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Problem description

Mixed-integer nonlinear programming problems occur naturally in several appli-
cations, such as in the energy industry. The problem size often explodes when
uncertainty for different input parameters are considered, making the problems in-
tractable. However, the problems often exhibit an underlying structure suitable for
decomposition. An extension of the generalized Benders decomposition method for
non-convex mixed-integer nonlinear programming problems, called the non-convex
generalized Benders decomposition method, is presented and its potential in terms
of parallelization is explored through an implementation in a distributed computing
environment.
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Abstract

This thesis presents a parallel algorithm for non-convex large-scale stochastic op-
timization problems, specifically scenario-based two-stage stochastic mixed-integer
nonlinear programming problems. The method is called the Non-convex Generalized
Benders Decomposition method, which is presented together with the Generalized
Benders Decomposition method of which it is an extension. A parallel version of
the algorithm is presented and a distributed implementation is developed and pre-
sented. We test the method on a case study based on a stochastic unit commitment
problem based on the Brazilian electrical system.

There are two main goals of this thesis: (1) to show that the non-convex gener-
alized Benders decomposition method is parallelizable and that it scales well in a
distributed computing environment and (2) to solve the stochastic unit commitment
problem formulated as a non-convex two-stage mixed integer nonlinear programming
problem. Three sets of results are presented: one for a reduced convex version of the
case study to test scalability, another for the full convex version of the case study
and the last set for the non-convex version of the case study. The results suggests
that the method has potential in terms of parallelization, but that it is essential to
keep the parallelizable portion of the algorithm large.
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Sammendrag

Vi presenterer en parallell algoritme for ikke-konvekse, storskala, stokastiske op-
timeringsproblemer formulert som scenario-baserte to-stegs stokastiske ikke-lineære
blandede heltallprogrammeringproblemer. Metoden som benyttes er den ikke-konvekse
generaliserte Benders dekomponeringsmetode som presenteres sammen med den gen-
eraliserte Benders dekomponeringsmetoden som den utvider. En parallel versjon av
metoden presenteres og en distribuert implementasjon utvikles. Implementasjonen
testes p̊a et case study basert p̊a et stokastisk unit commitment-problem som igjen
er basert p̊a det brasilianske kraftsstemet.

Denne oppgaven har to hovedmål: (1) å vise at den ikke-konvekse generaliserte
Benders dekomponeringsmetoden er parallelliserbar og at den skalerer bra i en dis-
tribuert dataklynge og (2) løse det stokastiske unit commitment-problemet formulert
som et ikke-konvekst blandet heltallsprogrammeringsproblem. Tre sett med resul-
tater presenteres: ett for et redusert konvekst problem f̊ar å vise at metoden skalerer,
ett annet for hele det konvekse problemet og det siste for den ikke-konvekse versjonen
av problemet. Resultatene viser at metoden har potensial i forhold til paralleliser-
ing, men at det er essensielt å sørge for at den parallelliserbare delen av problemet
er stor.

VI



Contents

1 Introduction 1
1.1 Relation to existing literature . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theory 9
2.1 Nonlinear Duality Theory . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Optimization under uncertainty . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Different types of recourse . . . . . . . . . . . . . . . . . . . . 14
2.3 Distributed and parallel computing . . . . . . . . . . . . . . . . . . . 14

2.3.1 Message Passing Interface . . . . . . . . . . . . . . . . . . . . 16

3 The non-convex generalized Benders decomposition method 17
3.1 The Generalized Benders Decomposition method . . . . . . . . . . . 17

3.1.1 Generalized Benders Decomposition for Two-Stage Stochastic
Mixed Integer Nonlinear Programs . . . . . . . . . . . . . . . 25

3.2 The Non-convex Generalized Benders Decomposition method . . . . . 29
3.2.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Relationship between the GBD method and the NGBD method . . . 38
3.4 Bundle methods in the GBD and NGBD method . . . . . . . . . . . 38

4 The distributed implementation 41
4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Cut strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 IPOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 GUROBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Solving the non-convex subproblems . . . . . . . . . . . . . . 48

4.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Synchronous/asynchronous subproblem assignment . . . . . . 49

4.4 The distributed implementation . . . . . . . . . . . . . . . . . . . . . 51

VII



4.4.1 Classes and structure . . . . . . . . . . . . . . . . . . . . . . . 51

5 The unit-commitment problem and case study 55
5.1 The unit commitment problem . . . . . . . . . . . . . . . . . . . . . . 55
5.2 The general model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Switching constraints . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Hydropower plants with reservoir . . . . . . . . . . . . . . . . 57
5.2.3 Run-of-river hydropower plants . . . . . . . . . . . . . . . . . 58
5.2.4 Thermal power plants . . . . . . . . . . . . . . . . . . . . . . 59
5.2.5 Artificial power plants . . . . . . . . . . . . . . . . . . . . . . 60
5.2.6 Network and demand constraints . . . . . . . . . . . . . . . . 60
5.2.7 The objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 The specific system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Scenario generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Decomposition and properties of the problem . . . . . . . . . . . . . 69

5.5.1 Constraints and infeasibility . . . . . . . . . . . . . . . . . . . 69
5.5.2 Optimality and feasibility cuts . . . . . . . . . . . . . . . . . . 70

5.6 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.1 Convexity of the relaxed problem . . . . . . . . . . . . . . . . 74
5.6.2 Slater’s condition . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.4 Problem size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7.1 Feasibility cuts and valid inequalities . . . . . . . . . . . . . . 76
5.7.2 Cut strategy in the implementation . . . . . . . . . . . . . . . 76
5.7.3 Bundle methods . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7.4 Software and hardware . . . . . . . . . . . . . . . . . . . . . . 77

6 Results and discussion 79
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Reduced convexified problem . . . . . . . . . . . . . . . . . . 79
6.1.2 Convexified problem . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.3 Non-convex problem . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Concluding remarks 87

Bibliography 89

A Source code 93

VIII



B Parameters and options 95

C Tables 97
C.1 Detailed results for the reduced convex problem . . . . . . . . . . . . 97
C.2 Detailed results for the full convex problem . . . . . . . . . . . . . . . 99

IX



List of Figures

2.1 Illustration of Amdahl’s law for different types of programs where s is
the number of processors (Wikimedia, 2008) . . . . . . . . . . . . . . . . 16

3.1 Illustration of the V set . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Block structure of problem (P) . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Relationship between GBD and NGBD . . . . . . . . . . . . . . . . . . . 38

4.1 Decomposition of problem (P) . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Flow of a synchronous parallelization . . . . . . . . . . . . . . . . . . . . 50
4.3 Flow of an asynchronous parallelization . . . . . . . . . . . . . . . . . . . 50

5.1 Topology of the hydropower systems . . . . . . . . . . . . . . . . . . . . 67
5.2 Electrical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Runtimes for 10,000 scenarios in reduced problem . . . . . . . . . . . . . 80
6.2 Runtimes for 100,000 scenarios in reduced problem . . . . . . . . . . . . 81
6.3 Runtimes for increasing number of scenarios with the same number of

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Runtimes for 100 scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Runtimes for 1000 scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 84

X



List of Tables

4.1 Implementation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Implementation classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Problem size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Computational nodes information . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Problem size, 12 periods . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Optimality gap in non-convex algorithm after 10,000 seconds . . . . . . . 85

C1 Results for the reduced convex problem with one computational node . . 97
C2 Results for the reduced convex problem with 10 computational nodes . . 97
C3 Results for the reduced convex problem with 50 computational nodes . . 98
C4 Results for the reduced convex problem with 100 computational nodes . 98
C5 Results for the reduced convex problem with 200 computational nodes . 98
C6 Results from the full convex problem with 100 scenarios . . . . . . . . . 99
C7 Results from the full convex problem with 1000 scenarios . . . . . . . . . 99

XI





Chapter 1

Introduction

Modelling is an essential part of mathematical programming. A good model must
capture the most important features of the problem to give a realistic description.
On the other hand it must avoid redundancy and features that unnecessarily com-
plicate the model. If a model manages to do this it can be an important tool for
decision-support and for describing and explaining reality. A classic example of a
model that captures the essential features while avoiding unnecessary complexity is
that of predicting the trajectory of a projectile, such as a cannon ball. The only
features considered in the model is gravity, initial velocity, angle and height while
air resistance, irregularities of the ball and other non-essential factors are neglected.
This model provides accurate answers and describes reality well. If the effects of air
resistance and irregularities of the ball were taken into account, the answers would
not become much more accurate, even though the model would become much more
complex. To capture the essential features while avoiding the unimportant ones is
the art of modeling. However, even though the model is an essential part of mathe-
matical programming, so are the solution methods. If a model captures reality well
but is also intractable, it is useless. On the other hand, if a model is easily solved
but too simple, the results will not provide any guidance. This trade-off between
complexity and tractability is at the heart of mathematical programming.

One common simplification made when modeling problems is to assume that the
world is deterministic. Does a newspaper boy know how much demand he will face
each day? The answer is clearly no. There are several ways to take uncertainty into
consideration. One is to make a deterministic model, but to keep that assumption in
mind when interpreting the results. Another is to incorporate the uncertainty into
the model through a framework such as stochastic programming. However, when
uncertainty is taken into account this way the problem size and complexity grows
quickly and it can potentially become intractable for standard solution methods.
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In this thesis we present an algorithm and a decomposition method called the non-
convex Generalized Benders Decomposition (NGBD) method (Li et al., 2012b) and
a parallel, distributed version of it. We also show that it is suitable for two-stage
stochastic nonlinear mixed-integer problems (MINLP) where the nonlinearities can
be either convex or non-convex. The deterministic equivalent program (DEP) of
this kind of problem can be formulated generally as follows:

minimize
x,y1,y2,...,ys

∑
h

wh(cThx+ fh(yh)) (P)

Bhx+ gh(yh) ≤ 0 ∀h ∈ S
Ax ≤ d

ph(yh) ≤ 0 ∀h ∈ S
x ∈ Zn+
yh ≥ 0 ∀h ∈ S

where x are assumed to be integer variables and y ∈ Rm are assumed to be continu-
ous variables. wh are the probabilities for each scenario. The problem is non-convex
if at least one of the functions gh, ph or fh is non-convex. If not, the problem is
convex. The DEP naturally decomposes into a first-stage and several second-stage
problems, one for each scenario considered:

minimize cTx + E[Qh(x)]
subject to Ax ≤ d

x ∈ Zn+

(P-1)

where

Qh(x) = minimize fh(x, y)
subject to Bhx+ gh(yh) ≤ 0

ph(yh) ≤ 0
y ≥ 0

(P-2)

The world is not a linear place and while simpler, linearized models often can be
helpful in some cases they will not be sufficiently realistic in others. The same ap-
plies when modeling non-convexities with convex or piecewise linear approximations,
which might lead to models of unsatisfactory accuracy. This is often the the case in
hydropower production planning (Finardi and Da Silva, 2006). The stochastic unit
commitment problem has been chosen as our case study as it displays several of the
characteristics that makes it a suitable test case for the NGBD method. It is also
an interesting problem in its own right and a highly relevant one.
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In a warming world, renewable and clean energy sources are of enormous importance.
They are already becoming an important part of the electrical systems around the
world, providing many new challenges for the energy industry in terms of planning
(Sagastizábal, 2012). Many renewables function very differently from traditional
energy sources. With the notable exception of reservoir-based hydropower plant,
most renewables are volatile and cannot store energy in the same way that fossil
energy sources and water reservoirs can. A wind farm is a good example of such
a renewable resource. It has very low marginal cost and the opportunity cost is
non-existent because the energy cannot be stored and used at another time so one
would usually try to produce as much as possible whenever possible. The wind
farm is also very volatile and it is very hard to predict the wind and consequently
how much power it will generate. This uncertainty must be taken into account,
making the models used for short-term production planning more complex. Even
so, the uncertainty certainly does not provide any more time for the planning process.
New solution methods for these models are therefore needed, which is why the unit
commitment problem has been chosen as the case study for our implementation.
Mixed-integer problems occur naturally in many other applications as well, especially
problems where either/or decisions must be made such as in investment planning
problems and scheduling problems.

Advances in stochastic programming and integer programming have also translated
to advances in stochastic mixed-integer programming which is an active area of re-
search. The NGBD method is a novel decomposition method, which has shown
promising results so exploring its potential further and to try and take advantage
of its potential for parallelization is a natural increment of the research into the
method and mixed-integer nonlinear programming. Furthermore, the parallel im-
plementation developed for this algorithm could possibly be transformed to be used
in other scenario-based decomposition methods.

