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Problem Statement

The purpose of this thesis is to evaluate the performance of different momentum invest-
ment strategies and to assess the possibility to dynamically change from one investment
strategy to another.

• Review theory and literature related to momentum factor investing, moment-matching
scenario generation and stochastic portfolio optimization

• Evaluate performance of different momentum factor strategies on historical data
from Norwegian and US equity markets

• Develop a stochastic portfolio optimization framework with appropriate risk mea-
sures that can be implemented algorithmically with portfolios of momentum factor
strategies

• Evaluate implications for a momentum investor, provide overall assessment of the
implementation, and a discussion of the obtained results
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Abstract

Momentum strategies based on continuation patterns in equity prices have attracted
a wide following among money managers and financial investors attempting to exploit
anomalies present in the stock market. In this thesis, we first perform out-of-sample tests
of four long-only momentum strategies, one contrarian strategy and one low-volatility
investment strategy on US and Norwegian equity samples. We find the momentum and
contrarian strategies to yield statistically significant abnormal returns on the Norwegian
market only, indicating the US market to be more efficient. The highest average monthly
returns are found for the individual stock price momentum strategy, and the highest risk-
reward performance is yielded by a volatility-scaled momentum strategy. The returns to
the strategies are found time-varying and not always positive, suggesting that a momen-
tum investor could benefit from periodically changing strategy or investing in a risk-free
instrument.

The second part of this thesis studies the problem facing an investor with funds to allocate
between investment strategies in the Norwegian market. We build a stochastic portfolio
optimization framework with moment-matching scenario generation, and apply it out-
of-sample on portfolios with momentum and contrarian strategies. We find a significant
performance increase in adding a contrarian strategy to a portfolio of momentum strate-
gies. By allowing the investor to allocate wealth portion-wise between these algorithms,
we generate higher risk-reward performance than both an equally weighted market index
and a buy-and-hold benchmark of the constituent strategies. Finally, by forcing the in-
vestor to each month choose between a contrarian and a single momentum strategy, we
create investment strategies with superior return performance. In particular, we find a
contrarian strategy in combination with an individual stock price momentum strategy,
to yield the highest cumulative and average returns among the strategies tested. These
findings from stochastic programming suggest that an investor could benefit from peri-
odically changing between contrarian and momentum investing, exploiting both return
reversal effects and continuation patterns in equity prices.
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Sammendrag

Blant investorer som regelmessig forsøker å kapitalisere p̊a anomalier tilstede i aksje-
markedet, er det flere som benytter investeringsstrategier som baserer seg p̊a fortset-
telsesmønster i aksjenes priser. I første del av denne oppgaven implementerer vi fire
momentum strategier, en kontrær strategi og en lav-volatilitets investeringsstrategi p̊a
historisk prisdata fra det norske og amerikanske aksjemarkedet. Resultatet viser at mo-
mentum og kontrær basert investering kun kan gjøres profitabelt i det norske markedet,
noe som kan indikere at det amerikanske aksjemarkedet er mer effektivt. Vi finner
høyest gjennomsnittlig avkastning for en individuell aksjepris momentum strategi og at en
volatilitetsskalert momentum strategi tilbyr det beste forholdet mellom risiko og avkast-
ning. Avkastningen de ulike strategiene gir er tidsvarierende og ikke alltid positiv p̊a årlig
basis. Derfor er det sannsynlig at en momentum investor kunne tjent p̊a å periodevis
forandre strategi eller investere i et risikofritt instrument.

Den andre delen av denne oppgaven tar for seg problemet til en investor med midler
til å fordele mellom forskjellige investeringsstrategier i det norske aksjemarkedet. Vi
utvikler et stokastisk porteføljeoptimeringsrammeverk med ‘moment-matching’ scenari-
ogenerering og anvender det p̊a historiske data med porteføljer best̊aende av forskjellige
investeringsstrategier. Vi finner en signifikant økning i ytelse n̊ar en kontrær strategi
legges til i en portefølje av momentum strategier. Ved å tillate investoren å fordele mi-
dler porsjonsvis mellom ulike strategier, lager vi investeringsstrategier med bedre forhold
mellom risiko og avkastning enn b̊ade en likevektet marketsindeks og en kjøp-og-hold
referanse best̊aende av porteføljens strategier. Ved å hver måned tvinge investoren til
å velge mellom én kontrær og én momentum strategi, utvikler vi investeringsstrategier
med overlegen avkastning. Disse funnene fra stokastisk programmering indikerer at en in-
vestor kan tjene p̊a å periodevis veksle mellom momentum og kontrær basert investering,
noe som innebærer å utnytte b̊ade reverseringseffekter i aksjenes avkastning og fortset-
telsesmønster i aksjenes priser.
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Chapter 1

Introduction and Overview

The predictability of stock returns has been a controversial topic among academic re-
searchers for a number of years. Investment strategies predicting the cross-section of
stock returns based on past equity prices are argued to be at odds with the efficient mar-
ket hypothesis stating that prices of financial objects fully reflect all available information.
Nonetheless, such strategies have been found capable of outperforming traditional bench-
marks and many money managers and professional investors attempt to exploit patterns
of predictability based on past price history in their investing. There are mainly three
ways of exploiting such predictability widely documented in the literature: momentum,
contrarian and low-volatility investment strategies. This thesis aims to shed light on
momentum investment strategies and their usefulness across different equity markets.

This chapter is organized as follows. Section 1.1 introduces the background and motiva-
tion for this thesis. The objective of this work is presented in Section 1.2 and Section 1.3
concerns the overall approach. The academic contributions of the work are clarified in
Section 1.4. Finally, in Section 1.5, a detailed overview of the thesis is provided.

1.1 Thesis Background and Motivation

Factor investing is grounded in the existence of factors that have shown abnormal, above-
market returns over longer periods of time. A factor can be seen as a characteristic that
is common for a group of assets that have a statistically significant explanatory power
in explaining their risk and return behavior. In this thesis we are concerned with factors
based on past price history, namely the momentum, contrarian and low-volatility factors.

A momentum investor buys past winners and (short)sells past losers. Price momentum
is the persistence of past price changes. The rationale behind a momentum investment
strategy is to exploit continuance in equity prices, i.e. that the high performers will
continue to perform well and that the poor performers will continue to perform poorly.
A perplexing aspect is that a strategy following the exact opposite investment logic, a
contrarian strategy, has been found to work simultaneously.
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An extensive body of literature provides evidence suggesting that the momentum in-
vestment strategy can be done profitably in the medium term (2-12 months holding)
and that the contrarian strategy can be done profitably in the short-term and long-term
(days, weeks and years of holding). A low-volatility investor, on the other hand, invests in
stocks that have either low historic volatility or low forecasted volatility relative to their
peers. A familiar axiom in financial theory states that high returns should be associated
high risk. Several studies exist that contradict this and suggest that investors may not
be rewarded for bearing systematic risk1[24, 29, 15, 9, 54].

The first study to reject martingale behavior in stock prices by documenting profits to
a momentum strategy, was Jegadeesh and Titman [59]. Their work reports abnormal
returns on the US market with a self-financing momentum strategy that measures past
performance based on compounded returns, and initiated long positions in the top decile
stocks and short positions in bottom decile stocks. Since their seminal work, several
financial academics have reported abnormal returns to similar momentum strategies in
US equity markets [60, 31, 20, 46, 69, 41] and in other countries [87, 8, 88, 27, 28]. Other
ways in which to capitalize on the momentum anomaly are also reported. George and
Hwang [41], for instance, expose that a strategy of purchasing stocks with a price close to
their 52-week high price is even more profitable than the strategy proposed by Jegadeesh
and Titman [59] on US markets. Marshall and Cahan [79] report similar findings on
the Australian stock exchange. Grinblatt and Han [44] find profits to an industry mo-
mentum strategy that invests in a certain number of stocks constituent of the past best
performing industry. Furthermore, a momentum model found in more recent literature is
the residual momentum model by Blitz et al. [16], that measures past performance using
the residual in the Fama and French three-factor model. Whichever way the strategy
is modelled, abnormal profits over longer periods of time indicate predictability in stock
price movements.

Predictability in stock returns is argued to be at odds with the efficient market hypoth-
esis, stating that current prices fully reflect all available information. Consequently, the
momentum anomaly has caused heated debate among financial academics over the last
decades. There are three prevailing schools of explanations for the sources of abnormal
momentum returns: those appertaining to investor behavior[59, 10, 34, 51, 52, 28], those
who use rational models where higher returns are merely compensation for higher risk or
can be explained by macroeconomic factors[31, 13, 26, 62, 91], and those who claim that
market frictions are the explanation[73, 66, 73]. According to the latter two, momentum
abnormal returns do not necessarily violate the efficient market hypothesis.

If momentum abnormal returns do not appertain to bearing high systematic risk or can
not be explained by market frictions, one might question why it has taken that long
for arbitrageurs to act. Jegadeesh and Titman proposed their seminal work over 20
years ago. If markets are well-developed, such opportunities for profits should vanish.
Can investors, professional or otherwise, behave irrationally for this long? Limited in-
vestability of momentum strategies, as indicated by many underlying assumptions in the
commonly applied models, might offer an alternative explanation. Then the momentum

1Systematic risk is the same as market risk, which generally describe the degree to which securites
co-move with the market[12].
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effect may theoretically exist in stocks, but capitalizing on this anomaly is not practically
straight-forward. In addition to an assumption of no transaction costs, several studies
rely heavily on short-selling underperformers. In reality, however, not all stocks are listed
for short-selling, and short-selling is often associated with higher costs and risks. This
work concerns investing where short-selling is not allowed and adds to the theoretical
debate by examining strategies that are closer to the implementable. A similar approach
to momentum investing can be found in Israel and Moskowitz [57].

Moreover, recent momentum studies have yielded somewhat different results on US data.
Asness et al. [8] expose high profits while Blitz et al. [16] and Hwang and Rubesam
[56] claim that the momentum effect has disappeared. This work performs updated
out-of-sample momentum tests on US data and compare with results obtained from the
Norwegian stock market; a smaller, presumably less efficient market. Our findings support
those who claim the momentum effect to have disappeared in US markets, but expose high
profits to such strategies in the Norwegian market. However, in line with the findings of
[56, 16, 32, 50], we find the returns to be time-varying and not always positive on a yearly
basis. Furthermore, with [79, 41, 8, 56] claiming that different momentum strategies may
yield profits in different sizes, a reasonable assumption would be that there could be
monetary gains for a momentum investor in dynamically changing her ways of investing.

In asset allocation theory, a portfolio may be seen as the mix of financial assets held
by an investor. It is then possible, given the nature of a factor investor, to imagine a
portfolio to consist of different factor investment strategies. Portfolio optimization is the
process of selecting, from a set of available instruments, the subset of those which, in
aggregate, best achieve some objective under given constraints. In this work, we take the
position of a momentum investor and investigate whether such mathematical techniques
could be utilized to dynamically allocate wealth between different momentum strategies
in a beneficial way.

However, at the heart of portfolio optimization is the balancing of portfolio risk and
reward. With a portfolio consisting of investment strategies trying to exploit the same
underlying anomaly, one might question whether there is a sufficient possibility of diver-
sifying risk. The constituent assets are likely to co-move to a significant degree. It is
suggested by existing literature that momentum strategies yield poor performance dur-
ing times of financial turmoil, for instance[56, 32]. This motivates the consideration of
contrarian and low-volatility strategies. The contrarian follows the opposite logic of the
momentum strategy and the low-volatility strategy is known to perform well when the
market is down[24, 29, 15, 9, 54]. Part of this work then aims to find whether such
strategies could be utilized as hedging instruments, or instruments of other additional
gains, in a portfolio of momentum algorithm assets.
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1.2 The Objective

The main objective of this work is twofold. First, this thesis aims to evaluate recent
performance of different long-only momentum investment strategies on the Norwegian and
US equity markets. Second, the work aims to develop a stochastic portfolio optimization
framework with which we can assess the possibility to dynamically change from one
investment strategy to another.

The problem domain of the thesis thus concerns empirical tests and stochastic asset allo-
cation, making it an interdisciplinary work intersecting several sciences, including invest-
ment theory, empirical finance, mathematical optimization, and statistics. The objective
was developed in collaboration with a financial practitioner. Fronteer Solutions is an
entity providing investment services based on quantitative methods widely documented
in the literature. Part of their investment algorithm uses signals from a momentum fac-
tor2. Nonetheless, in this work we attempt to obtain results that are of academic value
with insights that aim to aid a general momentum investor. No individual actors are
considered in particular3.

1.3 The Approach

This work approaches the objective in two stages. In the first, we review related litera-
ture and perform out-of-sample tests of the 52weekhigh by George and Hwang [41] and
individual stock price momentum by Jegadeesh and Titman [59]. The performance of
these strategies are compared to those of a contrarian strategy, a low-volatility strategy
and two other momentum strategies not previously documented in the literature. The
first is a momentum strategy inspired by the MSCI momentum index, that measures past
return performance scaled by historical volatility. The second is a momentum strategy,
familiar in quantitative trading[19], that measures past performance based on average
deviation from the cross-sectional mean. The back-tests4 are conducted on Norwegian
and US equity samples from the time period between January 2000 to December 2015.
The results of the momentum strategies are compared to those in existing literature,
examined for different holding and formation periods, and investigated during different
subperiods of time.

In the second part of this thesis we attempt to exploit time-variability in strategy returns
by taking the position of an investor with funds to allocate between different investment
strategies. We review and derive necessary theory to build a stochastic portfolio opti-
mization framework. Future return distributions are generated with a moment-matching
scenario generation heuristic from Høyland et al. [53]. The framework is applied algo-
rithmically out-of-sample on portfolios with momentum and contrarian algorithms. Both

2This means that, if a stock receives a positive sign for momentum over a certain period, there is a
certain change that the algorithm issues a buy-order on this stock.

3To build intuition and understanding of how the results can have practical consequences, we will
occasionally provide insights in Fronteers way’s of investing.

4A back-test is the process of feeding a trading algorithm with historic data to evaluate
performance[19].
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two-stage and one-stage optimization are considered with mean negative absolute devia-
tion and conditional value at risk as risk measures. To model mean-reversion dependency
in the scenario trees, we propose a method of auto-regression Monte Carlo simulation
consistent with the moment-matching heuristic by Høyland et al. [53].

1.4 The Contributions

In performing empirical back-tests of four long-only momentum strategies, one contrarian
and one low-volatility across the Norwegian and US equity market, we make several
academic contributions that may also be of interest for a practitioner. First, we test
whether previously reported market inefficiencies are due to data snooping or have become
less significant in recent years. New data is a good protection against data snooping[74].
Second, we obtain an assessment of the relative performance of these strategies, and find
whether some strategies are more profitable in different periods of time. Finally, by testing
the strategies on both US and Norwegian equity samples, we obtain a comparison of a
large, presumably more efficient market with a small, presumably less efficient market.
As such, one would expect the momentum anomaly to be more prevaling in Norway.
Contrary to the majority of existing literature, we avoid making assumptions on short-
selling of stocks and apply investment models with long positions only5. This makes
the implementation more realistic since not all stocks are listed for short-selling, and
short-selling is associated with higher costs and risks. Some highlights from our findings
are:

• The momentum and contrarian strategies yield statistically significant abnormal
returns on the Norwegian market only, indicating the US market to be more efficient.

• The highest average returns are yielded by the individual stock price momentum
strategy. However, the volatility-scaled momentum strategy offers the highest risk-
reward performance.

• The risk and returns to the strategies are found highly time-varying and not al-
ways positive, suggesting that a momentum investor could benefit from periodically
changing strategy or investing in a risk free instrument.

By applying stochastic portfolio optimization on portfolios of different investment strate-
gies, we add to the existing literature by modelling a setting more realistic for an investor
with opportunity to invest in different ways. While existing literature has reported time-
variability in returns to momentum strategies[56, 32, 16, 50], and different sizes in returns
to different momentum strategies[41, 79, 16], there are none, to our knowledge, that have
documented an attempt to exploit it. Some highlights of our findings are:

• The stochastic framework fails to generate superior returns with a portfolio of mo-
mentum assets only. However, we find a significant performance increase when
adding a contrarian strategy to the mix of available assets.

5A similar approach can be found in Israel and Moskowitz [57].
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• We find a contrarian strategy in combination with an individual stock price mo-
mentum strategy, to yield the highest cumulative and average returns among the
strategies tested.

• With our approach we find it easier to constrain mean negative absolute deviation
than expected tail-loss, and a two-stage optimization approach is found marginally
beneficial in this setting when portfolio expected risk is constrained.

These findings from stochastic programming suggest that an investor could benefit from
both contrarian and momentum investing, exploiting both return reversal effects and
continuation patterns in equity prices.

1.5 Thesis Organization

This thesis has seven remaining chapters. Their contents are described in the following.

Chapter 2 is confined to concepts relevant for understanding factor investing and financial
markets. The momentum factor is emphasized with respect to modelling, usefulness in
terms of profits in different markets, and different explanations appertaining to the sources
of the profits.

Chapters 3 and 4 detail the theory and derivations underlying the stochastic optimization
framework applied in this work. State-of-the art risk measures together with one-stage
optimization models are detailed in Chapter 3. These models are subsequently extended
to a two-stage setting in Chapter 4. Of particular importance is the moment-matching
scenario generation algorithm presented in Section 4.1. Scenario trees are generated with
forecasting methods that hinge on this heuristic. The section draws upon theory intro-
duced in Høyland et al. [53] and provides a psedo-code that illustrates the implementation
in Python6.

Chapter 5 concerns the samples and models applied when back-testing factor investment
strategies on US and Norwegian equity markets. The framework applied in algorithmi-
cally performing stochastic portfolio optimization with factor model strategies as assets,
is also presented together with any key assumption underlying this work. This work
presents discussion and results together for the purpose of readability.

Results and discussions of such, are provided in two parts. Chapter 6 details the results
to the empirical factor model tests with the focus directed towards the most successful
strategies. Chapter 7 concerns results from the algorithmic portfolio optimization. The
first part contains results where we attempt to maximize profits, the second where we
optimize with respect to both risk and return preferences of an investor. Finally, Chapter
8 presents the conclusion of this thesis and proposes recommendations for future research.

6Object oriented programming language. All scripts applied in back-tests, scenario generation and
stochastic portfolio optimization are available upon request. Mail: hakonsro@stud.ntnu.no.
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Chapter 2

Background - Momentum Factor
Investing

Challenging the efficient market hypothesis, the last decades has shown growing academic
evidence supporting the possibility of predicting stock returns. A part of these studies
focuses on strategies for predicting the cross-section of stock returns based on past equity
prices. There are mainly three ways of exploiting such predictability of returns found
in the literature; momentum, contrarian and low-volatility strategies. These are based
on past price data and are widely documented. A perplexing aspect of this literature is
that two of these strategies, momentum and contrarian, have opposite investment logic
and tend to work simultaneously. Specifically, contrarian strategies are found profitable
in the short-run (days, weeks of holding) and long-term (3-5 years holding) while the
momentum strategy is found profitable in the medium-run (2-12 months holding).

Moreover, low-volatility investing is not only at odds with the efficient market hypoth-
esis, it is at odds with the common assumption that higher returns are associated with
higher volatility. Strategies based on all three factors will be reviewed in this chapter.
Momentum investing is the main focus of this thesis and the strategy most widely found
in the literature. As such, this strategy will be reviewed to a greater extent. Section 2.1
introduces relevant theoretic concepts prevailing throughout the rest of this text. The
factors will be introduced with relevant theory in subsequent Sections 2.2 and 2.3.

2.1 Underlying Theoretical Concepts

2.1.1 Financial Markets and Equities

An important theoretical concept for any investment or trading activity is the concept
of a financial market. In economics, the term market is used to describe the mecha-
nisms by which liquid financial assets can be traded between investors at a relatively
low transaction cost. The price of the asset then reflect available supply and demand[5].
An investment is liquid if it easily can be turned into cash by trading in the immediate
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future[12]. Playing an essential role in a capitalist economy, markets aggregate a financial
system through which saving and investments can be conveyed, liquidity and risk trans-
ferred and wealth can be stored. One way to divide between different kinds of markets
is by the financial asset traded in the market. An overview is provided in table 2.1.

Table 2.1: Financial Markets

An Overview Over Financial Markets

Market Purpose
Money Markets Market for short-term borrowing and lending
Equity Markets A capital market for trading equities
Debt Markets A capital market for borrowing and lending

funds
Foreign Exchange Market for trading of currencies
Derivative Markets Market for trading instruments derived from

other underlying assets
Other Alternative In-
vestments

Private equity/hedgefond investments, com-
modities, insurance and real estate

Notes: this table provides an overview over different types of financial markets.
The focus in this thesis is on the equity market[5].

Equity (stock) price behavior is one of the main focuses of this thesis. Equity is by
definition the part of the value of a firm that is not debt. A stock is, simply speaking, a
share of the equity in a firm. When acquiring an equity stake in a company, the investor
is allowed to partake in the profits of the company. Dividends paid and increase in firm
value aggregates the returns to equity investors.

Shares of public companies are traded in stock markets; organized markets providing
liquidity to the companies. The main function of capital markets is to provide firms with
capital. Capital can thus be raised by issuing debt and by issuing equity stake in the firm.
If an investor is to acquire shares directly from the company, she does so in the primary
market. If a transaction is taking place between investors with no direct involvement in
the company, the transaction is said to be done at the secondary market. Only existing
securities are sold at the secondary market.

A stock exchange is a place or organization by which stock traders (people and companies)
can trade stocks. Other stocks may be traded ”over the counter” (OTC), that is, through
a dealer. A trade in stock market entails the transfer of money for a security from a seller
to a buyer[12]. A company may have their stock listed on one or several stock exchanges,
normally depending on the size of the company. The exchange can be a physical trading
floor (as New York Stock Exchange (NYSE)) or a virtual listed exchange, where all of
the trading is done over a computer network (NASDAQ)[5]. In this thesis we consider
stocks traded in the secondary market in a stock exchange.
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2.1.2 The Efficient Market Hypothesis

Historically, it has been a common assumption in financial theory that information and
news spreads very quickly in the market. As a consequence of this, the prices of financial
assets or instruments reflect available information without delay. The best prediction of
tomorrow’s price is then the price today. The Efficient Market Hypotheses states that
prices fully reflect all available information[37].

Depending on what type of information that is assumed to be fully reflected in the prices,
one can further characterize market efficiency as weak, semi-strong or strong. A weakly
efficient market entails that all relevant historical information is incorporated into the
current asset price. This includes information on past prices and returns on the asset,
as well as all other relevant assets. In a semi-strong efficient market, prices reflect all
publically available information. In a market with strong efficiency, all information,
private and public, is incorporated into the price with no delay. Thus, in a strongly
efficient market insider trading is not possible[37, 12, 17].

All types of market efficiencies, including the weak form, precludes profitable trading
strategies based on past asset prices such as the momentum and contrarian strategy.
It is impossible to achieve abnormal returns without being lucky because the same in-
formation is available to all. As we shall see, however, much empirical evidence exists,
that documents anomalies and strategies with returns that significantly deviate from this
assumption.

