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Abstract

Computational modeling of coupled problems in porous media is essential in var-
ious disciplines of science and engineering. The porous media of interest here are
soils subjected to different physical processes. In particular, hydraulic (H), cou-
pled hydro-mechanical (HM) and thermo-hydro-mechanical (THM) processes are
addressed. Development of a fully-coupled THM numerical model targets ground
freezing phenomena as the main application problem. The governing equations for
the various processes are derived based on porous media theory. The fundamentals
of this theory are presented in a general form and discussed by focusing on soils and
the application problems. Isogeometric analysis (IGA) is adopted for implementing
the governing equations, leading to the development of a code for numerical simu-
lations. One of the main reasons for choosing IGA as a computational framework
is the smoothness of the basis functions, which is attractive for better continuity of
field variables. The main concepts behind IGA, including its advantages compared
to traditional finite element analysis (FEA), are briefly discussed.

The first problem studied is steady-state groundwater flow governed by Darcy’s law.
Numerical challenges occur in the simulation of groundwater flow problems due to
complex boundary conditions, varying material properties, presence of sources or
sinks in the flow domain or a combination of these. Adaptive IGA using locally
refined (LR) B-Splines is applied to address some of these problems. A poste-
riori error estimates are calculated to identify which B-Splines should be locally
refined. The error estimates are calculated based on recovery of the L2-projected
solution. The adaptive analysis method is first illustrated by performing simu-
lation of benchmark problems with analytical solutions. Numerical applications
to two-dimensional groundwater flow problems are then presented. The problems
studied are flow around an impervious corner, flow around a cutoff wall and flow in
a heterogeneous medium. The convergence rates obtained with adaptive analysis
using local refinement were, in general, observed to be of optimal order in contrast
to simulations with uniform refinement.

Classical problems in poroelasticity are next addressed using mixed IGA, i.e. using
different polynomial degrees for displacement and pore pressure. The finite element
method has been widely applied to such problems and the numerical behavior of
the governing equations has been discussed by several researchers. Equal order
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IGA has recently been applied to poroelasticity. Pressure oscillations at small time
steps have been known to be an issue in the simulation of poroelasticity problems.
The performance of mixed IGA for smaller time steps is investigated by revisiting
Terzaghi’s classical consolidation problem. A numerical study is also performed on
the consolidation of a layered soil where a very low permeability layer is known to
cause pressure oscillations. It is observed from the numerical studies that mixed
IGA improves the accuracy of the pore pressure results compared to equal order
simulations, as is known from traditional FEA. The pressure oscillations, however,
are not completely removed but were observed to decrease with increasing polyno-
mial degrees. Mixed simulations with a graded mesh refinement were observed to
reduce the pore pressure oscillations, revealing the potential of adaptive refinement
for such problems.

Fully coupled THM processes in ground freezing are then studied using mixed IGA.
The governing linear momentum, mass and energy balance equations are formu-
lated by assuming saturated conditions. Strain due to phase change is incorporated
into the linear momentum balance equation. This is attained through a simple
thermoelastic constitutive equation with temperature dependent strength parame-
ters. The supplementary equations that complete the model include the soil-water
characteristic curve and a hydraulic conductivity model. After spatial and tempo-
ral discretization, the governing and supplementary equations result in a strongly
coupled and highly nonlinear system of equations, which are solved using Newton-
Raphson iteration. Numerical studies are performed on one-dimensional freezing
and a frost heave problem where experimental data is available. Good agreements
were observed between the mixed IGA based simulation of a THM coupled problem
in frost heave and the corresponding experimental data found from literature. The
continuity of the basis functions in mixed IGA of THM coupled problems implies
that prediction of derived quantities, such as fluxes, across knot spans (analogous
to elements in traditional FEA) can be controlled and improved.

In general, the numerical implementation work resulted in H, HM and THM frame-
works for simulation of poro/geomechanics problems using IGA. The frameworks
are developed based on IFEM - an object-oriented isogeometric toolbox for the
solution of partial differential equations. The developed numerical codes may be
used and extended further. In addition to the various application problems studied,
the numerical work mainly initiates application of IGA to THM coupled problems
in porous media. The features of IGA that are computationally attractive in this
context, such as the ability to perform higher-order simulations with ease, can thus
be utilized.
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Preface

This thesis work has been part of the Material Modeling work package (WP2) under
the research project SAMCoT - Sustainable Arctic Marine and Coastal Technol-
ogy. The work is carried out at the Department of Civil and Transport Engineering,
NTNU and at the Department of Applied Mathematics, SINTEF ICT, in Trond-
heim. The numerical implementation work is performed by using IFEM as a plat-
form. IFEM is an object-oriented toolbox for implementing finite element solvers
for linear and nonlinear partial differential equations using B-Splines and NURBS
as basis functions. IFEM is developed at the Department of Applied Mathemat-
ics, SINTEF ICT, Trondheim and is available as an open-source software. The
adaptive refinement capability of IFEM depends on the LR B-Splines package de-
veloped by Dr. Kjetil A. Johannessen. Details of other thrid-party software that
IFEM depends on may be referred from the official repository page on GitHub.

The journal papers, published and submitted, are included in the thesis in their
original form. Due to the independent nature of the manuscripts, some text and
equations in the main document are found repeated in the papers. The nomencla-
ture is mainly generated for the chapters and appendices of the thesis. Most of the
notations also apply to the papers with the exception of a few different symbols.

Trondheim, Norway Yared W. Bekele
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Part I

Primer
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“If we knew what it was we were doing, it would not be called
research, would it?”

– Albert Einstein

Chapter 1

Introduction

In this introductory chapter, the organization of the thesis is first described. The
background and motivation for the thesis, with focus on the application problems
to be studied, is then discussed. The objectives of the thesis and the research
methodology are highlighted.

1.1 Organization of Thesis
The thesis is organized into three main parts and an appendix: Part I, Part II,
Part III and Part IV, the Appendix.

Part I: Primer - is an introductory part containing three chapters, including the
current chapter.

• Chapter 1: The background and motivation for the thesis work is conferred.
The research strategy followed to achieve the objectives is discussed.

• Chapter 2: Porous media theory is briefly presented in this chapter. The
discussion covers the basics of porous media theory with a main focus on
conservation laws. Other laws that complete the mathematical model for a
porous material are also dealt with. Derivation of the governing conservation
equations is first presented in a general form. Specific governing equations for
hydraulic, hydro-mechanical and thermo-hydro-mechanical processes, with
focus on the application problems here, are then derived.

• Chapter 3: The fundamentals behind isogeometric analysis (IGA), the com-
putational method applied here, are highlighted. A brief discussion on spline
basis functions and geometries is presented. The refinement capabilities of
IGA are discussed and a comparison with the finite element method is made.
A general discussion on the application of IGA to boundary value problems
is presented.

3
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Part II: Papers - presents the main results from the research work in the form of
accepted and submitted publications.

• Paper 1: Application of IGA to porous media flow problems is presented.
Specifically, IGA with adaptive refinement is applied to steady-state ground-
water flow problems. The performance of adaptive IGA for this class of
problems is demonstrated through relevant numerical studies.

• Paper 2: Hydro-mechanically (HM) coupled problems are studied in this
paper by applying mixed IGA. Classical elastic consolidation problems are
revisited under the new computational framework and numerical studies are
performed with a focus on the accuracy of the solution at small time steps.

• Paper 3: Thermo-hydro-mechanically (THM) coupled problems in ground
freezing are studied in this paper. The governing equations are developed
such that strain due to phase change is incorporated into the equilibrium
equation. Mixed IGA is applied and the resulting highly nonlinear system
of equations are solved iteratively. Numerical verification and validation is
performed by considering a case where experimental data is available.

Part III: Summary - contains a chapter summarizing the research work.

• Chapter 4: A summary of the papers in Part II is presented. The main
findings of the research work are highlighted and conclusions are drawn. A
list of recommendations for future work is made under the theoretical and
numerical aspects of the research.

Part IV: Appendix - presents miscellaneous material related to the thesis work.

• Appendix A: The simplest case of a THM coupled problem, an intermedi-
ate implementation in the development of the final THM framework, is pre-
sented. In particular, THM coupled processes in a saturated porous medium
(thermoporoelasticity) are studied using IGA. The results presented are only
preliminary. A detailed investigation showing the advantages of IGA for this
class of problems is a subject for a future work.

• Appendix B: A quick reference to integral theorems, which are mentioned
and used throughout the thesis, is given.

• Appendix C: Conference papers and presentations related to the thesis are
listed.

1.2 Background and Motivation
The benefits of computational modeling in various disciplines of science and en-
gineering cannot be understated. Computational models can improve the under-
standing of physical phenomena in different ways such as by providing a deeper
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insight into complex physical phenomena which are otherwise difficult to deal with
and by shedding light on counterintuitive seeming outcomes. With the advance-
ment of computing power, problems that are insoluble by traditional methods can
be tackled through computational modeling.

Computational poro/geomechanics has a wide range of applications and is the
main theme of the current research. The focus of this thesis is on coupled problems
in porous media. Materials that are composed of a solid matrix and pores (or
voids) that may be filled with one or more fluids are referred to as porous media.
Porous material can be either natural, such as soils and rocks, or artificial, such
as foams. The main porous media of interest for the applications in this thesis are
soils subjected to different physical processes. The theoretical formulations and
computational aspects are, however, presented in a general form which may be
applicable to other porous materials.

Coupled problems in porous media are studied here. A coupled problem is a physical
problem which involves a multi-way interaction of physical processes or computa-
tional components; see Felippa et al. (2001). According to this definition, the
interaction of two or more physical processes in a porous medium resulting in a
mathematical formulation that needs to be solved sequentially or simultaneously
results in a coupled problem. In some cases, a single physical process may be gov-
erned by multiple equations with coupled computational components to be solved
for simultaneously. The problems that are studied here are fluid flow in a porous
medium, hydro-mechanics (coupled fluid flow and deformation) and thermo-hydro-
mechanics (coupled heat transfer, fluid flow and solid deformation). These are
discussed further and examples of relevant application problems are listed in the
following sections.

Hydraulics (H)
Porous media flow is what we refer to as hydraulics here. The flow of fluid through
porous media is relevant in different applications such as groundwater flow or reser-
voir engineering. The flow could either be single-phase, a single fluid phase occu-
pying the pore spaces, or multi-phase, multiple fluid phases flowing simultane-
ously. The study here focuses on single-phase flows. The governing equations for
a single-phase porous media flow problem usually have computationally coupled
components such as pressure and velocity.

In the computational modeling of porous media flow problems, a wide range of
analytical and numerical methods exist. Numerical studies have been performed
over the past several decades. In the current study, IGA is applied to single-
phase porous media flow and the numerical properties of the governing equation
are investigated. In particular, steady-state groundwater flow problems governed
by Darcy’s law are revisited with a view to examining the accuracy of the solution
with respect to spatial discretization.
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Hydro-Mechanics (HM)
The flow of fluid coupled with solid deformation in porous media is what we re-
fer to as hydro-mechanics here. The mathematical formulations governing hydro-
mechanically coupled problems in porous media constitute the backbone of com-
putations in poromehcanics/geomechanics. There are a wide range of natural and
man made materials that are studied under this framework. The application areas
are also diverse; examples include geomechanics, biomechanics, oil and gas reservoir
engineering and earthquake engineering.

Computational modeling of hydro-mechanically coupled problems in porous media
is not a new endeavor. In fact, it has been studied in the past several decades
for diverse applications using various computational methods. Poroelasticity, a
classical hydro-mechanical problem, is revisited here with a view to assessing the
numerical properties of the governing equations under the computational method
applied here.

Thermo-Hydro-Mechanics (THM)
The coupled interaction of heat transfer, fluid flow and solid deformation in porous
media results in what we refer to as thermo-hydro-mechanics. This class of prob-
lems may be categorized into two groups: high temperature and low temperature
regime problems. A typical application in the low temperature regime is ground
freezing and thawing, which may occur naturally or artificially. These are discussed
in the next section. Other applications in the high and low temperature regimes
are briefly discussed afterwards.

Natural Ground Freezing

It is estimated that permafrost accounts for about 20-25% of our planet’s total land
area in the Northern Hemisphere, French (1999). In Figure 1.1, the distribution
of naturally frozen ground in this region is shown. The increasing socioeconomic
activities in such areas lead to the construction and installation of various infras-
tructure which directly or indirectly interact with the ground. These activities call
for a better understanding of the behavior of frozen ground for a safe and economic
design of infrastructure. The most common challenge associated with construction
in frozen ground is damage to structures such as roads, buildings and pipelines due
to frost heave and thaw settlement related to seasonal variation of temperature;
see Andersland and Ladanyi (2004).

The physical processes that occur in frozen ground are complex and strongly cou-
pled. Computational modeling of these processes requires a detailed mathematical
formulation and a robust numerical implementation.

Artificial Ground Freezing

Artificial ground freezing (AGF) is a construction technique which has been used
in civil engineering for more than a century, Harris (1995). Some applications of
AGF include ground stabilization in the construction of tunnels of various purposes,
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Figure 1.1: Distribution of naturally frozen ground in the Northern Hemisphere. Image
credit: Philippe Rekacewicz, 2005, UNEP/GRID-Arendal Maps and Graphics Library.

creation of a temporary support for excavation, stabilization during mining in an
unstable ground, support for foundations near excavations, limitation of contami-
nant transport in the ground, structural underpinning for foundation improvement
and arrest of landslides. An example of AGF in tunneling is shown in Figure 1.2.
Compared to other ground improvement techniques, AGF is very environmentally
friendly. Numerical simulation of AGF is essential in planning an optimum freezing
technique and predicting the expected outcome.

Recent applications of AGF include construction of the Oslofjord underground
tunnel in Norway (Eiksund et al. (2001)), the Bothnia railway line in Sweden
(Johansson (2009)), the Naples subway in Italy (Colombo et al. (2008)) and the
Guangzhou subway tunnel in China (Li et al. (2006)). Another example application
of AGF is the containment of radioactive waste transport in the ground at the
Fukushima Power Plant in Japan, which is an ongoing project.

Other Applications

THM coupling in the high temperature regime has several applications in various
disciplines of science and engineering. Some examples include geothermal energy
extraction, safety assessment of nuclear waste repositories, oil and gas reservoir
engineering, underground energy storage and CO2 sequestration. See Paper III for
references to such application areas.

Freezing and thawing in porous media has other applications besides natural and
artificial ground freezing. Some example application areas include food processing
(see Rebellato et al. (1978) and Moraga and Salinas (1999)) and biomechanics (see
Rubinsky and Pegg (1988) and Deng and Liu (2004)).

The research work in this thesis aims to contribute to the better understanding
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Figure 1.2: Artificial ground freezing in tunneling. Image credit: MMM Hydropower.

and improvement of the computational modeling of the application problems high-
lighted above. IGA is adopted for the numerical study of these problems.

Why IGA?
The reasons for choosing IGA as a computational framework include:

• The basis functions in IGA are the same as those used in computer aided
design (CAD). Thus, analysis can be performed on ‘exact’ CAD geometries,
which are only approximated in finite element analysis (FEA) through mesh
generation.

• The smoothness of the spline basis functions in IGA, compared to Lagrange
polynomial based basis functions in FEA, is found attractive for better con-
tinuity of field variables.

• Better continuity of field variables means improvement in the accuracy of
derived quantities such as stresses, strains, fluid fluxes and heat fluxes.

Other specific advantages of IGA over traditional FEA are discussed in Chapter 3.

Objectives
A general aim of the research is to serve as a contribution towards robust and
efficient methods in computational poro/geomechanics. The specific objectives of
the research work include:

• To develop a robust computational tool for the simulation of coupled problems
in porous media where the main application is THM coupling during ground
freezing.

• To investigate the accuracy of the numerical solution of the governing equa-
tions in classical hydro-mechanically coupled problems.
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Heat transfer, fluid flow and solid deformation

Figure 1.3: Hierarchical development of the IGA based computational framework.

• To investigate the accuracy of using IGA for fluid flow computations in porous
media governed by Darcy’s law.

1.3 Research Strategy
The numerical implementation work leading to a fully coupled THM code for
ground freezing is performed in a hierarchical way. Application of IGA as the com-
putational method here is investigated at each step of the numerical study. The
implementation starts with porous media flow under isothermal conditions and a
constant porosity in the medium i.e. no deformations. The results from this work
are reported in Paper I. The next step is to couple fluid flow with solid deforma-
tion i.e. hydro-mechanics. In particular, poroelasticity is revisited under the IGA
framework and the results are reported in Paper II. Thermo-hydro-mechanical cou-
pling is then studied starting with the simplest case of thermoporoelasticity. Phase
change is then incorporated into the governing and supplementary equations. The
intermediate results from thermoporoelasticity are given in Appendix A and the
application to ground freezing is presented in Paper III.

The numerical implementation work is performed using IFEM as a platform -
an isogeometric toolbox for the solution of partial differential equations, under
development at SINTEF ICT, Applied Mathematics Department in Trondheim,
Norway. In addition to the promising reasons for choosing IGA, this created an
opportunity to combine the competencies of different scientific groups at NTNU.
The open source nature of IFEM also has the advantage of avoiding a ‘black box’
approach to the finite element simulations targeted here. These aspects are utilized
to create a numerical tool that may be used and developed further, with full access
to the understanding of the mathematical formulations and the source code. This
creates a platform for H, HM and THM problems in geomechanics. The THM
framework is tailored to solve ground freezing problems.
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“I learned very early the difference between knowing the name of
something and knowing something.”

– Richard Feynman

Chapter 2

Porous Media Theory

In this chapter, fundamental concepts and formulations in porous media theory are
presented. The discussion starts with a brief history of porous media theory. The
volume fraction concept and kinematic relations are then presented. Conservation
laws are derived in a general form which may be applicable to any porous material
subjected to different physical processes. Thermodynamic formulations and phase
transitions in porous media are briefly discussed. Formulations that complete the
mathematical model for a given porous material, such as constitutive laws, are also
discussed. The main porous materials of interest in this thesis are soils and specific
conservation equations are derived for hydraulic, hydro-mechanical and thermo-
hydro-mechanical processes by making the necessary assumptions for particular
application needs.

2.1 Background
The study of porous materials is essential in various disciplines of science and
engineering such as soil mechanics, oil and reservoir engineering, biomechanics,
material sciences and chemical engineering. The porous materials studied under
porous media theory can either occur naturally, such as soils and rocks, or may be
artificial, such as sponges and synthetic polymers. The physical and mechanical
properties of such materials have been studied experimentally and mathematically
over several decades by a number of researchers. Modern porous media theory,
which will be discussed in detail in later sections, developed over a long period of
time to reach to what is known today. The historical development of the theory is
documented in some publications such as de Boer and Ehlers (1988) and de Boer
(2003).

There are some important milestones in the development of porous media theory,
as presented in de Boer (1998). In the earliest stages of the theory, Leonhard Euler
presented the first discussion on the geometry of a porous medium and indirectly
contributed to the formulation of the axioms of continuum mechanics. The intro-
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duction of the volume fraction concept by Reinhard Woltman in the 19th century
proved to be a fundamental contribution. This concept was further discussed by
Achille Delesse. The development of mixture theory, a branch of porous media the-
ory, was initiated by Adolph Fick. An important mathematical relation describing
the motion of a fluid in a porous medium was derived by Henry Darcy, which
we refer to today as Darcy’s law. In early 20th century, Paul Fillunger and Karl
von Terzaghi made seminal contributions to the theory of liquid-saturated porous
solids. Fillunger developed equations for uplift forces while studying the stresses
acting on concrete and masonry gravity dams. Terzaghi also studied uplift forces
independently of Fillunger and further made contributions to the understanding
of capillary pressure, the concept of effective stresses and soil consolidation theory.
The effective stress concept was discussed earlier by Fillunger. After mid 20th
century, the theory of porous media started taking shape to become what we know
today. Some of the contributions in this period include work on the theory of mix-
tures by Green and Naghdi (1967), without using the volume fraction concept, the
study of fluid motion in porous media by Whitaker (1969), modeling of simultane-
ous heat, mass and momentum transfer by Whitaker (1977), the treatment of the
mechanics of continuous porous media by Prévost (1980), a theory of immiscible
and structured mixtures by Bedford and Drumheller (1983) and a generalized ap-
proach to the derivation of balance laws by Hassanizadeh (1986). Application of
the theory of mixtures to the modeling of incompressible and compressible porous
media was presented by Bowen (1980) and Bowen (1982), respectively. A discus-
sion relating mixture theory and Biot’s approach to porous media theory can be
found in Coussy et al. (1998).

In the following sections, the basic components of porous media theory are pre-
sented. The volume faction concept, a fundamental concept in porous media theory,
is first discussed. The conservation laws of mass, momentum and energy are then
presented in a general form for a porous medium with any number of constituents.
The mechanics of phase change in a porous medium and how it affects the con-
servation laws is then treated. Constitutive equations that govern the constituents
of the porous medium are required to complete the theory and these are discussed
afterwards. These sections are presented in a brief way here and a detailed pre-
sentation of the topics may be referred from modern treatments of porous media
theory such as in Coussy (2004), Vadász (2008) and Ehlers and Bluhm (2013).

2.2 Volume Fraction Concept
One of the most important concepts in the development of porous media theory is
the volume fraction concept. This concept is used to a idealize a porous medium
with multiple constituents as a homogeneous continuum. An important assumption
in the volume fraction concept is that the solid constituent of the porous medium
is considered as a reference volume such that only the fluid constituents can enter
or leave the reference volume; see Bluhm and de Boer (1997).

Consider a porous medium composed of N constituents. Let V be the total volume
of the porous medium and V α be the volume of phase α. Let dV be a control volume
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element in the total volume and x be its position vector in a global coordinate
system at a given time t. Similarly, let r be the position vector of a microscopic
volume element dVβ inside dV . The volume of constituent α within the control
volume can be determined by first defining a phase distribution function χα such
that

χα(r, t) =

{
1 for r ∈ dVβ

0 for r ∈ dVγ , β �= γ.
(2.1)

Thus, the partial volume of constituent α in the control volume can be written as

dV α(x, t) =

∫
dV

χα(r, t)dVβ . (2.2)

The volume fraction nα of phase α can now be defined as

nα(x, t) =
dV α

dV
=

1

dV

∫
dV

χα(r, t)dVβ . (2.3)

The position vector r may be written in terms of the global position vector x
by introducing a local reference system ξ with origin at x, such that r = x + ξ.
The individual volumes of the constituents and their volume fractions satisfy the
conditions

N∑
α=1

dV α = dV and

N∑
α=1

nα = 1. (2.4)

The volume fractions can now be used to describe the relationship between the
densities of the constituents of the porous medium at microscopic and macroscopic
levels. We denote the intrinsic real density of constituent α by ρα and the partial
density at macroscale by ρα, following the notations according to Prévost (1980).
The relationship between these two densities in terms of the volume fraction of the
phase under consideration is given by

ρα(x, t) = nα(x, t)ρα(x, t). (2.5)

The total density of the mixture ρ is then the sum of the partial densities of all
constituents i.e.

ρ(x, t) =
N∑
α=1

ρα(x, t). (2.6)

2.3 Kinematics
Kinematic relations describing the relative motions of the phases in a porous
medium are briefly discussed here. These relations will be used later in deriv-
ing the conservation laws for a porous medium. A detailed presentation may be
referred from Lewis and Schrefler (1998).

According to the volume fraction concept, a porous medium composed of N con-
stituents is approximated as a homogeneous continuum. Thus, a material point
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defined by the position vector x is simultaneously occupied by all phases. Let Xα

be the reference position of phase α at time t = to. The position of each material
point xα of phase α at time t may be written in a Lagrangian description as

xα = xα(Xα, t). (2.7)

An Eulerian description of motion may be written for a non-singular Lagrangian
description as

Xα = Xα(xα, t). (2.8)

For a particle of phase α with a defined path, Lagrangian descriptions of the velocity
and acceleration are

V α =
∂xα(Xα, t)

∂t

Aα =
∂2xα(Xα, t)

∂t2
.

(2.9)

Eulerian description of the velocity and acceleration may be derived by using (2.8)
in (2.9). Given an Eulerian description of the velocity vα(xα, t), the Eulerian
acceleration aα may be derived by evaluating the time derivative of the velocity
where the Lagrangian coordinates are held constant. That is, by applying the chain
rule

aα =
∂vα

∂t
+∇vα · vα. (2.10)

For any differentiable function fα describing some physical property of phase α in
the porous medium, the material time derivative (also called convective derivative
or Lagrangian derivative) is introduced to describe its rate of change relative to a
chosen phase. If the Eulerian description of fα = fα(xα, t) is given, its material
time derivative with respect to a moving particle of phase α is defined by

Dαf
α

Dt
:=

∂fα

∂t
+∇fα · vα. (2.11)

The material time derivative of fα with respect to a moving particle of another
phase, say phase β, is defined as

Dβf
α

Dt
:=

∂fα

∂t
+∇fα · vβ . (2.12)

Equations (2.11) and (2.12) result in the relation

Dβf
α

Dt
=

Dαf
α

Dt
+∇fα · vβα (2.13)

where
vβα = vβ − vα (2.14)

is the relative velocity of a particle of phase β with respect to phase α.The material
time derivative may be applied to either a scalar or a vector quantity.
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In porous media theory, we often require the rate of change of volume averaged
quantities. For a vector physical property fα of phase α per unit volume, the total
time derivative over a volume V is given according to Reynold’s transport theorem
by

d

dt

∫
V

fαdV =

∫
V

(
∂fα

∂t
+∇fα · vα + fα∇ · vα

)
dV

=

∫
V

[
∂fα

∂t
+∇ · (fα ⊗ vα)

]
dV.

(2.15)

For a scalar physical property fα per unit volume, we have

d

dt

∫
V

fαdV =

∫
V

[
∂fα

∂t
+∇ · (fαvα)

]
dV. (2.16)

Applying the divergence theorem, we get the expression

d

dt

∫
V

fαdV =

∫
V

∂fα

∂t
dV +

∫
∂V

fαvα · ndA (2.17)

where ∂V is the boundary of the domain V and n is the outward unit normal to
the surface dA.

The spatial velocity gradient of phase α,

Lα = ∇vα, (2.18)

can be decomposed into symmetric and skew-symmetric parts as

Lα = Dα +W α, (2.19)

whereDα andW α are the rate of deformation and spin tensors, respectively, which
may be expressed as

Dα =
1

2
(Lα +Lαᵀ) and W α =

1

2
(Lα −Lαᵀ). (2.20)

2.4 Conservation Laws
The various physical processes within a porous medium induced by external and
internal factors are described mathematically using conservation laws, which de-
scribe the evolution of physical parameters relevant to the processes. The main
conservation laws for a porous medium are mass, momentum and energy balance
equations.

The kinematic equations described in the previous section are used to derive the
balance equations for a given porous medium. The derivation of these balance
equations considers internal and external factors affecting the state of the porous
medium and the interactions between the phases in the medium. This is required
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to ensure that the individual balance equations of the phases result in the balance
equation of the whole mixture when superimposed; see Hassanizadeh and Gray
(1980). In the following sections, the balance equations of mass, momentum and
energy are derived for an individual phase in a porous medium and for the mixture
as a whole. The presentation follows the works of de Boer (2006) and Lewis and
Schrefler (1998).

2.4.1 Mass Balance
The law of conservation of mass for phase α requires that the rate of change of
mass be equal to any other mass of that phase being added to or leaving from the
system, internally from other constituents or externally from other sources. The
rate of change of mass Mα of phase α over a domain V is described by

DαM
α

Dt
=

Dα
Dt

∫
V

ραdV (2.21)

and mass conservation requires this rate to be balanced with all mass exchanges
among other phases, i.e.

Dα
Dt

∫
V

ραdV +
∑
β

Mβα = 0 (2.22)

where the second term in the above equation represents the sum of mass exchanges
per unit volume from all phases β to phase α. Applying Reynold’s transport
theorem to the rate of change of Mα, a generalized mass balance equation for
phase α can be written as

Dαρ
α

Dt
+ ρα∇ · vα +

∑
β

Mβα = 0. (2.23)

The general mass balance equation for a porous medium with N constituents is
then obtained by summation of the individual mass balance equations for each
phase i.e.

N∑
α=1

⎡
⎣Dαρα

Dt
+ ρα∇ · vα +

∑
β

Mβα

⎤
⎦ = 0. (2.24)

The mass exchange term between the phases has the constraint

N∑
α=1

∑
β

Mβα = 0 (2.25)

when summed over all the N constituents of the mixture, reducing the overall mass
balance equation to

N∑
α=1

[
Dαρ

α

Dt
+ ρα∇ · vα

]
= 0. (2.26)
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In (2.23), the motion of a particle of phase α is expressed relative to the same
phase. In practice, it is more convenient to take one of the phases (usually the solid
phase) as a reference to describe the motion of all other phases. The individual
mass balance equations for these phases can then be modified by introducing their
relative velocity with respect to the reference phase.

2.4.2 Linear Momentum Balance
The balance of linear momentum for a given phase α requires that the material
time derivative its momentum P α be in equilibrium with the sum of all internal
interaction forces and external forces. The rate of change of momentum over a
domain V is described by

DαP
α

Dt
=

Dα
Dt

∫
V

ραvαdV (2.27)

and the balance of linear momentum requires

Dα
Dt

∫
V

ραvαdV +
∑
β

P βα = F α (2.28)

where the second term represents the sum internal momentum exchanges over time
to phase α from all other phases β and F α represents external forces. The external
forces involve body forces ραbα acting on the constituents over the volume V and
surface forces tα acting on the boundary ∂V i.e.

F α =

∫
V

ραbαdV +

∫
∂V

tαdA (2.29)

Cauchy’s stress tensor σα and the surface tractions tα of phase α are related by

tα = σαn (2.30)

where n is an outward unit normal vector on the boundary. Using (2.15), apply-
ing the divergence theorem and considering the mass balance principle, the linear
momentum balance equation for phase α becomes

∇ · σα + ραbα +
∑
β

P βα = ραaα. (2.31)

The overall linear momentum balance equation for the mixture with N constituents
is obtained by summation of the individual phase equations i.e.

N∑
α=1

⎡
⎣∇ · σα + ραbα +

∑
β

P βα

⎤
⎦ =

N∑
α=1

ραaα. (2.32)

The sums of the partial stresses, body forces and acceleration can be represented
by their total equivalents:

N∑
α=1

σα = σ,

N∑
α=1

ραbα = ρb and

N∑
α=1

ραaα = ρa. (2.33)
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The internal exchange of momentum between the phases is required to satisfy the
constraint

N∑
α=1

∑
β

P βα = 0. (2.34)

Using (2.33) and (2.34) in (2.32), the linear momentum balance equation for the
mixture becomes

∇ · σ + ρb = ρa. (2.35)

For a static condition (a = 0), this reduces to

∇ · σ + ρb = 0. (2.36)

2.4.3 Angular Momentum Balance
The balance of angular momentum or moment of momentum states that the ma-
terial time derivative of the angular momentum is equal to the moments of all
external forces where the moments are referred to a certain fixed point. The angu-
lar momentum Hα of phase α is given by

Hα =

∫
V

x× ραvαdV (2.37)

where x is a position vector to the fixed point. The moment of the external forces
using (2.29) is given by

Mα =

∫
V

x× ραbαdV +

∫
∂V

x× tαdA. (2.38)

Angular momentum balance requires

Dα
Dt

∫
V

x× ραvαdV =

∫
V

x× ραbαdV +

∫
∂V

x× tαdA (2.39)

where the moment of the exchanged momentum between the phases is omitted.
Simplifying the above equation by applying the mass balance and momentum bal-
ance principles derived earlier gives∫

V

x× ραaαdV =

∫
V

x× ραaαdV +

∫
V

I × σαdV (2.40)

where I is the identity tensor. The above equation requires

I × σα = 0 (2.41)

and this is satisfied if
σα = (σα)ᵀ. (2.42)

The total stress as the sum of the partial stresses consequently must satisfy

N∑
α=1

σα =

N∑
α=1

(σα)ᵀ ⇒ σ = σᵀ. (2.43)
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Thus, the conservation of angular momentum proves that Cauchy’s stress tensor
is symmetric. Note that if the angular momentum exchange between the phases is
assumed to be non-zero, the stress tensor would not be symmetric, requiring the
introduction of additional rotational degrees of freedom.