Another reason for our approach is that while computing power is still getting
cheaper and faster, it is not happening at the same rate as before and in a dif-
ferent way. As sequential processing power is closing in on its physical limits,
parallelization provides an alternative route towards better performance. But to
take advantage of these resources an algorithm must be parallel. Additionally, the
amount of speed-up achieved by parallelization varies widely between different algo-
rithms. Scenario-based stochastic programs are well-suited for massive parallelism
as they can often be parallelized in terms of scenarios as the different scenarios often
are independent of each other. This means that adding scenarios for more accurate
modeling of uncertainty does not necessarily translate into longer runtimes.
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The main goal of this thesis is to explore the NGBD method and its potential, es-
pecially in terms of its potential as a parallel algorithm for decomposable problems
such as problem (P) and its scalability when the number of scenarios increase. We
develop a distributed implementation of the NGBD method and test it on a stochas-
tic unit commitment problem whose efficient solution is our secondary goal. The
stochastic unit commitment problem is a problem that arises in production planning
in electrical systems where the goal is to find the optimal generation schedule.

We will now review some relevant literature on the unit commitment problem and
optimization in the energy sector and on the NGBD method.

1.1 Relation to existing literature

A similar decomposition method as the one focused on in this thesis is presented in
Li et al. (2012a) and applied on a stochastic pooling problem. The pooling problem
is an optimization problem that arises in different industrial settings such as natural
gas production, water treatment and other industries where some kind of blending
in a network occurs. In the the problem formulation the only non-convexities occur
in the form of bi-linear terms that can be treated differently than general non-convex
functions, so the decomposition method treats a special case of non-convex MINLPs.
The computational study provided shows that there is a considerable computational
advantage of this method over state-of-the-art global optimizers such as BARON
(Sahinidis, 2014).

In Li (2013) strategies for parallelization of the NGBD method is presented, in-
cluding its application on a natural gas network planning problem. The presented
strategies are called naive scenario parallelization, adaptive scenario parallelization,
and adaptive scenario and bounding parallelization. The first strategy solves sub-
problems for different scenarios in parallel. The second uses the information ob-
tained from the already solved subproblems and adapts to the information given.
The bounding parallelization refers to using available resources to update the bounds
whenever there are available resources. This blurs the iterations so that subproblems
corresponding to different iterations can be solved at the same time. The paralleliza-
tion in the article is mainly concerned with utilizing multiple cores on multi-core
processors. The author suggests testing the NGBD method in a distributed com-
puting environment as future research.

Pagès-Bernaus et al. (2015) presents a parallel distributed implementation of a
Branch and Fix Coordination algorithm for large-scale multi-stage stochastic mixed-
integer problems where all the integer variables are binary. They consider the
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deterministic equivalent program of a multi-stage stochastic program, which will
exhibit a block structure, but with block structure that is connected through non-
anticipativity constraints. It is a branch-and-bound algorithm where the coordina-
tion part of the algorithm refers to ensuring that non-anticipativity is maintained
while providing feasible solutions for the unconnected variables. The parallelization
occurs in the different sub-problems that correspond to a sub-tree in the scenario
tree describing the problem. The decomposition and the parallel nature of the algo-
rithm allows for otherwise intractable problems to be solved in a reasonable amount
of time as their computational experience shows. Different branching strategies are
also tested, such as best, breadth and depth first.

Frank et al. (2012) presents a survey of different solution strategies for the optimal
power flow problem, which is a nonlinear optimization problem concerned with the
optimal electric power generation, transmission and distribution in power networks
subject to different system constraints and control limits. The problem is very sim-
ilar to the unit commitment problem, but focuses more on the power flow in the
network. It is generally regarded as harder due to the nature of electrical trans-
mission networks and the properties of a realistic model. The solution strategies
discussed consist of several exact methods such as various interior point methods
and decomposition methods such as the generalized Benders decomposition method.
Heuristic methods are also discussed at length.

Saravanan et al. (2013) gives an overview of different approaches to the unit com-
mitment problem and a brief background of the problem. The challenging aspects of
the problem when it is made more realistic is discussed. The different market envi-
ronments the unit commitment problem occurs in, mainly regulated or deregulated
environments, and how they affect the problem is discussed. The authors divide
the solution approaches into conventional, non-conventional and hybrid methods.
Conventional methods cover different decomposition methods, relaxation methods
and mathematical programming approaches. Non-conventional methods range from
methods inspired by AI such as genetic algorithms and neural networks to expert
systems. Hybrid methods try to borrow the best of both worlds and several of the
discussed methods are successful in that regard. The NGBD method presented in
this paper is a purely conventional method based on exact methods, but could pos-
sibly be improved with heuristics tailored to the unit commitment problem of the
case study.

Finardi and Da Silva (2006) presents a unit commitment problem on a hydro-thermal
electrical system similar to the one we present in our case study. Their solution
approach combines Lagrangian decomposition, sequential quadratic programming

5



and bundle methods. The challenges faced in the hydro unit commitment prob-
lem where time stages are connected through water usage and the complexities in
modeling hydro-generation units are discussed. The production functions for hy-
dro power units are high order non-convex polynomials, which we also use in our
case study. They discuss the problems with simplified versions of these functions
and their consequences on the applicability of results obtained from models with
simplified production functions. In Takigawa et al. (2012) a similar and improved
method is applied to a hydro-thermal scheduling problem with network constraints
meaning that the transportation of power between generating source and demand
is considered.

Sagastizábal (2012) gives an overview of the challenges faced by the energy industry
when renewable energy sources and market liberalisation introduces more uncer-
tainty into electrical systems and how this affects optimization problems that arise
in these systems. As mentioned in the introduction, this is one of the reasons the
unit commitment is an interesting case study for the NGBD method which is aimed
at large-scale decomposable problems. Sagastizábal (2012) presents several decom-
position methods for market equilibrium, planning and scheduling problems. Among
them is a Benders-like decomposition method along time stages for both two-stage
and multi-stage stochastic problems. Bundle methods and their application to en-
ergy optimization problem is also discussed. Bundle methods will be presented later
in chapter 3.

Tahanan et al. (2015) also gives an overview of different approaches to the unit com-
mitment problem for large-scale versions of it. They discuss several of the conditions
surrounding the use of the unit commitment problem such as it needing to be solved
in a short amount of time and well ahead of when the schedule will be followed due
to rules and regulations in several power markets. They present different approaches
to cope with uncertainty introduced by renewable energy sources, mainly chance-
constrained programming, robust optimization and the scenario-based stochastic
programming approach that we consider in this work.

1.2 Outline of the thesis

The rest of the thesis is structured as follows. Chapter 2 gives an overview of relevant
theory and a review of some important concepts that are referred to throughout
the report. The chapter reviews stochastic two-stage programs and some of their
properties and important results in nonlinear duality that the NGBD method builds
upon. An overview of parallel and distributed computing is also given.
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In chapter 3 the NGBD method is presented together with the generalized Benders
method (GBD) which the NGBD method builds upon and extends. Their applica-
tion on two-stage stochastic mixed-integer programs are shown. The chapter also
includes an introduction to bundle methods and their use in Benders decompositions.
Chapter 4 presents the distributed versions of the algorithms and the distributed
architecture of the implementations. Essential software such as the optimization
solvers used are presented.

Chapter 5 presents the unit commitment problem and its characteristics. A spe-
cific case study based on the Brazilian power system and a model of the problem
is formulated. The properties of the specific problem and the data provided are
discussed. Implementation choices are explained and discussed.

The results are presented and discussed in chapter 6 followed concluding remarks in
the final chapter. Our conclusion is presented together with our thoughts and ideas
for further improvement of our work and for further research.

The appendices contain a link to a repository with the source code and details on
the parameters and options used in the different software. Tables containing results
are given in appendix C.
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Chapter 2

Theory

This chapter is divided into three parts. The first section covers important results
from nonlinear duality theory that lays the foundations for the GBD method and
its non-convex extension, the NGBD decomposition method. The second section
reviews the basics of stochastic programming and scenario-based stochastic opti-
mization. The third section gives a brief introduction to distributed computing, its
advantages and its limits.

2.1 Nonlinear Duality Theory

This section is mainly based on the paper by Geoffrion (1971) on duality in nonlinear
programming.

Duality is one of the most important concepts in optimization and all methods based
on some kind of bounding, such as Branch-and-Bound methods, use dual reasoning
to establish bounds. The most important theorems and results that are made use
of in this thesis are presented in this section. Consider the following nonlinear
optimization problem:

z = minimize
x∈X

f(x)

subject to gi(x) ≤ 0, ∀i = 1, ...,m
(P)

where both f(x) and gi(x) are assumed to be convex on X. Its dual can be formu-
lated as:

w = maximize
λ≥0

L(λ)

where L(λ, x) = minimize
x∈X

f(x) +
∑
i

λigi(x)
(D)
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(D) is sometimes referred to as the Lagrange dual, but will in this thesis just be
referred to as the dual.

The duality gap of a problem is the difference between the optimal objective values
of the problem and its dual. The weak duality theorem states that the duality gap
is always greater than or equal to zero.

Theorem 2.1.1 (Weak Duality) If x̄ is a feasible point for (P) and λ̄ is a feasible
point for (D), then

f(x̄) ≥ L(λ̄)

In particular,
z∗ ≥ w∗

or equivalently
z∗ − w∗ ≥ 0

Weak duality is easily shown through the following inequalities:

infimum
x∈X

f(x) +
∑
i

λ̄Ti gi(x) ≤ f(x̄) +
∑
i

λ̄Ti gi(x̄) ≤ f(x̄)

where λ̄ is some feasible dual vector and x̄ is some feasible point. It is clear that
the infimal value of the problem above will always be less than or equal to another
feasible point x̄ ∈ X. λ̄ is non-negative since it is a feasible dual vector and x̄ is a
feasible point so g(x̄) ≤ 0. This means that the last inequality holds.

The concept of strong duality entails that the optimal solution of both the primal
(P) and its dual (D) are equal:

f(x∗) = g(x∗)

Unlike in linear programming where strong duality always holds, strong duality
cannot be generally established for convex programs. Strong duality is important
because it provides an alternative way of solving a problem, through its dual, and
also because it provides tight bounds for how far away some solution is to the
optimum. This is much more difficult to do when the duality gap is nonzero. There
are however several conditions that when satisfied are sufficient for strong duality to
hold for a convex program. A necessary and sufficient condition for strong duality
relies on the notion of stability.
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Definition 2.1.1 (Stability) The problem P is said to be stable if v(0) is finite
and there exists a scalar M ¿ 0 such that:

v(0)− v(y)
‖y‖

≤M ∀y 6= 0

where the function v(y) is the perturbation function associated with problem P. The
norm ‖ · ‖ used for y is not important.

Definition 2.1.2 (Perturbation function) A perturbation function v(·) can be
defined on Rm as:

v(y) = infimum
x∈X

{f(x) subject to gi(x) ≤ yi for i = 1, ...,m}

where y = (y1, y2, ..., ym) is an m-dimensional vector.

Intuitively a problem is stable if v(0) is finite and if v(y) doesn’t decrease infinitely
steeply in any perturbation direction. As mentioned above if a problem is stable
strong duality holds and all other sufficient conditions will of course be satisfied.

These conditions are sometimes referred to as constraint qualifications. Other con-
straint qualifications than stability are often easier to work with, even though they
can be less encompassing. One such constraint qualification is Slater’s condition
(Slater, 2014). Given problem (P), Slater’s condition is satisfied if there exists a
Slater point.

Definition 2.1.3 (Slater point) Given a convex program such as (P) a Slater
point is a point x such that:

gi(x̄) < 0 for all convex constraints
gi(x̄) = 0 for all linear constraints

In other words, a Slater point is a feasible point which is not on the edge of the
feasible region. Slater’s condition is a sufficient condition for strong duality to hold
and states that if there exists a Slater point, then there is no duality gap and strong
duality holds. Informally, this means that the duality gap is zero if a feasible interior
point exists. This is not a very strong condition and it will be satisfied for many
convex optimization problems.
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An alternative condition which rests on the notion of an optimal multiplier vector
λ (also called Lagrange multipliers or dual variables) is also useful.

Definition 2.1.4 (Optimal multiplier vector) An optimal multiplier vector is
any non-negative vector λ such that (x, λ) satisfies the following conditions.

1. x minimizes f(x) +∑m
i=1 λ̄igi(x̄) over X.

2. ∑m
i=1 λ̄igi(x̄) = 0

3. λ ≥ 0

4. g(x) ≤ 0

(2) is the familiar complementary slackness requirement of an optimal solution and
(1) is the dual objective function. x and λ must be feasible. From the definition of
an optimal multiplier vector one can see that it is not necessarily one vector, but
possibly a set of vectors associated with the optimal solution x. The existence of an
optimal multiplier vector requires that a feasible solution x exists.