2.1.3 Factor Investing

Factor investing is grounded in the existence of factors that have shown to abnormal,
above-market returns over longer periods of time. The factor investor strategically cre-
ates portfolios of assets based on these factor premiums. A factor can be seen as a
characteristic that is common for a group of assets that has a statistically significant
explanatory power in explaining their risk and return behavior. According to Ang and
Longstaff [4], a factor should satisfy four criteria:

1. grounded in academic research

2. shown significant premiums that are expected to persist in the future

3. available history for bad times

4. be implementable in liquid, traded instruments

One of the first and most commonly known factors is the market-factor, introduced widely
to the public together with the well-known Capital Asset Pricing Model (CAPM) in e.g.
Sharpe [93]. Since then researchers have discovered several other factors that have been
persistent over time. Connor [30] distinguishes between three different categories of fac-
tors; macroeconomical, statistical and fundamental factors. Macroeonomical factors are
confined to the space of macroeconomical measures and statistical factors are grounded
in statistical techniques. Albeit being interesting, they are not the focus of this thesis.
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Fundamental factors are characteristics appertaining to individual company attributes
such as firm size, dividend yield, book-to-market ratio and other technical indicators[30].

Table 2.2: Fundamental Factors

An Overview Over Financial Markets

Factor Explanation
Low Value Describes equities with low prices relative to

their fundamental value
Low Size Describes equities with low market capitaliza-

tion
Momentum Describes instruments with high past perfor-

mance relative to self or others
Contrarian Describes instruments with low past perfor-

mance relative to self or others
Low-Volatility A characteristic of equities with low historical

or forecasted volatility
Yield A characteristic of stocks with high dividend

yield

Notes: this table gives an overview over fundamental factors that have yielded
above-market returns consistently over the last decades and that are grounded in
academia[11].

An overview over fundamental factors1 that have yielded above-market returns consis-
tently over the last decades is provided in table 2.2. These are also heavily documented
in the literature[11]. In this thesis we study and model a subset of the factors in table
2.2. The momentum, contrarian and low-volatility factors are based on past price history.
Past prices are readily available information, which, unlike most other fundamental data,
can be retrieved with relative certainty of high quality, non-erroneous data. This makes
past prices suitable for novice back-testing[19]. In the following sections, factors mod-
elled in this thesis will be introduced to a greater extent together with relevant academic
literature.

2.2 The Momentum Factor

The momentum investor buys past winners and (short)sells past losers. Price momentum
is the persistence of past price changes. Thus, the rationale behind a momentum invest-
ment strategy is to exploit continuance in equity prices, that the high performers will
continue to perform well and that the poor performers will continue to perform poorly.
An extensive body of literature provides evidence suggesting that such an investment
strategy can be done profitably in the medium term (2-12 months). The majority of the

1On this date, the contrarian factor may not be as commonly accepted as the others portrayed in
table 2.2.
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empirical tests are performed on US data. However, the momentum effect has also been
documented in several other markets worldwide.

We review ways in which momentum investing is commonly modeled in Section 2.2.1.
Evaluation of the usefulness of an investment strategy requires the associated profits to
be measured. Also, one should understand the source of the profits when devising an
investment strategy. Therefore, we devote Section 2.2.2 to studies documenting momen-
tum profits in different markets and Section 2.2.3 to different schools of explanations for
momentum abnormal returns.

This thesis focuses on equity price momentum. The momentum effect has also been
documented in other markets. For momentum in commodity markets see e.g. [94, 81,
42, 36]. For momentum in currency and financial futures markets see e.g. [85, 33, 82].

2.2.1 Momentum Models

Individual Stock Price Momentum - Jegadeesh and Titman (1993)

Jegadeesh and Titman [59], henceforth JT, was one of the first studies to document
momentum effects in stock markets. Their model is widely used as a benchmark in the
literature [59, 60, 20, 87, 43, 46, 92, 48]. In the following we present the investment
methodology and commonly found revisions of the model.

At the beginning of each month t the stocks are ranked in ascending order on basis of
the last J month’s compounded returns. Based on this performance ranking, 10 equally
weighted portfolios are formed. The top 10% portfolio is called the “winner” portfolio,
the bottom 10% the “loser” portfolio. The weights on each security i ∈ (1, N) in the
portfolios is given by

ωi = 1/N (2.1)

where N is the number of stocks in each portfolio.

In each month t the investor initiates a long position in the winner portfolio and a short
position in the loser portfolio. Each position is held for K months. Thus, after a start-
up period, we hold K portfolios in each momentum strategy if we allow for overlapping
portfolios. With passage of time, the value of each portfolio in the momentum strategy
change. JT initially addresses this in two ways;

1. Calculating the returns to a series of buy and hold portfolios by averaging the total
holding period return of the portfolio

2. Calculating returns to a strategy with monthly rebalancing to maintain equal
weights on each portfolio and on each constituent

The results cited in their article are based on the second. The rebalancing entails selling
a portion of the portfolios that performed over average, and investing the proceeds in
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those portfolios with worse than average performance. The momentum portfolio can be
written as W – L where W is the winner portfolio and L is the loser portfolio. Hence,
this describes a zero-cost self-financing portfolio with no regard to trading costs.

Denote by rit the return of stock i in month t. With equally weighting of constituent
stocks in each portfolio, the return in each month rpt of each portfolio is given by

rpt =
1

N

N∑
i=1

rit (2.2)

with monthly re-balancing of each portfolio to keep equal weights, the monthly return
for the zero-cost momentum strategy can be found by

rtot,m =
1

MN

M∑
m=1

(
N∑
i=1

rim)W − (
N∑
i=1

rim)L) (2.3)

N∑
j=1

ωi = 0 (2.4)

where:
rit= Monthly return to each constituent
rtot,m = Monthly return to the strategy
M = Number of portfolios in holding, m ∈ (1,. . . ,M)
N = Number of stocks in each portfolio, i ∈ (1,. . . ,N)
W,L = Subscripts of the winner and loser portfolio, respectively
Positive returns to the portfolio are per dollar (or NOK) invested.

In order to avoid microstructure effects (bid/ask bounce), JT allows for a 1-week skip
period (S) between the formation period and the holding period. With JT‘s notation a
momentum strategy can then be defined by the holding period K, the formation period
J and the skipping period S. The triplet (J,S,K) defines a momentum strategy that is
based on the last J months returns, skips S months and holds for K months. This
notation will be used throughout this text. In order to increase the power of their tests
(more observations) JT uses overlapping holding periods for the portfolios.

Ranking Criterion JT rank the stocks each month based on the past compounded
monthly returns. Then the JT ranking criteria CJT is given by

CJT =
t−1∏

j=t−J

(1 + rij) = (1 + rij−1)(1 + rij−2)...(1 + rij−J) (2.5)
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This is a commonly used ranking criteria in the literature. Grundy and Martin [46]
however, use the past cumulative monthly return over the ranking period

CGM =
t−1∑

j=t−J

rij (2.6)

They argue that cumulative returns have two benefits. First, it simplifies theoretical
analysis when returns have a factor structure. Second, it is empirically beneficial seeing
as errors in estimates of a stock‘s formation period factor exposure are dependent on
the compounded return of that stock over the formation period. Hence, with cumulative
returns a stock‘s winner/loser status is independent of the error in the estimate of its factor
loadings. Yet another ranking criteria is found in Marshall and Cahan [79], they simply
use the past average monthly return over the formation period J. The MSCI momentum
index is furthermore constructed with a measure that is scaled by the volatility such
that[11]:

CMSCI =
r̄T
σT

(2.7)

Where T denotes some historical timespan over which the volatility and return is mea-
sured.

George and Hwang [41] revise the JT model by a ranking criteria based on a readily
available piece of information – the 52-week high equity price. The performance measure
is the closeness to the 52-week high price denoted by

CGH =
Pit

HIGHit

(2.8)

where Pit is the equity price at the end of month t, and HIGHi, t is the highest price
of stock i that ends on the last day of month t. A strategy with this ranking criteria is
proven profitable on US and Australian equity markets[41, 79] and is commonly called
the 52weekhigh .

A momentum revision tested by David Edwards with Quantopian2 on US stocks, ranks
stocks based on the average deviation from the cross-sectional mean. This could be
measured on a daily, weekly or monthly basis. The strategy is called cross-sectional
momentum3 and the ranking criterion is given by the following.

CDE =
1

J

J∑
t=1

[rit −
1

I

I∑
i=1

rit] (2.9)

2A crowd-sourced hedge fund that provides a platform for anyone to build, test, and execute trading
algorithms[2].

3Note that this strategy has never before been documented in the literature, but has shown promising
results on US data.
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where:
J = Number of days, weeks or months in the formation period
I = Number of equities
rit = Asset return measured on daily, weekly monthly basis

Portfolio Size The amount (%) of stocks assigned to the winner (W) and loser (L) is
commonly noted as the portfolio size. JT forms portfolios with a portfolio size of 10%.
Some researches, especially among those focused on other markets than the US equity
market, part from this. E.g. [27, 87, 35, 79, 8] form portfolio sizes of 30%. This is because
sample sizes are small. For the same reason [43] implement 20% portfolio sizes.

Portfolio Weighting JT weights the stocks in the top and bottom decile portfolios
with equal weights. This is the prevailing weighting scheme found in the literature.
However, due to the illiquidity of smaller stocks some researchers use a value weighted
approach[27, 69, 14]. That is, the weighting is done on basis of market capitalization.
Then each weight on each stock is given by

ωi =
Mcapi∑
Mcapi

(2.10)

The advantage of the market capitalization based weighting scheme is that smaller stocks,
which are typically more illiquid and expensive to trade, have smaller weights in the
portfolios. On the other hand, large cap stocks dominate the portfolio.

Skipping Period JT form portfolios both with and without a 1-week skipping period.
In recent literature, it is more common to use a S = 1-month skipping period. A 1-month
gap between formation and investment periods avoids contaminating the momentum
strategy with short-term reversal as will be introduced in Section 2.3.1. Also a 1-month
skip helps avoid microstructure effects (bid-ask bounce).

The Conrad and Kaul (1998) Methodology

Another widely used model was first introduced to momentum modelling by Conrad and
Kaul [31]. This model is based on the short-term4 models of Lo and MacKinlay [74] and
Lehmann [72], and can easily be applied with a contrarian investment strategy instead.
The models aims to capture and mimic the momentum essence of the previously applied
models.

In this momentum model the investor buys or sells equities at time t based on the per-
formance in the formation period from t-1 to t. The performance of the stocks in the
strategy is determined relative to the average performance. The portfolio weights are

4Contrarian models, see Section 2.3
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based on performance. Denote by J the time length between t and t-1. Let ωit(J) be the
fraction of the momentum portfolio devoted to stock i at time t based on performance
from t-1 to t, then

ωi =
1

N
(rit−1 − r̄it−1) (2.11)

r̄it−1 =
1

N

∑
rit−1 (2.12)

where:
rit−1 = The return on each security in the formation period
r̄it−1 = The mean return

If a security performs worse than average, we initiate a short position. If the security
performs better than the average, we take a long position in the security. The portfolios
constructed each month are held for a holding period denoted K. Notice that since the
security weights are proportional to the differences between equity return and average
returns, the stocks that deviate more from the average/expected cross-sectional return
will have larger weights. For any portfolio held over a period K, the profits are given by

πt(K) =
N∑
n=1

ωirit(K) (2.13)

This is also a zero-cost portfolio where
∑N

n=1 ωi = 0. Notice that since the weights can
be scaled to obtain any level of profit in a frictionless world, it is common to only test if
the profits are significantly positive or negative.

Profit Measure To assess the economic significance of the profits from the CK model,
beyond the statistical significance, Chan et al. [20] propose a profit measure revision.
They divide the profits by the length of the holding period J and amount invested in a
long or short position 0.5It(K).

πCHT,t(J) =
πt(J)

0.5JIt(K)
(2.14)

where

It(J) =
N∑
i=1

|ωit(K)| (2.15)

is the total aggregate long or short investment in the zero-cost strategy at time t. This
return could be seen as a per-holding period profits for every dollar (or NOK) invested
long or short, or profits of the portfolio W – L.
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Residual Momentum - Blitz et al. [16]

A momentum model found in more recent literature is the residual momentum model
by Blitz et al. [16]. In the same way as a conventional momentum investment model,
the residual momentum ranks the securities in every month t based on past performance.
The measure of performance is related to the the monthly residual return estimated using
the Fama and French three-factor model

Rit = αi + β1iRMRFt + β2iSMBt + β3iHMLt + ε1,t (2.16)

RMRFt, SMBt and HMLt are the excess returns on factor-mimicking portfolios for the
market, size and value in month t. αi, β1i, β2i and β3i are the factor loadings that need
to be estimated through regression. εit is the residual return for asset I in each month t.

The Fama and French model is estimated for a ‘rolling‘ past 36 months’ time period.
In the measurement criteria (2.17), the estimated α is not included. This is because α
serves as a general control for misspecification in the model of expected returns and is
calculated based on the last 36 months, not 12 which the ranking period is. To obtain
the measurement criteria, the residual returns (α excluded) are standardized

CRM =
εit
σit

(2.17)

where σit is the standard deviation for the asset over the formation period. This stan-
dardization of the residual return is done to obtain an improved measure, since the raw
residual return can be a noisy estimate[48]. These positions are held for a holding period
J. Again the momentum portfolio is zero-cost

∑N
i=1 ωit = 0.

Blitz et al. [16] use a formation period J of the last year excluding the last month (12-1)
to avoid microstructure and short term effects. Equally weighted portfolios are formed
of every decile. As in the JT model, stocks are sorted in ascending order, the top 10% is
the winner portfolio W and bottom 10% is the loser portfolio L. The momentum investor
initiates a short position in L and a long position in W as in all the other momentum
models described.

Industry Momentum - Grinblatt et al. [45]

An industry momentum strategy first involves the construction of portfolios with con-
stituents from the same industry. Each month t, the industry portfolios are ranked based
on the value weighted cumulative returns over the formation period J. Equally weighted
portfolios are then formed with the stocks within the top 30% of the ranked industries
making up the winner portfolio and the stocks within the bottom 30% of the ranked in-
dustries constitute the loser portfolio. The momentum investor initiates a short position
in the loser portfolio and a long position in the winner portfolio. Again the momentum
portfolio is zero-cost

∑N
i=1 ωit = 0.
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2.2.2 Evidence of Momentum Profits

An extensive body of finance literature documents that stock returns are predictable
based on past price history. In this section we present momentum documenting studies
in a geographical split. The purpose is to illustrate the usefulness of the momentum
investment strategy in terms of profits. An overview over the findings is reported in table
2.3.

US Equity Market

One of the first studies to document the momentum anomaly was Jegadeesh and Titman
[59]. They implement strategies with (months) formation period J = [3,6,9,12], skip
S = [0,0.25] and holding period K = [3,6,9,12]. The test was conducted with daily
CRSP data from NYSE and AMEX in the time period from 1965 to 1989. Of the 32
strategies tested, 31 strategies showed positive returns at a significant level. The 12-
month/1-week/3-month strategy yielded the best result with an average monthly return
of 1,49%. Similar results can be found in Jegadeesh and Titman [60] when they extend
their sampling period and test a 6-month/1-week/6-month strategy on daily CRSP data
from 1989 to 1998. This was done to exclude data snooping biases. The momentum
strategy yielded average monthly returns of 1,39% at a significant level.

Conrad and Kaul [31] investigate 8 different momentum strategies with holding and
formation periods K=H=[1 week, 3, 6, 9, 12, 18, 24, 36] months. Their analysis was
done with daily data from NYSE/AMEX in the period from 1926 to 1989 divided in 5
different subperiods. Momentum profits are found for holding (formation) periods for
up to 18 months, except for the 1-week/1-week strategy. Their findings are consistent
with Jegadeesh and Titman and indicate that a momentum strategy is profitable at the
medium (3-to 12-month) horizon.

With daily data from CRSP NYSE/AMEX in the time period from 1973 to 1993, Chan
et al. [21] test a 6-month/5-day/6-month momentum strategy. They report an average
monthly return of 1,47% for the portfolios formed. Interestingly they also find that
the momentum payoff turns negative after 1-2 years. Seeing as a momentum strategy
is essentially opposite of the contrarian strategy previously discussed, this evidence is
consistent with the long-term contrarian findings. Furthermore, in Chan et al. [22] they
extend the sampling period to include daily data from 1994 to 1998. They find a monthly
average return of 7.8% for the 6-month/5-day/6-month strategy during these five years.
In addition they report larger abnormal returns for short-selling “loser” portfolios than
for “winner” portfolios.

Lee and Swaminathan [71] also provide evidence suggesting positive price momentum
profits involving NYSE/AMEX stocks for the time period from 1965 to 1995. As Jagadesh
and Titman they form equally weighted momentum portfolios consisting of the top decile
“winner” stocks, and the bottom decile “loser” stocks with formation period J = [3,6,9,12],
skip S = [0,0.25] and holding period K = [3,6,9,12] (months). They find the 12-month/3-
month to be the best performing portfolio with an average monthly return of 1,54%. All
strategies show statistically significant positive returns.
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Grundy and Martin [46] also serve a study providing evidence of momentum profits in
US markets in the time period form 1926 to 1995. They use the same methodology as
Jegadeesh and Titman, longing the top 10% performing stocks of the market and shorting
the worst 10% performing stocks, measured in cumulative total return. They find that
a total return momentum strategy would have earned a statistically significant monthly
return in excess of 1,3% (risk-adjusted) over the entire period.

Another study to confirm momentum excess returns is Korajczyk and Sadka [69]. Their
analysis is conducted on NYSE, AMEX and NASDAQ for the time period from 1967 to
1999. With J = [2,5,11], S =[1] and K = [1,3,6,12] they find that all strategies show
positive excess monthly returns (relative to the risk free rate).

European Markets

Even though Asness et al. [7] study return patters across European markets at the country
index level, Rouwenhorst [87] is the first study to analyse momentum evidence at country
level outside the US market. They perform tests with data from 12 European countries in
the time period from 1978 to 1995. The study is conducted with the JT methodology with
J = [3,6,9,12] S =[0,1] and K = [3,6,9,12] (months). Their findings are remarkably similar
to those of Jegadeesh and Titman (1993). All 32 zero-cost portfolios show statistically
significant positive results. The best performing strategy is the 12/0/3 without skip with
an average monthly return of 1,35%. Furthermore, the momentum strategy yield positive
returns for all 12 individual countries in the study, including Norway. Interestingly they
also find the momentum effects to be bigger for smaller firms. For stocks on Oslo stock
exchange they expose average monthly returns of 1% with a 6-month formation and
6-month holding strategy of 30% portfolio size.

In an attempt to replicate the tests of Rouwenhorst [87], Van Dijk and Huibers [95] use
data from 15 European countries in the time period from 1987 to 1999 and a momentum
strategy with equal weighting and holding periods of 3, 6, 9 and 12 months with a 1 year
formation period. The findings do in fact confirm that mid-term momentum strategies
generate risk-corrected returns in excess of an equally weighted European market index
in the full sample period.

Bird and Whitaker [14] evaluate price momentum strategies in seven major European
markets over the time period from January 1990 to June 2002. With formation periods J
= [6,12] and holding periods K = [3,6,9,12,24,36,48], they find statistically significant pos-
itive returns for both equally weighted and value weighted portfolios for holding periods
up to 9 months. The equally weighted momentum portfolio with the greatest return is
the 12-month formation and 1-month holding, yielding an average of 1.5% per month. In-
terestingly, they find that while value weighted portfolios show smaller returns for short
holding periods than equally weighted portfolios, they yield greater returns for longer
than 3 months holding.
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Asia and Australia

Relatively few studies have been conducted on Asian markets. One of them, Chui et al.
[27], examine 8 different Asian markets with data from 1976 to 2000. For their tests to
be comparable with Jegadeesh and Titman [59] and Rouwenhorst [87], they form 6/1/6
zero-cost portfolios. However, the winner portfolio consists of stocks from the monthly
top 30% performing stocks and the loser portfolio consists of the bottom 30%. Also, they
use a value-weighted approach since the Asian stocks are smaller and more illiquid. The
study finds significantly positive returns for Asian stock markets outside Japan, with
average monthly returns of 1,45% per month prior to the financial crisis in 1997, and
0,54% after. Furthermore they see a tendency; the momentum effect is stronger for firms
with smaller market capitalization. This is also consistent with the findings in the US
equity market.

Demir et al. [35] investigates the returns to short-term and mid-term momentum strate-
gies on the Australian Stock Exchange (ASX) in the time period from 1990 to 2001. They
use formation and holding periods of 30, 60, 90 and 120 days for a total of 16 strategies.
As in Chui et al. [27], the top and bottom 30% are assigned to the winner and loser
portfolio each month, respectively. They find that momentum is indeed prevalent in the
Australian market at a statistically significant level, and that the returns are of greater
magnitude than in the US equity market. The highest returns are found for a 180-day/
30-day portfolio, with average monthly returns of 5,34% per month.

Marshall and Cahan [79] confirm the findings of Demir et al. [35] in Australian markets.
In addition to conducting analysis with the conventional JT momentum strategy, they
also test the 52weekhigh momentum strategy previously described. Both strategies are
conducted with a 6 months holding period. Winner portfolios consist of the top 30%
and loser portfolios bottom 30% each month. The study finds that both strategies prove
profitable, but conclude that the 52weekhigh momentum strategy is highly profitable on
Australian equity markets with an average monthly return of 2,14%.

Worldwide Studies

Chan et al. [20] examine the profitability of momentum strategies in international equity
markets. They use data from 23 countries from Asia-Pacific (9), Europe (11), North
America (2) and Africa (1) in the time period from 1980 to 1995. Their momentum
strategy is similar to that of Conrad and Kaul (1998), and is implemented with country
indices and equal holding and formation periods of 1, 2, 4, 12 and 26 weeks. Their findings
confirm statistically significant evidence of momentum profits for holding periods over 4
weeks. They also find that if they implement the strategy on markets that experience
increases in volume in the previous period, the profits are higher.

Rouwenhorst [88] is one of the first studies to emphasize emerging markets in a momentum
study. Rouwenhorst examine 20 countries from the Emerging Markets Database (EMDB)
in the time period from 1980 to 1996. With a 6-month/1-month/6-month momentum
strategy with equal weighting sorted based on past best and worst 30% performance, he
finds momentum profits in 17/20 countries. Taiwan, Indonesia, and Argentina did not
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seem to display momentum effects in the time period. If the strategy is implemented
in all countries simultaneously, the average monthly return is 0,39% when stocks are
equally weighted and 0,58% when countries are market weighted. The study concludes
that momentum effects are present in both emerging and developed markets, yet stronger
in developed countries.

Griffin et al. [43] investigates a J=6 S=1 K=6 momentum strategy with portfolio sizes of
20% in 40 countries in five regions; Africa, America, Asia, Europe and the US. The time
period under which the back-tests are performed vary, but all time periods end in 2000.
The study finds positive returns in 2/2 African countries, 7/7 American countries, 10/14
Asian countries and 14/17 European countries. The average monthly momentum profit
is 1.63%, 0.78%, 0.32%, and 0.77% in Africa, Americas (excluding the United States),
Asia, and Europe, respectively. The overall conclusion is that momentum investment
strategies are profitable worldwide, but more so for developed than emerging markets.
This is in line with the findings of Rouwenhorst [88].

Asness et al. [8] examine momentum portfolios of individual stocks globally across four
equity markets: the United States, the United Kingdom, continental Europe, and Japan.
They find consistent evidence of momentum return premia in all markets. The momentum
portfolios are formed on basis of the past 12-month cumulative return with a 1 month
skip to avoid microstructure effects. The portfolios are formed with a size of 33% . For
the total set of global stocks they report an average monthly excess return over the risk
free rate of 5.8% (3.18) in the time period from 1972 to 2011.

While investigating how cultural differences influence the returns of momentum strategies,
Chui et al. [28] consider individual stock samples from 41 markets around the world in
the time period from February 1980 to June 2003. In their samples they exclude stocks
whose market capitalization is below the fifth percentile. Their momentum strategy form
portfolios based on stocks’ past 6 month returns that hold for 6 months. Portfolio sizes
are 30%. All but four countries exhibit profits. A strategy that includes all stocks yield
monthly average returns 0.93%. Interestingly they also find an average monthly return of
around 1% for stocks listed on the Oslo Stock Exchange in the time period from March
1983 to June 2003.