2.4.4 Energy Balance
The law of conservation of energy, the first law of thermodynamics, requires that
the rate of change of the internal and kinetic energies be balanced by the rate
of mechanical work and heat. For phase α in a porous medium, this is written
mathematically as

DαE
α

Dt
+

DαK
α

Dt
+
∑
β

Eβα =Wα +Hα (2.44)

where Eα is the internal energy, Kα is the kinetic energy, Eβα is the rate of internal
energy exchange from all other phases β to phase α, Wα is the rate of mechanical
energy or work and Hα is the rate of heat energy. For a given domain V , we have

Eα =

∫
V

ραeαdV

Kα =

∫
V

1

2
ραvα · vαdV

Wα =

∫
V

vα · ραbαdV +

∫
∂V

vα · tαdA

Hα =

∫
V

ραhαdV −
∫
∂V

qαdA

(2.45)

where eα = eα(x, t) is the specific internal energy α, hα = hα(x, t) is the partial
energy source and qα = qα(x, t) is the partial heat flux vector.

Using (2.45) in (2.44), simplifying the material time derivatives of the integrals and
utilizing the mass and linear momentum balance equations in (2.23) and (2.31), the
energy balance equation for phase α becomes

ρα
Dαe

α

Dt
−
∑
β

Mβα

(
eα − 1

2
vα · vα

)
+ ραvα · aα − σα : Lα

−vα · (∇ · σα + ραbα) +∇ · qα +
∑
β

Eβα = Qα
(2.46)

where Qα = ραhα is the heat supply to phase α. The overall energy balance
equation is obtained by summation of the individual energy balance equations of
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the constituents of the porous medium i.e.

N∑
α=1

⎡
⎣ραDαeα

Dt
−
∑
β

Mβα

(
eα − 1

2
vα · vα

)
+ ραvα · aα − σα : Lα

− vα · (∇ · σα + ραbα) +∇ · qα +
∑
β

Eβα

⎤
⎦ =

N∑
α=1

Qα.

(2.47)

If the momentum exchange between the phases is assumed to be zero, the energy
balance equation reduces to

N∑
α=1

⎡
⎣ραDαeα

Dt
−
∑
β

Mβα

(
eα − 1

2
vα · vα

)
− σα : Lα

+ ∇ · qα +
∑
β

Eβα

⎤
⎦ =

N∑
α=1

Qα.

(2.48)

The total heat supply and total heat flux can be expressed as

Q =

N∑
α=1

Qα and q =

N∑
α=1

qα (2.49)

and a constraint on the energy exchange between the phases is introduced as

N∑
α=1

∑
β

Eβα = 0. (2.50)

This reduces the energy balance equation to

N∑
α=1

⎡
⎣ραDαeα

Dt
−
∑
β

Mβα

(
eα − 1

2
vα · vα

)
− σα : Lα

⎤
⎦+∇ · q = Q. (2.51)

2.5 Thermodynamics and Phase Change
The second law of thermodynamics (entropy inequality) is used to state the restric-
tions on constitutive equations. It follows from the conservation of energy (first
law of thermodynamics) with the introduction of the absolute temperature.

2.5.1 Entropy Inequality
The assumption of entropy inequality for each phase α is a sufficient but restrictive
condition. For the existence of dissipation mechanisms within the porous medium,
an entropy inequality for all the constituents is both a necessary and sufficient
condition, de Boer (2006).



��������	
��� 
	� ��
� ��
	�� ��

For phase α, let

Sα =

∫
V

ραsαdV (2.52)

be its entropy where sα is the specific entropy. With Tα as the absolute temperature
of phase α, the entropy inequality for all the constituents of the porous medium is
expressed as

N∑
α=1

DαS
α

Dt
≥

N∑
α=1

∫
V

1

Tα
ραhαdV −

N∑
α=1

∫
∂V

1

Tα
qα · dA. (2.53)

Performing the material time derivative in the above equation using the transport
theorem, utilizing the mass balance equation and the divergence theorem, the local
form of the entropy inequality becomes

N∑
α=1

⎡
⎣ραDαsα

Dt
−
∑
β

Mβαsα − 1

Tα
ραhα +∇ ·

(
1

Tα
qα
)⎤⎦ ≥ 0. (2.54)

The entropy inequality may also be written as a function of the Helmholtz free
energy

ψα = eα − Tαsα (2.55)

together with the energy balance in (2.48). The inequality in (2.54) considers a
general case where the constituents have a different absolute temperature Tα. It
may be simplified for the case when all the constituents have the same absolute
temperature T = Tα.

2.5.2 Phase Transitions
The physical processes in a porous medium sometimes involve the transition of one
phase into another such as phase change from liquid to vapor, liquid to solid or solid
to liquid. These types of phase changes are referred to as first-order transitions,
see de Boer and Bluhm (1999), whereas other transitions such as from a super fluid
to ordinary fluid (e.g. helium) are called second-order transitions. The discussion
here focuses on first-order transitions. We take a closer look here at the effect of
phase transitions in a porous medium.

The balance equations in Section 2.4 are presented in a general form such that
the effect of phase transition(s) on the conserved quantities can be considered.
Consider a two-phase porous medium where phase transition from one phase to
another occurs, e.g. freezing/melting. The exchange of quantities during phase
change remains constrained. For instance, the mass balance equations for the
individual constituents, according to (2.23), are given by

Dαρ
α

Dt
+ ρα∇ · vα +Mβα = 0

Dβρ
β

Dt
+ ρβ∇ · vβ +Mαβ = 0

(2.56)
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wherein the sum on the mass exchange term is omitted since we have only one
phase contributing to the mass of another. The constraint in (2.25) implies

Mαβ +Mβα = 0. (2.57)

Phase transitions in porous media have been studied in the past with several sim-
plifying assumptions. The need for a rigorous mathematical and thermodynamical
treatment of such problems was clear. Phase change from liquid to gas was given a
detailed thermodynamic treatment, for example, by de Boer and Kowalski (1995)
and de Boer (1995), showing that the phase transition is governed by the difference
of the chemical potentials of the constituents. A review of various phase change
phenomena in porous media such as freezing/melting, boiling, drying/evaporation
and condensation was presented by Yortsos and Stubos (2001). A detailed ther-
modynamic approach to various phase change problems can be found in Frémond
(2012).

The thermodynamic equilibrium between the phases during phase change is de-
scribed by the Clausius-Clapeyron equation. This equation can be derived based
on the equilibrium requirement between the chemical potentials of the two phases;
see Loch (1978) for the specific case of freezing and melting. For two phases α
and β undergoing phase transition, their chemical potentials are required to be in
equilibrium, i.e.

μα = μβ . (2.58)

The chemical potentials are a function of the specific entropies, the specific volumes,
the pressures and the temperatures of the phases. In terms of these quantities, we
have

− (sα − sβ)dT + vαdpα − vβdpβ = 0 (2.59)

where sα and sβ are the specific entropies of the phases, vα and vβ their specific
volumes, pα and pβ the pressures and T is the temperature, assuming the same
temperature for both phases. The equation above may be rearranged to give

dpβ =
vα

vβ
dpα − 1

vβ
(sα − sβ)dT. (2.60)

In terms of the densities ρα = 1/vα and ρβ = 1/vβ , we have

dpβ =
ρβ

ρα
dpα − ρβ(sα − sβ)dT. (2.61)

The change in entropy between the phases under constant pressure and temperature
may be expressed as

sα − sβ =
L

T
(2.62)

where L is the specific latent heat which depends on the type of phase change that
occurs e.g. latent heat of fusion for melting. Using this in (2.61) gives

dpβ =
ρβ

ρα
dpα − ρβL

T
dT. (2.63)
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2.6 Conduction Laws
The equations governing the flow of fluid and heat in a porous medium are given
by Darcy’s law and Fourier’s law, respectively. We refer to these laws here as
conduction laws, as used in Coussy (2004).

2.6.1 Darcy’s Law
The specific discharge of fluid in a porous medium was shown to be proportional
to the head loss based on experiments by Henry Darcy in 1857, Verruijt (2013).
Darcy’s law may be derived for fully saturated porous media from the fluid mo-
mentum balance equation, see for instance Whitaker (1986).

Darcy’s law relates the flow of fluid in a porous medium with respect to the solid
phase as

w = nf(vf − vs) (2.64)

where nf is the volume fraction of the fluid, vf is the fluid velocity and vs is the solid
velocity. A more general form of Darcy’s law, considering the relative permeability
of a phase in a medium where the permeability varies, is given by

w =
kr
μ
κ · (∇pf − ρfb− ρfa

s − ρfa
fs) (2.65)

where kr is the relative permeability coefficient varying between 0 and 1, μ is the
viscosity of the fluid, κ is the intrinsic permeability matrix of the material, pf is the
fluid pressure, b represents body forces, as is the acceleration of the solid phase and
afs is the relative acceleration between the fluid and solid phases. The tortuosity
of the pores is sometimes considered in the Darcy equation. If the inertia terms
are neglected, Darcy’s law reduces to

w =
kr
μ
κ · (∇pf − ρfb). (2.66)

It is common to express Darcy’s law in terms of the hydraulic conductivity matrix
k instead of the intrinsic permeability matrix κ, where the two are related by

k =
ρfg

μ
κ (2.67)

in which g is the acceleration due to gravity. This results in

w =
kr
ρfg

k · (∇pf − ρfb) (2.68)

wherein we have kept the same relative coefficient kr for hydraulic conductivity
that varies with the porosity and degree of fluid saturation of the porous medium.

2.6.2 Fourier’s Law
Thermal conduction in a porous medium is expressed using Fourier’s law which
states that the rate of heat flow is proportional to the negative gradient of the
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temperature. Fourier’s law for the heat flux q is given by

q = −λ∇T (2.69)

where λ is the effective thermal conductivity matrix of the porous medium and
T is the temperature. For isotropic thermal conductivity in a medium, the above
equation becomes

q = −λ∇T (2.70)

where λ is the effective thermal conductivity coefficient which is a function of the
individual thermal conductivities of the constituents of the porous medium and
their volume fractions. Fourier’s law has a similar form both at the microscopic
and macroscopic levels, Coussy (2004).

2.7 Constitutive Laws
The balance equations presented in Section 2.4 are valid for any porous medium.
To complete these balance equations for a specific material, a constitutive model
needs to be introduced, de Souza Neto et al. (2011). We first introduce the effective
stress concept before discussing the constitutive equations required to complete the
description.

2.7.1 The Effective Stress Concept
The effective stress concept is widely used in porous media applications, especially
in soil mechanics. The historical development of this concept is documented in
de Boer and Ehlers (1990). The concept was already conceived and studied by sci-
entists by the end of the 19th century. A significant development with a mathemat-
ical background came later in early 20th century from the significant contributions
of Paul Fillunger and especially Karl von Terzaghi; see Skempton (1960).

The main idea behind effective stress in a porous medium is separating the stress
that effectively causes solid deformation, hence the name, from all other stresses
in the mixture. If we consider a porous medium composed of two phases, solid (s)
and fluid (f), the total stress as the sum of the partial stresses is given according
to (2.33)1 by

σ = σs + σf . (2.71)

The partial stresses corresponding to the fluid phase, using the volume fraction
concept, can be written us

σf = nfσf (2.72)

where nf is the volume fraction of the fluid and σf is the pore fluid stress. However,
a distinction should be made between the partial stress of the solid phase σs and
the effective stress σ′; this has been discussed, for example, by Prévost (1980). The
partial stress of the solid phase is given by

σs = σ′ + nsσf (2.73)

where nsσf takes into account the effect of the pore fluid stress on the individual
solid grains of the porous medium. It is assumed, in the above equation, that
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the contact areas between the solid grains are negligible such that the pore fluid
surrounds each grain. Each solid grain is subjected to intergranular forces that are
in excess of the pore fluid stress and this is characterized by the effective stress σ′.
The total stress for a fluid-saturated porous medium is then given by

σ = σs + σf = σ′ + σf . (2.74)

2.7.2 Stress-Strain Relations
A constitutive equation for the solid phase relates the effective stress and the strain.
The constitutive stress-strain relation in a general form may be expressed as

dσ′ = D(dε− dεc − dεsv − dεo) (2.75)

where D = D(σ′, ε, ε̇) is the constitutive tangent tensor, dε is the total strain
increment, dεc is the creep strain increment, dεsv is the volumetric strain incre-
ment and dεo considers all other strain increments not directly associated with the
effective stress. Let p represent the average fluid pressure from all the fluid phases
in the porous medium. This pressure induces a hydrostatic stress distribution in
the solid phase, thus causing a purely volumetric strain given in incremental form
by

dεsv = −I
dp

3Ks
(2.76)

where Ks is the bulk modulus of the solid skeleton. The effective stress relation
in (2.74) is usually modified by a corrective parameter known as Biot’s coefficient,
α, Lewis and Schrefler (1998). The modified effective stress equation (keeping the
same notation for the modified effective stress) reads

σ = σ′ + αpI (2.77)

where I is the identity tensor. It can be shown that Biot’s coefficient takes the
value

α = 1− Ko

Ks
(2.78)

where Ko is the overall bulk modulus of the porous medium. We can now simply
write

dσ′ = D(dε− dεc − dεo). (2.79)

The constitutive tangent tensor takes various forms depending on the type of stress-
strain relation employed. Some examples of constitutive laws include linear elas-
ticity, thermoelasticity, elastoplasticity and viscoplasticity. In this thesis, we focus
on linearly elastic and thermoelastic constitutive laws.

The tangent stiffness for linear elasticity (for stresses and strains in Voigt notation)
is given by

D =
E

(1 + ν)(1− 2ν)

[
D11 0
0 D22

]
(2.80)
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where

D11 = (1− 2ν)I + ν1 ,

D22 =
1− 2ν

2
I,

(2.81)

1 is a matrix of ones, E is the Young’s modulus of the soil and ν is the Poisson’s
ratio. For thermoelastic material models, these parameters are usually defined as
a function of temperature and/or other temperature dependent parameters.

2.7.3 Compressibility of Phases
For compressible phases in a porous medium, the density of a phase may be a
function of pressure, temperature and other factors. We look at the equations of
state for water, the most common fluid in a porous medium, and solid skeleton.
See Lewis and Schrefler (1998).

The equation of state for water is given by

ρw = ρwo exp

[
−αwT +

1

Kw
(pw − pwo )

]
(2.82)

where ρw and ρwo are the current and initial densities, αw is the thermal expansion
coefficient, Kw is the bulk modulus and pw and pwo are the current and initial pore
water pressures. Performing Taylor series expansion of (2.82) and retaining first
order terms gives

ρw = ρwo

[
1− αwT +

1

Kw
(pw − pwo )

]
(2.83)

which can then be used to derive

1

ρwo

Dwρw
Dt

=
1

Kw

Dwp
w

Dt
− αw

DwT

Dt
. (2.84)

For a compressible solid phase, the material time derivative of the density may be
derived from the mass balance of the solid:

Ds(ρ
sV s)

Dt
= 0. (2.85)

The solid density is a function of the average pressure on the solid from all other
phases ps, the temperature T and the first invariant of the effective stress tr σ′.
The variation of the solid density may then be written as

1

ρs

Dsρs
Dt

=
1

Ks

Dsp
s

Dt
− αs

DsT

Dt
− 1

3(n− 1)Ks

Ds(tr σ
′)

Dt
(2.86)

where αs is the thermal expansion coefficient of the solid. The first term on the
right hand side of the equation above represents the volumetric strain of the solid.
This strain may be negligible for soils but significant for materials such as rock.
Introducing a constitutive equation for the first invariant of the effective stress and
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using Biot’s coefficient from (2.78), an alternative form of the solid compressibility
may be written as

1

ρs

Dsρs
Dt

=
1

1− n

[
α− n

Ks

Dsp
s

Dt
− αs(α− n)

DsT

Dt
− (1− α)∇ · vs

]
. (2.87)

2.8 Coupled Problems
Different types of physical processes may occur in a porous medium depending on
the type of the material and its application. Typical examples include hydraulic,
mechanical, thermal and chemical processes. Two or more physical processes often
occur in a porous medium leading to what we refer to as coupled processes. We
focus on hydraulic, hydro-mechanical and thermo-hydro-mechanical phenomena in
soils.

In the following sections, we discuss how the general conservation laws are used to
derive the governing equations for the specific processes under consideration. To
illustrate this, we assume a fluid-saturated biphasic porous medium with solid (s)
and fluid (f) phases. Based on the volume fraction concept and (2.5), the partial
densities for the solid and fluid phases, ρs and ρf , are given by

ρs = nsρs and ρf = nfρf (2.88)

where ns and nf are the volume fractions of the solid and fluid, respectively, and ρs
and ρf are their real densities at the microscopic level. For a fluid-saturated porous
medium, we have

ns + nf = 1. (2.89)

For simplicity in the following sections, we set nf = n and ns = 1−n. We will refer
to n as the porosity of the material.

2.8.1 Hydraulic Processes (p or p-v Formulation)
Hydraulic processes in a porous medium are mainly described by the law of conser-
vation of mass. The mass balance equation for the fluid phase according to (2.23)
is

Dfρ
f

Dt
+ ρf∇ · vf = 0 (2.90)

in which we have ignored any mass exchange between the solid and fluid phases.
Considering the flow of the fluid with respect to the solid phase, we write the
material time derivative of ρf according to (2.13) as

Dsρ
f

Dt
−∇ρf · vsf + ρf∇ · vf = 0 (2.91)

which, according to (2.12), becomes

∂ρf

∂t
+∇ρf · vf + ρf∇ · vf = 0. (2.92)



�� ������ �	
�� �	���

wherein we have used vsf = vs − vf . From (2.88)2, we have

∂ρf

∂t
=
∂(nρf)

∂t
=
∂n

∂t
ρf + n

∂ρf
∂t

. (2.93)

The porosity remains constant if there are no mechanical deformations i.e. ∂n
∂t = 0.

With this, and neglecting any spatial variations in the fluid density (i.e. ∇ρf =
0), (2.92) reduces to

∂ρf
∂t

+ ρf∇ · vf = 0. (2.94)

If the fluid is assumed to be incompressible, (2.94) further reduces to

∇ · vf = 0. (2.95)

The fluid velocity according to Darcy’s law in this case is w = n(vf − vs) = nvf ,
with no mechanical deformations (vs = 0). Using (2.67) and (2.68), the fluid mass
balance equation for a constant hydraulic conductivity (kr = 1) can be written as

∇ ·
[
− 1

γf
k · (∇pf − ρfb)

]
= 0 (2.96)

where γf is the unit weight of the fluid. The only flow driving forces considered here
are the fluid pressure pf and the body forces b. The equation above governs the
steady-state flow of fluid in a porous medium and may be solved for the pressure
as the unknown, resulting in the so called p-formulation.

For a compressible fluid, the temporal variation of the fluid density needs to be
taken into account. For instance, if our fluid is water, from the equation of state
for water in (2.84) we may write

∂ρf
∂t

=
ρf
Kf

∂pf

∂t
(2.97)

where Kf is the bulk modulus of the fluid and isothermal conditions are assumed.
Using (2.97) in (2.94), we get

n

Kf

∂pf

∂t
+∇ ·w = 0 (2.98)

wherein we have used w = nvf . Sometimes, the above equation is solved together
with Darcy’s law for the pressure pf and Darcy’s velocity w as the unknowns. The
equations to be solved simultaneously in this case are

n

Kf

∂pf

∂t
+∇ ·w = 0

w +
1

γf
k · (∇pf − ρfb) = 0

(2.99)

which results in the so called p-v formulation.
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2.8.2 Hydro-Mechanical Processes (u-p Formulation)
Hydro-mechanical processes couple the flow of fluid in a porous medium with solid
deformation. The governing equations describing the coupling are derived by su-
perposition of the individual linear momentum and mass balance equations of the
solid and fluid phases.

From (2.92) and (2.93), with no spatial variations in fluid density, the mass balance
equation for the fluid phase is given by

ρf
∂n

∂t
+ n

∂ρf
∂t

+ nρf∇ · vf = 0. (2.100)

The mass balance equation for the solid phase, based on (2.23), is given by

Dsρ
s

Dt
+ ρs∇ · vs = 0. (2.101)

From (2.88)1 we have ρs = (1 − n)ρs. Using this in the above equation, and
neglecting spatial variations in the porosity and the solid density, gives

− ρs
∂n

∂t
+ (1− n)

∂ρs
∂t

+ (1− n)ρs∇ · vs = 0. (2.102)

Dividing (2.100) by ρf and (2.102) by ρs and adding the two equations gives the
overall mass balance equation for the fluid-saturated porous medium as

(1− n)

ρs

∂ρs
∂t

+ (1− n)∇ · vs +
n

ρf

∂ρf
∂t

+ n∇ · vf = 0. (2.103)

Rearranging the above equation gives

∇ · vs +
(1− n)

ρs

∂ρs
∂t

+
n

ρf

∂ρf
∂t

+∇ ·w = 0 (2.104)

wherew = n(vf−vs) is Darcy’s velocity. Assuming isothermal conditions and water
as the fluid, the compressibility of the fluid is given by (2.97) and from (2.87) we
get for the solid phase

1− n

ρs

∂ρs
∂t

=
α− n

Ks

∂pf

∂t
− (1− α)∇ · vs (2.105)

where for a single fluid phase we have set ps = pf . Equation (2.104), based on (2.97)
and (2.105), can be rewritten as

α∇ · vs +

(
α− n

Ks
+

n

Kf

)
∂pf

∂t
+∇ ·w = 0. (2.106)

For incompressible solid and fluid phases (1/Ks = 1/Kf = 0 and α = 1), the mass
balance equation reduces to

∇ · vs +∇ ·w = 0. (2.107)
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The linear momentum balance equations for the solid and fluid phases, according
to (2.31), assuming a static condition and no momentum exchange between the
phases, are given by

∇ · σs + ρsbs = 0

∇ · σf + ρfbf = 0.
(2.108)

Summation of the two equations above and use of (2.33)2, (2.71) and (2.77), gives
the momentum balance equation for the whole medium as

∇ · (σ′ + αpfI) + ρb = 0 (2.109)

wherein the total density of the porous medium is

ρ = ρs + ρf = (1− n)ρs + nρf . (2.110)

For coupled hydro-mechanical (HM) processes in a porous medium, the mass bal-
ance equation in (2.106) and the linear momentum balance equation in (2.109) can
be solved simultaneously for the displacement and pressure field variables. This
results in what is known as a u-p formulation. Sometimes these equations are
solved simultaneously with Darcy’s equation to obtain the displacement, pressure
and Darcy’s velocity, leading to the so-called u-p-v formulation.

2.8.3 Thermo-Hydro-Mechanical Processes (u-p-T Formulation)
Thermo-hydro-mechanical (THM) processes in a porous medium couple heat trans-
fer and fluid flow with the deformation of solid. The governing equations describing
the coupling are derived by superposition of the individual linear momentum, mass
and energy balance equations of constituent phases.

We consider a fluid-saturated porous medium again. The linear momentum bal-
ance equation in this case is the same as in (2.109). The overall mass balance
equation is derived from (2.104) by considering non-isothermal conditions for the
compressibilities of the solid and fluid phases. Based on (2.84) and (2.87), we get

1− n

ρs

∂ρs
∂t

=
α− n

Ks

∂pf

∂t
− (α− n)αs

∂T

∂t
− (1− α)∇ · vs

n

ρf

∂ρf
∂t

=
n

Kf

∂pf

∂t
− nαw

∂T

∂t
.

(2.111)

Using (2.111) in (2.104) and simplifying gives the overall mass balance equation
for a fluid-saturated porous medium subjected to THM coupled processes as

α∇ · vs +

(
α− n

Ks
+

n

Kf

)
∂pf

∂t
− αo

∂T

∂t
+∇ ·w = 0 (2.112)

where αo = nαw + (α − n)αs is the overall thermal expansion coefficient of the
porous medium.
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The energy balance equation for a single phase, neglecting any mass, momentum
and energy exchanges between the solid and fluid phases, is obtained from (2.46)
as

ρα
Dαe

α

Dt
− σα : Lα +∇ · qα = Qα (2.113)

The individual energy balance equations for the solid and fluid phases are then
written as

ρs
Dse

s

Dt
− σs : Ls +∇ · qs = Qs

ρf
Dfe

f

Dt
− σf : Lf +∇ · qf = Qf .

(2.114)

Viscous dissipation may be significant in applications where the material flows
at high rates e.g. due to injection or molding in polymer processing. For the
applications of interest in this thesis, it may be neglected. With this assumption
and taking all material time derivatives with respect to the solid phase, using (2.13),
the individual balance equations become

ρs
Dse

s

Dt
+∇ · qs = Qs

ρf
Dse

f

Dt
+ ρf∇ef · (vf − vs) +∇ · qf = Qf

(2.115)

The specific internal energies for the solid and fluid phases as a function of tem-
perature are given by

es = csT and ef = cfT (2.116)

where cs and cf are their respective specific heat capacities. Applying these to (2.115)
gives

ρscs
DsT

Dt
+∇ · qs = Qs

ρfcf
DsT

Dt
+ ρfcf∇T · (vf − vs) +∇ · qf = Qf .

(2.117)

Summation of the individual balance equations gives the overall energy balance
equation for the porous medium as

(ρscs + ρfcf)
DsT

Dt
+ ρfcf∇T · (vf − vs) +∇ · q = Q (2.118)

wherein we have implied

q = qs + qf

Q = Qs +Qf
(2.119)

for the total heat flux and heat supply, respectively.

Defining the effective heat capacity of the medium as

(ρc)eff = ρscs + ρfcf = (1− n)ρscs + nρfcf (2.120)



�� ������ �	
�� �	���

and noting that w = n(vf − vs) is Darcy’s velocity, (2.118) is further simplified to
obtain the energy balance equation for the medium as

(ρc)eff
DsT

Dt
+ ρfcfw · ∇T +∇ · q = Q. (2.121)

The material time derivative of the temperature with respect to the solid phase is
given by

DsT

Dt
=
∂T

∂t
+∇T · vs. (2.122)

For the applications of interest in this thesis, the convective heat flux in the solid
phase is usually negligible i.e. ∇T ·vs ≈ 0. With this assumption and using Fourier’s
law, (2.69), in (2.121), the energy balance equation for the medium becomes

(ρc)eff
∂T

∂t
+ ρfcfw · ∇T −∇ · (λ∇T ) = Q. (2.123)

For THM coupled processes in a porous medium, the linear momentum, mass and
energy conservation laws in (2.109), (2.112) and (2.123), respectively, may be solved
simultaneously for the displacement, pressure and temperature field variables. This
results in what is usually referred to as a u-p-T formulation.

F 8 f



“The purpose of computation is insight, not numbers.”
– Richard Hamming

Chapter 3

Isogeometric Analysis

This chapter presents the fundamentals behind Isogeometric Analysis (IGA), the
computational method applied in this thesis. This finite element like method uses
spline basis functions similar to what is used in Computer Aided Design (CAD).
Formulation of the basis functions and construction of geometries is briefly dis-
cussed. The refinement capabilities in IGA are discussed and a comparison is
made with traditional Finite Element Analysis (FEA). The steps involved in the
formulation of boundary value problems, which are similar to FEA, are then pre-
sented.

3.1 Background
IGA is a computational method that was initiated by the seminal research work of
Hughes et al. (2005). The main motivation behind the introduction of IGA is the
idea of bridging the existing gap between CAD and FEA. The main steps in the
development of a product or a structure that relies on a finite element like method
are creating the geometric design, generating an analysis suitable mesh, performing
FEA and post-processing the results. The geometric design is continuously opti-
mized until the desired result is achieved and each modification requires a new mesh
generation. It has been estimated that, for certain industrial applications, about
80% of the time in the process is spent on geometric design and mesh generation,
Cottrell et al. (2009). IGA aims to make the development process seamless by
creating a direct link between CAD and FEA, by using the spline basis function in
the geometry for analysis. The automatic geometry-to-mesh mapping in IGA sig-
nificantly improves design optimization, verification and validation and uncertainty
quantification.

The original work by Hughes et al. (2005) showed the potential of IGA through
applications to linear elastic structural analysis and fluid flow simulations. It then
inspired several other research works in the years that followed. Over the past
ten years, computational research on IGA has been growing steadily. It has been

33
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applied to several disciplines of science and engineering. Some of the studies include
application to structural vibrations by Cottrell et al. (2006) and Reali (2006),
fluid-structure interaction by Bazilevs et al. (2006), biomechanics by Zhang et al.
(2007), phase-field modeling by Gómez et al. (2008), structural analysis of shells
by Kiendl et al. (2009), electromagnetics by Buffa et al. (2010), free-surface flow by
Akkerman et al. (2011), contact problems by De Lorenzis et al. (2011) and Temizer
et al. (2011), damage problems by Verhoosel et al. (2011), topology optimization by
Dedè et al. (2012) and poromechanics and hydraulic fracture by Irzal et al. (2014).
IGA has shown commendable success in these different areas of application and
has opened the door for further research. In the present work, it is applied to the
simulation of coupled problems in porous media.

In the following sections, the fundamentals behind B-Splines and NURBS are pre-
sented. The refinement strategies available in IGA are discussed in comparison
with their counterparts in FEA. LR B-Splines, which allow local refinement unlike
B-Splines and NURBS, are then briefly discussed. A comparison between IGA and
FEA is made and the similarities and differences are highlighted. Formulation of
boundary value problems in IGA is then discussed and the main steps involved are
pointed out.

3.2 Spline Fundamentals
The fundamentals behind B-Splines and Non-Uniform Rational B-Splines (NURBS)
are presented in this section, based largely on Cottrell et al. (2009). Additional
details may be referred from Piegl and Tiller (2012).

3.2.1 B-Splines
The starting point for the discussion of B-Splines in to define a knot vector. A
knot vector is a sequence of non-decreasing coordinates where each member of the
sequence is called a knot. For a knot vector represented by

Ξ = {ξ1, ξ2, ..., ξn+p+1} , ξi ∈ R, (3.1)

ξi is the i
th knot, i = 1, 2, ..., n+ p+1 is the knot index, p is the polynomial degree

and n is the number of basis functions. If the knots of Ξ are equally spaced, it
is called a uniform knot vector. The opposite of a uniform knot vector is a non-
uniform knot vector where the knots are not equally spaced. A knot vector is called
open if its first and last knots appear p+ 1 times. If a knot is repeated m times in
the knot vector, m is called the multiplicity of that knot. Two knots with different
values bound a knot span, which is analogous to an element in FEA.

We can now define B-Spline basis functions which are constructed from knot vec-
tors. For p = 0, the basis functions are piecewise constants given by

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(3.2)
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For p ≥ 1, the basis functions are defined by the Cox-de Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3.3)

Let’s consider examples of constructing basis functions based on uniform and non-
uniform knot vectors. For a uniform knot vector given by Ξ = {0, 1, 2, 3, 4, 5, 6, 7, 8},
we have n + p + 1 = 9 and thus we get 8 basis functions for p = 0, 7 basis
functions for p = 1, 6 basis functions for p = 2 and so on. The pattern of
the number of basis functions for different polynomial degrees is shown in Fig-
ure 3.1. The basis functions for linear, quadratic, cubic and quartic orders of
interpolation are shown in Figure 3.2. For a non-uniform knot vector given by
Ξ = {0, 0, 0, 1, 2, 2, 3, 4, 4, 5, 5, 5}, the resulting 9 quadratic basis functions are
shown in Figure 3.3.
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p = 0 p = 1 p = 2 p = 3 p = 4 . . .

Figure 3.1: Number of basis functions for different polynomial degrees based on the
uniform knot vector Ξ = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

B-Spline basis functions have several important properties. Some of these proper-
ties are:

1. They have a homogeneous pattern for all polynomial degrees, which may not
be the case for quadratic and higher degree finite element basis functions.

2. They constitute a partition of unity for a given value of ξ i.e.

n∑
i=0

Ni,p(ξ) = 1, ∀ξ. (3.4)
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Figure 3.2: Linear , quadratic, cubic and quartic B-Spline basis functions based on the
uniform knot vector Ξ = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

3. All basis functions have pointwise non-negative values over the entire domain
i.e.

Ni,p(ξ) ≥ 0, ∀ξ, (3.5)

whereas finite element basis functions may take both positive and negative
values. This property of B-Spline basis functions is advantageous in evaluat-
ing mass matrices for dynamic problems.

4. Since the basis functions are piecewise polynomials, all derivatives of Ni,p(ξ)
exist within a knot span. In other words, the functions are C∞ continuous
in the interior of a knot span.

