the protein 
products. In mRNA the genetic information is arranged into codons consisting of three bases 
each. But unlike DNA it is a single-stranded molecule, and it is much shorter than genomic 
DNA. Each nucleotide in mRNA contains a ribose sugar, and the complementary base to 
adenine in mRNA is not thymine, as in DNA, but rather uracil.  
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Figure 2: Gene expression, the structure of a eukaryotic protein-coding gene.  

Promoter and enhancer regions (yellow) regulate the transcription of the gene into a pre-mRNA which is 
modified by adding a 5' cap and poly-A tail (grey) and removing introns. The mRNA 5' and 3' untranslated 
regions (blue) regulate translation into the final protein product. The figure has been adapted from Wikipedia.

The primary transcript for protein production is a single-stranded mRNA called pre-mRNA. 
The pre-mRNA molecule undergoes three main modifications, including RNA splicing, 5' 
capping, and 3' polyadenylation. Eukaryotic genes contain segments that do not code for 
proteins, known as introns, and the remaining segments that code for proteins are known as 
exons. During RNA splicing the introns are removed and the exons are joined. Also a 
modified guanine nucleotide is added to the 5' end of the pre-mRNA. The 5' cap includes a 
terminal 7-methylguanosine residue that is connected through a 5'-5'-triphosphate bond to the 
first transcribed nucleotide. In addition, at the other end of the pre-mRNA strand, a chain of 
adenosine monophosphates is added, known as a poly-A tail (3' polyadenylation). These 
modifications protect the mRNA molecule from enzymatic degradation and are important for 
regulating the export of the mRNA from the nucleus to cytoplasm for translation.  

When a pre-mRNA molecule has been correctly processed to an mRNA sequence, it is 
exported out of the nucleus to be translated into a protein by ribosomes. During translation the 
resulting mRNA, which is a single-stranded copy of the gene, is translated into a protein 
molecule.  

During translation the information contained in the mRNA is read as three letter words 
(triplets), called codons. Each codon specifies a particular amino acid (hence, it is a triplet 
code). During the translation step the amino acids are connected together and form a 
polypeptide chain which will later be folded into a protein.  
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The structure of proteins 
Proteins have different functions. Some of them have a structural function such as keratin; 
others are involved in cell signaling, such as hormones and their receptors, and other groups 
of proteins act as enzymes and catalyze chemical reactions.  

Proteins are polymers of amino acids covalently connected via peptide bonds into a chain. 
There are 20 different amino acids with a common basic structure. A central carbon is bonded 
to a hydrogen atom, a carboxyl group, an amino group, and a unique side chain or R-group. 
The chemical properties of amino acids are mainly determined by their unique side chain. A 
chain containing approximately 50 or fewer amino acids is often called a peptide. 

  
Figure 3: Building blocks for proteins 

Left: Proteins are made of amino acids and each amino acid consists of a central carbon, a hydrogen atom, a 
carboxyl group, an amino group, and a unique side chain or R-group. Right: The figure shows two different 
amino acids. Figure adapted from http://alevelnotes.com/Amino-Acids/59?tree= and 
http://study.com/academy/lesson/what-are-amino-acids-definition-structure-quiz.html. 

Proteins have four main levels of structure; primary, secondary, tertiary and quaternary.  

Primary structure: This structure consists of the individual amino acids join together in linear 
chains by forming peptide bonds between the -NH2 of one amino acid and the -COOH of the 
next. 

Secondary structure: This structure refers to the folding of a polypeptide chain, and involves 
two main types, the alpha helix and the beta strand. These structures are determined by 
patterns of hydrogen bonds between the main-chain peptide groups.  

Tertiary structure: This represents the overall three-dimensional structure of the polypeptide 
chain of a protein molecule. The protein chain will twist and bend in such a way as to get 
maximum stability or lowest energy state. 

Quaternary structure: In this structure a protein macromolecule is made up of multiple 
polypeptide chains (multi-subunit protein) by non-covalent interactions between the multiple 
polypeptide chains to form a larger aggregated protein complex.  
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Figure 4: Protein structure. 

Different levels of protein structure, showing primary, secondary, tertiary and quaternary structure. The figure 
has been adapted from Wikipedia. 

Proteins can also be represented as consisting of domains. A domain is a part of a protein that 
can be found in different contexts, independently of the rest of the protein. The function of a 
protein is determined by its domains and the nature of their interactions. A protein may 
consist of one or more structural domains. Domains vary in length from about 25 amino acids 
up to 500 amino acids. Proteins that have the same domains tend to have common functional 
characteristics and common ancestor [1].  

Most proteins also undergo chemical modifications to form the mature protein product in 
different cells and cellular processes. These modifications are known as post-translational 
modifications (PTMs). Most PTMs change the properties of a protein by the addition of a 
specific chemical group to selected amino acid side chains or at the protein's C- or N-termini. 
Some PTMs, such as phosphorylation may serve to rapidly and transiently activate or 
deactivate a protein, but other PTMs can be more long-lasting. PTMs can function in several 
ways; they may for example change site-specific DNA-binding transcription factors (SSTFs) 
with respect to subcellular localization, stability, secondary structure and DNA binding 
affinity, or even tertiary structure and association with co-regulatory factors [2]. 



 

 

6 

 

Pfam: a protein families database 
Pfam is a comprehensive database of protein domains that is widely used to annotate and 
classify proteins. Each domain is defined by an alignment used to make a profile hidden 
Markov model (HMM). This is an information-rich representation of the set of aligned 
sequences, initially made from a seed alignment, which can be used to find additional 
sequences that have the same domain [3]. The database includes two classes of entries: Pfam-
A and Pfam-B. Pfam-A families include a seed alignment, a hidden Markov model (HMM), 
full alignments, associated annotation, literature references, and database links; while Pfam-B 
families consist of alignments of sequence clusters, derived from the Automatic Domain 
Decomposition Algorithm (ADDA) database, with no annotation or literature references [3]. 
Pfam-A families are grouped into clans. A clan contains those families that have a common 
evolutionary ancestor. Several lines of evidence are used to determine whether or not two 
families are related [3]. 

 

Regulation of gene expression 
The properties and function of each cell type is mainly determined by the gene products it 
contains, in particular the proteins. The kind and amount of the different gene products 
produced by each cell is regulated. The regulation of gene expression plays a vital role in all 
organisms and controls the development of the organism. When the gene expression goes 
awry, cellular properties are changed and the changes can for example lead to development of 
cancer. Generally gene expression is a bridge to the genotype-phenotype relationship in all 
organisms. So it is essential to understand the molecular interactions that control gene 
expression.  

Gene regulation involves many molecular events that take place when transcription of a gene 
occurs, and modification of transcriptional regulation is an important contribution to 
evolutionary changes in the genotype-phenotype relationship [4]. Transcription of eukaryotic 
genes are done through several events; including de-condensation of the locus, nucleosome 
remodeling, histone modifications, binding of transcription factors, activators and coactivators 
to enhancers and promoters [5]. A promoter merges information about the status of the cell 
and modifies the rate of transcription initiation of individual genes accordingly [4]. The 
promoters have two functional features; they have a core promoter, the site upon which the 
enzymatic machinery of transcription assembles, and they have a collection of different 
transcription factor binding sites that confer specificity of transcription [6]. Core promotor 
sequences are different between genes, but for many genes the main binding site is a TATA 
box, located around 25- Some genes have an initiator 
element spanning the transcription start site while others contain additional protein binding 
sites for general transcription factors [7]. The first step in transcriptional initiation of genes 
with TATA-box is the attachment of TATA-binding protein (TBP) to DNA [8].  
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Figure 5: A model of transcription 

Figure from http://www.uic.edu/classes/bios/bios100/lectures/genetic_control.htm, used with permission. 

In promoters without TATA boxes, there are proteins that associate with other core promoter 
motifs and simplify association of TBP with DNA. Then several TBP-associated factors 
(TAFs) guide the RNA polymerase II onto the DNA. This step can be regulated by 
transcription factors (TFs) bound at other sites and is one of the most important steps of 
transcriptional regulation [6].  

The transcription initiation by eukaryotic RNA polymerase II involves some specific 
transcription factors. RNA polymerase II itself is regulated and acts within a macromolecular 
complex, known as the pre-initiation complex (PIC), and includes TFIIA, TFIIB, TFIID, 
TFIIE, TFIIF, and TFIIH, RNA polymerase II and Mediator [9]. Mediator is a multi-protein 
complex and functions as a coactivator in regulation of gene expression. Mediator is unable to 
bind directly to DNA sequences, but can be the main binding interface for DNA-binding 
transcription factors within the pre-initiation complex, and this TF-Mediator complex is 
necessary for target gene activation [10, 11].  
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Structure and properties of transcription factors 
Transcription factors (TFs) are proteins that bind to specific sequence motifs of DNA, often 
close to their target genes, and thereby they modulate transcriptional initiation and regulate 
gene expression. They have a key role in transcription, and generally the regulation of gene 
expression involves the binding of multiple transcription factors to the regulatory regions of a 
given gene. Depending upon where these transcription factors bind relative to the 
transcription start site of the target gene, they can activate or repress transcription [12, 13]. 
Transcription factors are generally modular in structure, and they almost always contain one 
or more DNA-binding domains (DBDs), effector domains and other domain types. The DNA-
binding domains are independently folded protein domains that bind to specific sequences of 
DNA while the effector domains interact with co-activators and other TFs to allow 
cooperative binding, and also directly or indirectly recruit histone and chromatin modifying 
enzymes [14].  

DNA-binding and protein-protein interactions  
Transcription factors are normally divided into two groups; general transcription factors and 
site-specific transcription factors. General transcription factors, also known as basal 
transcriptional factors, are involved in transcriptional initiation and elongation but cannot 
stably bind on their own to promoter and enhancer regions. They can be recruited to cis-
regulatory regions via interaction with site-specific transcription factors [14], and normally 
they do not have any sequence-specific or site-specific DNA-binding domain.  

 

Figure 6: Transcription initiation and general transcription factors.  

Figure from Maston GA et al. [15], used with permission. 
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Site-specific transcription factors have the ability to bind to specific sequences of DNA 
through their DNA-binding domain. These transcription factors have one or more DNA-
binding domains, but they can also bind to other transcriptional regulatory proteins via their 
effector domains [14]. Transcription factors with one or more DNA-binding domains (DBDs) 
can bind to specific sequences of DNA known as DNA binding motifs. A DNA binding motif 
is usually 6-12 bp in length. Transcription factors are often classified based on their type of 
DNA binding domain. In one such classification, known as TFclass, human transcription 
factors are classified in a six-level hierarchical system [16]. 

Site-specific transcription factors include main classes such as Zinc finger proteins, 
Homeodomains, and Helix-Loop-Helix proteins.  

 

Figure 7: Site-specific transcription factors with both protein-protein interaction and protein-DNA 
interaction.  

Figure from http://www.lookfordiagnosis.com, used with permission. 

The general transcription factors can bind mainly by protein-protein interactions, whereas 
site-specific transcription factors can have both protein-protein and protein-DNA interactions.  

Post-translational modifications 
Post-translational modifications (PTMs) change the properties of a protein by the addition of a 
modifying chemical group to one or more of its amino acid residues. PTMs of site-specific 
DNA-binding transcription factors (SSTFs) are very important as they may alter the 
transcriptional regulatory activity of these transcription factors [2]. PTMs modulate the access 
of RNA polymerases to promoter templates and influence the function of transcription factors. 
In many cases the PTMs are individual events, but in other cases individual PTMs are 
consecutively linked and may cause and/or inhibit the formation a second-site PTM within the 
same protein [2].  
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The most studied PTMs of transcription factors include phosphorylation, sumoylation, 
ubiquitination, acetylation, glycosylation, and methylation. Filtz et al. have shown that most 
PTMs happen on transcription factors with the same rate as for other proteins. However, 
ubiquitination, glycosylation, and sumoylation are found on transcription factors with 
moderately decreased, moderately increased and greatly increased frequencies, respectively 
[2].  

Phosphorylation  

Phosphorylation is the addition of a phosphate group by a protein kinase to an amino acid 
residue [17, 18]. This modification is regulated by the opposing actions of protein kinases and 
phosphatases, and it controls key cellular processes. Phosphorylation is for example used to 
transduce extracellular signals to the nucleus and may affect transcription factor stability, 
location, structure and/or the protein interaction network [19]. 

Each transcription factor may have multiple phosphorylation sites that may be used in the 
signaling pathways. This can play an important role in changing the amplitude of gene 
expression [19]. 

Acetylation  

Acetylation is a key posttranslational modification and can affect several biological features 
of a transcription factor. Acetylation of transcription factors may increase binding to DNA 
and may also influence protein-protein interactions [20, 21]. Acetylation regulates the stability 
of proteins and also intersects with other PTMs [20, 22]. For example, acetylation regulates 
the function of the Foxo1 transcription factor by altering its affinity towards the target DNA, 
as well as the sensitivity for phosphorylation [23]. 

Methylation  

Methylation may change the transcriptional regulatory activity of DNA-binding transcription 
factors by altering the protein interaction network of these factors [24]. The methylation status 
of target proteins is dynamically regulated by two groups of enzymes, methyltransferases and 
demethylases. This modification may occur at different levels, such as mono-, di- or 
trimethylation on the same residue [20].  

O-GlcNAcylation 

One of the key posttranslational modifications is O-linked GlcNAc modification, which 
modulates the function of transcription factors by multiple mechanisms in a tissue-specific 
manner. This modification seems to be catalyzed by a single enzyme called O-linked N-
acetylglucosaminyl transferase or OGT [25]. O-linked GlcNAc modifications are dynamic 
and reversible. In some cases O-linked GlcNAc modifications may compete with 
phosphorylation of the same residues [25]. O-GlcNAc modification of transcription factors 
can play a main role in regulation of gene expression in different tissues [26]. O-linked 
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GlcNAc modification can influence stability, transcriptional activity, protein protein 
interaction, localization, and DNA binding ability of transcription factors [25]. 

Sumoylation  

Sumoylation is a dynamic post-translational modification process with a small peptide on a 
target protein [27]. This post-translational modification affects stability, activity and 
localization of some specific transcription factors [28]. There are 4 confirmed SUMO 
isoforms in humans; SUMO-1, SUMO-2, SUMO-3 and SUMO-4. SUMO1 4 can affect the 
activities, nuclear or sub-nuclear localization, and/or the protein protein interaction network 
of DNA-binding transcription factors [29].  

Ubiquitination  

Ubiquitylation is a modification that leads to the covalent modification of proteins and can 
serve as a protein mark with distinct signaling functions. There are several similarities 
between protein ubiquitination and sumoylation [30]. Different types of substrate 
ubiquitination are known, including the addition of a single ubiquitin molecule 
(monoubiquitination) or different types of ubiqutin chains (polyubiquitination) [31, 32]. 
Ubiquitination, like sumoylation, can change the functional properties of DNA-binding 
transcription factors [31, 32]. The modification can lead to change in the interaction network 
of the target factors by preventing basal protein-protein interactions, or by promoting 
interactions between ubiquitinated factors and proteins harboring ubiquitin binding domains 
[32].  

 

Immediate-early genes 
Some eukaryotic genes are induced and expressed by both cell-extrinsic and cell-intrinsic 
signals without requiring de novo protein synthesis, and these are called immediate-early 
genes (IEGs) or primary response genes (PRGs) [33, 34]. The IEGs have important roles in 
several biological processes, and several of the genes code for transcription factors or other 
DNA-binding proteins that govern the growth and differentiation of many cell types by 
regulating the expression of other genes. Most of these genes are expressed rapidly within 
minutes after the simulation, and the fact that protein synthesis is not needed indicates that the 
necessary transcription factors already are available [33].  

Another group of genes requires protein synthesis for activation; they are more abundant and 
are called secondary response genes (SRGs).  

A third group of genes is called delayed immediate early genes. They differ from immediate 
early genes in both their genomic architecture and in functions. These genes can be expressed 
by several of the same stimulants as the immediate early genes, but show delayed expression. 



 

 

12 

 

Although transcription factors are encoded by many IEGs, they are not prevalent for these 
delayed genes [35].  

Immediate early genes are important in a wide range of biological activities, including 
differentiation, metabolism and proliferation, and have a recognized role as transcriptional 
effectors in the expression of secondary response genes [34-36]. Expression of these genes is 
fast and transient and their protein products are also typically unstable and rapidly targeted for 
proteolytic degradation by proteasome [37]. Differences between immediate early genes and 
delayed immediate early genes is seen in both primary transcript length and in exon 
frequencies; immediate early genes have shorter transcripts with fewer exons [34, 35]. There 
are also some specific transcription factor binding sites such as serum-response factor (SRF), 
nuclear factor-kB (NF-kB) and cyclic AMP response element-binding protein (CREB) 
binding sites that are over-represented in the upstream promoter region of this kind of genes. 
In contrast, binding sites for these transcription factors are not over-represented upstream of 
delayed primary response genes. Delayed primary response genes also have fewer clusters of 
transcription factor binding sites near their promoters, and the transcription factor binding 
sites upstream of delayed primary response genes are generally lower affinity sites compared 
to those upstream of immediate early genes [35]. 

Another difference between immediate early genes and delayed primary response genes is 
seen in the core promoter. Promoters of the immediate-early genes include higher affinity 
TATA boxes than those of the delayed primary response genes. These characteristics show 
that genomic features of immediate early genes are selected for rapid simulation based on 
their regulatory functions [35].  

In addition to the differences in both upstream transcription factor binding sites and core 
promoters of immediate-early and delayed primary response genes, there is a difference in the 
binding of RNA polymerase II to the promoter regions of these genes. The amount of RNA 
pol II bound to the promoters of immediate-early genes is significantly greater than that 
bound to the delayed primary response gene promoter [35].  

Regulation of immediate-early genes 
Transcription elongation factors play an important role in regulation of immediate early genes 
(IEGs), they act at the elongation step and are necessary for development in higher eukaryotes 
[38]. They involve three factors; DRB sensitivity-inducing factor (DSIF), negative elongation 
factor (NELF) and positive transcription elongation factor (P-TEFb) [39]. The DSIF/NELF 
complex acts as a negative regulator complex and induces transcriptional pausing by binding 
to RNA polymerase II at the promoter-proximal region of IEGs. During stimulation, P-TEFb 
phosphorylates CTD Ser-2 of RNA polymerase II and this leads to dissociation of NELF and 
releases the transcriptional pausing [40]. The main function of NELF on IEG transcription 
seems to be to stall RNA polymerase II and block its elongation [38].  
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The type of stimulation has an important role on the function of NELF. It has been shown that 
NELF knock-down reduced TRH-induced transcription of IEGs, while it maintained or 
increased EGF-induced transcription of IEGs. So some stimuli, such as EGF, could increase 
transcription of IEGs, while others, such as TRH, seem to require NELF. Possibly NELF can 
affect transcription of IEGs directly via RNA polymerase II elongation on IEGs as well as 
indirectly via activation of the ERK1/2 MAP kinase pathway after stimulations such as by 
TRH [38].  