2.2.3 Sources of Momentum Profits

When devising an investment strategy, it is important to understand the source of the
returns. In the absence of a reasonable explanation, the return-patterns observed could
be a statistical error. The investment strategy is then unlikely to be useful in the future.
Despite short-term continuation of returns being well documented in the literature, it ex-
ists different and somewhat opposing theories as to the cause. Throughout the academic
literature there are three prevailing schools of explanations for the sources of momentum
returns; those appertaining to investor behaviour, those who use rational models where
higher returns merely is compensation for higher risk or can be explained by macroeco-
nomic factors, and those who claim that market frictions is the explanation.
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Table 2.3: Profitability of The Momentum Investment Strategy - Overview

Study Sample Model* Return Tstat
US Equity Market
Jegadeesh and Titman [59] 1965-1989 ISPM/12/3/10% 1.49% 4.28
Jegadeesh and Titman [60] 1989-1998 ISPM/6/6/10% 1.39% 4.7
Conrad and Kaul [31] 1926-1989 CK Positive Significant
Chan et al. [21] 1973-1993 ISPM/6/6/10% 1.47% -
Chan et al. [22] 1994-1998 ISPM/6/6/10% 7.8% -
Lee and Swaminathan [71] 1965-1995 ISPM/12/3/10% 1.54% 5.63
Grundy and Martin [46] 1926-1995 ISPM/6/6/10% 1.3%*** 3.19
Korajczyk and Sadka [69] 1967-1999 ISPM/11/1/10% 1.58% 5.08
Grinblatt et al. [45] 1963-1995 ISPM/6/6/30% 0.43% 4.65
Fama and French [38] 1963-1993 ISPM/12/2/10% 1.31% -
George and Hwang [41] 1963-2001 52WH/-/6/10% 1.23% 7.06
European Markets
Rouwenhorst [87] 1978-1995 ISPM/12/3/10% 1.35% 3.29
Van Dijk and Huibers [95] 1897-1999 ISPM/12/1/10% 1.5% -
Bird and Whitaker [14] 1990-2002 ISPM/12/1/4-6% 1.5% -
Asia and Australia
Chui et al. [27] 1976-1997 ISPM/6/6/30% 1.45% -
Demir et al. [35] 1990-2001 ISPM/6/1/30% 5.34% 10.68
Marshall and Cahan [79] 1990-2003 52WH/-/6/30% 2.14% 10.39
Worldwide Studies
Chan et al. [20] 1980-1995 CK Positive Significant
Griffin et al. [43] 1926-2000 ISPM/6/6/20% 0.49% 2.95
Rouwenhorst [88] 1980-1996 ISPM/6/6/30% 0.58% -
Chui et al. [28] 1981-2003 ISPM/6/6/30% 0.93% 5.73
Asness et al. [8] 1972-2011 ISPM/12/6/33% 5.8%** 3.18

Model: ISPM = individual stock price momentum; CK = Conrad and Kauls methodology; 52WH =
52weekhigh. This table reports average monthly returns to the momentum investment strategies in
markets worldwide. The returns documented are the highest statistically significant returns obtain in
the respective studies. The list is not exhaustive, but illustrates of the usefulness of the momentum
strategy in several markets and time periods. Other country-level studies have been conducted.
*) The model column contains information on the /Model used/Formation Period/Holding Period/
Portfolio size. For a complete description of the models applied, please see Section 2.2
**)Excess the risk free rate
***)Risk Adjusted
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Behavioural Explanations

The behavioural-based explanations build on inherent investor biases. Jegadeesh and
Titman [59] was one of the first studies to claim that investors are systematically biased,
and that biases in part explain momentum returns. However, they didn’t explain the
biases to any further extend. Barberis et al. [10] specifically suggest investor conservatism
as an explanatory bias. Conservatism makes the investor reluctant to update his believes
immediately when facing new information. Consequently, there is an overlap period where
prices don’t reflect current information and some predictability exist. If the investor is
facing good news, prices will rise slowly. If facing bad new, prices will fall slowly. The
authors claim that momentum trading can be done profitably in the medium term.

In much the same way as Bondt and Thaler [18] use overreaction to explain the ab-
normal return in to the contrarian strategy, under-reaction to new information is one
of the behavioural-based explanation as to why momentum investing creates abnormal
returns. Daniel et al. [34] claim that investor self-attribution causes the investor to be
overconfident in own private information, rather than public information. This in term
causes the investor to over-react to new private information, but under-react to public
news. Chan et al. [21] also support the under-reaction hypothesis. However, they claim
that markets respond slowly to new information because the financial analysts covering
the firms respond slowly to earnings announcements. I.e. their financial forecasts are
slowly updated. They also find that this sluggish response to earnings announcements is
especially true for the past worst performing firms. Hence, momentum is strongest for
past losers.

Hong and Stein [51] develop a theoretical behavioural model around gradual diffusion of
information. They imagine a market consisting of two types of investors; “news watch-
ers” and “momentum traders”. The “news watchers” ignore past price information and
invest based on private information. The momentum traders invest solely based on past
price information. The idea is that since private information only gradually diffuses in a
population, “news watchers” causes a short-term delay in the price paths of the assets.
Prices under-react and this causes momentum abnormal returns options. Moreover, “the
momentum traders” invests based solely on past price information; this causes the prices
to be pushed beyond/below their fundamental values, and thus “momentum traders”
causes equilibrium through over reaction in the long run. A similar result can be found
in Swaminathan and Lee (2001), where short-term price under-reaction is followed by
long-term price over-reaction. Chui, Titman and Wei (2010) also find return reversal
after 9-10 months that support these studies.

Hong et al. [52] empirically test the gradual information diffusion model. They find that
firms with low analyst coverage are particularly exposed to slow diffusion. Thus, weak
analyst coverage may lead to stronger momentum. They also find that bad firm specific
information is more likely to diffuse slowly in the population. People and firms are more
likely to share good news than bad.

Grinblatt and Han [44] empirically find that investors are prone to hold on to losing stocks
and to sell winning stocks. This is called the disposition effect. Holding on to losers
makes the investor under react to new information, and hence the study support the
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under-reaction hypothesis. Furthermore, they manage to capture this behaviour through
unrealized capital gains, the difference between the share price and its cost base, as a
variable. Adjusting for the unrealized capital gains, the momentum return disappears.

Seeing as the behavioural models claim that prices to some extent are predictable, they
all oppose the market efficiency hypothesis (even the weak form). However, as is seen in
the next section, abnormal momentum returns need not imply an inefficient market.

Factor-Based Explanations

Some academics claim that the presence of momentum in stock returns can be explained
by different exposure to risk- and macroeconomic factors and is not inconsistent with
rational pricing theories. Conrad and Kaul [31] for instance, present empirical evidence
suggesting that the abnormal momentum payoffs are related to cross-sectional differences
in expected returns. Since the expected return is dependent on relevant risk factors, the
excess momentum return is merely a result of higher risk. Their conclusions are however
contingent on the mean returns being constant during the periods in which the trading
strategies are implemented. Berk et al. [13] develop a dynamic model of expected returns.
In this model, risk factor variation creates time dependent cross-sectional differences in
expected returns. Their results suggest that stocks with high-realized return will be
those that have low expected return and vice versa. This way, time-dependent variation
in expected returns is used to explain much of the abnormal momentum returns, and
profitability of momentum strategies represents compensation for bearing time-varying
risk.

Another study that supports time-varying expected returns as an explanation of momen-
tum payoffs is Chordia and Shivakumar [26]. They argue that consistent and persistent
under-reaction would provide low risk arbitrage opportunities to more rational investors.
Their study finds that momentum return can be attributed to a set of macroeconomic
variables that are related to business cycle. Dividend yield, default spread, yield on three-
month Treasury bills and term structure spread can predict time-varying cross-sectional
differences in expected returns that is directly linked to past realized returns. In other
words, the article finds evidence of systematic variation in momentum profits with respect
to the above-mentioned macroeconomic variables.

Johnson [62] find a significant relationship between expected stock growth rates and
recent performance. Seeing as expected growth rate is directly related to risk, this study
also argues that the momentum anomaly (at least in part) can be explained by cross-
sectional variation in expected return because of exposure to risk factors. Again, this is
because a momentum trader invests on basis of recent performance. The article doesn’t
aim to prove market inefficiency, just to present an alternative that does not hinge on the
opposite. Along the same lines, Sagi and Seasholes [91] claim that firm specific attributes
such as revenues, costs and growth options, combine to determine how the firms returns
are auto-correlated. In other words, future return can be predicted through past returns
and firm-specific attributes. A momentum strategy that incorporate this knowledge,
reaps greater returns than the traditional momentum strategy.
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It should be noted that Jegadeesh and Titman (2001) attribute the findings of Conrad
and Kaul (1998) to small sample biases in their empirical tests and bootstrap simulations.
The results of Jegadeesh and Titman (2001) show that differences in expected returns
don’t explain momentum payoffs to a significant extent. Furthermore, Grundy and Martin
(2001) look at CRSP data from 1924 to 1994 and find that adjusted for risk, a momentum
strategy still proves abnormal returns. Hence, they provide evidence that the risk-based
explanations are insufficient.

Market Friction Based Explanations

As previously mentioned, a lot of the literature related to momentum strategies builds
on the models of Jegadesh and Titman (1993). Consequently, few momentum research
studies include market frictions such as transaction costs in their models.

In their study, Lesmond et al. [73] expose that momentum trading involves high trading
frequency and stocks with high associated transaction cost (returns are higher for high
cost equities). As a result, the abnormal returns generated by a momentum strategy does
not significantly exceed trading costs. Keim [66] also find that momentum strategies will
generate trading costs close to the excess momentum payoffs. Furthermore, Keim claims
that in order for the efficient market hypothesis to be challanged, the momentum strategy
must generate abnormal returns in excess of the market after accounting for transaction
costs. In this way, his findings support the efficient market hypothesis.

On the other hand, Korajczyk and Sadka [69] find that momentum strategies remain
profitable even after considering trading costs. They also develop a trading model that
includes liquidity as a factor, and show that the liquidity based momentum strategy
performs better than the traditional equally weighted and value-weighted strategies after
introducing trading costs.

Moreover, when Blitz et al. [16] examine the residual momentum strategy on US data
in the time period from 1926 to 2009, they find the traditional momentum strategy to
be unprofitable in the time period from 2000 to 2009. Similar results can be found in
Hwang and Rubesam [56] where they investigate momentum strategies with structural
breaks and expose that after the break in 2000, the profitability of momentum profits has
disappeared.

2.3 The Contrarian and Low-Volatility Strategies

2.3.1 The Contrarian Strategy

Following a contrarian investment strategy, the investor (short)sells past winners and
buys past losers. The idea is that the trend will reverse, and that the sign of the returns
will become contrarian. The literature shows that a contrarian strategy can be done
profitably both in the short-term (days, weeks of holding) and in the long-term (3-5 year
holding).
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One of the first studies to document long-term reversal was Bondt and Thaler [18]. They
found that long term past losers outperform long term past winners over the subsequent
3-5 year period. With data from NYSE they formed two portfolios based on past returns;
extreme winners and extreme losers. Over the next three year period, the losers outper-
formed the winners by 25% per year. This outperformance lasted for up to five years.
Similar long term results can be found in Chopra et al. [25]. Looking at monthly CRSP
NYSE data from 1926 to 1986, they found that in portfolios formed on the basis of prior
five-year returns, extreme prior losers outperform extreme prior winners by 5% to 10%
per year during the subsequent five years.

Jegadeesh [58] showed abnormal returns following a short term reversal strategy after
finding serial correlation in monthly returns of CRSP individual securities data from
1934 to 1987. Through a strategy that buys and sell stocks on the basis of their prior
month returns and holds them for a month, the article exposes profits of around 25% per
year over the 53-year period. Lehmann [72] also finds what he claim to be evidence of
market inefficiency through a short term reversal (weekly rebalancing, weekly holding)
strategy on the CRSP data from 1962 to 1986.

Moreover, Knez and Ready [68] built a short term reversal strategy that switches between
small and large cap firms based on previous weeks return on CRSP NYSE. This strategy
was based on the findings of Lo and MacKinlay [74], namely that the return of a portfolio
of small firm stock is strongly correlated with its own previous weeks return and with the
previous weeks return on a portfolio of large-firm stock.

Overreaction to information is a common theory as to why contrarian strategies are
profitable. The overreaction hypothesis states that individual investors overreact to news
and consequently, the price of an asset moves away from its’ fundamental value following
new information. This initial movement caused by overreaction is then followed by a price
reversal, a movement in the opposite direction. Profitable strategies can then be devised
by buying past losers and selling past winners when the market is ready to correct (that
is, when mean reversal takes place).

Modelling the contrarian strategy is commonly done with the method of Jegadeesh and
Titman (1993), only with opposite investment logic and shorter/longer rebalancing peri-
ods.

2.3.2 Low-Volatility Investing

Few recent studies have been conducted with the contrarian strategy. This is not the
case for the low-volatility investment strategy. A low-volatility investor invests in stocks
that has either low historic volatility or low forecasted volatility relative to their peers.
A familiar axiom in financial theory states that high returns are associated high risk.
Several studies exist that contradicts this and show that investors may not be rewarded
for bearing systematic5 risk.

5Systematic risk is the same as market risk, which generally describe the degree to which securites
co-move with the market (Berk and DeMarzo [12]).
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Although low-volatility investing has risen in popularity following the financial crisis in
2007-2008, the concept is not new. Jensen et al. [61] test the CAPM model on NYSE
stocks in the time period from 1931 to 1965 and find that the excess returns to these
stocks are not strictly proportional to their betas, meaning that low beta stocks may
perform better than high beta stocks. Since the beta captures the individual securities
sensitivity to market risk, this means that low beta stocks can be seen as low-volatility
stocks6. Haugen and Baker [49] further document that low beta stocks outperform market
capitalization weighted portfolios. They use data with the 1000 largest US stocks in
the time period from 1972 to 1989. They form low variance portfolios by each period
choosing 100-150 stocks of the stocks with the lowest past volatility. Clarke et al. [29] use a
optimization approach to construct minimum variance portfolio also with the 1000 largest
stocks in the US CRSP database in the time period from January 1968 to December 2005.
They find that these portfolios have 75% the realized risk of the market capitalization
weighted index and comparable or higher returns, something which confirms some of the
findings of Haugen and Baker [49].

Blitz and Van Vliet [15] investigates stocks in US, European and Japanese markets in
the time period from December 1985 to January 2006. Their low-volatility model ranks
stocks constituent of the FTSE World Developed index each month based on last three
years volatility of monthly returns. Portfolios are formed of the top decile with equally
weighting. They use monthly rebalancing and cite monthly returns. Their findings
suggest that stocks with low historical volatility exhibit superior risk adjusted returns
similar in size to the more familiar size and momentum factors. Pedersen and Lasse [83]
reported similar findings with developed country data from the time period 1984 to 2009.

The explanations as to why low-volatility investing may be more profitable than holding
the market are several, most of them behavioral. Baker et al. [9] claim that investors
behave irrationally and use high-volatility stocks as lottery tickets. Investors does not
mind a lower expected return, if they have a change to ‘win the lottery’ with high-risk
securities. Investor overconfidence is another explanation. Investors tend to believe that
their abilities to forecast the future are superior to those of others. Their view deviates
more for high-risk securities and at the same time, it is easier to express a positive view
of the future. The results is overpricing of high-volatility stocks, and higher returns to
low volatile stocks. Another explanation along the same lines is given by Hsu et al. [54],
who believe that analysts portray a too positive view of high-volatile stocks. This causes
overpricing and lower returns relative to low volatile stocks.

There are mainly two ways of modelling low-volatility strategies found in the literature[11].
Those models that invests in some proportion of stocks ranked based on historical or fore-
casted volatility7, and those who use optimization techniques to find minimum variance
portfolios. In this work, we create a model based on the former. Our model closely
follows that of Blitz and Van Vliet [15] and will be introduced in Chapter 5. The SP500
volatility index is also modelled along these lines, only difference is that they weight the
stocks in their portfolios based on the inverse of the historical volatility and the portfolio
sizes are larger[11].

6For this reason low-volatility stocks are sometimes referred to as low beta stocks.
7Much like the momentum strategies previously introduced.
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Chapter 3

Portfolio Theory in a Single Stage
Setting

A portfolio is the mix of financial assets held by an investor. Portfolio optimization is
the process of selecting, from a set of available instruments, the subset of those which
in aggregate best achieve some objective under given constraints. This section presents
an overview over portfolio theory in a single stage setting, which studies such allocation
of wealth among a set of investment instruments. The objectives and constraints should
properly reflect the investors’ aims, preferences and attitude towards risk. Portfolio
optimization provides a mathematical framework in which to encode these objects.

At the heart of portfolio optimization is the balancing of portfolio risk and reward. Section
3.1 introduces the concept of portfolio reward and is followed by a section on popular and
commonly applied quantitative measures of risk. The foundations of modern portfolio
theory were laid by Markowitz [77]. His static, one-stage approach is presented in Sec-
tion 3.3 together with portfolio optimization models utilizing other, linear risk measures.
Portfolio optimization in a two stage stochastic setting is introduced later in Chapter
4, and will be implemented algorithmically on portfolios of momentum and contrarian
assets in the computational part of this thesis.

3.1 Portfolio Reward

One of the main characteristics that describe investor behavior is the greediness. Any
rational investor wants to maximize the expected reward of her portfolio if other con-
straints are given. The portfolio reward can be seen as an aggregate of the rewards of
the individual financial assets in the portfolio. Asset returns is a measure of such reward
and represents the value development of the asset over some time-span. Another measure
is the individual asset value1. A distinction is made between portfolio value and return,
despite the trivial relation between them, because of the inherent differences in statistical

1The reason as to why we use value instead of the more commonly used price, is that our portfolio
will contain complex assets consisting of several stocks with individual prices.
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properties in their distributions. Whereas any statistical model used to describe asset
values would have to yield non-negative values only, this is not the case for asset returns.
Also, it is commonly accepted that returns follow a stationary process, i.e. they revolves
around some mean with a constant variance[67, 90].

To describe returns, consider a universe I of n financial instruments. With ωi being
the value of the investment in asset i ∈ I at time t, the individual asset return over a
time-span from time t to time t+1 may be taken as

ri =
ωit+1

ωit
− 1 (3.1)

This measure is commonly noted simple return. Another measure of asset return, is the
log return ln(r)i

ln(r)i = ln(ri + 1) = ln(ωit+1)− ln(ωit) (3.2)

Log return corresponds to the continuously compounded rate of the simple returns. In
this work we use simple return as measure of reward. From the relationships in equation
3.1 and 3.2, we note that optimizing with respect to simple return and log return is
equivalent. However, since the log of a sum is not equal to the sum of logs, there is a
difference in the calculation of the portfolio return that makes simple returns favorable
in the sense that the portfolio expected return can be calculated simply as a linear
combination of the returns of each constituent asset2. Rudoy [90] argues that using log
returns as a return measure is favorable since the multi-period return becomes additive
and not multiplicative. I.e. for N periods the total return is given by

Rtot =
N∏
t=1

(1 + rit)− 1 (3.3)

for simple returns and

ln(R)tot = ln(1 +Rtot) =
N∑
t=1

(ln(ωit+1)− ln(ωt)) (3.4)

for log returns. In order to calculate total portfolio returns, however, Rudoy [90] assumes
that the following Taylor series expansion holds

ln(1 + rit) ≈ rit (3.5)

This approximation is only valid for returns close to zero, a common assumption for daily
returns of stocks[3]. In this work, however, we optimize portfolios with monthly returns
on complex assets and as such, a mean close to zero is not a valid assumption. For this
reason, simple returns are chosen to represent portfolio reward.

At each point in time, the future return of each asset is considered a random variable
r̃i with expected value r̄. In this thesis, as in any scenario based portfolio optimization
scheme3, we assume that the random variable asset return r̃i may be taken from plausible

2This is evident in equation 3.7
3Scenario optimization refers to optimization models that apply when the uncertain data are repre-

sented by a set of discrete scenarios[97]
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sets, e.g. {rli}l∈Ω, where l ∈ Ω are indexes of possible scenarios with probability of
realization pl. In such a setting, the expected return of asset i is given by

r̄i =
∑
l∈Ω

plrli (3.6)

The portfolio return is a function of the individual asset allocation xi and individual asset
return rli and is then given by

Rp(x; rl) =
∑
i∈I

xir
l
i (3.7)

in each scenario l. The total expected portfolio reward can be found by

R̄p =
∑
i∈I

xir̄i (3.8)

In Chapter 4, these measures are extended to a two stage setting in which we have
different plausible sets for each stage, possibly depending on the previous set.

3.2 Quantitative Risk Measures and Coherency

From the equations in the previous section it follows that portfolio returns are uncertain.
Risk can be understood as the variability of the portfolio returns due to market changes
and uncertain, unforeseeable events. In this section we introduce means by which to
quantity risk inherent in financial markets using appropriate risk metrics. Artzner et al.
[6] argue that a good risk measure should display the property of coherency. Further-
more, in this work we need risk measures suited for an institutional investor. We do
not want to put constraints the upside variability in our portfolio optimization models.
After first presenting the variance risk metric introduced to portfolio management by
Markowitz [77], we will present other more sensible risk metrics. Among which are the
conditional value at risk and mean negative absolute deviation. One of which, the port-
folio conditional value at risk, is coherent. Both of which put constraints on downside
deviations when used in a portfolio optimization scheme and are suited for enterprise
wide risk management[97].

3.2.1 Coherent Risk Measures

In Zenios [97] it is argued that risk measures that are to support decision making for
financial institutions should display the property of coherency. The following definition
gives an axiomatic characterization of the property[97, 6].

Definition 1. A coherent risk measure ρ is a function that assign numbers ρ(X̃), ρ(X̃)

to two random variables X̃ and Ỹ such that for any pair X̃, Ỹ , independent or not, and
for each positive number a,b ∈ R the following relations hold.
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(1) Sub-Additivity: ρ(X̃ + Ỹ ) ≤ ρ(X̃) + ρ(Ỹ )

(2) Homogeneity: ρ(aX̃) = aρ(X̃)

(3) Monotonicity: ρ(Ỹ ) ≤ ρ(X̃) if X̃ ≤ Ỹ

(4) Risk-free condition: ρ(X̃ − brf ) = ρ(X̃)− b

The sub-additivity axiom in (1) states that the risk of two separate positions is less
than or equal to the risk associated with a portfolio holding the two assets. This axiom
ensures that the principle of diversification holds for the risk metric in question. Unless
two assets in a portfolio is perfectly [positivly] correlated, there will be a diversification
effect in holding both assets if the risk measure is coherent. Further, the homogeneity
axiom in (2) states that if we increase our holding in one asset with a given factor, the
risk increases with the same factor. This, together with sub-additivity, implies that the
risk measure is convex [86]. I.e. from (1) and (2) it follows that

ρ(αX̃ + (1− α)Ỹ ) ≤ αρ(X̃) + (1− α)ρ(Ỹ ) (3.9)

In a portfolio optimization setting, axiom (3) states that if for all realizations, the return

X̃ is worse than Ỹ , then the risk associated with holding a portfolio whose return dis-
tribution is given by Ỹ should be lower than holding a portfolio with return distribution
X̃. The last axiom, the risk free condition in (4), simply states that adding a risk free
position b to portfolio should decrease the risk by the same amount, b.