5. At knot locations, Ni,p(ξ) is p − m times continuously differentiable i.e. it
is Cp−m continuous, where m is the multiplicity of the knot. This is one of
the most distinctive features of IGA which has important implications for
the applications in this thesis. For example, for the quadratic (p = 2) basis
functions in Figure 3.3, the continuities at each knot are given by C2−m and
are shown in the plot.
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0, 0, 0 1 2, 2 3 4, 4 5, 5, 5
0

1 C−1 C1 C0 C1 C0 C−1

Figure 3.3: Quadratic B-Spline basis functions based on the non-uniform knot vector
Ξ = {0, 0, 0, 1, 2, 2, 3, 4, 4, 5, 5, 5}.

6. The support of basis functions of degree p is always p + 1 knot spans i.e.
Ni,p(ξ) = 0 if ξ is outside the interval [ξi, ξi+p+1).

The recursive definition of B-Spline basis functions in (3.3) implies that their deriva-
tives can be represented in terms of lower order bases. The derivative of the ith

basis function is given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (3.6)

A generalization to higher-order derivatives gives

dk

dkξ
Ni,p(ξ) =

p!

(p− k)!

k∑
j=0

αk,jNi+j,p−k(ξ) (3.7)

where

α0,0 = 1,

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
,

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
j = 1, ..., k − 1,

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
.

The denominator of the coefficients may be zero if the knot vector contains repeated
knots. In that case, the coefficients are defined to be zero in numerical implemen-
tations. The first derivatives of the basis functions in Figure 3.2 are shown in
Figure 3.4.

3.2.2 Non-Uniform Rational B-Splines (NURBS)
NURBS are constructed from B-Splines and can represent a wide array of objects
that cannot be exactly represented by polynomials. A NURBS entity in R

d is
obtained by projective transformation of a B-Spline entity in R

d+1. For a given
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Figure 3.4: Derivatives of the linear , quadratic, cubic and quartic B-Spline basis functions
based on the uniform knot vector Ξ = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

set of B-Spline basis functions Ni,p(ξ), we introduce a scalar, piecewise polynomial
weighting function

W (ξ) =

n∑
î=1

Nî,pwî, (3.8)

where wî is referred to as the îth weight. The NURBS basis, which is a piecewise
rational function, is now given by

Rpi (ξ) =
Ni,p(ξ)wi
W (ξ)

. (3.9)

For univariate B-Spline basis functions Ni,p(ξ) and Mj,q(η), with polynomial de-
grees p and q and corresponding knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H =
{η1, η2, ..., ξm+q+1}, respectively, the NURBS basis functions used to construct ge-
ometries in R

2 are defined by

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

(3.10)



������ ���	
����
� ��

where wi,j are the weights, i = 1, 2, ...n and j = 1, 2, ...m. Similarly, the rational
basis functions used to construct geometries in R

3 are defined by

Rp,q,ri,j,k (ξ, η, ζ) =
Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n

î=1

∑m
ĵ=1

∑l
k̂=1Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂

(3.11)

where Lk,r(ζ) are B-Spline basis functions corresponding to the knot vector Z =
{ζ1, ζ2, ..., ζl+r+1}, r is the polynomial degree and k = 1, 2, ..., l.

The derivatives of NURBS basis functions depend on the derivatives of non-rational
B-Spline basis functions as they are constructed from them. Based on (3.9), we get

d

dξ
Rpi (ξ) = wi

N ′
i,p(ξ)W (ξ)−Ni,p(ξ)W

′(ξ)
(W (ξ))2

(3.12)

where

N ′
i,p(ξ) =

d

dξ
Ni,p(ξ) and W ′(ξ) =

n∑
î=1

N ′
î,p
.wî (3.13)

Higher-order derivatives of NURBS basis functions may be written as a function
of the lower-order derivatives, Cottrell et al. (2009). These are not included here.

3.2.3 B-Spline Geometries
B-Spline curves, surfaces or volumes are constructed based on the basis functions.
We will first define important terminologies before we proceed to show how geome-
tries in different spatial dimensions are constructed.

Control mesh: is a mesh defined by control points and is like a scaffolding that
controls the actual geometry. It resembles a finite element mesh with quadrilat-
eral elements in two dimensions and trilinear hexahedra in three dimensions. The
degrees of freedom in IGA are located at the control points.

Physical mesh: is a decomposition of the actual geometry into patches and/or knot
spans. Patches are subdomains of the geometry divided into knot spans, which
are bounded by knots. Knots are points, lines and surfaces for 1D, 2D and 3D
geometries, respectively.

Index space: is a space defined for each knot value, including repeated knots. The
presence of repeated knots leads to zero parametric areas in the index space.

Parameter space: is a space defined by the non-zero intervals between the knots.
The parameter space may be normalized to fall in the domain Ω = [0, 1]d, where d
is the spatial dimension.

Parent element : is a space defined for each knot span for the purpose of numerical
integration and is given over a domain Ω = [−1, 1]d.

The index space, parameter space and parent element for a selected knot span,
based on the knot vectors Ξ = {0, 0, 1, 2, 2} and H = {0, 0, 1, 2, 3, 3}, are shown in
Figure 3.5.
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Figure 3.5: Representation of a knot span in different spaces based on the knot vectors
Ξ = {0, 0, 1, 2, 2} and H = {0, 0, 1, 2, 3, 3}.

B-Spline geometries are formed as a linear combination of control points and basis
functions. For a given set of control points Pi ∈ R

d (the vector-valued coefficients of
the basis functions) and n basis functionsNi,p, i = 1, 2, ..., n, a piecewise polynomial
B-Spline curve is defined by

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi. (3.14)

Similarly, for basis functions Ni,p(ξ) andMj,q(η), with polynomial degrees p and q,
and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ξm+q+1}, respectively,
a B-Spline surface is defined by

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (3.15)

where Pi,j , i = 1, 2, ..., n, j = 1, 2, ...,m is a control net. The tensor product struc-
ture of the surface implies that its basis is pointwise non-negative and constitutes
a partitions of unity ∀(ξ, η) ∈ [ξ1, ξn+p+1]× [η1, ηm+q+1] i.e.

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η) =

(
n∑
i=1

Ni,p(ξ)

)⎛⎝ m∑
j=1

Mj,q(η)

⎞
⎠ = 1. (3.16)

B-Spline volumes are built in a similar way as B-Spline surfaces. With an additional
univariate basis function Lk,r(ζ), polynomial degree r, corresponding to the knot
vector Z = {ζ1, ζ2, ..., ζl+r+1}, the volume is defined by

V (ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k (3.17)

where Pi,j,k, i = 1, 2, ..., n, j = 1, 2, ...,m, k = 1, 2, ..., l, is a control lattice.



��������� ����	
� �

3.2.4 NURBS Geometries
NURBS geometries are constructed based on the rational basis functions obtained
by the weighting procedure described in Section 3.2.2. NURBS basis functions can
represent more complex geometries and are the standard in many CAD software.

For univariate rational basis functions Rpi (ξ) and control points Pi, a NURBS curve
is given by

C(ξ) =
n∑
i=1

Rpi (ξ)Pi. (3.18)

Given a control net Pi,j and bivariate rational basis functions Rp,qi,j (ξ, η), a NURBS
surface is defined by

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Pi,j . (3.19)

Similarly, for a control lattice Pi,j,k and trivariate rational basis functionsRp,q,ri,j,k (ξ, η, ζ),
a NURBS volume is obtained from

V (ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Pi,j,k. (3.20)

3.3 Refinement Methods
The basis functions representing a B-Spline or NURBS object can be refined in
several ways without altering the geometry and leaving the parametrization intact.
The properties of the basis functions mean that the element size, polynomial degree
and continuity can be controlled during refinement. The refinement methods in
IGA are briefly discussed in the following sections. For details on these, see Cottrell
et al. (2009).

3.3.1 Knot Insertion (h-refinement)
Knot insertion is a refinement method where new knots are added to the existing
object, thereby resulting in refined basis functions and control points. The FEA
equivalent of knot insertion is mesh refinement, which is achieved by dividing larger
original elements into smaller ones. Mesh refinement in FEA and knot insertion in
IGA become identical if we insert new knots with multiplicities equal to the poly-
nomial degree such that a C0 continuity is maintained between elements. However,
we can repeat existing knots to control the continuity of the basis functions, which
makes knot insertion more flexible than mesh refinement.

Consider a B-Spline or NURBS object defined by the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1},
polynomial degree p, basis functions Ni,p(ξ) and control points Pi. Insertion of new
m knots ξ̄ into Ξ results in a new knot vector Ξ̄ which has n +m + p + 1 knots.
For ξ̄ ∈ [ξk, ξk+1), a new set of control points P̄i can now be calculated based on
the new knot vector from (see Piegl and Tiller (2012))

P̄i = αiPi + (1− αi)Pi−1 (3.21)
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Figure 3.6: h-refinement: Original and refined basis functions.

Figure 3.7: h-refinement: Control points and physical mesh before and after knot
insertion. Original knot vectors: Ξ = H = {0, 0, 0, 1, 1, 1}. Refined knot vectors:
Ξ̄ = H̄ =

{
0, 0, 0, 1

2
, 1, 1, 1

}
. The polynomial order in both cases is p = 2.

where

αi =

⎧⎪⎨
⎪⎩
1 if i ≤ k − p
ξ̄−ξi

ξi+p−ξi if k − p+ 1 ≤ i ≤ k

0 if i ≥ k + 1.

(3.22)

The equation above implies that only p new control points need to be computed.
The new know vector Ξ̄ =

{
ξ1, ξ2, ..., ξ̄, ..., ξn+m+p+1

}
also results in new basis

functions N̄i,p(ξ). Illustration of knot insertion is performed on the knot vec-
tor Ξ = {0, 0, 0, 1, 1, 1}. Inserting the knot ξ̄ = 1

2 gives a new knot vector Ξ̄ ={
0, 0, 0, 12 , 1, 1, 1

}
. The original and refined quadratic basis functions are shown in

Figure 3.6.

The effect of h-refinement for a simple two-dimensional case is illustrated by con-
sidering a geometry defined by the knot vectors Ξ = H = {0, 0, 0, 1, 1, 1}, which has
a single element. Insertion of knew knots ξ̄ = 1

2 and η̄ = 1
2 into both knot vectors,

i.e. in both directions, results in the new knot vectors Ξ̄ = H̄ =
{
0, 0, 0, 12 , 1, 1, 1

}
.

This splits the original geometry into four elements. New control points are cal-
culated based on the new knot vectors. The original and refined control points,
together with the physical mesh, are shown in Figure 3.7.
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Figure 3.8: p-refinement: Original and refined basis functions.

3.3.2 Degree Elevation (p-refinement)
Raising the polynomial degree is another method of refining B-Spline or NURBS
basis functions and the corresponding objects. In this method, the multiplicity of
each knot is increased by the amount the polynomial degree is raised, but no new
knots are added. This preserves the continuities of the original basis functions.
Degree elevation in IGA has similarities with p-refinement in FEA in that the
polynomial degree is raised in both cases. However, in FEA the continuity between
all elements is C0 whereas we may have varying continuities between knot spans
in IGA.

To illustrate degree elevation, we consider the same original knot vector as in the
previous section: Ξ = {0, 0, 0, 1, 1, 1}. Raising the polynomial degree by one gives
the new knot vector Ξ̄ = {0, 0, 0, 0, 1, 1, 1, 1}. The original quadratic and refined
cubic basis functions corresponding to these knot vectors are shown in Figure 3.8.

The result of p-refinement on a simple two-dimensional geometry is illustrated
for the geometry defined by the knot vectors Ξ = H = {0, 0, 0, 1, 1, 1}. Raising
the polynomial degree in both directions gives the new knot vectors Ξ̄ = H̄ =
{0, 0, 0, 0, 1, 1, 1, 1}. The physical mesh before and after degree elevation has the
same one element but the number of control elements increases after refinement.
Note that the location of the control points in this case is different from what we
get with knot insertion. The control points and physical mesh before and after
degree elevation are shown in Figure 3.9.

3.3.3 k-refinement
Knot insertion and degree elevation are non-commutative and this results in a
refinement method which is unique to IGA: k-refinement. Knot insertion followed
by degree elevation results in basis functions with a new polynomial degree but
does not change the continuity at the inserted knots. On the other hand, degree
elevation followed by knot insertion gives a new polynomial degree with an increased
continuity at the newly inserted knots. Consider the linear basis functions from
Ξ = {0, 0, 1, 1}, shown in Figure 3.10(a). Insertion of two knew knots gives the new
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Figure 3.9: p-refinement: Control points and physical mesh before and after degree
elevation. Original knot vectors: Ξ = H = {0, 0, 0, 1, 1, 1}. Refined knot vectors:
Ξ̄ = H̄ = {0, 0, 0, 0, 1, 1, 1, 1}. The polynomial order is raised from p = 2 to p = 3.

knot vector Ξ̄1 =
{
0, 0, 13 ,

2
3 , 1, 1

}
. This followed by degree elevation results in the

knot vector Ξ̄2 =
{
0, 0, 0, 13 ,

1
3 ,

2
3 ,

2
3 , 1, 1, 1

}
. The basis functions corresponding to

Ξ̄1 and Ξ̄2 are shown in Figure 3.10(b). The reverse procedure results in a more
interesting scenario. Performing degree elevation on the original knot vector gives
Ξ̄1 = {0, 0, 0, 1, 1, 1}. When this is followed by insertion of the two new knots,
we get Ξ̄2 =

{
0, 0, 0, 13 ,

2
3 , 1, 1, 1

}
. The basis functions for the new knot vectors

in this case are shown in Figure 3.10(c). For knot insertion followed by degree
elevation, it can be seen that the basis functions maintain a C0 continuity across
knots. However, the continuity increases from C0 to C1 for k-refinement, i.e. degree
elevation followed by knot insertion.

The growth of the number basis functions and control points is optimal in k-
refinement. Illustration of this is performed by considering a simple two-dimensional
geometry defined by the knot vectors Ξ = H = {0, 0, 0, 1, 1, 1}. The control points
and physical mesh corresponding to these original knot vectors is shown in Fig-
ure 3.11(a). Knot insertion followed by degree elevation results in the control
points and physical mesh shown in Figure 3.11(b), where the new knot vectors are
Ξ̄ = H̄ =

{
0, 0, 0, 0, 12 ,

1
2 , 1, 1, 1, 1

}
. The reverse procedure, k-refinement, gives the

control points and physical mesh shown in Figure 3.11(c). The new knot vectors
in this case are Ξ̄ = H̄ =

{
0, 0, 0, 0, 12 , 1, 1, 1, 1

}
. It can bee see that we end up

with fewer number of control points, and basis functions, in k-refinement compared
to h-refinement followed by p-refinement. This results in a higher-continuity and
higher-regularity mesh and there is no analogous refinement strategy in FEA. The
savings from k-refinement in the number of control points and basis functions is
even more significant for three-dimensional objects.

The three refinement methods discussed in this section, h-, p− and k-refinement,
can be combined in several ways resulting in a multitude of refinement options.
The number of basis functions and control points can be controlled such that a
physical mesh with the desired number of elements and continuities is obtained.
The refinement capabilities in IGA make it a superior alternative to standard FEA.



��������� ����	
� �

0, 0 1, 1
0

1

(a) Original linear basis functions
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(b) Knot insertion → Degree elevation

0, 0, 0 1, 1, 1
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(c) Degree elevation → Knot insertion = k-refinement

Figure 3.10: k-refinement: Original and refined basis functions showing the non-
commutativity of knot insertion and degree elevation.
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(a) Original: Ξ = H = {0, 0, 0, 1, 1, 1}

(b) h-refinement → p-refinement (c) k-refinement

Figure 3.11: k-refinement: Control points and physical mesh before and after refine-
ment. Refined knot vectors: (b) Ξ̄ = H̄ =

{
0, 0, 0, 0, 1

2
, 1
2
, 1, 1, 1, 1

}
and (c) Ξ̄ = H̄ ={

0, 0, 0, 0, 1
2
, 1, 1, 1, 1

}
. We start with p = 2 in (a) and get p = 3 in (b) and (c).

3.4 Locally Refined (LR) B-Splines
B-Splines and NURBS geometries have a tensor product structure and this does not
allow local refinement. Other spline technologies have been proposed to overcome
this limitation. These include T-Splines proposed by Sederberg et al. (2003) and
LR B-Splines by Dokken et al. (2013), which have been applied in IGA by Bazilevs
et al. (2010) and Johannessen et al. (2014), respectively. LR B-Splines, which are
used in this thesis, are briefly discussed.

The local refinement capability of LR B-Splines is achieved by introducing local
knot vectors. A given knot vector Ξ can be used to construct i local knot vectors
Ξi, from the components of the original knot vector. A single B-Spline of degree p
may then be defined, using local knot vectors, as a separable function defined by
n non-decreasing local knot vectors Ξi and the degrees pi:

BΞ(ξ) =

n∏
i=1

BΞi(ξi). (3.23)

To ensure that LR B-Splines maintain the partition of unity property, a scalar
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weight γ ∈ [0, 1] is introduced to define a weighted B-Spline as

BγΞ(ξ) = γ

n∏
i=1

BΞi
(ξi), (3.24)

and thus we have
n∑
i=1

γiBi(ξ) = 1. (3.25)

A given univariate B-Spline basis can be enriched by knot insertion without chang-
ing the geometric description. To insert a knot ξ̂ into the knot vector Ξ between
the knots ξi−1 and ξi, we use the relation:

BΞ(ξ) = α1BΞ1
(ξ) + α2BΞ2

(ξ) (3.26)

where

α1 =

{
1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1 , ξ1 ≤ ξ̂ ≤ ξp+1

α2 =

{
ξp+2−ξ̂
ξp+2−ξ2 , ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2

(3.27)

and the knot vectors are

Ξ = [ξ1, ξ2, ..., ξi−1, ξi, ..., ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2, ..., ξi−1, ξ̂, ξi, ..., ξp+1 ]

Ξ2 = [ ξ2, ..., ξi−1, ξ̂, ξi, ..., ξp+1, ξp+2].

(3.28)

The insertion of the knot ξ̂ into Ξ yields a knot vector of size p+3, generating two
B-Splines described by the local knot vectors Ξ1 and Ξ2, both of size p+ 2.

Bivariate basis functions are refined in one parametric domain at a time. If we
have a knot vector Ξ in the first parametric direction, and H in the second, we get
a B-Spline

BΞ,H(ξ, η) = BΞ(ξ)BH(η). (3.29)

Local refinement is then performed first on BΞ(ξ) according to (3.26), and then on
BH(η) following the same procedure.

A detailed presentation of LR B-Splines with examples and applications can be
found in Johannessen et al. (2014), Johannessen et al. (2015a) and Johannessen
et al. (2015b). Some of the properties of LR B-Splines are discussed by Bressan
(2013).

3.5 Comparison with FEA
IGA and traditional FEA have several similarities as computational methods. Some
of their shared properties include the partition of unity properties of the basis
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Table 3.1: Comparison between IGA and traditional FEA.

IGA FEA

1 Control and physical meshes Single mesh
2 Physical mesh composed of knot spans Mesh composed of elements
3 Control points on control mesh Nodal points on mesh
4 Degrees of freedom at control points Degrees of freedom at nodes
5 Physical mesh on ‘exact’ geometry Geometry only approximated
6 Isoparametric mapping on patch level Isoparametric mapping on element level
7 Basis functions do not interpolate field vari-

ables at control points
Basis functions interpolate field variables at
nodal points

8 Basis functions always take positive values Basis functions may take positive and nega-
tive values

9 High and controllable continuity between
knot spans, Cp−m

Continuity between elements always C0

10 h-, p- and k-refinements available h- and p-refinements available
11 Variation diminishing property when fitted

to discontinuous data
Oscillatory when fitted to discontinuous
data

ξ

η

x

y

IGA

ξ

η

x

y

FEA

Figure 3.12: Isoparametric mapping in IGA and FEA.
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functions, the fact that both make use of the isoparametric concept, their computer
implementation architecture and satisfaction of patch tests. However, there are
some fundamental differences that set IGA and traditional FEA apart. Some key
differences are summarized in Table 3.1.

The isoparametric concept is utilized both in IGA and traditional FEA, but in a
different way, as pointed out in Table 3.1. In IGA, mapping from the physical space
to the parametric space (with isoparametric coordinates) is performed for each
patch in the domain. However, in traditional FEA, the mapping is performed for
each element in the finite element mesh. This difference is illustrated in Figure 3.12.

3.6 Boundary Value Problems (BVPs)
The general steps involved in the application of a computational method like IGA
to the solution of BVPs are mostly similar to traditional FEA. The main steps are
presented in the following sections. Formulations and procedures that are different
in IGA are highlighted.

3.6.1 Mathematical Formulation
A physical problem in a domain Ω may be mathematically formulated in terms of
partial differential equations (PDEs) which take the general form

L(u) = f in Ω (3.30)

where L is a differential operator and u is the unknown field variable. The domain
Ω may be subjected to the boundary conditions (discussed in detail in the next
section)

B(u) = g on ∂Ω (3.31)

where ∂Ω is the boundary of Ω; see Ames (2014). The resulting problem is referred
to as a Boundary Value Problem (BVP) and an illustration of this is shown in
Figure 3.13. Examples of such BVPs, in the context of this thesis, include ground-
water flow, thermal consolidation of soils and ground freezing. The best way to
solve such problems governed by PDEs is to derive analytical solutions. However,
for many practical problems, analytical solutions are difficult to obtain. Some of
the reasons for this include a domain with boundaries which are difficult to describe
mathematically and a domain with multiple regions of complex material properties,
Segerlind and Saunders (1987).

3.6.2 Boundary Conditions
The three main types of boundary conditions for the closure of a BVP are Dirichlet,
Neumann and Robin boundary conditions.

Dirichlet Boundary Conditions

When known values of the field variables of a PDE are specified at the boundaries
of the domain, they are referred to as Dirichlet boundary conditions, sometimes
called essential boundary conditions. Examples of Dirichlet boundary conditions
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Ω
L(u) = f

B(u) = g

Figure 3.13: Illustration of a boundary value problem.

include prescribed displacements and temperature values on a boundary. They are
mathematically expressed as

u = u(x, t) on ΓD (3.32)

where u is the specified value of field variable u, as a function of space x and time
t, on the Dirichlet boundary ΓD ⊂ ∂Ω. The special case when u = 0 is known as a
homogeneous Dirichlet boundary condition.

Neumann Boundary Conditions

When the normal derivatives, or some combination of derivatives (depending on
the underlying PDE), of the field variables are specified on a boundary, they are
referred to as Neumann boundary conditions. Examples of Neumann boundary
conditions include specified fluid and heat fluxes. Neumann boundary conditions,
when the differential operator L is a Laplacian, are mathematically expressed as

∂u

∂n
:= n · ∇u = q(x, t) on ΓN (3.33)

where n is the normal to the Neumann boundary ΓN ⊂ ∂Ω and q is the specified
normal derivative of u on ΓN . The case when q = 0 is referred to as a homogeneous
Neumann or natural boundary condition.

Robin Boundary Conditions

When the value of a field variable on a boundary is given as a linear combination of
its normal derivative (Neumann) and a specified value (Dirichlet), we get a Robin
boundary condition, often called boundary conditions of the third kind. A typical
example of a Robin boundary condition is the transfer of heat on a surface by
convection. Mathematically, it is expressed as

α(x, t)u+ β(x, t)
∂u

∂n
= h(x, t) on ΓR (3.34)

where α and β are non-zero functions or constants and h is the resulting value of
u on the boundary ΓR ⊂ ∂Ω.
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3.6.3 Strong and Weak Forms
With the PDEs describing a physical process and the corresponding boundary
conditions in place, the strong form of the resulting BVP may be stated as: Given
f : Ω → R and functions u(x, t), q(x, t), α(x, t), β(x, t) and h(x, t), find u : Ω → R

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(u) = f in Ω

u = u on ΓD

N (u) = q on ΓN

αu+ βN (u) = h on ΓR

(3.35)

where N is a differential operator corresponding to L, ΓD ∪ ΓN ∪ ΓR = ∂Ω and
ΓD ∩ ΓN ∩ ΓR = ∅. Such a strong form of a BVP requires strong continuity of
the field variables. As pointed out earlier, it is often difficult to obtain an exact
solution for the strong forms of many practical problems. A numerical approach
is usually required and a weak form of the problem is used to find the solution in
finite element like methods.

The weak form is an integral form of the problem and requires weaker continuity
of the field variables and this results in a set of discretized system of equations.
The weak form of the problem may be created using energy principles or weighted
residual methods.

For the strong form in (3.35), one way of defining the weak form requires character-
izing two classes of functions: trial solutions and weighting functions. The deriva-
tives of the trial solutions are required to be square-integrable i.e. if u : Ω → R

d is
a trial solution, we require ∫

Ω

∇u · ∇u dΩ < +∞. (3.36)

The solution space that contains such functions is called a Sobolev space H1(Ω),
which is characterized by

H1(Ω) =
{
u ∈ L2(Ω); ∂u/∂xi ∈ L2(Ω), 1 ≤ i ≤ d

}
(3.37)

where d is the spatial dimension and L2(Ω) is the space of square-integrable func-
tions characterized by

∫
Ω
u2dΩ < +∞.

The trial solution and weighting function spaces can now be defined as

V =
{
u ∈ H1(Ω) : u = u on ΓD

}
V̂ =

{
w ∈ H1(Ω) : w = 0 on ΓD

} (3.38)

where w ∈ V̂ is an arbitrary test function. The weak form of (3.35) can now be
obtained by multiplying (3.35)1 by w and then integrating over the domain Ω. It
may be formally stated as: Given f, u , q and h, find u ∈ V such that ∀w ∈ V̂∫

Ω

w [L(u)− f ] dΩ = 0. (3.39)
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3.6.4 Galerkin Formulation

In Galerkin’s method, we construct finite dimensional approximations Vh and V̂h
of the trial and weighting function spaces V and V̂ , respectively, such that

Vh ⊂ V and V̂h ⊂ V̂ . (3.40)

For uh ∈ Vh and wh ∈ V̂h, the weak form in (3.39) may be written as∫
Ω

wh [L(uh)− f ] dΩ = 0. (3.41)

This equation defines an approximate solution uh. Galerkin’s method leads to a
system of matrix equations. The unknown field variable may be approximated as
a linear combination of B-Spline or NURBS basis functions N and control point
values uc as

uh = Nuc. (3.42)

Using this in (3.41) results in matrices in integral form that may be evaluated by
numerical integration, which will be discussed in the next section.

3.6.5 Numerical Integration
Application of Galerkin’s method results in element matrices and vectors of the
form

Ke =

∫
Ω

GdΩ or fe =

∫
Γ

GdΓ (3.43)

where G is a matrix which depends on the basis functions and their derivatives
with respect to coordinates in the physical space, Ω is an integration domain and
Γ an integration boundary (see Zienkiewicz and Taylor (1989)). These element
matrices are usually evaluated by using numerical integration methods as closed
form expressions are impractical for most problems.

After spatial discretization using Galerkin’s method, evaluation of the resulting
integrals by numerical integration (for each element) requires transformation of
elements in the physical space (Ωe) to parent elements (Ω̃e). For B-Splines and
NURBS, the transformation is first made from the physical space to the parametric
space (to parametric elements Ω̂e) and then to the parent element; see Cottrell
et al. (2009) and Kadapa (2014). This is illustrated for a two-dimensional case in
Figure 3.14. The coordinates in the physical space (x, y, z) as a function of the
parametric coordinates (ξ, η, ζ) can be written as

x(ξ, η, ζ) = (x, y, z) =
n∑
i=0

Ni(ξ, η, ζ)xi = Nx. (3.44)

The coordinates of the parametric space may be expressed as a function of the
coordinates of the parent element (ξ̃, η̃, ζ̃) i.e.

ξ = ξ(ξ̃), η = η(η̃) and ζ = ζ(ζ̃) (3.45)
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ηj
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−1 1
−1
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Figure 3.14: Geometrical mapping of an element in the physical space to the parametric
space and then to the parent element for numerical integration.

For example, in two-dimensions, an element in the parametric space is a rectangle
[ξi, ξi+1] × [ηj , ηj+1] and is mapped to a square [−1, 1] × [−1, 1] in the parent do-

main. Thus, there is no cross-coupling between (ξ, η, ζ) and (ξ̃, η̃, ζ̃). The physical
coordinates in terms of the coordinates of the parent domain become

x(ξ, η, ζ) =

n∑
i=0

Ni(ξ(ξ̃), η(η̃), ζ(ζ̃))xi = N(ξ(ξ̃), η(η̃), ζ(ζ̃))x. (3.46)

The first derivatives of the basis functions with respect to the parent domain coor-
dinates are obtained by the chain rule as⎧⎪⎪⎨

⎪⎪⎩
∂Ni

∂ξ̃

∂Ni

∂η̃

∂Ni

∂ζ̃

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎢⎣
∂x
∂ξ̃

∂y

∂ξ̃
∂z
∂ξ̃

∂x
∂η̃

∂y
∂η̃

∂z
∂η̃

∂x
∂ζ̃

∂y

∂ζ̃
∂z
∂ζ̃

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
J

⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎬
⎪⎪⎭ = J

⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎬
⎪⎪⎭ (3.47)

where J is the Jacobian matrix of transformation. Inverse of the above equation
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implies ⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎬
⎪⎪⎭ = J−1

⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂ξ̃

∂Ni

∂η̃

∂Ni

∂ζ̃

⎫⎪⎪⎬
⎪⎪⎭ (3.48)

which requires J to be invertible, i.e. non-singular. Applying the chain rule to J
gives

J =

⎡
⎢⎢⎢⎣
∂ξ

∂ξ̃
0 0

0 ∂η
∂η̃ 0

0 0 ∂ζ

∂ζ̃

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

= AB. (3.49)

The determinant of the Jacobian matrix is then

detJ = detA× detB

=
∂ξ

∂ξ̃
× ∂η

∂η̃
× ∂ζ

∂ζ̃
× detB.

(3.50)

For the derivatives of the basis functions with respect to the parent domain coor-
dinates, application of the chain rule gives⎧⎪⎪⎨

⎪⎪⎩
∂Ni

∂ξ̃

∂Ni

∂η̃

∂Ni

∂ζ̃

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎢⎣
∂ξ

∂ξ̃
0 0

0 ∂η
∂η̃ 0

0 0 ∂ζ

∂ζ̃

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎫⎪⎪⎬
⎪⎪⎭ = A

⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎫⎪⎪⎬
⎪⎪⎭ . (3.51)

Based on (3.49) and (3.51), (3.48) can now be written as⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎬
⎪⎪⎭ = B−1

⎧⎪⎪⎨
⎪⎪⎩
∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎫⎪⎪⎬
⎪⎪⎭ . (3.52)

The elements of matrix B are calculated from

∂x

∂ξ
=

n∑
i=0

∂Ni
∂ξ

xi,
∂x

∂η
=

n∑
i=0

∂Ni
∂η

xi,
∂x

∂ζ
=

n∑
i=0

∂Ni
∂ζ

xi

∂y

∂ξ
=

n∑
i=0

∂Ni
∂ξ

yi,
∂x

∂η
=

n∑
i=0

∂Ni
∂η

yi,
∂y

∂ζ
=

n∑
i=0

∂Ni
∂ζ

yi

∂z

∂ξ
=

n∑
i=0

∂Ni
∂ξ

zi,
∂z

∂η
=

n∑
i=0

∂Ni
∂η

zi,
∂z

∂ζ
=

n∑
i=0

∂Ni
∂ζ

zi.

(3.53)

Transformation of the domain, and variables with respect to which the numerical
integration is performed, is achieved by using the determinant of J . For example,
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for a volume element, we have

dx dy dz = detJ dξ̃ dη̃ dζ̃ . (3.54)

The evaluation of element matrices of the form in (3.43)1 can now be written as

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(ξ̃, η̃, ζ̃) detJ dξ̃ dη̃ dζ̃ . (3.55)

The limits of integration in the above equation are simple but algebraic integration
cannot be performed because an explicit expression for G is difficult to obtain
for most practical problems. The evaluation is thus performed by using numerical
integration methods such as Newton-Cotes integration or Gaussian quadrature. We
discuss Gaussian quadrature here, which is employed in this thesis.

Gaussian quadrature evaluates an integral as a weighted sum of the values of the
function to be integrated at specified points in the integration domain. For a
function f(ξ) in one dimension, Gaussian quadrature rule is stated as∫ 1

−1

f(ξ)dξ =

n∑
i=1

wif(ξi) (3.56)

where wi ∈ R are called the integration weights at the specified points ξi and
i = 1, 2, ..., n. Application of this to evaluation of an element matrix of the form
given in (3.55), starting from the inner integral and proceeding to the outer, gives

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

G(ξ̃, η̃, ζ̃) detJ dξ̃ dη̃ dζ̃

=

n∑
k=1

n∑
j=1

n∑
i=1

G(ξ̃i, η̃j , ζ̃k)wiwjwk detJ

(3.57)

where wi, wj and wk are the integration weights and the functions G are evaluated

at the integration points (ξ̃i, η̃j , ζ̃k).