Also enhancer RNAs (eRNAs) play an important role in regulation of immediate early genes 
(IEGs) at the elongation step. They are a class of long non-coding RNAs (lncRNA) expressed 
from active enhancers, and they seem to influence RNA Polymerase II pausing and release in 
the IEGs [41].  

 

Machine learning and statistics 
A subfield of computer science is machine learning, which explores the construction and 
study of algorithms that can learn from and make predictions on data. Such algorithms 
function by building a model from inputs to make data-driven predictions or decision [42].  

Machine learning tasks are typically classified into categories, such as supervised learning 
and unsupervised learning. Supervised learning consists of inferring a function from labeled 
training data. The training data involve a set of training examples and each example consists 
of an input object and a desired output. The aim of supervised learning is to produce an 
inferred function by analyzing the training data such that the function eventually can be used 
for mapping new examples [42, 43], while in unsupervised learning the data are unlabeled. 
Machine learning can group data points into groups according to the basis of a similarity 
measure, or it can be used to facilitate data mining [42, 43]. Machine learning includes many 
different methods. In this thesis we used in particular two classifiers, Support Vector Machine 
and Random Forest.  

The support vector machine 
The support-vector machine is a supervised machine learning algorithm that is used for 
classification and regression [44]. In classification the support vector machine algorithm 
classifies input using basically a geometric idea where it expresses the data as elements of 
some vector space, and then constructs a hyperplane that appropriately separates the data into 
its two classes. The SVM algorithm functions by finding the hyperplane that gives the largest 
minimum distance to the training examples [44].  

In addition to performing linear classification, SVMs can also do a non-linear classification 
by applying the kernel trick , implicitly mapping their inputs into high-dimensional feature 



 

 

14 

 

spaces where data becomes linearly separable. Then the SVM can find the optimal hyperplane 
that separates the classes [44].  

The random forest classifier 
Random forest is an ensemble learning method for classification and regression that execute 
by constructing many decision trees at training time and outputting the class that is the mode 
of the classes (for classification) or mean prediction (for regression) over the individual trees. 
In the classification cases, the ensemble of simple trees votes for the most popular class. For 
the regression cases, it is based on an average on their responses to obtain an estimate of the 
dependent variable. The prediction accuracy can be improved significantly by using tree 
ensembles [45]. Random forest can be used effectively on large data bases with thousands of 
input variables and gives good predictions of which variables are important in the 
classification. This classifier can also provide effective methods for estimating missing data 
and for balancing the error in unbalanced data sets. Random forest can also be used for 
unlabeled data, leading to unsupervised clustering.   

Evaluation of classification methods  
Once a model has been built based on a training data set, then the validity of the model should 
be evaluated in an independent testing sample, for the same reasons and using the same 
methods as is usually done in most cases of predictive modeling. We should look at how well 
different methods do on the test set and evaluate the performance of methods on that. There 
are several approaches to evaluate the quality of predictions of a model.  

Cross-validation  
Cross validation is a standard method of assessing the accuracy and validity of a statistical 
model. The available data set is divided into two parts, called the training set and the testing 
set. It is common to hold out some parts of the data for testing and use the remaining parts for 
training. We normally make a decision on a fixed number of folds of the data [46]. For 
example we divide the data into 10 equal folds, each fold is in turn used for testing and the 
remainder is used for training. This means that we use nine-tenths of the data for training and 
one-tenth for testing and repeat the procedure ten times, so that in the end every instance has 
been used just once for testing. This is called tenfold cross validation. Then the error rate is 
calculated on the test set. Since the learning procedure is done 10 times on the different splits, 
we get 10 error estimates that are averaged to yield an overall error estimate. It has been 
shown that 10 is a reasonable number of folds to get a good error estimate. However, a single 
tenfold cross validation may not be enough to get a reliable error estimate, and it is standard 
procedure to repeat also the cross validation process 10 times. This is called 10 times tenfold 
cross validation [46].  

Tenfold cross-validation can be defined as the standard way of measuring the error rate of a 
learning scheme on a dataset, but another method is also used, known as bootstrap. The 
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bootstrap is an estimation method based on the statistical procedure of random sampling with 
replacement. The idea of the bootstrap is to randomly sample the dataset with replacement to 
form a training set. The bootstrap procedure is repeated several times, and finally the results 
are averaged [47].  

 
The Matthews correlation coefficient is a method that is used in machine learning as an 
evaluation of the quality of binary classifications. The MCC function is used to evaluate the 
performance of the predictors as a correlation coefficient between the observed and predicted 
two class classifications and is measured based on true and false positives and negatives. The 
equation for calculating MCC is written as:   

 

In this formula, TP and TN are the number of true positives and true negatives respectively, 
and FP and FN are the number of false positives and false negatives, respectively. The MCC 
measure give 1 corresponds to all predictions being 
incorrect, 0 to random predictions, and +1 to a perfect prediction. 

Precision and recall  
The measures precision (also called positive predictive value (PPV)) and recall (also known 
as sensitivity (SN)) are the basic measures used in evaluating search strategies. The precision 
is a measure of result relevancy, whereas recall is a measure of how many truly relevant 
results that are returned [48]. They are measured based on true and false positives and 
negatives, and precision and recall are then defined as: 

 

 

In a classification, the precision is defined as the number of true positives (TP) divided by the 
number of true positives plus the number of false positives (FP) which are items incorrectly 
labeled as belonging to the class, while recall is defined as the number of true positives 
divided by the sum of true positives and false negatives (FN), which are items which were not 
labeled as belonging to the positive class but should have been. 

Receiver operating characteristic 
Receiver operating characteristic (ROC) is a graphical representation that shows the 
performance of a binary classifier as its distinction threshold is varied. The ROC plots the true 
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positive rate (Sensitivity) as the function of the false positive rate for different cut-off points 
of a parameter [48].  

 

Figure 8: ROC curves.  

Figure from http://gim.unmc.edu/dxtests/roc3.htm. 

The closer the ROC curve is to the upper left corner the higher is the accuracy of the test. The 
performance according to a ROC curve is represented by the Area Under Curve (AUC), 
which is an evaluation of how well a parameter can distinguish between two diagnostic 
groups. 

Enrichment analysis 
Enrichment analysis is an approach to identify properties that are over-represented in a set of 
genes or proteins by using statistical methods. Gene ontology (GO) is a key resource for 
representing information on genes and gene products in a form that is suitable for enrichment 
analysis [49]. GOrilla and DAVID are two important tools for identifying enriched GO terms, 
as well as other properties (at least for DAVID), in gene lists [50, 51].  

DAVID consists of integrated biological information and analytic tools aimed to extract 
biological concepts from large gene/protein lists. DAVID uses a comprehensive set of 
functional annotation tools for the researcher to gain a better understanding of the biological 
themes that are enriched in lists of genes [50]. 

GOrilla is an efficient GO analysis tool that identifies enriched GO terms in ranked gene or 
protein lists, without requiring the user to provide both target and background sets [51].  
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This project consists of two main parts. The first part was initiated to improve our 
understanding of complementary regulatory roles exercised by different classes of 
transcription factors. In this part we tried to contribute to more precise knowledge by using 
bioinformatic and statistical methods to study correlations between structural features of 
transcription factors and their functional roles in gene regulation. This part includes two 
papers (I and II). The second part of the project was to focus on a specific process where 
transcription factors and gene regulation seems to be essential, and we decided to focus on 
key aspects of the activation and regulation of immediate-early genes, by collecting and 
analyzing a novel consensus set of immediate-early genes, also using some of the tools 
developed in Paper I and II. This part includes two papers (III and IV). 

Paper I 
This paper investigates correlations between TF properties and TF function, in order to 
identify properties and correlations that are important for understanding the role of different 
TFs in gene regulation. It also shows how such a resource can be used to identify properties 
that are enriched in a set of TFs 

Paper II 
This paper investigates how to predict the functional classification of TFs by using our set of 
properties (from Paper I) and methods in machine learning to design, select, and evaluate 
classifiers and feature sets.  

Paper III 
Paper III is a review paper describing key properties of the IER pathways and genes. It 
establishes a context for the analyses performed in Paper IV, and the discussion of these 
analyses.  

Paper IV 
Paper IV describes the process of making an improved consensus gene set of IER genes, and 
the results of extensive bioinformatics analyses of this set, including analyses with tools 
developed in Paper I and II.  
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This part of the thesis discusses important aspects of the papers, the overall work and key 
contributions with respect to the aim and the original research questions that were posed. The 
thesis spans many types of problems, from both the bioinformatical and the biological 
perspective. 

Computational analysis of transcription factors (Paper I) 
Paper I shows that creating a good resource on properties of human transcription factors is 
challenging. Since transcription factors are proteins that have a key role in the general 
regulatory system of any cell, having a comprehensive resource on human transcription 
factors may facilitate our understanding of cell regulation. In this paper we have used a list of 
human transcription factors, originally published by Ravasi et al. [52], to make an annotated 
data set including information on Pfam domains, DNA binding domains, protein-protein 
interaction domains and post-translational modifications, and have worked on understanding 
any complementary regulatory roles exercised by these transcription factors.  

Evaluating DNA binding domains 
We have first assigned Pfam domains to all entries of the list of TFs, and these domains were 
manually reviewed and curated for evidence strongly suggesting DNA binding, in order to 
add annotation on Pfam domains acting as DNA-binding domains (DBDs). However, it is 
likely that there are additional Pfam domains with DNA-binding properties that are not 
annotated as such. We therefore started to identify additional Pfam domains as DNA-binding 
by using the threading-based method implemented in DBD-Threader [53]. We did the DBD 
predictions over all Pfam domains in the set of TF proteins. We estimated the overall 
prediction quality over all occurrences for each Pfam domain at three different levels; protein 
level, domain level, and residue level. Then we trained a support vector machine (SVM) with 
a linear kernel function [54] to distinguish between true positive and false positive prediction 
of DNA-binding Pfam domains, based on how consistent the predictions were across all 
occurrences of a given Pfam domain. The SVM had best performance on data at the residue 
level, so residue level %Sn and %PPV were used as features for classification. Finally we 
determined the final set of DBDs based on the SVM output. 

Analysis of protein-protein interaction domains 
In the study by Ravasi et al. they were able to capture cDNA clones for most human 
transcription factors, and used this to map actual protein-protein interactions between 
transcription factors [52]. We used this set and tested for correlation against other features by 
using a general enrichment analysis. This 
contingency table.  
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Protein-protein interactions often take place via interactions between specific domains. A 
general enrichment analysis was done for specific Pfam domains, as well as pairs of Pfam 
domains, on the PPI data. The enrichment analysis showed 73 Pfam domains as enriched in 
protein-protein interaction, and the analysis of all possible pairs for the 73 domains showed 
227 enriched pairs of Pfam domains.  

Post-translational modifications of transcription factors 
The modification of transcription factors by post-translational modifications may affect their 
activity. In this project we used information from Phosphosite for mapping of post-
translational modifications, and imported data for six post-translational modifications types 
including phosphorylation, acetylation, methylation, O-GlcNAc, sumoylation and 
ubiquitination [55]. We investigated correlations between these modifications and correlations 
of these modifications with other properties. The results showed significant associations 
between most of the PTMs. However, this is most likely due to an experimental bias in the 
data set, where TFs tested for a given PTM also are more likely to have been tested for other 
PTMs, thereby creating artificially strong associations. 

In this paper we identified 27 new DBDs and 318 additional TFs that have at least one Pfam 
DBD. We also identified 347 pairs of Pfam domains that are enriched in PPI between TFs. 
We used the database to identify sub-groups of TFs which are correlated with specific 
functions or properties, and analysis showed for example clear differences between TFs with 
and without a DBD.  

The results show that such a comprehensive list of transcription factors properties is a useful 
resource for extensive data analysis; both of transcription factor properties in general and of 
properties associated with specific processes.  

 

Classification of transcription factors (Paper II) 
In Paper I, we created a well annotated database of 1975 human transcription factors using a 
set of machine learning methods. In the next study we extended an experimental classification 
of transcription factors based on chromatin-associated properties, and used the classification 
for investigation of properties and functions in each TF class.  

 

Classification of transcription factors on chromatin opening  
Wingender et al. have made a comprehensive classification of human transcription factors 
known as TFClass, which classifies transcription factors according to a hierarchy of six levels 
[16]. In a study from 2014, Sherwood et al. classified human transcription factors based on 
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functional properties. They used protein interaction quantitation (PIQ) for description of 
properties of transcription factor binding sites, and used this to classify transcription factors 
into three different groups; Pioneers, Settlers, and Migrants [56]. In the present study we 
extended their classification using a feature vector-based approach as input to machine 
learning methods. We used the TFClass classification and our set of TF properties, including 
frequent Pfam domains, DNA binding, number of DNA binding domains (DBDs), PPI, 
number of PPIs, PTMs (generally and individually), and number of positions for 
phosphorylation as the feature vector. We used multiclass classification to classify TFs, and in 
particular a one-vs-rest strategy for reducing the problem of multiclass classification into a 
binary classification problem [57].  

For the final classification we applied the random forest classifier as an optimal classifier. 
This classifier had the best performance based on several evaluation measures, including 
precision (PPV), recall (sensitivity or SN), F-
coefficient), and AUC. Finally we classified additional transcription factors into four groups 
based on chromatin opening, including: Pioneers, Settlers, positive and negative Migrants, 
based on the assumption that there are functional and structural differences between Migrants 
with negative and positive chromatin opening index. This classification was used together 
with previously published data on interactions between transcription factors, based on DNA 
co-binding and protein-protein interactions. This showed that there are complementary 
differences between the subclasses, where Pioneers often interact with other transcription 
factors through DNA co-binding, whereas Migrants to a larger extent are involved in protein-
protein interactions. This analysis illustrates how the expanded classification is a useful 
resource that can be used to analyze other datasets on transcription factors and their role in 
gene regulation. 

Identification and investigation of genes in immediate-early 
response processes (Paper III and IV) 
Immediate-early genes (IEGs) are very rapidly expressed in response to both cell-extrinsic 
and cell-intrinsic signals. During stimulation extracellular signals are transduced via activity 
of a chain of proteins in the cell, such as extracellular-signal-regulated kinases (ERKs), 
mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These 
genes play a key role in several essential cellular systems such as the immune system. They 
also play key roles in different diseases, like cancer. Therefore we have tried to summarize in 
a review some new advances on key aspects of the regulation and activation of this kind of 
genes. Most previous work on immediate-early genes is based on data for single cell types. 
However, a larger consensus set may make it possible to distinguish between general 
properties and cell type specific properties. Therefore we made a robust consensus set of 
genes showing an early response pattern after different types of stimulation. In the present 
study we used a number of published time course experiments. We used gene lists for up to 
60 minutes after stimulation. In most cases we selected and ranked genes based on fold 
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change but in some cases the selection and ranking was based on significance of change, 
estimated with e.g. edgeR [58]. Finally we determined a final list of 172 potential immediate-
early response (IER) genes. The final list of IER genes was analyzed for enrichment of 
relevant properties by estimating whether the set of IER genes was significantly more 
enriched for that property than a reference set of protein coding genes from UniProt [59]. The 
analysis of IER gene properties showed consistent results with our current understanding of 
IER genes which confirmed that the consensus set gave a good representation of immediate-
early response genes and can be a good resource for analysis of genes involved in rapid 
responses. 
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Our overall aim of this study has been to make an integrated resource on transcription factor 
properties using heterogeneous experimental data from different sources. This has been 
complemented with predicted data and used to expand an experimental classification of 
proteins associated with chromatin modeling, using bioinformatics and supervised machine 
learning methods to study correlations between structural features of transcription factors and 
their functional roles in gene regulation. The comprehensive list is a useful resource for 
researchers working on gene regulation, and it can improve our understanding of 
complementary regulatory roles exercised by different classes of transcription factors. This 
may be used to analyze e.g. expression data related to normal and disease-associated 
regulatory networks. There is an essential need for such studies being undertaken. Overall, a 
future challenge for bioinformatics will be to integrate many different properties of 
transcription factors that will be studied and relate these to gene expression. 

Since immediate-early genes play a key role in several essential cellular systems, it is 
important to have a good understanding of the properties of these genes. In the last two papers 
we summarized some new advances in our understanding of key aspects on the activation and 
regulation of these genes. We compared previous observations to data from a new consensus 
data set of immediate-early genes. The results confirm that these genes are often in a poised 
state which is maintained by repressive TFs, histone modifiers and the DISF/NELF complex, 
and that they are in contact with enhancers through DNA looping, stabilized by cohesin and 
insulators. The data set is a very useful resource for evaluating important properties of 
immediate-early genes and may offer an interesting direction for further research, for example 
with links to other cellular processes such as the circadian rhythms, or on the roles of these 
genes in diseases like cancer. It is also an important fact that most of the experiments so far 
have not looked into possible roles of ncRNAs in IER, at least partly due to lack of data. 
However, the rapid increase in relevant experiments based on CAGE, RNA-seq and similar 
technologies makes this increasingly relevant, and this will be an important area for future 
research into the process of gene regulation in IER. 
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A Python script to do enrichment analysis on the human TFs. 

 
import xlrd 

from math import * 

from fisher import pvalue 

from numpy import array, empty 

 

class TFs_DataBase(object):  

 

    """ Holds information from the main database.  

     

    Members:  

    TF_Names            Name of TF entry, e.g. AATF. 

    Approved_symbol     Approved name of TF entry, e.g. AATF. 

    UniProt_IDs         Uniprot ID of TF, e.g AATF_HUMAN. 

 

    All_Domains         List of all Pfam_A domains in database. 

 

    DB_TFs              List DNA Binding TFs in database. 

    PPI_TFs             List Protein-Protein Interaction TFs in database. 

    Experimented_PPI_TFs List Experimented PPI by Ravasi et al. 

 

    Phosphorylation_TFs List PHOSPHORYLATION TFs in database. 