One might argue that the coherency framework does not always ensure a risk metric that
makes sense. Imagine, for instance, a portfolio of several different loans issued to the
same customer. Clearly, the sub-additivity axiom shouldn’t hold because there should be
no clear diversification effect. On the contrary, the risk metric should then reflect that the
risk of default increases as the number of loans to the same borrower increases. One could
also question whether or not the risk free amount b in (4) would make a non diversified
portfolio of say high yield bonds any less risky. These criticisms aside, the coherency
framework is widely accepted to ensure a sensible risk metric in many cases[97].
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3.2.2 Variance of Portfolio Returns

One of the most widely known measures of risk is the portfolio variance. Variance is a
measure of the deviation of random values from the mean and was first introduced to
portfolio management by Markowitz [77]. Given the covariance between each asset i,j∈
I, σij, and the individual variance of each asset, σ2

i , we may define the variance of the
portfolio as

σ2
p = E((Rp − E(Rp))

2)

= E((
∑
i∈I

xir̃i −
∑
i∈I

xiE(r̃i))
2)

= E(
∑
i∈I

∑
j∈I|i 6=j

xixj(r̃i − E(r̃i))(r̃j − E(r̃j)))

=
∑
i∈I

∑
j∈I

xixjσij

(3.10)

or in a discrete scenario setting with scenarios l ∈ Ω

σ2
p =

1

1−
∑
l∈Ω

(pl)2

∑
l∈Ω

pl(Rp(x; rlp)− R̄p(x; r̄p))
2

=
1

1−
∑
l∈Ω

(pl)2

∑
l∈Ω

pl(
∑
i∈I

xir
l
i −

∑
l∈Ω

∑
i∈I

plxir
l
i)

2
(3.11)

Despite its popularity among practitioners, the variance risk metric has some draw-downs.
The most eminent of which is that it penalizes both upside deviations as well as down-
side deviations. Hence, large profits is considered equally risky as large losses. In this
regard, it should be noted that Markowitz himself later proposed the use of portfolio
semi-variance as a risk measure focusing on downside deviation[78]. Specifically, semi-
variance is the variance of the deviations below the mean. Neither semi-variance nor
variance are coherent measures of risk and both require quadratic programming (QP)
solvers when applied in a portfolio optimization model.

3.2.3 Value at Risk

Value at risk (V@R) is another risk metric widely used in the financial industry, that does
not penalize upside variability. Loosely speaking, the portfolio V@R is a threshold for
portfolio loss we can fairly certain that we do not exceed. More precisely stated; it’s the
loss ζ that will not be exceeded over some investment time-span with a probability level
1-β. Several other definitions can be found in the literature4. Following is a mathematical
formulation5:

4For example, Gaivoronski and Pflug [40] defines the V@R as ’the largest under-performance relative
to expected portfolio return that is possible in 1− β cases of the outcomes.’

5Own formulation based on Zenios [97] and Rockafellar and Uryasev [86]
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Understand by L(x; r̃) the portfolio loss function associated with wealth allocation x and
random return realization r̃ such that

L(x : r̃) = −Rp(x; r̃) (3.12)

The probability that the loss function does not exceed some threshold value ζ is then
given by

Ψ(x, ζ) =

∫
L(x,r̃)≤ζ

ρ(r̃)dr̃ (3.13)

where ρ(•) denotes the probability density function of r̃. With a confidence level 1-β we
may now define the portfolio value at risk as

V@R(x, ζ) = min{ζ ∈ R|Ψ(x, ζ) ≤ β} (3.14)

In the case of a discrete scenario setting as previously introduced, the loss function takes
the form

Ψ(x, β) =
∑

l∈Ω|L(x,pl)≤ζ

pl (3.15)

and the loss function is defined by

L(x : pl) = −Rp(x; pl) (3.16)

Portfolio returns are as defined in Section 3.1. The V@R risk measure is intuitive to
understand and does not penalize upside variability. It is, however, not a coherent risk
measure because it does only satisfy axioms (2), (3) and (4). V@R does not display the
characteristic of sub-additivity[6]. This implies a risk measure that does not properly give
diversification effects. Further, as sub-additivity is one of the preconditions for convexity,
V@R may not be convex and can therefore be difficult to optimize due to being non-
smooth and possibly having multiple local minima[40]. For these reasons, V@R will not
be applied in this thesis.

3.2.4 Conditional Value at Risk

Conditional Value at Risk (cV@R) is a coherent risk measure derived from the portfolio
V@R (Artzner et al. [6]). Rockafellar and Uryasev [86] defines cV@R as the expected
value of portfolio losses, conditioned on the losses being in excess of V@R. Following the
notation in the previous section, cV@R may then be expressed mathematically as

cV@R(x, β) =
1

1− β

∫
V@R(x,r̃)≤L(x,r̃)

ρ(r̃)L(x, r̃)dr̃ (3.17)
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Furthermore, suited for discrete stochastic programming with scenarios l ∈ Ω we have
(Zenios [97])

V@R(x, β) = E[L(x, pl)|ζ ≤ L(x, pl)]

=

∑
l∈Ω|L(x,pl)>ζ

plL(x, ζ)∑
l∈(x,pl)>ζ

pl

=

∑
l∈Ω|L(x,pl)>ζ

plL(x, ζ)

1− β
| Ψ(x, ζ) = β

(3.18)

From this it follows that

V@R(x, β) ≤ cV@R(x, β) ∀x, β (3.19)

Where x is the allocation vector and β is the percentile parameter. In other words,
cV@R is a more conservative risk metric than V@R. If the portfolio cV@R is restricted
to some value $, then it follows from equation 3.19 that the portfolio V@R is less than $.
Further, a portfolio optimization model utilizing cV@R as a risk metric actually considers
the impact of losses in excess of V@R. This is obviously not the case for V@R. It is also
of great practical significance that cV@R optimization models can be solved using linear
programming software. In the following we derive how. The result is used in a portfolio
optimization model with cV@R constraints in Section 3.3.3.

In Rockafellar and Uryasev [86] it is proved that the following function is convex and
continuously differentiable with respect to ζ

Ξ(β, x, ζ) = ζ +
1

1− β

∫
r̃∈R

[L(x, r̃)− ζ]+ρ(r̃)dr̃ (3.20)

With []+ denoting a function that takes the value [L(x,r̃)-ζ] when [L(x,r̃)-ζ] > 0 and 0
otherwise. In addition it is derived that

min
x
cV@R(x, β) = min

x,ζ
Ξ(β, x, ζ) (3.21)

Equation 3.21 implies that a mean-risk model minimizing Ξ(β, x, ζ) is equivalent to a
mean-risk model minimizing cV@R(x,β). Since Ξ(β, x, ζ) is convex, this means that
mean-cV@R optimization models can be solved with respect to a convex function. This
makes cV@R considerably easier to handle than V@R, even though V@R is a part of
the cV@R formulation [97]. In a discrete scenario setting, it is possible to approximate
Ξ(β, x, ζ) in a number of ways. If the probabilities pl of each scenario l ∈ Ω are of different
magnitude6 the approximation may be given by

Ξ(β, x, ζ) ≈ Ξ̃(β, x, ζ) = ζ +
1

1− β
∑
l∈Ω

pl[L(x, pl)− ζ]+ (3.22)

From this approximation is follows that if the loss function L(x,pl) is linear, then Ξ̃(β, x, ζ)
is piece-wise linear. A mean-cV@R model may then be solved with a conventional LP
solver[97]. Such a mean-cV@R optimization model is presented in Section 3.3.3.

6In Rockafellar and Uryasev [86] a formulation with equal probabilities is given
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3.2.5 Mean Negative Absolute Deviation

A Mean Absolute Deviation (MAD) risk model is risk metric that penalizes deviations of
the portfolio return from the mean. Provided that the reward function R(x;r̃) is linear,
the penalty function takes the form of a linear function of the absolute value of the
deviations.

MAD = E[|R(x; r̃)−R(x; r̄)|] (3.23)

Equation 3.23 describes a risk model that considers equally undesirable both downside
and upside deviations in much the same way as portfolio variance. As mentioned, this
poses a problem for an institutional investor as he is likely to consider upside deviations
a good. An alternative to the MAD model that only penalizes downside deviations is
the Mean Negative Absolute Deviation Model (MNAD). MNAD can be described by the
following (Zenios [97]).

MNAD = E[max[0, R(x; r̄)−R(x; r̃)]] (3.24)

and with N scenarios l ∈ Ω

MNAD =
N

N − 1

∑
l∈Ω

plmax[0,
N∑
i=1

(r̄i − rli)xi] (3.25)

An advantage of a MNAD based portfolio optimization model is that is may be solved with
a conventional LP solver. These solvers can solve large scale linear problems efficiently
and are readily available. On the other hand, MNAD is not a coherent risk measure
as it does not satisfy the risk-free (4) and monotonicity (3) axioms in Section 3.2.1.
By implementing both cV@R and MNAD based portfolio optimization problems in this
thesis, we get to compare what is a coherent risk measure and a non-coherent risk measure
that both consider downside variability in a asset universe with momentum and contrarian
investment algorithms.

3.3 Single Stage Portfolio Optimization

With the concepts of portfolio risk and portfolio reward introduced in the previous sec-
tions, we can now describe mathematical models of single stage portfolio optimization.
The classical Mean-Variance model from the seminal work of Markowitz [77] is first intro-
duced. Thereafter, we show how efficient portfolios formed with stocks from Oslo Stock
Exchange, can be seen graphically with the efficient frontier. In the end of this section,
portfolio optimization models with cV@R and MNAD constraints are presented.

3.3.1 Mean-Variance Optimization

Mean-Variance models addresses the problem of optimally selecting portfolios by allo-
cating capital between a set of financial instruments with respect to reward versus risk
in a single stage setting. The risk is measured by the portfolio variance and the reward
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is measured by the mean return of the portfolio. The goal is to maximize the portfolio
mean given a constraint on the portfolio variance, or equivalently, minimize the risk with
a constraint on the portfolio mean return.

To mathematically describe the problem, we assume the position of an investor that has
access to a universe of I assets. The random return of each asset i is denoted by r̃i and is
modeled on a probability space (Ω,F(Ω),P), where P is the probability measure on the
σ-algebra of events resolved at the end of the period, F . Ω is the set of return scenarios
l each with probability p(rli). The investor wants to optimally decide the proportional
allocation xi to the i’th assets such that∑

i∈I

xi = 1 (3.26)

Equation 3.26 is commonly denoted the budget constraint. Furthermore, we assume that
short positions are disallowed, i.e.

0 ≤ xi (3.27)

Two equivalent mathematical formulations of the Mean-Variance portfolio problem are
now given by (Zenios [97])

Maximize Rp(x; r̄)

s.t. σ2(x) ≤ β∑
i∈I

xi = 1

0 ≤ xi ∀i ∈ I

(3.28)

Minimize σ2(x)

s.t. R(x; r̄) ≥ µ∑
i∈I

xi = 1

0 ≤ xi ∀i ∈ I

(3.29)

Where β and µ denotes the upper and lower bound on risk and expected return, respec-
tively. Since the variance is a quadratic function of the allocation vector x, neither of these
models are linear. The second formulation, 3.29, involves a quadratic function with linear
constraints only. This model can be solved using standard optimization software[97].
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3.3.2 The Efficient Frontier

Solving the Mean-Variance models with given values for the parameters β and µ results
in portfolios with maximum return given constraint on risk, or equivalently, minimum
variance given lower bound on mean return. These portfolios are commonly known as
efficient portfolios.

Definition 2. A portfolio is efficient if it has maximal expected return given an upper
bvound on risk or, equivalently, it has minimal risk for a given expected return[12].

By changing the weights on each asset we obtain portfolios with different combinations
of risk and reward. Further, by solving the Mean-Variance models with different values
for the parameters β and µ we obtain different optimal portfolios. The [mean variance]
efficient frontier is defined by the optimal portfolios xopt for all parameters β and µ that
yield feasible solutions for the portfolio problems given in 3.28 and 3.29, respectivly. The
efficient frontier can be represented graphically by plotting the set of optimal portfolios
in a risk-reward space.

To illustrate this phenomenon, we randomly pick 8 stocks from the set of equities listed
on Oslo Bors in the time period from 01.01.2012 to 31.08.2015. Their mean returns,
volatilities (standard deviation) and total returns over the period are displayed in table
3.1. Next, we solve the Mean-Variance problem given in 3.29 with different values of the
parameter µ. The implementation is done in Python with the Gurobi optimization library
and Bokeh library for plotting. The resulting mean variance efficient frontier is displayed
together with the individual stocks, in figure 3.1 as the blue upper half hyperbola in
the mean-standard deviation space. The efficient frontier can also be found in other
risk-reward spaces.

Table 3.1: Performance of Stocks on the Oslo Stock Exchange

Randomly Chosen Equities on Oslo Stock Exchange

Company Ticker Mean St.Dev. Tot.Return
Belships ASA BELS 0.009% 2.40% -16%
Seadrill Ltd SDRL -0.094% 2.26% -68%
Eidesvik Offshore ASA EIOF -0.086% 1.85% -62%
Lerøy Seafood Group ASA LSG 0.165% 1.82% 300%
Havila Ariel ASA HAVA 0.034% 1.10% 32%
Aktiv Kapital ASA AIK 0.014% 0.67% 12%
DNB Bank ASA DNB 0.010% 1.56% 127%
Hafslund ASA HNA 0.030% 1.30% 21%

Notes: this table shows the mean return, standard deviation and total period return
for eight stocks listed on the Oslo Stock Exchange in the time period from 01.01.2012
to 30.08.2015. The stocks may not have been listed throughout the entire period.
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Figure 3.1: The blue line displays the mean variance efficient frontier with stocks from
Oslo Stock Exchange

3.3.3 Other Mean-Risk Models

In the following we present single stage portfolio optimization models based on the cV@R
and MNAD risk measures introduced in Section 3.2. Both models will be formulated in
a linear programming fashion making them solvable with conventional LP solvers. These
models are extended to a two stage setting in the next chapter.

Mean-CV@R Optimization Model

In Section 3.2.4 we saw that minimizing the following function with respect to ζ and x is
equivalent to minimizing the cV@R of the portfolio with respect to x.

Ξ(β, x, ζ) = ζ +
1

1− β

∫
r̃∈R

[L(x, r̃)− ζ]+ρ(r̃)dr̃

Furthermore, we showed that in a discrete scenarios setting Ξ(β,x,ζ) can be approximated

by Ξ̃(β,x,ζ).

Ξ(β, x, ζ) ≈ Ξ̃(β, x, ζ) = ζ +
1

1− β
∑
l∈Ω

pl[L(x, pl)− ζ]+

If we introduce an auxiliary variable ηl that takes the value [L(x,pl)−ζ] when [L(x,pl)−ζ]
> 0 and 0 otherwise, the following linear programming model maximizes expected port-
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folio return with a restriction on portfolio cV@R in a single stage setting.

Maximize
∑
l∈Ω

∑
i∈I

plxir
l
i

s.t. ζ +

∑
l∈Ω

plηl

1− β
≤ ω

0 ≤ ηl ∀l ∈ Ω

L(x; pl)− ζ ≤ ηl ∀l ∈ Ω∑
i∈I

xi = 1

0 ≤ xi ∀i ∈ I

(3.30)

With notations as in the rest of this chapter.
∑
i∈I

xi = 1 is the budget constraint and

xi > 0 denotes a short positions disallowed constraint as before. In model 3.30 the
portfolio V@R is endogenously given. V@R is thus a variable of the model.

Mean-MNAD Optimization Model

In Section 3.2.5, the MNAD risk measure was described by the following equation in a
discrete scenario setting.

MNAD =
N

N − 1

∑
l∈Ω

plmax[0,
N∑
i=1

(r̄i − rli)xi]

Denote by υl an auxiliary variable that takes the value [
N∑
i=1

(r̄i - rli)] when [
N∑
i=1

(r̄i - rli)] >

0, and 0 otherwise. A single stage portfolio optimization model with MNAD constraints
is then by given by

Maximize
∑
l∈Ω

∑
i∈I

plxir
l
i

s.t.
∑
l∈Ω

plυl ≤ γ

0 ≤ υl ∀l ∈ Ω∑
i∈I

xi[r̄i − rli] ≤ γ ∀l ∈ Ω∑
i∈I

xi = 1

0 ≤ xi ∀i ∈ I

(3.31)

With notations as in the rest of this chapter. Again,
∑
i∈I

xi = 1 is the budget constraint

and xi > 0 denotes a short positions disallowed constraint. The efficient frontier can easily
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be constructed in the mean-cV@R and mean-MNAD spaces by solving model 3.30 and
3.31 for different values of the parameters υ and ω. The efficient frontier is an important
concept that can be used for understanding theoretic risk and return behavior, this will
be done in Chapter 7.
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Chapter 4

Two-Stage Stochastic Portfolio
Optimization

So far our analysis has been restricted by the assumption of a one-stage investment
horizon. More realistically, however, one should consider the opportunity for the investor
to rebalance her portfolio when random events realize. One interesting questions in
this thesis is whether or not such consideration would yield any additional gains for an
investor with access to a complex asset universe. A suitable mathematical framework for
multistage portfolio optimization should not only allow the investor to anticipate future
observations, but also allow adaptation to realized events by taking rebalancing decisions.
Such a portfolio optimization model is part of a class of stochastic programming models
known as recourse models [97].

In this work, we consider discrete scenario based optimization where the random variables
r̃ have a finite number of realizations for each stage. We can then visualize the possible
sequence of events in a scenario tree structure. Formally, a scenario tree may be defined
as a directed graph G = [

∑
,
∧

] where the nodes
∑

represent a return realization at a
given time, and the links

∧
denote the set of possible sequential nodes. That is,

∑
is

a set of possible return realizations at time t such that
∑

[t] = {N t
v|v = 1, ...,Nt} where

Nt denotes the total number of realizations at any given time t.
∧

is the set of pair of

nodes that can feasibly follow each other [N t
v(t), N

t+1
v(t+1)]. v()̇ indicates the dependence of

the index v on t. In other words, N t
v(t) is a predecessor and N t+1

v(t+1) is a successor. Figure
4.1 depicts a scenario tree and for clarity we adapt the following definition from Gülten
and Ruszczyński [47].

Definition 3. Scenario Tree
A scenario is a path from root node to leaf node
A stage is the moment when a decision is taken
A period is a time interval between two stages

Each node in the scenario tree is associated with a return realization r̃tn, which in our
setting represents the end of period portfolio return. For this reason we need the under-
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Figure 4.1: This figure displays the nodes in a scenario tree. Each node N t
v is associated

with a probability ρ and a return realization r̃tn.

lying stochastic process to be taken from a discrete distribution with a limited number
of realizations. In Section 4.1, we introduce the concept of scenario tree generation. Fur-
thermore, the moment-matching scenario generation heuristic applied in this thesis is
thoroughly presented. Once the discrete distributed is presented in a scenario tree, we
can solve stochastic optimization problems with appropriate programming techniques.
Section 4.2 shows how the linear portfolio optimization models introduced in Chapter 3
can be extended to a two-stage setting.

4.1 Scenario Generation - Setting The Stage

In stochastic programming, scenario generation refers to the generation of a discrete ap-
proximation of the distribution of a random variable. In discrete scenario based portfolio
optimization, we want to approximate the distribution of the constituent assets random
returns and we want the end result to be in the form of a scenario tree. We understand
that financial data alone may be insufficient in this regard as it is necessary to generate
scenarios that may not have been present in the past, but that are possible according to
statistics. Financial instruments can be risky and it is therefore important to model the
possibility of occurrence of extreme events. Furthermore, the investor may have opinions
of the future outcomes that deviate from those of the past. An adequate representation
of the underlying random processes and their co-movement are of crucial importance in
proper two-stage stochastic modelling.

In most practical financial applications, the distributions of the variables have to be ap-
proximated by discrete distributions with a limited number of outcomes [65]. Denote by r̃
the true distribution of a random stochastic variable and by r̆ an approximation. Further-
more, let r̆ denote the multivariate approximation of the random process. For portfolio
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optimization models, scenario approximation facilitates the following transformation

max
x

F (x, r̃) −→ max
x

F (x, r̆) (4.1)

From 4.1 it is easy to understand that several academics claim that the scenario generation
technique should be measured by its ability to facilitate an optimal approximate solution
that is close to the true optimal solution, rather than by the closeness of r̆ to r̃ (Hurt
et al. [55], Kjetil Fagerholt).

In Kaut and Wallace [65] and Hurt et al. [55] a variety of scenario generation methods
are reviewed and tested. Conditional sampling, a technique where samples are drawn
from a stochastic process at each node in the scenario tree, is the most common. This
method is straight forward if the underlying process is univariate. The sampling can be
done either directly from a given distribution or from a return predicting model. For
multivariate purposes we additionally need to model the correlation. This is explained
in e.g. Loretan [75]. Similar to this method, it is also possible to generate scenarios
by drawing samples from given specified marginal distributions with a given correlation
matrix [76]. The problem with this method, of course, is that we may not know the given
marginal distributions of the assets1. Other methods exist, e.g. the path based method
(Kaut [64]) or optimal discretization (Pflug [84]). These are somewhat different from the
moment-matching scenario generation method implemented in this work.

Note that all these presently available means by which to generate discrete scenarios from
continuous distributions (or large discrete distributions) are heuristics. This means that,
however small, there will always be an error ε > 0 between the true optimal value of a
given two-stage portfolio optimization model and the model obtained by approximating
the scenario outcomes in a scenario tree structure[63]. In this work, we apply a heuristic
for scenario generation introduced to stochastic programming by Høyland et al. [53]. This
moment-matching scenario generation technique is presented in the following section and
builds around the ability of the investor to specify her expectations of the future in terms
of four moments of each asset marginal distribution and the correlation matrix between
the assets. No assumptions on the particular marginal distributions are made. This
way, the future expectations may in whole or in part be based on past historical data
and experts may be consulted for their opinions. To our knowledge, this heuristic has
never before been implemented with momentum and contrarian algorithms as assets in a
portfolio optimization setting.

4.1.1 A Moment-Matching Scenario Generation Algorithm

In this section we introduce the moment-matching scenario generation algorithm by
Høyland et al. [53]. The algorithm can be used to generate multistage scenario trees
for a multivariate stochastic process and it is previously tested for financial application.
The first part of this section is confined to the sub-problem of generating a limited num-
ber of scenarios for a multivariate stochastic process with given moments and correlations

1This is certainly the case for the special portfolio optimization problem in this thesis where the assets
are investment algorithms. The moment-matching scenario generation introduced in the next section is
more suited for such a purpose.
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in a single node of a scenario tree. The moments and correlations may be taken from
historic data or appropriate forecasting and simulation models. These approximations
may then in whole or in part be combined with expert knowledge and opinion. No
assumption is thus made on the distribution of the underlying assets. This is indeed
favorable for our situation in which limited or no research has been done on the return
distribution of the underlying investment algorithms. In the second part we show how
the moment-matching algorithm easily can be exploited to produce a two (or several)
stage scenario tree. We draw upon theory introduced in Høyland et al. [53]. The algo-
rithm and associated mathematics can be seen as a bit involved. For this reason we only
introduce the main mathematical concepts used and assume that basic mathematics is
familiar by the reader. The main mathematical concepts are a cubic transformation for
moment-matching and a Cholesky transformation for correlation matching.