Numerical integration in IGA using high continuity B-Spline or NURBS basis func-
tions and solution of the resulting system of equations may result in high compu-
tational costs. Optimizing the efficiency of the numerical integration is studied by
some researchers such as Hughes et al. (2010). A detailed study on the performance
of IGA using direct and iterative solvers is presented by Collier et al. (2012) and
Collier et al. (2013), respectively.

3.6.6 Assembly and Solution
The element matrices and vectors computed using numerical integration are as-
sembled for all knot spans (elements) in the patch (for a single patch domain) or
for all patches (for a multiple patch domain). The assembly process for element
matrices Ke and vectors fe can be mathematically described as

K =

ne

A
e=1

(Ke) and f =

ne

A
e=1

(fe) (3.58)
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where A is an assembly operator, following the notation of Hughes (2012), and ne
is the total number of knot spans in the whole domain.

After assembling the element matrices and vectors over the whole domain, for all
patches, we end up with a system of matrix equations to be solved for the unknown
field variables. Depending on the type of the problem, the final system of matrix
equations may be linear or nonlinear. A linear system of equations takes the form

Kuc = f (3.59)

and may be solved for the unknown field variables using the appropriate solvers.
A typical structure of a nonlinear system of matrix equations is given by

K(uc)uc = f (3.60)

where we have solution dependent coefficient matrices K(uc). These types of
equations are solved in an iterative way using, for example, the Newton-Raphson
method. This requires calculating the residual and requiring it to vanish i.e.

R(uc) = K(uc)uc − f = 0. (3.61)

Linearizing the residual using Taylor series expansion about uc
i and neglecting

higher-order terms gives

R(uc
i+1) = R(uc

i ) +
∂R(uc

i )

∂uc
i

δuc = 0 (3.62)

where δuc = uc
i+1 − uc

i . The equation above can now be solved for δuc from

Jδuc = −R(uc
i ) (3.63)

where J =
∂R(uc

i)
∂uc

i
is called the Jacobian matrix. The solution at each iteration is

then updated using
uc
i+1 = uc

i + δuc. (3.64)

We have herein overlooked temporal discretization for time-dependent problems.
The structure of the final matrix equations, however, takes a similar form as in the
above cases with the left and right hand sides of the equation being dependent on
current and/or previous time step solutions. This depends on the type of temporal
discretization method employed.
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SUMMARY

Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary
conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination
of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR)
B-splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B-
splines are briefly presented. Galerkin’s method is applied to the standard weak formulation of the governing
equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which
B-splines should be locally refined. The error estimates are calculated based on recovery of theL2-projected
solution. The adaptive analysis method is first illustrated by performing simulation of benchmark prob-
lems with analytical solutions. Numerical applications to two-dimensional groundwater flow problems are
then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and
flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refine-
ment were, in general, observed to be of optimal order in contrast to simulations with uniform refinement.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element (FE) modeling of groundwater flow problems has been a subject extensively studied
by several researchers over the past decades. The earliest studies which addressed this problem
include the finite element analysis (FEA) of seepage through dams by Finn [1], Galerkin’s method in
aquifer analysis by Pinder and Frind [2], FE modeling of flow in saturated–unsaturated porous media
by Reeves and Duguid [3], and a three-dimensional FE model for a multi-aquifer system by Gupta
et al. [4]. Some studies proposed improvements to the FE modeling of groundwater flow based on
the numerical challenges observed in previous studies. Yeh [5] proposed an approach to eliminate
problems of discontinuity in the Darcy velocity field, which results when taking the derivatives of
the FE computed pressure field. Botha and Bakkes [6] studied the convergence of the Galerkin FE
method when applied to groundwater flow problems, with special reference to quadrature effects
and the accuracy of the solution. Tharp [7] presented an enriched FE simulation of groundwater
flow by introducing a new quadrilateral element to enable accurate modeling with coarse meshes.
Dogrul and Kadir [8] presented an FE post-processing technique to compute mass conserving flow
rates at element faces.

*Correspondence to: Yared Worku Bekele, Department of Civil and Transport Engineering, Norwegian University of
Science and Technology, NO-7491, Trondheim, Norway.
†E-mail: yared.bekele@ntnu.no
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The numerical challenges that occur in the simulation of groundwater flow problems may be
induced by the complexity of the boundary conditions in the flow domain, the varying hydraulic
conductivity properties of the porous material, and the presence of sources or sinks, such as an
infiltration well, or a combination of these. One of the approaches used to treat such numerical dif-
ficulties is to superpose an analytical solution in the vicinity of the problem area with a numerical
model in the rest of the domain. Analytical solutions are, however, difficult to obtain for most physi-
cal problems involving groundwater flow. The other approach is to use special numerical techniques
to address the singularity or discontinuity problems. We briefly look at some of the techniques
proposed by some researchers for different types of problems.
Some of the singularities that arise in the numerical simulation of groundwater flow were studied

and discussed by Lafe et al. [9]. The singularities considered are flow around a sharp corner where
the velocity goes to infinity, flow between zones of different hydraulic conductivity, flow around
a cutoff wall and the presence of sources or sinks in the flow domain. The effects of the different
singularities were studied and discussed. Weak singularities as in the case of flow between zones
of varying hydraulic conductivity were treated by concentrating integration points at the area of
the singularity. The use of special elements is recommended for stronger singularities such as flow
around a cutoff wall.
Groundwater flow with a free seepage surface is one of the problems that requires a special treat-

ment due to the complex boundary conditions. The derivative of the hydraulic potential goes to
infinity at the point of intersection between the free surface and the downstream face of the dam.
Even though we are not dealing with a free surface problem in the present work, we review the
numerical techniques proposed by various researchers as it is a related problem to our scope. Liang
and Zhang [10] presented a mathematical study of the FE method for a unidimensional single-phase
nonlinear free boundary problem in groundwater flow. Neuman and Witherspoon [11] proposed an
iterative approach to steady seepage of groundwater with a free surface. Larabi and De Smedt [12]
studied the numerical solution of groundwater flow involving free boundaries by a fixed FE method
by iteratively adjusting the moving boundaries. An adaptive FE approach for the free surface seep-
age problem was presented by Rank and Werner [13]. They used a posteriori error estimates and
adaptive mesh refinement such that the influence of singularities on the convergence rate disappears.
Sharif and Wiberg [14] used an interface-capturing technique to solve seepage flow problems with
free surface in porous media and studied two and three-dimensional seepage through dams. The
performance of an FE adaptive mesh algorithm for seepage flow with a free surface was analyzed
by Borieu and Bruch [15]. The algorithm was especially tested in order to enable parallel computa-
tions. A slightly different approach to the free surface problem was presented by Jie et al. [16] where
they apply the natural element method by constructing shape functions based on Voroni diagrams.
They argue that the method is more suitable for the analysis of seepage problems with a free surface
than the FE method. Adaptive error analysis for seepage problems was presented by Burkley and
Bruch [17] based on the Zienkiewicz–Zhu error estimator.
The other source of numerical challenges in the computation of groundwater flow problems is the

complexity of the material properties in the flow domain. Flow between zones of different hydraulic
conductivity represents a less severe discontinuity which may be treated by a finer mesh at the
intersection of the different zones. Heterogeneous aquifers, on the other hand, represent a more
complex case. Smaoui et al. [18] studied the modeling of groundwater flow in heterogeneous porous
media by the FE method. Cao and Kitanidis [19] presented a methodology for the computation of
flow in a heterogeneous isotropic formation using adaptive mesh refinement. Dual equations with
hydraulic head and stream function were solved numerically. They claim that the application of a
standard FE method requires a large number of nodes to model flow in high-contrast formations.
However, the number of unknowns to achieve a certain accuracy may be reduced by adaptive mesh
refinement procedures that rely on a posteriori error estimates to identify areas where refinements
are most needed.
The presence of sources or sinks in the flow domain creates areas of large changes in the hydraulic

gradient. Such a problem for unconfined aquifers with an infiltration well was studied using adaptive
mesh refinement by George and Thomas [20]. They performed simulation on flow domains with
isotropic as well as heterogeneous hydraulic conductivity fields. The simulations were performed
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starting with a coarse mesh, and refinement or coarsening steps were applied depending on the
computed errors.
In this paper, we address some of the numerical challenges observed in computational models for

groundwater flow problems using adaptive isogeometric FEA. We use LR B-splines, first proposed
by Dokken et al. [21], and later applied to adaptive isogeometric analysis (IGA) by Johannessen
et al. [22]. First, the governing equations of steady-state groundwater flow are presented. The fun-
damentals of IGA are then briefly discussed by introducing B-splines and non-uniform rational
B-splines (NURBS). LR B-splines, which allow local refinement unlike B-splines and NURBS, are
then presented. In the numerical examples section, the method is first applied to benchmark prob-
lems with analytical solutions and then to flow problems around an impervious corner, around a
cutoff wall and in a heterogeneous formation.

2. GOVERNING EQUATIONS

The governing equation for groundwater flow can be obtained by deriving the fluid mass con-
servation equation for a given porous medium. The general form of the governing equation for
groundwater flow is given by

S
@h

@t
D @

@x

�
kx.h/

@h

@x

�
C @

@y

�
ky.h/

@h

@y

�
C @

@´

�
k´.h/

@h

@´

�
C f (1)

where S is the so-called specific storativity, h is the unknown hydraulic head, kx; ky ; and k´ are the
components of the hydraulic conductivity matrix along the principal axes, and f represents a source
or sink term for the flow. The aforementioned equation generally represents transient groundwater
flow, that is, the hydraulic head varies with time, and the flow may be saturated or unsaturated.
Unsaturated flow is characterized by a condition where the hydraulic conductivity is a function of
the unknown hydraulic head. In this paper, we are interested in saturated flow under steady-state
conditions. For such a case, the governing equation reduces to

@

@x

�
kx

@h

@x

�
C @

@y

�
ky

@h

@y

�
C @

@´

�
k´

@h

@´

�
C f D 0 (2)

which may be written in a more compact form as

r � .krh/C f D 0 (3)

where k is the hydraulic conductivity matrix for general three-dimensional condition given by

k D
2
4kx 0 0

0 ky 0

0 0 k´

3
5 (4)

The hydraulic head represents the total energy driving the flow and is expressed per unit weight at
any point in the flow domain as

h D pw

�w
C ´C v2

2g
(5)

where pw=�w is the pressure head, �w is the unit weight of water, ´ is the elevation head, and
v2=2g is the velocity head, with g being the acceleration due to gravity. The velocity head is usually
neglected because steady-state groundwater flow velocities are usually very small. It can be shown
that the first term in Eq. (3) represents the divergence of Darcy’s velocity, which is given by

v D � 1

�w
k .rpw � �wg/ (6)
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for a flow driven by pressure gradients and gravity g D �gr´. We can now introduce the proper
boundary conditions and write the strong form of the problem as

r � v D f in �

pw D Opw on �D

v � n D qw on �N

(7)

where � represents the groundwater flow domain, Opw is the imposed pressure on the Dirichlet
boundary �D , qw is the water flux on the Neumann boundary �N , and n is the normal to the
boundary. Here, we have the overall boundary to � as � D �N [ �D . The pressure pw W � ! R
is our primary unknown, and the Darcy velocity v W � ! R can be determined as a secondary
solution.

3. ISOGEOMETRIC ANALYSIS

3.1. Fundamentals

Since its first introduction by Hughes et al. [23], IGA has been successfully applied to several
areas of engineering mechanics problems. The fundamental aim for the introduction of IGA was
the idea of bridging the gap between computer-aided design (CAD) and FEA. The main concept
behind the method is the application of the same basis functions used in CAD for performing FEA.
In the process of its application to various engineering problems, IGA has shown advantages over
the conventional FE method, for instance, the ease of performing simulations using elements with
higher-order continuity.
The current standard basis functions in CAD are B-splines and NURBS. To overcome the limi-

tations of B-splines and NURBS, such as water tightness in CAD and local refinement in analysis,
other spline technologies have been proposed. These include T-Splines introduced by Sederberg et
al. [24] and LR B-splines by Dokken et al. [21]. In this paper, LR B-splines are used for the sim-
ulation of steady-state seepage problems. Prior to that, the fundamental concepts behind IGA are
briefly presented here for reference.

3.1.1. B-splines and NURBS. We start the discussion on B-splines and NURBS by first defining a
knot vector. A knot vector in one dimension is a non-decreasing set of coordinates in the parameter
space, written as „ D ¹�1; �2; : : : ; �nCpC1º, where �i 2 R is the i th knot, i is the knot index,
i D 1; 2; : : : ; n C p C 1, p is the polynomial order, and n is the number of basis functions. Knot
vectors may be uniform or non-uniform depending on whether the knots are equally spaced in the
parameter space or not.
A univariate B-spline curve is parameterized by a linear combination of n B-spline basis func-

tions, ¹Ni;pºniD1. The coefficients corresponding to these functions, ¹BiºniD1, are referred to as
control points. The B-spline basis functions are recursively defined starting with piecewise constants
(p D 0)

Ni;0.�/ D
²

1 if �i � � < �iC1

0 otherwise
(8)

For higher-order polynomial degrees (p � 1), the basis functions are defined by the Cox–de Boor
recursion formula

Ni;p.�/ D � � �i

�iCp � �i

Ni;p�1.�/C �iCpC1 � �

�iCpC1 � �iC1

NiC1;p�1.�/ (9)

B-spline geometries, curves, surfaces, and solids are constructed from a linear combination of
B-spline basis functions. Given n basis functions Ni;p and corresponding control points Bi 2
Rd ; i D 1; 2; : : : ; n, a piecewise polynomial B-spline curve is given by

C.�/ D
nX

iD1

Ni;p.�/Bi (10)
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Similarly, for a given control net Bi;j ; i D 1; 2; : : : ; n; j D 1; 2; : : : ; m; polynomial orders p and
q, and knot vectors „ D ¹�1; �2; : : : ; �nCpC1º and H D ¹�1; �2; : : : ; �mCqC1º, a tensor product
B-spline surface is defined by

S.�; �/ D
nX

iD1

mX
jD1

Ni;p.�/Mj;q.�/Bi;j (11)

B-spline solids are constructed in a similar way as B-spline surfaces from tensor products over a
control lattice.
Non-uniform rational B-splines are built from B-splines to represent a wide array of objects that

cannot be exactly represented by polynomials. An NURBS entity in Rd is obtained by projective
transformation of a B-spline entity in RdC1. The control points for the NURBS geometry are found
by performing exactly the same projective transformation to the control points of the B-spline curve.
More about B-splines and NURBS in an IGA setting can be found in [25].

3.1.2. LR B-splines. LR B-splines were proposed to overcome the limitation of B-splines and
NURBS with respect to local refinement. B-splines and NURBS are formulated as tensor products
of univariate B-splines, and thus, refinement in one of the univariate B-splines will cause the inser-
tion of an entire new row or column of knots in the bivariate spline space. LR B-splines were first
used in (adaptive) IGA by Johannessen et al. [22].
For a short description of LR B-splines, local knot vectors are defined first. A given knot vector

„ can be used to construct i local knot vectors„i , from the components of the original knot vector.
A single B-spline of degree p may then be defined, using local knot vectors, as a separable function
defined by n non-decreasing local knot vectors „i and the degrees pi

B„.�/ D
nY

iD1

B„i
.�i / (12)

To ensure that LR B-splines maintain the partition of unity property, a scalar weight � 2 Œ0; 1� is
introduced to define a weighted B-spline as

B
�
„.�/ D �

nY
iD1

B„i
.�i / (13)

Next, we define box mesh, tensor mesh and LR mesh. A box mesh is a partitioning of a two-
dimensional rectangular domain into smaller rectangles by horizontal and vertical lines. A tensor
mesh is a box mesh where there are no T-joints, that is, all horizontal and vertical lines span the
entire length. An LR meshMn is a box mesh, which results from a series of single line insertions
from an initial tensor meshM0, and each intermediate mesh is also a box mesh. A box mesh, tensor
mesh, or LR mesh with multiplicities is a mesh where each line segment has a corresponding integer
value n, called the line multiplicity. Each multiplicity must satisfy 0 < n � p, where p is the
polynomial degree. These mesh types are illustrated in Figure 1(a)–(c).
The support of a (weighted) B-spline B.�; �/ D �B„.�/BH.�/ is the closure of all points where

it takes nonzero value, where „ D ®
�0; �1; : : : ; �p1C1

¯
and H D ®

�0; �1; : : : ; �p1C1

¯
. A weighted

(a) Tensor mesh (b) Box mesh (c) LR mesh

Figure 1. Mesh types, after [22].
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B-spline has minimal support on an LR MeshM if for every horizontal and vertical line of mul-
tiplicity n in the mesh M that traverses the support of the B-spline, there exist unique knot(s)
corresponding to the lines depending on whether the lines traverse the interior or the edge of the
B-spline.
We can now define LR B-splines based on the terminologies presented earlier. For a given LR

MeshM, a function B is called an LR B-spline onM if B
�
„.�/ D �B„.�/BH.�/ is a weighted B-

spline where all knot lines (and the knot line multiplicities) in „ and H are also inM, and B has a
minimal support onM.
A given B-spline basis can be enriched by knot insertion without changing the geometric

description. To insert a knot O� into the knot vector „ between the knots �i�1 and �i , we use the
relation

B„.�/ D ˛1B„1
.�/C ˛2B„2

.�/ (14)

where

˛1 D
´

1; �pC1 � O� � �pC2
O���1

�pC1��1
; �1 � O� � �pC1

˛2 D
´

�pC2�O�
�pC2��2

; �2 � O� � �pC2

1; �1 � O� � �2

(15)

and the knot vectors are

„ D �
�1; �2; : : : ; �i�1; �i ; : : : ; �pC1; �pC2

�
„1 D Œ�1; �2; : : : ; �i�1; O�; �i ; : : : ; �pC1�

„2 D Œ �2; : : : ; �i�1; O�; �i ; : : : ; �pC1; �pC2�

(16)

The insertion of the knot O� into „ yields a knot vector of size p C 3, generating two B-splines
described by the local knot vectors „1 and „2, both of size p C 2.
Refinement by knot insertion using the aforementioned technique is illustrated on the B-splines

given by the local knot vectors „2 D Œ0; 0; 1; 2�, „3 D Œ0; 1; 2; 3� and „4 D Œ1; 2; 3; 3�, all derived
from the knot vector „ D Œ0; 0; 0; 1; 2; 3; 3; 4; 4; 4�. For example, if we want to insert O� D 3=2 into
the knot vector „3 between knots �2 D 1 and �3 D 2, this implies values of ˛1 D ˛2 D 3=4, and
the resulting split is shown in Figure 2(b). Similarly, the resulting B-spline splits when inserting
O� D 3=2 in „2 and „4 are shown in Figure 2(a) and (c).
Bivariate functions are refined in one parametric domain at a time. If we have a knot vector „ in

the first parametric direction, andH in the second, we obtain a B-splineB„;H.�; �/ D B„.�/BH.�/.
Splitting in one direction is achieved by

B„.�; �/ D B„.�/BH.�/

D �
˛1B„1

.�/C ˛2B„2
.�/

�
BH.�/

D ˛1B„1
.�; �/C ˛2B„2

.�; �/

(17)

Figure 2. Knot insertion example for LR B-splines, after [22].
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For a weighted B-spline, we have

B
�
„.�; �/ D �B„.�/BH.�/

D �
�
˛1B„1

.�/C ˛2B„2
.�/

�
BH.�/

D B
�1

„1
.�; �/C B

�2

„2
.�; �/

(18)

where �1 D ˛1� and �2 D ˛2� .
LR B-splines form a partition of unity, that is,

nX
iD1

�i Bi .�/ D 1 (19)

To control adaptive refinement in IGA with LR B-splines, we introduce a refinement parameter ˇ.
The refinement parameter ˇ is defined such that two LR B-splines Li�1 and Li satisfy

Li�1 � Li and .1C ˇ/jLi�1j � jLi j (20)

which states that Li should be a refinement of Li�1, and the number of B-splines should grow by at
least ˇ percent during each iteration. Thus, ˇ in this case represents the growth rate of the number
of basis functions in the solution space, that is, if we have n degrees of freedom at refinement step
i , we will have, at least, n� .1Cˇ=100/ degrees of freedom at refinement step iC1. We could also
choose ˇ to represent the percentage of elements with the largest error contribution to be refined.
For the numerical examples in this paper, ˇ refers to the growth rate of the basis functions. The
value of ˇ in a simulation is selected such that the adaptive simulation is as efficient and as accurate
as possible. Smaller values for ˇ result in a more accurate adaptive refinement, while larger values
reduce the number of refinement steps, and thereby the computation time. Typical values are in the
range 5% � ˇ � 20%, [22].

3.2. Variational formulation

In this section, we present the weak formulation of the governing equation. Our aim is to solve the
following equation:

r �
�
� 1

�w
k .rpw � �wg/

	
D f

for the pressure pw with the boundary conditions given in Eq. (7). The standard weak formulation
is derived by applying a differentiable test function v to the previous equation, integrating over the
domain � and applying Green’s theorem to the integrand with the divergence operator. We can
write a proper statement of the weak form as follows:

Find pw 2 V such that

a.pw ; v/ D L.v/ 8v 2 OV (21)

where

a.pw ; v/ D
Z

�

rv � 1

�w
k � rpw d�

L.v/ D
Z

�

f v d�C
Z

�

rv � 1

�w
k � �wg d� �

Z
�N

qwv d�
(22)

The trial and test spaces V and OV are defined as

V D ®
v 2 H 1.�/ W v D Opw on �D

¯
OV D ®

v 2 H 1.�/ W v D 0 on �D

¯ (23)
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3.3. Galerkin finite element formulation

The FE approximation corresponding to the variational formulation given in Eq. (21) reads: Find
pw

h
2 Vh such that

a.pw
h ; vh/ D L.vh/ 8vh 2 OVh (24)

where pw
h
is the FE approximation to the pressure field, vh is the FE test function, and for compatible

FE trial and test spaces, we have Vh � V and OVh � OV , respectively. Notice that the dimensions for
OV and V are infinite, whereas the dimensions for OVh and Vh are finite (i.e., equal to the number of
FE basis functions).
The FE pressure may be written as a linear combination of the FE basis functions N and the nodal

values (control point values in IGA) Npw as

pw
h D N Npw (25)

Applying Galerkin’s method, the test functions in the weak form are chosen to be the same as the
shape functions (after the non-homogeneous Dirichlet boundary conditions are taken care of, that
is, their effect is moved to the right hand side). Thus, when applied to the weak form in Eq. (21),
this results in the following linear matrix equation:

A Npw D b (26)

where

A D
Z

�

.rN/T 1

�w
k .rN/d�

b D
Z

�

Nf d�C
Z

�

.rN/T 1

�w
k �wgd� �

Z
�N

Nqwd�
(27)

4. ERROR ESTIMATES AND ADAPTIVITY

4.1. Introduction

In this section, we discuss the procedures for calculating a posteriori error estimates based on recov-
ery of the computed solution. The adaptive mesh refinement strategies based on the error criteria are
also discussed.
Since the 1970s, several strategies have been developed to estimate the discretization error of

an FE solution. Babuska and Rheinboldt presented the pioneering effort in this regard back in
1978 [26, 27]. Since then, many different estimation procedures have been introduced (see [28] for
an overview). A popular class of error estimators denoted as recovery-based estimators consist of
deriving a simple smoothing technique that yields a solution field or, more commonly, the gradient
of the solution, that converges faster than the FE solution or its gradient, respectively. A very pop-
ular prototype for such approaches is the Zienkiewicz–Zhu error estimate (so-called ZZ estimate).
Initial reference to such estimates can be found in [29], and further development with superconver-
gent patch recovery (SPR) in [30, 31]. The success of this approach in the engineering community
relies on an intuitive mechanical definition and a certain ease of implementation compared with
other class of available error estimates, without sacrificing the numerical effectivity.
The second author of this paper has more than two decades of experience in developing and

implementing a posteriori error estimators. First, in [32] and [33], we extended the SPR procedure
by recovering statically admissible stress fields for plane stress and Reissner–Mindlin plates, respec-
tively. Then, goal-oriented recovery of stresses in elasticity and surface forces (drag and lift) for
Stokes problems were developed and presented in the papers [34, 35], and [36], respectively. Object-
oriented implementation of the SPR recovery procedures is described in [37] and [38]. Recently,
we have developed a posteriori error estimates for IGA (see [39] and [40]). The first paper gives an
extensive study of different recovery-based error estimators. Furthermore, it presents, for the first
time, a true superconvergent patch recovery method for adaptive IGA using LR B-splines.
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Our main aim with the present paper is to show the possibilities that open up with adaptive IGA
using LR B-splines. An open-source package for using LR B-splines may be downloaded at http://
lrbsplines.com/. However, anyone who wants to perform adaptive IGA using LR B-splines will have
to implement an algorithm for a posteriori error estimation. Based on the experiences mentioned
previously, we have chosen herein to use a simple a posteriori error estimator, the continuous global
L2 (CGL2) projection, as first presented in [29] for FE and in [40] for IGA, as it gives reasonably
good results and is easy to implement.

4.2. A priori error estimates

Let pw and pw
h
represent the exact and isogeometric FE solutions, respectively. The discretization

error in the pressure, e, and the error in the pressure gradient, e� , are defined as

e WD pw � pw
h

e� WD rpw � rpw
h

(28)

Introducing the error norms in L2 corresponding to e and e�

kekL2.�/ W D kpw � pw
h kL2.�/ D

�Z
�

�
pw � pw

h

�2
d�

�1=2

ke�kL2.�/ W D krpw � rpw
h kL2.�/ D

�Z
�

�rpw � rpw
h

�T �rpw � rpw
h

�
d�

�1=2
(29)

Steady-state groundwater flow is a self-adjoint problem, and it follows that the computed FE solution
is optimal in energy norm. The energy norm using the bilinear form from Section 3.2 is given by
(which is equivalent to seminorm of error e onH 1

0 .�/)

kekE D
p

a.e; e/ D jejH 1
0

.�/ (30)

which is the same as

kekE D
�Z

�

�rpw � rpw
h

�T 1

�w
k
�rpw � rpw

h

�
d�

�1=2

(31)

If the analytical solution of a variational problem involving first-order differentiation (as is the case
herein) is sufficiently smooth, that is, pw 2 H pC1, and the FE mesh M0 is regular and quasi-
uniform, the error in the approximate FE solution on a family of uniformly refined meshes ¹Mkº is
bounded by

kpw � pw
h kE D C hpkpwkH pC1 (32)

where C is some problem-dependent constant, h is the characteristic size of the finite elements, p
is the degree of the largest complete polynomial in the FE basis functions, and jjpw jjH pC1 denotes
the Sobolev norm of order p C 1.
For problems where the solution is not sufficiently smooth, pw 62 H pC1, for example, problems

with singular points within the solution domain or on its boundary, we have the error bound

kpw � pw
h kE D C h˛kpwkH ˛C1 (33)

where the value of the non-negative real parameter ˛ depends on how the family of meshes ¹Mkº
are created.‡ Assume that 	 is a real number characterizing the strength of the singularity. For a
sequence of uniformly, or nearly uniformly, refined meshes we then have

˛ D min¹p; 	º: (34)

‡As ˛ is not necessarily an integer, kpwkH ˛C1 is a a Sloboditskii norm.
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Thus, when 	 < p, the rate of convergence is limited by the strength of the singularity and not the
polynomial order.

4.3. A posteriori error estimates

The a priori error estimates do not give any quantification of the error for a simulation with a
given mesh and a spline space; we only obtain information about the expected convergence rate.
However, in order to perform an adaptive refinement, we need to quantify the error distribution
throughout the mesh, that is, on each element. For this, we use a posteriori error estimates that
in one way or another are based on the computed FE solution pw

h
. A popular approach for a pos-

teriori error estimation is based on post-processing the gradients of the FE computed pressure
solution, as the FE computed pressure gradient, rpw

h
, can be improved by global projection or

local smoothing.
As mentioned previously, we use herein CGL2 projection to obtain the improved gradients rpw

r .
The improved convergence rate for rpw

r is due to superconvergent that has been proven under
certain conditions of the regularity of the solution and the mesh topology by Wahlbin [41], both for
C 0 finite elements and C p�1 splines. We aim to obtain an improved pressure gradient field

rpw
r D Nar (35)

whereN are the shape functions for the pressure (Eq. (25)) and ar is the unknown vector of new con-
trol variables determining the recovered pressure gradient rpw

r . Notice that the computed pressure
gradient reads

rpw
h D rNpw (36)

that is, we are aiming to recover a pressure gradient rpw
r in a one polynomial order higher spline

space than the computed pressure gradient rpw
h
. The vector of control variables ar are determined

by forcing a least square fit (i.e., globalL2 projection) ofrpw
r to the computed FE pressure gradientrpw

h
, that is,

J .ar/ D
Z

�

�rpw
r � rpw

h

�T � �rpw
r � rpw

h

�
d� (37)

is minimized with respect to ar . The minimization

@J
@ar

D 2

Z
�

�
@rpw

r

@ar

�T

� �rpw
r � rpw

h

�
d� (38)

yields a linear system of equations given by

Aar D br (39)

where

A D
Z

�

NT Nd� and br D
Z

�

NTrpw
h d� (40)

We now use the improved gradients to obtain an indication of the error in the computed pressure

e�r
WD rpw

r � rpw
h (41)

The corresponding energy norm associated with the bilinear form is

kerkE D
�Z

�

�rpw
r � rpw

h

� � 1

�w
k � �rpw

r � rpw
h

�
d�

�1=2

(42)
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The quality of the error estimate based on improved gradients is measured by its effectivity index,
which is defined as the ratio of the estimated error to the actual error


 D kerkE.�/

kekE.�/

(43)

The relative global error (in percentage) is a dimensionless error quantity defined for exact and
recovered error estimates, respectively, as

� D kekE

kpwkE

� 100% and �r D kerkE

kpw
r kE

� 100% (44)

where kpwkE D p
a.pw ; pw/ and kpw

r kE D p
a.pw

r ; pw
r / are the energy norms of the exact and

L2-projected solutions, respectively.

4.4. Adaptive refinement

Once a posteriori error estimates are established, the elements that require refinements are iden-
tified based on a tolerance criteria. The next step is to locally refine the elements. For a linear
two-dimensional element or knotspan that requires refinements, knot insertion splits that element
into four new elements. However, for B-splines of higher polynomial order, p > 1, the splitting
cross cannot be limited to only the element in question. Thus, local refinement strategies must
be selected to have the desired refinement for a given element and its neighbors. We have three
local refinement strategies for LR B-splines, namely, full span, minimum span, and structured mesh
refinement. The ideas behind these strategies are briefly discussed here, and for the details we refer
to [22].
The full span refinement strategy refines every B-spline with support on the element identified for

refinement. The mesh line inserted in one direction will span from the minimum to the maximum
knot of all functions with support on the identified element. This strategy ensures that all B-splines
with support on the identified element are split by the refinement. This approach is illustrated in
Figure 3(a).
In the minimum span refinement strategy, a cross is inserted in the identified element where the

refinement footprint is limited, unlike the full span approach. The inserted mesh lines will be as
short as possible but will split at least one B-spline. The B-spline to be split may be identified based
on which of the available B-splines has the smallest parametric support. But, in general, there is
lack of such uniqueness. Thus, a random B-spline is selected and refined. This approach is shown
in Figure 3(b).
Identifying which B-splines need refinement instead of which elements is another way to refine

B-splines. In [22], the error for a B-spline is defined as the sum of the errors in all the knotspans in
the support of the given B-spline. A fraction of the B-splines with the highest error are then refined
as illustrated in Figure 3(c) resulting in a structured mesh refinement.

(a) Fullspan: Split all functions
on one element

(b) Min Span: Split one random
function on one element

(c) Structured Mesh: Split all
knot spans on one B-spline

Figure 3. Local refinement strategies for LR B-splines, after [22].
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5. NUMERICAL EXAMPLES

5.1. Aims of the numerical examples

The aim of the numerical experiments herein is to investigate whether adaptive refinement using
LR B-splines achieves optimal convergence rates for groundwater flow problems that may involve
highly varying material properties, singularities, and/or rough right hand sides such that it gives
better accuracy per number of degrees of freedom compared with uniform refinement. The adap-
tive strategy is based on controlling the growth rate of the basis functions in the solution space,
according to the parameter ˇ and a specified error tolerance or maximum number of degrees of free-
dom. Furthermore, we want to investigate the sensitivity in accuracy and convergence rates towards
polynomial order p. We start the numerical examples with two verification problems with known
analytical solutions:

� the wavefront well problem and
� the L-shape problem.