    Ubiquitination_TFs  List UBIQUITINATION TFs in database. 

    Methylation_TFs     List METHYLATION TFs in database. 

    Acetylation_TFs     List ACETYLATION TFs in database. 

    Sumoylation_TFs     List SUMOYLATION TFs in database. 

    O_GlcNAc_TFs        List O-GlcNAc TFs in database. 

 

    """  

    def __init__(self):  

 

        self.TF_Names = [] 

        self.Approved_symbol = [] 

        self.UniProt_IDs = [] 

             

        self.All_Domains = [] 

 

        self.DB_TFs = [] 

        self.PPI_TFs = [] 
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        self.Experimented_PPI_TFs = [] 

             

        self.Phosphorylation_TFs = [] 

        self.Ubiquitination_TFs = [] 

        self.Methylation_TFs = [] 

        self.Acetylation_TFs = [] 

        self.Sumoylation_TFs = [] 

        self.O_GlcNAc_TFs = [] 

 

             

DataBase = TFs_DataBase() 

def TF_Names(handle_Table): 

     

    for i in range(1, sh.nrows): 

        DataBase.TF_Names.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.TF_Names 

 

def Approved_symbol(handle_Table): 

     

    for i in range(1, sh.nrows): 

        DataBase.Approved_symbol.append(sh.cell_value(rowx = i, colx = 1)) 

    return DataBase.TF_Names 

 

 

def UniProt_IDs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        DataBase.UniProt_IDs.append(sh.cell_value(rowx = i, colx = 2)) 

    return DataBase.UniProt_IDs 

 

 

def All_Domains(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if sh.cell_value(rowx = i, colx = 7) != '': 

            DBD = sh.cell_value(rowx = i, colx = 7).split('; ') 

            for name in DBD: 

                DataBase.All_Domains.append(name.split('   ')[0]) 

        if sh.cell_value(rowx = i, colx = 8) != '': 

            N_DBD = sh.cell_value(rowx = i, colx = 8).split('; ') 

            for name in N_DBD: 

                if 'Pfam-B' not in name: 

                    DataBase.All_Domains.append(name.split('   ')[0]) 

    return list(set(DataBase.All_Domains)) 
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def DB_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if sh.cell_value(rowx = i, colx = 6) == '+': 

            DataBase.DB_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.DB_TFs 

 

 

def PPI_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if sh.cell_value(rowx = i, colx = 9) == '+': 

            DataBase.PPI_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.PPI_TFs 

 

 

def Experimented_PPI_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if sh.cell_value(rowx = i, colx = 9) == '+'\ 

           or sh.cell_value(rowx = i, colx = 9) == '-': 

              DataBase.Experimented_PPI_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Experimented_PPI_TFs 

 

 

def Phosphorylation_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if 'PHOSPHORYLATION' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.Phosphorylation_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Phosphorylation_TFs 

 

 

def Ubiquitination_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if 'UBIQUITINATION' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.Ubiquitination_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Ubiquitination_TFs 

 

 

def Methylation_TFs(handle_Table): 
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    for i in range(1, sh.nrows): 

        if 'METHYLATION' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.Methylation_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Methylation_TFs 

 

 

def Acetylation_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if 'ACETYLATION' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.Acetylation_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Acetylation_TFs 

 

 

def Sumoylation_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if 'SUMOYLATION' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.Sumoylation_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.Sumoylation_TFs 

 

 

def O_GlcNAc_TFs(handle_Table): 

     

    for i in range(1, sh.nrows): 

        if 'O-GlcNAc' in sh.cell_value(rowx = i, colx = 11): 

            DataBase.O_GlcNAc_TFs.append(sh.cell_value(rowx = i, colx = 0)) 

    return DataBase.O_GlcNAc_TFs 

 

 

def Properties(): 

     

    """ Return a list of all TFs with specific properties from the database 

    (8 properties including: DNA-Binding, PPI, Phosphorylation, Ubiquitination, 

    Methylation, Acetylation, Sumoylation, O_GlcNAc respectively). 

    """ 

    List_Names = [] 

    List_Names.append(DB_TFs(handle_Table)) 

    List_Names.append(PPI_TFs(handle_Table)) 

    List_Names.append(Phosphorylation_TFs(handle_Table)) 

    List_Names.append(Ubiquitination_TFs(handle_Table)) 

    List_Names.append(Methylation_TFs(handle_Table)) 

    List_Names.append(Acetylation_TFs(handle_Table)) 
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    List_Names.append(Sumoylation_TFs(handle_Table)) 

    List_Names.append(O_GlcNAc_TFs(handle_Table)) 

    return List_Names 

 

 

def Check_By_Genenames(Gene_List): 

 

    """ Checking for a list of input genes or proteins with different existing 

    names in the database (e.g. Uniprot ID, Gene names, ...). Return a modified 

    list of input based on existing names.    

    """ 

    Modify_Gene_List = []     

    for i in range(len(Gene_List)): 

        i_ = 0 

        for j in range(1, sh.nrows):             

            if Gene_List[i] == sh.cell_value(rowx = j, colx = 0)\ 

               or Gene_List[i] == sh.cell_value(rowx = j, colx = 1)\ 

               or Gene_List[i] == sh.cell_value(rowx = j, colx = 2)\ 

               or Gene_List[i] == sh.cell_value(rowx = j, colx = 2)[:-6]\ 

               or Gene_List[i] in sh.cell_value(rowx = j, colx = 3).split('; '): 

                    Modify_Gene_List.append(sh.cell_value(rowx = j, colx = 0)) 

                    i_ += 1 

                    break      

 if i_ == 0: 

             Modify_Gene_List.append(Gene_List[i]) 

    return Modify_Gene_List 

 

 

def Info_from_confusion_matrix(cm): 

 

    """ Return Observed, Expected, Pvalue, and Mcc from confusion_matrix in 

    overrepresentation analysis. 

    """    

    _Info = [] 

    _Info.append(cm[0])                

    _Info.append((cm[0]+cm[1]) * (cm[0]+cm[2])/( cm[0]+cm[1]+cm[2]+cm[3] ))  

    p = pvalue(cm[0], cm[1], cm[2], cm[3]) 

    _Info.append(p.two_tail)             

    M = (cm[0]+cm[1]) * (cm[2]+cm[3]) * (cm[0]+cm[2]) * (cm[1]+cm[3]) 

    if M != 0: 

        _Info.append(float( (cm[0]*cm[3]) - (cm[1]*cm[2]) )/sqrt(M))                  

    else: 

        _Info.append('-') 

    return _Info 
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def Benjamini_Correction(Pvalues): 

 

    """ Return corrected Pvalues (Benjamini) for a list of Pvalues. """ 

    Pvalues = array(Pvalues)  

    n = float(Pvalues.shape[0])                                                                            

    New_Pvalues = empty(n)                                                     

    values = [ (pvalue, i) for i, pvalue in enumerate(Pvalues) ]                                       

    values.sort() 

    values.reverse()                                                                                   

    new_values = [] 

    for i, vals in enumerate(values):                                                                  

        rank = n - i 

        pvalue, index = vals                                                                           

        new_values.append((n/rank) * pvalue) 

    for i, vals in enumerate(values): 

        pvalue, index = vals 

        New_Pvalues[index] = new_values[i] 

    return New_Pvalues 

 

def Final_List(List_Info_Overrepresentations): 

     

    """ Return a list of all significant overrepresentation properties 

    and Pfam domains with Benjamini correction. 

 

    """ 

    Pvalues = [ List_Info_Overrepresentations[i][3]\ 

                for i in range(len(List_Info_Overrepresentations)) ] 

     

    Benjamini = Benjamini_Correction(Pvalues) 

    Index_Sorted_Pvalues = sorted( range(len(Pvalues)), key = lambda k: Pvalues[k] ) 

    Sorted_Benjamini = [ Benjamini[i] for i in  Index_Sorted_Pvalues ] 

    Info_with_Benjamini = [ List_Info_Overrepresentations[Index_Sorted_Pvalues[i]]\ 

                            for i in range(len(Index_Sorted_Pvalues)) ] 

     

    # Adding  corrected Benjamini  

    for i in range(len(Info_with_Benjamini)): 

        Info_with_Benjamini[i].insert(4, Sorted_Benjamini[i]) 

         

    # Sorting and filtering based on Pvalues 

    Benjamini_Final_List = [  Info_with_Benjamini[i] for i in range(len(Info_with_Benjamini))\ 

                              if Info_with_Benjamini[i][4] < 0.05  ] 

    return Benjamini_Final_List 
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def _Print(Sorted_List): 

 

    """ To pretty print the significant overrepresentation items. """ 

     

    for i in range(len(Sorted_List)): 

        print "{0:<20} {1:<24} {2:<8} {3:<8} {4:<11} {5:<11} {6:<10}"\ 

              .format( 

                      ''*20, Sorted_List[i][0],\ 

                      Sorted_List[i][1],\ 

                      Sorted_List[i][2],\ 

                      '%.2E' %Sorted_List[i][3],\ 

                      '%.2E' %Sorted_List[i][4],\ 

                      '%.3f' %Sorted_List[i][5]\ 

                     ) 

         

# Initial lists of database for analysis 

print  

Path_Reference = raw_input('Please enter the path of the reference database (xls, with title 
row): ') 

handle_Table = xlrd.open_workbook(Path_Reference) 

sh = handle_Table.sheet_by_index(0) 

List_Name_Properties = [ 

                          'DNA_Binding',\ 

                          'PPI',\ 

                          'Phosphorylation',\ 

                          'Ubiquitination',\ 

                          'Methylation',\ 

                          'Acetylation',\ 

                          'Sumoylation',\ 

                          'O_GlcNAc' 

                        ]  # List of the property names 

 

List_Properties = Properties()                          # List of the properties 

Background_TFs = TF_Names(handle_Table)                 # List of all TFs in database 

all_domain = All_Domains(handle_Table)                  # List all Pfam_A domains 

Background_PPI = Experimented_PPI_TFs(handle_Table)     # List of TFs for experimental PPIs 

 

#List Genes or Proteins from the Test set for analysis 

Path_Test_Set = raw_input('Please enter the path of the test set (xls, with title row): ') 

Number_Col = raw_input('Please enter the column number for TFs in your table (starting at 0): 
') 

External_Data = xlrd.open_workbook(Path_Test_Set) 

Sheet_Names = External_Data.sheet_names()               # List of the gene/protein list names 
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List_External_Data = []                                 # List of the gene/protein lists 

for i_sheet in range(External_Data.nsheets): 

    Sheet_book_i = [] 

    sh_ = External_Data.sheet_by_index(i_sheet) 

    for j in range(1, sh_.nrows): 

        Sheet_book_i.append(sh_.cell_value(rowx = j, colx = int(Number_Col))) 

    Sheet_book_i = Check_By_Genenames(Sheet_book_i) 

    List_External_Data.append(Sheet_book_i) 

 

print '\n\n' 

 

# Print headline 

print "{0:<20} {1:<24} {2:<8} {3:<8} {4:<11} {5:<11} {6:<10}"\ 

      .format( 'Category', 'Term', 'Observed', 'Expected', 'Pvalue', 'Benjamini', 'MCC' )  

print "-"*93 

 

# Overrepresentation analysis 

for i in range(len(List_External_Data)): 

     

    Per_info_Properties = [] 

    Per_info_Domains = [] 

 

    # Overrepresentation of properties (DB/PPI/Individual PTMs) 

    for j in range(len(List_Properties)): 

 

        cm = confusion_matrix = [0, 0, 0, 0] 

        # Needs to setup for PPI property separately 

        if List_Name_Properties[j] == 'PPI': 

                Background = Background_PPI 

        else: 

                Background = Background_TFs 

        cm[0] += len( set(Background) & set(List_External_Data[i]) & set(List_Properties[j]) ) 

        cm[1] += len( (set(Background)&set(List_External_Data[i])) - set(List_Properties[j]) ) 

        cm[2] += len( (set(Background)&set(List_Properties[j])) - set(List_External_Data[i]) ) 

        cm[3] += len( set(Background)-(set(List_Properties[j]) | set(List_External_Data[i])) ) 

        Per_Property = Info_from_confusion_matrix(cm) 

        Per_Property.insert(0, List_Name_Properties[j]) 

        Per_info_Properties.append(Per_Property) 

         

    # Overrepresentation of Pfam domains             

    for domain in all_domain: 

        Per_Domain = []   

        cm = confusion_matrix = [0, 0, 0, 0] 

        for i_sh in range(1, sh.nrows): 
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            if sh.cell_value(rowx = i_sh, colx = 0) in List_External_Data[i]: 

                if domain in sh.cell_value(rowx = i_sh, colx = 7)\ 

                   or domain in sh.cell_value(rowx = i_sh, colx = 8): 

   cm[0] += 1 

                else: 

   cm[2] += 1 

            else: 

                if domain in sh.cell_value(rowx = i_sh, colx = 7)\ 

                   or domain in sh.cell_value(rowx = i_sh, colx = 8): 

   cm[1] += 1 

                else: 

   cm[3] += 1 

 Per_Domain = Info_from_confusion_matrix(cm) 

        Per_Domain.insert(0, domain) 

        Per_info_Domains.append(Per_Domain) 

         

    F_Properties = Final_List(Per_info_Properties) 

    F_Domains = Final_List(Per_info_Domains) 

     

    # Print final result 

    print Sheet_Names[i] 

    if F_Properties == [] and F_Domains == []: 

            print ' '*21 + 'There is no overrepresented item for this Gene/Protein list' 

    if F_Properties != []: 

        if F_Domains != []: 

            _Print(F_Properties)  

            print ' '*21 +  '-'*10 

            _Print(F_Domains) 

        else: 

            _Print(F_Properties) 

    else: 

        _Print(F_Domains)  

    print 
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Abstract

Background: Transcription factors are essential proteins for regulating gene expression. This regulation depends
upon specific features of the transcription factors, including how they interact with DNA, how they interact with
each other, and how they are post-translationally modified. Reliable information about key properties associated
with transcription factors will therefore be useful for data analysis, in particular of data from high-throughput experiments.

Results: We have used an existing list of 1978 human proteins described as transcription factors to make a well-annotated
data set, which includes information on Pfam domains, DNA-binding domains, post-translational modifications
and protein–protein interactions. We have then used this data set for enrichment analysis. We have investigated
correlations within this set of features, and between the features and more general protein properties. We have also used
the data set to analyze previously published gene lists associated with cell differentiation, cancer, and tissue distribution.

Conclusions: The study shows that well-annotated feature list for transcription factors is a useful resource for extensive
data analysis; both of transcription factor properties in general and of properties associated with specific processes.
However, the study also shows that such analyses are easily biased by incomplete coverage in experimental data, and by
how gene sets are defined.

Keywords: Transcription factor, DNA-binding domain, Protein–protein interaction, Post-translational modification,
Enrichment analysis

Background
Transcription Factors (TFs) are proteins that in most
cases bind to specific DNA sequences known as Tran-
scription Factor Binding Sites (TFBSs), in particular in
enhancer regions or in promoter regions near their tar-
get genes [1]. The transcription factors modulate tran-
scription initiation and regulate gene expression, and are
thereby an essential part of the general regulatory system
of any cell. Normally regulation of gene expression
involves the binding of multiple transcription factors to
the regulatory regions of a given gene. However, the
definition of TFs is not always very clear-cut, and may
include DNA-binding proteins that do not recognize any
specific DNA motif, proteins that do not bind DNA, but in-
fluence transcription through protein–protein interactions

(PPIs), and proteins that influence transcription in
more indirect ways, for example by mediating chroma-
tin remodeling [2].
Transcription factors are typically modular in struc-

ture, and will often contain effector domains and other
domain types, in addition to (in most cases) one or more
DNA-binding domains (DBDs). A DBD is typically a
protein domain with a characteristic fold that can
recognize a specific DNA sequence (motif ), and thereby
regulate transcription of specific target genes, although
there are also examples of TFs with a more general (less
motif-specific) affinity to DNA [3,4]. The interaction
between a TF and its TFBSs defines the specificity of the
TF, which is mediated by non-covalent interactions be-
tween the structural motif of the TF DBD and the sur-
face of the DNA bases and backbone atoms [5,6].
Most TFs belong to one of two major classes; the gen-

eral TFs and the site-specific TFs. The general TFs are
important components of the basal transcriptional ma-
chinery around transcription start sites. The general TFs
cannot stably bind to promoter or enhancer regions on
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their own. In most cases they are bound to regulatory
regions through interaction with site-specific DNA-
binding TFs. These site-specific TFs bind to DNA
through their DBDs, and at the same time they bind to
other transcriptional regulatory proteins via effector
domains [7], thereby stabilizing the whole complex.
Protein–protein interactions are important for the

function of proteins and the processes they are involved
in, and such interactions are often facilitated by specific
protein domains interacting with each other. Therefore,
understanding protein interactions at the domain level
can provide a generalized understanding of protein
interaction, and thereby protein function. As an
example, Gao et al. constructed a protein–protein net-
work of transcription factors involved in regulation of
liver cell proliferation and regeneration [8]. They identi-
fied 64 interactions in a regulatory network, providing
additional information on the regulatory aspects of liver
regeneration.
An important group of regulatory mechanisms avail-

able to the cell is post-translational modifications
(PTMs). The PTMs are highly dynamic and often revers-
ible, and they may occur on almost all proteins. Most
PTMs change the properties of a protein by the addition
of a specific chemical group to one or more of its amino
acid residues [9,10]. The PTMs make possible diverse
signaling that is suitable for relaying rapid messages
throughout the cell. Some PTMs, such as phosphoryl-
ation, can be quite transient, and may serve to rapidly
activate or deactivate a protein, whereas other PTMs
may be more long-lasting. PTMs may create further sig-
naling through modular protein domains that recognize
particular types of PTMs located on specific residues. A
relevant example of how PTMs may modify TF func-
tion is the MEF-2A factor which regulates gene expres-
sion in neuronal cells, where it can act as either a
transcriptional activator or a repressor. This switch is
controlled by post-translational modification of MEF-
2A, with acetylated MEF-2A acting as a transcriptional
activator, whereas the factor acts as a transcriptional
repressor when it is modified by sumoylation and phos-
phorylation [11].
This shows that the regulatory roles of TFs can be

modified by the properties of the TFs, including DNA-
binding and effector domains, PPIs and PTMs. There-
fore there is a need to increase our knowledge about TF
domains and other properties, in addition to their bind-
ing sites in target genes, and this makes a collection of
well-curated annotation data of TFs highly relevant.
There are some existing TF databases, but in general