Let r̃ denote the discrete multivariate distribution that is to be generated with four
prescribed moments for each marginal and an associated given correlation matrix at
each node. Then r̃i describes a one dimensional random vector with one index for each
possible scenario s ∈ S. Each scenario has an associated probability of occurrence ρ(s).
The prescribed four moments for each marginal i ∈ I dictates that

si1 = E[r̃i]

si2 =
√

E[(r̃i − E(r̃i))2]

si3 =
E[(r̃i − E[r̃i])

3]

(si2)3

si4 =
E[(r̃i − E[r̃i])

4]

(si2)4

(4.2)

To keep the formulas involved in the cubic transformation simple, we restrict ourselves to
a process with zero means and variances equal to 1. To do this, we define a standardized
distribution of r̃ (z̃) by

z̃i =
r̃i − E[r̃i]

si
∀i ∈ I (4.3)

From 4.3 and 4.2 it is possible to derive that the correlation matrix of r̃ and z̃ are the
same. Further, it can easily be shown that

E[z̃i] = 0 E[z̃2
i ] = 1 E[z̃3

i ] = si3 E[z̃4
i ] = si4 (4.4)

The process executed by the moment-matching algorithm is thus first to generate a
distribution z̃ with moments given by 4.4 and correct correlations and then to perform a
linear transformation through 4.3 in the end.

4.1.2 Mathematical Transformations

There are two key mathematical transformations applied in the moment-matching al-
gorithm. They are a cubic and a matrix transformation and will be presented in the
following.
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Cubic Transformation for Moment-Matching A cubic transformation ỹi = ai
+biz̃i + biz̃

2
i + diz̃

3
i is done for the purpose of creating a univariate random variable

ỹi with four prescribed moments, e.g. the moments in 4.4. For each variable i ∈ I the
transformation consists in estimating the parameters ai, bi, ci and di. To do this, we need
to specify the first 12 moments of the z̃i distribution. Thence we solve the following set
of equations.

(1)E[ỹi] = E[ai + biz̃i + ciz̃
2
i + diz̃

3
i ]

(2)E[ỹ2
i ] = E[(ai + biz̃i + ciz̃

2
i + diz̃

3
i )

2]

(3)E[ỹ3
i ] = E[(ai + biz̃i + ciz̃

2
i + diz̃

3
i )

3]

(4)E[ỹ4
i ] = E[(ai + biz̃i + ciz̃

2
i + diz̃

3
i )

4]

(4.5)

This set of equations can be solved with readily available solvers in Python. This software
solves the equations numerically, even though an analytical solution approach does in the-
ory exist. The problem with this, of course, is that there might not be a feasible solution
to the problem given by 4.5. The build-in software applies a least squares method that
minimizes a sum of [square] deviations between the right-side and left-side of equations
(1), (2), (3) and (4). This way we can obtain the parameters ai, bi, ci and di that provide
a solution that is [hopefully] close to feasible, and a variable ỹi with the closest possible
moments to the prescribed. In the implementation we assume that a feasible solution
exist every time we run the simulation.

Matrix Transformation for Correct Correlations For the purpose of creating a
multidimensional variable r̃ with a given correlation matrix R = LLT , we apply a Cholesky
based matrix transformation. In Høyland et al. [53] it is shown that if r̃ is a n-dimensional
random variable with zero means, variances equal to one and independent components
r̃i, then ỹ = Lr̃ is a n-dimensional vector with zero means, variances equal to 1 and a
correlation matrix R. From this transformation, two important notes should be made;

1. The components of r̃ need to be strictly independent for this transformation to
work. This is important to note because it is impossible to programmatically create
independent random components r̃i of limited size. It is for this reason that the
moment-matching heuristic cannot guarantee a perfect match2.

2. While the transformation creates a variable ỹ with first and second moments equal
to those of r̃, higher marginal moments of ỹ will not be the same. This is important
to note because if we want to end up with correct prescribed moments for ỹ, we
need to start off with slightly different moments for r̃. In the following we show
how.

Suppose we want to create a multidimensional random variable ỹ with prescribed mo-
ments E[ỹ]=0, E[ỹ2]=1, E[ỹ3]=s3 and E[ỹ4]=s4 , and a correlation matrix R = LLT . If
the components of r̃ are independent, it is easy to proof that the relations between the

2It is also for this reason that if we increase the number of scenarios we want to create, the result
often times get better.
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third and fourth moments of ỹ and r̃ in the transformation ỹ = Lr̃ is given by

E[ỹ3
i ] =

i∑
j=1

L3
ijE[r̃3

j ] ∀i ∈ I

E[ỹ4
i ] = 3 +

i∑
j=1

L4
ij(E[r̃4

j ]− 3) ∀i ∈ I
(4.6)

With reference to note (2), we know that we will reach our objective if we start the
transformation with the following higher marginal moments for r̃.

E[r̃3
i ] =

1

L3
ii

(E[ỹ3
i ]−

i−1∑
j=1

L3
ijE[r̃3

j ]) ∀i ∈ I

E[r̃4
i ] = 3 +

1

L4
ii

(E[ỹ4
i ]− 3−

i−1∑
j=1

L4
ij(E[r̃4

j ]− 3)) ∀i ∈ I
(4.7)

Where 4.7 follows from 4.6. Some last remarks should also be made. First, for the
equations 4.7 to yield the wanted results we need the correlation matrix R to be positive-
definite. For practical purposes (implementation), this imposes no restriction since the
Cholesky decomposition doesn’t work if the R isn’t regular(which implies a semi-positive
matrix). Second, if components of r̃ are assumed both normally distributed and mutually
independent such that the higher marginal moments of r̃ are E[r̃3]=0 and E[ỹ4]=3, then
it follows from 4.7 that the transformation ỹ = Lr̃ preserves all four moments3.

4.1.3 The Moment-Matching Algorithm

With the key mathematical transformations introduced, we can now present the moment-
matching algorithm. The idea behind the algorithm is the following: generate n inde-
pendent discrete random variables with the desired marginal moments. This is done by
the cubic transformation and the desired moments are zero means, variances equal to
1 and skewness and kurtosis given by 4.7. Thereafter we combine these variables to a
n-dimensional multivariate random variable and perform the matrix transformation for
desired correlation. In the end, the linear transformation in 4.3 is performed for each of
the components of the random variable.

This procedure would create a perfect match if the components of the n-dimensional
variable created were truly independent. As mentioned, however, it is impossible to
create random vectors of finite length that are strictly independent using simulation.
For this reason, Høyland et al. [53] exploits the properties inherent in the Cholesky
transformation to decrease the dependence by ensuring uncorrelated variables instead. If
r̃ is a multidimensional random variable with correlation matrix R = LLT , then we know
that r̆ = L−1r̃ is a random variable with the same dimension and a correlation matrix I.

3This means that by generating normally distributed variables, we don’t have to apply the equations
in 4.7. We can specify directly the prescribed standardized higher marginal moments . This is because
linear transformations preserve normality[53].
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By using this inverse transformation, we are able to lower the degree of dependence. The
error distances between the obtained random variable and the prescribed with respect
to target moments and correlations, are measured by the root mean square error4. This
gives way for algorithm 1.

Algorithm 1 Moment-Matching Scenario Generation

1: procedure Start Variable(S, I,M tar) . Create Discrete Distribution
2: for i ∈ I do . Independent Generation
3: r̃i ← N (0,1) . Draw random normal vector, length ||S||
4: for j ∈ [1,12] . Calculate 12 Moments
5: M̆ [i, j] = E[rji ]

6: r̃i = CubicTransformation(r̃i, M̆ [i], M tar[i]) . Match Moments

7: return r̃ . Multidimentional Variable
8:

9: Generated is a multidimensional variable r̃ with moments (M̆) close to correct mo-
ments (M tar) and a correlation matrix R̆ that is close to I due to independent gener-
ation.

10:

1: procedure Main Loop(r̃,M tar, Rtar) . Main Algorithm Loop
2: Set p = 0
3: Let Rtar = LLT . By Cholesky Decomposition
4: while εmom > εmommax & εcor > εcormax do
5: R̆p = CorrelationMatrix(r̃p)
6: R̆p = L̆L̆T , r̃p = L̆−1r̃p, ỹp = Lr̃p

7: Now ỹp will have correct correlations, wrong moments
8: for i ∈ I do
9: for j ∈ [1,12] do . Calculate 12 Moments

10: M̆ [i, j] = E[yji ]

11: ỹpi = CubicTransformation(ỹpi , M̆ [i], M tar[i]) . Match Moments

12: εmom = RootMeanSquareError(ỹp,M tar) . Evaluate error
13: εcor = RootMeanSquareError(ỹp, Rtar)
14: p→ p+ 1

15: Now ỹ has standardized moments and correlations withing limits from the pre-
scribed

16: Let z̃i = si2ỹ + si1 ∀i ∈ I . Standard Linear Transformation
17: return z̃

The biggest difference between the code implemented in Python and the presented
pseudo-code, is that since we cannot be certain that the heuristic will provide a result
that is within the prescribed error limits, we allow a predetermined number of iterations
for both the StartProcedure and the MainLoop. Furthermore, we define a maximum

4The root mean square error is defined by: RMSE =
√

1
Nel

[
∑
k

(valuek − TARGETk)] where Nel is

the number of elements in the sum[53]
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Table 4.1: Parameters, Variables and Sets

Moment-Matching Scenario Generation

Definition
I Set of variables i
S Set of scenarios s
M tar, Rtar Target Moments and Correlations. Ma-

trices [||I||x4]
s1, s2 Target 1st and 2nd moments. Vectors

[||I||x1]
r̃, ỹ, z̃ Multidimensional Random Variables

[||I||x||S||]
r̃i, ỹi, x̃i Random Vectors [1x||S||]
E[r̃ji ] Higher Marginal Moment when E[r̃ji ] = 0

for j = 1
εcormax ,εmommax Maximum allowed root mean square er-

ror for correlations and moments

Table 4.2: Parameters, Variables and Sets

Scenario Tree Generation

Definition
T Set of stages t
N t Set of nodes n in stage t
U t+1
n Subset of nodes in stage (t+1) with same

parent N t
n

M tar, Rtar Target Conditional Moments and Corre-
lations. Matrices [||I||x4]

p̃t Conditional probability matrix in stage t
r̃t Conditional return matrix in stage t
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allowed error for the Cubic Transformation and allow a certain amount of iterations for
this as well.

Multistage Scenario Tree A multistage scenario tree can be built using the the
moment-matching scenario generation heuristic. This is done by generating scenarios
node for node. To create stochastic dependence between events in different stages of the
tree, it is necessary to choose/specify/predict the target marginal moments and targets
correlation matrices at each node in such a way that the specification in node t depends
on the realization of events from parent node in node t-1 and possibly node t-2,t-3 and
so on. If we are using historic data, this can be done simply by updating our sample. If
we are using a stochastic model, e.g. a vector auto regression model, the model input
should also include the past realization[s] of events. Obviously, expert knowledge and
opinion cannot easily be considered in each node if there are several stages. A conceptual
approach for creating scenario trees with the moments matching heuristic is provided in
algorithm 2. The sets, parameters and variables are defined in table 4.1. We need the
algorithm to return to us conditional returns and probabilities for each stage t ∈ T . As
each child node has one parent node, this will result in one two-dimensional return matrix
r̃t and one two-dimensional probability matrix Pt for each stage. The exception is the
root node. As a result, first stage (t=0) generate one-dimensional vectors r̃1 and p̃1.

Algorithm 2 Scenario Tree Structure

1: procedure Make Tree(T ) . Make tree with ||T || stages
2: Define N . N 0 = 1
3: Set p̃0 = 1
4: for t ∈ T do
5: for n ∈ N t do . Node by node
6: Specify conditional properties M tar, Rtar

7: Generate Scenarios r̃t+1
n with given M tar, Rtar

8: Assign corresponding child nodes U t+1
n

9: Assign conditional probabilities p̃t+1
n to U t+1

n

10: Stack vectors r̃t+1
n , p̃t+1

n → r̃t+1, p̃t+1 . Create Matrices
11: if t = ||T ||-1 then
12: Stop
13: else
14: t → t + 1

15: return r̃t, p̃t ∀t ∈ T . Returns and Probabilities
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4.2 Two-Stage Mean-Risk Models

When the scenario tree describing the underlying stochastic process is generated, it is pos-
sible to solve multistage portfolio optimization problems with appropriate programming.
The purpose of this section is to extend the linear portfolio optimization models intro-
duced in Chapter 3 to a two-stage setting in which a portfolio rebalance decision can be
made. First a formal description of the two-stage problem domain is given together with
an introduction of appropriate constraints. Thereafter, we formulate two-stage cV@R
and MNAD portfolio optimization models which are evaluated in the computational part
of this thesis.

In two-stage portfolio optimization we are faced with the problem of allocating wealth
among a set of investment instruments over two consecutive time periods. There exists
an option of rebalancing after returns from the first time period have realized. Formally,
we define a set of stages T = {1, 2}. Initial allocation happens in stage 1, and rebalancing
takes place in stage 2. As with one-stage programming, we assume that the returns are
modeled on some complete probability space (Ω, F, P). We cannot see into the future,
however, we must therefore apply a filtration on the space for multistage modeling. Then
F is the σ-algebra of events that has resolved at time t, and P is the associated probability
measure. A filtration {Ft}t≥0 is applied such that Ft=2 = F[63]. Note that the rebalancing
decision in stage 2 takes place after an event in F1 has been observed. A scenario tree5

can visualise the possible sequence of events r̃ = [r̃1, r̃2]. With a formal description of the
underlying stochastic process, we can now turn to multistage constraints. For readability
we adapt the notations in table 4.3 in the following.

Inventory and Cashflow Constraints In the first stage (t=0) the investor must
allocate wealth among a set of instruments given an initial composition of the portfolio
ωi0, knowing with full certainty the prices of the assets. An inventory constraint is then
given by

xi1 = ωi0 + bi1 − si1 (4.8)

Where bi1 and si1 denote the amounts bought and sold and xi1 is the first stage allocation
in asset i. Equation 4.8 must hold ∀i ∈ I. When purchasing and selling assets, there
must also be a constraint ensuring feasible cash flows. Here, we could allow the investor
to draw funding from some initial outstanding cash should there be a deficit. Another
possibility is to ensure self-financing. This is done through the following self-financing
cashflow constraint. ∑

i∈I

xi1 =
∑
i∈I

ωi0 (4.9)

Equation 4.9 also simply states that the investor cannot allocate more wealth than she
initially has.

Time-stage Constraints and Transaction Costs As discussed in Chapter 2, there
will always be some sort of penalizing transaction cost associated with a given trading

5Depicted in figure 4.1
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Table 4.3: Table of Notations

Indices
i : assets
j : first stage event realization
k : second stage event realization dependent on j

Sets
S : scenarios: S ∈ {(j,k)|j ∈ {1, ..., J}, k ∈ {1, ..., Kj}}
I : assets: I ∈ {1, ..., I}

Parameters

pj1 : probability of first stage event j

pj2
k : probability of second stage event k given j

ri1
j : return on asset i in event j

rijk2 : return on asset i in event k given event j
α : confidence level for V@R and cV@R
β : maximal allowable cV@R
ω0 : initial wealth
ωi0 : initial wealth/position in asset i
εi : proportional transaction cost asset i

First Stage Variables
xi1 : first stage wealth allocation to asset i
bi1 : first stage amount bought of asset i
si1 : first stage amount sold of asset i

ωi,j1 : wealth in asset i given first stage realization of event j

Second Stage Variables

xij2 : second stage wealth allocation to asset i given event j

bij2 : second stage amount bought of asset i

sij2 : second stage amount sold of asset i

ωikj2 : wealth in asset i in scenario k, j
ζ : total horizon V@R

Rjk
tot : total horizon return in scenario k, j
ηjk : auxiliary variable for cV@R formulation

υjk2 : auxiliary variable for MNAD formulation
γ : maximum allowable deviation
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policy for financial instruments. The most obvious is the brokerage fee. There also
exists costs related to the bid/ask spread and the fact that prices of financial instruments
change when purchases/sales are made (price impact). See e.g. Wagner and Edwards
[96]. Modelling of transaction costs can be done in several ways[97]. In the following we
consider proportional transaction costs, where costs of trading are set to a fixed proportion
(ε) of the traded amount.

In addition to trading amounts and transaction costs, first stage return realizations ri1
j

also impacts the end of first period (t=1) wealth ωij1 . A time-stage constraint is then
given by

ωij1 = (1 + rij1 )xi1 − (bi1 + si1)εi (4.10)

Equation 4.10 must hold for all assets i ∈ I and for all first stage scenarios j ∈ S.

Rebalancing and Second Stage Constraints In the second stage (t=1), the investor
has the opportunity to rebalance her portfolio. The rebalancing constraint is quite similar
to the inventory constraint in 4.8 and is given by

xij2 = ωij1 + bij2 − s
ij
2 (4.11)

Equation 4.11 must hold ∀i ∈ I and ∀j ∈ S. Furthermore, a time stage constraint
similar to 4.10 and cash flow balance similar to 4.9 should also be satisfied. These will
be fully stated in the next section when the two-stage portfolio optimization models are
formulated.

52



4.2.1 Two-Stage CV@R Optimization Model

In this section we formulate a linear two-stage cV@R portfolio optimization model with
the constraints from the previous section. This model is one of two mean-risk mod-
els implemented with momentum and contrarian investment algorithms as assets in the
computational part of this thesis. We are interested in maximizing the end of horizon
expected portfolio return Rtot with a restriction on the end of horizon cV@R ζ. The
one-stage model was presented together with the cV@R risk measure in Chapter 3. The
model formulated is a two-stage stochastic optimization model with recourse and trans-
action costs. Note that by forcing the amounts bought and sold in the second stage, bij2
and sij2 , equal to zero, we may obtain a one-stage (static) model instead. The notation is
explained in table 4.3.

max z =
∑
k,j∈S

pj1p
jk
2 R

jk
tot (4.12)

Subject to:

xi1 = ωi0 + bi1 − si1 ∀i ∈ I (4.13)

∑
i∈I

xi1 =
∑
i∈I

ωi0 (4.14)

ωij1 = (1 + rij1 )xi1 − (bi1 + si1)εi ∀i ∈ I ∀j ∈ S (4.15)

xi1 ≥ 0, ωij1 ≥ 0 (4.16)

xij2 = ωij1 + bij2 − s
ij
2 ∀i ∈ I ∀j ∈ S (4.17)

∑
i∈S

xij2 =
∑
i∈S

ωij1 ∀j ∈ S (4.18)

ωijk2 = (1 + rijk2 )xij2 − (bij2 + sij2 )εi ∀i ∈ I ∀j, k ∈ S (4.19)

ωjk2 =
∑
i∈I

ωijk2 ∀j, k ∈ S (4.20)

ζ +
1

1− α
∑
j,k∈S

pj1p
jk
2 η

jk ≤ β (4.21)

∑
i∈I

ωi0 − ω
jk
2 − ζ ≤ ηjk ∀j, k ∈ S (4.22)

0 ≤ ηjk ∀j, k ∈ S (4.23)
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Rjk
tot =

ωjk2
ω0

− 1 ∀j, k ∈ S (4.24)

xij2 ≥ 0, ωijk2 ≥ 0 (4.25)

4.2.2 Two-Stage MNAD Optimization Model

In this section we formulate a linear two-stage mean negative absolute deviation (MNAD)
portfolio optimization model. This model is one of two mean-risk models implemented
with momentum and contrarian investment algorithms as assets in the computational
part of this thesis. We are interested in maximizing the end of horizon expected portfolio
return Rtot with a restriction on the end of horizon MNAD. The one-stage model was
presented together with the MNAD risk measure in Chapter 3. The model formulated is
a two-stage stochastic optimization model with recourse and transaction costs. Note that
by forcing the amounts bought and sold in the second stage, bij2 and sij2 , equal to zero, we
may obtain a one-stage (static) model instead. The notation is explained in table 4.3.

max z =
∑
k,j∈S

pj1p
jk
2 R

jk
tot (4.26)

Subject to:

xi1 = ωi0 + bi1 − si1 ∀i ∈ I (4.27)

∑
i∈S

xi1 =
∑
i∈S

ωi0 (4.28)

ωij1 = (1 + rij1 )xi1 − (bi1 + si1)εi ∀i ∈ I ∀j ∈ S (4.29)

xi1 ≥ 0, ωij1 ≥ 0 (4.30)

xij2 = ωij1 + bij2 − s
ij
2 ∀i ∈ I ∀j ∈ S (4.31)

∑
i∈S

xij2 =
∑
i∈S

ωij1 ∀j ∈ S (4.32)

ωijk2 = (1 + rijk2 )xij2 − (bij2 + sij2 )εi ∀i ∈ I ∀j, k ∈ S (4.33)

ωjk2 =
∑
i∈I

ωijk2 do ∀j, k ∈ S (4.34)

Rjk
tot =

ωjk2
ω0

− 1 ∀j, k ∈ S (4.35)
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∑
j,k∈S

pj1p
jk
2 υ

jk
2 ≤ γ (4.36)

∑
j,k∈S

pj1p
jk
2 R

jk
tot −R

jk
tot ≤ υjk2 ∀j, k ∈ S (4.37)

υjk2 ≤ 0 ∀j, k ∈ S (4.38)

xij2 ≥ 0, ωijk2 ≥ 0 (4.39)
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Chapter 5

Data and Model Design

This chapter presents the data and models applied when back-testing factor investment
strategies on US and Norwegian equity markets in the time period from January 2000
to December 2015. Section 5.1 details the data samples used. Section 5.2 presents the
factor models applied, and the framework applied in algorithmically performing stochastic
portfolio optimization with factor model investment strategies as assets, is described in
section 5.3.

All tests were run on a 64-bit Windows 7 PC with 3.40 GHz Intel Core i7-3770 CPUs (4
cores) and 16 GB RAM.

5.1 Samples

The samples used in this work comprise stocks from Norwegian and US equity markets.
The analysis in Norway is conducted on daily price data of all stocks traded on the Oslo
Stock Exchange (OSE) in the time period from 03.01.2000 to 31.12.2015. A total of 4175
data points is considered. Although the effect of survivorship bias1 on factor strategies
remain relatively unexplored, including all stocks eliminates the problem, should it exist.
Norwegian market return data, gathered from Thomas Reuters database, is defined as
the periodic return of an equally weighted Oslo Stock Exchange index with monthly
rebalancing. The cumulative returns to this index is depicted in figure 5.4.

In the US equity market, the back-tests are conducted on all US stocks being or having
been constituent of the MSCI ACWI (world index) in the time period from 03.01.2000
to 31.12.2015. A total of 4175 data points is considered, gathered from Thomas Routers
Database. MSCI ACWI captures large and mid cap representation. Small cap stocks are
thus excluded from the study2. US market return data, gathered from Thomas Reuters

1Could cause the results of studies to skew higher because only companies which were successful
enough to survive until the end of the period are included

2This may not be optimal seeing as several US studies report the momentum effect to be especially
strong among small cap firms.
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database, is defined as the periodic return of an equally weighted MSCI US Index with
monthly rebalancing. The cumulative returns to this index is depicted in figure 5.4.

Table 5.1: Data Sets

US and Norway Equity Markets

Data Set Oslo SE MSCI US
Start Date 03.01.2000 03.01.2000
End Date 31.12.2015 31.12.2015
Data Points 4175 4175
Buy/Sell Adjusted Close Adjusted Close
# of Equities 501 1049

Notes: this table gives an overview over the different data sets used
for simulation in this thesis. Only past price data is considered.