These problems are used to verify the numerical implementation and study the effectivity of the
error estimates and the adaptive simulation in handling certain challenging effects. In the wavefront
well problem, we study the effects of a rough right hand side and the effect of isotropy or anisotropy
in material properties, whereas the analytical solution for the L-shape problem is characterized by
having a singularity of the gradient in the re-entrant corner on the boundary. The availability of an
analytical solution allows us to calculate exact a posteriori error estimates to drive the adaptive mesh
refinement, as well as study and report the effectivity index for the presented recovery-based error
estimator.
To demonstrate the potential offered by adaptive IGA, we address the following groundwater flow

problems:

� flow around an impervious corner;
� flow around a cutoff wall; and
� flow in a heterogeneous medium.

Analytical solutions are not available for these problems, and we use the a posteriori error estimator
to drive the adaptive refinement. Here we compare the achieved accuracy per number of degrees of
freedom, ndof , obtained with adaptive and uniform refinement.

5.2. Verification problems with analytical solutions

5.2.1. The wavefront well problem. The first illustrative example we consider is the so-called
wavefront well problem, [42], defined over a square domain.

Problem definition. The strong form of the problem in Eq. (7), assuming the flow is solely driven
by pressure gradients, reduces to²r � Œ��rpw.x; y/� D f .x; y/ .x; y/ 2 �

pw.x; y/ D Opw.x; y/ .x; y/ 2 @�
(45)

The numerical simulation domain is defined by a square area� D Œ0; 1��Œ0; 1�where the boundaries
are �D D @� and �N D ¿, shown in Figure 4(a). The exact analytical solution for the pressure
field is given by

pw.x; y/ D arctan.50.�0:25C
p

.x � 0:5/2 C .y � 0:5/2// (46)

Note that the right hand side f .x; y/ is generated by taking the Laplacian (r2) of the analytical
solution stated in Equation 46, and is given in Appendix A for a variable degree of anisotropy. The
analytical solution depicted in Figure 4(b) displays a ‘front’-type of behavior where the solution is
rapidly changing across a circular band inside the domain. This problem is mathematically smooth,
that is, pw 2 H pC1.�/ for any finite p. However, because of the highly varying right hand side, we
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(a) (b)

Figure 4. The wavefront problem: numerical simulation domain and analytical solution plot.

Figure 5. The wavefront problem: adaptive meshes for ˇ D 20% at different refinement steps for the
isotropic case. Each column represents the same refinement step for varying polynomial degrees.

may only expect an optimal convergence rate when the element size h is less than a given threshold
that depends on the sharpness or bandwidth of the interior layer. Hence, we may expect suboptimal
convergence rate for uniform mesh refinement when the mesh is not fine enough.
Two cases are considered for the conductivity matrix � – isotropic and anisotropic. For simplicity

in deriving the source function, the conductivity equivalent coefficients are set equal to

� D
�
1 0

0 1

	
and � D

�
10 0

0 1

	
(47)

Results – isotropic case. The adaptive simulation is performed for polynomial degrees of p D 2

and p D 3. The refinement parameter is selected as ˇ D 20%. Adaptive refinement is performed up
to a specified maximum number of iterations or maximum number of degrees of freedom.
The physical meshes for selected refinement steps are shown in Figure 5(a)–(c) for p D 2 and in

Figure 5(d)–(f) for p D 3. The structured mesh refinement strategy is used for this problem. Note
that the adaptive meshes are not perfectly symmetric, even though the solution and error distribution
are symmetric, because our refinement parameter ˇ only controls the growth rate of the number of
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Figure 6. The wavefront problem: convergence and effectivity index plots for the isotropic case. The dotted
lines in (a) correspond to slopes of �3=2 and �2.

basis functions, as explained in Section 3.1.2. We observe, however, that the physical meshes espe-
cially at higher refinement steps are nearly symmetric because the error is symmetrically distributed
because of its dependence on the hydraulic conductivity matrix.
The convergence plots for this case are shown in Figure 6(a) in terms of relative error versus

number of degrees of freedom. The effectivity index plot is shown in Figure 6(b) for the polynomial
degrees considered. It can be seen from the curves that an optimal convergence rate is obtained after
a sufficient number of refinements for this problem. A similar problem has been studied in [40]
using different a posteriori error estimators, of which CGL2 (used here) is one. Error recovery based
on CGL2 projection was observed to perform well for this problem.

Results - anisotropic case. The problem is simulated with the same setup as in the isotropic
case with the only difference being in the anisotropy of the � matrix. The errors are no longer
symmetrically distributed in the domain, and this is reflected in the physical meshes obtained at
different refinements steps, shown in Figure 7(a)–(c) for p D 2 and Figure 7(d)–(f) for p D 3. The
convergence plots obtained for the anisotropic case, Figure 8(a), are similar to the isotropic case.
The effectivity index plot for this case is shown in Figure 8(b).

5.2.2. The L-shape problem. The second example with analytical solution is the L-shape problem
with domain and boundary conditions shown in Figure 9(a).

Problem definition. The boundary conditions are summarized as

8<
:
r � .��rpw/ D 0 in �

pw.r; 
/ D 0 on �D
@pw

@n
D qw on �N

(48)

We choose �x D �y D 1 for simplicity. The exact analytical solution is given by

pw D r2=3 sin

�
2
 � �

3

�
(49)

where r2 D x2 C y2 and 
 D arctan.y=x/. The analytical solution plot is shown in Figure 9(b).
The expression for the Neumann boundary condition, qw , is derived based on the analytical solution
and is not included here.
For the given elliptic problem, the re-entrant corner at .0; 0/ in the domain causes a singular-

ity in the solution. It is known that the convergence for uniform mesh refinement is limited by
the strength of the singularity 	 D 2=3, as pw 2 H 5=3.�/, that is, the convergence rate (versus
degrees of freedom) is equal to �1=3. For problems where the solution is not sufficiently smooth,
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Figure 7. The wavefront problem: adaptive meshes for ˇ D 20% at different refinement steps for the
anisotropic case. Each column represents the same refinement step for varying polynomial degrees.

Figure 8. The wavefront problem: convergence and effectivity index plots for the anisotropic case. The
dotted lines in (a) correspond to slopes of �3=2 and �2.

pw 62 H pC1.�/, we do not obtain an optimal convergence rate when we perform uniform mesh
refinement. In particular, the use of higher-order polynomials is then inefficient.

Results. The L-shape problem is analyzed for polynomial degrees of p D 2 and p D 3. The
refinement parameter is selected as ˇ D 20%. In Figure 10(a), we see that we achieve opti-
mal convergence rates when we perform adaptive refinement, whereas for uniform refinement, the
convergence rate is the same for both p D 2 and p D 3 and limited by the strength of the sin-
gularity. The effectivity index plots obtained are shown in Figure 10(b), and we see that we have
0:9 < 
 < 1:1. We want to underline that the obtained effectivity indices are very good (i.e., close
to 1.0) compared with what we typically achieve for regular finite elements [32].

5.3. Flow around an impervious corner

The next numerical example we consider is flow of water around an impervious corner, for example,
groundwater flow under the base of a concrete dam (Figure 11). The presence of a sharp corner
introduces singularity in the numerical solution leading to infinite velocities.
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(a) Domain (b) Analytical solution

Figure 9. The L-shape problem: domain with boundary conditions and analytical solution plot.

Figure 10. The L-shape problem: convergence and effectivity index plots.

Figure 11. One example of seepage around an impervious corner.

5.3.1. Problem definition. We study a selected area of this problem with adaptive mesh refinement
by considering the appropriate boundary conditions. The problem is idealized as an L-shape prob-
lem where the boundary conditions are applied such that they reflect the physical problem, shown
in Figure 12(a). Dirichlet boundary conditions are applied at the top horizontal and the right ver-
tical edges of the idealized numerical simulation domain. For simplicity, a homogeneous Dirichlet
boundary condition is applied at the right vertical edge, which may be slightly different in the
physical problem depending on the boundary conditions at the downstream area. The impervious
boundary �N1 represents a homogeneous Neumann boundary condition. We assume the fluxes to
be negligible on �N 2. The boundary conditions are summarized as
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Figure 12. The impervious corner problem: idealized numerical simulation domain and equipotential lines
for coarse and fine meshes.

8<
:

pw D 1000 on �D1

pw D 0 on �D2
@pw

@n
D 0 on �N1 [ �N 2

(50)

The equipotential lines obtained from simulations with uniform refinement using coarse and fine
meshes are shown in Figure 12(b) and (c), respectively.

5.3.2. Results. The mesh refinement parameter for this problem is selected as ˇ D 20%, and the
adaptive simulations are performed in combination with polynomial degrees of p D 2, p D 3, and
p D 4. The full-span refinement strategy is used in this case.
The convergence plots in Figure 13 compare the relative errors from simulations with local

and uniform refinement for the different polynomial degrees analyzed. Observe the significant
increase of convergence order, that is, optimal convergence rate, achieved by the adaptive proce-
dure. The convergence rate with local refinement in this case appears to improve with increasing
polynomial order.
The resulting physical meshes at selected refinement steps are shown in Figure 14. The meshes

and the resulting number of degrees of freedom for p D 2 at the 5th, 10th, and 15th refinement steps
are shown in Figure 14(a)–(c). Similar results for p D 3 and p D 4 are shown in Figure 14(d)–(f)
and Figure 14(g)–(i), respectively.

5.4. Flow around a cutoff wall

Seepage cutoff walls are used in geotechnical engineering to protect structure foundations from the
damaging effects of groundwater flow or to exclude groundwater from an excavation and thereby
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Figure 13. The impervious corner problem: convergence plots.

minimize the requirement of dewatering pumping. The cutoff walls are usually made of an imper-
vious or very low permeability material, such as a steel sheet-pile wall, and extend up to a zone of
low permeability. In the computational modeling of groundwater flow, the tips of such cutoff walls
represent points of singularity [9], making the numerical solution difficult or erroneous.

5.4.1. Problem definition. We consider the flow of water around a 10m long cutoff wall installed
under the base of a dam with a cross-sectional width of 50m (Figure 15). The soil medium is
considered to be homogeneous with an isotropic hydraulic conductivity of 15m/day.
The simulation domain chosen for the described dam with a cutoff wall is shown in Figure 16(a).

The cutoff wall is included in the geometry by inserting a C�1 discontinuous knot. The base of the
dam, the cutoff wall, and the boundary to the impervious layer represent homogeneous Neumann
boundaries and are respectively designated as �N1, �N 2, and �N 3. Non-homogeneous Dirichlet
boundary conditions are applied at the left and right boundaries of the domain, �D1 and �D2. The
magnitudes for these values are chosen based on the anticipated flow field that will result from the
hydraulic head differences at the upstream and downstream faces of the dam. Pressure head values
that vary linearly with height ´ are assumed, and the boundary conditions can be summarized as8<

:
pw D ´C 100 on �D1

pw D 30 � ´ on �D2
@pw

@n
D 0 on �N1 [ �N 2 [ �N 3

(51)

The equipotential lines obtained from simulations with refinements using coarse and fine meshes
are shown in Figure 16(b) and (c), respectively. The pressure heads vary between 120 kPa, at the left
boundary, and 10 kPa, at the right boundary. These correspond to hydraulic heads of approximately
12 and 1m at the upstream and downstream faces of the dam, respectively.

5.4.2. Results. We start the adaptive simulation for the cutoff problem with a relatively coarse mesh
of around 300 degrees of freedom. The polynomial degrees are varied between p D 2, p D 3 and
p D 4. The problem is also simulated using standard linear finite elements, p D 1, for compari-
son with FEA. The refinement parameter ˇ in this case is selected as 10%, and a structured mesh
adaptive refinement strategy is used.
The pressure profiles obtained using a coarse mesh could show significant discretization errors.

This is illustrated by plotting horizontal and vertical pressure profile plots for coarse and locally
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Figure 14. The impervious corner problem: adaptive meshes at different refinement steps for the selected
ˇ D 20%. Each column represents the same refinement step for varying polynomial degrees.

Figure 15. The cutoff wall problem: physical setup of dam with a cutoff wall.

refined meshes around the cutoff wall. Figure 17(a) shows horizontal pressure profiles 2m above
the tip of the cutoff wall, plotted over a horizontal distance of 25 and 12.5m on both sides of the
cutoff wall. Notice the significant difference in pressure drop over the cutoff wall, that is, 71:1 �
58:9 D 12:2 kPa and 75:5 � 54:5 D 21:0 kPa for the coarse mesh and fine mesh, respectively. This
corresponds to more than 40% underestimation of the pressure drop calculated by the coarse mesh,
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Figure 16. The cutoff wall problem: domain with boundary conditions and equipotential lines for coarse and
fine meshes. The maximum and minimum pressure head values are 120 and 10 kPa.

Figure 17. The cutoff wall problem: horizontal and vertical pressure profile plots.

which affects the expected effect of water flow at the downstream base of the dam. Vertical pressure
profiles at the location of the cutoff wall, and spanning over the entire height of the domain, are
shown in Figure 17(b). Again, we observe significant differences in the obtained solutions.
The physical meshes obtained at selected refinement steps are shown in Figure 18(a). The meshes

and the resulting number of degrees of freedom for p D 2 at the 4th and 12th refinement steps

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:738–765
DOI: 10.1002/nag

��



758 Y. W. BEKELE ET AL.

Figure 18. The cutoff wall problem: adaptive meshes at different refinement steps for the selected ˇ D 10%.
Each column represents the same refinement step for varying polynomial degrees.

Figure 19. The cutoff wall problem: convergence plots.

are shown in Figure 18(a) and (b). The corresponding results for p D 3 are shown in Figure 18(c)
and (d), whereas Figure 18(e) and (f) shows those for p D 4. At large refinement numbers, extra
refinements are observed at the boundaries where non-homogeneous Dirichlet boundary conditions
are applied because these are only approximated.
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The convergence plots comparing the relative errors from uniform and local refinement are shown
in Figure 19. The results from an FEA using standard linear finite elements, p D 1, are included for
comparison. For linear elements, FEA and IGA result in similar basis functions, and we use this fact
to compare the FEA results with local refinement using linear LR B-splines. We observe that local
refinement performs slightly better in this case. The uniform refinement simulations with higher
order polynomials show that the results are only marginally better in recovering errors compared
to the FEA results. Local refinement simulation using higher order polynomials, however, show
good convergence properties. Optimal convergence rates are obtained for p D 2 and p D 3 for the
maximum number of degrees of freedom specified in the adaptive simulation. The convergence rate
appears to improve for p D 4 but requires more refinement steps to reach an optimal order, thereby
increasing the total number of degrees of freedom.

5.5. Flow in a heterogeneous medium

The errors observed in the numerical simulation of groundwater flow in heterogeneous formations
using coarse meshes could be very significant, [19]. Using a very fine mesh for such cases helps
in reducing these errors, but a uniform refinement throughout the domain implies unnecessarily
fine meshes at locations where the errors are smaller. In such cases, adaptive simulation with local
refinement could be more effective.

5.5.1. Problem definition. We consider a square domain of size 1 � 1m. The heterogeneous
hydraulic conductivity k on the flow domain is assumed to follow a lognormal distribution. The
probability density function for the lognormal distribution of k is

f .k/ D 1

k
p

2�
e
� .ln.k/��/2

2�2 (52)

where � is the mean and  is the standard deviation of the normally distributed logarithm of the
hydraulic conductivity. A random field with � D �15 and  D 7 was generated.
For smoothing out the randomly generated data, a Gaussian filter of the form

g.x; y/ D e
� 1

3

�
x2

lx
Cy2

ly

�
(53)

is applied. The filter dimensions in the x and y directions are chosen to be the same with values of
lx D ly D 20. The smoothed data were truncated such that the hydraulic conductivity values vary
between 10�3 and 10�7m/s. The realization of the stationary random field generated is shown in
Figure 20 in terms of color field and 3D plots.

Figure 20. The heterogeneous problem: realization of the randomly generated hydraulic conductivity field.
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Figure 21. The heterogeneous problem: simulation domain with boundary conditions and equipotential lines
for coarse and fine meshes.

Dirichlet boundary conditions are applied on the left and right boundaries of the heterogeneous
square domain to create a pressure gradient. The top and bottom boundaries of the domain are
represented by homogeneous Neumann (no-flux) boundary conditions. An illustration of the applied
boundary conditions is shown in Figure 21(a). These boundary conditions are

8<
:

pw D 1000 on �D1

pw D 0 on �D2
@pw

@n
D 0 on �N1 [ �N 2

(54)

The equipotential lines obtained from simulation with uniform refinement using coarse and fine
meshes are shown in Figure 21(b) and (c), respectively. The difference in the hydraulic conductiv-
ity within the domain creates preferential flow paths, and this results in very large changes in the
pressure gradient at some locations of the domain.

5.5.2. Results. The heterogeneous problem is simulated starting from a relatively coarse mesh with
number of degrees of freedom being around 170. Polynomial degrees of p D 2 and p D 3 are
considered and the refinement parameter ˇ in this case is selected as 10%. The resulting physical
meshes for selected refinement steps are shown in Figure 22. In particular, Figure 22(a)–(c) shows
the locally refined meshes for p D 2, whereas Figure 22(d)–(f) shows those for p D 3.
The convergence plots comparing local and uniform refinements for p D 2 and p D 3 are shown

in Figure 23. The plots indicate that the convergence rate gained by using local refinement is not
very significant. The reason for this is that unlike complex boundary conditions which could imply

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:738–765
DOI: 10.1002/nag

��



ADAPTIVE ISOGEOMETRIC ANALYSIS OF STEADY-STATE GROUNDWATER FLOW 761

Figure 22. The heterogeneous problem: adaptive meshes at different refinement steps for the selected ˇ D
10%. Each column represents the same refinement step for varying polynomial degrees.

Figure 23. The heterogeneous problem: convergence plots.

strong singularities, varying material behavior is a weak discontinuity. The error recovery using local
refinement, however, could be more significant compared with uniform refinement for simulations
over large heterogeneous domains.
The random hydraulic conductivity field considered in Figure 20 shows a very large variability in

the conductivity values. In some cases, the hydraulic conductivity fields in heterogeneous aquifers
could show variability of a lesser magnitude within the domain. One such lognormal random field is
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Figure 24. The heterogeneous problem: realization of the randomly generated hydraulic conductivity field.

Figure 25. The heterogeneous problem: adaptive meshes at different refinement steps for the selected ˇ D
20%. Each column represents the same refinement step for varying polynomial degrees.

generated and shown in Figure 24. The random field is generated by assuming a mean � D �10 and
a variance 2 D 2. The filter dimensions in this case are taken as lx D 1 and ly D 15. The hydraulic
conductivity values vary by an order of magnitude of 10. Adaptive simulations were performed with
p D 2 and p D 3, using ˇ D 20%. The resulting adaptive meshes at selected refinement steps are
shown in 25. The difference in convergence rates between uniform and local refinement for this case
is small and is not shown here.
Material property variation in other cases may be of a non-homogeneous type, and such a problem

may be handled depending on the strength of the discontinuity introduced by the non-homogeneity.
Weak discontinuities, such as material interfaces in a domain with layered materials, can be simu-
lated accurately by ensuring C 0 continuity at the interfaces, without requiring adaptive refinement.
This is achieved in IGA by making the multiplicity of the knots, m, at the interfaces equal to the
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polynomial degree, p, used, that is, C p�m continuity. Strong discontinuities, such as cracks and
impervious interfaces, result in jumps in the computed solution and introduce singularities depend-
ing on their location in the flow domain. These features can be simulated by introducing C�1

discontinuities, which is one of the powerful features of IGA. The cutoff wall example in Section 5.4
represents a special case of such strong discontinuities.

6. CONCLUDING REMARKS

Steady-state groundwater flow problems with varying numerical challenges were studied using
adaptive IGA with locally refined (LR) B-splines. In particular, the problems studied were flow
around an impervious corner, flow around a cutoff wall and flow in a heterogeneous medium. The
simulations were performed using both local and uniform refinement. The adaptive simulations
with local refinement rely on a posteriori error estimates as a refinement criteria where the error
estimates are based on CGL2 projection of the computed solution. The effectivity of the error esti-
mator was verified with benchmark problems which have analytical solutions, before being used in
the application examples. In general, adaptive simulations with local refinement were observed to
outperform simulations with uniform refinement in terms of error recovery. Optimal convergence
rates were obtained for problems with strong singularities where the rates were observed to improve
with increasing polynomial orders. Application to problems with weak discontinuities, because of
material property variation, shows that optimal convergence rates may not be achieved, but adap-
tive refinement still performed better than uniform refinement in error recovery. Local refinement
could especially be more useful for large-scale groundwater flow problems, with singularities and/or
discontinuities, where simulations with uniform refinement could be computationally expensive.
In the present study, only two-dimensional groundwater flow problems were presented. Applica-

tion to three-dimensional problems, however, is straightforward where the mathematical procedures
are a simple extension of the formulations presented in Section 3.1.2. In particular, we will have
trivariate functions for three-dimensional problems based on three knot vectors in each direction. As
in the bivariate case, the refinements are performed in one parametric domain at a time as illustrated
in Eq. (17).

APPENDIX A: SOURCE FUNCTION AND SECONDARY SOLUTION FOR THE
WAVEFRONT PROBLEM

The source function f corresponding to the assumed analytical solution of the wavefront problem
numerical example in Section 5.2.1 is given by

f D
�

250000.a � 0:25/

a2b2
C 50

a3b

	 �
c.x � 0:5/2 C .y � 0:5/2

� � 50.c C 1/

ab

where

a D
p

.x � 0:5/2 C .y � 0:5/2

b D 2500 Œa � 0:25�2 C 1

c D �x

�y

) Degree of anisotropy

The secondary solution, that is, the velocity, for the wavefront problem is derived from the Darcy
equation as

v D � 50

ab

²
c.x � 0:5/

.y � 0:5/

³
(A.1)
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Abstract

Pressure oscillations at small time steps have been known to be an issue in poroelastic-
ity simulations. A review of proposed approaches to overcome this problem is presented.
Critical time steps are specified to alleviate this in finite element analyses. We present a
mixed isogeometric formulation here with a view to assessing the results at very small time
steps. Numerical studies are performed on Terzaghi’s problem and consolidation of a layered
porous medium with a very low permeability layer for varying polynomial degrees, continu-
ities across knot spans and spatial discretizations. Comparisons are made with equal order
simulations.

Keywords: poroelasticity, isogeometric analysis, mixed formulation, pressure oscillations

1. Introduction

The study of porous materials, where the flow of fluid and solid deformation are coupled,
is essential in several areas of science and engineering. The theory of poroelasticity is a
mathematical formulation developed to describe these coupled processes and predict the
response of fluid saturated/unsaturated porous media to external loading. There are different
types of porous materials that are studied under this theory such as soil, rock, concrete
and other man-made materials. Poroelasticity has a wide range of applications in different
disciplines of engineering mechanics and natural sciences. Some of the application areas
include geomechanics, biomechanics, reservoir engineering and earthquake engineering. In
addition to these diverse areas of application, it is gaining popularity in the study of modern
man-made porous media in material science.

The mathematical formulations describing the fluid-solid coupled processes are devel-
oped based on porous media theory where the multiphase medium is approximated as a
continuum, [2]. The volume fraction concept is used for averaging the properties of the
multiphase medium in a continuum formulation.
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The governing partial differential equations of poroelasticity were first developed for
a one-dimensional case by Terzaghi [3, 4]. The formulations were later generalized for a
three-dimensional case and extended by Biot [5, 6, 7]. The mathematical formulations
have been studied extensively by several researchers since then. Various analytical and
numerical studies have been proposed in the literature. Analytical solutions were obtained
for problems with simplified material domains and boundary conditions. Application to
boundary value problems with complex material domains and boundary conditions required
the use of numerical methods. The emergence of the finite element method opened the door
for a detailed numerical study of poroelasticity and for application to arbitrary geometries
and boundary conditions.

The finite element method was first applied to the governing equations of poroelasticity
to solve the initial boundary value problem of flow in a saturated porous elastic medium
by Sandhu and Wilson [8]. Hwang et al. [9] also used the finite element method for plane
strain consolidation problems and verified the results against closed form solutions. The
application of the finite element method started gaining momentum afterwards and several
researchers engaged themselves not only on application problems but also in the investigation
of the numerical properties of the method within the context of poroelasticity. Ghaboussi
and Wilson [10] applied the finite element method to partially saturated elastic porous media
and first noticed the ill-conditioning of the matrix equations that may result when an incom-
pressible fluid is assumed to occupy the pore spaces. Booker and Small [11] investigated the
stability of the numerical solution when the finite element method is applied to Biot’s consol-
idation equations. The stability was studied for different numerical integration schemes and
time-step sizes. The numerical performance of some finite element schemes for analysis of
seepage in porous elastic media was studied by Sandhu et al. [12]. They studied various spa-
tial and temporal discretization schemes and evaluated the numerical performances against
the analytical solution of Terzaghi’s one-dimensional consolidation problem. Triangular and
quadrilateral elements with equal and mixed orders of interpolation for the displacement
and pressure were considered. It was shown that the elements with equal orders of interpo-
lation showed oscillatory behavior in the solution. Vermeer and Verruijt [13] derived a lower
bound for the time-step size in the analysis of consolidation by finite elements in terms of
the mesh size and the coefficient of consolidation. They showed that there is an accuracy
condition in the finite element analysis of consolidation by using a critical time-step, below
which oscillatory solutions are observed. The derived critical time-step is strictly valid for a
one-dimensional case and a uniform finite element mesh. Reed [14] analyzed the numerical
errors in the analysis of consolidation by finite elements. It was shown that the use of a
mixed formulation for the field variables helps in reducing the pore pressure oscillations but
may not remove them entirely. They instead used Gauss point smoothing to eliminate the
pore pressure oscillations. Special finite elements for the analysis of consolidation were pro-
posed by Sandhu et al. [15]. They presented “singularity” elements to model pore pressures
in the vicinity of free-draining loaded surfaces immediately after application of loads. The
elements were special in that they use special interpolation schemes which reflect the actual
variation of the field variables.

The finite element method became a well-established method for the analysis of poroelas-

2

��



ticity problems and the mathematical properties of the governing equations and the numeri-
cal solution were studied in a further great detail. Murad and Loula [16] presented numerical
analysis and error estimates of finite element approximations of Biot’s consolidation problem.
They used a mixed formulation and improved the rates of convergence by using a sequential
Galerkin Petrov-Galerkin post-processing technique. In a further study, [17], they investi-
gated the stability and convergence of finite elements approximations of poroelasticity. They
derived decay functions showing that the pore pressure oscillations, arising from an unstable
approximation of the incompressibility constraint on the initial conditions, decay in time.
Finite element analysis of consolidation with automatic time-stepping and error control was
presented by Sloan and Abbo [18, 19]. Automatic time increments were selected such that
the temporal discretization error in the displacements is close to a specified tolerance. Fer-
ronato et al. [20] studied the ill-conditioning of finite element poroelasticity equations with
a focus on the instabilities that may affect the pore pressure solution. They claim that the
origin of most instabilities is due to the assumption that, for initial conditions, the porous
medium behaves as an incompressible medium if the pore fluid is incompressible. They also
argue that oscillatory pore pressure solutions may not always be observed for very stiff and
low permeable materials depending on the critical time step. Gambolati et al. [21] studied
the numerical performance of projection methods in finite element consolidation models.
Dureisseix et al. [22] proposed a large time increment (LATIN) computational strategy for
problems of poroelasticity to improve the efficiency of the finite element analysis. A finite
element formulation to overcome spatial pore pressure oscillations caused by small time in-
crements was proposed by Zhu et al. [23]. Korsawe et al. [24] compared standard and mixed
finite element methods for poroelasticity. In particular, Galerkin and least-squares mixed
finite element methods were compared. They claim that Galerkin’s method is able to pre-
serve steep pressure gradients but overestimates the effective stresses. On the other hand,
a least-squares mixed method was noticed to have the advantage of direct approximation
of the primary variables and explicit approximation of Neumann type boundary conditions
but to be computationally more expensive. A mixed least-squares finite element method
for poroelasticity was also proposed by Tchonkova et al. [25], claiming that pore pressure
oscillations are eliminated for different temporal discretizations. A coupling of mixed and
continuous Galerkin finite element methods for poroelasticity was investigated for continu-
ous and discrete in time cases by Phillips and Wheeler [26, 27]. They also studied a coupling
of mixed and discontinuous Galerkin finite-element methods, [28]. Haga et al. [29] studied
the causes of pressure oscillations in low-permeable and low-compressible media by present-
ing two, three and four field mixed formulations in terms of the field variables displacement,
pore fluid pressure, fluid velocity and solid skeleton stress.

A posteriori error estimation and adaptive refinement in poroelasticity has been studied
by very few researchers. Larsson and Runesson [30] presented a novel approach for space-
time adaptive finite element analysis for the coupled consolidation problem in geomechan-
ics. El-Hamalawi and Bolton [31] proposed an a posteriori error estimator for plane-strain
geotechnical analyses based on superconvergent patch recovery with application to Biot’s
consolidation problem. They later extended the application of the a posteriori estimator for
axisymmetric geotechnical analyses in [32]. Adaptive isogeometric finite element analysis,
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with LR B-Splines, for steady-state groundwater flow problems was presented by Bekele et
al. [33] but application to poroelasticity still remains as a task to study.

Isogeometric finite element analysis of poroelasticity was first presented by Irzal et al. [1].
The advantages of the smoothness of the basis functions in isogeometric analysis were high-
lighted in their application. One of the advantages of higher continuity is that the numerical
implementation results in a locally mass conserving flow between knotspans, analogous to
elements in finite element analysis. But the formulation presented relied on equal orders
of interpolation for the field variables in poroelasticity, namely displacement and pore fluid
pressure. Such a formulation, while still useful for several applications without significant
numerical challenges, has limitations when it comes to problems where the material proper-
ties or boundary conditions are problematic.

In this paper, we present a mixed isogeometric formulation for poroelasticity. To our best
knowledge, this is the first time that a mixed isogeometric formulation for poroelasticity is
presented. The paper is structured as follows. In Section 2, the governing equations of
poroelasticity are presented. The fundamentals of isogeometric analysis and its particular
features of interest within the current context are discussed in Section 3. Numerical examples
are given in Section 4 and the observations are summarized with concluding remarks in
Section 5.

2. Governing Equations

Biot’s poroelasticity theory [5, 6] couples elastic solid deformation with fluid flow in
the porous medium where the fluid flow is assumed to be governed by Darcy’s law. The
governing equations of the theory, the necessary boundary conditions, weak formulation and
Galerkin finite element discretization are presented in the following sections.

2.1. Linear Momentum Balance Equation

The linear momentum balance equation for a fluid-saturated porous medium is given by:

∇ · (σ′ + αpfI
)︸ ︷︷ ︸

=σ

+ρb = 0 (1)

where σ is the total stress, σ′ is the effective stress, α is Biot’s coefficient, pf is the fluid
pressure, I is an identity matrix, ρ is the overall density of the porous medium and b
represents body forces. The Biot coefficient α can be calculated from:

α = 1− Kt

Ks

(2)

where Kt and Ks are the bulk moduli of the porous medium and solid particles, respectively.
The constitutive equation for poroelasticity relates stress and strain linearly as:

σ′ = D : ε (3)
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where D is a fourth-order stiffness tensor. Small deformations are also assumed, so the
strain ε satisfies a linear first-order equation with respect to the displacement u,

ε =
1

2
(∇u+∇ᵀu) (4)

where 1/2(∇+∇ᵀ) is the symmetrized gradient operator i.e.