Theorem 2.1.2 Assume that (P) has an optimal solution. Then an optimal multi-
plier vector exists if and only if the dual (D) has an optimal solution and the optimal
values of the primal (P) and its dual (D) are equal.

The existence of an optimal multiplier vector and the existence of a Slater point are
both sufficient conditions for strong duality to hold in the convex case. If Slater’s
condition is satisfied this also implies the existence of the optimal multiplier vector
by 2.1.2.

The following theorem summarizes this section.

Theorem 2.1.3 (Strong duality) If (P) is stable, then

1. (D) has an optimal solution

2. The optimal values of (P) and (D) are equal

3. Every optimal solution λ∗ of (D) characterizes the set of all optimal solutions
of (P) as the minimizers of f(x)+(λ∗)Tg(x) over X that also satisfy the feasi-
bility condition gi(x) ≤ 0 for all i = 1, ...,m and the complementary slackness
condition (2)
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The proof of the strong duality theorem using the concept of stability can found in
the paper by Geoffrion (1971) that this section builds upon.

2.2 Optimization under uncertainty

There are several different frameworks for optimization under uncertainty, but the
three most well-known are robust optimization, chance-constrained optimization and
stochastic programming. This thesis considers scenario-based two-stage stochastic
programs with recourse which belongs in the stochastic programming framework.
Scenario-based stochastic problems needs data so that it is possible to generate
realistic scenarios. If garbage is put into the model garbage comes out, a concept
also known as GIGO. This section reviews important concepts and terminology that
will be used throughout the thesis.

A scenario-based two-stage stochastic program with recourse can be formulated, as
shown in the introduction, as follows

minimize cTx + E[Qh(x)]
subject to Ax ≤ d

x ∈ Zn+

where

Qh(x) = minimize fh(x, y)
subject to Bhx+ gh(yh) ≤ 0

ph(yh) ≤ 0
y ≥ 0

E[Qh(x)] is the recourse function. The index h refers to the scenario. Scenarios can
be obtained or generated in several ways and is a rich subject in itself, but not inside
the scope of this thesis; it will only be discussed briefly in chapter 5. Every scenario is
assumed to have some probability of occurring, reflected in its weight in the expected
value function. The recourse is the action taken in the second stage where there
no longer is uncertainty and one makes the best action possible given the decisions
taken in the first stage, when uncertainty was present. The deterministic equivalent
program (DEP) can be formulated by combining the problems for each stage into
one together with so-called non-anticipativity constraints that can be either implicit
or explicit. With implicit non-anticipativity constraints the DEP becomes
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minimize
x,y1,y2,...,ys

cTx+
∑
h

whfh(yh) (P)

Bhx+ gh(yh) ≤ 0 ∀h ∈ S
Ax ≤ d

ph(yh) ≤ 0 ∀h ∈ S
x ∈ Zn+
yh ≥ 0 ∀h ∈ S

which is the same problem shown in the introduction and the type of problem that
will be considered in this thesis. In an explicit formulation one would replace the
first stage variables x with a set of variables xh for each scenario and add a set of
constraints that force them to be equal so that one would have a set of constraints
binding together the problem rather than a set of variables.

2.2.1 Different types of recourse

A stochastic problem with recourse can have several different types of recourse with
regards to feasibility. Only two types will be considered here, relatively complete
and complete recourse. One says that a two-stage stochastic program has complete
recourse if every first stage solution has a feasible second stage. It has relatively
complete recourse if every feasible first stage solution leads to a feasible second stage.
Another type of recourse is called fixed recourse and occurs if the recourse doesn’t
change with the scenario, i.e. the effects of the decisions one can take in the second
stage doesn’t change, only the environment. In terms of the (P) this means that
coefficients connected to the yh doesn’t change with the scenario. Bh and terms in
gh(yh) not associated with yh can change.

2.3 Distributed and parallel computing

Parallel computing means doing computations in parallel. The basic principle is
that large problems often can be decomposed into several smaller problems. If these
problems also are independent they can be solved completely in parallel, but often
there is something that connects the smaller problems. This is often the challenging
part of parallel computation as one has to understand the dependencies between
the different parts of a large problem. In optimization this often occurs, which have
lead to the development of several decomposition methods such as Dantzig-Wolfe
decomposition and Benders decomposition where some complicating factors connect
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the problem. If this is not the case one often hears the term embarrassingly parallel,
which refers to problems where there is little to no effort involved in parallelizing
it. One classic example of this is matrix multiplication where every element of the
product matrix can be computed independently of the others.

Amdahl’s law (Amdahl, 1967) gives a theoretical upper bound on the effects of
parallelization for a fixed amount of work. A task T of a fixed amount of work
can be divided into its parallelizable part pT and its sequential part. Then the
parallelizable part can be sped-up by some factor s, e.g. by dividing pT into n parts
and then run each part on a separate processor for a maximum speed-up of pT

n
.

More formally, this becomes:

S(s) = 1
1− p− p

s

(Amdahl’s law)

where p is the part of the program that can be parallelized and s is the speed-up it
achieves, e.g. the number of extra processors if that is the bottleneck. One can see
that:

S(s) ≤ 1
1− p as lim

s→∞

p

s
= 0

So the upper bound of possible speed-up is given by the part of problem that cannot
be parallelized due to sequential dependencies. Imagine a program where 90% can
be parallelized, then one can never achieve more than ten times the speed-up due
to the last 10% that cannot be parallelized, i.e. S(s) < 1

1−0.9 = 10. There is also
an alternative model for parallel called Gustafson’s law (Gustafson, 1988), which
criticizes the assumption of a fixed size of work when available computing resources
increase. However, the assumption of fixed work holds for the subject matter of this
report.

There is no clear boundary between the terms parallel and distributed computing,
but parallel computing can refer to utilizing all the cores of a processor or using
multiple processors. The term distributed computing on the other hand is more often
used when considering multiple processors connected through communication links
and communicating by messages through these links and can as such be considered
a subset of parallel computing. A computing system that isn’t physically located at
the same geographical location would be inherently distributed.
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Figure 2.1: Illustration of Amdahl’s law for different types of programs where s is
the number of processors (Wikimedia, 2008)

2.3.1 Message Passing Interface

The message passing interface is a standardized and portable message passing system
for distributed computing. MPI is the de-facto standard for parallel computing and
is a specification of syntax and semantics of several core functions and routines for
effective message passing, but it is not a specific library or program. OpenMPI is
an open-source implementation of MPI that is used in this project.
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Chapter 3

The non-convex generalized
Benders decomposition method

This chapter presents the method that is the main focus in this thesis: the NGBD
method which is an extension of the generalized Benders decomposition (GBD)
method that can handle non-convexities in mixed-integer nonlinear programming
problems. The first section presents the GBD method and how it applies to two-stage
stochastic MINLPs, while the second section covers the NGBD method. The third
section introduces bundle methods and their potential use in Benders decomposition
methods.

3.1 The Generalized Benders Decomposition
method

This section is mainly based the work by Geoffrion (1962) and presents the GBD
method, which is, as the name suggests, a more general version of Benders decom-
position (Benders, 1962) as it can handle NLPs and MINLPs if some additional
conditions are satisfied. The method itself is more or less the same, but some new
properties and assumptions are given to show that it can converge for nonlinear
programs as well. The GBD method can solve certain types of NLP and MINLP
problems to optimality, as opposed to only MILP and LP problems with the original
Benders decomposition method. The decomposition method exploits the structure
of problems that have a set of complicating variables, variables that when fixed or
removed makes the remaining problem easy to solve. This can be due to rendering
the remaining problem convex, giving it some well-known structure for which effi-
cient solution procedures exist or that it falls apart into several smaller, independent
problems.
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A MINLP problem can be formulated by adding integer variables to (P) from the
previous section:

minimize f(x, y)
subject to G(x, y) ≤ 0

x ∈ X
y ≥ 0

(MINLP)

where X a discrete finite set making x the so-called complicating variables due to
their integrality requirement while y are nice, continuous variables. G(x, y) is the
vector of gi(x, y) functions, now with integer variables in the mix, that makes up m
constraints. Some assumptions on the sets Y and X are necessary.

Assumption 3.1.1 Y is a non-empty convex set and G(x, y) is convex on Y for
every fixed x.

It it is also assumed that the remaining problem for when x is fixed is considerably
easier to solve, which is essential for the GBD method to be useful.

Two of the key ideas behind the GBD method is the concepts of projection and
dualization that are used to make an outer approximation of the convex functions
and the feasible set (Geoffrion, 1970). By projecting the problem MINLP onto X it
can be viewed as a problem in x-space:

minimize v(x) subject to x ∈ X ∩ V (3.1)

where
v(x) := infimum1 f(x, y) subject to G(x, y) ≤ 0, y ∈ Y (3.2)

and
V := {x : G(x, y) ≤ 0 for some x ∈ X} (3.3)

V is the set of values of x for which there exists at least one y that gives a feasible
solution. v(x) is the projected problem for values of x that are feasible in the original
problem (MINLP). The following theorem states the equivalence of (MINLP) and
(3.1) and establishes projection as a route to solving the original problem.

1The infimum of a (partially ordered) set is informally the largest lower bound of the set.
Infimum is similar to minimum, but is more general as the the minimum needs to be part of
the set, while the infimum does not. If the minimum exists the minimum and the infimum are
equivalent.

18



Figure 3.1: Illustration of the V set

Theorem 3.1.1 (Projection) The original problem (MINLP) is infeasible or has
unbounded optimal value if and only if the same is true of the projected problem (3.1).
If (x∗, y∗) is optimal in (MINLP), then x∗ is optimal in (3.1). If x∗ is optimal in
(3.1) and y∗ achieves the infimum in (3.2) with x = x∗, then (x∗, y∗) is optimal in
(MINLP). If ȳ is ε1-optimal in (3.1) and x̄ is ε2-optimal in (3.2) with y = ȳ, then
(x̄, ȳ) is (ε1 + ε2)-optimal in (MINLP).

Since every v(x) gives the optimal value for that value of x, an optimal x∗ must give
(x∗, y∗), which is the optimal solution for the original problem. And by the assump-
tion that the remaining problem for fixed x is considerably easier to solve, v(x) as
defined above is easy to solve. However, neither (3.2) or (3.3) are known explicitly.
This difficulty is dealt with through a cutting-plane procedure that iteratively builds
up a representation of v(x) and V based on the following theorems.

Theorem 3.1.2 (V-representation) Given (MINLP) assume that Y is a non-
empty convex set and that G(x, y) is convex on Y for every fixed x ∈ X. Assume
further that the set Zx ≡ {z ∈ Rm|G(x, y) ≤ z for some y ∈ Y } is closed for each
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fixed x ∈ X. Then a point x̄ ∈ X is also in V if and only if x̄ satisfies the system:

{
infimum

y∈Y
λTG(x, y)

}
≤ 0,∀λ ∈ Λ

where Λ ≡
{
λ ∈ Rm|λ ≥ 0,

m∑
i=1

λi = 1
} (3.4)

If a point x̄ is in V then one can verify directly that (3.4) is satisfied. However, the
inverse establishes a way of approximating V as it can be represented in terms of
the intersection of different regions that all contain it. Assume that x̄ satisfies (3.4);
then the supremum of (3.4) is zero since λ = 0 is allowed. The supremum of (3.4)
can be thought of as the dual of the program:

minimize 0Ty subject to G(x̄, y) (3.5)

which is
maximize

λ≥0
{minimize

y∈Y
0Ty + λG(x̄, y)}

That is, a program where every feasible solution is optimal due to the objective
being zero. It clearly has optimal value zero, which is the same as the optimal
value of its dual with respect to the G(x, y) constraints. Under the assumption that
Zx ≡ {z ∈ Rm|G(x, y) ≤ z for some y ∈ Y } is closed and non-empty, then by 3.1.3
the primal (3.5) is feasible and in fact any problem constrained by G(x̄, y) will be
feasible. This again means that x̄ is in V and that 3.1.2 gives a way of approximating
V .

Theorem 3.1.3 If Zx ≡ {z ∈ Rm|G(x, y) ≤ z for some y ∈ Y } is closed and the
optimal value of the dual is finite, then the primal is feasible.

Theorem 3.1.4 (v-representation) Assume that Y is a non-empty convex set
and that f(x, y) and G(x, y) is convex on Y for each fixed x ∈ X. Assume further
that, for each fixed x̄ ∈ X ∩ V , at least one of the following three conditions hold:

(a) v(x̄) is finite and (MINLP) for x = x̄ possesses an optimal multiplier vector.