Other Considerations

As seen in Chapter 2, momentum strategies implemented in the literature rely heavily on
short selling stocks that are under performing as to create zero-cost portfolios3. However,
the investor faces short-selling restriction when dealing stocks. Not all stocks are listed
for short-selling, and the transaction costs are considerably higher. The majority of the
literature assumes this obstacle to be nonexistent and calculates returns to investment
strategies which may be of great value in theory, but costly or impossible to implement
in practice. We deal with short-selling in two ways;

1. We calculate returns when short selling is not permitted. This entails calculating
returns to strategies only holding the winner portfolios. These long-only strategies
are subjects of particular interest in this thesis (see Chapter 1).

2. For comparison with existing literature and to obtain results that may be of aca-
demic value, we also include results for investment strategies that allow for short-
selling in the initial analysis. For simplicity all stocks are included in these calcu-
lations.

Missing observations have been padded with the preceding stock price for up to a limit of
20 trading days. Accordingly, stocks that de-list in the holding period are sold at the last
days adjusted close price and held as cash with no additional return. The data sets will
introduce new stocks as they are introduced in the time period. As new entries are prone
to momentum effects, these are important to include in a momentum study4. Implicitly
in this approach is the assumption that transactions are always executable. In reality
however, there may be limited supply and demand of equities.

The returns are measured using daily adjusted close prices. The assumption that underpin
these calculations is that an investor could rank and trade stocks based on the closing

3See e.g. [59, 60, 21, 46, 45, 87, 20, 8, 28]
4Vegard Egeland, Fronteer Solutions
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(a) US Equity Market (b) Norway Equity Market

Figure 5.1: Cumulative returns; equally weighted indexes for the Norwegian and US stock
market samples in the time period from 03.01.2000 to 31.12.2015

price. This is a simplification, of course. One should never devise an investment strategy
solely on the adjusted close[19]5. We further assume 20 trading days per month.

5.2 Factor Model Design

In this section we present the factor model strategies back-tested on the data samples. As
mentioned, for academic purposes and completeness, contrarian and minimum volatility
factor models will be implemented in addition to momentum models. In the second part of
this thesis, the factor model investment strategies will constitute an investment universe of
complex assets, available for algorithmic portfolio optimization. For a thorough discussion
and explanation of the different strategies and their rationale, we refer the reader to
Chapter 2.

Factor Model Implementation

Implementation of the factor models is done in Python using object oriented program-
ming. The simulation is done by each month ranking stocks based on the past perfor-
mance criteria. We use overlapping portfolios. The investor holds several momentum
portfolios each month6. This is consistent with the majority of the literature and in-
creases the power of the empirical tests. Thus in any month, we initiate positions in
the winner portfolios, and close out positions in old portfolios. We rebalance monthly
to maintain equal weights on the momentum portfolios held and on the equities in each
portfolio. With monthly equally weighted rebalancing we obtain a time series of monthly

5In initial testing, we are interested in whether or not the strategy generates abnormal returns. If so,
we can apply the models with more realistic constraints(Vegard Egeland, Fronteer Solutions).

6Except for the case when the holding period is equal to the time period between rebalancing, then
the investor only holds one momentum portfolio
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returns for the investment strategies implemented. Figure 5.2 illustrates the algorithmic
approach used in the back-tests performed in this work.

Obtain historical data

Rank stocks based
on ranking criteria

Initiate new po-
sitions and elimi-
nate old portfolios

Rebalance and
calculate returns

Next month

Last
month in
period?

stop

no

yes

Figure 5.2: This figure displays a flow-diagram describing the general approach for back-
testing factor model strategies.

Investment Strategies and Parameters

Individual Stock Price Momentum The individual stock price momentum factor
strategy implemented in this thesis ranks stocks each month t based on their compounded
return over the formation period, J.

CJT =
t−1∏

j=t−J

(1 + rij) = (1 + rij−1)(1 + rij−2)...(1 + rij−J)

Equally weighted portfolios are constructed based on these rankings. We use portfolios
sizes of 10% to form portfolios. The results are obtained with a skipping period S =
0. When S=0, the stocks are bought and sold immediately after ranking at the closing
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price. A skipping period of S=1 was also implemented, but results didn’t deviate much7.
Formation period J and holding period K range from 1 to 12 months. Returns to the
strategy are calculated with monthly rebalancing, daily prices and equal weights assigned
to each portfolio in holding. In addition to calculating returns to the strategy where no
short sales are allowed, we construct zero cost portfolios, as in the literature4 where

rtot,m =
1

MN

M∑
j=1

(
N∑
i=1

T∏
k=t−T

Pit
Pit−1

− 1)W −
M∑
j=1

(
N∑
i=1

T∏
k=t−T

Pit
Pit−1

− 1)L)

where:
Pt = End of day adjusted close price for an equity
Pt−1 = Adjusted close the day before
rtot,m = The strategy monthly return
M = Number of portfolios in holding each month (both winner and loser portfolios)
N = Number of stocks in each portfolio
T = Number of trading days in a month
W,L = Subscripts of the winner and loser portfolio, respectively

The volatility-scaled momentum factor, inspired by the MSCI momentum index[11], is
implemented with ranking criterion

CMSCI =
r̄T
σT

where:
σT = The volatility of the daily returns over the formation period.
r̄T = The average daily return over the formation period.

52weekhigh & Cross-sectional Momentum At the end of each month stocks are
ranked based on their nearness to the 52-week high price for the 52weekhigh strategy,
and the average daily deviation from the cross-sectional mean for for the cross-sectional
momentum model.

CGH =
Pit

HIGHit

CDE =
1

TJ

TJ∑
t=1

[rit −
1

I

I∑
i=1

rit]

where:
HIGHit = Highest equity price of the past 252 trading days
J = Number of formation months
T = Number of trading days per month
I = Number of active assets of the period
rit = Daily return on asset i

7Commonly found in the momentum literature is that profits are somewhat higher for a skipping
period of S=1. This was not the case in our back-tests.
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From the highest ratio to the lowest ratio. Equally weighted portfolios are then formed.
The top performers constitute the winner portfolio and the bottom performers constitute
the loser portfolio. As with the JT model, the strategies are implemented with different
model parameters. Portfolio size is 10%. The monthly returns are also calculated in a
similar fashion to the individual stock price momentum, with monthly rebalancing to
maintain equal weights on the portfolios held.

When using these ranking criteria with data samples containing ’dead’8 and newly in-
troduced stocks, some caution must be made. If the stocks are recently listed, naturally
the closeness to the 52-week high will be high. Similarly, ’dead’ stocks will display low
variance, but obviously yield no return in the future. For these reasons we only consider
stocks that have been active for six months with at least 5 observations the last 15 trading
days, when ranking based on these these criteria.

Contrarian Strategy The contrarian strategy implemented, uses the opposite invest-
ment logic of the JT model. The stocks are ranked based on the same performance
measure, but equally weighted portfolios are formed where the top % constitute the
’loser’ portfolio and the bottom % of the ranked stocks the ’winner’ portfolio. We initi-
ate a long position in the stocks constituent of the ’loser’ portfolio. As return reversal
commonly has been found in the short term, we rebalance the portfolios every two weeks,
and use two weeks holding and formation periods9. With these adjustments, the returns
are calculated in a similar fashion to the individual stock price momentum.

Low-volatility Investing In this work we try to capture low-volatility stocks by rank-
ing based on historical variance. Each third month, stocks are ranked based on the last
twelve months historical variance of daily returns.

CV ol = σ2
it (5.1)

From the lowest ratio to the highest ratio. An equally weighted portfolios is then formed.
The top 10% constitute the low variance portfolio. This model in similar to that of the
S&P500 volatility index[24], only with a smaller portfolio size and different weighting of
the constituents. With regards to ’dead’ and newly introduced stocks, the same procedure
as with the 52weekhigh is applied to the historic data.

Performance Evaluation To evaluate the performance of the different strategies, we
apply several descriptive statistics. Commonly sited in the literature is the average
monthly return and the variance of the monthly returns. In addition, we calculate a
risk-reward given by

R =
r̄

σ
(5.2)

8Stocks that have been delisted
9We could have implemented with even shorter rebalancing periods and holding and formation periods,

however, this would increase the volume traded and make the assumption of no trading cost more
questionable (Vegard Egeland, Fronteer Solutions)
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This could be seen as a Sortina-ratio with a zero target return. In the second part of the
computational of this thesis we also apply the value at risk and conditional value at risk.
These measures were introduced in Chapter 3.

V@R(x, ζ) = min{ζ ∈ R|Ψ(x, ζ) ≤ β}

CV@R(x, β) = E[L(x, pl)|ζ ≤ L(x, pl)]

The value at risk is the loss ζ that will not be exceeded over some investment time-span
with a probability level 1-β. The conditional value at risk is the expected loss, given
that the loss is in excess of ζ. These are then calculated with historical data at a 95%
confidence level. Further, a stocks’ beta generally describe the degree to which securites
co-move with the market[12]. In this work we calculate strategy betas with respect to
the equally weighted market indexes described in 5.1.

β =
σim
σ2
m

(5.3)

where:
σim: Covariance between market and security
σ2
m: Market variance

Moreover, the significance of the returns obtained are examined using a t-statistic. We
perform a one-sided test whereby the statistic is given by

t =
r̄
σ√
n

(5.4)

where n is the number of observations. We thus test whether the sample mean is signifi-
cantly different from zero.

5.3 Algorithmic Portfolio Optimization Framework

In Chapter 3 and Chapter 4 we saw how stochastic portfolio optimization problems could
be formulated linearly with different risk measures. In this section we present the algo-
rithmic system applied in this thesis, which involves monthly stochastic portfolio opti-
mization for a portfolio of factor model investment strategies. The purpose of this model
is to investigate the possibility for a factor investor of dynamically changing the momen-
tum factor model they invest on basis of. First the framework is presented together with
a flow diagram depicting the overall back-testing approach. Next, we describe the partic-
ular methods used for forecasting future returns. The stochastic portfolio optimization
models applied are described to a thorough extent in Chapter 4.

Model Implementation

The system initiates each month by retrieving historic return data to each of the factor
model algorithms available in the investment universe. Based on these returns, we next
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generate a scenario tree representing possible future returns for each of the constituent
algorithms, with associated correlation matrices. This is done with moment-matching
scenario generation10. Thence we solve a stochastic optimization11 problem to decide
this months buying and selling amounts. The particular portfolio optimization models
are presented in Section 4.2. Finally, we rebalance our portfolio according to these weights
and evaluate this months wealth. The algorithm is illustrated in the figure 5.3.

When using this framework with associated portfolio optimization problems for back-
testing, there are several assumptions underpinning the calculations. In addition to the
assumptions made with the factor models, we assume that the investor may allocate
proportions of wealth to each factor. It is academically interesting to find if a strategy
with restrictions on expected risk could yield favorable risk/reward performance out-of-
sample. Realistically, however, it is easier for a practitioner to trade based on signals from
a single factor12. To facilitate switching behavior consistent with such investing, we may
assume no transactions costs related to changing factor and no risk restrictions. From
theory we know that this will yield a model that each month chooses a single constituent
based solely on expected return.

The framework, including portfolio optimization models and the scenario generation algo-
rithm, is implemented using Python and object oriented programming. The optimization
problems are solved using Gurobi, a complete mathematical programming solver with a
Python interface.

5.3.1 Forecasting and Scenario Tree Generation

As limited work has previously been conducted on forecasting returns of factor model
algorithms, different approaches to forecasting for scenario tree generation are performed
in this thesis. Note that, in both cases, the very scenario three generation hinges on the
moment-matching heuristic previously introduced. It is the forecasting approach that
differs. With different approaches we may perform a comparison. The methods are as
follows.

1. Future means, standards deviations, skewness, kurtosis and correlation matrix for
the algorithm assets are computed using historical returns.

2. Future means, standards deviations, skewness, kurtosis for the algorithm assets are
computed from a discrete distribution generated with auto-regression and Monte
Carlo simulation with moment-matching for the error terms. The correlation matrix
is computed using historical return data.

Rolling samples of different sizes are used. While the first approach is rather intuitive13,
the second approach to forecasting is partly our own proposition, and will be explained
to a further extent in the following.

10Algorithm presented in Chapter 4.
11Both one-stage and two-stage models are implemented in this work
12Vegard Egeland, Fronteer
13This method was applied in a one-stage setting for stock investments in the Taiwanese stock market

in Chen and Yang [23].
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Figure 5.3: This figure displays a flow-diagram describing the algorithmic portfolio opti-
mization framework applied with factor model assets

Auto-Regression Simulation with Moment-Matching

A common way in econometrics to model the economy is by means of an auto-regression
(AR) model. With this model we assume that the evolution of a process may be predicted
by some linear combination of its past evolution.

rit+1 = α + β1rit + β2rit−1 + ...+ βpri−c + εit+1

E(ε) = 0

E(εtεt−s) = 0 ∀s 6= 0

(5.5)

An auto-regression model with p lags, AR(p) can be described by 5.5. The error term
εit+1 is assumed to have a zero mean and no correlation across time. The model in this
work is fitted using historic data with linear regression and the method of ordinary least
squares. A discrete distribution of possible future return realizations rit+1 may then be
simulated by randomly generating realizations of the error term εit+1. This method of
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simulation is noted Monte Carlo simulation[89]. A common assumption is that the error
term is normally distributed[3].

εt+1 ∼ N (0, σ)

In which case the simulation of εt+1 can be done by drawing samples from a normal
distribution. In this work we make no such assumption. Instead, we use historical data
to calculate the mean, standard deviation, skewness and kurtosis of the error term. Next,
we use the cubic transformation introduced in Section 4.1 to generate realizations of the
error term with matching moments. This way, no assumption on the particular marginal
distributions of the error terms are made, only that it may be described by four historical
moments. The discrete distribution of next period return for each variable is generated
with 10 000 realizations of the error term εit. It is with the error term distribution and
equation 5.5 that we obtain a discrete distribution for each asset possible future return.
From the resulting forecasted distribution of rit+1 , the first four moments are calculated.
To simulate dependence between the assets, the historical correlation matrix is used in
this method of forecasting also14.

The reason we do not assume the error term to be normally distributed, is that since
the transformation from εit+1 → rit+1 is linear, this would result in a normal distribution
for possible realizations of rit+1

15. If we could assume normality for the returns of our
complex assets, the moment-matching scenario heuristic would be of limited use for this
approach to forecasting. We would simply draw from a multivariate normal distribution
instead. Our method of Monte Carlo forecasting is thus consistent with the moment-
matching scenario generation heuristic by Høyland et al. [53] introduced in Chapter 4.

Scenario Tree Generation

With both the first and second method of forecasting, we obtain four moments for each
asset future distribution, and a correlation matrix describing the linear dependence be-
tween the assets. These are inputted into the momentum matching scenario heuristic
introduced in 4.1 to create the first stage scenarios of a scenario tree. For each first stage
node, the method of forecasting is repeated as to create the second stage. The procedure
for creating a scenario three is also thoroughly presented in 4.1. We generate 75 realiza-
tions in each stage for a total of 5625 possible scenarios in each tree. This generation is
time-consuming. In addition, the purpose of this thesis is to observe behavior of different
momentum factor strategies with an emphasis on recent years. For these reasons, the
portfolio optimization framework is only be implemented in the time-period following
2005.

14Unlike predictability in stock returns, which challenges the efficient market hypothesis, there is some
academic acceptance on the possibility of predicting covariance matrices with historic data[80, 39, 3].

15Since linear transformations preserve normality. See Section 4.1

66



(a) Historical Momentum Returns

(b) Generated Discrete Distribution

Figure 5.4: Moment-matching; from 100 observations of historical returns to discrete
distribution of 1000 scenarios via moment-matching scenario generation. This illustration
is with returns from the individual stock price momentum strategy.
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Chapter 6

Computational Part 1: Factor Model
Returns

This chapter reports results to four momentum strategies, one contrarian strategy and
one low-volatility investment strategy back-tested on US and Norwegian equity samples
from the time period between January 2000 to December 2015. The purpose is to find
which momentum strategies that yield the highest performance and to assess whether
some formulations are superior in different periods of time. The contrarian and low-
volatility strategies are, similar to the momentum strategy, based on past price history
and included in this work for completeness and to assess whether such strategies could
offer additional value to the momentum investor.

Section 6.1 gives an overview over initial results relevant for comparison with existing
momentum literature. In Section 6.2 and Section 6.3 we examine more thoroughly results
to long-only investment models. Section 6.2 evaluates the effect of different holding and
formation periods and Section 6.3 examines performance of selected factor strategies over
different subperiods of time. Since a factor investor may be interested in finding whether
the underlying anomaly driving stock returns persists, it is of special interest whether the
factor strategies have performed well in recent years. In the next chapter, several of the
factor models presented will constitute an investment universe available for algorithmic
portfolio optimization.

6.1 Factor Model Returns Across Two Markets

This section presents results to factor models across the Norwegian and US equity markets
that are comparable to those commonly found in the academic momentum literature.

Table 6.1 reports average monthly returns of winner, loser and zero-cost investment strate-
gies in the time period from 03.01.2000 to 31.12.2015. Standard deviations of the zero-
costs1 are also displayed. Panel A documents results in Norway. Panel B displays results

1The zero-cost (winner - loser) strategy is commonly noted as the ’momentum’ strategy in the liter-
ature.
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from US data. The momentum strategies are implemented with a 6-month holding period
and a 6-month formation period, consistent with most of the literature. The contrarian
is implemented with a 2-week holding period and 2-week formation period with biweekly
rebalancing. The winner portfolios represent the momentum strategies without short-
sales2.

From table 6.1 we observe that the individual stock price momentum, the volatility-scaled
momentum and cross-sectional momentum strategies are all found to be profitable and the
returns to the zero-cost investment strategies are statistically significant, in the Norwegian
market. The average monthly returns to these strategies are found in the range from
1.67% for the cross-sectional strategy to 1.96% for the individual stock price momentum
strategy. The zero-cost 52weekhigh is negative, which is interesting to note because
both the winner-portfolios and loser portfolios are profitable. This means that long-
only investing based both on the 52-week low and the 52-week high could be profitable
strategies. The size of the momentum returns are somewhat higher than what have
been found in the Norwegian market in previous studies. Rouwenhorst [87] and Chui
et al. [28] both documented average monthly returns of around 1%. This could mean
that momentum investing has gotten more profitable in recent years, since these studies
report from the time-period up until 2003. This is somewhat surprising since financial
theory dictates that anomalies should erode once they get exposed.

The difference between the zero-cost and the long-only for the individual stock price
momentum is found to be significantly lower than in the work performed by Israel and
Moskowitz [57], who considered long-only investing in the US market. They found the
long-side to account for around 50% of the momentum profits. In this work, we find that
most of the value added is from the long-side. These findings imply that the performance
of the past worst performing firms are better in the Norwegian market than in US mar-
ket. The average return to the zero-cost is largely driven by the returns to the winner
portfolios. Therefore, focusing our analysis on the winner strategy is not only more re-
alistic since not all stocks are listed for short-sales (’approved securities’). Considering
short-selling related cost, this could also be a more profitable strategy.

We furthermore observe that the long-only contrarian strategy with 2-weeks holding and
2-weeks formation yields the highest average monthly returns altogether. It is somewhat
perplexing that this strategy with the opposite investment logic of the momentum strat-
egy, yields positive returns at the same time. However, this strategy would entail biweekly
rebalancing, which gives us reason to question whether it would have been the most prof-
itable if we were to consider transaction costs. Nonetheless, the contrarian strategy may
not have been the main focus of this thesis, but these results suggest that the contrarian
strategy should be further researched. Moreover, the poor results to the low-volatility
strategy is opposing to what we have seen in recent literature for other markets, but in
line with the familiar axiom that states that high returns are associated with high risk.
We note that a strategy with long positions in the stocks with highest historical volatility,

2While this strategy may not be directly comparable with the momentum strategy commonly found
in the literature, which rely heavily on short-selling the under-performers, the exclusion of short-selling
makes it more realistic when additional short-selling transaction costs is not considered and the data-sets
consist of securities not approved for short-selling.
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Table 6.1: Returns to Factor Strategies in Two Markets

Panel A: Profits in Norway

white Winner Loser Win− Lose St. Dev
Individual Stock Price Momentum 1.71% -0.25% 1.96% 7.68%
(t-stat) 3.43*** -0.34 3.63*** -
52weekhigh Momentum 1.12% 1.44% -0.32% 5.04%
(t-stat) 3.79*** 3.21*** -0.88 -
Volatility-Scaled Momentum 1.75% -0.20% 1.95% 5.93%
(t-stat) 4.11*** -0.33 4.56*** -
Cross-Sectional Momentum 1.51% -0.15% 1.67% 6.63%
(t-stat) 3.20*** -0.26 3.59*** -
Contrarian 1.86% 0.27% 1.59% 7.62%
(t-stat) 2.98*** 1.13 2.49*** -
Low Volatility 0.77% 1.30% -0.53% 7.98%
(t-stat) 2.92*** 1.86** -0.93 -

Panel B: Profits in US

white Winner Loser Win− Lose St. Dev.
Individual Stock Price Momentum 0.92% 0.93% -0.01% 7.58%
(t-stat) 2.35** 1.46* -0.22 -
52weekhigh Momentum 0.41% 0.93% -0.52% 8.63%
(t-stat) 2.06** 1.46* -0.82 -
Volatility-Scaled Momentum 0.98% 0.66% 0.32% 5.82%
(t-stat) 2.69*** 1.06 0.77 -
Cross-Sectional Momentum 0.89% 0.91% -0.02% 6.34%
(t-stat) 2.16** 1.43* -0.09 -
Contrarian 0.98% 0.57% 0.31% 4.67%
(t-stat) 1.86** 1.32* 1.34* -
Low Volatility 0.71% 0.99% -0.28% 9.31%
(t-stat) 3.28*** 1.32 -0.42 -

Notes: *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.
This table reports results to strategies back-tested on Norwegian and US data in the time period from
03.01.2000 to 31.12.2015. Holding periods are 6-months for the momentum strategies and 2-weeks for the
contrarian. For the individual stock price momentum the formation period is 6-months. The formation
period is by definition 12-months (52 weeks) for the 52weekhigh. The formation period is 2-weeks for
the contrarian. Portfolio sizes are 10%. The zero-cost ’win - lose’ invests each month in the top 10%
performers and short-sells the bottom 10% performers.
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would have yielded returns of 1.3%. These strategies, and their appropriateness as hedg-
ing instruments, are examined more closely over different subperiods of time in Section
6.3.

The factor model strategies were also back-tested on US data. While the zero-costs yield
negative returns for all strategies but the contrarian, we note that a strategy longing
only the winners (or losers) yields statistically significant positive returns and the highest
returns are found for the contrarian strategy in this regard. We also see that the magni-
tude of the US returns are significantly lower than the results in the Norwegian market3.
These findings are in line with the works of Hwang and Rubesam [56] and Lesmond et al.
[73], claiming that the momentum effect has disappeared in US markets. We should note,
however, that our US universe comprises mid cap and large cap stocks. The momentum
effect is suggested by the literature to be stronger in small cap stocks, this may explain
some of these findings.

It is interesting to see whether the strategies ’beat the market’. The average monthly
return to an equally weighted Norwegian market index was 0.74% over the period. The
average monthly return to an equally weighted index of the US stocks was 1.01%. Indeed,
all factor models except the low-volatility strategy seem to be more profitable than the
index in Norway with higher average monthly returns over the period. This is not the
case for the US sample, where none yields above-market returns. The efficient market
hypothesis states that it is impossible to systematically beat the market and that all
available information should fully be reflected in current prices. It is then especially
remarkable that a strategy based on a readily available piece of information, the 52-week
high equity price, is found to generate above market returns. Nearly every financial
newspaper states the 52-week high on a daily basis.