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (5)

In the following, it will be convenient to lower tensors and higher differential operators to
Voigt notation, which represents the symmetric d × d tensor σ′ as a d(d+1)/2-vector, which
we will denote with a tilde:⎡

⎣σ′
xx σ′

xy σ′
xz

σ′
xy σ′

yy σ′
yz

σ′
xz σ′

yz σ′
zz

⎤
⎦

︸ ︷︷ ︸
σ′

⇐⇒ {
σ′
xx σ′

yy σ′
zz σ′

yz σ′
xz σ′

xy

}ᵀ︸ ︷︷ ︸
σ̃′

A similar conversion takes place for the strains, where the shear strains are replaced by the
engineering shear strains:⎡

⎣εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

⎤
⎦

︸ ︷︷ ︸
ε

⇐⇒ {
εxx εyy εzz 2εyz 2εxz 2εxy

}ᵀ︸ ︷︷ ︸
ε̃

Voigt notation allows us to express the equilibrium equation and the stress-strain equation
using the same differential operator L,

Lᵀ =

⎡
⎣ ∂

∂x
0 0 ∂

∂y
0 ∂

∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

⎤
⎦ (6)

Using L yields the following equilibrium equation in terms of the two primary unknowns u
and pf ,

LᵀD̃Lu− α∇pf + ρb = 0, (7)

where D̃ is the Voigt notation equivalent of D, taking into account the aforementioned
engineering shear strains. We will generally assume isotropic materials, where D̃ takes the
block form (in terms of Young’s modulus E and Poisson’s ratio ν)

D̃ =
E

(1 + ν)(1− 2ν)

[
D̃11 0

0 D̃22

]
(8)

where the two blocks are given as

D̃11 = (1− 2ν)I + ν1

D̃22 =
1− 2ν

2
I

(9)

and 1 is a matrix of ones.
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2.2. Mass Balance Equation

A mass conservation equation together with the equilibrium equation in (7) completes
the governing equations of poroelasticity. The fluid content ζ is given by

ζ = α∇ · u+ cpf (10)

where c is the storativity or specific storage coefficient at constant strain. It is given by

c =
α− n

Ks

+
n

Kf

(11)

where Kf is the bulk modulus of the fluid and n is the porosity of the material. The change
in the fluid content ζ satisfies the equation

∂ζ

∂t
+∇ ·w = 0 (12)

where w is the fluid flux, which is given by Darcy’s law as:

w = − 1

γf
k · (∇pf − ρfb

)
(13)

where γf is the unit weight of the fluid, ρf its density and k is the hydraulic conductivity
matrix.

The final equation of mass balance is then

α∇ · u̇+ c
∂pf

∂t
+∇ ·

[
− 1

γf
k · (∇pf − ρfb

)]
= 0. (14)

2.3. Boundary Conditions

The governing linear momentum and mass balance equations in (7) and (14), respectively,
are accompanied by the usual boundary conditions in the formulation of bounary value
problems. Let (Γu

D,Γ
p
D) and (Γu

N ,Γ
p
N) be two partitions of the boundary ∂Ω of domain Ω,

for representing Dirichlet and Neumann boundary conditions, respectively.
The Dirichlet boundary conditions for the equilibrium (7) and mass balance (14) equa-

tions are {
u = u on Γu

D,

pf = pf on Γp
D,

(15)

where u and pf are the prescribed displacement and pressure, respectively.
The Neumann boundary conditions are{

σ · n = t on Γu
N ,

w · n = q on Γp
N ,

(16)

where n is the outward pointing normal vector, t is the surface traction and q is the fluid
flux on the boundary.
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2.4. Variational Formulation
To derive the variational formulations of equations (7) and (14), we introduce a vector-

valued test function δu, which vanishes on Γu
D, and a scalar test function δp, which vanishes

on Γp
D.

We start with the total stress formulation of the linear momentum balance equation,
which from equation (7) is given by

∇ · σ + ρb = 0. (17)

Multiplying by the test function δu and integrating over the domain Ω gives∫
Ω

δuᵀ∇ · σdΩ +

∫
Ω

δuᵀρbdΩ = 0. (18)

The first term in the above equation contains a double derivative of the unknown displace-
ment, and is relaxed using a form of Green’s theorem,∫

Ω

δuᵀ∇ · σdΩ =
∑
i

∫
Ω

δui∇ · σidΩ

=
∑
i

∫
∂Ω

δuiσi · ndΓ−
∑
i

∫
Ω

∇δui · σidΩ

=

∫
Γu
N

δuᵀtdΓ−
∫
Ω

∇δu : σdΩ.

(19)

Due to the symmetry of the stress tensor, the last term is expressible in Voigt notation,

∇δu : σ = (Lδu)ᵀσ, (20)

yielding the weak form of (7) as∫
Ω

(Lδu)ᵀD̃(Lu)dΩ− α

∫
Ω

(Lδu)ᵀĨpfdΩ =

∫
Ω

δuᵀρbdΩ +

∫
Γu
N

δuᵀtdΓ (21)

where we have used Ĩ as the Voigt notation identity operator, which for a general three-
dimensional case is given by:

Ĩ = {1, 1, 1, 0, 0, 0}ᵀ (22)

For the mass balance equation, multiplying (14) by the scalar test function δp and integrating
over the domain Ω, we get

α

∫
Ω

δp∇ · u̇dΩ + c

∫
Ω

δp
∂pf

∂t
dΩ +

∫
Ω

δp∇ ·
[
− 1

γf
k · (∇pf − ρfb

)]
dΩ = 0. (23)

Again, by applying Green’s theorem to the last term, we obtain∫
Ω

δp∇ ·
[
− 1

γf
k · (∇pf − ρfb

)]
dΩ =

∫
Γp
N

δpqdΓ−
∫
Ω

∇δp ·
[
− 1

γf
k · (∇pf − ρfb

)]
dΩ. (24)

Thus, the weak form of the mass balance equation, (14), is

α

∫
Ω

δp∇·u̇dΩ+c

∫
Ω

δp
∂pf

∂t
dΩ+

∫
Ω

∇δpᵀ
1

γf
k∇pfdΩ =

∫
Ω

∇δpᵀ
1

γf
kρfbdΩ−

∫
Γp
N

δpqdΓ. (25)
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2.5. Galerkin Finite Element Formulation

With a suitable number N of basis functions defined, let Np : Ω → R
1×N and Nu : Ω →

R
d×dN be the basis interpolation matrices for the pressure and displacement respectively.

The unknowns and the test functions can then be represented using coefficient vectors:

u = Nuu
c, δu = Nuδu

c,

pf = Npp
c, δp = Npδp

c
(26)

where uc and pc are the control point values of the displacement and pressure field variables.
Application of (26) to the weak form of the linear momentum balance equation in (21) results
in the matrix the discrete system of equations (after canceling δuc and δpc, as equations (7)
and (14) are supposed to be valid for any choice of these)

Kuc −Qpc = fu (27)

where the stiffness matrix K, the coupling matrix Q and the vector of body forces and
surface tractions fu are given by

K =

∫
Ω

BᵀD̃BdΩ

Q =

∫
Ω

BᵀαĨNpdΩ

fu =

∫
Ω

N ᵀ
uρbdΩ +

∫
Γu
N

N ᵀ
u tdΓ

(28)

Here B = LNu is the strain-displacement matrix. Similarly, using (26) in the weak form of
the mass balance equation in (25) results in the discrete system of equations

Qᵀ∂u
c

∂t
+ S

∂pc

∂t
+ Ppc = fp (29)

where the storage matrix S, the permeability matrix P and the vector of fluid body forces
and fluxes fp are given by

S =

∫
Ω

N ᵀ
p cNpdΩ

P =

∫
Ω

∇N ᵀ
p

1

γf
k∇NpdΩ

fp =

∫
Ω

∇N ᵀ
p

1

γf
kρfbdΩ−

∫
Γp
N

N ᵀ
p qdΓ.

(30)

Combining equations (27) and (29) results in the coupled system of equations for poroelas-
ticity [

0 0
Qᵀ S

]{
u̇c

ṗc

}
+

[
K −Q
0 P

]{
uc

pc

}
=

{
fu

fp

}
. (31)
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A symmetric system of equations can be obtained by time-differentiating the first equation
and multiplying one of the equations by −1, [34]:[−K Q

Qᵀ S

]{
u̇c

ṗc

}
+

[
0 0
0 P

]{
uc

pc

}
=

{−ḟu

fp

}
(32)

In this formulation, it is important that time-dependent quantities involved in fu, such
as traction and body forces, are “ramped up” from an initial equilibrium instead of being
applied immediately. This can be done in the first time step.

2.6. Temporal Discretization

The generalized trapezoidal rule (GTR) is applied for the temporal discretization of
the coupled system of matrix equations in (32). Representing the vector of unknowns by
X = {uc,pc}ᵀ, we have the GTR approximation

∂X

∂t

∣∣∣∣
n+θ

=
Xn+1 −Xn

Δt

Xn+θ = (1− θ)Xn + θXn+1

(33)

where θ is a time integration parameter which has limits 0 ≤ θ ≤ 1 and n is a time
step identifier. Adopting backward Euler time stepping (θ = 1) with time step Δt and
applying (33) to (32) we obtain the system of equations[−K Q

Qᵀ S +ΔtP

]{
uc

pc

}
n+1

=

[−K Q
Qᵀ S

]{
uc

pc

}
n

+Δt

{−ḟu

fp

}
n+1

(34)

which is a linear system in this case, for poroelasticity, as the coefficient matrices are inde-
pendent of the unknowns.

3. Isogeometric Analysis

3.1. Introduction

Since its first introduction by Hughes et al. [35], isogeometric analysis (IGA) has been
successfully applied to several areas of engineering mechanics problems. The fundamental
aim for the introduction of IGA was the idea of bridging the gap between finite element
analysis (FEA) and computer-aided design (CAD). The main concept behind the method
is the application of the same basis functions used in CAD for performing finite element
analysis. In the process of its application to various engineering problems, IGA has shown
advantages over the conventional finite element method, for instance the ease of performing
finite element analysis using higher order polynomials.

We briefly present the fundamentals behind B-Splines and Non-Uniform Rational B-
Splines (NURBS) in the next section and highlight the features of IGA that are important
in our context.
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3.2. Fundamentals on B-Splines and NURBS

We start the discussion on B-Splines and NURBS by first defining a knot vector. A knot
vector in one dimension is a non-decreasing set of coordinates in the parameter space, written
Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, ..., n+p+1, p
is the polynomial order, and n is the number of basis functions. Knot vectors may be uniform
or non-uniform depending on whether the knots are equally spaced in the parameter space
or not.

A univariate B-Spline curve is parametrized by a linear combination of n B-Spline basis
functions, {Ni,p}ni=1. The coefficients corresponding to these functions, {Xi}ni=1, are referred
to as control points. The B-Spline basis functions are recursively defined starting with
piecewise constants (p = 0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(35)

For higher-order polynomial degrees (p ≥ 1), the basis functions are defined by the
Cox-de Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (36)

B-Spline geometries, curves, surfaces and solids, are constructed from a linear combi-
nation of B-Spline basis functions. Given n basis functions Ni,p and corresponding control
points Pi ∈ R

d, i = 1, 2, ..., n, a piecewise polynomial B-Spline curve is given by:

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (37)

Similarly, for a given control net Pi,j, i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial orders
p and q, and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}, and H = {η1, η2, ..., ηm+q+1}, a tensor
product B-Spline surface is defined by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (38)

B-Spline solids are defined in a similar way as B-Spline surfaces from tensor products
over a control lattice.

NURBS are built from B-Splines to represent a wide array of objects that cannot be
exactly represented by polynomials. A NURBS entity in R

d is obtained by projective trans-
formation of a B-Spline entity in R

d+1. The control points for the NURBS geometry are
found by performing exactly the same projective transformation to the control points of the
B-Spline curve. A detailed treatment of B-Splines and NURBS can be referred from Cottrell
et al. [36].
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C−1 C3 C2 C1 C0 C−1

Figure 1: Different continuities across knotspans, after [36].

3.3. Important Features in Current Context

IGA has a number of advantages over FEA such as the ability to represent exact ge-
ometries of structures or domains, non-negative basis functions and isoparametric mapping
at patch level. In the context of the current work, we focus on the features of IGA that
are especially important. These features are improved continuity because of the smoothness
of the basis functions and the ability to perform simulations with high continuity and high
regularity meshes. We look closely into each here.

3.3.1. Continuity

One of the most distinctive and powerful features of IGA is that the basis functions
will be Cp−m continuous across knotspans (analogous to elements in FEA), where p is the
polynomial degree and m is the multiplicity of the knot. This means that the continuity
across knotspans can be controlled by the proper choice of p and m. The continuity can
be decreased by repeating a knot - important to model non-smooth geometry features or
to facilitate the application of boundary conditions. For instance, quadratic (p = 2) splines
are C1 continuous over non-repeated knots while quadratic Lagrange finite element bases
are only C0 continuous. If we consider the quartic (p = 4) basis functions constructed from
the open, non-uniform knot vector Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}, we
get different continuities across knotspans as shown in Figure 1.

3.3.2. k-refinement

IGA and FEA both allow h- and p-refinements i.e. increasing the number of knotspans
by knot insertion (increasing the number of elements in FEA) and raising the polynomial
order. The non-commutativity of knot insertion and polynomial order elevation results in a
type of refinement that is unique to IGA, called k-refinement. This is achieved by performing
polynomial order elevation followed by knot insertion. This results in a high continuity mesh
with the least number of degrees of freedom i.e. high regularity.
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p = 1 p = 2 p = 3

Figure 2: Number of control points for a given element on a simple B-Spline surface with different
polynomial degrees. The element is highlighted and the blue squares represent control points.

3.4. Mixed Isogeometric Formulation

A mixed formulation is constructed by first defining the knot vectors and basis functions
defining the geometry of the domain. The polynomial order defining the geometry is used
as the polynomial degree for one of the field variables and is raised by the desired degree
for the other field variable. In our context, the polynomial order for the pressure, pp, is
defined by the geometry construction and the polynomial order for the displacement, pu,
is raised by one. Both pp and pu can then be raised to the desired degree starting from
the initial definition. For example, a simple two-dimensional geometry defined by the knot
vectors Ξ = {0, 0, 1, 1} and H = {0, 0, 1, 1} implies pp = 1 and pu = 2 with 4 and 9 control
points, respectively. The number of control points, location of degrees of freedom in IGA,
on a B-Spline surface for different polynomial degrees is shown in Figure 2.

4. Numerical Examples

In this section, the performance of a mixed isogeometric formulation is investigated for
some numerical examples. We first consider Terzaghi’s classical one-dimensional consoli-
dation problem for verification and mesh convergence studies. Consolidation of a layered
medium with a low permeability layer sandwiched between two high permeability layers is
studied. The mixed formulation results are compared with equal order simulation.

4.1. Terzaghi’s Problem

Terzaghi’s problem is a classical one-dimensional consolidation problem with an ana-
lytical solution, which makes it suitable for code validation. A saturated porous medium
subjected an external loading under plane-strain condition is considered where the fluid is
allowed to dissipate only at the top boundary, hence resulting in a one-dimensional consol-
idation. A no flux boundary condition is assumed for the lateral and bottom boundaries.
The displacement boundary conditions are such that the lateral sides are constrained from
horizontal deformation and the bottom boundary is fixed in both the horizontal and vertical
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h = 8mm

ty = −p0, ux = 0, pf = 0

u = 0, q = 0

ux = 0

q = 0

ux = 0

q = 0

Figure 3: Terzaghi’s problem: Domain and boundary conditions.

directions. The external load is applied as a Neumann traction p0 at the top boundary. The
domain and boundary conditions considered are shown in Figure 3.

The analytical solution for the pressure field as a function of time and space is given by:

pf(t, y)

p0
=

4

π

∞∑
i=1

(−1)i−1

2i− 1
exp

[
−(2i− 1)2

π2ts
4

]
cos

[
(2i− 1)

πy

2h

]

where the dimensionless time ts is given as a function of the consolidation coefficient cv and
drainage path h (total height for one-way drainage) by:

ts =
cv
h2

t. (39)

The consolidation coefficient cv is given by:

cv =
(1− ν)Eκ

(1 + ν)(1− 2ν)
(40)

The material parameters used for this problem are given in Table 1, as used in [1]. The
choice of the storativity value c = 0 effectively corresponds to assuming incompressible solid
grains and an incompressible fluid.

The Terzaghi verification problem is simulated in a mixed and equal order formulation
for comparison. The polynomial degrees considered for the pressure are pp = 1, 2, 3. The
corresponding values for the displacement in a mixed formulation are pu = 2, 3, 4. The
number of elements used in the simulation is Ne = 72. Critical and sub-critical time step
sizes are considered to study the sensitivity of the simulations to temporal discretization
and to evaluate accuracy of the solution for small time step sizes. The critical time step is
calculated according to the relation derived in [13].
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Table 1: Terzaghi’s problem: Load and material parameters.

Parameter Value Unit

External load, p0 1.0× 106 Pa
Hydraulic conductivity, k 1.962× 10−14 m2

Biot’s coefficient, α 1.0 −
Young’s modulus, E 6.0× 106 Pa
Poisson’s ratio, ν 0.4 −
Storativity, c 0 Pa−1

Body forces, b 0 N

The results from a simulation using the critical time step are shown in Figure 4. A linear
solution space is used for the pressure and a quadratic space for the displacement. The
results from simulations with a sub-critical time step are shown in Figure 5 for mixed and
equal order cases. The results with the time step size equal to the critical time step show
no oscillations in the pressure values. On the other hand, slight oscillations are visible for
the sub-critical time step case. These oscillations at very small time steps appear worse for
the equal order simulations compared to the mixed simulation. In both cases, the results
are observed to improve with increasing polynomial degrees.
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t = 2000Δtc
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Figure 4: Numerical solution to the Terzhagi problem with pp = 1, pu = 2 and and Ne = 72 using
critical time step.

pp = 1 pp = 2 pp = 3

0 1
0

1

y/h

pf/p0

(a) Mixed

0 1
0

1

y/h

pf/p0

(b) Equal order

Figure 5: Numerical solution to the Terzaghi problem with Ne = 72 using a sub-critical time step
of Δt = 0.1Δtc for different polynomial degrees. All plots are shown for the first time step.

4.2. Terzaghi’s Problem: Convergence Study

Next, a simplified version of the Terzaghi problem is used as a convergence study. We
consider a domain with dimensions of w × h = 1 × 1 with the same boundary conditions
as in the previous case. For simplicity we choose the following material parameters: α = 1,
c = 0, E = 2/3, ν = 0.25 and κ = 1. The external load applied is p0 = 1 and we assume no
body forces i.e. b = 0.

This case was run with an increasing number of degrees of freedom using polynomial
degrees pp = 1, 2, 3 for the pressure and correspondingly pu = 2, 3, 4 for the displacement.
In all cases, the time step was kept sufficiently small for the spatial discretization error to
dominate and we look at the results at the end of the first time step.

The convergence study is performed by calculating the relative L2 error of the pressure
field. The relative error based on the computed pressure values, ρh, is calculated from

ρh =
‖pfh − pf‖L2

‖pf‖L2

(41)

where pfh and pf are the computed and analytical solution pressures, respectively. The results
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Figure 6: Convergence rates in the relative L2 norm of pressure, for three different polynomial
degrees.

from the mesh convergence study are shown in Figure 6 in terms of plots of the relative error
versus the total number of degrees of freedom. The expected convergence rate based on the
analytical solution is also shown. We observe from the results that optimal convergence
rates are obtained for all polynomial degrees considered.

4.3. Low Permeability Layer

The next example we consider is the consolidation of a very low permeability layer
sandwiched between two high permeability layers, as presented in [29]. A one-dimensional
consolidation is assumed by applying the appropriate boundary conditions. The fluid is
allowed to dissipate at the top boundary and a no flux condition is defined at the lateral and
bottom boundaries. The bottom boundary is fixed from vertical and horizontal displacement
and the domain is allowed to deform only in the vertical direction. An external load p0 is
applied at the top boundary. The problem setup with the boundary conditions is shown in
Figure 7.

The material parameters for this problem are given in Table 2. Simplified material prop-
erties are assumed to focus on the permeability differences of the middle and the bounding
layers.

The low permeability layer problem is studied using mixed and equal order simulations.
The polynomial degrees for the pressure are increased continuously from linear to quartic
i.e. pp = 1, 2, 3, 4. The corresponding polynomial degrees for the displacement in a mixed
formulation are pu = 2, 3, 4, 5. The continuities at the boundaries between the layers are also
varied. We consider C0 and Cpp−1 continuities at these interfaces. In addition, simulations
are performed for uniform and graded meshes. The results are presented for these different
combinations.
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Figure 7: The Haga problem: Domain and boundary conditions.

Table 2: The Haga problem: Load and material parameters.

Parameter Value Unit

External load, p0 1.0 Pa
Darcy coefficient, k1/γf 1.0 m2/Pa s
Darcy coefficient, k2/γf 1.0× 10−8 m2/Pa s
Biot’s coefficient, α 1.0 −
Young’s modulus, E 0.67 Pa
Poisson’s ratio, ν 0.25 −
Storativity, c 0 Pa−1

Body forces, b 0 N

The results from simulations with a uniformly refined mesh are shown in Figure 8 for
the mixed and equal order cases. Severe pressure oscillations are observed within the low
permeability layer for the equal order simulations. Due to its high permeability, the fluid in
the top layer dissipates very quickly for the time step size considered here i.e. Δt = 1s. The
pressure oscillations start as soon as the fluid in the low permeability layer starts dissipating.
The results improve with increasing polynomial degrees but some oscillations are still seen
for a quartic solution space for the pressure, pp = 4. The results with C0 continuities
at the material interfaces improve slightly better than with Cpp−1 continuity since a C0

continuity is a more accurate representation of material interfaces. The pressure oscillations
in the mixed simulations are less severe and are localized at the boundary between the low
permeability and bottom layers. These again decrease with increasing polynomial degrees
and a C0 continuity at the material interfaces.

Simulations with a graded mesh are also performed for the different combination of
polynomial degrees and interface continuities. The graded mesh is generated such that
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Figure 8: Numerical solution to the Haga problem using Ne = 60 uniform elements and Δt = 1 s.
All figures are shown after two time steps. On the left the mixed order method, and on the right
the equal order method. The continuity in the boundary layer is Cpp−1 in the top row, and C0 in
the bottom row.

more elements are concentrated at the material interfaces. The results from this case are
shown in Figure 9. The pressure oscillations in the equal order case improve significantly in
this case compared to the results from uniform mesh refinement. However, the oscillations
still occur throughout the low permeability layer. The equal order results for linear basis
functions show a slightly strange behavior in that the oscillations are lesser within the low
permeability layer than for higher order elements, but show slightly higher oscillations at
the top material interface. The results are again better with a C0 continuity at the material
interfaces. The mixed simulation results also improve with a graded mesh. Almost no
oscillations are noticed for combinations of higher polynomial degrees and C0 continuities
at the material interfaces.

5. Conclusions

Mixed isogeometric analysis of poroelasticity is presented where different order of poly-
nomials are used for the displacement and pore pressure field variables. Numerical studies
on Terzaghi’s classical one-dimensional consolidation problem and consolidation of a layered
soil with a middle low permeability layer are presented. The results from mixed polynomial
order simulations are compared with equal order analyses. For Terzaghi’s one-dimensional
consolidation problem, the pore pressure oscillations are investigated when a time step size
less than the critical value is used. The oscillations were observed to be higher in the equal
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Figure 9: Numerical solution to the Haga problem using a graded mesh with small elements near
the boundary layer and Δt = 1 s. All figures are shown after two time steps. On the left the mixed
order method, and on the right the equal order method. The continuity in the boundary layer is
Cpp−1 in the top row, and C0 in the bottom row.

order simulations compared to the mixed order results. The oscillations are not completely
removed in the mixed isogeometric simulations but it is observed that the they tend to
decrease with increasing polynomial orders for the pore pressure. This is illustrated by the
convergence of the relative L2 norm of the pore pressure error for varying polynomial orders.
The low permeability layer problem showed similar trends in the pore pressure oscillations
i.e. the equal order simulations resulted in worse pore pressure oscillations compared to the
mixed results. Again, in both cases, the oscillations decreased with increasing polynomial
orders. The use of a graded mesh, where the knot spans are concentrated at the interfaces
between the low permeability and other layers, resulted in much lower oscillations both in
the equal order and mixed cases. This indicates the potential of adaptive refinement for
such class of problems.
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Abstract

An isogeometric analysis (IGA) based numerical model is presented for simulation of thermo-
hydro-mechanically (THM) coupled processes in ground freezing. The momentum, mass and
energy conservation equations are derived based on porous media theory. The governing
equations are supplemented by a saturation curve, a hydraulic conductivity model and
constitutive equations. Variational and Galerkin formulation results in a highly nonlinear
system of equations, which are solved using Newton-Raphson iteration. Numerical examples
on one-dimensional freezing and frost heave are presented. Good agreements were observed
between the IGA based simulation and experimental results. The advantages of IGA for
THM coupled problems are discussed qualitatively.

Keywords: isogeometric analysis, THM coupling, porous media, ground freezing

1. Introduction

THM coupled numerical modeling is essential in several areas of geo/poromechanics to
understand the multi-physical properties and responses of materials. The thermal, hydraulic
and mechanical properties of such materials interact with each other resulting in a more com-
plex overall behavior. A schematic representation of such interactions is shown in Figure 1.
For instance hydraulic processes alter the thermal regime through convection, mechanical
processes affect the hydraulic regime by changing the porosity and so on.

THM coupled numerical modeling has been widely applied in the geomechanics of the
high temperature regime environment. Examples of such application areas include geother-
mal energy extraction, safety assessment of nuclear waste repositories, oil and gas reservoir

∗Corresponding author
Email addresses: yared.bekele@ntnu.no (Yared W. Bekele), kyokawa@kajima.com (Hiroyuki

Kyokawa), arne.morten.kvarving@sintef.no (Arne M. Kvarving), trond.kvamsdal@math.ntnu.no
(Trond Kvamsdal), steinar.nordal@ntnu.no (Steinar Nordal)

Preprint submitted to Computers and Geotechnics

���



H

T

M

C
on
du
ct
iv
e/
C
on
ve
ct
iv
e

he
at

flu
x

F
lu
id

ve
lo
ci
ty

M
echanical

w
ork

and

volum
etric

strain

C
onductive

heat
flux

Pore pressure

Volumetric strain

Figure 1: Schematic representation of Thermo-Hydro-Mechanical (THM) interactions, after [1]

engineering, underground energy storage and CO2 sequestration; see for example Nowak et
al. [2], Hudson et al. [3], Wang and Kolditz [4], Rutqvist et al. [5], Rutqvist et al. [6], Sanavia
et al. [7], Wang et al. [8] and Tong et al. [9]. On the other hand, fully coupled THM modeling
in frozen ground engineering is not as extensive. It is known that the freezing and thawing
phenomena of ground can occur naturally, in cold regions, or artificially, as a construction
technique in civil engineering. Some application areas in natural ground freezing and thaw-
ing include frost heave prediction, analysis and design of structures and foundations in cold
regions and study of seasonal variation of temperature on the ground thermal properties.
Artificial ground freezing on the other hand is a technology that has been successfully ap-
plied, over a long period of time, in the construction of structures on weak and/or unstable
water-bearing grounds. Specific applications include the construction of tunnels of various
purposes, the engineering of mines and pits, construction of underground storage facilities
and the construction of foundations for industrial buildings on unstable ground. Artificial
ground freezing is also used even in cold regions to control the seasonal thawing of frozen
ground. The numerical proposed model in this paper will be applicable, within reason, to
both natural and artificial ground freezing processes.

One of the earliest studies in the fully coupled THMmodeling of frozen soils was presented
by Mu and Ladanyi [10]. They made simplifying assumptions such as: the volume of
soil particles remains constant in the freezing process, both unfrozen and frozen soil are
isotropic, unfrozen soil is an elastic body with a constant Young’s modulus where the Young’s
modulus and yield point are independent of the strain rate and confining pressure. The finite
difference and finite element based simulation of unidirectional freezing was verified against
experimental data. Selvadurai et al. [11] presented a computational model for frost heave
with focus on soil-pipeline interaction and calibrated the proposed framework using one-
dimensional frost heave tests. Another fully coupled THMmodel for frozen soil was proposed
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by Li et al. [12]. The effective stress equation for frozen soil was presented as a function
of thermal stress, ice swelling and pore pressure. A simple thermo-elastic consolidation and
numerical modeling of a pile foundation were studied by the proposed model. Nishimura et
al. [13] presented the formulation and application of the THM coupled finite element analysis
of frozen soil. The proposed fully coupled model was applied to the analysis of frost heave
prediction and reasonably good agreements were obtained when compared with experimental
data. Liu and Yu [14] proposed a fully coupled THM model under frost action where analogy
of the soil water characteristic curve from unsaturated soils was applied to describe the
freezing and drying processes. In the stress-strain field, the total strain was defined as the
sum of elastic, thermal, phase change of water, change of matric potential and initial strains.
Neaupane and Yamabe [15] also proposed a fully coupled THM model for a frozen medium
and successfully applied it to simulate a freeze-thaw experiment. Dall’Amico et al. [16]
proposed a robust and energy-conserving model for a freezing variably saturated soil. Based
on the claim that the energy balance equation shows a strongly nonlinear behavior, they
propose a globally-convergent Newton scheme where the energy equation is expressed based
on internal energy. Wang et al. [17] discussed the numerical simulation of water-heat coupled
movements in a seasonally frozen soil. Neaupane et al. [1] presented the simulation of a fully
coupled THM system in freezing and thawing rock. Peng et al. [18] proposed a model for
coupled heat, moisture and stress-field of saturated soil during freezing. Recent studies on
the subject include consolidation of thawing permafrost by Qi et al. [19], a three-phase THM
finite element model for freezing soils by Zhou and Meschke [20] and a fully coupled thermo-
hydro-mechanical model for rock mass under freezing and thawing condition by Kang et
al. [21]. Other related studies include those by Hansson et al. [22], Thomas et al. [23],
Coussy [24], Newman and Wilson [25] and Micholawski and Zhu [26].

In this paper, a fully coupled thermo-hydro-mechanical (THM) finite element model
for ground freezing and thawing is proposed. The governing equations of the THM model
are derived based on porous media theory where the multiphase medium is approximated
as a continuum. The governing equations of the model are supplemented by other state
equations for temperature dependent variables such as degree of saturation and hydraulic
conductivity. Isogeometric analysis using B-Splines is applied to solve the final system of
equations numerically. The higher continuities of B-Splines result in a locally mass and
energy conserving numerical implementation, unlike the standard finite element method. In
addition, we are able to represent CAD (computer aided design) geometries in an “exact”
manner by applying isogeometric analysis; geometries are only approximated through mesh
generation when using the standard finite element method.

The paper is structured as follows. The modeling approach used for deriving the govern-
ing equations is briefly presented in Section 2. The derivation of the governing momentum,
mass and energy balance equations for each phase and for the mixture is discussed in Sec-
tion 3. The supplementary equations that complete the governing equations, such as the
soil-water characteristic curve and the hydraulic conductivity model, are presented in Sec-
tion 4. The fundamentals behind isogeometric analysis and its important features in our
current context are discussed in Section 5.1. Variational formulation of the governing equa-
tions, spatial discretization using Galerkin’s method and the numerical implementation are
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presented in Sections 5.2, 5.3 and 5.4, respectively. Numerical examples on one-dimensional
freezing and a frost heave problem are presented in Section 6 and the theoretical and nu-
merical highlights of the proposed model are summarized in Section 7.

2. Modeling Approach

The three phase porous medium composed of solid grains, water and ice is approximated
as a homogeneous continuum as shown in Figure 2.

According to porous media theory, the partial density of phase α is defined in terms of
its volume fraction nα and material density ρα as:

ρα := nαρα (1)

For a saturated frozen soil, the partial densities for the solid, water and ice phases are,
according to equation (1), given by:

ρs = nsρs = (1− n) ρs

ρw = nwρw = nSwρw = n (1− Si) ρw

ρi = niρi = nSiρi

(2)

where ns, nw and ni (with ns +nw +ni = 1) are the volume fractions of the solid, water and
ice phases, respectively, n is the porosity, and Sw and Si are the degrees of water and ice
saturation respectively. For a fully saturated frozen soil, Sw + Si = 1.

The total density of the porous medium is given as the sum of the partial densities of
the component phases:

ρ = ρs + ρi + ρw = (1− n) ρs + nSiρi + nSwρw (3)

The derivation of the governing equations is performed with respect to the solid phase and
thus material time derivatives are extensively used in the derivations. The material time
derivative of any differentiable function fα(x, t), varying in space x and in time t, referring
to a moving particle of the α phase is given by:

Figure 2: Multiphase porous medium modeled as a homogeneous continuum
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Dαf
α

Dt
:=

∂fα

∂t
+∇fα · vα. (4)

In this case, material time derivatives of properties fα(x, t) relating to the water and ice
phases are performed with respect to the solid phase. It can be shown that the material
time derivative of fα(x, t) of phase α ∈ (w, i) with respect to the solid phase is given by:

Dsf
α

Dt
=

Dαf
α

Dt
+∇fα · (vs − vα) (5)

where vs − vα is the relative velocity of phase α with respect to the solid phase.