they contain very limited information about TF proper-
ties, except for DNA motif specificity, most often
through a Position Weight Matrix (PWM), and links
to more general protein databases with additional

information. For example, JASPAR is an open-access
database of DNA binding site profiles, based on collec-
tions of position frequency matrices (PFMs) that are
mainly derived from published data, including chromatin
immunoprecipitation and sequencing (ChIP-seq) experi-
ments. The newest JASPAR version includes interfaces
to several packages (BioPython, Rtool, R/Bioconductor)
to facilitate access for both manual and automated
methods [12,13].
Zhang et al. published in 2012 a comprehensive ani-

mal transcription factor database based on DNA-binding
domains, where they collected and curated 71 animal TF
families [14]. Although this includes detailed annotations
for each TF (basic information, gene structure, func-
tional domain, 3D structure hit, Gene Ontology, path-
way, protein–protein interaction, paralogs, orthologs,
potential TF-binding sites and targets), it is not very
suitable for detailed analysis of TF properties. Fulton
et al. made in 2009 a catalog of mouse and human TFs
(called TFCat), where TFs were classified according to
evidence supporting DNA-binding and transcriptional
activation [15]. TFCat was based on information from
four transcription factor data sets, and categorized
DNA-binding TFs into 9 protein groups with 39 pro-
tein families. It is a very useful resource for TF classifi-
cation, but with limited information on TF properties.
Vaquerizas et al. used a set of 1391 manually curated
sequence-specific DNA-binding transcription factors to
investigate function, genomic organization and evolu-
tionary conservation [16]. Ravasi et al. identified almost
2000 proteins from the human genome that are poten-
tial TFs [17]. They built a global atlas of combinatorial
transcriptional regulation in mouse and human and
screened for physical interactions between the majority
of human and mouse DNA-binding transcription fac-
tors. This is again a useful resource, but with limited
additional information.
In this paper we describe the collection and curation

of a list of properties for human TFs, using the list of
TFs published by Ravasi et al. The main reason for using
this particular data set was that it also includes a consist-
ent set of protein–protein interaction data, with a clear
distinction between missing data and lack of interaction.
The properties that were added include DNA-binding
domains, protein–protein interactions, and post-
translational modifications. We then show how this can
be used for example to identify sub-groups of TFs and
to correlate these with specific functions, and to identify
TF properties that are associated with specific processes.
However, we also show that such analyses are easily
biased by data set composition and incomplete annota-
tions, and therefore have to be interpreted with great
care. The TF property data set and software for data
analysis is available with the paper as additional data.
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Methods
Initial definition of a data set of human TFs
We used a list of 1988 human transcription factors,
originally used by Ravasi et al. to build an atlas of com-
binatorial transcriptional regulation [17]. The gene
names were checked against HGNC [18] and UniProt
[19], and duplicates were removed. This gave a final list
of 1978 TFs. Initial annotation of the TFs was based on
database entries downloaded from UniProt (last update
done using release 2012_07).

Comparison to other TF collections
The gene list from Ravasi et al. was compared to previ-
ously published gene lists from Zhang et al. [14] and
Vaquerizas et al. [16]. These additional gene lists were
downloaded from supplementary material. DAVID does
not accept HGNC gene names for explicit definition of
background, therefore the gene names were remapped
to UniProt IDs for DAVID analysis, using the ID con-
verter of BioMart (http://www.biomart.org/) [20].

General domain annotation
Specific domains, as defined for example in Pfam [21],
are often associated with specific functions, and are
therefore an important annotation resource. Unfortu-
nately the Pfam annotation in UniProt does not include
information about sequence position of Pfam domains.
Therefore we downloaded the most recent swisspfam list
from Pfam (last update done using release 12.03.2013),
and searched the list for UniProt IDs [19,21].
Our annotation data include both levels of Pfam

families; Pfam-A and Pfam-B. Both entry types are made
from the most recent release of UniProtKB at a given
time and produced automatically from the non-
redundant clusters after sequence clustering. Pfam-A
entries can be successfully annotated by profile HMM
searches of primary sequence databases, whereas Pfam-B
entries are un-annotated [21].

Adding annotation on DNA-binding domains
In the following description we try to distinguish be-
tween the domains as defined by Pfam (Pfam domains),
and the individual occurrences of these domains in a set
of proteins (domain occurrences). In order to add anno-
tation on Pfam domains acting as DNA-binding domains
(DBDs), all entries for Pfam domains assigned to the list
of TFs were first manually reviewed and curated for evi-
dence strongly suggesting DNA binding, using Pfam
descriptions and associated literature references. In
order to get a more complete annotation of DBDs in
these proteins, we then used a DBD prediction method
to identify additional Pfam domains as DNA-binding. In
order to distinguish between sporadic and consistent
predictions we did the DBD predictions over all Pfam

domains in the set of TF proteins, including domains as-
sumed not to be DNA-binding. We then estimated the
overall prediction quality over all occurrences for each
Pfam domain, on the hypothesis that it was a DBD, and
used a support vector machine (SVM) [22] to distinguish
between true positive and false positive cases. Ideally,
Pfam domains where individual occurrences frequently
overlap with DBD predictions should be accepted as true
positive cases, whereas Pfam domains with few overlaps
should be rejected as false positives. The challenge is to
find a suitable cutoff between these two alternatives.
We used the threading-based method DBD-Threader

[23] for the prediction of DNA-binding domains. In this
method DNA-binding propensity is calculated using a
statistical DNA–protein pair potential. The sequence of
a target protein is compared against an experimentally
determined template library of DNA-binding protein do-
mains, using threading. Any significant template hits are
further evaluated using the DNA–protein interaction
energy, calculated using the alignment of the target tem-
plate and the corresponding DNA structure in complex
with the template protein. If there is at least one signifi-
cant template for a target protein according to the speci-
fied Z-score and energy threshold conditions, the
protein is predicted to be DNA-binding, otherwise it is
classified as non-DNA-binding [23]. It has been shown
that DBD-Threader has significantly improved perform-
ance when both threading Z-score and protein–DNA
interaction propensity are taken into account, leading to
a sensitivity of 56% and a precision of 86% on a bench-
mark set with 179 DNA-binding and 3797 non-DNA-
binding proteins [23]. The method has also shown good
performance in an independent benchmark study, in
particular with respect to specificity [24].
We used a reference set of TFs with Pfam domains

where we knew from manual curation that these specific
Pfam domains were DNA-binding. On this set we pre-
dicted DBDs using DBD-Threader. We then compared
annotated and predicted DNA-binding regions, and esti-
mated the quality of the predictions at three different
levels; protein level, domain level, and residue level, in
order to find optimal criteria for identifying false positive
predictions.

The protein level
At this level we predicted whether a protein was DNA-
binding or not, irrespective of domain overlap. We used
the set of proteins where curated annotation data
showed that they were DNA-binding because they con-
tained a Pfam domain annotated as DNA binding
[Additional file 1]. We then counted the number of TFs
with a known DBD that also were predicted to have a
DBD, and estimated the rate of true positive predictions,
or sensitivity (Sn, Equation 1).
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Sn ¼ TP= TP þ FNð Þ ð1Þ

The domain level
At the domain level we tested how often the predicted
DBD (for proteins correctly predicted to have a DBD)
showed overlap with the known DBD (from curated an-
notation data), see Figure 1 for details. For each known
DBD we compared it to the predicted DBD and esti-
mated the amount of overlap relative to the Pfam do-
main. An overlap of at least 1 residue was counted as
significant, and the values for TP, FN and FP were used
to estimate sensitivity (Sn, Equation 1) and positive
predictive value (PPV, Equation 2).

PPV ¼ TP= TP þ FPð Þ ð2Þ

The residue level
At the residue level we measured the amount of overlap
between known and predicted DBDs for the actual over-
laps that were identified above. This was done according
to Figure 2, and used to estimate Sn and PPV as for the
domain level.

Predicting new DBDs
DBD-Threader was run on all TFs, and occurrences of
Pfam domains showing any overlap with DBD predictions
were used as an indication of potential DNA-binding. In
order to distinguish between random overlaps and true
DBDs we used the Support Vector Machine method
(SVM) [22] as implemented in scikit-learn version 0.15.0
[25], with a linear kernel function, and used it to separate
false positive from true positive cases, based on prediction
quality according to the hypothesis that each Pfam domain
is a DBD. The Pfam domains annotated as DBDs after
manual curation were considered as positive data, and for
negative data we identified any additional Pfam domains
in the DNA-binding proteins with at least one known
DBD, arguing that most likely the majority of the
remaining domains of these proteins are non-DBDs. These
Pfam domains were evaluated by manual curation (scien-
tific literature and Pfam entry annotation), and were sepa-
rated into 2 groups; Pfam domains with unknown DBD
status, and non-DBD Pfam domains [Additional file 1].
Obviously, only non-DBD Pfam domains that showed

some overlap with DBD-Threader predictions could ac-
tually be used as negative data for the SVM classifier.
Initial tests showed that the SVM had best performance
on data at the residue level, leading to better separation
of positive and negative cases (data not shown), so we
used residue level %Sn and %PPV as features for classi-
fication. We then determined the final set of DBDs
based on the SVM output.

PTM annotation
For data on post-translational modifications (PTMs) we
used information from PhosphoSite (last update done
using release 01.01.2014) [26]. We imported data for 6
PTM types; acetylation, methylation, O-GlcNAc, phos-
phorylation, sumoylation and ubiquitination.

GOrilla and DAVID
We used GOrilla [27,28] and DAVID [29] for enrich-
ment analysis of TF subsets on a broad range of annota-
tion data. The reason for using both tools is that
although DAVID can analyze a broader range of proper-
ties, the information in GOrilla is more up to date. In
general we used a specific subset as the positive set, and
the full set of TFs as background. In cases where we
could identify the subset of TFs for which we had reli-
able data (e.g. the PPI data) we used this subset as back-
ground. In most cases (e.g. for PTMs) it was difficult to
identify TFs for which we actually had a lack of data
(rather than negative data), and in these cases the full
TF set was used.

Protein–Protein Interactions
Ravasi et al. were able to capture cDNA clones for
1222 TFs in human, in order to map PPIs [17]. The
number of possible interactions (including homo-

dimers) is n nþ1ð Þ
2 ¼ 1222 �1223

2 ¼ 747253; but based on
the data from Ravasi et al. only 762 out of these (0.1%)
were observed as actual interactions. This set was
tested for correlation against other features, using a
general enrichment analysis.

Enrichment analysis
The enrichment analysis was implemented as a Fisher’s
exact test on a 2 × 2 contingency table. Observations

FN Domain TP Domain FP Domain

Predicted DBDs

Pfam Domains

DBD-Threader predictions

Pfam DBDs

Figure 1 Prediction quality at the domain level. Domains are classified as TP, FN and FP as shown, relative to the curated Pfam domains. TNs
are not included in this comparison, as negative domains are not well defined.
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were grouped according to pairs of properties, like being
involved in PPIs (yes/no) and having a DBD (yes/no).
This was then tested using the Fisher’s exact test, in
most cases with a threshold for p-value at 0.05 after
Benjamini correction for multiple testing. In addition to
the p-value, the expected number of occurrences and
the Matthew’s correlation coefficient (MCC, Equation 3)
was estimated for cases with significant p-values. The
testing was implemented using the full set of TFs (1978)
as background for all properties except PPI. For the PPI
case we used the 1222 TFs actually mapped for PPI in
the Ravasi et al. paper as background. For calculation of
MCC, a TF was considered as TP if it had both proper-
ties, as TN if it had none of properties and as FN or FP
if just had one of the properties (based on the 2 × 2
contingency table).

MCC ¼ TP� TN – FP� FNð Þ= sqrt ð TP þ FPð Þ
TP þ FNð Þ TN þ FPð Þ TN þ FNð ÞÞ

ð3Þ

Python scripts were used to extract subgroups of TFs
with specific properties for enrichment analysis [30].
Biopython was used to extract all gene names for each
TF from the UniProt files [31]. The p-values were esti-
mated using the Fisher 0.1.4 package [32]. The software
for enrichment analysis is available with the paper.

Ethical approval and consent
This study is based on human data. However, all data
have been downloaded from open data repositories
(UniProt, Pfam, PhosphoSite) or from supplementary
material from existing publications (see text), and cannot
be linked to individuals. Ethical approval and consent is
therefore not required.

Results and discussion
Making an initial set of TFs
The starting point for the annotated TF list was the set
of 1988 TFs by Ravasi et al. [17]. These TFs were then
supplemented with annotation data as described below
and in Methods, in particular with respect to UniProt
IDs, Pfam domains including DBDs, PPI data and PTMs.

Comparison to other TF collections
We wanted to use the data set by Ravasi et al. in order
to utilize the consistent set of PPI data generated for
that particular data set. However, alternative data sets
have been used in other studies, and in order to put the
set from Ravasi et al. into context, we compared it to
the sets from Zhang et al. [14] and Vaquerizas et al.
[16]. The set by Zhang et al. is based on manual cur-
ation of animal TF families, and includes a separation
into DNA-binding TFs, TF cofactors and chromatin re-
modeling factors. The set by Vaquerizas et al. is based
on curation of a list of potential TFs identified from
InterPro database entries.
We first tested for overlap between the different lists

based on unique HGNC gene names (see below). This
showed a quite similar overlap of 1253 genes between
Ravasi and Vaquerizas, 1374 between Ravasi and Zhang,
and 1404 between Vaquerizas and Zhang. These num-
bers are on average 10% lower if we focus on DNA-
binding TFs (1132, 1100, and 1359, respectively (see
below for definition of DBDs in the Ravasi set)). Of the
genes included in the Ravasi set, 186 and 66 are classi-
fied in the Zhang set as TF cofactors and chromatin
remodeling factors, respectively. This overlap is reduced
to just 14 and 10 if we focus on DNA-binding TFs in
the Ravasi set.
The similarity between the data sets from Ravasi and

Vaquerizas is further confirmed by comparing the dis-
tribution of domain types. The Vaquerizas set is
strongly dominated by the InterPro domains ZNF-
C2H2, Homeodomain, HLH and bZip, in that order.
This is very similar to the distribution of Pfam domains
in the Ravasi set (see below for how they were
mapped), which is dominated by the Pfam domains for
zinc fingers, homeobox, HLH and bZIP (Figure S1 [see
Additional file 2]). The Ravasi set may be somewhat
enriched in rare Pfam domains (i.e. domains found less
than 5 times), but this may also be caused by differ-
ences between InterPro and Pfam.
In order to highlight the differences between these col-

lections we used unique genes from each collection as
input to DAVID and GOrilla, in each case using the full
gene list for that collection as background. The genes
that are unique to Ravasi compared to Vaquerizas are
enriched for histone-related properties and transcription

FN TP FP

Predicted DBD

Pfam Domain

DBD-Threader prediction

Pfam DBD

Figure 2 Prediction quality at the nucleotide level. Regions are classified as TP, FN and FP as shown, relative to overlap with the curated Pfam
domains. TNs are not included in this comparison, as they represent a very large fraction of the comparison, which may bias the analysis.
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co-factor activity (results not shown), indicating that it
contains some cases that are not classical TFs. The
Vaquerizas set is, on the other hand, enriched for RNA
binding activity, but also catalytic activity, indicating that
also this data set may contain cases that are not TFs ac-
cording to a strict definition. Comparison of the Ravasi
data to the Zhang data shows a similar pattern, with
some enrichment for RNA binding and histone-related
properties in the Ravasi set. This shows that the gene set
defined by Ravasi et al. may have some inherent biases,
but that this may be a problem also in other gene sets.

Mapping of UniProt IDs and Pfam domains
The gene names by Ravasi et al. were mapped to
unique HGNC and UniProt IDs. In total 1978 TFs
(99.5%) could be mapped to unique IDs. Mapping of
Pfam domains was done using the annotations from
Pfam (in swisspfam) [21]. The list of 1978 human TFs
had 1664 unique Pfam domains, which included 936
Pfam-B domains and 728 Pfam-A domains. However,
most of the Pfam domains have few occurrences in the
set of human TFs (see later).