(b) v(x̄) is finite, G(x̄, y) and f(x̄, y) are continuous on Y , Y is closed and the
ε-optimal solution set of (MINLP) for x = x̄ is non-empty and bounded for some
ε ≥ 0.
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(c) v(x̄) = −∞

Then, the optimal value of (MINLP) for a fixed x equals the optimal value of its
dual on X ∩ V .

v(x) = supremum2

λ≥0

{
infimum

y∈Y
f(x, y) + λTG(x, y)

}
, ∀x ∈ X ∩ V (3.6)

(3.6) is the Lagrange dual of (MINLP) with respect to the G(x, y) constraints.
Condition (a) will often hold, for example when Slater’s condition holds, which is a
sufficient condition for strong duality. Then an optimal multiplier vector will also
exist as there is no duality gap, as theorem 2.1.2 states. A finite optimal solution
also follows from this. Condition (b) will also very often be justified as it basically
says that there exists a non-empty set of ε-optimal solutions. Condition (c) just says
that the problem is unbounded.

Under the assumptions in 3.1.2 and 3.1.4 that f(x, y) and G(x, y) are convex on Y

and that Y is a convex set, the original problem (MINLP) can be transformed to
an equivalent master problem. This transformation is done through projection and
invoking the dual representations of v(x) and V , resulting in the following master
problem:

minimize
x∈X

{
supremum

λ≥0

{
infimum

y∈Y

{
f(x, y) + λTG(x, y)

}}}
s.t. (3.4)

(3.7)

where the problem has been projected onto the x-space and v(x) has been dual-
ized. 3.1.1 and 3.1.4 establishes this as a route to solving the original problem. An
equivalent formulation and the one that will be used from here on is:

minimize
x∈X

θ (3.8)

subject to θ ≥ infimum
y∈Y

{
f(x, y) + λTG(x, y)

}
, ∀λ ≥ 0 (3.9)

0 ≥ infimum
y∈Y

{
σTG(x, y)

}
, ∀σ ∈ S (3.10)

2The supremum of a (partially ordered) set is informally the least upper bound of the set.
Supremum is similar to maximum, but is more general since the maximum needs to be part of the
set while the supremum does not. If the maximum exists the maximum and the supremum are
equivalent.
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This is a semi-infinite program, which means that there is an infinite number of
constraints and a finite number of variables or vice versa. The program above is an
instance of the first case as it has an infinite number of constraints and a finite num-
ber of variables. Relaxation of the problem is therefore a natural solution strategy
by relaxing all except for a few of the constraints (3.9) and (3.10). Constraints are
then iteratively added to the relaxed master problem until a solution of satisfactory
accuracy has been found. This is sometimes referred to as row generation. A conse-
quence of this is that the solutions found in the master problem are non-decreasing
as it is restricted more and more by optimality and feasibility cuts.

The subproblem responsible for generating feasibility and optimality cuts is the re-
maining problem with x fixed to some x̄:

minimize
y∈Y

f(x̄, y) subject to G(x̄, y) ≤ 0

For simplicity when discussing the GBD method, the functions L∗(x, λ) and L∗(x, σ)
are defined:

L∗(x, λ) ≡ infimum
y∈Y

{
f(x, y) + λTG(x, y)

}
, x ∈ X, λ ≥ 0 (3.11)

L∗(x, σ) ≡ infimum
y∈Y

{
σTG(x, y)

}
, x ∈ X, σ ≥ 0 (3.12)

Note that L∗(x, λ) and L∗(x, σ) are found in the right hand sides in constraints
3.9 and 3.10 in the master problem, which are the optimality and feasibility cuts,
respectively.

For the GBD method to converge the problem must satisfy Property (P). This
property says that for every u ≥ 0, the infimum over Y of f(x, y)+uTG(x, y) can be
found essentially independently of x. This means that the function L∗(·, u) for any
x can be obtained explicitly with little or no more effort than is required to evaluate
it at a single value of x. Similarly, for every λ ∈ Λ, the infimum over Y of λTG(x, y)
can be taken essentially independently of x, so that the function L∗(·, λ) on X can
be obtained explicitly with little or no more effort than is required to evaluate it at
a single value of x. There are several problem classes for which Property (P) holds,
such as problems that are linearly separable in x and y:

f(x, y) = f(x) + f(y)
G(x, y) = G(x) +G(y)
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Note that linear separability is not a necessary condition for Property (P) to hold; it
represents only one case in which it holds. Another case in which L∗(·, y) and L∗(·, y)
can be obtained explicitly is when the globally optimal solution of (MINLP) for a
fixed x, y∗ is also the solution of the minimization problems defined by (3.11) and
(3.12). This is called Property (P’) (Bagajewicz and Manousiouthakis, 1991) and
is satisfied when, among other cases, f(x, y) and G(x, y) are convex and separable
in y.
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The Cutting-Plane Procedure

The cutting-plane procedure can be stated as follows:

Algorithm 1 Generalized Benders Decomposition procedure
1: procedure Generalized Benders Decomposition Procedure
2: Let a point x̄ ∈ X ∩ V be known
3: Solve the subproblem (3.1) and obtain an optimal multiplier vector λ̄ and

the function L∗(x, λ̄)
4: p← 1, q ← 0, λ1 = λ̄, UBD = v(x̄), LBD = −∞
5: Set some error tolerance ε
6: while UBD − LBD ≥ ε do
7: Solve the current relaxed master problem given by:

minimize
x∈X

θ subject to θ ≥ L∗(x, λj), j = 1, ..., p

0 ≥ L∗(x, σj), j = 1, ..., q

8: Let (x̂, θ̂) be an optimal solution and set
9: LBD ← min(LBD, θ̂).

10: Solve the new subproblem given by x̂
11: if v(x̂) is finite then
12: Obtain an optimal multiplier vector λ̄ and the function L∗(x, λ̄),
13: p← p+ 1 and up = ū
14: Update UBD = max(UBD, v(x̂))
15: else
16: Determine an σ̂ ∈ S and the function L∗(x, σ),
17: q ← q + 1 and σq = σ̂

18: (x∗, y∗) corresponding to UBD is the optimal (or ε-optimal) solution to
(MINLP)

The following theorems states that 1 converges finitely.

Theorem 3.1.5 (Finite Convergence) Assume that X is a finite discrete set,
that the assumptions of theorems 3.1.2 and 3.1.4 holds, omitting (b). Then the
generalized Benders decomposition procedure terminates in a finite number of steps.

Theorem 3.1.5 follows as a direct consequence of X being a finite discrete set and
that the GBD procedure prevents an x̄ /∈ V from ever being again being feasible due
to the feasibility cut added for that x̄. For x̄ ∈ V an optimality cut is added and if
the same x̄ would occur again in some future iteration this would imply optimality.

24



3.1.1 Generalized Benders Decomposition for Two-Stage
Stochastic Mixed Integer Nonlinear Programs

There are several examples of problem types where the GBD method is well-suited.
Within stochastic programming the application of the Benders decomposition method
is referred to as the L-shaped method (Van Slyke and Wets, 1969), which is more
or less the same method. GBD is also very useful when the first stage variables
are integer such as in the unit commitment problem mentioned in the introduction.
This will be considered in more detail in chapter 5. These problems can be modeled
as two-stage stochastic MINLP problems, which is the problem class of interest in
this report. A scenario-based two-stage stochastic MINLP can be formulated, as
shown in the introduction, as follows:

minimize cTx + E[Qh(x)]
subject to Ax ≤ d

x ∈ Zn+

(P-1)

where

Qh(x) = minimize fh(x, y)
subject to Bhx+ gh(yh) ≤ 0

ph(yh) ≤ 0
y ≥ 0

(P-2)

X × Y ⊂ Z × R, ξ is a random vector that represents the different scenarios. The
second stage problem (3.19) can often can be quite easy to solve when given an
x ∈ X as this might give it some well-known structure, render it a convex program
or make it otherwise easily decomposable. The structure of a two-stage stochastic
MINLP problem of this kind lends itself naturally to the generalized Benders de-
composition. The DEP of the two-stage problem above can be formulated, as shown
in the introduction, as follows:
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minimize
x,y1,y2,...,ys

∑
h

wh(cTx+ fh(yh)) (P)

Bhx+ gh(yh) ≤ 0 ∀h ∈ S
Ax ≤ d

ph(yh) ≤ 0 ∀h ∈ S
x ∈ Zn+
yh ≥ 0 ∀h ∈ S

When the DEP is written out extensively with implicit non-anticipativity con-
straints, one can see that it exhibits a block structure such as the one shown in
figure 3.2. One can see that the first stage variables connect the problem in the first
set of constraints. Without them the program would fall apart into a problem for the
first stage variables x and problems for each scenario h. This is the structure that
the GBD method exploits as it allows for decomposing the problem into a master
problem that is the first stage with a second term that approximates the expected
value of the recourse function, E[Q(x, ξ)].

Figure 3.2: Block structure of problem (P)

For the two-stage stochastic problem (P) the master problem becomes, with the
optimality cuts and feasibility cuts:
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minimize cTx+ θ

subject to θ ≥ E[fh(x̄i, ȳih) + (λih)T (gh(ȳih) +Bhx)] ∀i
0 ≥ (σih)T (gh(ȳis) +Bhx)] ∀j,∀h ∈ S
x ∈ X ∩ Z

(MP)

where i and j are the numbers of the optimality and feasibility cuts added so far,
respectively. The subproblems are, for each scenario h ∈ S:

minimize fh(x̄, y)
subject to Bhx̄+ gh(yh) ≤ 0 [λis]

ph(yh) ≤ 0
yh ≥ 0

(3.13)

Optimality cuts

Optimality cuts are derived from the solution of the second stage problem (3.19), i.e.
the subproblems. Let ȳih be the optimal solution of the subproblem corresponding
to iteration i and scenario h, and wh the probability of scenario h. λih is the optimal
multiplier vector for the constraints Bhx̄ + gh(y) ≤ 0. An optimality cut is then
defined by:

θ ≥
∑
h∈S

wh(fh(xi, yih) + (λih)T (gh(yih +Bhx)) (3.14)

The inner terms in the summation can be recognized as the optimal solutions of a
Lagrangean relaxation of the subproblems. Another alternative to the optimality
cut above is:

θ ≥ fh(x̄i, ȳis) + (λih)T (gh(ȳhi +Bhx) ∀h ∈ S (3.15)

The two cuts (3.14) and (3.15) refers to two different strategies for adding optimality
cuts, the single-cut and multi-cut strategy, respectively. In the single-cut strategy
one optimality cut is obtained by aggregating all the solutions from the subproblems
while in the multi-cut strategy one optimality cut is added for each subproblem.
The single-cut approach more iterations before bounds converge than the multi-cut
approach. However, with the multi-cut approach the relaxed master problem also
gets considerably larger in each iteration as s cuts are added every iteration instead
of just one. The optimal strategy depends on the problem at hand.
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Feasibility cuts

For problems without complete or relatively complete recourse, feasibility cuts might
be needed if the first stage solution yields an infeasible second stage. The method for
obtaining feasibility cuts is similar to the one in the L-shaped method for stochastic
linear programming. It is obtained by solving the following nonlinear problem, which
is the same as the subproblem except for its objective function:

minimize ||z−k ||+ ||z+
k ||

subject to Bhx̄+ gh(yh)− sk = 0 [σis]
ph(yh)− z−k = 0
yh ≥ 0
z−k ≥ 0
z+
k ≥ 0

(3.16)

where z−k is the slack variable for the kth constraint. The − and + refers to the sign
of the slack variable. For less than or equal-constraints one uses z− and for greater
than or equal-constraints one uses z+. For equalities both would be used since one
wouldn’t know which way a potential feasibility breach would occur. ||zk|| is some
norm that measures the distance to feasibility which is when all the slack variables
are zero.

Let σis be the optimal Lagrangean multiplier vector for the constraints Tsx̄+Wsy ≤
hs. If the solution of its Lagrangean relaxation gives z = 0 for all scenarios then x̄

from the first stage is feasible. This is because any feasible solution of (3.16) will
achieve the optimal objective value of 0. If not, the infeasible solution is excluded
from the feasible space of the master problem. This is done by adding the following
feasibility cut:

0 ≥ (σjh)T (gh(yjs) +Bhx)∀j,∀h ∈ S (3.17)
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3.2 The Non-convex Generalized Benders
Decomposition method

This section presents the NGBD method and is mainly based on the paper by Li
et al. (2012b) which is an extension of the GBD method that deals with MINLPs
where some of the participating functions are non-convex. When strong duality fails
to hold, the convergence property of the original GBD method is affected because
of the non-zero duality gap. Without strong duality the optimal multiplier vectors
used to create the optimality and feasibility cuts cannot be assumed to exist either.
The section is mainly based on the paper cited above.