However, we know that there are several explanations appertaining to the sources of
momentum and contrarian profits, and that not all of them violate the efficient market
hypothesis. No transaction costs and other simplifying assumptions made in this work,
as common in the literature, could explain the abnormal returns4 found. Albeit, if the
momentum effect appertains to market inefficiencies5, one explanation for my findings
could indeed be that the larger US market is more efficient than the smaller Norwegian
market. In the next section, we examine more thoroughly the long-only strategies with
respect to different holding and formation periods.

6.2 Momentum Model Specification

A factor investor may specify her momentum factor in a number of other ways. This
section documents results to momentum models with long positions only for a wide
range of holding and formation periods. By examining results for different holding and
formation periods, we may find which specification of the momentum factor models that

3This makes them somewhat less interesting to analyse, which is why the rest of this work emphasises
the Norwegian market.

4See Chapter 5 for an overview over the assumptions made.
5Something which may not be the case, see Section 2.2
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yields the highest performance. Results from US data are included for completeness,
despite that neither of the factor models were found to generate above-market returns on
the US equity sample examined.

Table 6.2 and 6.3 document average monthly returns to four long only momentum factor
strategies for a range of holding and formation periods in the time period from 03.01.2000
to 31.12.2015. Standard deviations, t-statistics and a ratio of mean return returns to
standard deviation are also displayed. Portfolio sizes are 10%. Complete sensitivity plots
for momentum models yielding above market returns are included in figures6 6.1, 6.2 and
6.3.

From table 6.2, we first observe that short holding periods seems to be considerably
more profitable for all momentum models. Figures 6.1, 6.2 and 6.3 confirms this for a
range of formation periods, the surfaces are skewed. The plots also expose that longer
formation periods are associated with higher reward. These findings are in line with the
majority of the momentum literature claiming that momentum profits are more profound
for short holding periods and long formation periods. A familiar tendency may further-
more be observed. Higher profits seems to be associated with higher risk for most of the
specifications. Existing literature places little emphasis on this aspect of the momentum
strategies. An investor may not only care for high returns he may also have a preference
for low risk. Regardless of whether we value reward or reward/risk, the factor model
formulations with short holding period and long formation periods are found to be most
attractive, and the results to these strategies are found statistically significant in the
Norwegian market.

Comparing the performance of the different specifications, we notice that the 12-2 for-
mulation of the individual stock price momentum generates the highest returns, and that
the volatility-scaled strategy performs best in terms of risk/reward. This strategy is less
volatile over the period. Fronteer Solutions7 invests partly based on a 9-3 individual
stock price momentum strategy. It is therefore interesting to observe that the 12-2 seems
to dominate the 9-3 both in terms of average return and in terms of risk/reward for
all momentum formulations tested on the Norwegian market. Nonetheless, it is diffi-
cult to conclude based on average results from a sixteen year long time period. Recent
performance may be more predicative of the future.

Table 6.3 shows that the tendency for short holding periods and long formation periods
to yield higher returns also can be found on the US data sample. The strategies, absent
transaction cost, does not seem to yield abnormal returns for any of the model specifica-
tions back-tested. This could imply a more efficient US market, but note again that our
US sample only comprises large and medium size companies. This may not be optimal for
momentum investing, as the momentum effect previously has been found more profound
in small cap equities.

6Information for the 52weekhigh is present in tables. This strategy has a 12 month formation period
by definition.

7Fronteer Solutions is a financial practitioner that has supported this work, see Chapter 1.
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Figure 6.1: This figure displays the average monthly return as a function of holding and
formation period for the individual stock price momentum strategy on the Norwegian
market.

Figure 6.2: This figure displays the average monthly return as a function of holding and
formation period for the volatility-scaled momentum strategy on the Norwegian market.
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Table 6.2: Norway: Performance of Momentum Factor Models

Panel A: Individual Stock Price Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 1.99% 1.94% 1.85% 1.79% 1.73% 1.62%
(t-stat) 3.87*** 3.79*** 3.66*** 3.57*** 3.50*** 3.30***
σ 7.06% 7.03% 6.96% 6.89% 6.78% 6.75%
R 0.28 0.27 0.27 0.26 0.25 0.24
12 2.29% 2.23% 2.15% 1.95% 1.73% 1.61%
(t-stat) 4.46*** 4.24*** 4.09*** 3.75*** 3.38 *** 3.18***
σ 7.26% 7.20% 7.18% 7.11% 7.00% 6.88%
R 0.32 0.31 0.30 0.27 0.25 0.233

Panel B: 52weekhigh Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
12 1.39% 1.31% 1.26% 1.12% 1.11% 1.11%
(t-stat) 4.20*** 4.52*** 4.28*** 4.09*** 3.92*** 3.85***
σ 4.8% 4.38% 4.19% 4.09% 4.00% 3.99%
R 0.31 0.33 0.31 0.30 0.28 0.28

Panel C: Cross-Sectional Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 1.74% 1.67% 1.62% 1.58% 1.51% 1.45%
(t-stat) 3.70*** 3.68*** 3.61*** 3.56*** 3.49*** 3.44***
σ 6.46% 6.25% 6.16% 6.10% 5.93% 5.77%
R 0.27 0.27 0.26 0.26 0.25 0.25
12 1.91% 1.78% 1.72% 1.61% 1.49% 1.39%
(t-stat) 4.22*** 4.12*** 4.02*** 3.82*** 3.62 *** 3.46***
σ 6.16% 5.91% 5.83% 5.73% 5.62% 5.46%
R 0.31 0.30 0.30 0.28 0.27 0.25

Panel D: Volatility-Scaled Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 1.89% 1.83% 1.81% 1.77% 1.68% 1.57%
(t-stat) 4.15*** 4.05*** 3.94*** 3.88*** 3.75*** 3.55***
σ 0.63% 6.31% 6.32% 7.26% 6.16% 6.10%
R 0.30 0.29 0.29 0.28 0.27 0.26
12 2.24% 2.14% 2.05% 1.82% 1.63% 1.54%
(t-stat) 4.69*** 4.50*** 4.29*** 3.85*** 3.53 *** 3.37***
σ 6.53% 6.49% 6.5% 6.43% 6.31% 6.22%
R 0.34 0.33 0.31 0.28 0.26 0.25

Notes: *** Significant at the 1% level; ** Significant at the 5% level. This table reports average
monthly returns, standard deviations and a ratio of mean returns to standard deviations, for momentum
investment strategies in Norway in the time period from 03.01.2000 to 01.01.2016 for different holding
and formation periods. Portfolio sizes are 10% with monthly rebalancing. Skipping period is 0.
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Table 6.3: US: Performance of Momentum Factor Models

Panel A: Individual Stock Price Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 0.83% 0.83% 0.86% 0.81% 0.80% 0.79%
(t-stat) 2.12** 2.18** 2.21** 2.05** 2.04** 2.02***
σ 5.39% 5.42% 5.45% 5.41% 5.41% 5.39%
R 0.15 0.16 0.16 0.15 0.15 0.15
12 0.86% 0.82% 0.81% 0.77% 0.77% 0.80%
(t-stat) 2.17** 2.05** 1.98** 1.89** 3.92** 1.99**
σ 5.43% 5.47% 5.56% 5.56% 5.52% 5.49%
R 0.16 0.15 0.14 0.14 0.15 0.15

Panel B: 52weekhigh Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
12 0.63% 0.65% 0.63% 0.61% 0.62% 0.68%
(t-stat) 2.21** 2.29** 2.18** 2.06** 2.08** 2.27**
σ 3.88% 3.86% 3.97% 4.04% 4.09% 4.08%
R 0.16 0.17 0.16 0.15 0.15 0.16

Panel C: Cross-Sectional Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 0.81% 0.81% 0.81% 0.76% 0.70% 0.71%
(t-stat) 2.05** 2.09** 2.08** 1.93** 1.84** 1.84**
σ 5.41% 5.31% 5.34% 5.35% 5.28% 5.26%
R 0.15 0.15 0.15 0.14 0.13 0.13
12 0.75% 0.71% 0.67% 0.61% 0.59% 0.64%
(t-stat) 1.89** 1.81** 1.69** 1.54 1.52 1.60
σ 5.34% 5.36% 5.41% 5.36% 5.33% 5.32%
R 0.14 0.13 0.12 0.11 0.11 0.12

Panel D: Volatility-Scaled Momentum

Formation(K) Holding(J) 2 3 4 6 8 10
9 0.79% 0.84% 0.83% 0.82% 0.80% 0.71%
(t-stat) 2.14** 2.26** 2.22** 2.13** 2.16** 2.23**
σ 5.05% 5.09% 5.12% 5.24% 5.06% 5.02%
R 0.16 0.16 0.16 0.16 0.16 0.15
12 0.87% 0.85% 0.83% 0.82% 0.76% 0.79%
(t-stat) 2.30** 2.22** 2.15** 2.13** 2.29* 2.38*
σ 5.18% 5.21% 5.27% 5.24% 5.16% 5.13%
R 0.17 0.16 0.16 0.16 0.17 0.17

Notes: *** Significant at the 1% level; ** Significant at the 5% level; *Significant at the 10% level.
This table reports average monthly returns, standard deviations and a ratio of mean returns to standard
deviations, for investment strategies in US in the time period from 03.01.2000 to 01.01.2016 for different
holding and formation periods. Portfolio sizes are 10% with monthly rebalancing. Skipping period is 0.
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Figure 6.3: This figure displays the average monthly return as a function of holding and
formation period for the cross-sectional momentum strategy on the Norwegian market.
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6.3 Subperiod Performance

A central issue for a factor investor is whether the underlying anomaly driving stock
returns persists. If markets are well-developed, one would expect any near-arbitrage
opportunity to erode by the acts of arbitrageurs. Furthermore, it is of interest whether
some strategies are more profitable than others during different periods of time. This
section investigates subperiod performance of momentum models that was found to be
most promising in the last section8. To evaluate if there could be value to dynamically
change factor strategy, the contrarian and low-volatility strategies are also included. Since
the factor strategies yielded modest returns in the US market for a wide range of holding
and formation periods, this section focuses on strategies implemented in the Norwegian
market. It is the factor models examined in this section that will constitute a portfolio
for algorithmic portfolio optimization in Chapter 7.

Table 6.4 documents statistics to different long-only factor models for back-tests per-
formed over different subperiods. Mean monthly returns and risk-reward ratios given
by the mean returns divided by the standard deviations are displayed together with the
strategy beta. The momentum strategies are formed with 12-month formation and 2-
months holding, the contrarian strategy with 2-weeks holding and two-weeks formation
and the low-volatility strategy with 12-months formation and 3-months holding. Portfo-
lio sizes are 10%. Year-by-year average monthly return plots are depicted in figure 6.4.
The results to an equally weighted Norwegian market index are included for comparison.

From table 6.4 and figure 6.4 it is interesting to observe that all strategies yields posi-
tive, above-market returns over the last three years. We notice that the cross-sectional
strategy has generated positive returns the last seven years and that the volatility-scaled
strategy has outperformed the market index consistently since 2003. Furthermore, the
12-2 individual stock price momentum strategy seems to have performed best in terms
of average returns in recent years, particularly in 2015 with a monthly average of around
4%9. In terms of risk-reward, however, we see that the best performance is yielded by the
12-2 volatility-scaled. This means that the returns to the 12-2 volatility-scaled are less
volatile since the returns to this strategy are lower. A lower volatility could to some de-
gree be expected since the stocks are ranked partly based on the inverse of the volatility,
and historical volatility is known to have some predictive power[3, 70, 80, 39].

We notice that the size of the returns are smaller in recent years compared to the time
period prior to the financial crises. We know that there was a consistent upwards trend
in Norwegian stocks prior to the financial crisis and it has also been suggested by Cooper
et al. [32] that momentum profits tend to be higher in bull periods. The returns to
the market index has declined in much the same way, so this could be an explanation.
Nevertheless, a tendency for falling profits could be a sign that the momentum anomaly
is starting to erode.

As for the strategies that are not based on the momentum anomaly, we first observe

8A comparison is also made with the 9-month formation – 3-month holding momentum formulation
that Fronteer Solution partly bases their investing on. See Chapter 1.

9Note that this is absent trading costs, see Section 5.1 for assumptions and model specifications and
Section 7.3 for a related discussion.
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Figure 6.4: Year-by-year average monthly returns to factor strategies and an equally
weighted Norwegian market index. Portfolio sizes are 10%.
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Table 6.4: Subperiod Performance Norway

Panel A: Individual Stock Prices Momentum

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
12-2 4.84% -0.5% 1.76% 0.33% 2.84% 4.32%
R 0.57 -0.06 0.26 0.06 0.57 0.79
β 1.67 0.95 0.86 0.79 0.84 0.37
9-3 5.04% -0.59% 1.36% -0.20% 2.59% 3.93%
R 0.57 -0.07 0.20 -0.04 0.51 0.67
β 1.77 0.89 0.90 0.87 0.91 0.51

Panel B: 52weekhigh Momentum

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
12-2 4.14% -1.24% 3.46% 0.07% 2.12% 1.95%
R 0.84 -0.25 0.47 0.02 0.67 0.67
β 0.89 0.55 0.15 0.62 0.52 0.26

Panel C: Cross-Sectional Momentum

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
12-2 4.28% -0.03% 2.59% 0.45% 2.04% 2.35%
R 0.55 0.00 0.36 0.12 0.33 0.52
β 1.54 0.55 0.30 0.52 1.09 0.40

Panel D: Volatility-Scaled Momentum

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
12-2 4.76% -0.03% 3.14% 0.49% 2.69% 3.18%
R 0.66 -0.05 0.45 0.10 0.62 0.54
β 1.42 0.74 0.43 0.52 0.66 0.66

Panel E: Contrarian

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
2-2 3.37% -1.46% 4.11% -0.01% 2.94% 2.69%
R 0.70 -0.15 0.47 -0.03 0.36 0.20
β 1.04 0.98 1.19 1.24 1.63 1.94

Panel F: Low-Volatility

Strategy (2005-2006) (2007-2008) (2009-2010) (2011-2012) (2013-2014) (2015)
12-3 2.20% -1.15% 1.58% -0.01% 0.03% 1.39%
R 0.85 -0.22 0.43 -0.03 0.09 0.49
β 0.50 0.60 0.50 0.54 0.66 0.54

This table reports average monthly returns, a ratio of mean returns to standard deviation and the beta
to factor model investment strategies on Norway equity data. Portfolio sizes are 10% . Skipping period
is 0. Strategies are long-only.
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that the returns to the contrarian are rather high in several subperiods. This means
that, if there exist some predictability in the relative performance between a momentum
and a contrarian strategy, a contrarian strategy could definitely offer some value for a
momentum investor. However, with low risk-rewards, we then know that the contrarian
returns are volatile. Further, high strategy betas suggests that there is a significant
degree of systematic risk associated with contrarian investing and could explain some
of the abnormal profits to such a strategy. The low-volatility strategy, on the other
hand, is confirmed to perform poorly over a full range of subperiods10. The strategy
only outperforms the index in one of thirteen years. This performance is, as mentioned,
somewhat opposing to what we have seen in the literature, but in line with the familiar
axiom that states that high returns are associated with high risk. The initial hypothesis
motivating some of the work done in this thesis was, based on existing literature, that
a low-volatility strategy could be utilized as some hedging instrument during times of
financial turmoil. In other words, if an investor held a portfolio of momentum algorithm
assets together with a low-volatility strategy, the low-volatility strategy would be weighted
heavy during times when the market was down. Clearly, the ranking based low-volatility
strategy back-tested in this work, is not suitable for such a purpose. From figure 6.4 we
can see that the poor returns to the low-volatility strategy is, on a average monthly annual
basis, rather correlated with both the market and the other momentum strategies11.

If we compare the subperiod performance of the 9-month formation and 3-month holding
individual stock price momentum strategy to the 12-2 formulation, we find the 12-2
formulation to be superior both in terms of risk and reward. The 12-2 formulation has
yielded higher average monthly return for the past six years, and higher risk-reward
for each of the subperiods displayed in table 6.4. Furthermore, the betas to the 9-
3 formulation is higher indicating that this specification of the individual stock price
momentum strategy holds a higher degree of systematic risk. These findings are in line
with existing literature and suggests that Fronteer Solution could benefit from a different
specification of their momentum factor. As we have seen, if they want a more steady
momentum factor, they could also consider scaling by the historical volatility.

We further observe that, although other formulations of the momentum factor has per-
formed worse than the individual stock price momentum strategy in recent years, the
52weekhigh, volatility-scaled momentum and cross-sectional momentum stratety all per-
formed considerably better than during and after the financial crises in 2007-2008. This
means that the momentum investor indeed could have earned higher profits by changing
momentum strategy in these years12. Albeit, it is then relevant to note from the shapes
of the plot in figure 6.4, an otherwise relatively high degree of co-movement between the
momentum strategies in terms of annual monthly average returns. This could be expected
since these strategies try to exploit the same underlying anomaly and consequently, often
constitute the same stocks. Accordingly, we could also question how suitable such strate-
gies are for algorithmic portfolio optimization alone, since the possibility of diversifying

10Several rebalancing frequencies, holding and formation periods were tested with similar results
11For these reasons, the algorithmic portfolio optimization was performed with portfolios of contrarian

and momentum algorithm assets only.
12If this could have been foreseen. In Chapter 7 we examine whether stochastic programming could

have forecasted and capitalized on such time-variability among the momentum strategies.
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risk is small, and the task of predicting future relative performance is more difficult. In
this regard, including a contrarian strategy in the portfolio of assets might have posi-
tive effects because it doesn’t co-move with the other assets to the same degree. This is
something we get back to in Chapter 7.

By examining the average return plots in figure 6.4 and the statistics in table 6.4, other
important aspects can be noted. The strategies and their betas are time-varying. All
factor strategies, in particular the momentum strategies, seem to co-move with the market
to a significant degree. If market returns are high, momentum profits tends to be high,
and vice versa. As each momentum portfolio is equally weighted with up to 10% of the
stocks in the market, this could to some degree be expected, and it is a common finding
in the literature. Part of the momentum literature claims that such market dependence is
related to momentum strategies bearing a significant amount of systematic risk, and that
this partly is the source of the momentum profits. The betas calculated with respect to
the equally weighted market index suggest that bearing of systematic risk fails to explain
the momentum abnormal returns found in this work. The momentum strategies have
relatively high betas, but not above one. This implies that the strategies bear less non-
diversifyable risk than the market, with higher returns. If market frictions and the other
assumptions underlying these investment models cannot explain the factor abnormal
returns, our findings strongly challenge the hypothesis of an efficient market.

Moreover, the market dependence has an important implication for a factor investor. If
the momentum strategy, regardless of the formulation, returns negative or modest returns
during times in which the market is down, one should consider other investment strategies
or holding a ’risk-free’ instrument during these ‘down-periods’. The factor investor could
rely more heavily on other factors instead. To facilitate this kind of investing, one would
have to carefully monitor the market. If an appropriate metric for describing market
movements is chosen, and there exist some predictability in the relationship between
momentum returns and market-movements, this could readily be incorporated in an
automated trading system. Market states and momentum investing in this respect, is an
interesting area for future research.
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Chapter 7

Computational Part 2: Algorithmic
Portfolio Optimization

The previous chapter documented results to several factor model strategies back-tested on
samples from the US and Norwegian equity market. Different formulations of the momen-
tum and contrarian factors were found to generate abnormal returns on the Norwegian
stock market. This chapter concerns the performance of a stochastic portfolio optimiza-
tion framework applied algorithmically on an investment universe consisting of the factor
strategies found successful in the last chapter1. The purpose is to assess the possibility to
dynamically change the factor strategy with which we invest, and thereby try to exploit
time-variability in momentum strategy returns by use of stochastic programming.

In Section 7.1 we examine results to an algorithmic portfolio optimization strategy maxi-
mizing expected returns. Further, in Section 7.2, we take the position of a factor investor
with funds to allocate portion wise between different factor strategies and detail results to
such a dynamic allocation strategy for different preferences on risk-level. Finally, Section
7.3 provides some comments on the results regarding validity and underlying assumptions.

7.1 Maximizing Expected Return

From theory, we know that if we apply a mean-risk model with no transaction costs and
no restriction on expected risk, then this will yield a model that each month chooses a
single constituent based solely on expected return. This section presents results to such
a return maximizing model applied algorithmically on an investment universe of factor
model strategies. Maximizing expected return facilitates a switching behavior easily
implementable for a practitioner who relies on ’buy’, ’hold’ or ’sell’ signals from single
factors2.

Table 7.2 reports descriptive statistics of the resulting time series of returns for the

1While this does introduce some bias with respect to the obtained results, we are interested in any
additional gains from a stochastic programming approach.

2This is the case for Fronteer solutions, see the introduction in Chapter 1
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(a) Investment strategies - algorithm assets

(b) Algorithmic portfolio optimization strategies with algorithm assets

Figure 7.1: Cumulative returns; a comparison of different portfolio optimization strategies
together with the algorithm assets.
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Table 7.1: Investment Strategies - Algorithm Assets

Asset µ σ R cV@R MNAD

Individual Stock Price 1.94% 7.04% 0.27 -15.7% 2.62%
Volatility-Scaled 2.12% 6.30% 0.34 -12.8% 2.26%

Contrarian 1.97% 8.84% 0.22 -18.9% 3.32%
52weekhigh 1.65% 5.23% 0.32 -10.3% 1.78%

Cross-Sectional 1.79% 6.13% 0.29 -11.4% 2.20%
Buy-and-Hold 1.95% 5.89% 0.33 -12.8% 2.22%

Table 7.2: Portfolio Optimization - Maximizing Expected Return

Momentum & Contrarian Portfolio

Model µ σ R cV@R

AR(1) 2.00% 7.44% 0.27 -15.4%
AR(2) 1.83% 7.39% 0.25 -16.5%
12mth 1.47% 8.23% 0.18 -19.3%
24mth 1.51% 7.91% 0.19% -17.7%

Momentum Only Portfolio

Model µ σ R cV@R

AR(1) 1.82% 6.63% 0.27 -14.6%
AR(2) 1.76% 6.72% 0.26 -13.9%
12mth 1.84% 6.92% 0.27 -14.9%
24mth 1.96% 6.89% 0.28 -14.6%

Table 7.3: Momentum & Contrarian - Two-Asset Strategy

Model - AR(1) µ σ R cV aR

Individual Stock Price & Contrarian 2.41% 8.49% 0.28 -17.1%
Volatility-Scaled & Contrarian 2.29% 7.36% 0.31 -14.3%
Cross-Sectional & Contrarian 2.08% 7.39% 0.28 -14.1%

52weekhigh & Contrarian 1.93% 7.18% 0.27 -13.76%

Tables 7.1 to 7.3 displays descriptive statistics for out-of-sample tests with both the constituent strategies,
and the portfolio optimization performed algorithmically with investment strategies as complex assets.

portfolio optimization scheme applied with different forecasting methods in the time
period from January 2005 to December 2015. Auto-regression forecasting with one and
two lags is reported together with results from forecasting with historical returns based on
a rolling sample of one and two years. Results are displayed for a portfolio of momentum
strategies only, where the strategies are constructed with 2-months holding and 12-months
formation. Furthermore, results for a portfolio of assets that contains both momentum
strategies and a contrarian strategy are documented. The cumulative returns to the
individual strategies are plotted in figure 7.1 and statistics are provided in table 7.1.

Based on a finding that the inclusion of a contrarian strategy tended to increased portfolio
return3, we tested a two-asset strategy where the optimization algorithm chooses each
month between one contrarian and one single momentum algorithm. Descriptive statistics
to such strategies are reported in table 7.3. The cumulative returns to a wide variety

3Compared to a portfolio of only momentum strategies, see Section 7.2.
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of strategies are depicted in figure 7.1. In these plots the forecasting is done with auto-
regression with one lag and Monte Carlo simulation with moment-matching for the error
terms4.