Mapping of DBDs
Verification on known Pfam DBDs
The ability for motif-specific DNA binding is an import-
ant property of most TFs. However, it is not necessarily
an essential property, as TFs also can interact through
PPIs. The observation of TFs that may bind to regions
without any apparent binding site motifs highlights this.
Motif-specific vs motif-less binding may have functional
relevance, and it is therefore important to identify TFs
with and without DNA-binding domains.
Less than 1% of all proteins have an experimentally

determined structure, which makes it difficult to assign
function based on structure. However, significantly simi-
lar sequences may share function, although functional
roles of related proteins can change during evolution
[33]. Therefore prediction methods based on sequence/
structure similarity can be used to try to identify DNA-
binding domain types when annotation is lacking. How-
ever, such predictions will contain some false positive
and false negative predictions. It is difficult to correct for
false negative predictions, i.e. to recognize something
that was missed by the prediction method. However, it

may be possible to correct for false positive predictions
by estimating prediction quality over a set of predictions.
Here we used Pfam domains as a basis, and tried to pre-
dict individual occurrences of DNA-binding for these
Pfam domains. We could then estimate the consistency
of prediction over all occurrences of a given Pfam
domain as a quality measure, and use this to identify
predictions that are likely to be false positive.
As a first step the 728 Pfam-A entries were checked

for DNA-binding properties from scientific literature
and Pfam entry annotation. This showed that after man-
ual curation 70 of the Pfam-A domains were confirmed
to be DNA-binding [see Additional file 1], and the pro-
teins that had at least one of these DNA-binding
domains were classified as DNA-binding proteins. These
70 DNA-binding Pfam domains were found in 907 pro-
teins, whereas 1071 proteins did not have a reliably
annotated DNA-binding domain at this stage.
We then used DBD-Threader to predict additional

Pfam domains as DBDs [23] (please see Methods for de-
tails). As an initial estimate of the expected reliability of
predictions, we started by doing prediction on the 907
TFs with known DBDs. These predictions were evalu-
ated at three different levels. At the protein level we just
checked whether the protein was predicted to be DNA
binding or not. This may be useful for classification of
TFs, but it does not identify new DNA-binding domains.
Therefore, for the true positive predictions at the protein
level we also evaluated the predictions at the domain
level, by checking whether the prediction was able to
identify the correct Pfam domain as DBD. This was eval-
uated both for each domain type, and over all domain
occurrences. For the true positive predictions at the do-
main level, we finally evaluated the predictions at the
residue level, by checking how well the predictions over-
lap with the Pfam domain annotated as DBD. The
results (Table 1) showed that 776 out of the 907 TFs had
been correctly predicted by DBD-Threader as DNA-
binding. At the domain level, 40 out of the 70 known
DNA-binding domains were correctly predicted by
DBD-Threader at least 50% of the time, giving a sensitiv-
ity of 57%. We then considered the domains with correct
prediction frequency of less than 50% as FN domains.
Statistics based on domain occurrences rather than do-
main types gave a higher sensitivity (74%), showing that

Table 1 Prediction results for DNA-binding domains on positive data

Level Unit NPfam Npredicted TP FP TN FN Sn PPV

Protein proteins 907 776 718 - - 189 79.16 -

Domain domains 70 46 40 - - 30 57.14 -

Domain occurrences 1159 872 863 519 - 296 74.46 62.45

Nucleotide total nucleotides 69320 43326 42783 16899 - 26537 61.72 71.68

Nucleotide average nucleotides 59 49 49 32 - 89 35.51 60.49
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performance is better on frequently occurring domains.
Doing the statistics at the level of residues gave a some-
what lower sensitivity (62%). The most likely reason for
this is shown in the average values, with a relatively high
FN rate. This shows that the Pfam domains on average
are longer than the predicted DBDs.
The results in Table 1 show that DBD-Threader in

general works quite well, with sensitivity of almost 75%
for the identification of DNA-binding domains. In par-
ticular it seems to work well for frequent DBDs, which
means that a large fraction of DBD-containing proteins
will be correctly identified, whereas rare cases are more
likely to be missed.
Some predictions were checked in more detail, based

on high FP/FN rates or large differences in Sn and PPV.
This involved three domain types (LAG1-DNAbind
(PF09271), BTD (PF09272), and HNF-1_N (PF04814)),
and two of these (PF09271 and PF09272) did illustrate a
potential problem, as there was one predicted continu-
ous DBD overlapping two Pfam domains (Figure 3). This
gives a low overlap when each domain is treated indi-
vidually. The manual evaluation also showed that the
HNF-1_N domain is likely to be an outlier. However,
this constitutes a small fraction of the actual domains,
and has minor impact on the analysis.

Identification of additional DBDs
For identifying additional Pfam domains as DBDs we
used DBD-Threader predictions as a starting point. We
then used the average overlap over all occurrences of
each Pfam domain as input for a Support Vector Ma-
chine (SVM) [22], in order to identify Pfam domains that
had too low overlap with DBD predictions to be classi-
fied as DNA-binding. As positive data we used the 40
Pfam domains that were correctly predicted by DBD-
Threader as DNA-binding. As negative data we used any
additional Pfam domains co-occurring with the 40 Pfam
domains in the positive set [Additional file 1], based on
the assumption that most TFs only have one type of
DBD. This may be an oversimplification in some cases,
but the SVM approach is supposed to be robust with re-
spect to outliers. The negative data also had to show
some overlap with DBD-Threader predictions in order
to be useful for defining a classification cutoff between
true positive and false positive cases (all Pfam domains

without any overlap with DBD predictions will be zero
in both Sn and PPV). This left only 6 Pfam domains as
negative data. However, this should be a reliable data set
of non-DBD Pfam domains in DNA-binding proteins,
despite the small size.
The SVM classifier was used with the %Sn and %PPV

values for DBD-Threader predictions on each Pfam do-
main, over all occurrences (i.e. for the hypothesis that
the Pfam domain is a DBD). The performance of the
classifier was assessed on the 46 Pfam domains with
known classification by using a two-way cross-validation
with five re-samplings, in addition to a leave-one-out
cross-validation. This gave an average performance of
98% for both Sn and PPV. We then used this SVM to
classify the remaining Pfam domains, based on overlap
(or lack of overlap) of individual occurrences of each do-
main with the DBD-Threader predictions (Figure S2 [see
Additional file 2]). For prediction of new DBDs we fo-
cused on Pfam-A domains, and 38 Pfam domains not
included in the training set showed a non-zero overlap
with DBD-Threader predictions. According to the SVM
step 27 of these Pfam domains could be reliably identi-
fied as DNA-binding whereas 11 Pfam domains were
more likely to be non-DNA-binding (Table 2).
Following the above analysis we had in total 97 Pfam-

A domains annotated as DNA-binding, including the
30 domains that were annotated as DBD in literature,
but not reliably predicted by DBD-Threader in the ini-
tial analysis. A total of 1225 proteins had at least one
occurrence of a Pfam domain annotated and/or classi-
fied as DBD, and were therefore considered to be
DNA-binding, whereas the remaining 753 proteins
could not be identified as DNA-binding. This means
that at least 61% of the TFs are DNA-binding, and this
number seems to be comparable to the result from
Fulton et al. [15].
Pfam-B domains were not included in the final predic-

tion process for new DBDs. Such domains are generated
by an automatic process, which means that they do not
have a stable definition, and they will often be of low
quality. Also, they had only minor impact on the actual
TF classification. 45 Pfam-B domains showed at least
some overlap with DBD-Threader predictions. Following
the SVM-based analysis 25 out of them were confirmed
as DNA-binding, whereas 20 Pfam-B domains were

47
58

178 179
285

328 355 444

PF09271 PF09270 PF01833

Predicted DBD

DBD-Threader prediction

Pfam Domains

Figure 3 Example of a challenging DBD prediction. The predicted region overlaps with two independent Pfam domains.
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identified as non-DNA-binding. The 25 possibly DNA-
binding Pfam-B domains were found in 27 TFs, but 24
of these TFs had at least one DNA-binding Pfam-A
domain, and had therefore already been identified as
DNA-binding TFs.
The number of TFs with a clear DBD is certainly

a conservative estimate, as DBD-Threader could not
reliably identify all Pfam domains that are known DBDs
according to literature annotation. However, as we also
have shown that this affects mainly the less frequently
occurring DNA-binding domains, we believe that the
estimate is at least close to the real value.

Mapping of PPIs and PTMs
Ravasi et al. tested 1222 TFs experimentally for protein–
protein interactions and found 762 actual interactions
for 482 TFs [17]. These interactions were included in
the data set. For the mapping of PTMs, we retrieved
information for each TF from the PTM-specific files
from Phosphosite [26]. The distribution of PTMs is
shown in Figure 4.
Based on these data sources, including the analysis of

DBDs described above, we then made a final annotated
set of transcription factors. The main properties are
listed in Table 3, and the full table is available [see
Additional file 3].

Using the annotated TFs for data analysis
We now want to illustrate how such data can be used
to analyze sets of TFs. We used two main approaches.
In the first approach we used properties in the TF
table to split the set of TFs into subsets, and analyzed
these subsets using either enrichment analysis against
other properties in the TF table, or against Gene
Ontology data or annotation-based property data,
using GOrilla [27,28] and DAVID [29]. As a more
general approach we also used external data to define

subsets of TFs, and then analyzed these subsets using
enrichment analysis against properties in the TF
table.

Subsets analyzed with GOrilla and DAVID
Here subsets were defined based on properties in the TF
table, like DNA-binding or acetylation, and these subsets
were analyzed with GOrilla and DAVID, using the full
set of relevant TFs as background. Selected results for
GOrilla are shown in Table 4, and comprehensive results
for GOrilla and DAVID are given in Table S1 and S2
[see Additional file 2].
The results show a particularly clear difference be-

tween TFs with and without a DBD. The DNA-binding
TFs are enriched in sequence-specific DNA-binding,
receptor properties, dimerization and core promoter
interactions. The non-DNA-binding TFs are enriched
in RNA-binding and cofactor activity, but also in cata-
lytic activity, histone binding and related processes.

Table 2 New DNA-binding and non-DNA-binding domain types

DBD DBD DBD non-DBD*

Homeobox_KN zf-C2H2_6 Maf1 PBC

MCM2_N zf-C2H2_4 zf-H2C2_5 zf-C2H2_2

CBFD_NFYB_HMF TFIID-18 kDa Exo_endo_phos TFIIA

SKIP_SNW TFIIB DUF3432 SCAN

Ku DNA_methylase Toprim Prox1

Pax2_C TFIID_20kDa SSXRD

TAFII28 ResIII HJURP_C

DUF2028 FAD_binding_7 Ku_N

Histone RNA_pol_Rpb1_1 DNA_photolyase

zf-H2C2_2 SOXp SNF2_N

zf-met DNA_topoisoIV TIG

*After filtering predicted DBDs for false positives.

Figure 4 A Venn diagram for distribution of PTMs across TFs.
The diagram shows that PTMs tend to co-occur, possibly due to
experimental bias.
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This shows that the list of TFs includes some epigen-
etic factors. In order to verify this we compared the TF
list used here to a list of epigenetic factors (F. Drabløs,
unpublished data). This indicates that the list included
322 genes (16%) that also could be classified as

epigenetic factors. This is probably an overestimate, as
the list of epigenetic factors includes some TFs that
recruit epigenetic factors. However, it confirms that
subsets of genes on the list from Ravasi et al. are not
classical TFs.

Table 3 Overview of TF annotation data

Information Type TFs with data Positives* Average**

Uniprot ID protein ID 1978 1978 1

Pfam non-DBD domain IDs 1978 753 2.16

Pfam DBD domain IDs 1978 1225 1.33

PPI protein IDs 1222 482 1.58

PTM - acetylation positions 1978 884 3.55

PTM - methylation positions 1978 376 3.22

PTM - O-GlcNAc positions 1978 41 2.90

PTM - phosphorylation positions 1978 1797 13.12

PTM - sumoylation positions 1978 190 1.77

PTM - ubiquitination positions 1978 896 4.38

*Number of TFs that actually have the property. **Average number of occurrences in the positive TFs.

Table 4 Selected enriched terms according to GOrilla

Description P-value FDR q-value Enrichment (N, B, n, b)

DNA_Binding DNA binding 2.11E-185 1.72E-182 1.28 (1939,1475,1206,1174)

core promoter sequence-specific DNA binding 7.87E-5 1.79E-3 1.37 (1939,60,1206,51)

protein dimerization activity 4.00E-8 1.13E-6 1.24 (1939,254,1206,196)

Non_DNA_Binding catalytic activity 1.07E-49 8.75E-47 2.01 (1939,305,735,232)

RNA binding 3.95E-34 1.62E-31 2.00 (1939,222,735,168)

transcription cofactor activity 9.56E-12 4.61E-10 1.42 (1939,359,735,193)

histone binding 1.03E-10 3.39E-9 2.07 (1939,60,735,47)

ubiquitin-protein transferase activity 2.29E-10 7.21E-9 2.40 (1939,33,735,30)

methylated histone binding 3.80E-10 1.11E-8 2.54 (1939,26,735,25)

Acetylation transcription factor binding 2.12E-6 2.17E-4 1.28 (1939,292,879,169)

structure-specific DNA binding 2.27E-5 7.76E-4 1.38 (1939,136,879,85)

Non_Acetylation sequence-specific DNA binding 1.36E-6 1.11E-3 1.11 (1939,887,1061,537)

Methylation protein binding 2.67E-8 3.12E-6 1.21 (1939,1135,372,264)

chromatin binding 3.93E-7 2.48E-5 1.62 (1939,264,372,82)

O-GlcNAc protein binding 6.83E-6 2.80E-3 1.54 (1939,1133,41,37)

histone deacetylase binding 2.71E-4 7.41E-2 6.31 (1939,45,41,6)

Phosphorylation protein binding 4.93E-5 2.02E-2 1.02 (1939,1133,1782,1065)

PTM protein binding 3.12E-6 2.55E-3 1.02 (1939,1135,1827,1093)

Sumoylation sequence-specific DNA binding 3.00E-12 4.1E-10 1.73 (1939,617,189,104)

core promoter binding 1.86E-7 8.03E-6 2.90 (1939,92,189,26)

chromatin binding 1.92E-7 7.86E-6 1.98 (1939,264,189,51)

Ubiquitination protein binding 3.71E-30 3.04E-27 1.24 (1939,1133,888,641)

transcription cofactor activity 3.27E-8 8.12E-7 1.28 (1939,359,888,211)

Non_Ubiquitination DNA binding 6.99E-14 5.73E-11 1.09 (1939,1473,1052,869)

PPI transcription factor binding 1.38E-4 4.83E-2 1.31 (1203,185,475,96)
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Associations between individual PTM properties
The modification of transcription factors by PTMs
like phosphorylation, acetylation, methylation, ubiquiti-
nation, sumoylation and O-GlcNAc may affect their
activity. It is therefore relevant to see how these modifi-
cations are correlated, and whether they are correlated
with other properties. This is shown in Table 5, and in
Table S5 [see Additional file 2].
The results show significant associations between most

of the PTMs. It is likely that this shows an experimental
bias in the data set, where TFs tested for a given PTM
also are more likely to have been tested for other PTMs,
thereby creating artificially strong associations. Figure 4
seems to indicate this, as for example almost all proteins
that are methylated are also phosphorylated. We also see
that there is in general a negative correlation between
PTMs and DNA-binding properties, possibly indicating
that PTMs are less important for classical TFs than for
TFs involved for example in chromatin organization.
This may indicate that processes at the chromatin level
are more actively regulated at the PTM level than TF
binding itself, which seems reasonable based on current
knowledge.

Association between DNA-binding and PPI
It is relevant to look further into possible associations be-
tween DNA-binding and PPI propensity, as stabilization
through PPI is a possible mechanism for stable binding

despite lack of strong DBDs in TFs. As seen from Table 5,
there is not any significant non-random association be-
tween having a DNA-binding domain and participating
in PPI (p-value 0.343).
However, this is a rather general analysis, and it may

be relevant to look closer into more specific cases, where
one, both or none of the TFs have a DBD. These results
are shown in Table 6. The results show that all cases are
significant after Benjamini correction, in particular for
cases with no DBD in any of the partners, where we see
more pairs than expected. For the other two cases,
where at least one TF is DNA-binding, we see fewer
pairs than expected. A reasonable initial hypothesis
would have been that TFs without a DBD will tend to
associate with TFs with a DBD, in order to recognize
regulatory regions, but this analysis indicates the oppos-
ite. The data make sense for cases where both TFs have
DBD, and therefore do not need PPI to bind, but we do
not have a good explanation for the other two cases,
although participation in large complexes may be a
possible hypothesis.

Enrichment of domains and domain pairs in PPI
PPIs are often achieved through interactions between
specific domains. It is therefore interesting to see whether
specific Pfam domains, or pairs of Pfam domains, are
enriched in the PPI data.
As previously described there were 762 PPIs involving

482 transcription factors, and these TFs contained 518
different Pfam domains. Each Pfam domain was tested
for association with PPI. This identified 73 enriched
Pfam domains [see Additional file 4].
Subsequently we tested pairs of Pfam domains, rather

than individual occurrences. First we tested all possible
pairs for the 73 Pfam domains (see above), which identi-
fied 227 enriched pairs of Pfam domains. However, there
is a risk that some interactions are significant as pairs
even though they are not significant individually. We
therefore relaxed the criteria so that at least one of the
two Pfam domains had to be significantly associated
with PPI [see Additional file 4]. In total we identified
347 pairs of Pfam domains as enriched in PPI data after
Benjamini correction. However, 177 out of the 347 pairs
were observed just once [see Additional file 4]. The main
pairwise interactions, except for RNA polymerases and
Pfam-B domains, are plotted in Figure 5. All interactions
are shown in Figure S3 [see Additional file 2]. The plot

Table 5 Associations between property-based subgroups

Property pair P-value Benjamini Corr.

Phosphorylation Acetylation 1.84E-10 5.15E-09 0.190

Phosphorylation Ubiquitination 1.94E-10 2.72E-09 0.190

DNA_Binding Methylation 2.08E-10 1.94E-09 −0.156

Phosphorylation Methylation 2.42E-10 1.70E-09 0.127

Methylation Acetylation 2.78E-10 1.56E-09 0.202

Ubiquitination Methylation 2.85E-10 1.33E-09 0.204

DNA_Binding Ubiquitination 3.16E-10 1.26E-09 −0.280

Ubiquitination Acetylation 3.39E-10 1.19E-09 0.289

Acetylation Sumoylation 5.99E-09 1.86E-08 0.131

Ubiquitination Sumoylation 4.03E-08 1.13E-07 0.124

DNA_Binding Acetylation 6.30E-08 1.60E-07 −0.122

Methylation O-GlcNAc 1.24E-05 2.90E-05 0.110

Phosphorylation Sumoylation 1.51E-05 3.24E-05 0.086

Acetylation O-GlcNAc 3.45E-04 6.91E-04 0.083

Ubiquitination O-GlcNAc 3.82E-03 7.13E-03 0.067

PPI Sumoylation 1.23E-02 2.16E-02 0.072

Methylation Sumoylation 1.49E-02 2.46E-02 0.056

Phosphorylation O-GlcNAc 2.85E-02 4.43E-02 0.046

DNA_Binding PPI 3.43E-01 4.37E-01 −0.027

Table 6 Occurrence of DBDs in 762 PPI pairs

DBD found in Expected Observed P-value Benjamini

both TFs 255 229 0.046 4.58E-02

only one TF 371 343 0.042 4.58E-02

none TFs 135 190 7.50E-07 2.25E-06
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shows that the network of domains that are enriched
(and possibly involved) in PPI is quite sparse. Although
more than half (66%) of the domain pairs are found in
pair with more than one other domain type, this is in
most cases limited to two different domains, and often
involve related types (like Kelch domains).