3. Governing Equations

In this section, the governing partial differential equations of the proposed THM coupled
model are presented. The three main governing equations for the saturated frozen soil are
the linear momentum balance equation, the mass balance equation and the energy balance
equation. These governing equations are supplemented by the modified Clausius-Clapeyron
equation for thermodynamic equilibrium, the soil-water characteristic curve for the degree
of water saturation as a function of pressure and temperature and a constitutive law for the
stress-strain behavior of the solid skeleton.

3.1. Linear Momentum Balance Equation

The linear momentum balance equation is the equation of motion or equilibrium equation
for the mixture. For a phase α of the mixture, it is given by:

∇ · σα + ραbα +
∑
β

P βα = ρα
Dαv

α

Dt
(6)

where σα is the partial stress of phase α, P βα are the interphase interactive forces between
phase α and phase β and bα are the body forces for phase α. The equilibrium equation
for the whole mixture is obtained as a summation of the individual equilibrium equation of
each phase. Assuming a static problem, this results in:

∇ · σ + ρb = 0 (7)

where σ are the total stresses and b are the body forces. The Bishop type effective stress
in terms of the pore water and ice pressures pw and pi is given by:

σ′ = σ + pwI + Si(p
i − pw)I (8)

where I is an identity matrix. The mechanical equilibrium equation in terms of the effective
stresses can thus be written as:

∇ · σ′ −∇pw −∇(Si(p
i − pw)) + ρb = 0. (9)

The effective stress is further linked to strain via a constitutive model. A simple constitutive
model is presented in Section 4.4.
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3.2. Mass Balance Equation

The general form of the mass balance equation for a phase α, considering phase change
from phases β to phase α (with a mass exchange per unit volume of Mβα), is given by:

Dαρ
α

Dt
+ ρα∇ · vα +

∑
β

Mβα = 0. (10)

The mass balance equation for each phase is then derived and the equations for water and
ice are derived with respect to the solid phase. The mass balance equation for the solid
phase with the assumption of incompressible solid grains gives the time change of porosity
as a function of solid displacement as:

Dsρ
s

Dt
= 0 ⇒ Dsn

Dt
= (1− n)∇ · vs. (11)

Summation of the individual mass balance equations for water and ice, together with the
use of equation (11), gives the mass balance equation for the pores as:

(ρwSw + ρiSi)∇ · vs + n(ρw − ρi)
DsSw

Dt
+ ρw∇ ·w + ρi∇ ·w′ = 0 (12)

where we have used the fact that the mass exchanges between water and ice cancel each
other out i.e. ΔMiw+ΔMwi = 0. We have assumed herein that all phases are incompressible
(no volume change under isotropic compression) and that the spatial variation of density
(density gradient) is negligible for all phases. In Eq. (12), w and w′ represent the water and
ice fluxes relative to the solid phase. The water flux, for flow driven by pressure gradient
and gravity, can be expressed using Darcy’s law as:

w = − 1

γw
k (∇pw − ρwb) (13)

where k is the hydraulic conductivity matrix, which is a function of both pressure and
temperature, and γw is the unit weight of water. A relative hydraulic conductivity model is
required to control the evolution of k and this is presented in Section 4.3.

The ice flux relative to the solid phase is usually neglected but a relationship between
w′ and w can be derived such that:

w′ =
Si

Sw

w = θw. (14)

The above equation implies that some water flux is used for phase change between water
and ice according to the current degree of ice saturation.

3.3. Energy Balance Equation

The general energy balance equation for a phase α, considering energy change due to
phase change from phase β to phase α, is given by:
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ρα
Dαe

α

Dt
+ eα

(
−
∑
β

Mβα

)
+ΔQph

α = −∇ · qα +Qα (15)

where eα is the specific internal energy of phase α, Qph
α is the additional energy causing

phase change, qα is the conductive heat flux for phase α and Qα is the sink or source term
of energy for the same phase, which can be assumed to be equal to zero for a closed system.
The internal energy of phase α, in terms of its heat capacity cα and the temperature T is
defined as:

eα := cαT. (16)

Accordingly, the specific internal energies for the solid, water and ice phases can thus be
expressed as:

es = csT, ew = cwT, ei = ciT (17)

where cs, cw and ci are the respective specific heat capacities for each phase. After formulat-
ing the specific energy balance equations for the solid, water and ice phases and making the
same assumptions as in the mass balance equation, summation of the individual equations
gives the energy balance equation for the three-phase medium as:

(ρc)eff
DsT

Dt
+ a · ∇T + Lfξ

DsSw

Dt
= −∇ · q +Q (18)

where a = (ρc)advw is an advective heat transfer vector, Lf is the latent heat of fusion and
we have the volumetric parameter ξ as:

ξ =
nρi

Sw + ρi
ρw
Si

. (19)

The effective heat capacity for the mixture and the advective heat transfer coefficient are
given by:

(ρc)eff = ρscs + ρwcw + ρici

= (1− n)ρscs + nSwρwcs + nSiρici

(ρc)adv = ρwcw + θρici

(20)

The total conductive heat flux, assuming isotropic thermal conductivity, can be expressed
using Fourier’s law as:

q = −λ∇T. (21)

The overall thermal conductivity λ for the multiphase porous medium can be obtained as
the geometric mean of the individual thermal conductivities using, [27]:

λ = λ1−n
s · λnSw

w · λn(1−Sw)
i (22)

where λs, λw and λi are the thermal conductivities of solid, water and ice respectively.
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4. Supplementary Equations

4.1. Modified Clausius-Clapeyron Equation

The thermodynamic equilibrium between ice and soil in a freezing soil is described by
the modified Clausius-Clapeyron equation, see [28]. The ice and water pressures in this
equation are related by:

pi =
ρi
ρw

pw − ρiLf ln

(
T

T0

)
(23)

where To=273.15 K is the reference temperature and the relation is derived considering at-
mospheric pressure conditions. The equation is valid for practical temperature and pressure
ranges of interest, [29].

4.2. Soil-Water Characteristic Curve

The other most important relation required to supplement the governing equations is the
degree of water saturation as a function of pressure and temperature, i.e. Sw = f(pw, T ),
also known as the soil-water characteristic curve in unsaturated soil mechanics terminology.
Based on van Genuchten’s [30] model for unsaturated soils, and as modified in Nishimura
et al. [13] and Zhou and Meschke [20], the soil-water characteristic curve for freezing and
thawing porous media may be written as:

Sw = 1− Smax
i

[
1−

{
1 +

(
α(pi − pw)

)β}−γ
]

(24)

where Smax
i is the maximum degree of ice saturation for numerical reasons and α, β and γ

are model parameters. Using the Clausius-Clapeyron equation, Eq. (23), which expresses pi

in terms of pw, into Eq. (24) results in:

Sw = 1− Smax
i

[
1−

{
1 +

[
α

(
(
ρi
ρw

− 1)pw − ρiLf ln(
T

To

)

)]β}−γ]
. (25)

The rate of change of Sw can thus be expressed as:

∂Sw

∂t
=

∂Sw

∂pw
∂pw

∂t
+

∂Sw

∂T

∂T

∂t
= Sp

∂pw

∂t
+ ST

∂T

∂t
(26)

where Sp and ST may, respectively, be referred to as isothermal and non-isothermal water
capacities.

The model parameters α, β and γ can be selected for a given material based on ex-
perimental data. The effects of these model parameters on the degree of saturation are
illustrated in the plots in Figure 3 as a function of temperature. A fixed value is used for
the pore water pressure pw and it can be shown that the effect of pw on the degree of water
saturation Sw is very limited compared to temperature.
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Figure 3: Effects of the saturation model parameters α, β and γ: Degree of water and ice saturation
versus temperature for different combinations of the model parameters. The solid lines represent
Sw and the dashed lines are for Si. The parameter α has a unit of MPa−1 while β and γ are
dimensionless.

4.3. Hydraulic Conductivity Model

The hydraulic conductivity of the porous medium changes continuously during the freez-
ing/thawing process depending on the degree of water saturation i.e. as a function of temper-
ature. To calculate the hydraulic conductivity at a given temperature, a relative hydraulic
conductivity parameter is introduced to into Darcy’s law, [13]. The modified Darcy’s law
and the corresponding relative hydraulic conductivity parameter are given by:

w = − kr
γw

k (∇pw − ρwb)

kr =
√

Sw

[
1− (

1− S1/m
w

)m]2 (27)

where m is a model parameter. The variation of kr with degree of water saturation for
selected values of m is plotted and shown in Figure 4.
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Figure 4: Relative hydraulic conductivity versus degree of water saturation.

4.4. Constitutive Equations

The general stress-strain relation in incremental form can be written as:

dσ′ = D(dε− dεph − dεT − dεo) (28)

where dσ′ is the effective stress increment, D is the constitutive tangent stiffness tensor, dε
is the total strain increment, dεph is the strain increment due to phase change, dεT is the
thermal strain increment and dεo represents a strain increment not directly associated with
stress changes. The thermal strain is usually very small when compared to the strain due
to phase change and may be neglected.

The constitutive equation proposed for the soil skeleton here is a simple nonlinear elastic
relation with temperature dependent parameters. The tangent stiffness for linear elasticity
(for stresses and strains in Voigt notation) is given by

D =
E

(1 + ν)(1− 2ν)

[
D11 0
0 D22

]
(29)

where

D11 = (1− 2ν)I + ν1 ,

D22 =
1− 2ν

2
I,

(30)

where E is the Young’s modulus, ν is the Poisson’s ratio and 1 is a matrix of ones. These
strength parameters are temperature dependent and simple nonlinear relations are derived
as a function of degree of saturation, which is a function of temperature according to the
soil-water characteristic curve. The Young’s modulus E of the porous medium at a given
temperature may be expressed as:
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Figure 5: Strength parameters E and ν as a function of degree of ice saturation.

E =

(
Ei

Es

)Sη
i

Es (31)

where Ei and Es are the Young’s moduli of ice and solid skeleton respectively, Si is the degree
of ice saturation and η is a model parameter. A similar expression for the Poisson’s ratio ν
of the porous medium as a function of the Poisson’s ratios of ice, νi, and solid skeleton, νs,
is given by:

ν =

(
νi
νs

)Sη
i

νs. (32)

The strength parameter η may be chosen for a given material based on experimental data.
If we assume for example that Es = 6 GPa, Ei = 9 GPa, vs = 0.4 and νi = 0.2, the overall
Young’s modulus E and Poisson’s ratio ν may be plotted as a function of degree of ice
saturation for different values of η, as shown in Figure 5.

The thermal strain increment as a function of the thermal expansion coefficient of the
solid skeleton and temperature increment is given by:

dεT =
αs

3
dTI. (33)

The volume expansion of the soil due to phase change is accounted for by the strain due to
phase change, εph, and is a function of the porosity and the degree of ice saturation. An
expression for εph can be derived by formulating the volumetric strains εphv as a function of
n and Si. Assuming isotropic expansion, the rate of volumetric expansion may be derived
from the mass balance of ice and water during phase change, i.e. ∂

∂t
{(ρwVw) + (ρiVi)} = 0,

to give:

11

���



ε̇phv =
n(ρw − ρi)

ρwSw + ρiSi

DsSi

Dt
. (34)

The incremental strain due to phase change may then be written as:

dεph =
1

3

(
∂εphv
∂Si

dSi

)
I. (35)

5. Isogeometric Analysis

5.1. Introduction

Since its first introduction by Hughes et al. [31], isogeometric analysis (IGA) has been
successfully applied to several areas of engineering mechanics problems. The fundamental
aim for the introduction of IGA was the idea of bridging the gap between finite element
analysis (FEA) and computer-aided design (CAD). The main concept behind the method
is the application of the same basis functions used in CAD for performing finite element
analysis. In the process of its application to various engineering problems, IGA has shown
advantages over the conventional finite element method, for instance the ease of performing
finite element analysis using higher order polynomials.

We briefly present the fundamentals behind B-Splines and NURBS in the next section
and highlight the features of IGA that are important in our context.

5.1.1. Fundamentals on B-Splines and NURBS

We start the discussion on B-Splines and NURBS by first defining a knot vector. A knot
vector in one dimension is a non-decreasing set of coordinates in the parameter space, written
Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, ..., n+p+1, p
is the polynomial order, and n is the number of basis functions. Knot vectors may be uniform
or non-uniform depending on whether the knots are equally spaced in the parameter space
or not.

A univariate B-Spline curve is parametrized by a linear combination of n B-Spline basis
functions, {Ni,p}ni=1. The B-Spline basis functions are recursively defined starting with
piecewise constants (p = 0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(36)

For higher-order polynomial degrees (p ≥ 1), the basis functions are defined by the Cox-de
Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (37)

B-Spline geometries, curves, surfaces and solids, are constructed from a linear combination
of B-Spline basis functions. Given n basis functions Ni,p and corresponding control points
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Pi ∈ R
d, i = 1, 2, ..., n, a piecewise polynomial B-Spline curve is given by:

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi. (38)

Similarly, for a given control net Pi,j, i = 1, 2, ..., n, j = 1, 2, ...,m, polynomial orders p and
q, and knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}, and H = {η1, η2, ..., ηm+q+1}, a tensor product
B-Spline surface is defined by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j. (39)

B-Spline solids are defined in a similar way as B-Spline surfaces from tensor products over
a control lattice.

NURBS are built from B-Splines to represent a wide array of objects that cannot be
exactly represented by polynomials. A NURBS entity in R

d is obtained by the projective
transformation of a B-Spline entity in R

d+1. The control points for the NURBS geometry
are found by performing exactly the same projective transformation to the control points of
the B-Spline geometry.

A detailed treatment of B-Splines and NURBS can be referred from Cottrell et al. [32].

5.1.2. Important Features in Current Context

IGA has a number of advantages over FEA such as the ability to represent exact CAD ge-
ometries of structures or domains during analysis, non-negative basis functions and isopara-
metric mapping at patch level. In the context of the current work, we focus on the features
of IGA that are especially important. These features are the improved continuity of filed
variables because of the smoothness of the basis functions and the ability to perform simula-
tions with high continuity and high regularity meshes. Next, we will look into these features
closely.

Continuity : One of the most distinctive and powerful features of IGA is that the basis
functions will be Cp−m continuous across knot spans (analogous to elements in FEA), where p
is the polynomial degree andm is the multiplicity of the knot. This means that the continuity
across knot spans can be controlled by the proper choice of p and m. The continuity can
be decreased by repeating a knot - important to model non-smooth geometry features or
to facilitate the application of boundary conditions. For instance, quadratic (p = 2) splines
are C1 continuous over non-repeated knots while quadratic Lagrange finite element bases
are only C0 continuous. If we consider the quartic (p = 4) basis functions constructed from
the open, non-uniform knot vector Ξ = {0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}, we
get different continuities across knot spans as shown in Figure 6.

k-refinement : IGA and FEA both allow h- and p-refinements i.e. increasing the number
of knot spans by knot insertion (increasing the number of elements in FEA) and raising the
polynomial order. The non-commutativity of knot insertion and polynomial order elevation
results in a type of refinement that is unique to IGA, called k-refinement. This is achieved
by performing polynomial order elevation followed by knot insertion. This results in a high
continuity mesh with the least number of degrees of freedom i.e. high regularity.
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Figure 6: Different continuities across knot spans, after [32].

5.1.3. Mixed isogeometric formulation

A mixed formulation is constructed by first defining the knot vectors and basis functions
defining the geometry of the domain. The polynomial order defining the geometry is used
as the polynomial degree for one of the field variables and is raised by the desired degree
for the other field variable. In our context, the polynomial orders for the pressure and
temperature, pp and pT, are defined by the geometry construction and the polynomial order
for the displacement, pu, is raised by one. All polynomial orders can then be raised to the
desired degree starting from the initial definition. For example, a simple two-dimensional
geometry defined by the knot vectors Ξ = {0, 0, 1, 1} andH = {0, 0, 1, 1} implies pp = pT = 1
and pu = 2 with 4 and 9 control points, respectively. The number of control points, location
of degrees of freedom in IGA, on a B-Spline surface for different polynomial degrees is shown
in Figure 7.

p = 1 p = 2 p = 3

Figure 7: Number of control points for a given element on a simple B-Spline surface with different
polynomial degrees. The element is highlighted and the blue squares represent control points.
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5.2. Variational Formulation

We first define the initial and boundary conditions before presenting the variational
formulation of the governing equations. The initial conditions for the displacement, pore
water pressure and temperature at time t = 0 are:

u = uo pw = pwo T = To in Ω and on Γ (40)

where Ω and Γ are the domain and its boundary, respectively. The boundary conditions
could be of Dirichlet type on ΓD or Neumann type (fluxes and tractions) on ΓN , where
ΓD ∪ ΓN = Γ. The Dirichlet boundary conditions may be defined as:⎧⎪⎨

⎪⎩
u = u on Γu

D

pw = pf on Γp
D

T = T on ΓT
D.

(41)

The Neumann boundary conditions are defined as:⎧⎪⎨
⎪⎩
σ · n = t on Γu

N

w · n = qw on Γp
N

q · n = qT + λe(T − Te) on ΓT
N

(42)

where t is the traction boundary condition and n is the outward unit normal vector to
the boundary. The water and heat fluxes at the boundary are represented by qw and qT,
respectively. The thermal conductivity and temperature of the surrounding environment are
denoted by λe and Te, respectively.

We can now derive the weak formulations of the three main governing balance equations,
Eq. (7), 12 and 18. Multiplying the rate form of the linear momentum balance equation
arbitrary velocities δv, integrating over the domain Ω and applying the divergence theorem
gives the weak form as: ∫

Ω

σ̇ · ∇ · δvdΩ =

∫
Γu
N

ṫδvdΓ (43)

where t is the Neumann traction on the boundary Γu, σ̇ = ∂σ
∂t

and ṫ = ∂t
∂t
. The rate of change

of the total stress is derived from the effective stress relationship. Using the constitutive
relation given in Eq. (28) into the effective stress formulation in Eq. (8), a generic form of
the rate of change of total stress can be derived as:

σ̇ = Dε̇+

(
∂σ

∂pw
−D

∂εph

∂pw

)
∂pw

∂t
+

(
∂σ

∂T
−D

∂εph

∂T

)
∂T

∂t
(44)

wherein we have neglected thermal and other strains. The weak form of the equilibrium
equation can now be written as:
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∫
Ω

[
Dε̇+

(
∂σ

∂pw
−D

∂εph

∂pw

)
∂pw

∂t
+

(
∂σ

∂T
−D

∂εph

∂T

)
∂T

∂t

]
∇ · δvdΩ =

∫
Γu
N

ṫδvdΓ. (45)

The weak form of the mass balance equation is derived by multiplying Eq. (12) by an
arbitrary pressure δp and integrating over the domain Ω to give:∫

Ω

[
(ρwSw + ρiSi)∇ · vs + n(ρw − ρi)

DsSw

Dt
+ (ρw + θρi)∇ ·w

]
δpdΩ = 0. (46)

Applying the divergence theorem, using Eq. (26) and rearranging gives the weak form of the
mass balance equation as:∫

Ω

ρwSw + ρiSi

ρw + θρi
∇ · vsδpdΩ +

∫
Ω

n(ρw − ρi)

ρw + θρi
Sp

∂pw

∂t
δpdΩ

+

∫
Ω

n(ρw − ρi)

ρw + θρi
ST

∂T

∂t
δpdΩ +

∫
Ω

∇δp · kr
γw

k · ∇pwdΩ

−
∫
Ω

∇δp · kr
γw

k · ρwbdΩ = −
∫
Γp
N

qwδpdΓ

(47)

where qw is the water flux on the Neumann boundary Γp.
The energy balance equation, Eq. (18), is a form of an unsteady advection-diffusion equa-

tion and may require stabilization during numerical implementation. The SUPG (Streamline
Upwind/Petrov Galerkin) stabilization method is used here to choose appropriate test func-
tions. Multiplying the energy balance equation by an arbitrary weighing function δT̃ and
integrating over the domain Ω gives:∫

Ω

[
(ρc)eff

DsT

Dt
+ a · ∇T + Lfξ

DsSw

Dt
+∇ · q

]
δT̃dΩ = 0. (48)

The weighting function in the SUPG method considering the advective term is:

δT̃ = δT + τea · ∇δT (49)

with

τe =
he

2|a|
(
cothα− 1

α

)
and α =

|a|he

2λ
(50)

where he is the characteristic element length (maximum length) of the mesh and λ is the
overall thermal conductivity of the porous medium. The weak form of the energy balance
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equation, after applying the divergence theorem, can be written as:∫
Ω

(ρc)eff
∂T

∂t
δTdΩ +

∫
Ω

a · ∇TδTdΩ +

∫
Ω

LfξSp
∂pw

∂t
δTdΩ

+

∫
Ω

LfξST
∂T

∂t
δTdΩ +

∫
Ω

∇δTλ∇TdΩ

+
∑
e

[∫
Ω

τea · ∇δT

{
(ρc)eff

∂T

∂t
+ a · ∇T + LfξSp

∂pw

∂t

+ LfξST
∂T

∂t
+∇ · λ∇T

}
dΩ

]
= −

∫
ΓT
N

qTδTdΓ

(51)

where qT is the heat flux on the Neumann boundary ΓT. The stabilizing term to be summed
over the number of elements is not continuous in the global space.

5.3. Galerkin Formulation

The governing equations are to be solved for three field variables: displacement, pore
water pressure and temperature. This forms the so called u − p − T formulation. We use
a mixed formulation to express the field variables in terms of the basis functions and the
control point values (nodal values in FEA). Choosing the basis functions Nu,Np and NT

for the displacement, pore water pressure and temperature, respectively, we write:

u = Nuu
c,

∂u

∂t
= Nu

∂uc

∂t

pw = Npp
c,

∂pw

∂t
= Np

∂pc

∂t

T = NTT
c,

∂T

∂t
= NT

∂T c

∂t

(52)

where uc, pc and T c are the control point displacement, pore water pressure and temperature
values. In a Galerkin formulation, we choose the arbitrary test functions to be the same
as the basis functions. Application to the weak form of the equilibrium equation, Eq. (45),
results in the system of equations:

Cuu
∂uc

∂t
+Cup

∂pc

∂t
+CuT

∂T c

∂t
= fu (53)

where

Cuu =

∫
Ω

∇N ᵀ
uD∇NudΩ

Cup =

∫
Ω

∇N ᵀ
u

(
∂σ

∂pw
−D

∂εph

∂pw

)
NpdΩ

CuT =

∫
Ω

∇N ᵀ
u

(
∂σ

∂T
−D

∂εph

∂T

)
NTdΩ
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fu =

∫
Γu
N

N ᵀ
u ṫdΓ.

Galerkin formulation to the weak form of the mass balance equation, Eq. (47), results in:

Kppp
c +Cpu

∂uc

∂t
+Cpp

∂pc

∂t
+CpT

∂T c

∂t
= fp (54)

where

Kpp =

∫
Ω

∇N ᵀ
p

kr
γw

k∇NpdΩ

Cpu =

∫
Ω

N ᵀ
p

ρwSw + ρiSi

ρw + θρi
∇NudΩ

Cpp =

∫
Ω

N ᵀ
p

n(ρw − ρi)

ρw + θρi
SpNpdΩ

CpT =

∫
Ω

N ᵀ
p

n(ρw − ρi)

ρw + θρi
STNTdΩ

fp =

∫
Ω

∇N ᵀ
p

kr
γw

kρwbdΩ−
∫
Γp
N

N ᵀ
p q

wdΓ.

Similarly, application to the weak form of the energy balance equation, Eq. (51), gives the
system of equations:

(KTT +Ks
TT)T

c + (CTp +Cs
Tp)

∂pc

∂t
+ (CTT +Cs

TT)
∂T c

∂t
= fT (55)

where

KTT =

∫
Ω

∇N ᵀ
TaNTdΩ +

∫
Ω

∇N ᵀ
Tλ∇NTdΩ +

∫
ΓT
N

N ᵀ
TλeNTdΩ

Ks
TT =

∫
Ω

∇N ᵀ
Tτea · a∇NTdΩ +

∫
Ω

∇N ᵀ
Tτea · λ∇(∇NT)dΩ

CTp =

∫
Ω

N ᵀ
TLfξSpNpdΩ

Cs
Tp =

∫
Ω

N ᵀ
TLfξSpτea∇NpdΩ

CTT =

∫
Ω

N ᵀ
T(ρc)effNTdΩ +

∫
Ω

N ᵀ
TLfξSTNTdΩ

Cs
TT =

∫
Ω

∇N ᵀ
T(ρc)effτeaNTdΩ +

∫
Ω

N ᵀ
TLfξSTτea∇NTdΩ

fT = −
∫
ΓT
N

N ᵀ
Tq

TdΓ +

∫
ΓT
N

N ᵀ
TλeTedΓ
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Letting K∗
TT = KTT + Ks

TT, C
∗
Tp = CTp + Cs

Tp and C∗
TT = CTT + Cs

TT, the system of
matrix equations, Eq. (53), (54) and (55), are summarized in to a fully coupled system as:⎡

⎣0 0 0
0 Kpp 0
0 0 K∗

TT

⎤
⎦
⎧⎨
⎩
uc

pc

T c

⎫⎬
⎭+

⎡
⎣Cuu Cup CuT

Cpu Cpp CpT

0 C∗
Tp C∗

TT

⎤
⎦ ∂

∂t

⎧⎨
⎩
uc

pc

T c

⎫⎬
⎭ =

⎧⎨
⎩
fu

fp

fT

⎫⎬
⎭ (56)

which can be written in a more compact form as:

KX +C
∂X

∂t
= F (57)

where the coefficient matrices K and C, the external load vector F and the vector of
unknowns X are evident from Eq. (56). The matrices K and C are generally functions of
X, making the coupled system of equations highly nonlinear.

5.4. Numerical Implementation

We aim to solve the fully coupled system in Eq. (57) in a monolithic way since the
equations are strongly coupled and highly nonlinear. Temporal discretization of the system
of matrix equations is performed using the Generalized Trapezoidal Rule (GTR). For the
rate of change of the unknown vector X, we have the approximation:

∂X

∂t

∣∣∣∣
n+θ

=
Xn+1 −Xn

Δt

Xn+θ = (1− θ)Xn + θXn+1

(58)

where θ is a time integration parameter which has limits 0 ≤ θ ≤ 1. The system of matrix
equations at time tn+θ is then:

KXn+θ +C
∂X

∂t

∣∣∣∣
n+θ

= Fn+θ. (59)

Using the approximation in Eq. (58) into Eq. (59) and adopting a fully implicit time inte-
gration scheme with θ = 1, we get:

[ΔtK +C]n+1 Xn+1 = Cn+1Xn +ΔtFn+1. (60)

The residual at time step tn+1 is then:

Rn+1 = [ΔtK +C]n+1 Xn+1 −Cn+1Xn −ΔtFn+1. (61)

After first-order Taylor series expansion of the residual, we solve for the increment of the
unknown vector ΔX i+1

n+1 using a Newton-Raphson iteration scheme:

∂R

∂X

∣∣∣∣i
n+1

ΔX i+1
n+1

∼= −Ri
n+1 (62)
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where i is the iteration number and we have the Jacobian matrix in the above equation as:

J =
∂R

∂X
. (63)

The vector of unknowns at time step tn+1 is updated after each iteration using:

X i+1
n+1 = X i

n+1 +ΔX i+1
n+1. (64)

6. Numerical Examples

In this section, numerical examples are presented to verify and validate the proposed
THM model. In particular, we first look at a one-dimensional freezing problem with drained
and undrained boundary conditions. We then present simulation of frost heave due to a
chilled gas pipeline buried in a silty soil.

6.1. One-dimensional Freezing

The first numerical example we consider is the freezing of a soil column in a plane strain
condition, which is studied in [33] using FEA.

6.1.1. Problem Definition

The simulation domain is a 2m long soil column with an initial homogeneous temperature
of To = 1 ◦C, shown in Figure 8.

Ω

0.2m

2m

Top:

q = λe(T − Te)

Lateral sides:

ux = 0, ∂pw

∂n
= 0, ∂T

∂n
= 0

Bottom:

ux = uy = 0

Drained: pw = γwh or

Undrained: ∂pw

∂n
= 0

Figure 8: One-dimensional freezing: Computational domain and boundary conditions.

The soil column is subjected to cooling at the top boundary where the environment
temperature is Te = −10 ◦C. An initial hydrostatic condition is assumed for the pore water
pressure throughout the soil column. The thermal conductivity of the external environment
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Table 1: One-dimensional freezing: Material and model parameters.

Parameter Value Unit

Thermal properties:
Thermal conductivity of soil, λs 1.5 W/m/K
Thermal conductivity of water, λw 0.6 W/m/K
Thermal conductivity of ice, λi 2.2 W/m/K
Specific heat capacity of soil, cs 800 J/kg/K
Specific heat capacity of water, cw 4190 J/kg/K
Specific heat capacity of ice, ci 2095 J/kg/K
Latent heat of fusion, Lf 334 kJ/kg

Hydraulic properties:
Hydraulic conductivity, k 1.0× 10−5 m/s
Saturation model parameter 1, α 0.1 MPa−1

Saturation model parameter 2, β 2.5 −
Saturation model parameter 3, γ 8.0 −
Hydraulic conductivity model parameter, m 0.87 −

Mechanical properties:
Young’s modulus of soil, Es 3.0 MPa
Young’s modulus of ice, Ei 9100 MPa
Poisson’s ratio of soil, νs 0.2 −
Poisson’s ratio of ice, νi 0.4 −
Strength model parameter, η 1.0 −

Mass and volume properties:
Initial porosity, n 0.44 −
Density of soil, ρs 2650 kg/m3

Density of water, ρw 1000 kg/m3

Density of ice, ρi 910 kg/m3

is assumed to be λe = 0.01 kW/m2/K, which simulates air and other surface covering
material such as snow. The freezing process is assumed to obey Newton’s law of cooling
such that the heat transferred in to the soil column is q = λe(T − Te). The vertical and
horizontal displacements are fixed at the bottom boundary and the horizontal displacements
are fixed at the lateral boundaries. The top and lateral boundaries are allowed to move freely
in the vertical direction. The lateral boundaries are sealed and insulated i.e. the water and
the heat fluxes are set to zero. The top boundary is allowed to transfer heat from the
environment into the soil column. Two drainage boundary conditions are considered at
the bottom: drained (pw = 0) and undrained (∂p

w

∂n
= 0). The top boundary is assumed

to be permeable (pw = 0) in the simulation here. This may be considered permeable at
the beginning of the simulation and changed to an impermeable boundary when freezing
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starts, thus changing the pressure boundary condition from a Dirichlet to a Neumann type.
This assumption is expected to result in slight differences in the displacement and pore
pressure results but the effect is negligible on the temperature and ice saturation profiles.
The material and model parameters used for the simulation are given in Table 1.

6.1.2. Results

Results of the simulation for a drained bottom boundary are shown in Figure 9 in terms
of vertical displacement, pore water pressure temperature and ice saturation profiles versus
depth at selected time steps. The corresponding results for an undrained bottom boundary
are shown in Figure 10. A comparison of the drained and undrained results shows that the
temperature and ice saturation profiles of the two cases are more or less the same. This
indicates that advective heat transfer has little effect on the thermal state in this particular
example. On the other hand, significant differences are observed in the vertical displacement
and pore water pressure profiles for the two bottom drainage cases. The final vertical heave
in the drained case is larger than the heave in the undrained case by a significant margin.
The evolution of the total vertical heave with time, at the top boundary, for the two cases
is shown in Figure 11. This highlights the influence of water migration in frost heave, which
is a well-known phenomenon. A closer look at the vertical displacement profiles in the two
cases reveals that the soil continuously expands in the drained case due to a continuous
supply of water from the drained boundary. However, in the undrained case, as the soil
column expands at the top due to freezing, contraction is observed at the bottom since
there is no continuous water supply. Negative pore water pressures are observed as water is
sucked into the freezing front.
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Figure 9: One-dimensional freezing: Results for a drained bottom boundary.
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Figure 10: One-dimensional freezing: Results for an undrained bottom boundary.
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Figure 11: One-dimensional freezing: Vertical displacement of the top boundary versus time for
drained and undrained bottom boundaries.