From figure 7.1 and table 7.1, we first observe that the highest performance of the con-
stituent algorithms was yielded by the volatility-scaled momentum strategy over the time
period examined. The risk-rewards of this strategy are superior. The cumulative return
plot confirms the tendency of co-movement between the assets, something that will affect
the ability to diversify risk. The algorithms yield poor performance during the financial
crisis in 2007-2008, a region in which the assets co-move to an especially high degree.
This is in accordance with the familiar financial axiom stating that the only thing that
rises in a falling market is the correlation, implying that the correlations between the
past best performers were high during the financial crisis.

From table 7.2 we observe that algorithmic portfolio optimization with momentum strate-
gies only did not yield superior results with any of the forecasting methodologies tested.
This could to a certain degree be expected since the correlations between the assets are
high. The strategies are trying to exploit the same underlying anomaly and consequently,
often hold the same stocks. This makes it even more difficult to predict relative future
performance based on historic data as the assets perform fairly equally in the same peri-
ods of time. If the portfolio consisted of assets that performed consistently different over
longer periods of time, one could expect the algorithm to be able to choose more wisely
since it forecasts based on recent returns. This is not the case with strategies trying to
exploit the same underlying anomaly. The momentum investor would be better off with
a buy-and-hold of the constituents or, better yet, holding the volatility-scaled strategy
alone.

From table 7.2, we also observe that algorithmic optimization with momentum and con-
trarian assets manage to beat a buy-and-hold of the portfolio in terms of mean return,
for optimization with auto-regression forecasting. However, this is only barely and the
algorithm falls short of the volatility-scaled momentum strategy in terms of both risk
and reward. Considering the constituent assets, it is not surprising that the algorithm
performs poorly during the financial crisis. Accordingly, it is reasonable to suggest that
a significant performance increase could have been made, if the portfolio of assets also
constituted a hedging instrument of some sort5, possibly a ’risk-free’ free option. This is
another way of stating what we found in Chapter 6, that a momentum investor might
benefit from periodically changing strategy or holding a ’risk-free’ instrument because
the returns are time-varying and not always positive. Especially not in times when the
market is ’down’6.

In terms of total cumulative and average returns, table 7.3 and figure 7.1 report the best
performance to be yielded by a strategy that switches entirely between a contrarian and
an individual stock price momentum strategy. This is somewhat surprising since these

4See Chapter 5 for a description of this methodology.
5This was initially our intention with the low-volatility strategy, but this strategy was found to offer

very poor performance throughout the entire period.
6Poor performance to momentum strategies in times of financial turmoil can also be found in Cooper

et al. [32] and Hwang and Rubesam [56] in US markets.
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two strategies are not the most profitable in isolation. We observe that the individual
stock price momentum strategy generated an average monthly return of 1.94% and a
cumulative return of 2.7, and that the contrarian generated an average monthly return
of 1.94% and a cumulative return of 2.8. Remarkably, by combining the two strategies
we generate an average monthly return of 2.41% and a total cumulative return of 3.4.
Similar results can also be found for other single momentum strategies when combined
with a contrarian strategy, indicating that the combination of one single momentum
strategy and a contrarian strategy generates some additional value. This could have
practical implications for a momentum investor because it suggests that periodically
investing with a contrarian strategy could generate additional returns, or in the case of
the 52weekhigh, a strategy with higher risk/reward performance. Based on this, it seems
as if the algorithm is better at forecasting future relative performance when there are
only two assets in the mix with a lesser tendency to co-move. Finally, it is relevant to
note that the two-asset strategies performs especially well in recent years, which should
further motivate a current momentum investor to consider this kind of investing.

Widely discussed in financial literature is whether auto-regression based forecasting is
superior to forecasting with historical data alone. In this work, the auto-regression with
one lag gave the best overall results for different parameters with both portfolios. The
difference was especially high for the momentum and contrarian portfolio where the use
of historical returns yielded sluggish performance. The highest returns were also, as men-
tioned, found for the two-asset strategies for auto-regression with one lag. On the other
hand, the highest returns for the momentum portfolio was based on historical forecast-
ing with two years of data, and the difference between one and two lags of regression
was marginal. Based on our findings, it is difficult to argue any forecasting method
tested in this work to be superior. However, since the one lag auto-regression simula-
tion yielded relatively good results for both portfolios across different parameters, the
risk-reward analysis in the next section is based on this forecasting method. If we are to
model dependency between the first and second stage in a scenario tree, mean-reversion
forecasting7 is also preferred.

7.2 Risk-Reward Optimization

At the heart of portfolio optimization is the balancing of risk and reward. If we assume
the position of an investor with the ability to allocate wealth portion-wise between factor
model strategies, it is interesting to see if stochastic portfolio optimization could yield
an overall strategy that performs with respect to both the risk and reward preferences
of the investor. This section reports results to algorithmic portfolio optimization with
constraints on expected portfolio risk. Both the conditional value at risk and the mean
negative absolute deviation introduced in Chapter 3, are considered. The forecasting
methodology applied in this section is the auto-regression based with one lag.

7Auto-regression models are, under certain conditions, mean-reverting.
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Table 7.4: Momentum & Contrarian Portfolio - cV@R Constraints

Two-stage Optimization

cV@R µ σ R cV@R

11% 2.05% 6.93% 0.30 -13.2%
12% 2.14% 7.14% 0.30 -14.2%
14% 2.17% 7.46% 0.29 -14.8%
16% 2.07% 7.70% 0.27 -15.8%

One-stage Optimization

cV@R µ σ R cV@R

11% 1.93% 6.65% 0.29 -14.2%
12% 2.04% 6.67% 0.31 -14.0%
14% 2.08% 6.91% 0.30 -14.6%
16% 1.98% 7.17% 0.28 -15.0%

Table 7.5: Momentum Strategies Only Portfolio - cV@R Constraints

Two-stage Optimization

cV@R µ σ R cV@R

11% 1.95% 6.43% 0.30 -12.6%
12% 1.94% 6.56% 0.30 -13.3%
14% 1.88% 6.76% 0.28 -14.5%
16% 1.82% 6.63% 0.27 -14.6%

One-stage Optimization

cV@R µ σ R cV@R

11% 1.87% 7.32% 0.26 -13.0%
12% 1.92% 7.28% 0.26 -14.5%
14% 1.82% 6.62% 0.27 -13.8%
16% 1.82% 6.67% 0.27 -14.3%

Table 7.6: Momentum & Contrarian Portfolio - MNAD Constraints

Two-stage Optimization

MNAD µ σ R MNAD

2.2% 2.02% 5.88% 0.34 2.16%
2.5% 2.08% 6.31% 0.33 2.26%
3.0% 2.09% 6.62% 0.32 2.47%
3.6% 2.07% 7.17% 0.29 2.70%

One-stage Optimization

MNAD µ σ R MNAD

2.2% 1.99% 5.92% 0.33 2.25%
2.5% 2.09% 6.33% 0.33 2.38%
3.0% 2.16% 6.61% 0.33 2.58%
3.6% 2.13% 7.10% 0.30 2.64%

Table 7.7: Momentum Strategies Only Portfolio - MNAD Constraints

Two-stage Optimization

MNAD µ σ R MNAD

2.2% 1.94% 6.11% 0.32 2.18%
2.5% 1.84% 6.28% 0.29 2.24%
3.0% 1.88% 6.33% 0.30 2.29%
3.6% 1.76% 6.33% 0.28 2.35%

One-stage Optimization

MNAD µ σ R MNAD

2.2% 1.84% 6.36% 0.29 2.30%
2.5% 1.85% 5.94% 0.31 2.20%
3.0% 1.85% 6.15% 0.30 2.26%
3.6% 1.76% 6.26% 0.28 2.29%

Notes: tables 7.4 to 7.7 displays out-of-sample performance of a stochastic portfolio optimization al-
gorithm applied on portfolios consisting of factor investment strategies, as a function of constraint on
expected risk. The conditional value at risk is at a 95% level.
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Table 7.4 to 7.7 document results to an algorithmic portfolio optimization strategy per-
formed on portfolios of factor strategy assets with constraints on expected risk. In table
7.5 and 7.7 the investment universe constitutes momentum strategies only. In table 7.4
and 7.6 the portfolio also include a contrarian investment strategy. In table 7.4 and 7.5
the constrains on expected risk are made with respect to conditional value at risk and
in table 7.6 and 7.7 the constraints on expected risk are made with respect to the mean
negative absolute deviation. One-stage and two-stage optimization results are displayed
in both cases.

From table 7.4 to 7.8, we observe that constraining portfolio risk tends to decrease the
realized risk for portfolios with both risk measures. The realized risk is, however, not
always within the prescribed limit. This could to some degree be expected since the prob-
lem is stochastic and we are allocating wealth based on forecasts. With the mean negative
absolute deviation we are able to construct a strategy that yields a better realized rela-
tionship between reward and MNAD than any one asset alone, but only in one case. With
a MNAD constraint of 2.2% for the portfolio of assets containing both momentum and a
contrarian asset, the optimization strategy beats the superior volatility-scaled momentum
strategy. For any practical purposes, of course, holding the volatility-scaled momentum
alone would be more reasonable. Nevertheless, by constraining MNAD to 2.2% we create
a strategy with lower realized risk than the volatility-scaled, with high performance in
comparison to the other low risk strategies in the asset universe. Furthermore, several of
the MNAD constrained strategies outperform both the buy-and-hold benchmark and the
equally weighted market index.

With the conditional value at risk, on the other hand, we are unable to outperform the
volatility-scaled in terms of risk/reward in any case, and furthermore unable to generate
a strategy with lower realized cV@R. The reader must appreciate that in this stochastic
optimization framework, we try to model and constrain tail-risk each month based on
historical data that may be without extreme occurrences. However sophisticated the
statistical means of scenario generation, to forecast extreme occurrences is difficult exactly
because they may not have been present in the past8. Without the generation of statistical
distributions with tail properties representative of the future, it is difficult to capture and
constrain expected tail-risk. Nevertheless, with constraints on cV@R, we are able to
constraint the conditional value at risk to a certain extent, and generate a strategy that
outperforms other constituent assets than the volatility-scaled strategy, and outperforms
the buy-and-hold benchmark both in terms of mean return and mean-cV@R.

Interestingly, constraining the mean negative absolute deviations also significantly con-
strains the portfolio variance. Mean negative absolute deviation attempts to constrain
downside deviations from the mean. We know from theory, however, that there is a strict
relationship between the mean absolute deviation and mean negative absolute deviation.
It is easy to derive that MNAD = 0.5*MAD9. In other words, by constraining the mean
negative absolute deviation, we are in fact also constraining upside deviations from the
mean. Hence, with both the MNAD and the portfolio variance constraining dispersion

8This is why the use of scenario generation by means of statistical methods is so important. See
Chapter 4 for a discussion on the topic.

9This equivalence holds only when the deviations are measured against the mean[97].
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about the mean, it is not very surprising that the constraints on mean absolute nega-
tive deviations also constrain the portfolio variance to a significant degree. Notice that
the same does not hold for constraining the portfolio cV@R, a risk metric that captures
expected tail-risk and not dispersion about the mean.

A somewhat counter-intuitive relationship between risk and reward can be observed for
both portfolios. Contrary to the familiar financial axiom that states that high returns are
associated with high risk, this does not seem to be the case for realized risk and return.
Constraining risk increases portfolio return in several cases. To understand this, we must
consider both the constituent assets and the optimization algorithm. The volatility-scaled
momentum strategy is a low-risk, high-reward asset compared to the other algorithms.
Constraints on risk makes the algorithm weight more heavily this asset. This is probably
because it offers superior risk-reward performance. When the optimization is done with
less constraint on portfolio risk, the algorithm favours all the high reward assets. The
other high-reward algorithms have higher dispersion about the mean and will periodically
yield higher expected return than the volatility-scaled strategy, but at the cost of higher
risk. Also, we must understand that because we cannot fully forecast the future, there will
be a difference between expectations and realization of returns. The optimization problem
is stochastic, which may also explain some of these findings. The algorithm seems better
at forecasting and constraining risk than optimizing with respect to expected portfolio
return.

From theory, we know that absent transaction costs, the only way for a two-stage op-
timization approach to outperform a one-stage approach, is if there is dependency in
the tree. In other words, if there are no transaction costs and statistical independence
between the return distribution in the first and second stage, then there should be no
advantage to a two-stage approach. In a mean-risk space, the theoretical efficient frontier
for the one-stage approach should be to the right and below the efficient frontier of a
two-stage approach. Of course, given the inherent stochasticity, this relationship is not
guaranteed to hold for the actual realized efficient frontier. In this work, we attempt to
model a mean-reverting dependency in our scenario trees. Closely examining the tables
in 7.4 to 7.7, we may observe a slight tendency for the two-stage optimization to be better
than the one stage in terms of realized risk-reward10. Hence, for the factor investor there
is some incentive to consider a multistage approach in this setting if she constraints the
portfolio expected risk. However, the performance increase with two-stage optimization
is marginal and not consistent across the whole range of parameters tested. The algo-
rithmic framework seems somewhat better at constraining dispersion about the mean
than expected tail-risk. As mentioned, modelling and capturing tail-risk is particularly
difficult.

Moreover, while providing a useful means by which to generate discrete multivariate dis-
tributions without making strict assumptions on the marginals, the moment-matching
algorithm also has some limitations that could have affected our results. First, there
are no realistic conditions under which the heuristic will create a perfect match between
the target moments and correlations, and the moments and correlations of the generated
discrete distribution. Second, to model dependency between the assets, the heuristic uses

10In the sense of risk we are constraining with respect to
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historical correlation. From theory, we know that correlation is a linear and symmetric
measure of association and is not flexible enough to capture non-linear or asymmetric de-
pendencies11. This gives reason to suggest that we could more successfully have captured
and constrained tail-loss if we had applied another method12.

Including a contrarian strategy in the mix of available assets seems to have two general
effects on portfolio performance. First, the realized risk measured by different risk metrics
gets higher. Second, the realized portfolio reward gets higher. In one sense, one could
expect the portfolio risk to increase as we are adding a relatively risky asset to the
portfolio. On the other hand, if the asset added to the universe is not perfectly [positively]
correlated with the other assets, portfolio theory dictates that there should be some
diversification. We were unable to generate strategies with lower realized risk than the
less risky algorithm asset. We must again consider that there is a difference between
realized and expected characteristics in a stochastic setting. The algorithm is making
choices based on monthly forecasts; it has no deterministic information of the future. We
note, however, that the ratio of risk to reward generally gets higher with the inclusion of
the contrarian asset. Especially with the mean negative absolute deviation constraints.
This could be seen as in line with portfolio theory, because a higher risk-reward implies
a higher reward for the same level of risk or equivalently, lower risk for the same reward.

These results, together with the findings with the two-asset momentum-contrarian strate-
gies in the last section, could imply that there exists some predictability in the relative
performance between the contrarian and the momentum strategy. That they perform well
in different periods, and that this is possible to forecast to some extent. An implication
by this is then that an investor could benefit from periodically changing between con-
trarian and momentum investing, exploiting both return reversal effects and continuation
patterns in equity prices.

7.3 Comments on the Results

Despite showing promising results in the Norwegian market, we realize that the models
have their limitations. The investment strategies are modelled in close accordance with
models from existing literature. These models are designed to mimic investor behavior
and are not real implementable trading systems[19]. In Chapter 5, we introduced several
of the underpinning assumptions. With equally weighted portfolios, we assume that
the investor could buy fractions of stocks. With returns being measured using daily
adjusted close prices, we assume that an investor could rank and trade stocks based on
the closing price, and that transactions are always executable. In reality, there may be
limited supply and demand of stocks and prices vary during the trading day with a spread
between the bid- and asking-price. There is a cost associated with the bid-ask spread,
the lack of liquidity, and the impact that a trade may have on the price when it raises the
demand. In addition, the models assume that the investor always has capacity to invest,

11Financial instruments are typically more dependent on each other when markets are falling.
12Copulas, for instance, are great tools to capture asymmetric tail-dependencies[3]. Nonetheless, the

moment-matching heuristic was assessed to be more than sufficient for this experimental work.
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which might involve borrowing of funds even for long-position stocks, and we know that
borrowing is associated with additional costs.

Furthermore, transaction costs were not considered13. On the one hand, monthly re-
balancing typically makes transaction costs less significant14 and this work centered on
the relative performance of different factor strategies. On the other, there is reason to
suggest that transactions costs, together with the other underlying assumptions, would
have altered the size of the reported returns. Our findings expose monthly average re-
turns up to 2.4%. With monthly compounding this work suggests yearly returns of over
30% to selected, simple investment strategies based on past price history only. If the un-
derlying assumptions and bearing of high systematic risk do not explain the momentum
and contrarian abnormal returns, this work suggests near-arbitrage opportunities in the
Norwegian stock market that strongly challenge the hypothesis of an efficient market.

The optimization framework applied is subject to the same underlying assumptions as
those of the constituent factor models. Except that, the framework would demand even
higher capacity and liquidity15 since we would change weights on entire portfolios of
equities.

Lastly, in finance, model risk can be seen as risk of losses generated by the usage of
financial models. A particular type of model risk is associated with the engineering and
implementation of the models[97]. In performing back-tests and creating a stochastic
optimization framework, it is important to note that programming errors could be made
and that the data-sets used may be erroneous. This could also lead to misleading and
wrongful results. We note also that Chapter 6 exposed that back-testing models can be
sensitive to model specifications. This is important to note for a practitioner, as she is
likely to be especially interested in generating profits in the future. Not in the past.

13In Section 2.1, we saw that some academics claim transaction costs to greatly affect the momentum
premium, while others disagree. Nevertheless, most studies are conducted with the assumption of no
trading costs.

14Vegard Egeland Fronteer Solutions
15These are important aspects also in relation to scalability of our models.
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Chapter 8

Concluding Remarks

The following two sections will present the conclusion of this thesis and propose recom-
mendations for future research.

8.1 Conclusion

The first objective of this thesis has been to evaluate the relative performance of different
momentum investment strategies on the Norwegian and US equity markets. We evalu-
ated the performance of four long-only momentum strategies and compared to those of a
contrarian and a low-volatility investment strategy. Out-of-sample tests were conducted
on US and Norwegian equity samples from the time period between January 2000 to
December 2015. From this, we found the momentum and contrarian strategies to yield
statistically significant abnormal returns on the Norwegian stock market only. If fac-
tor returns appertain to market inefficiencies, a widely discussed topic among financial
academics1, these findings imply the US market to be more efficient than the smaller
Norwegian market.

The highest performance in terms of average monthly returns over the sample period
was yielded by the individual stock price momentum strategy proposed by Jegadeesh
and Titman [59], which has also been the most profitable strategy in recent years. The
best risk-reward performance was found for a volatility-scaled momentum strategy. In
line with existing literature, we found momentum profits to be more profound for short
holding periods and long formation periods. Further, the returns to the strategies were
found time-varying and not always positive, suggesting that a momentum investor could
benefit from periodically changing strategy or investing in a risk-free instrument.

The second objective of this work has been to add to the theoretical momentum literature
by modelling a situation in which the momentum investor can dynamically change in-
vestment strategy. We built a stochastic portfolio optimization framework with moment-
matching scenario generation, and applied it out-of-sample on portfolios of momentum

1See Section 2.2 for different explanations appertaining to the sources of momentum profits.
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and contrarian strategies in the Norwegian stock market. Algorithmic portfolio optimiza-
tion failed to yield superior performance with a portfolio of momentum algorithm assets
only, which we believe to be due to high correlations between constituent strategies at-
tempting to capitalize on the same anomaly. However, we found a significant performance
increase in adding a contrarian investment strategy to the mix of available assets. By
allowing the investor to allocate wealth portion-wise between these algorithms, we gener-
ated strategies with higher risk-reward performance than a buy-and-hold benchmark of
the portfolio for different preferences on expected risk. With our approach, we managed
to more adequately constrain portfolio mean negative absolute deviation than expected
tail-loss, and a two-stage optimization approach was found marginally beneficial in this
setting when portfolio expected risk was constrained.

Finally, we found superior return performance by forcing the investor to each month
choose between a contrarian and a single momentum strategy based on expected return.
In particular, we found a contrarian strategy in combination with an individual stock
price momentum strategy to yield the highest cumulative and average return among the
strategies tested. These findings from stochastic programming suggest that an investor
could benefit from periodically changing between contrarian and momentum investing,
exploiting both return reversal effects and continuation patterns in equity prices.

8.2 Future Work

The recommendations for future research are categorized into three different fields of
interest.

Investable Momentum Models

Throughout this thesis, we have emphasized several assumptions underlying the models
applied both in this work as well as in existing literature2. Limited investability, as
implied by the many underlying model assumptions, might offer an explanation as to
why academic literature still reports abnormal returns to a strategy first documented
over 20 years ago. If markets are well-developed, one would expect such near-arbitrage
opportunities to erode. Therefore, an implementable and realistic momentum model
should be further explored.

Some work in the direction of an implementable momentum model has occasionally been
documented. This thesis and Israel and Moskowitz [57] consider long-only investing. An
alternative to trading on the adjusted close can be found in Demir et al. [35], where they
use volume-weighted average prices, or in Lesmond et al. [73], where they ad bid-ask
spreads as additional transaction costs. Korajczyk and Sadka [69] furthermore modelled
extensive transactions costs in their back-tests. An interesting next step would be to
document the results to a momentum trading system that trades in worldwide markets

2See Chapter 5 and discussion in Section 7.3, in particular.
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in real time. Alternatively, one could construct an actual trading system and simulate a
market with conditions as close as possible to reality.

Market States and Factor Investing

Several financial researchers claim that momentum abnormal returns are due to bearing
of high systematic risk. A consequence of having a high beta is that the strategy will
yield large losses when markets are down. Historically, this has shown to be true[4],
and it was also found to be the case for the strategies tested in this work. The market
dependence has an important implication for a factor investor. If the momentum strategy
returns negative or modest returns during times in which the market is down, one should
consider other investment strategies or holding a ’risk-free’ instrument during these ‘down-
periods’. The interplay between market states and momentum profits is an interesting
area for future research. If predictability between market movements and momentum
returns can be found, this could both be of great value for a practitioner and add to the
academic debate on the hypothesis of market efficiency.

Stochastic Optimization & Algorithm Portfolios

A particular emphasis is in this work put on momentum strategy formulations. However,
the optimization framework and approach could readily be applied in analysis of other
factor strategies. This would be a natural extension of the work as we saw promising
results to the adding of a contrarian strategy to the portfolio of momentum investment
strategies. This work was limited to strategies based on historic price data only, mainly
because of availability. However, as seen in the literature review provided, several other
documented factor anomalies are associated with company fundamentals such as value,
size and dividend yield. Furthermore, as we found the returns to the strategies to be
time-varying and not always positive, it would be interesting to include also a ’risk-free’
instrument in the portfolio.

Moreover, as the world of trading is becoming increasingly computerized and complex,
portfolio optimization with a portfolio of other trading strategies is not difficult to imag-
ine3, and may also be a very interesting topic for future research in its own right. In any
case, if stochastic programming is to be applied to a portfolio of investment algorithms, it
is of high importance that further research is done on the distributions and predictability
of model returns. As emphasized throughout this text, favorable results to stochastic
optimization hinges on proper forecasting of future distributions.

3Even for private investors, the idea of an algorithm portfolio is not far-fetched. A startup company
called Huddlestock[1], for instance, evolves their business around the idea of letting private investors
choose between different algorithms in which to invest.
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