Analysis of externally defined sets of TFs
To illustrate how such annotated lists can be used to
analyze data from different types of experiments, we an-
alyzed gene lists from three recent papers. The software
used for this analysis is available with the paper
[Additional file 5].
A paper by Tuomela et al. discusses early changes in

gene expression during differentiation of human Th17
cells from CD4+ T-cells [34]. Expression levels were
measured with microarrays, and differentially expressed

genes were identified. One of the largest groups of dif-
ferentially expressed genes was transcription factors.
Groups of genes with similar temporal changes in ex-
pression patterns were identified by clustering into 10
groups (see the paper for details). Some of these groups
showed similar general trends, like groups 1, 2 and 3
(up-regulation), 4, 5 and 6 (down-regulation), and 7, 8, 9
and 10 (no change). All the individual groups, as well as
the indicated combinations, were tested for enrichment
[see Additional file 6]. The results (Table 7; full results
in Table S4 [see Additional file 2]) show that in particu-
lar ubiquitination is clearly enriched, in particular in the
combined cluster with down-regulated expression pat-
tern (4, 5, and 6). It may make sense that proteins of
down-regulated genes are ubiquitinated, in order to
speed up the process of down-regulation. It is also inter-
esting that there is a clear depletion of DNA-binding in

Figure 5 A matrix representation of enriched domain pairs in PPI data. Homodimers are indicated in orange. RNA polymerases and Pfam-B
domains are not included; please see Figure S2 [in Additional file 2] for the full data set.
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genes with a stable (housekeeping-like) expression pat-
tern. It is possible that these transcription factors rely on
interaction with open chromatin initiated by other tran-
scription factors, and are therefore less actively regulated
than such key factors.
A paper by Lawrence et al. identified somatic point

mutations in exome sequences from 4742 human can-
cers with matched normal-tissue samples across 21 can-
cer types [35]. Frequently mutated genes were identified
and analyzed according to whether the gene was mainly
mutated in a single cancer, or across many cancers. This
made it possible to identify subsets of genes, here identi-
fied as gene set I (mainly mutated across many cancers),
II (highly mutated in a few cancers), and III (highly mu-
tated across many cancers). The last set could further be
divided into IIIA and IIIB, where B consists of the genes
that are most broadly mutated [see Additional file 7].
The analysis shows that many features are enriched, but
often represented by a small number of genes (Table 8,
full results in Table S5 [see Additional file 2]). The most
significant enrichments are for PTMs. However, it is
possible that this is influenced by experimental bias, as
known cancer genes may have been more frequently
tested for PTMs. We also see that DNA-binding again is
depleted, possibly indicating that TFs with a strong and
easily identified DBD are more essential to cellular func-
tion, and therefore less frequently mutated. Also some
Pfam domains show a small enrichment, in particular
for the SET and PHD domains. These domains are found
frequently for example in members of the MLL family,
which catalyze H3K4 methylation as part of a large mul-
tiprotein complex containing several chromatin remod-
eling factors. More than 70% of infant leukemia and
approximately 10% of adult human leukemia display

chromosomal translocations of the MLL (KMT2A) gene,
and 450 functionally diverse MLL fusions having been
identified. However, it is interesting that in all fusion
proteins the C-terminal SET domain is lost and conse-
quently they lack H3K4 methyltransferase activity [36].
The PLU-1/JARID1B is a nuclear protein which is
expressed in a high proportion of breast cancers. Two
PHD domains in PLU-1/JARID1B are involved in tran-
scriptional repression. Indeed the interaction between
the class II HDACs (histone deacetylase) and PLU-1/
JARID1B depends on functional PHD domains, and is
responsible for transcriptional repression [37].
Vaquerizas et al. [16] have published an analysis of

1391 manually curated sequence-specific DNA-binding
transcription factors. They looked into the tissue distri-
bution of TF expression, and identified a bi-modal distri-
bution; 37% of the TFs showed significant expression in
at least one tissue, 32% of these were expressed in most
tissues, whereas the majority was expressed only in a
subset (typically 1–3 tissues). We used these three sub-
sets (general tissue distribution, specific distribution, and
unknown; [see Additional file 8]) as input for analysis.
The results are shown in Table 9 (full results in Table S6
[see Additional file 2]). They show an expected enrich-
ment for DNA-binding, since this particular dataset has
been selected for DNA-binding TFs. They also show a
depletion of PTMs and PPIs in the set with unknown
tissue distribution. This most likely indicates the same
problem as before with respect to data bias; many of
these TFs have been less studied, and the lack of PTMs
most likely reflects a lack of experimental data, and not
that they are less frequently modified. It is probably
more relevant that the tissue-specific TFs are more likely
to be sumoylated or be hormone receptors than the

Table 7 Results for TF expression changes during cell differentiation

Category* Term Observed Expected Pvalue Benjamini MCC

1 Ubiquitination 4 1 4.20E-02 3.36E-01 0.049

Sumoylation 2 0 4.84E-02 1.93E-01 0.062

6 O-GlcNAc 3 0 9.69E-03 7.75E-02 0.086

Ubiquitination 16 9 1.58E-02 6.31E-02 0.058

Methylation 9 4 2.35E-02 6.27E-02 0.059

8 Ubiquitination 17 9 1.36E-03 1.09E-02 0.074

PPI 10 5 2.39E-02 9.58E-02 0.070

1,2,3 PPI 9 4 1.57E-02 1.26E-01 0.072

4,5,6 Ubiquitination 43 29 1.48E-03 1.18E-02 0.074

Methylation 21 12 1.03E-02 4.11E-02 0.061

Sumoylation 12 6 2.98E-02 7.93E-02 0.054

O-GlcNAc 4 1 4.53E-02 9.07E-02 0.052

7,8,9,10 DNA_Binding 28 38 7.49E-03 5.99E-02 −0.062

Ubiquitination 38 28 1.32E-02 5.29E-02 0.058

*Indicates TFs with similar expression profiles: 1, 2, 3 - Up-regulated; 4, 5, 6 - Down-regulated; 7, 8, 9, 10 - No clear change.
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Table 8 Selected results for TFs that are frequently mutated in cancer

Category* Term Observed Expected Pvalue Benjamini MCC

II + IIIAB Acetylation 48 26 1.823E-08 1.46E-07 0.125

Ubiquitination 47 27 2.08E-07 8.31E-07 0.118

Methylation 26 11 1.21E-05 3.23E-05 0.110

PF00856(SET) 6 0 1.21E-05 8.80E-03 0.164

PF13771(zf-HC5HC2H) 4 0 4.90E-05 1.78E-02 0.175

PF00628(PHD) 8 1 1.78E-04 2.58E-02 0.114

Sumoylation 14 5 1.14E-03 2.28E-0 0.082

O-GlcNAc 5 1 7.03E-03 1.12E-02 0.078

II Acetylation 21 12 1.67E-03 1.33E-02 0.073

Ubiquitination 20 12 6.61E-03 2.64E-02 0.063

Methylation 11 5 1.23E-02 3.28E-02 0.062

O-GlcNAc 3 0 1.89E-02 3.78E-02 0.073

IIIB Sumoylation 5 1 3.51E-03 2.80E-02 0.085

I + IIIAB Ubiquitination 32 16 2.69E-07 2.15E-06 0.114

Acetylation 30 16 6.44E-06 2.12E-05 0.101

Methylation 19 7 7.94E-06 2.12E-05 0.114

PF00856(SET) 5 0 1.67E-05 5.78E-03 0.178

PF00628(PHD) 7 1 4.70E-05 8.56E-03 0.136

PF13771(zf-HC5HC2H) 3 0 3.17E-04 2.25E-02 0.168

Sumoylation 10 3 1.82E-03 3.64E-03 0.082

DNA_Binding 15 22 9.56E-03 1.53E-02 −0.061

IIIAB Acetylation 27 14 5.47E-06 2.56E-05 0.102

Ubiquitination 27 14 6.39E-06 2.56E-05 0.101

PF00628(PHD) 6 0 1.82E-04 2.64E-02 0.125

PF00439(Bromodomain) 4 0 4.78E-04 4.35E-02 0.132

Methylation 15 6 2.79E-04 7.44E-04 0.091

Sumoylation 9 3 2.28E-03 4.56E-03 0.081

DNA_Binding 12 19 5.45E-03 8.71E-03 −0.065

I Methylation 4 0 5.47E-03 4.38E-02 0.078

*Indicates TFs with similar mutation profiles: I - Mainly mutated across many cancers; II - Highly mutated in a few cancers; IIIA - Highly mutated across many can-
cers; IIIB - Even more highly mutated across many cancers.

Table 9 Selected results for TFs with differences in tissue specificity

Category* Term Observed Expected Pvalue Benjamini MCC

General DNA_Binding 126 85 1.36E-10 1.09E-09 0.166

Specific DNA_Binding 306 205 1.92E-10 1.53E-09 0.280

Sumoylation 57 31 1.85E-06 7.39E-06 0.115

PF00104(Hormone_recep) 28 7 2.32E-11 1.69E-08 0.179

PF01352(KRAB) 16 40 9.20E-07 1.67E-04 −0.103

Unknown DNA_Binding 702 486 2.82E-10 2.26E-09 0.459

Ubiquitination 229 355 3.19E-10 1.28E-09 −0.263

Methylation 105 149 1.68E-07 4.47E-07 −0.116

PPI 146 172 1.48E-03 2.37E-03 −0.091

PF01352(KRAB) 200 96 2.11E-10 7.66E-08 0.324

*Indicates TFs found in many tissues (general), a few tissues (specific), or unknown (due to very low or no expression).
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general ones, as this may reflect mechanisms for tissue-
specific regulation (see e.g. [38]). It is also interesting
that the KRAB domain is depleted in the tissue-specific
set, but enriched in the unknown (not expressed) set, as
KRAB is a known transcriptional repressor domain [39].

Conclusions
A combination of literature-based curation and predic-
tion methods has been used to build a comprehensive
list of transcription factor properties, and this list has
been applied towards investigating relationships between
TF properties, TF–TF (protein–protein) interactions,
and external data, and used to find significant correla-
tions and enriched or depleted features. The results
show that the comprehensive list is a useful data analysis
resource for researchers working on gene regulation.
However, it also shows that such analyses are easily
biased by incomplete data or by how the gene sets have
been selected. This mirrors to some extent the recent
results by Rolland et al. [40], where they identified a
strong bias in existing PPI data towards well-studied
proteins.
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Gene regulation in the immediate-early response process 

Abstract 

Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, 
without the need for de novo protein synthesis, and they are stimulated in response to both cell-
extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, 
through receptors activating a chain of proteins in the cell, in particular extracellular-signal-
regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-
actin pathway. These communicate through a signaling cascade by adding phosphate groups to 
neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and 
thereby induce gene expression. The gene activation also involves proximal and distal enhancers 
that interact with promoters to simulate gene expression. The immediate-early genes have essential 
biological roles, in particular in stress response, like the immune system, and in differentiation. 
Therefore they also have important roles in various diseases, including cancer development. In this 
paper we summarize some recent advances on key aspects of the activation and regulation of 
immediate-early genes.  

Keywords 

Immediate-early response; Signaling cascades; Poised genes; Transcription factors; Enhancers 

 

Abbreviations 
IER - immediate-early response; IEG - immediate-early gene; PRG - primary response gene; SRG - 
secondary response genes; PDGF - platelet-derived growth factor; EGF - epidermal growth factor; 
SRF - serum-response factor; NF-kB - nuclear factor-kB;  CREB - cyclic AMP response element-
binding protein; AP-1 - activator protein-1; TCF - ternary complex factor; ERK - extracellular 
signal-regulated kinase; MAPK - Mitogen-activated protein kinases; ELK1- E26-like kinase; MRTF 
- myocardin related transcription factor; NF1 - nuclear factor 1; PARP1 - Poly (ADP-ribose) 
polymerase 1; RSK - p90 ribosomal S6 kinase; JNK - c-Jun N- terminal kinase; ERK5 - 
extracellular signal regulated kinase-5; BMK1- Big MAP kinase-1; MSK - Mitogen/stress activated 
protein kinase; RNA Pol II - RNA polymerase II; GO - Gene Ontology; TBP - TATA binding 
protein; TSS - Transcription Start Site; HAT - histone acetyl transferase; IRF3 - interferon 
regulatory factor 3; TLR - Toll-like receptor; NGF - nerve growth factor; G protein - guanine 
nucleotide binding protein; TF - Transcription Factor; MKL - megakaryoblastic leukemia; ESC - 
embryonic stem cells; DSIF - DRB sensitivity-inducing factor; NELF - negative elongation factor; 
P-TEFb -  positive transcription elongation factor; CTD - C-terminal domain; eRNA- enhancer 
RNA 
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Introduction 

Regulation of gene transcription is one of the main mechanisms that are used by cells to increase or 
decrease the concentration of specific gene products (RNA and protein) (Lewin, 2004). Gene 
transcription is controlled through many layers of regulation, where the choice of specific pathways 
affects the timing of induced gene expression as a response to an external signal. A specific group 
of genes seems to be able to respond very quickly to regulatory signals, for example in immune 
responses or cellular stress. Such processes are often known as immediate-early response (IER) 
processes, and the genes involved are therefore known as immediate-early genes (IEGs). 

There are many relevant questions regarding IEGs. For example, how are IEGs activated, since they 
are able to respond very rapidly to external signals? What are the key aspects of their promoters? 
Do they interact with enhancers? How important is the epigenetic profile of the IEGs? This paper 
tries to summarize and provide updated information on some of these questions. 

Early gene responses 

Primary responses 

Several genes respond rapidly to cellular signals, and such signal-responsive primary response 
genes (PRGs) are expressed following a wide range of different stimuli, linked to diverse signaling 
pathways. They can be divided into two main classes; the immediate-early response genes, and the 
delayed primary response genes. 

Immediate-early response genes 

The mRNA for IEGs may appear in cells within minutes after stimulation. Even more important, 
cells can transcribe mRNA for IEGs in the presence of protein synthesis inhibitors, indicating that 
the proteins required for their synthesis (including e.g. the transcription factors) are already 
available in the cell, and not synthesized as part of the activation process (Herschman, 1991, 
Morgan and Curran, 1991). These genes respond to a wide variety of extrinsic stimuli and in 
multiple cell types (Fowler et al., 2011), indicating a very general response mechanism. There are 
probably a few hundred genes in this group. These genes were first identified in cells exposed to 
mitogens, and have an important role in the regulation of the cell cycle (Greenberg and Ziff, 1984). 
Many IEGs are proto-oncogenes and their sustained expression can have profound effects on 
cellular growth.  

Delayed primary response genes 

Many of the primary response genes encode transcription factors, which again regulate secondary 
response genes (Winkles, 1998) (see subsection Secondary responses). However, it has been shown 
that some of the delayed inductions do not require protein synthesis, and therefore represent delayed 
induction of primary response genes rather than induction of secondary response genes. This group 
of genes is called delayed primary response genes, and they are different from IEGs both in 
function and in genomic architecture (Tullai et al., 2007). 
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Secondary responses 

This group of genes is also expressed in response to signaling, but requires de novo protein 
synthesis. These genes are much more abundant than the genes in the first group, and are called 
secondary response genes (SRGs) (Herschman, 1991, Serrat et al., 2014). 

General properties of IEGs 

Expression of IEGs is quick and mainly transient, it does not require protein synthesis, and 
therefore translational inhibitors have no effect on their expression. Their expression in interphasic 
cells is initiated by an extracellular signal, such as growth factors (e.g. platelet-derived growth 
factor (PDGF) and epidermal growth factor (EGF)), mitogens and phorbol esters, immunological 
and neurological signals, developmental, and stress (e.g. UV, toxins) (Herschman, 1991, Morgan 
and Curran, 1991, O'Donnell et al., 2012). For example, expression of the FOS gene peaks 30 to 60 
minutes after stimulation, and returns to basal expression after 90 minutes (Greenberg and Ziff, 
1984). IEG protein products are usually unstable and they are sometimes targeted for proteolytic 
degradation by the proteasome without prior ubiquitination (Gomard et al., 2008). For IEG 
transcripts, downregulation is suggested to follow an additional mechanism through the actions of 
targeted microRNAs (Aitken et al., 2015, Avraham et al., 2010), where a family of microRNAs 
target the 3  UTR region of several transcripts. Multiple microRNAs may target multiple IEGs, 
which provides some redundancy. After stimulation of IEG expression the production of these 
microRNAs is blocked, but then comes quickly back to normal levels (Aitken et al., 2015, Avraham 
et al., 2010). The combination of several mechanisms for rapid degradation and inactivation enables 
very transient signaling after IEG activation. 

IEGs have on average shorter length than other genes (19 kb versus 58 kb), and they have 
significantly fewer exons. They have a high prevalence of TATA boxes and CpG islands. There is 
an enrichment for some specific transcription factor binding sites within regulatory regions of IEGs, 
including serum-response factor (SRF), nuclear factor kappa B (NF-kB) and cyclic AMP response 
element-binding protein (CREB) binding sites. This suggests a consistent and maybe redundant 
mechanism of transcription regulation (Healy et al., 2013). 

Important IEGs and pathways 

Our current knowledge about IEGs and how they are activated is to a large extent based on studies 
of individual genes and pathways. Here we describe some representative examples. 

Important Immediate Early Genes 

Two of the most famous and well-characterized immediate-early genes are FOS and JUN (Healy et 
al., 2013, O'Donnell et al., 2012). They can be rapidly and transiently induced by a variety of 
stimuli, including serum, growth factors, cytokines, tumor promoters, and UV radiation. FOS plays 
a key role in cellular events, including proliferation, differentiation and survival, and is also 
regulated by posttranslational modification such as phosphorylation by different kinases like MAP 
kinases, which influences protein stability, DNA-binding activity and the trans-activating potential 
of the transcription factors (O'Donnell et al., 2012).  
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The FOS and JUN proteins have a leucine zipper-containing domain (Pfam bZIP_1) used for 
dimerization and DNA-binding. The JUN protein also includes a JUN domain, which can be 
modified by posttranslational modifications such as phosphorylation and acetylation (Bahrami et 
al., 2015, Finn et al., 2014). The FOS transcription factor is not independently active, and must 
form a heterodimer with a member of the JUN family to form the active transcription factor 
activator protein (AP-1). This interaction happens via the leucine zipper motif, forming a bipartite 
DNA-binding domain (Healy et al., 2013). AP-1 regulates the expression of target genes by binding 
DNA at the consensus sequence known as the TPA responsive element (TRE), which is found 
within the upstream promoter region of AP-1 target genes (Healy et al., 2013). This transcription 
factor plays an important role during both normal development and disease states such as cancer 
(Ozanne et al., 2006). 

Early Growth Response gene 1 (EGR-1) is another member of the immediate early genes family. 
EGR-1 is also known as Zif268 and encodes a nuclear phosphoprotein, also known as Krox24 
(Kukushkin et al., 2005). EGR-1 has both DNA-binding and non-DNA-binding domains (Bahrami 
et al., 2015), it has interaction with CEBPB, PSMA3 and P53 and is involved in the regulation of 
cell growth and differentiation in response to signals such as mitogens, growth factors, and stress 
stimuli (Bae et al., 2002, Liu et al., 2001, Zhang et al., 2003).  