6.2. Frost Heave

Prediction of frost heave is important in the design and safety analysis of structures in
or on frost susceptible soils. Frost heave can cause structural damages such as displacement
of retaining walls, lifting of pavements and lifting of foundations and distortion of unheated
buildings, [29]. An accurate prediction and modeling of the thermal properties of such soils
under sub-zero temperatures is essential. We here present a numerical example based on
field-scale experimental observations on the nature of frost heaving; see Smith and Patter-
son [34]. The field scale test performed considers a chilled pipeline buried in soil and an
outer environment with sub-zero temperature. The heave displacements from the test are
documented and the results are used for comparison against simulations. Other relevant
information is referred from the numerical studies by Selvadurai et al. [35] and Mikkola and
Hartikainen [36].

6.2.1. Problem Definition

The gas pipeline in the full-scale experiment has a diameter of 273 mm and is buried
in silt. The length of the pipeline is 16 m and the 8 m wide test trench is filled with silt
up to a depth of 1.75 m. The backfill on top of the pipeline has a height of 0.33 m. The
numerical model is setup in two dimensions and we take advantage of symmetry and model
only half of the cross-sectional domain. The computational domain is shown in Figure 12.
The water table is located at 90 cm below the top surface but the whole domain is assumed
to be saturated due to capillarity.

The following boundary conditions are defined: both the horizontal and vertical displace-
ments are fixed at the bottom boundary and the lateral boundaries are constrained from
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Figure 12: Frost heave: Computational domain.
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Figure 13: Frost heave: Estimation of saturation model parameters and hydraulic conductivity
model parameter based on experimental data.

horizontal displacement. The bottom boundary is drained and adiabatic. The top bound-
ary is undrained and its temperature is −0.75 ◦C from the hall temperature. The lateral
boundaries are impermeable and adiabatic. The temperature in the pipeline is maintained
at a constant value of −5 ◦C throughout the experiment. The initial temperature of the silt
is 4 ◦C.

The material properties for the silt are given in Table 2. The saturation model parameters
are estimated based on curve fitting to experimental data of unfrozen water content versus
temperature. The hydraulic conductivity model parameter is similarly estimated by fitting a
curve to an experimental hydraulic conductivity versus temperature data. The experimental
data and the fitted curves are shown in Figure 13. The strength parameter is selected such
that the frozen strength of the silt is comparable to empirical estimates such as in [37].

25

���



Table 2: Frost heave: Material and model parameters.

Parameter Value Unit

Thermal properties:
Thermal conductivity of soil, λs 0.65 W/m/K
Thermal conductivity of water, λw 0.6 W/m/K
Thermal conductivity of ice, λi 2.2 W/m/K
Specific heat capacity of soil, cs 800 J/kg/K
Specific heat capacity of water, cw 4190 J/kg/K
Specific heat capacity of ice, ci 2095 J/kg/K
Latent heat of fusion, Lf 334 kJ/kg

Hydraulic properties:
Hydraulic conductivity, k 5.0× 10−9 m/s
Saturation model parameter 1, α 0.5 MPa−1

Saturation model parameter 2, β 1.82 −
Saturation model parameter 3, γ 0.45 −
Hydraulic conductivity model parameter, m 0.28 −

Mechanical properties:
Young’s modulus of soil, Es 1.0 MPa
Young’s modulus of ice, Ei 9100 MPa
Poisson’s ratio of soil, νs 0.3 −
Poisson’s ratio of ice, νi 0.4 −
Strength model parameter, η 5.0 −

Mass and volume properties:
Initial porosity, n 0.4 −
Density of soil, ρs 2650 kg/m3

Density of water, ρw 1000 kg/m3

Density of ice, ρi 910 kg/m3

6.2.2. Results

The mesh used for the simulation is shown in Figure 14. Quadratic polynomial degrees
are used for the pressure and the temperature (pp = pT = 2) and cubic polynomial degrees
for the displacement (pu = 3). The simulation is run for a time period of 358 days, as in the
experiment.

The degree of ice saturation in the simulation domain after 358 days is shown in Fig-
ure 15. We observe from the result that freezing is initiated from two fronts; the subzero
temperatures in the pipeline and the top boundary. Frost penetration occurs slowly and we
see that we still have an unfrozen area in the domain after 358 days. This is due to the
hydraulic and thermal properties of the silt in the experiment. Some unfrozen water still
remains in areas of the frozen part, as expected from the unfrozen water content data from
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Figure 14: Frost heave: Spatial discretization.

Figure 15: Frost heave: Ice saturation at the final step i.e. after 358 days.

experiments.
The temperature profiles showing the evolution of the freezing front are presented in

Figure 16 for time periods after 100, 200 and 300 days. At the end of the simulation, and the
experiment, some portion of the silt still has a temperature above the freezing temperature.
The evolution of the 0 ◦C isotherm from the simulation shows a good agreement with the
experimental results reported by Smith and Patterson [34]. A total heave of about 20 cm
is observed at the centerline of the pipe. The heave displacement was monitored in the
experiment at locations denoted Site 2, Site 3 and Site 4, which are located at the top
and 25 cm, 65 cm and 100 cm from the centerline of the pipe, respectively. The heave
displacements from the simulation at these locations are plotted against the observed data
and the results are shown in Figure 17. As can be seen, the results from the simulation show
a reasonably good agreement with the observed data.
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(a) t = 100 days

(b) t = 200 days

(c) t = 300 days

Figure 16: Frost heave: Temperature profiles at selected time steps.

28

���



0 50 100 150 200 250 300 350 400

Time [days]

0

5

10

15

20

H
ea

ve
[c
m
]

Site 2
Site 3
Site 4
Simulation

Figure 17: Frost heave: Heave displacements from experiment and simulation. The solid lines for
simulation from top to bottom correspond to Site 2, Site 3 and Site 4.

7. Conclusions

An isogeometric analysis based fully coupled thermo-hydro-mechanical (THM) numerical
model for ground freezing is presented. A saturated frozen soil, with solid, water and ice
phases, is assumed. The governing equations of the model are derived based on porous media
theory. Volume expansion and contraction strains, due to phase change from water to ice
and ice to water, are incorporated into the governing equations. The governing equations
are supplemented by other temperature dependent state parameters such as the soil-water
characteristic curve and the hydraulic conductivity model.

The proposed numerical model is first qualitatively validated by asserting that the stan-
dard governing equations of poroelasticity are derived for the specific case where the degree
of ice saturation is zero. This is further discussed in Appendix A. The model is then
used to simulate freezing problems. In particular, numerical examples on one-dimensional
freezing of a soil column and a two-dimensional frost heave simulation, with a pipeline
transporting chilled gas, are presented. The two-dimensional frost heave problem is based
on field-scale experimental data and the numerical simulation results were observed to be in
a good agreement with the experimental results.

The numerical implementation of the model is based on isogeometric analysis using B-
Splines for numerical integration. The continuity of the B-Splines basis functions across knot
spans, analogous to elements in the standard finite element method, can be controlled to a
deisred degree. This is unlike in the finite element method, where the basis function are only
C0 continuous across element boundaries. This improves the accuracy of derived quantities
such as stresses, strains and fluxes. Further numerical studies are required to quantify
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this. The use of isogeometric analysis also has the advantage that CAD geometries can be
represented in an ‘exact’ manner, which are only approximated through mesh generation in
the traditional finite element method.
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Appendix A. Validation of THM Model

The governing equations and the final discretized system of equations can be validated
for a specific case. The approach used here is to check if the system of equations reduce to
the well-know equations of poroelasticity when no freezing is considered. This means that
we assume the degree of ice saturation to be zero, i.e. Si = 0, which for a saturated porous
medium implies Sw = 1. A constant degree of water saturation further implies that the
isothermal and non-isothermal water capacities become zero i.e. Sp = ST = 0. With these
conditions, the governing equations in Eq. (9), (12) and (18) reduce to:

∇ · σ′ −∇pw + ρb = 0 (A.1)

∇ · vs +∇ ·w = 0 (A.2)

(ρc)eff
DsT

Dt
+ a · ∇T = −∇ · q +Q (A.3)

If we further assume isothermal conditions such that there are no spatial and temporal
changes in temperature i.e. ∇T = 0 and ∂T

∂t
= 0, the equations effectively reduce to the

governing equations of a consolidation problem with incompressible solid grains and water.
The THM numerical implementation is verified by simulating a consolidation problem. The
thermal material properties are supplied in the input such that the coefficient matrices
related to temperature are non-zero. A positive initial temperature is assumed and all the
boundaries of the consolidation model are set to be adiabatic. The results are not included
here.
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Part III

Summary
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“It is strange that only extraordinary men make the discoveries,
which later appear so easy and simple.”

– Georg Lichtenberg

Chapter 4

Conclusions and Outlook

This chapter presents a summary of the research work in the thesis and the main
findings as conclusions. A list of recommendations for future work is also made.

4.1 Summary
Computational modeling of physical phenomena that occur in porous media re-
quires detailed mathematical formulations describing the processes and a robust
numerical method for simulation. The mathematical formulations governing vari-
ous physical processes are based on porous media theory. The fundamental state-
of-the-art concepts in this theory are summarized in a general form that may be
applicable to any porous material. The applications of interest in this thesis were
porous media flow, hydro-mechanically and thermo-hydro-mechanically coupled
problems. With these applications in mind, formulation of the governing equations
for specific cases is discussed in detail such that the assumptions and limitations
of the formulations in each case are evident.

The computational method that is applied here is IGA which relies on B-Spline and
NURBS basis functions that are used in CAD. IGA was first introduced to bridge
the gap between CAD and FEA. It has been applied to various computational
mechanics problems with commendable success and has shown several advantages
over FEA. In the context porous media problems, the features of IGA that are
especially attractive are the controllable smoothness of the basis functions and its
unique refinement capability that can be used to achieve high regularity meshes.
The ability to represent CAD geometries in an ‘exact’ manner during analysis is
another feature that is useful for particular application problems.

Application of IGA to the porous media problems studied here resulted in the pa-
pers presented in Part II. Each of the papers contain a summary of their respective
applications. A shorter summary of each paper is presented here.
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Paper I
Adaptive IGA of steady-state groundwater flow problems, which are governed by
Darcy’s law, is studied in this paper. The numerical challenges in the simulation
of these problems, for instance due to complex boundary conditions, motivated the
application of adaptive refinement using LR B-Splines. The numerical implemen-
tation is verified based on problems with analytical solutions. A posteriori error
estimates are calculated based on analytical solutions, whenever available, and L2

projection of the primary solution. The groundwater flow problems simulated are
flow around an impervious corner, flow around a cutoff wall and flow in a hetero-
geneous medium.

Paper II
The second paper deals with the application of mixed IGA to classical poroelastic-
ity problems. The finite element method has been applied to such problems and
the numerical behavior of the governing equations has been discussed by several
researchers, as documented in the introduction of this paper. Pressure oscillations
at small time steps have been known to be an issue in the simulation of these
problems. Several measures have been put forward to alleviate this, of which the
critical time step concept is one which is widely used in finite element packages.
The performance of mixed IGA for smaller time steps is investigated by revisiting
Terzaghi’s classical consolidation problem. A numerical study is also performed on
the consolidation of a layered soil with a pressure oscillation susceptible very low
permeability layer.

Paper III
Fully coupled THM processes during ground freezing are studied in this paper. The
governing linear momentum, mass and energy balance equations are formulated by
assuming saturated conditions. Strain due to phase change is incorporated into the
equilibrium equation through the constitutive equations. A simple thermoelastic
constitutive model with temperature dependent strength parameters is presented.
The mathematical model is completed by defining a soil-water characteristic curve
and a hydraulic conductivity model, both adopted from literature. Mixed IGA is
applied and Galerkin formulation of the governing equations resulted in a highly
nonlinear coupled system of equations, which are solved using Newton-Raphson
iterations. Numerical studies are performed on one-dimensional freezing and a
frost heave problem where experimental data is available.

4.2 Conclusions
Application of IGA to coupled problems in porous media is presented. The work
here mainly initiates application of IGA to THM coupled problems in porous media
to take advantage of the features of IGA that are computationally attractive in this
context. This is achieved by developing a fully coupled THM numerical framework
for ground freezing based on mixed IGA. Good agreements were observed between
the mixed IGA based simulation of a THM coupled problem of frost heave and the
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corresponding experimental data found from literature.

Classical steady-state groundwater flow and poroelasticity problems are revisited
from a computational perspective. Numerical studies are performed to study the
accuracy of the IGA based simulations. It is shown that adaptive and higher-order
simulations can improve the accuracy of the numerical results. This emphasizes
that there is some room for improvement in the efficiency and robustness of tradi-
tional FEA of such problems.

The specific observations made from the research work are listed below in the order
of the application problems studied.

� Adaptive isogeometric analysis of steady-state groundwater flow problems us-
ing LR B-Splines improves the accuracy of the primary solution, by recovering
the spatial errors, compared to simulations with uniform refinement.

� The convergence rates for flow problems with strong discontinuities, such as
flow around a cutoff wall, were found to be optimal and observed to improve
with increasing polynomial degrees.

� Adaptive simulation of flow problems with weak discontinuities, such as flow
in a heterogeneous medium, may not result in optimal convergence rates.
Adaptive refinement, however, still outperformed simulations with uniform
refinement.

� Extrapolation of the observations from the adaptive simulations implies that
adaptive refinement could especially be more useful for large-scale groundwa-
ter flow problems where uniform refinement may be computationally expen-
sive.

� Mixed IGA of classical poroelasticity problems, using different polynomial
orders for displacement and pore pressure, improves the accuracy of the pore
pressure results compared to equal order simulations, as is known from stan-
dard FEA.

� Investigation of the accuracy of the pore pressure results at very small time
steps disclosed that mixed IGA may not completely remove the oscillations.
The results were, however, noticed to improve with increasing polynomial
degrees.

� IGA of poroelasticity problems with graded mesh refinement was observed
to reduce the pore pressure oscillations, revealing the potential of adaptive
refinement for such problems. This should be studied further.

� Frost heave due to a pipeline transporting chilled gas in a cold environment
is predicted with a reasonable accuracy by incorporating strain due to phase
change and a simple thermoelastic constitutive model into the mixed IGA
based THM framework.
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� The continuity of the basis functions in mixed IGA of THM coupled problems
implies that derived quantities, such as fluxes, will be continuous between
knot spans (analogous to elements in FEA). This is qualitatively discussed
to imply local conservation of the derived quantities. This should be studied
further quantitatively.

Further numerical studies are required to quantify the specific advantages of IGA
over traditional FEA when applied to THM coupled problems in porous media.

In general, the numerical implementation work resulted in H, HM and THM frame-
works for simulation of poro/geomechanics problems using IGA. The frameworks
are developed based on IFEM - an object-oriented isogeometric toolbox for the
solution of partial differential equations. The developed numerical codes may be
used and extended further.

4.3 Possible Future Work
The following recommendations for further work are made based on the observa-
tions in this research.

� Adaptive IGA of porous media flow problems such as transient groundwater
flow, free-surface seepage and multi-phase flow.

� Extension of the mixed IGA HM and THM frameworks for unsaturated con-
ditions i.e. incorporation gas phases in both cases.

� Incorporation of advanced constitutive models, such as elastoplastic and vis-
coplastic models, into the HM and THM frameworks and investigation of the
performance of mixed IGA.

� Generalization of the coupled frameworks to dynamic porous media problems;
IGA has been successfully applied to dynamic problems in other fields and the
possibility of having mass matrices with non-negative entries (owing to the
non-negative basis functions) is anticipated to be particularly advantageous.

� Adaptive IGA of HM and THM coupled problems in porous media.

� Investigation of sequentially and fully coupled solution approaches to THM
coupled problems under the IGA framework.

� Parallelization of flow, HM and THM implementations in IFEM to reduce
computation times and improve efficiency, especially for large-scale problems.
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“Everything is a work in progress.”
– Anonymous

Appendix A

Mixed Isogeometric Analysis of
THM Coupled Processes in
Saturated Porous Media

The isogeometric analysis numerical implementation work in this thesis followed a
strategic procedure starting with hydraulic processes followed by hydro-mechanical
coupling and then fully coupled thermo-hydro-mechanical (THM) implementation.
The development of the fully coupled code for ground freezing started with the
simplest possible THM processes in saturated porous media for easier debugging,
verification and validation of the final implementation. The governing equations,
final system of equations and numerical tests performed during this intermediate
THM implementation are discussed in this appendix.

A.1 Governing Equations
The main governing equations for THM coupled processes in a fluid-saturated
porous medium are the linear momentum, mass and energy balance equations.

The linear momentum balance equation for the mixture is given by

Lᵀσ + ρb = 0 (A.1)

where σ is the total stress tensor in Voigt notation, ρ is the total density of the
mixture, b represents body forces and L is a differential operator corresponding to
Voigt notation given by

Lᵀ =

⎡
⎢⎣
∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

⎤
⎥⎦ . (A.2)
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The total stress σ and the effective stress σ′ are related by

σ = σ′ + αpwĨ (A.3)

where pw is the pore water pressure, α is Biot’s coefficient and for stresses in
Voigt notation and a general three-dimensional case Ĩ = {1 1 1 0 0 0}ᵀ. The
constitutive stress-strain relation for linear elasticity is given by

σ′ = D̃ : (ε− εT) (A.4)

where D̃ is the tangent stiffness for linear elasticity, ε is the total strain tensor and
εT represents thermal strains and is expressed as

εT = αsT Ĩ. (A.5)

Here αs is the thermal expansion coefficient of the solid and T is the temperature.
Based on (A.3), (A.4) and (A.5), we can now rewrite (A.1) as

Lᵀ
[
D̃Lu− αpwĨ − D̃αsT Ĩ

]
+ ρb = 0 (A.6)

where u is the displacement vector and we have used the small deformation strain-
displacement relation

ε =
1

2
(∇u+∇ᵀu). (A.7)

The mass balance equation is given by

α∇ · u̇+ c
∂pw

∂t
+∇ ·w = 0 (A.8)

where c is the specific storage coefficient given by

c =
α− n

Ks
+

n

Kw
(A.9)

with n being the porosity, Ks the bulk modulus of the solid and Kw the bulk
modulus of water. Darcy’s velocity w is expressed as

w = − 1

γw
k(∇pw − ρwb) (A.10)

where γw is the unit weight of water, k is the hydraulic conductivity matrix and
ρw is the density of water.

The energy balance equation is given by

(ρc)eff
∂T

∂t
+ ρwcww · ∇T +∇ · q = Q (A.11)

where Q is the external heat supply and (ρc)eff is the effective heat capacity of the
mixture expressed as the sum of the heat capacities of the constituents:

(ρc)eff = (1− n)ρscs + nρwcw. (A.12)
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In the equation above, cs and cw are the specific heat capacities of the solid and
water, respectively, and ρs is the density of the solid. The conductive heat flux q
is defined by Fourier’s law as

q = −λ∇T (A.13)

where λ is the overall thermal conductivity of the mixture, which may be approxi-
mated as the geometric mean of the individual thermal conductivities of the solid
and water, λs and λw, as

λ = λ1−ns λnw. (A.14)

The governing equations may be summarized in terms of the field variables u, pw

and T as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lᵀ
[
D̃Lu− αpwĨ − D̃αsT Ĩ

]
+ ρb = 0

αĨᵀL
∂u

∂t
+ c

∂pw

∂t
+∇ ·

[
− 1

γw
k(∇pw − ρwb)

]
= 0

(ρc)eff
∂T

∂t
+ ρwcw

[
− 1

γw
k(∇pw − ρwb)

]
· ∇T +∇ · (−λ∇T ) = Q.

(A.15)

A.2 Mixed Isogeometric Implementation
A.2.1 Initial and Boundary Conditions
The initial conditions for the displacement, pore water pressure and temperature
at time t = 0 are:

u = uo pw = pwo T = To in Ω and on Γ (A.16)

where Ω and Γ are the domain and its boundary, respectively. We denote the
Dirichlet boundaries by ΓD and the Neumann boundaries by ΓN , where ΓD∪ΓN =
Γ. The Dirichlet boundary conditions may be defined as:

⎧⎪⎨
⎪⎩
u = u on Γu

D

pw = pw on Γp
D

T = T on ΓT
D.

(A.17)

The Neumann boundary conditions are defined as:

⎧⎪⎨
⎪⎩
σ · n = t on Γu

N

w · n = qw on Γp
N

q · n = qT on ΓT
N

(A.18)

where t is the traction boundary condition and n is the outward unit normal vector
to the boundary. The water and heat fluxes at the boundary are represented by
qw and qT, respectively.
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A.2.2 Variational Formulation
To derive the variational formulations of the governing equations we introduce a
vector-valued test function δu, which vanishes on Γu

D, and scalar test functions δp
and δT , which vanish on Γp

D and ΓT
D, respectively. The weak form of the linear

momentum balance equation in (A.15)1 is obtained by multiplying it with δu and
integrating over the domain Ω i.e.

∫
Ω

δu
{
Lᵀ

[
D̃Lu− αpwĨ − D̃αsT Ĩ

]
+ ρb

}
dΩ = 0. (A.19)

Similarly, the weak form of the mass balance equation (A.15)2 is obtained as

∫
Ω

δp

{
αĨᵀL

∂u

∂t
+ c

∂pw

∂t
+∇ ·

[
− 1

γw
k(∇pw − ρwb)

]}
dΩ = 0 (A.20)

The weak form of the energy balance equation (A.15)3

∫
Ω

δT

{
(ρc)eff

∂T

∂t
+ ρwcw

[
− 1

γw
k(∇pw − ρwb)

]
· ∇T +∇ · (−λ∇T )−Q

}
dΩ = 0

(A.21)

The weak forms in (A.19), (A.20) and (A.21) are further simplified by applying
Green’s theorem to relax second derivatives. The details are omitted here.

A.2.3 Galerkin Formulation
Choosing the basis functions Nu,Np and NT for the displacement, pore water
pressure and temperature, respectively, we write the approximations:

u = Nuu
c,

∂u

∂t
= Nu

∂uc

∂t

pw = Npp
c,

∂pw

∂t
= Np

∂pc

∂t

T = NTT
c,

∂T

∂t
= NT

∂T c

∂t

(A.22)

where uc, pc and T c are the control point displacement, pore water pressure and
temperature values.

Application of (A.22) to the weak form of the linear momentum balance equation
in (A.19) results in the matrix equation

Cuu
∂uc

∂t
+Cup

∂pc

∂t
+CuT

∂T c

∂t
= fu (A.23)
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where

Cuu =

∫
Ω

BᵀD̃BdΩ

Cup =

∫
Ω

BᵀαĨNpdΩ

CuT =

∫
Ω

BᵀD̃αsĨNTdΩ

fu =

∫
Γu
N

Nᵀ
u ṫdΓ.

(A.24)

Here B = LNu is the strain-displacement matrix. Similarly, Galerkin formulation
of the weak form of the mass balance equation (A.20) results in

Kppp
c +Cpu

∂uc

∂t
+Cpp

∂pc

∂t
= fp (A.25)

where

Kpp =

∫
Ω

∇Nᵀ
p

1

γw
k∇NpdΩ

Cpu = Cᵀ
up

Cpp =

∫
Ω

Nᵀ
p cNpdΩ

fp =

∫
Ω

∇Nᵀ
p

1

γw
kρwbdΩ−

∫
Γp
N

Nᵀ
p q

wdΓ.

(A.26)

Galerkin approximation of the weak form of the energy balance equation (A.21)
gives

KTTT
c +CTT

∂T c

∂t
= fT (A.27)

where

KTT =

∫
Ω

∇Nᵀ
TρwcwwNTdΩ +

∫
Ω

∇Nᵀ
Tλ∇NTdΩ

CTT =

∫
Ω

Nᵀ
T(ρc)effNTdΩ

fT = −
∫
ΓT
N

Nᵀ
Tq

TdΓ

(A.28)

Combining (A.23), (A.25) and (A.27) results in the coupled system of equations⎡
⎣0 0 0
0 Kpp 0
0 0 KTT

⎤
⎦
⎧⎨
⎩
uc

pc

T c

⎫⎬
⎭+

⎡
⎣Cuu Cup CuT

Cpu Cpp 0
0 0 CTT

⎤
⎦ ∂

∂t

⎧⎨
⎩
uc

pc

T c

⎫⎬
⎭ =

⎧⎨
⎩
fu

fp

fT

⎫⎬
⎭ (A.29)

which can be written in a more compact form as:

KX +C
∂X

∂t
= F (A.30)
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where the coefficient matrices K and C, the external load vector F and the vector
of unknowns X are evident from (A.29). The equation system is nonlinear due
to the convective term in the coefficient matrix KTT and a fully coupled solution
requires the use of iterative methods like the Newton-Raphson method.

A.2.4 Temporal Discretization
Temporal discretization of the system of matrix equations is performed using the
Generalized Trapezoidal Rule (GTR). For the rate of change of the unknown vector
X, we have the approximation:

∂X

∂t

∣∣∣∣
n+θ

=
Xn+1 −Xn

Δt

Xn+θ = (1− θ)Xn + θXn+1

(A.31)

where θ is a time integration parameter which has limits 0 ≤ θ ≤ 1. The system of
matrix equations at time tn+θ is then:

KXn+θ +C
∂X

∂t

∣∣∣∣
n+θ

= Fn+θ. (A.32)

Using the approximation in Eq. (A.31) into Eq. (A.32) and adopting a fully implicit
time integration scheme with θ = 1, we get the residual at time step tn+1 as:

Rn+1 = [ΔtK +C]n+1 Xn+1 −Cn+1Xn −ΔtFn+1. (A.33)

After Taylor series expansion of the residual, we solve for the increment of the
unknown vector ΔXi+1

n+1 using Newton-Raphson iterations from:

∂R

∂X

∣∣∣∣i
n+1

ΔXi+1
n+1

∼= −Ri
n+1 (A.34)

where i is the iteration number and we have the Jacobian matrix in the above
equation as:

J =
∂R

∂X
. (A.35)

The vector of unknowns at time step tn+1 is updated after each iteration using:

Xi+1
n+1 = Xi

n+1 +ΔXi+1
n+1. (A.36)

A.3 Numerical Example
Non-isothermal consolidation of a linearly elastic soil column is considered; see Aboustit
et al. (1985). The computational domain and boundary conditions are shown in
Figure A.1. The soil column is loaded with a surface pressure of 1000 Pa and is
subjected to a temperature change of ΔT = 50 ◦C at the top boundary. The lateral
boundaries are constrained from moving in the horizontal direction and the bottom
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ty

Ω

2m

7m

Top:

ty = 1000 Pa
ΔT = 50 ◦C

pw = 0

Lateral sides:

ux = 0, ∂pw

∂n
= 0, ∂T

∂n
= 0

Bottom:

ux = uy = 0
∂pw

∂n
= 0, ∂T

∂n
= 0

Figure A.1: Non-isothermal consolidation: Computational domain and boundary condi-
tions.

boundary is fixed. The top boundary is permeable. The lateral and bottom bound-
aries are sealed and insulated. The material parameters used for the simulation are
given in Table A.1, which are slightly different from the reference cited above.

Mixed isogeometric analysis is performed where quadratic basis functions are used
for the pressure and temperature (pp = pT = 2) and cubic basis functions for the
displacement (pu = 3). The vertical displacement versus time results at randomly
selected points along the height of the soil column are shown in Figure A.2. The
corresponding pore water pressure and temperature results versus time are shown
in Figures A.3 and A.4, respectively. The settlement of the soil column due to
the surface load can be observed to be reversed due to thermal expansion as the
temperature in the domain increases with time.

A.4 Summary
An isogeometric analysis based numerical implementation for fully coupled THM
processes in saturated porous media is presented. The numerical implementation
is verified by performing simulation of non-isothermal consolidation of a linearly
elastic soil column, a well-known problem in literature. The specific advantages of
using isogeometric analysis for this class of problems requires further theoretical
and numerical investigations. This will be a subject for a future work with a
possible outcome in the form of a publication.

F 8 f
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Table A.1: Non-isothermal consolidation: Material parameters.

Parameter Value Unit

Thermal properties:
Thermal conductivity of soil, λs 1.0× 105 W/m/◦C
Thermal conductivity of water, λw 0.6 W/m/◦C
Specific heat capacity of soil, cs 61 J/kg/◦C
Specific heat capacity of water, cw 200 J/kg/◦C
Thermal expansion coeff. of soil, αs 0.9× 10−6 /◦C

Hydraulic properties:
Hydraulic conductivity, k 8.04× 10−6 m/s

Mechanical properties:
Young’s modulus of soil, E 6.0 MPa
Poisson’s ratio of soil, ν 0.4 −
Biot’s coefficient, α 1.0 −

Mass and volume properties:
Initial porosity, n 0.4 −
Density of soil, ρs 2200 kg/m3

Density of water, ρw 1000 kg/m3
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Figure A.2: Vertical displacement versus time at selected points along the height of the
soil column (y = 0 at the bottom boundary).
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Figure A.3: Pore water pressure versus time at selected points along the height of the soil
column (y = 0 at the bottom boundary). pw = 0 at y = 7.0, the top boundary.
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Figure A.4: Temperature versus time at selected points along the height of the soil column
(y = 0 at the bottom boundary). T = 50 ◦C at y = 7.0, the top boundary.





“Mathematics takes us still further from what is human, into the
region of absolute necessity, to which not only the world, but every
possible world, must conform.”

– Bertrand Russel

Appendix B

Integral Theorems

The integral theorems that are mentioned and used in the theoretical and numerical
formulations in this thesis are presented in this appendix as a quick reference.

Divergence Theorem
The divergence theorem, also known as Gauss’s theorem, is stated as: Given a
volume region V with boundary ∂V , the volume integral of the divergence ∇·F of
a continuously differentiable vector field F and the surface integral of F over ∂V
satisfy the relationship ∫

V

(∇ · F )dV =

∫
∂V

F · ndA (B.1)

where n is the outward unit normal to the boundary ∂V . The physical statement
of the divergence theorem is that the density in a given space changes only when
there is an inflow or outflow through its boundary, assuming there is no creation
or destruction of matter.

Reynold’s Transport Theorem
The rate of change of integrated quantities is obtained using Reynold’s transport
theorem, which is briefly presented in Section 2.3. This theorem is used in formu-
lating the conservations laws. It is clarified further here to give insight into the
physical meanings of the terms involved.

For a given quantity f(x, t) (which may be tensor-, scalar- or vector-valued) over
a time-dependent volume V (t) with boundary ∂V (t), Reynold’s transport theorem
is given by

d

dt

∫
V (t)

fdV =

∫
V (t)

∂f

∂t
dV +

∫
∂V (t)

f(vA · n) dA (B.2)

where n(x, t) is the outward unit normal to the boundary, dA is the surface area
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at position vector x and vA(x, t) is the velocity of the area element. In terms of
the velocity v(x, t) of material elements, we have

d

dt

∫
V (t)

fdV =

∫
V (t)

∂f

∂t
dV +

∫
∂V (t)

f(v · n)dA (B.3)

where at the boundary vA · n = v · n is satisfied.

Green’s Theorem
Given a region D in a plane with a closed boundary ∂D, Green’s theorem states
that ∮

∂D

F · nds =
∫∫

D

(∇ · F )dA (B.4)

where F is a two-dimensional vector field, n is the outward unit normal on the
boundary and ds is the length of the boundary. Green’s theorem is the two-
dimensional equivalent of the divergence theorem.
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“Problems worthy of attack prove their worth by fighting back.”
– Paul Erdős

Appendix C

Conference Papers and
Presentations

The following conference papers and presentations have been part of the thesis
work. The abstracts and papers are not included here as the journal papers expand
based on them.

1. Bekele, Y.W.∗, Fonn, E., Kvarving, A.M., Kvamsdal, T., and Nordal, S. On
mixed isogeometric analysis of poroelasticity†: 13th US National Congress on
Computational Mechanics - USNCCM13, 26-30 July 2015, San Diego, CA,
USA.

2. Bekele, Y.W.∗, Kvamsdal, T., Kvarving, A.M., and Nordal, S. On adaptive
isogeometric analysis of steady-state groundwater flow with LR B-splines†:
III International Conference on Isogeometric Analysis - IGA2015, 1-3 June
2015, Trondheim, Norway.

3. Fonn, E.∗, Bekele, Y.W., Kvarving, A.M., Kvamsdal, T., and Nordal, S. A
mixed-order isogeometry solver for poroelasticity problems†: III International
Conference on Isogeometric Analysis - IGA2015, 1-3 June 2015, Trondheim,
Norway.

4. Bekele, Y.W.∗, Kvamsdal, T., Kvarving, A.M., and Nordal, S. Adaptive isoge-
ometric finite element analysis of groundwater flow in heterogeneous porous
media†: VI International Conference on Coupled Problems in Science and
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