Consider the same standard form two-stage, stochastic MINLP with formulated as
its deterministic equivalent program:

minimize
x,y1,y2,...,ys

∑
h

wh(cThx+ fh(yh)) (P)

Bhx+ gh(yh) ≤ 0 ∀h ∈ S
Ax ≤ d

ph(yh) ≤ 0 ∀h ∈ S
x ∈ Zn+
yh ≥ 0 ∀h ∈ S

where x are integer variables and the y ∈ Rm are continuous variables. wh are the
probabilities for each scenario. It is assumed that at least one of the functions gh, ph
or fh are non-convex. The same two-stage stochastic problem can also be formulated
as a two-stage problem, the first stage problem and second stage problems for each
scenario. This formulation is repeated here for convenience:

minimize cTx + E[Qh(x)]
subject to Ax ≤ d

x ∈ Zn+

(3.18)

where

Qh(x) = minimize fh(x, y)
subject to Bhx+ gh(yh) ≤ 0

ph(yh) ≤ 0
y ≥ 0

(3.19)
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where x is taken as input in the second stage problem and h represents the scenario.

Several assumptions are needed for the NGBD procedure to be guaranteed to con-
verge, some of which are trivial.

Assumption 3.2.1 The problem is feasible meaning that there exists an integer
solution such that every scenario is feasible.

If the assumption above is not satisfied the problem is infeasible.

By relaxing the non-convex functions in (P) into their convex, differentiable en-
velopes through some convexification procedure such as McCormick relaxation (Mc-
Cormick, 1976). Problem P has been formulated so that it is separable into its
integer and continuous variables. By replacing the non-convex functions in P with
their respective convex relaxations one obtains the lower bounding problem (LBP):

minimize
x,y1,...,ys,q1,...,qs

s∑
h=1

wh
(
cThx+ uf,h(yh, qh)

)
(LBP)

subject to Bhx+ ug,h(yh, qh) ≤ 0 ∀h ∈ S
Ax ≤ d

up,h(yh, qh) ≤ 0 ∀h ∈ S
uq,h(yh, qh) ≤ 0 ∀h ∈ S

where qh denotes new variables that may be needed in the construction of differ-
entiable relaxation. The functions uq,h are also added for the same reason. In the
problem above all the participating functions are of course convex, due to the con-
vexification procedure that has been performed. If all the functions in problem P
are convex from the outset then the problem P and LBP are equivalent and there is
no need to extend the GBD method. The NGBD method then reduces to the GBD
method.

Assumption 3.2.2 The set Dh = {(yh, qh) ∈ Rm×Rmq : up,h(yh, qh) ≤ 0, uq,h(yh, qh)}
is compact for every h ∈ S

Where Dh is the set of (yh, qh) tuples satisfying the constraints up,h ≤ 0 and uq,h ≤ 0

Assumption 3.2.3 Set Dh is nonempty and compact for any h ∈ S

30



For real numbers R a compact set is a closed and bounded set. In a bounded set all
the points are located within a finite distance of each other, i.e. there exists some
number M such that the distance between every pair of points is less than M . The
distance can be measured by any norm, such as the euclidean norm. A set is closed
when it includes its boundary points. The assumption implies that the feasible set
is compact for every x ∈ X so that problem LBP has a finite optimal value or is
infeasible.

Assumption 3.2.4 Problem (LBP) satisfies Slater’s condition for x fixed to those
elements in X for which problem (LBP) is feasible.

Strong duality must hold for problem (LBP) whenever x is fixed to an element x(l)

in X which has feasible solutions in the second stage. This is sufficient for optimal
multiplier vectors to exist and necessary for the dualization manipulation in the
decomposition procedure.

Problem LBP can now be decomposed with the GBD method presented earlier in
this section. The master problem becomes, by projecting the problem onto the
integer variables:

minimize
θ,x

θ (MP)

subject to Ax ≤ d

up,h(yh, qh) ≤ 0 ∀h ∈ S

θ ≥
s∑

h=1

[
infimum
(yh,qh)∈Dh

whuf,h(yh, qh) + λThug,h(xh, qh)
]

+
(∑

h

whc
T
h + λThBh

)
x ∀λh

0 ≥
s∑

h=1

[
infimum
(yh,qh)∈Dh

µThug,h(yh, qh)
]

+
(∑

h

µThBh

)
x ∀µ

yh ≥ 0 ∀h ∈ S
θ ∈ R

where Dh = {(xh, qh) ∈ Rnq×Rnq : up,h(yh, qh) ≤ 0, uq,h(yh, qh) ≤ 0}. Problem (MP)
above is a semi-infinite problem as the number of constraints are infinite because
of the continuous λh and µh variables. The master problem is therefore relaxed like
in the GBD method by only keeping a finite number of constraints. The master
problem also contains optimization problems in the constraints, this is resolved by
using the problems presented below.
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minimize
θ,x

θ (RMPk)

subject to Ax ≤ d

up,h(yh, qh) ≤ 0 ∀h ∈ S

θ ≥ objPBP (x(j)) +
(∑

h

whc
T
h + (λ(j)

h )TBh

)
(x− x(j)) ∀j ∈ T k

0 ≥ objFP (x(i)) +
(∑

h

(µ(i)
h )TBh

)
(x− x(i)) ∀i ∈ Ik

∑
r∈{r:x(t)

r =1,r=1,...,nx}

xr

−
∑

r∈{r:x(t)
r =0,r=1,...,nx}

xr ≤ |{r : x(t)
r = 1}| − 1 ∀t ∈ T k ∪ Ik

yh ≥ 0 ∀h ∈ S

where the indexed sets T k and Ik contains the the iterations when problem (PBPk) is
feasible and infeasible, respectively. This means that for any j in T k, x(i) is a feasible
integer realization and for any i in Ik, x(i) is an infeasible integer realization. In the
first case a optimality cut is added and in the second a feasibility cut is added to
the problem. In the first iteration of the algorithm it is clear that problem (RMPk)
is unbounded. This can be resolved in several ways, but here a feasible integer
realization is assumed to be provided for the first iteration. This means that it is
not solved in the first iteration. The optimization problems in (MP) are replaced by
bounds that together provide a lower bound on the optimal value, as presented in the
previous section on the GBD method. Problems (PBPk) and (FPk

h) are presented
below. objPBP (x(k)) provides the object value for the given integer realization and
objFP (x(k)) = ∑

h objFPh
(x(k)) does the same for the feasibility problems. The integer

cuts in (RMPk) cuts away integer points that have already been visited, forcing the
algorithm to find new points in subsequent iterations.

The subproblems are obtained by restricting problem (P) to a fixed integer realiza-
tion x(l) in the set of feasible first stage solutions:

minimize
y1,y2,...,ys

∑
h

wh
(
cThx

(l) + fh(yh)
)

(PPl)

subject to Bhx
(l) + gh(yh) ≤ 0 ∀h ∈ S

ph(yh) ≤ 0 ∀h ∈ S
yh ≥ 0 ∀h ∈ S
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which again can be naturally decomposed into independent problems for each of the
scenarios as follows:

minimize
yh

cThx
(l) + fh(yh) (PPl

h)

subject to Bhx
(l) + gh(yh) ≤ 0

ph(yh) ≤ 0
yh ≥ 0

The weight of the scenario is not necessary in the problem as it doesn’t affect the
solution.

The same goes for the subproblems of LBP that are created by fixing x to an element
in x(k) in X.

minimize
y1,...,ys,q1,..,qs

s∑
h=1

wh
(
cThx

(k) + uf,h(yh, qh)
)

(PBPk)

subject to Bhx
(k) + ug,h(yh, qh) ≤ 0 ∀h ∈ S

up,h(yh, qh) ≤ 0 ∀h ∈ S
uq,h(yh, qh) ≤ 0 ∀h ∈ S

that also can be decomposed naturally into problems for each scenario h.

minimize
yh,qh

cThx
(l) + uf,h(yh, qh) (PBPk

h)

subject to Bhx
k) + ug,h(yh, qh) ≤ 0

up,h(yh, qh) ≤ 0
uq,h(yh, qh) ≤ 0

The feasibility problems are the same as the ones in the GBD method and are solved
whenever infeasibility occurs in problems (PBPk). The feasibility problem for each
scenario is:
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minimize
y,q,<

||z−k ||+ ||z+
k || (FPk

h)

subject to Bhx
(k) + ug,h(yh, qh)− z−k = 0

up,h(yh, qh)− z−k = 0
uq,h(yh, qh)− z−k = 0
z−k ≥ 0
z+
k ≥ 0

(3.20)

where z−k and z+
k are slack variables for lesser than equal- and greater than or equal-

constraints, respectively, for the m constraints. Both would be used for equality
constraints. The objective of problems (FPk

h) is to minimize infeasibility which
here is represented in terms of slack variables that turn the constraints into equality
constraints. If the objective is zero, it means that the slack variables aren’t necessary
and that the corresponding problem (PBPk

h) is feasible. If however the objective
is non-zero the corresponding problem is infeasible and a feasibility cut must be
added.

Properties of the problems

Since problems PBPk are relaxations of the corresponding problems PPl the optimal
value of the former is always less than or equal to the latter. This leads to the
following relation; if problem PPl is feasible and objPP (y(l) ≤ UBD then:

objPPh
(y(l)) ≤UBDh

where UBDh = UBD −
h−1∑
i=1

objPPi
(y(l))−

s∑
j=h+1

objPBPj
(y(l)) ∀h ∈ S

(3.21)

The above equation shows that if the objective value of the original problem fixed
to a integer realization, objPP (y(l), can potentially be better than the current best
solution found which is given by UBD then objPPh

(y(l), which is the objective value
for a given scenario, must be less than UBDh. This is so since every objPBPh

(y(l))
must be lower than its corresponding objPPh

(y(l)). As a consequence 3.21 provides
a way of cutting away integer points that cannot lead to a better upper bound
without having to finish computing the actual optimal value of problem (PPl) for
that integer point.
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3.2.1 The algorithm

The non-convex GBD method extends the GBD method to tackle non-convex func-
tions participating in the problem at hand. By using the GBD method on a convex
relaxation of the original problem one can generate interesting integer points that
is worth exploring further and cut away integer realizations that can be shown to
never lead to an optimal solution. At the core it is still an enumeration method,
but an intelligent one where unecessary work is avoided as much as possible so that
formerly intractable problems can be solved. The method can be shown to converge
to a ε-optimal solution.

The algorithm is described below. The inner loop is the GBD-like procedure, which
builds the sets containing integer points and infeasible points.

Under the assumption that the set of integer realizations is finite the algorithm
terminates finitely. Theorem 3.1.5 applies for the NGBD method as well since no
integer realization is ever generated twice due feasibility, optimality and integer cuts.

The NGBD algorithm has two termination criteria, so when the algorithm finishes
there are two possible reasons. Because the algorithm above is a while loop the
stopping criteria are the negation of the while condition. Thus the algorithm ter-
minates when UBDPB ≥ UBD − ε and problem (RMPk) is infeasible or when
LBD ≥ UBD − ε. And and or are used in the logical sense so if both criteria are
satisfied at the same time the algorithm terminates as well. The second criterion is
easy to understand because if LBD ≥ UBD − ε a solution of satisfactory quality
has been found. This is easily shown through the following inequality:

UBD = ˆobj∗PP ≥ ˆobjP ≥ LBD ≥ UBD − ε

where ˆobjP denotes the true optimal value of the original problem and ˆobj∗PP the
true optimal value of problem (PPl) for the current best integer realization x = x∗.
The inequality clearly shows that x = x∗ gives a ε-optimal solution.

The first stopping criterion is a bit more convoluted. If problem (RMPk) is infeasible
this means that all feasible integer solutions have already been visited and that
integer cuts have been added to (RMPk) so that it has become infeasible. This
means that any integer realization that leads to a ε-optimal solution must have
been visited already. UBDPB is always equal to the minimum value of the integer
realizations for problem PBPk that have not yet been visited by problem PPl. If
UBDPB ≥ UBD−ε this means that none of these values can lead to a better UBD
because problem PBPk is a relaxation of problem PPl meaning that those integer
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Algorithm 2 Non-convex Generalized Benders Decomposition method
1: Initialize iteration counters: k ← 0, l← 0
2: Initialize index sets: T 0 ← ∅, S0 ← ∅, U0 ← ∅
3: Initialize bounds: LBD ← −∞, UBD ←∞, UBDPB ←∞
4: First feasible integer realization, x(0), is given as input.
5: while (k = 0) or ((UBDPB < UBD − ε or RMP k is feasible) and LBD <
UBD − ε) do

6: if k = 0 or RMP k is feasible and LBD < UBDPB and LBD < UBD − ε
then

7: while LBD < UBDPB and (RMP k) is feasible do
8: k ← k + 1
9: Solve PBP k

h for all scenarios
10: if PBP k

h is feasible for all h then
11: Get optimal multiplier vectors λkh, create an optimality cut and

add it to RMP and get RMP k

12: T k ← T k−1 ∪ {k}
13: if objPBP (xk) < UBDPB then
14: UBDPB ← objPBP (yk), x∗ ← xk, k∗ ← k

15: else if Some PBP k
h is infeasible then

16: Stop solving PBP k
h and all other PBPs currently being solved.