Signaling pathways for Immediate Early Genes 

Extracellular signals will promote activation of an assortment of pathways within the cell, leading 
to activation of transcription factors and induction of gene expression, in particular IEGs. There are 
several pathways that lead to the activation of regulatory proteins involved in IEG expression, such 
as the RhoA-actin, ERK and p38 MAPK and PI3K pathways. Here we will mainly focus on the 
RhoA-actin pathway and the ERK and p38 MAPK pathways (Figure 1). These pathways lead to 
phosphorylation and activation of regulatory proteins involved in IEG expression, such as members 
of the ETS-domain family, for example transcription factors ELK1 and ETS1/2, which bind to the 
promoter of relevant genes and form complex with lysine acetyltransferases. Also, these pathways 
lead to activation of other regulatory factors that are essential for induction, such as the SRF and the 
Mediator complex (Fowler et al., 2011). They will also initiate changes in post-translational 
modifications of histones, leading to changes in the chromatin structure (Ciccarelli and Giustetto, 
2014, Flouriot et al., 2014, Sawicka et al., 2014). Multiple pathways may be activated in parallel for 
a given signal (Bebien et al., 2003). 

(Figure 1) 

Rho GTPases regulate the activity of SRF, one of the transcription factors that regulate many 
immediate-early genes, through their ability to induce actin polymerization. The Rho GTPases is a 
family of small signaling G proteins, and one of the major Rho GTPases involved in for example 
spine morphogenesis is RhoA, which modulates the regulation and timing of cell division. The 
major receptors of RhoA are GPCR (G-Protein Coupled Receptor), EphA (Ephrin A), IGF (Insulin-
like Growth Factor) and Ktn1 (Kinectin-1).  

There is a cycle between an active GTP-bound state and an inactive GDP-bound state for Rho 
proteins. Their activation state is controlled by regulatory proteins such as GEFs (guanine exchange 
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factors), which catalyze the exchange of GDP for GTP and thereby activates Rho, as well as GDIs 
(guanine dissociation inhibitors) and GAPs (GTPase activating proteins).  

The Rho-associated kinases (ROCKs) are principal mediators of RhoA activity. ROCK leads to the 
stimulation of LIMK (LIM-kinase). Both LIMK1 and 2 phosphorylate and inactivate Cofilin, an 
actin-depolymerizing factor, and Cofilin reorganizes the actin cytoskeleton of the cell, leading to 
polymerization of G-actin into F-actin. G-actin binds MKL1 through N-terminal RPEL motifs 
(Miralles et al., 2003, Vartiainen et al., 2007), and a reduction in G-actin therefore leads to more 
free MKL1 in the nucleus (Vartiainen et al., 2007). MKL1/2 forms a complex with SRF and 
activates SRF target gene expression in the nucleus, including the SRF gene itself (Cen et al., 2003, 
Miralles et al., 2003). 

IEG expression can also be induced by one of the MAPK (mitogen-activated protein kinase) 
effector cascades. There are different MAPK cascades, with five major groups of MAPKs in 
mammalian cells, including ERK (extracellular signal regulated kinase), RSK (p90 ribosomal S6 
kinase), JNK (c-Jun N-terminal kinase), p38, and ERK5 (extracellular signal regulated kinase-5, 
also called Big MAP kinase-1 (BMK1)) (Raman et al., 2007, Yang et al., 2003, Yasuda and 
Kurosaki, 2008). JNK and p38 are activated by UV or stress stimuli, ERK and RSK are mainly 
activated by mitogenic stimuli such as growth factors and hormones, whereas ERK5 is activated by 
both stress stimuli and growth factors (Yang et al., 2003). 

Here we will focus on two important MAPK cascades; the ERK-MAPK and the p38-MAPK 
pathways (Figure 1). In the ERK-MAPK pathway, signals lead to phosphorylation of ELK-1 by 
ERK1/2, and ELK-1, which is a ternary complex factor (TCF), acts as a co-factor for SRF (Yang et 
al., 2003). Phosphorylation of ELK-1 leads to alternation of the complex with p300 and facilitates 
transcriptional activation (Li et al., 2003). Phosphorylated ELK-1 binds to SRE target sites and is 
associated with transcriptional co-activators like CREB-binding protein and/or p300 (Hazzalin and 
Mahadevan, 2005, Li et al., 2003). The p38-MAPK pathway can be stimulated by both growth 
factors and general stress, and leads to activation of the p38 MAPK kinase, which subsequently 
activates several transcription factors, including ELK1. MSK1/2 (mitogen- and stress-activated 
protein kinase 1and 2) are downstream targets that can be phosphorylated by both ERK1/2 and p38 
MAPK, and therefore this represents a link between these two pathways. MSK1/2 phosphorylates 
several proteins such as transcription factors of CREB and NF-kB, which regulate IEG expression, 
and also histone H3 at serine 10 and serine 28 at the upstream promoter region of IEGs. It has been 
shown that these kinases are active as negative regulators of acute inflammation, and for example 
MSK1/2 is involved in the activation of feedback mechanisms that dampen oxazolone-induced skin 
inflammation (Bertelsen et al., 2011, Soloaga et al., 2003).  

A binding site for the phosphoserine binding protein 14-3-3 is created by MSK1/2 (Macdonald et 
al., 2005), and this protein connects components of the transcription activation machinery, such as 
the lysine acetyltransferase PCAF and the SWI/SNF ATPase BRG1 (Drobic et al., 2010). These 
components produce an open promoter complex which allows transcription to proceed. 
Extracellular signaling via activation of MSK1/2 leads to direct chromatin modification, and this 
regulation is called the nucleosomal response. If MSK1/2 is knocked out or blocked the expression 
of IEGs is reduced (Soloaga et al., 2003). It has on the other hand been observed that 
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phosphorylated histone H3 at serine10 (H3S10ph) has a significant role in transcription initiation. 
For example, following induction and MSK1/2-induced phosphorylation of histone H3, this 
modification site acts towards the lysine acetyltransferase MOF. This transferase acetylates lysine 
16 on histone H4 (H4K16), which is bound by the bromodomain of BRD4. BRD4 recruits the 
kinase PTEF-b. Then the kinase PTEF-b phosphorylates and releases stalled RNA polymerase from 
the proximal promoter region, which finally results in transcription elongation (Zippo et al., 2009).  

The molecular events during FOS expression can be used as an example of IEG regulation. A key 
transcription factor complex consisting of SRF and a member of the TCF family of ETS 
transcription factors is responsible for transduction of a signal from the ERK-associated MAPK 
pathway. The TCF component is a receptor of this signal, being a direct MAPK phosphorylation 
target (Selvaraj et al., 2015, Shaw and Saxton, 2003, Yang and Sharrocks, 2006). TCFs can be 
multiple phosphorylated (Bahrami et al., 2015), although the exact role of this is unclear. ELK1 is 
example of an ETS/TCF-type transcription factor containing a carboxy-terminal MAPK-controlled 
transcriptional activation domain activated by MAPKs (Mylona et al., 2011). TCFs have a high 
affinity to DNA (Bahrami et al., 2015), and the affinity of TCFs for the binary SRF-DNA complex 
increases upon phosphorylation by MAPKs and decreases markedly upon treatment with 
phosphatases (Price et al., 1995).  

SRF acts as a platform for TCF. SRF has been fused to the C-terminal region of ELK1, which has 
been used to show that the TCF component signaling through SRF is enough to couple ERK 
pathway signaling in vivo to T-cell development (Mylona et al., 2011). In other signaling situations, 
SRF can co-operate with other co-regulatory factors such as members of the MRTF (myocardin-
related transcription factor) family, and thereby affect the regulation of FOS expression (Cen et al., 
2003, Knoll and Nordheim, 2009, Posern and Treisman, 2006). 

Several other transcription factors that bind up- and downstream from the TCF-SRF binding site 
may play a potential role in FOS expression. ELK1 is one the TCF proteins that is located upstream 
of the positioned -1 nucleosome where there is a binding site for the TCF-SRF complex. The 
transcription factor is modified through sumoylation in the absence of growth factor signaling. This 
can recruit histone deacetylase (HDAC)-containing co-repressor complexes to the FOS promoter to 
maintain a low basal expression level (Khan and Davie, 2013, Yang and Sharrocks, 2006). Upon 
growth factor-mediated activation of the ERK MAPK pathway, a p300-dependent pathway leads to 
increased histone acetylation levels. This occurs through allosteric activation of p300 by ELK1 
phosphorylation (Li et al., 2003). ELK1 leads to recruitment of MSKs to the promoter and thereby 
H3S10 phosphorylation (Zhang et al., 2008). The changes in histone acetylation lead to access of 
NF1 (nuclear factor 1) to a binding site occluded by the -1 nucleosome, and thereby transcriptional 
activation can take place. Also PARP1 (poly (ADP-ribose) polymerase 1) is recruited and can 
trigger the binding of additional regulators to the FOS promoter. PARP1 in FOS regulation 
functions through directly enhancing ERK-mediated ELK1 phosphorylation (Cohen-Armon et al., 
2007).  

Once the chromatin remodeling (modification) steps are completed, Mediator can be added by 
undergoing a phosphorylation-dependent interaction with ELK1, and finally RNA polymerase 
activity can increase at the FOS promoter (Wang et al., 2005). This has been shown for the EGR1 
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promoter, and it has been indicated that the process for the FOS promoter is similar (O'Donnell et 
al., 2012). The main components in transcriptional activation of FOS as an IEG are shown in Figure 
2. 

(Figure 2) 

The immune system as a model 

The immune system is a well-studied system where rapid response is essential, and many IEGs have 
an important role there. The activation of B and T lymphocytes is generally initiated by signaling 
through the antigen receptor, and it is often regulated by other cell surface proteins such as adhesion 
molecules, co-stimulatory molecules, and cytokine receptors. The transcription factor products of 
IEGs play an important role in dictating patterns of expression of downstream, function-related 
genes. Several studies indicate that a well-known IEG such as EGR1 may be of particular 
importance in response of the immune system (McMahon and Monroe, 1996), but many other genes 
are also involved. It has for example been shown that stimulation of airway epithelial cells with 
house dust mite extract leads to rapid up-regulation of ATF3, EGR1, DUSP1 and FOS, and a later 
strong up-regulation of JUN (Golebski et al., 2014). Stimulation with a viral double stranded RNA 
analogue leads to a similar response. Stimulation of mouse bone marrow derived macrophages with 
LPS, which will activate genes via Toll-like receptors, leads to strong induction of e.g. NR4A1, 
EGR1, EGR2, JUN, JUNB, FOS and FOSB (Ramirez-Carrozzi et al., 2009). However, the actual 
picture is sensitive both to the cellular system, how it is stimulated, and how rapid the measurement 
is done. For example, activation of lymphocytes with concanavalin A and measurement after 4 
hours identifies e.g. EGR1, EGR2, EGR3 and ATF3 as up-regulated, but FOS and JUNB as down-
regulated (Ellisen et al., 2001). Infection of human epithelial lung cells with influenza virus leads to 
a strong down-regulation of e.g. FOS, EGR1, EGR2, FOSB, JUN, NR4A1 and NR4A2 after 8 and 
24 hours (Tatebe et al., 2010). This shows that the identification of IEGs is sensitive to the 
experimental conditions.  

Characterization of IER gene sets 

Although there are both general IEGs that are expressed in almost all cell types, and more cell-type 
specific IEGs, they are likely to share some key properties. It may be useful to have a good 
understanding of these properties as general principles of IEG activation and regulation. Shared 
properties of IEGs can be identified from collections (lists) of genes displaying IEG behavior in 
various contexts. Most analyses of IEG properties have focused on identified IEGs from 
experiments for specific processes or pathways, and we will first present such a study in some detail 
(subsection Identification and analysis of IEGs). This is followed by a more general overview of 
IEG properties, also largely based on studies of individual systems (subsection General properties 
of IEG-like genes).  

Identification and analysis of IEGs 

Several studies have characterized IEGs based on experimental data for specific cell types and 
conditions. For example, Tullai et al. (2007) have done an extensive analysis of genes induced 
within four hours after growth factor stimulation, using T98G human glioblastoma cells and PDGF 
(platelet-derived growth factor). They identified 49 IEGs, 58 delayed primary response genes, and 
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26 secondary response genes. An analysis of gene ontology showed that the IEGs were enriched in 
terms for molecular function related to transcriptional regulation, in particular “transcription factor 
activity” and “DNA binding”. However, these terms were not significantly enriched in either 
delayed primary response or secondary response genes. The immediate-early genes were also 
highly enriched in the cellular component term “nucleus”, but again the term was not enriched in 
the delayed primary response or secondary response genes. On the other hand, both the delayed 
primary response and secondary response genes were highly enriched in the cellular component 
term “extracellular region”, but this was not seen for the IEGs. This is consistent with the 
assumption that many IEGs encode transcription factors that in turn regulate the secondary response 
genes (Tullai et al., 2007).  

Analysis of promoters and upstream regions of the genes showed that the difference in induction 
between the IEGs and the delayed primary response genes could be caused by a variety of factors, 
including differences in transcription initiation, elongation, pre-mRNA processing, or mRNA 
stability. The analysis of human sequences showed that in upstream sequences of the IEGs, four 
transcription factors were significantly overrepresented; SRF, NF- B, PAX-3 and KROX. 
However, for delayed primary response genes no transcription factor was found to be 
overrepresented (Tullai et al., 2007). Also the analysis was extended with phylogenetic footprinting 
to identify over-represented binding sites that were conserved in orthologous genomic regions, and 
this showed that conserved occurrences of binding sites of SRF, NF- B, CREB (cyclic AMP 
response element-binding protein) and AP-1 were significantly overrepresented in the upstream 
regions of IEGs (Tullai et al., 2007). 

Comparison of the core promoter sequences of IEGs and the delayed primary response genes with 
respect to binding sites for general transcription factors indicated that there on average is a 
significantly higher score for a TATA box (subsection The promoter structure - CpG and TATA) 
for the IEGs in comparison to delayed primary response genes. Also, it was shown that the IEGs 
may have a greater tendency to initiate transcription from an initiation site than the delayed primary 
response genes, indicating that the lag in delayed primary response gene expression could be caused 
by RNA Pol II (RNA polymerase II) abundance and/or recruitment at target gene promoters, and 
that the delay in mRNA induction for these genes occurs after the recruitment of RNA Pol II (Tullai 
et al., 2007).  

Comparison of mRNA processing of IEGs and delayed primary response genes showed that there 
was no significant difference between the splice site characteristics of these groups of genes. But 
there was a significant difference in both the primary transcript length and exon frequency; the 
primary transcripts of the IEGs were significantly shorter than the primary transcripts of the delayed 
primary response genes and contained significantly fewer exons (Tullai et al., 2007).  

General properties of IEG-like genes 

The promoter structure - CpG and TATA 

Many genes in mammalian genomes start transcription from regions of the genome with an elevated 
content of CpG dinucleotides and G+C base pairs referred to as ‘CpG islands’. CpG islands have a 
high frequency of CpG sites and are typically 300-3000 base pairs long. They have been found 
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within or close to almost 40% of all promoters of mammalian genes (Deaton and Bird, 2011, Fatemi 
et al., 2005). Also, the core promoter of eukaryotic genes often includes a short motif around 30 
nucleotides before transcription start, known as the TATA-box. During transcription the TATA 
binding protein (TBP) normally binds to the TATA-box sequence, and this unwinds the DNA. The 
AT-rich sequence of the TATA-box facilitates easy unwinding (Kutyavin et al., 2000, Yang et al., 
2007).  

A major class of IEGs has been associated with CpG-island promoters. The promoters of these 
genes assemble into unstable nucleosomes, and therefore they do not need nucleosome remodeling 
complexes to facilitate induction from active chromatin. There is also another major class of IEGs 
with non-CpG-island promoters and stable nucleosomes, which results in dependence on 
nucleosome remodeling and transcription factors that promote this. However, both classes are 
induced by the same signaling cascade initiated from Toll-like receptors (Ramirez-Carrozzi et al., 
2009). 

As already mentioned, promotors of IEGs have more high-affinity TATA boxes than other gene 
classes. This can play an important role in transcriptional activity at the promoter of IEGs, and high 
affinity of the TBP binding site may also lead to rapid re-initiation.  

Chromatin structure 

IEGs have a special chromatin structure which seems to contribute to the rapid activation of 
transcription. A genome-wide mapping of repressed intergenic and intragenic transcription start 
sites (TSSs) enriched with active chromatin marks and RNA polymerase II showed strong 
association with IEGs (Rye et al., 2014). Such promoters are often bivalent, which means that they 
have both repressive and activating histone modifications. They are therefore silenced, but still 
poised for rapid activation. An important repressive mark is methylation at histone H3 lysine 27 
(H3K27me3), whereas methylation at histone H3 lysine 4 (H3K4me3) is an important activating 
mark (Bernstein et al., 2006, Spaapen et al., 2013). 

It has been shown that histone acetylation remains consistently present both prior to and after 
stimulation of gene expression, and this generates a constitutively permissive and open promoter 
structure (Healy et al., 2012, Soloaga et al., 2003). There is a high level of H3K4me3 marks across 
the promoter region of IEGs, a mark normally found around the transcription start site of actively 
transcribed genes, as well as H3K36me3 in the coding region, indicating actively transcribed gene 
bodies. The promoter regions are also enriched in the repressive H3K27me3 mark, creating a 
bivalent promoter. However, this is different from a silenced promoter with inactive chromatin 
marks. These are enriched in H3K9me3 and H3K27me2/me3 and are correlated with transcriptional 
repression (Bernstein et al., 2006, Rosenfeld et al., 2009). It has also been shown that there is a 
dynamic turnover of histone acetylation by the action of histone acetyl transferases (HATs) and 
histone deacetylases (HDACs), which affects all K4me3-modified H3s. This is detectable also in 
the absence of signaling (Edmunds et al., 2008), and it has been shown that a specific HAT (p300/ 
CBP) mediates the dynamic acetylation of IEG regions (Crump et al., 2011). Lysine 
acetyltransferase p300 transfers an acetyl group to specific histone lysines, and bookmarks the 
proximal promoter region of IEGs when the transcription is finished, and reactivates it again 
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following gene induction. Also RNA polymerase II is accumulated and “poised” at the proximal 
promoter region of IEGs (Byun et al., 2009, Tullai et al., 2007). 