17: Solve FP k
h for all unsolved scenarios

18: Get optimal multiplier vectors µh for all the FP k
h solved.

19: Create feasibility cut and add to problem RMP k

20: Solve RMP k

21: LBD ← objRMPk

22: xk+1 ← x where x is the solution to RMP k

23: if UBDPB < UBD − ε then
24: Solve (PPh(x∗)) to εh-optimality for all scenarios
25: U l ← U l−1 ∪ {k∗}
26: if objPP (x∗) < UBD then
27: UBD ← objPP (y∗)
28: x∗p = x∗, y∗p,h = y∗h for all h
29: if T k \ U l = ∅ then
30: UBDPB =∞
31: else
32: Choose i ∈ T k \ U l such that objPBP (xi) = min

j∈Tk\U l
objPBP (xj)

33: Update UBDPB ← objPBP (xi), x∗ ← xi, k∗ ← i and l← l + 1.
34: Return ε-optimal solution given by (x∗p, y∗p,1, ..., y∗p,|S|) or infeasibility.

realizations at best can lead to the same value which is worse than the current UBD.

As mentioned in the introduction, the method can be viewed as an intelligent enu-
meration method where the inner loop, which is the GBD-like procedure, generates
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interesting integer realizations that should be explored further in the original non-
convex problem while making sure that infeasible points and other uninteresting
points such as integer realization that cannot lead to an optimal solution aren’t
explored unecessarily. This is done by using the three bounds of the algorithm and
relation 3.21 that are presented in this section.
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3.3 Relationship between the GBD method and
the NGBD method

Figure 3.3: Relationship between GBD and NGBD

Figure 3.3 shows the approximate relationship between the GBD and the NGBD
method. The GBD method is contained in the dashed box an corresponds to the
inner loop of the algorithm. The NGBD extension is the part above the problem
(P) box and the outer loop of the algorithm which uses the GBD-like procedure to
generate interesting integer realizations for the non-convex subproblems.

3.4 Bundle methods in the GBD and NGBD
method

Cutting planes-based methods, such as Benders Decomposition, tend to have prob-
lems with instability that can lead to slow convergence (Zaourar and Malick, 2014).
The instability is usually exhibited in two ways: Firstly, the methods tend to make
large steps in the first iterations. Secondly, when they get close to the optimal so-
lution, they can spend a lot of iterations oscillating around it. The second point
can be shown in the commonly seen tailing-off effect: The quality of the solutions
improves less and less per iteration the closer you get to the optimal solution.

Bundle methods are a family of methods that aims to reduce this instability. As
described in Zaourar and Malick (2014), the general idea of these methods is to
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encourage the next iterate to stay close to the best iterate, while also considering
the objective value of the model. The current best iterate is termed the ”stability
center”, denoting that the next iteration is stabilized around it. One thing to note
is that the stability center is only updated when a new solution is a significant
improvement upon the current stability center; the definition of ”significant” differs
between the methods.

Three of the most common bundle methods are the proximal bundle method, the
trust region bundle method, and the level bundle method. While they differ in sev-
eral respects, one important similarity is that they all have parameters that dictate
the balance between staying close to the stability center and optimizing the original
objective. Management of these parameters is very important for performance, and
update strategies are not necessarily straightforward. In theory, these three methods
have been shown to be equivalent; there is always a choice of parameters that yields
identical iterates. However, in terms of implementation and performance they differ
quite widely (de Oliveira and Solodov, 2016).

Given a model v̂k(x) that approximates the problem (P), or , and a stability center
x̂k:

The proximal method finds the next iterate by solving:

min
x∈X

v̂k(x) + 1
2tk
‖x− x̂k‖2 (Proximal bundle method)

The concept of this method is to simply add a term to the objective function that
penalizes distance from the stability center. The parameter tk decides how much
this penalty is weighted.

The trust region method finds the next iterate by solving:

min
x∈X

v̂k(x) s.t. ‖x− x̂k‖2 ≤ Rk (Trust region bundle method)

The trust region method is in a way stricter than the proximal: It restricts the
distance from the stability center, so that the next solution is guaranteed to be
within the given distance. The parameter Rk decides this maximum distance.

The level method finds the next iterate by solving:

min
x∈X
‖x− x̂k‖2 s.t. v̂k(x) ≤ Lk (Level bundle method)
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This method works by finding the solution closest to the stability center, while
restricting the objective value to be better than some boundary. The boundary is
decided by the parameter Lk. The solutions allowed by this restriction are members
of the level set.

These methods work well on their own, but what if they are combined? de Oliveira
and Solodov (2016) proposes a combination of the proximal and level bundle meth-
ods, into what they term a doubly stabilized bundle method. The combined problem
is as follows:

min
x∈X

v̂k(x) + 1
2tk
‖x− x̂k‖2 s.t. v̂k(x) ≤ Lk (Doubly stabilized bundle method)

This method combines the strengths of the proximal and level methods. The pres-
ence of v̂k in the objective functions means that this method can look for good
solutions inside the level set, instead of only on the boundaries of it, as the pure
level method does. Additionally, the level constraint v̂k(x) ≤ Lk provides a dual
variable that is useful for updating the proximal parameter tk. In practice, the
doubly stabilized method ”chooses” between the level and proximal method in each
iteration. If the level constraint is binding, the iteration is a level iteration, and
otherwise it is a proximal iteration.

One important thing to note here with regards to the GBD and NGBD algorithms
is that the objective function can not be used to update the lower bound. Because
of the proximal penalty term, the optimal objective value will not be the same as
the actual objective value of the model. Therefore, the algorithm employs a lower
bounding problem, which is used to update the lower bound. Please note that this
is not the same problem as the lower bounding problem presented in section 3.2.
Given a given a current lower bound vmin

k , it is defined as follows:

min
x∈X

v̂k(x) s.t. v̂k(x) ≥ vmin
k (Lower bounding problem)

The optimal objective value of this problem is the new lower bound. Note the
restriction v̂k(x) ≥ vmin

k , which ensures that the next lower bound is no smaller than
the current lower bound.
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Chapter 4

The distributed implementation

This chapter describes the distributed NGBD method and its implementation. We
present the algorithm first and restate some of the assumptions made earlier. The
implementation makes use of two optimization solvers, GUROBI and IPOPT, which
are presented briefly. Finally, we present and explain the most important aspects of
the implementation and some of the issues that arose during the implementation.

4.1 The algorithm

The distributed version of the NGBD method follows naturally from chapter 3. The
distributed algorithm has a master node that solves the master problem, creates the
necessary cuts at each iteration and that controls the whole information flow. The
subproblems are solved at other computational nodes that receive a first-stage solu-
tion from the master problem, solves the resulting subproblem before returning the
(ε-)optimal value and its associated (ε-)optimal multiplier vector that are assumed
to be provided by the solvers used. This information is used to create the cuts that
are added to the successive relaxed master problems (RMPk).

Figure 4.1 shows the decomposition of the original problem (P) presented in chapter
3. The dashed boxes are the problems that are actually solved by the solvers in the
algorithm.

N refers to the number of computational nodes used. On line 19 the algorithm starts
solving feasibility problems from scenario h̄ which refers to the unsolved scenario
with the lowest index h. This value of h is chosen so that feasibility problems are
solved for all potentially infeasible scenarios.

The master problem receives optimal multiplier vectors from all the subproblems as
well as their dual objective functions, which are used to create optimality cuts:
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Algorithm 3 Master node
1: Initialize iteration counters: k ← 0, l← 1
2: Initialize index sets: T 0 ← ∅, I0 ← ∅, U0 ← ∅
3: Initialize bounds: LBD ← −∞, UBD ←∞, UBDPB ←∞
4: First feasible integer realization x(0) is given.
5: Send x(0) to all the |S| subproblems of type (PBPk

h)
6: Receive optimal objective value for each PBP 0

h

7: Receive optimal multiplier vectors λkh, create optimality cut and add it to
RMP k+1

8: UBDPB ← objPBP (x(k)), x∗ ← x(0), k∗ ← k
9: T 0 ← ∅ ∪ {k}

10: while (UBDPB < UBD − ε or RMP k is feasible) and LBD < UBD − ε do
11: if (RMP k is feasible and LBD < UBDPB and LBD < UBD − ε) then
12: while LBD < UBDPB and (RMP k) is feasible do
13: k ← k + 1
14: Solve RMP k and get integer realization x(k)

15: LBD ← objRMPk

16: Send x(k) to subproblems PBP k
h∀h

17: if PBP k
h is infeasible for some ĥ then

18: Stop solving subproblems of type PBP k
h

19: σkh ← 0 for 1, ..., h̄
20: Send x(k) to FP k

h for h = h̄, ..., |S|
21: Receive optimal multiplier vectors, σkh, from feasibility problems

and create feasibility cut
22: RMP k+1 gets feasibility cut
23: Ik ← Ik−1 ∪ k
24: else if PBP k

h is feasible for all h then
25: Get objective values and optimal multiplier vectors λkh and create

optimality cut
26: RMP k+1 gets optimality cut
27: T k ← T k−1 ∪ {k}
28: if objPBP (x(k)) < UBDPB then
29: UBDPB ← objPBP (yk), x∗ ← xk, k∗ ← k

30: if UBDPB < UBD − ε then
31: Send x∗ to subproblems of type (PPh)
32: while Receiving solutions from subproblems do
33: if (objPPh

(x∗) > UBD −∑i∈SS objPPi
(x∗)−∑j∈SU objPBPj

(x∗) then
34: objPP (x∗)← UBD + ε and stop solving subproblems
35: U l ← U l−1 ∪ {k∗}
36: if objPP (x∗) < UBD then
37: UBD ← objPP (y∗)
38: x∗p = x∗, y∗p,h = y∗h for all h
39: if T k \ U l = ∅ then
40: UBDPB =∞
41: else
42: Choose i ∈ T k \ U l such that objPBP (xi) = min

j∈Tk\U l
objPBP (xj)

43: UBDPB ← objPBP (x(i), x∗ ← x(i), k∗ ← i
44: l← l + 1.
45: Return ε-optimal solution given by (y∗p, x∗p,1, ..., x∗p,s).
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Figure 4.1: Decomposition of problem (P)

θ ≥ wh(f(x̄i, ȳih) + (λih)T (gh(ȳih) +Bhx) ∀h ∈ S

In many scenario generation methods and the one we use, every scenario is assumed
to be equally likely as high probability scenarios are generated more often. This
leads to a simpler form for the optimality cut:

θ ≥ 1
|S|

(f(x̄i, ȳih) + (λih)T (gh(ȳih) +Bhx) ∀h ∈ S

The nodes that solve the different subproblems are much simpler as the flow of the
algorithm is controlled in the master node.
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Algorithm 4 Subproblem node
1: Receive first stage decision x(i) from master problem
2: Fix all x in the subproblem to x(i)

3: Solve
4: if Subproblem is of type PBPh then
5: Send the objective value and optimal multiplier vector λkh to master node
6: else if Subproblem is of type FPh then
7: Send optimal multiplier vector σkh to master node
8: else
9: Send optimal objective value objPPh

(x∗)

When the subproblems receive a first stage decision x̄ all the integer variables in
the problem are fixed so that the remaining problem is easier to solve. Under the
assumption that Slater’s condition is satisfied so that strong duality holds for the
convex subproblems PBPh and FPh, an optimal multiplier vector exists for them,
by theorem 2.1.2. This is not the case for non-convex subproblems PPh, but it is
not necessary since only the objective value is sent.

4.1.1 Cut strategies

In chapter 3 two extreme cut strategies for optimality cuts were presented, one
where one single optimality cut is added for all the scenarios called the single-cut
approach and one strategy where one cut is added for each scenario called the multi-
cut approach. Theoretically the single-cut approach gives a smaller master problem,
but will normally require more iterations to converge. A multi-cut approach makes
the master problem larger, but will usually require less iterations to converge. For
the distributed version the single-cut or an approach close to the single-cut approach
is more suitable because the master problem cannot be parallelized and a bigger
master problem will require more time to solve. However, in practice there will
be many more factors that complicate this issue. This will be discussed further in
chapter 5.