Maintenance of histone acetylation seems to be important for IEGs. Crump et al. (2011) have 
shown that fibroblasts taken from a p300/CBP double knockout mouse display inhibition of signal-
induced acetylation of H4K5, K8, K12 and K16 at IEGs. However, for efficient expression of IEGs 
a high level of acetylation is not enough, and reduction in transcription of such genes as a result of 
p300 ablation cannot be overcome by pre-acetylating nucleosomes before inhibition.  

Also other histone modifications are important. PIM1 kinase phosphorylates H3 at serine 10 
(H3S10ph) at the FOSL1 enhancer, and recruits the HAT protein MOF (Zippo et al., 2009). Then 
MOF promotes H4K16Ac by generating a histone crosstalk and increased recruitment of 
bromodomain-containing protein BRD4 via interaction with P-TEFb. Enhanced recruitment of P-
TEFb is accompanied by release of paused RNA Pol II and continuation of elongation. So H3S10ph 
stimulates a relay switch, which connects changes in chromatin landscape with transcriptional 
elongation via P-TEFb (Zippo et al., 2009). Also the modification H3S28ph has been linked to this 
process (Lau and Cheung, 2011). 

It has been shown that poly(ADP-ribosyl)ation is required to modulate chromatin changes, for 
example at the MYC promoter during emergence from quiescence. Poly(ADP-ribosyl)ation is a 
post-translational modification found in several types of proteins, and it has an important role in the 
regulation of chromatin structure and transcription. PARP-1 is a major family member of 
poly(ADP-ribose)polymerases, participate in the cell cycle reactivation of resting cells by regulating 
the expression of several IEGs, such as MYC, FOS, JUNB and EGR-1 (Mostocotto et al., 2014). 
Inhibition of PARP activity along with serum stimulation, by preventing the accumulation of 
histone H3 phosphoacetylation, damages MYC induction, and this can be a specific chromatin mark 
for the activation of IEGs (Mostocotto et al., 2014). 

Chromatin remodeling 

Chromatin can exist in different structural states, and dynamic modification of chromatin structure 
through ‘chromatin remodeling’ can be accomplished by covalent histone modifications, utilization 
of histone variants, DNA methylation and/or by the action of ATP-dependent remodeling 
complexes. Chromatin remodeling allows proteins of the regulatory transcription machinery access 
to condensed genomic DNA, and thereby control of gene expression (Teif and Rippe, 2009).  

An important factor in chromatin remodeling is remodeling complexes. These use ATP hydrolysis 
to alter the state of chromatin by moving, ejecting, or restructuring the nucleosome. There are four 
important families of chromatin remodeling complexes, including the SWI/SNF family, ISWI 
family, CHD family, and INO80 family remodelers (Clapier and Cairns, 2009). 

The assembly of CpG-island promoters into unstable nucleosomes contributes to their independence 
of chromatin remodeling complexes (SWI/SNF). The unstable nucleosomes, in the absence of 
transcription factor targeting, are sensitive to acetylation and methylation, although it is possible 
that expressed transcription factors play an important role in targeting histone modifications 
(Ramirez-Carrozzi et al., 2009). SWI/SNF-independent genes are in general induced more quickly 
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than SWI/SNF-dependent genes (Ramirez-Carrozzi et al., 2006). It has also been shown that 
nucleosomes associated with inducible CpG-island promoters are structurally different from 
nucleosomes associated with non-CpG-island promoters in unstimulated cells. It is possible that the 
CpG-island sequence is responsible for the low nucleosome occupancy (Ramirez-Carrozzi et al., 
2009).  

Most LPS-induced primary response genes are SWI/SNF independent, but some of them show a 
substantial SWI/SNF dependence. Some of these genes, for activation in LPS-stimulated 
macrophages, require IRF3 (interferon regulatory factor 3), which is induced by a subset of TLRs 
(Toll-like receptors) such as TLR4. It has been shown that most primary response genes that require 
IRF3 for expression in LPS inducted macrophages are SWI/SNF dependent, and these IRF3-
dependent primary response genes do in general not have CpG-island promoters (Ramirez-Carrozzi 
et al., 2009).  

There are also SWI/SNF-dependent primary response genes that do not require IRF3 for expression. 
It has been hypothesized that one or more specialized LPS-induced transcription factors other than 
IRF3 promote nucleosome remodeling at promoters within this class, contributing to their selective 
activation (Ramirez-Carrozzi et al., 2009). Ramirez et al. have shown that TNF  signaling does not 
induce IRF3, and may also not directly induce any other transcription factors for nucleosome 
remodeling in macrophages (Ramirez-Carrozzi et al., 2009), which limits activation to SWI/SNF-
independent primary response genes. Therefore, IFN-induced factors might be suitable for the 
selective activation of SWI/SNF-dependent genes assembled into stable nucleosomes. On the other 
hand, IFN  induces transcription via IRFs and STAT proteins, and both of these protein families 
promote nucleosome remodeling by SWI/SNF complexes. This shows that perhaps some stimuli 
preferentially induce SWI/SNF independent CpG-island genes during a primary response, but that 
these stimuli cannot activate transcription factors capable of promoting nucleosome remodeling 
(Ramirez-Carrozzi et al., 2009).  

Initiation of transcription - Transient and sustained signals 

Transcription of IEGs is initiated by signaling cascades, and such signals can be either short-term 
(transient) or long-term (sustained). Depending on the kind of cell type and the duration of 
signaling, the biological outcome may be different (Murphy and Blenis, 2006). For example, studies 
with PC12 cells showed that sustained signaling with nerve growth factor (NGF) led to neurite 
outgrowth in tissue culture, while transient signaling in these cells resulted in proliferation 
(Marshall, 1995). Both transient and sustained signaling leads to ERK activation in PC12 cells, but 
corresponding nuclear translocation is associated only with sustained signaling. Nuclear 
accumulation of active ERK will result in phosphorylation of transcription factors, leading to 
different outcomes of transient and sustained signaling (Marshall, 1995). ERK-dependent 
phosphorylation of the FOS protein protects it from degradation and results in cell cycle entry 
(Fowler et al., 2011, Murphy and Blenis, 2006, Yamamoto et al., 2006). 

ERKs in transient versus sustained signaling can regulate PRGs and affect cell fate choices in 
several ways. For example, angiotensin II-mediated signaling involves heteromeric guanine 
nucleotide binding protein (G-protein) and -arrestin. The G-protein dependent pathway produces a 
transient ERK activation, nuclear accumulation, and activation of IEGs. However, the -arrestin-
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dependent pathway results in a sustained ERK activation and restricts localization to cytosol and 
endosomes (Shenoy and Lefkowitz, 2005). 

Glauser and Schlegel have shown that almost 90% of the genes regulated by sustained signaling 
were not regulated by transient signaling (Glauser and Schlegel, 2006). Indeed, only a few genes 
were regulated by transient signaling, while many genes were regulated by sustained signaling, and 
some genes were regulated by both mechanisms. There were several IEGs (e.g., FOS and EGR1), 
which were rapidly induced by transient signaling. Both the duration of signaling and cell type 
context are important for biological responses, and the levels of expression of IEGs might have 
distinct effects in determining these responses (Damdinsuren et al., 2010, Fowler et al., 2011, 
Spaapen et al., 2013). 

Transcription factors 

Regulation of gene expression includes the binding of multiple transcription factors to the 
regulatory regions of a given gene (Gill, 2001). However, in IEGs the role of TFs is somewhat more 
unclear. There is no need for de novo synthesis of TFs to activate IEGs. On the other hand there are 
some specific transcription factors such as serum-response factor (SRF), nuclear factor B (NF B), 
cyclic AMP response element-binding protein (CREB) and Zeste-like that are frequently found in 
the upstream promoter region of IEGs (Fowler et al., 2011, Pintchovski et al., 2009, Tullai et al., 
2007). Serum response factor (SRF) belongs to the MADS family of transcription factors, and it is 
essential for the induction of many IEGs through signaling cascades such as the RAS-MAPK 
signaling pathway (Yang et al., 2003) and the RhoA actin pathway (Hill et al., 1995).  

Selvaraj and Prywes (2004) suggested that TCF and MKL/MRTF family factors might function in 
an antagonistic fashion, so that SRF target gene regulation and cell fate choices are likely to be 
determined by the specificity of these cofactors (Lee et al., 2010, Selvaraj and Prywes, 2004). Also 
some of the IEGs that are SRF targets (e.g., FOS, EGR1 and EGR2) are MKL1 independent, while 
others like JUNB and FOSL1 (FOS-like 1) are MKL1-dependent targets (Lee et al., 2010, Selvaraj 
and Prywes, 2004). Lee et al. (2010) showed that some IEGs need just MKLs for serum induction, 
while other IEGs could be activated by either the TCFs or MKLs (Lee et al., 2010).  

The importance of the control of MKL1 activation by TCFs or other factors is clear in 
megakaryoblastic leukemia, where MKL1 is fused to the RBM15 protein and activated due to 
constitutive nuclear localization (Cen et al., 2003, Guettler et al., 2008). Phosphorylation of MKL1 
inhibits its activity, while SUMO-modification of MKL1 and myocardin has the opposite effect 
(Nakagawa and Kuzumaki, 2005, Wang et al., 2007). 

The role of enhancers and the Mediator complex in regulation of IEGs 

An enhancer is a short region of DNA that can be bound by transcription factors to activate gene 
transcription. Pintchovski et al. (2009) showed that there are both distal and proximal enhancer 
regions for IEGs. The proximal enhancer contains one or more DNA elements. For example the 
Zeste-like factor binds to such sites and plays a key role for some IEGs, such as the Arc gene 
(Pintchovski et al., 2009). Here the distal enhancer has a functional and conserved serum response 
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element (SRE), this binds SRF and ELK-1, which are important transcription factors for the 
induction of many IEGs through the ERK signaling pathway (Pintchovski et al., 2009).  

It has also been shown that most IEGs are in an epigenetically poised state (Bahrami and Drabløs, 
2015). They may be activated through interaction with enhancers, and it has been hypothesized that 
such enhancers may produce eRNA, which may play a key role in active elongation of transcription 
as described below. 

Mediator is a multi-protein complex that is evolutionarily conserved, and it is an important 
transcriptional regulator of protein-coding genes by forming an interface between gene-specific 
activator proteins and the preinitiation complex with RNA Pol II (Malik and Roeder, 2010). In 
particular, it may mediate long-range interactions between promoters and enhancers, together with 
cohesin. The Mediator subunit MED23 is very important for regulation of EGR1 in the context of 
ERK/MAPK signaling through the serum response pathway (Balamotis et al., 2009). MED23 
knockout leads to elimination of EGR1 expression in embryonic stem cells (ESCs) with paused 
RNA Pol II at the promoter, while the same effect was not observed in differentiated fibroblasts 
(Balamotis et al., 2009). This shows that the mechanism of regulation of IEGs in embryonic stem 
cells might differ from differentiated cells in a cell type specific manner (Balamotis et al., 2009). A 
missense mutation in MED23 leads to change in interaction of the Mediator complex with ELK1 
and TCF4 and altered regulation of IEGs FOS and JUN. Deregulation of these IEGs was also 
observed in neurocognitive deficits. This shows that MED23 is important for regulation of IEGs 
(Hashimoto et al., 2011). Also the CDK8 subunit of Mediator regulates IEGs in response to serum 
stimulation by enhancing transcription elongation (Galbraith and Espinosa, 2011). After stimulation 
a CDK8-containing Mediator subcomplex is recruited to the IEG promoters where it functions as a 
co-activator (Donner et al., 2010). Positive transcription elongation factor, P-TEFb, plays an 
essential role in the regulation of transcription by pausing of RNA Pol II soon after transcription 
initiation in eukaryotes (Cheng et al., 2012, Zhou et al., 2012). Signal-dependent CDK8 recruitment 
to IEGs increases ultimately the recruitment of P-TEFb, so damage to CDK8 results in a decrease of 
induction of these genes by impacting both RNA Pol II and P-TEFb recruitment (Donner et al., 
2010). 

The elongation step of transcription 

Eukaryote transcription consists of a series of steps. First a preinitiation complex assembles at the 
promoter, leading to DNA separation and initiation of transcription. After a short initial transcript 
has formed the process may move into elongation. This elongation continues until the final step, 
termination, where the transcript and the polymerase are released. However, there may also be 
pausing of the transcription at the start of the elongation step. 

The elongation step of IEGs, and thereby also transcription, seems to be controlled by transcription 
elongation factors (Fujita et al., 2009). This includes factors such as DSIF (DRB sensitivity-
inducing factor), NELF (negative elongation factor) and P-TEFb (positive transcription elongation 
factor). DRB is a nucleoside analog that inhibits transcription elongation by RNA Pol II. DSIF is a 
heterodimeric protein complex consisting of the Spt4 and Spt5 subunits, and is essential for cell 
growth and survival at the single-cell level. DSIF may act as a negative or positive elongation factor 
according to the phosphorylation state of Spt5 (Komori et al., 2009, Wada et al., 1998, Yamada et 
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al., 2006). NELF is a DSIF cofactor that consists of four subunits (A, B, C/D and E). P-TEFb is a 
protein kinase composed of Cdk9 and Cyclin T, and it phosphorylates the C-terminal domain 
(CTD) of the largest RNA Pol II subunit in a DRB-sensitive manner (Peng et al., 1998).  

Transcription elongation factors are necessary for development in higher eukaryotes, and many of 
the IEGs, such as FOS and JUNB, are controlled by these elongation factors (Aida et al., 2006).  

As noted above, NELF and DSIF may pause RNA Pol II at the promoter-proximal regions by 
binding directly to it, and Spt5 of DSIF binds to the clamp domain of RNA Pol II (Hirtreiter et al., 
2010, Martinez-Rucobo et al., 2011). Since the clamp is a flexible domain that tightly holds DNA 
and RNA (Cramer et al., 2001), any structural changes in this region are likely to have an important 
influence on elongation kinetics, possibly by affecting the translocation step of the elongation cycle. 
NELF is also likely to bind to the RNA Pol II clamp (Yamaguchi et al., 2001). 

But how do transcription elongation factors regulate overall transcription elongation of IEGs during 
a specific stimulus? The complex of DSIF/NELF directly acts as a negative regulator complex to 
pause RNA Pol II at the promoter-proximal regions of IEGs. But during stimulation, RNA Pol II 
elongation proceeds together with the continuous association of P-TEFb and DSIF as a positive 
regulator, where P-TEFb allows DSIF to function as an accelerative elongation factor, and NELF to 
separate from the IEGs (Fujita et al., 2009, Rogatsky and Adelman, 2014).  

DSIF requires NELF to induce promoter-proximal pausing. On the other hand, NELF probably 
requires DSIF to repress transcription fully because NELF only binds to RNA Pol II with low 
affinity (Yamaguchi et al., 1999). Within the paused RNA Pol II complex, CTD Ser-2 of RNA Pol 
II is hypophosphorylated, and then P-TEFb phosphorylates CTD Ser-2 of RNA Pol II to repress 
transcriptional pausing. So, CTD Ser-2 phosphorylation results in dissociation of NELF and the 
transcription to leave from pausing (Rogatsky and Adelman, 2014, Yamada et al., 2006). The 
mechanism is illustrated in Figure 3. However, the role of NELF seems to depend upon the type of 
stimulation. Stable knock-down of NELF by RNAi showed very little effect on activation by EGF, 
whereas THR-induced activation of the MAP kinase pathway was clearly down-regulated (Fujita et 
al., 2009).  

(Figure 3) 

Thus stable NELF knock-down affects transcription of IEGs both directly via RNA Pol II 
elongation on IEGs as well as indirectly via activation of the ERK1/2 MAP kinase pathway after 
stimulations such as by TRH. This shows that the regulation of transcription of IEGs by the NELF 
is both direct and indirect and that it is stimulation-specific (Fujita et al., 2009).  

Enhancer RNAs (eRNAs) seem to play an important role in the early transcription elongation step 
that involves RNA Pol II pausing and release in the IEGs. The eRNAs probably destabilize the 
association of the DSIF-NELF complex with RNA Pol II and facilitate the transition of paused 
RNA Pol II into productive elongation by interaction with the NELF complex upon induction of 
IEGs (Schaukowitch et al., 2014). 
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Conclusions 

IEGs have an important role in several essential cellular systems, for example the immune system, 
and they are also important in serious diseases like cancer. It is therefore highly relevant to have a 
good understanding of the properties of IEGs, including gene structure, how they are activated and 
regulated, and how they affect downstream processes. In this paper we have summarized some key 
elements of our current understanding of IEGs, including the importance of genetic and epigenetic 
structure, and the role of poised genes and how IEGs may interact with strong enhancers. 
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Figure legends 

Figure 1 - Important signaling pathways. 

The RhoA-actin, ERK-MAPK and p38-MAPK pathways initiated by different external stimuli are 
shown. RhoA-actin and ERK are in particular activated by mitogenic stimuli such as growth factors 
and hormones while p38 is activated by stress stimuli. These pathways will also initiate chromatin 
modifications. The pathways are simplified, and only selected components are shown. The figure is 
based on data from several sources, in particular Healy et al. (2013). 

 

Figure 2 - Molecular events during FOS promoter activation. 

The promoter with pre-bound SRF, EKL1 and p300 is in a poised condition. ELK1 is maintained in 
an inactive form via SUMO-modification, and this permits recruitment of the repressive modifier 
HDAC2. During ERK pathway activation loss of SUMO-modification and HDAC2 from ELK1 (A) 
leads to recruitment of MSKs to the promoter (B). This promotes histone modification and the -1 
nucleosome becomes acetylated, which facilitates NF1 recruitment (C). The NF1 then recruits 
PARP, which will open up for recruitment of other chromatin remodeling complexes (D). Then 
ELK1 recruits the Mediator complex. This enables basal transcription factors and RNA polymerase, 
and initiation of transcription (E). See the text for more details. The figure is adapted from 
O'Donnell et al. (2012) 

 

Figure 3 - A model of stimulation-specific activation of IEG transcription. 

Transcription starts with initiation at the transcription start site (TSS). The DSIF/NELF complex 
then directly stalls RNA Pol II at the promoter-proximal regions of IEGs. After stimulation, P-TEFb 
activates DSIF as an accelerative elongation factor and NELF to detach from the promoter, and this 
reactivates the transcription. NELF also stimulates directly or indirectly the expression of genes 
coding for factors which maintain TRH-dependent activation of the ERK1/2 MAP kinase pathway. 
The figure is adapted from Fujita et al. (2009).  
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