4.1.2 Starting point

In our experience, the initial solution given to the GBD and NGBD algorithms has a
significant impact on solution time. Although there are no clear rules, we have been
more successful with using starting points close to the optimal solution (which is
intuitive). In order to consistently provide such starting points, we employ a deter-
ministic version of the problem, i.e. with only one scenario and no decomposition.
This is solved before the main part of algorithm starts, and its solution is used as a
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starting point. While that solution is rarely the same as the final optimal solution,
it is often sufficiently close to be a good starting point.

4.2 Solvers

For the implementation of the algorithm the open-source software solver IPOPT
(Interior Point OPTimizer) (Wächter, 2009) has been used together with the well-
known solver GUROBI (Gurobi Optimization, 2015).The IPOPT solver was devel-
oped and is maintained by the Computational Infrastructure for Operations Re-
search (COIN-OR) (Lougee-Heimer, 2003). COIN-OR is an open-source initiative
that aims to spur on the development of open-source software in the mathemati-
cal programming and operations research community, and make it easier to reuse
software and replicate results. GUROBI is used to solve the master problem while
IPOPT solves the subproblems, both the non-convex problems (PPl), the convexified
problems (PBPk

h) and the feasibility problems (FPk
h).

4.2.1 IPOPT

IPOPT (Interior Point OPTimizer) is a software package for large-scale nonlinear
optimization. IPOPT implements an interior-point algorithm for continuous, nonlin-
ear, nonconvex, constrained optimization problems and works as a general purpose
nonlinear programming (NLP) solver. The method uses a primal-dual barrier ap-
proach within a line search framework. The primal-dual approach means that both
the primal and its dual program is considered at the same time.

Interior Point methods

Interior point methods (Boyd and Vandenberghe, 2004) are a class of algorithms for
solving both linear and non-linear optimization problems. In the case of a linear
program, the optimal solution is known to lie at an extreme point of the feasible
area, so the well-known Simplex method for example moves along the edges of the
feasible region, which is a convex polyhedron, until the optimal solution is found
at an extreme point. Interior-point methods on the other hand tries to take a
shortcut in that they traverse the interior in search for an optimal extreme point.
In convex optimization the optimal value can often be found in the interior of the
feasible region so methods for linear programs, such as the Simplex method, that are
based on knowing that the optimal solution lies at an extreme point do not work,
but interior-point methods do work for both linear and convex programs. Another
interesting difference between the Simplex and interior point methods is that Simplex
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have exponential complexity in the worst case, meaning that in the worst case,
the time to solve a given linear problem with the Simplex grows exponentially as
the problem size grows, while interior point methods have polynomial complexity
meaning that the running time can be expressed as a polynomial function of the
input size.

Given a convex optimization problem:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, ...,m

Ax = b

(4.1)

where gi(x) are convex and twice differentiable for all i, rank A1 = p and f(x)
is convex. Assume that an optimal x∗ exists so that the problem is feasible. Also
assume that there exists a strictly feasible point, that is a point for which all i
inequalities hold strictly. This means that Slater’s condition is satisfied and that
strong duality holds. The dual of the problem can be formulated as:

maximize
λ≥0,u

{
minimize f(x) +

∑
i

λigi(x) + uT (b− Ax)
}

(4.2)

Due to the assumptions made there exists an optimal x∗ for (4.1) and optimal u∗ and
λ∗ for the dual problem (4.2). Together these optimal vectors satisfy the Karush-
Kuhn-Tucker (KKT) conditions, with which it is assumed the reader is familiar:

Ax∗ = b

gi(x∗) ≤ 0
(4.3)

λ∗ ≥ 0

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +
p∑
j=1

u∗i (bi − Aix∗) = 0
(4.4)

λigi(x∗) = 0 (4.5)

where Ai is the ith row of A. (4.3) denotes primal feasibility, (4.4) ensures dual
feasibility and (4.5) is the complementary slackness condiiton. KKT is another
sufficient condition for strong duality as every combination of (x, λ, u) that satisfies
the KKT conditions will have zero duality gap. The KKT conditions give a system of
equations that gives an alternative way of finding the optimal solution. Interior-point

1The dimension spanned by the rows of A, which is the number of linearly independent rows.
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methods solves (4.1) or the equation set given by the KKT conditions (4.3)-(4.5)
through solving a sequence of equality constrained problems (remember that every
inequality can be made into an equality by adding slack variables), or a sequence
of equation sets given by modified versions of the KKT conditions that are solved
through e.g. Newton’s method.2

IPOPT algorithm

As mentioned above the IPOPT algorithm utilizes a primal-dual barrier approach,
which means that both the primal and its dual program are considered at the same
time.

A barrier method solves a sequence of barrier problems:

minimize f(x) + µ
m∑
i=1

log(−gi(x))

subject to Ax = b

(4.6)

for a decreasing sequence of µ > 0 tconverging towards zero. With the inequalities
in the objective function the remaining system is solvable by Newton’s method for
nonlinear equation systems. The inequalities of (4.1) are added into the barrier
term of the objective function in a way that drives the objective to infinity when
gi(x) nears their bounds. The main idea is to solve (4.6) for some initial value of µ
starting from a given point, to some given accuracy. Then one solves a new (4.6) for
a smaller µ more accurately starting from the the solution of the previous barrier
problem. The solution of the barrier problem converges to the optimal solution of
the original problem (4.1) as µ→ 0.

The IPOPT solver also implements a line-search filter method (Wächter and Biegler,
2006). The line search determines the maximum step size along a search direction,
e.g. the direction of maximum descent given minimization objective for the barrier
problem, while the filter method by provides a way of avoiding cycles by keeping a
list of prohibited trial points, similar to a tabu search heuristic.

4.2.2 GUROBI

GUROBI is the brainchild of Zonghao Gu, Edward Rothberg and Robert Bixby from
whom the name derives. It is known as one of the best-performing commercial solvers
today for mixed-integer problems such as problem our master problem, problem

2Newton’s method refers here to an iterative procedure for numerically solving a set of nonlinear
equations
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(RMPk). Because of the fact that it is a commercial solver the underlying algorithms
are not openly available and will not be described here.

4.2.3 Solving the non-convex subproblems

To solve the non-convex subproblems to optimality a global solver is needed, and
the most appropriate solver is probably the state-of-the-art global solver BARON
(Sahinidis, 2014). However, due to licensing issues and the necessity to run simulta-
neously on up to several hundred computational nodes we have not been able to use
BARON. Another candidate, the open-source solver Couenne (Belotti, 2009) from
the COIN-OR project unfortunately did not perform well enough on our case study.

Because of these issues and time constraints we decided to use IPOPT for the non-
convex subproblems. IPOPT finds reasonable solutions in a short amount of time,
but there is no way to know if those solutions are the optimal ones, since IPOPT is
a local optimizer when used on non-convex problems. Furthermore, this means that
there is no guarantee that the NGBD algorithm will converge. However, since the
optimality gap always can be computed, it is possible to give a worst-case quality
guarantee for any solution: For example, if the gap is 10%, then we can say that
the solution is within 10% of the best solution. Since the duality gap often will be
positive the actual optimal solution to the non-convex problem will often be closer
than the bound given. To alleviate the problems of using a local solver, we employ
a multi-start strategy. This is carried out by solving the same subproblem several
times, each time from a different starting point and then choosing the best solution
found.
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4.3 Parallelization

The fact that all subproblems in each iteration are independent means that they
can be solved without passing any information between them. Because of this, the
algorithm is well-suited for parallelization of the subproblem phase - all subproblems
can in theory be solved at the same time.

The algorithm can be divided into two main phases: The master problem phase and
the subproblem phase. Unlike the subproblem phase, the master problem phase
can not be parallelized by solving a number of different independent problems. The
master problem is a single program that can not be decomposed into independent
problems, so any parallelization would be far less straightforward. The amount of
speed-up gained from parallelizing the algorithm thus depends on the time required
in the master problem and subproblem phases. Intuitively from Amdahl’s Law, the
speed-up would be better if the subproblem phase dominates the workload than vice
versa. Considering that the number of subproblems is proportional to the number of
scenarios, it can be deduced that the speed-up increases as the number of scenarios
increase.

4.3.1 Synchronous/asynchronous subproblem assignment

An important decision to make regarding the parallel implementation is whether to
make the subproblem assignment synchronous or asynchronous. In a synchronous
implementation, assignment of subproblems is organized in rounds. Each round,
all nodes are sent a problem to solve. Once all of them are finished with their
problem, a new round starts and all nodes are sent new problems. This goes on
until all problems have been solved. In an asynchronous implementation, each node
is simply assigned a new problem as soon as it has finished its previous one.

Even though the asynchronous implementation seems easier it can often be more
complicated than the synchronous one, due to the more chaotic nature of the pro-
cess. However, it is generally faster, especially when the problems are different and
unpredictable in terms of solution time. This can be seen by comparing Figure 4.2
with Figure 4.3: In the synchronous case all nodes must wait for the slowest one in
each round, which is potentially very time-wasting. This is not a problem in the
asynchronous case, where no node has to wait for another to finish.

Because the difficulty of each subproblem is unpredictable, a synchronous implemen-
tation is potentially significantly slower than an asynchronous one. Seeing as the
subproblems are completely independent and can be solved in any arbitrary order,
an asynchronous implementation is also not very difficult in this case. Therefore we
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are using the asynchronous version.

Figure 4.2: Flow of a synchronous parallelization

Figure 4.3: Flow of an asynchronous parallelization
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4.4 The distributed implementation

4.4.1 Classes and structure

GBD implementation

The C++ implementation takes an object-oriented programming approach. It con-
sists of seven classes, each representing an entity in the algorithm, as shown in table
4.1.

Table 4.1: Implementation classes

SubProb Represents the subproblem and contains all necessary param-
eters to solve it. Is connected to the Ipopt libraries through
the TNLP interface.

MasterProb Represents the master problem and all necessary parame-
ters to solve it. Contains one instance of LowerBoundProb.
Includes functionality for adding cuts. Is connected to the
Gurobi libraries through a GRBEnv object.

LowerBoundProb Represents the lower bounding problem and all necessary pa-
rameters to solve it. Is connected to the Gurobi libraries
through a GRBEnv object.

DeterministicProb Represents the deterministic problem for the expected sce-
nario. Is connected to the Gurobi libraries through a GRBEnv
object.

SubWorkerClass Represents a worker node responsible for solving subproblems
- contains one instance of SubProb. Receives first-stage solu-
tions from GBDclass and returns the necessary data to make
a new cut.

GBDclass Represents the node responsible for flow control of the GBD
algorithm (the ”master node”). Also responsible for solv-
ing the master problem - contains one instance each of
MasterProb and DeterministicProb. Allocates scenarios to
the SubWorkerClass nodes.

Main Represents the overarching infrastructure. The top-level class,
used for initializing the algorithm and setting up the MPI
infrastructure.

The flow of the implementation is approximately as follows:

1. Main starts up and initializes the MPI environment. On the master node an
instance of GBDclass is initialized. On each of the worker nodes an instance
of SubWorkerClass is initialized.

2. The master node initiates the algorithm. All parameters, theDeterministicProb
instance, the MasterProb instance and the LowerBoundProb instance are
initialized.
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3. The worker nodes starts listening for MPI messages from the master node.
4. The master node sends its solution of the master problem to the worker nodes

and assign each of them a subproblem.
5. The worker nodes initializes an instance of SubProb with the data from the

master node. The problem is solved, and solution data returned to the master
node.

6. The master node collects the subproblem solution data. The data is used to
update the upper bound and to apply a new cut in the master problem.

7. The master node solves the master problem and lower bounding problem, to
get a new solution and update the lower bound.

8. Number 3-7 are repeated until the lower and upper bound of the objective
value converge.

9. When the master node detects convergence, it tells all worker nodes to shut
down, writes the results to file and shuts down itself.

NGBD implementation

The NGBD implementation builds on the GBD implementation, and is thus very
similar. They are described in table 4.2.

The flow of the implementation is naturally also similar to the GBD one, but with
a few more steps and an additional loop in the main flow.

1. Main starts up and initializes the MPI environment. On the master node an
instance of GBDclass is initialized. On each of the worker nodes an instance
of SubWorkerClass is initialized.

2. The master node initiates the algorithm. All parameters, theDeterministicProb
instance, the MasterProb instance and the LowerBoundProb instance are
initialized.

3. The worker nodes starts listening for MPI messages from the master node.
4. The master node sends its solution of the master problem to the worker nodes

and assign each of them a convex subproblem.
5. The worker nodes initializes an instance of SubProb with the data from the

master node. The problem is solved, and solution data returned to the master
node.

6. The master node collects the subproblem solution data. The data is used to
update the upper bound for the bounding problem, and to apply a new cut in
the master problem.

7. The master node solves the master problem and lower bounding problem, to
get a new solution and update the lower bound.
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Table 4.2: Implementation classes

SubProb Represents the subproblem and contains all necessary param-
eters to solve it. Is connected to the Ipopt libraries through
the TNLP interface.

NCSubProb Represents the nonconvex subproblem and contains all neces-
sary parameters to solve it. Is connected to the Ipopt libraries
through the TNLP interface.

MasterProb Represents the master problem and all necessary parame-
ters to solve it. Contains one instance of LowerBoundProb.
Includes functionality for adding cuts. Is connected to the
Gurobi libraries through a GRBEnv object.

LowerBoundProb Represents the lower bounding problem and all necessary pa-
rameters to solve it. Is connected to the Gurobi libraries
through a GRBEnv object.

DeterministicProb Represents the deterministic problem for the expected sce-
nario. Is connected to the Gurobi libraries through a GRBEnv
object.

SubWorkerClass Represents a worker node responsible for solving subproblems
- contains one instance each of SubProb and NCSubProb. It
receives first-stage solutions from GBDclass and returns the
solution data.

NGBDclass Represents the node responsible for flow control of the NGBD
algorithm (the ”master node”). Also responsible for solv-
ing the master problem - contains one instance each of
MasterProb and DeterministicProb. Allocates scenarios to
the SubWorkerClass nodes.

Main Represents the overarching infrastructure. The top-level class,
used for initializing the algorithm and setting up the MPI
infrastructure.

8. Number 3-7 are repeated until the lower and upper bound of the bounding
problem converge.

9. The master node sends the best solution to the worker nodes and assigns each
of them a nonconvex subproblem.

10. The worker nodes initializes an instance of NCSubProb with the data from
the master node. The problem is solved, and solution data returned to the
master node.

11. Number 3-10 are repeated until the lower and upper bound of the bounding
problem converge.

12. When the master node detects convergence, it tells all worker nodes to shut
down, writes the results to file and shuts down itself.
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Chapter 5

The unit-commitment problem
and case study

This chapter presents the unit commitment problem and a stochastic MINLP for-
mulation of the problem. The model is first presented as a general model based on
a fictitious power system based on the Brazilian power system. A specific version
of the model with data is then introduced and its properties discussed, including
implications for the implementation.

5.1 The unit commitment problem

The unit commitment problem (Castillo et al.) is an optimization problem that
arises in short-term planning of electrical power production. The goal is to determine
the optimal schedule in terms of some objective while meeting demand for electrical
power. A schedule decides when a unit in the system should be generating or not.
An example of a unit can be a hydropower turbine, several similar turbines modeled
as one superunit or an entire thermal power plant. The problem naturally lends
itself to a stochastic model as there are several sources of variability that affects
a schedule such as variations in demand and unpredictable energy sources such as
wind power and solar power. It can also be viewed as having two main stages: the
strategic stage where the schedule is made and the operational stage where given
a schedule the goal is to minimize the operational costs. The operational stage is
the recourse stage. The problem can be formulated as a stochastic programming
problem with multiple stages where the strategic decisions that must be made are
the operating schedule for the next operating horizon, usually between 24 and 168
hours. The problem in the operational horizon is then to determine how to produce
the necessary power as cost-effective as possible with the given committed units
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and the realization of random variables. In the problem there are several types of
constraints, both on the strategic and operational level, which will be presented
below.

5.2 The general model

This section presents the general model of a unit commitment problem in a power
system with reservoir-based hydropower plants, run-of-river hydropower plants and
thermal power plants, which will be referred to as a hydro-thermal system. First
some notational choices will be explained.

Some of the constraints are formulated in terms of absolute values for brevity, but
they can be formulated as two linear constraints, as shown below.

|xt − xt−1| ≤M

can be reformulated to

xt − xt−1 ≤M

xt−1 − xt ≤M

where xt is some variable for a time period t and M is a fixed parameter restricting
state changes.

5.2.1 Switching constraints

The following constraints are necessary to connect the state variables utrj, which
model whether a unit is on or off, to the switching variables ũtrj, that are necessary
to incur potential start-up costs on the units. The utrj variables are defined as:

utrj =

1 if unit j in plant r is on at time t
0 otherwise

while the ũtrj are defined as:

ũtrj =

1 if unit j in plant r is switched on at time t
0 otherwise

Constraints (5.1)-(5.3), (5.9)-(5.11) and (5.16)-(5.18) enforces the switching vari-
ables ũ to 1 whenever a unit is switched on and restricts the number of times each
unit can be switched on in each operational horizon.
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5.2.2 Hydropower plants with reservoir

The constraints for the hydropower plants with reservoir concerns the volume of
the reservoir, the maximum number of start-ups of the units in the plants and
their minimum and maximum production capacity. Constraints imposed by rules
and regulations are also common such as maximum discharge to avoid flooding and
minimal discharge to preserve river flow.

Strategic constraints

The strategic constraints (5.1)-(5.3) are the maximum number of start-ups for each
operational period.

ũHtrj − uHtrj = 0 t = 0, r ∈ RH , j ∈ J(r) (5.1)
ũHtrj − uHtrj + uHt−1,rj ≥ 0 t ∈ T \ {0}, r ∈ RH , j ∈ J(r) (5.2)∑
t∈T
ũHtrj ≤ S

H
r ∈ RH , j ∈ J(r) (5.3)

The set RH is the set of hydropower plants with reservoirs, indexed with r. The
set J(r) is the set of units in plant r, indexed with j. T is the set of time periods,
indexed with t.

Operational constraints

gHtrj ≤ HH
rj(qHtrj, sHtr , vHtr ) t ∈ T, r ∈ RH , j ∈ J(r) (5.4)

vtr − V0,r +
∑

j∈J(r)
qHtrj + sHtr = Y H

sr t = 0, r ∈ RH (5.5)

vtr − vt−1,r +
∑

j∈J(r)
qHtrj + sHtr = Y H

sr t ∈ T \ {0}, r ∈ RH (5.6)

uHtrjG
H
rj ≤ gHtrj ≤ uHtrjG

H
rj t ∈ T, r ∈ RH , j ∈ J(r) (5.7)

OH
r ≤

∑
j∈J(r)

qHtrj + sHtr ≤ O
H

r t ∈ T, r ∈ RH (5.8)

HH
rj refers to the production function for unit j in plant r. The function can be

linear, concave or non-concave. (5.4) sets the power generated gHtrj by a unit j as
a function of the discharge through the unit qHtrj, the water spill from the plant sHtr
and the reservoir level vHrt . This non-linear function is usually unique for each plant.
(5.5) and (5.6) are the reservoir balance constraints. They make sure that the inflow
to the plant is equal to the total water discharge, water spill and reservoir fill-up.
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(5.7) forces the power generated to stay within the actual capacities of the units
while (5.8) keeps the river flow at the desired levels.

5.2.3 Run-of-river hydropower plants

Run-of-river hydropower plants do not have reservoirs but instead depend on the
river flow in the same way a wind farm would depend on the wind. However, a run-
of-river hydropower plant might be downstream from a reservoir. This will affect
the inflows to the run-of-river plant and must be taken into account. This is done
through constraint (5.13).

Strategic constraints

The strategic constraints for the run-of-river hydropower plants are the maximum
number of start-ups for the units.

ũFtrj − uFtrj = 0 t = 0, r ∈ RF , j ∈ J(r) (5.9)
ũFtrj − uFtrj + uFt−1,rj ≥ 0 t ∈ T \ {0}, r ∈ RF , j ∈ J(r) (5.10)∑
t∈T
ũFtrj ≤ S

F
r ∈ RF , j ∈ J(r) (5.11)

The set RF is the set of run-of-river hydropower plants. The set U(r, τ) is the set of
upstream hydropower plants for plant r with a travel time of τ . The outflow from
upstream plants must be considered at every downstream power plant so that the
river flow is consistent.

Operational constraints

gFtrj ≤ HF
rj(qFtrj, sFtr) t ∈ T, r ∈ RF , j ∈ J(r)

(5.12)∑
j∈J(r)

qFtrj + sFtr −
∑
τ∈T

∑
r′∈U(r,τ)

(s(t−τ)r′ +
∑

j′∈J(r′)
q(t−τ)r′j′) = Y F

tr t ∈ T, r ∈ RF

(5.13)

uFtrjG
F
rj ≤ gFtrj ≤ uFtrjG

F

rj t ∈ T, r ∈ RF , j ∈ J(r)
(5.14)

OF
r ≤

∑
j∈J(r)

qFtrj + sFtr ≤ O
F
r t ∈ T, r ∈ RF

(5.15)
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HF
rj refers to the production function for unit j in plant r which can be concave or

non-convex. (5.12) describes the power generated gFtrj as a function of discharge qFtrj
through a unit and spill sFtr from its plant. (5.13) forces the discharge and spill for
a run-of-river hydropower plant to equal inflows and discharge from the upstream
plants. (5.14) and (5.15) gives the generation limits, both upper and lower, and the
limits on river flow.

5.2.4 Thermal power plants

The thermal power plants behave differently from the hydropower plants and are
not dependent on any random variables.

Strategic constraints

The strategic constraints for the thermal power plants are the minimum up- and
downtime for each plant and possibly maximum start-ups.

ũTtr − uTtr = 0 t = 0, r ∈ RT (5.16)
ũTtr − uTtr + uTt−1,r ≥ 0 t ∈ T \ {0}, r ∈ RT (5.17)∑
t∈T

ũTtr ≤ S
T

r ∈ RT (5.18)

uTtr ≥ uTcr − uTc−1,r c ∈ [t− T upi + 1, t− 1], r ∈ RT (5.19)
uTtr ≤ 1 + (uTcr − uTc−1,r) c ∈ [t− T downi + 1, t− 1], r ∈ RT (5.20)

The set RT is the set of thermal plants. The c index describes a subset of the set T
in constraints (5.19) and (5.20). The subset is defined as a moving window where
the plant must be on if it is turned on at time t or a window where it must be turned
off if the plant is turned off at time t.

Operational constraints

uTtr ≤ GT
r t = 0, r ∈ RT (5.21)

uTtr − uTt−1,r ≤ ut−1,r∆r + (1− ut−1,r)GT
r t ∈ T \ {0}, r ∈ RT (5.22)

− uTtr ≤ utr∆r + (1− ut,r)GT
r t = 0, r ∈ RT (5.23)

uTt−1,r − uTtr ≤ utr∆r + (1− ut,r)GT
r t ∈ T \ {0}, r ∈ RT (5.24)

uTtrG
T
r ≤ gTtr ≤ uTtrG

T

r t ∈ T, r ∈ RT (5.25)

(5.25) describes the lower and upper bounds when a thermal plant is producing
electricity. Constraints (5.22)-(5.23) describes the ramp constraints on a thermal
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plant to more realistically model the response time of a thermal power plant that
can only be adjusted gradually.

5.2.5 Artificial power plants

The artificial power plants are included to model shortfall in production and are not
constrained, meaning that they have an infinite capacity and instant production.
They are always available and can generate as much power as needed, however
the production cost is very high so that they only are used whenever no other
alternatives are possible to satisfy demand. The cost of the artificial plants can for
example represent fines or other penalties incurred when demand is not satisfied.
Another reason to include artificial plants rather than making the problem infeasible
is that infeasibility does not have a natural interpretation and because not meeting
demand is a very real possibility.

5.2.6 Network and demand constraints

The network is the electrical network of transmission lines from the different power
plants to the user. The network constraints defines the relationship between the
different buses in terms of where electricity is generated and where it can be sent to
as well as how much capacity each transmission line has. Each bus in the network
has its own demand that must be satisfied, either with electricity produced at the
same bus or by getting power transported to it. Each bus has an electrical angle and
the angle difference between two buses gives the power flow between them and the
direction of the flow, through constraints (5.26). The positive direction of the flow
is given by lower to higher bus number, as shown in figure (5.2). This convention
corresponds with the sign of the difference between the angles so that the subtrahend
in the constraint receives positive flow while the minuend receives negative flow. The
network and demand constraints are all in the operational level of the problem.

Xii′ftii′ = ωti − ωti′ i ∈ I, i′ ∈ O(i) (5.26)∑
j∈JH(i)

gHtrj +
∑

j∈J F (i)
gFtrj +

∑
r∈RT (i)

gTtr

+
∑

r∈RInf (i)
ginftr −

∑
i′∈O(i)

(ftii′ − fti′i) ≥ Dti t ∈ T , i ∈ I
(5.27)

The sets J H(i) and J F (i) contains the hydropower units connected to a bus i ∈ I
while the sets RT (i) and RInf (i) contain the power plants connected to bus i.
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(5.27) makes sure that the demand is fulfilled in each period. They are formulated
as inequalities since it is a possibility to produce more power than necessary if
it is cheaper than turning units on and off due to start-up costs and the like. The
generation variable ginf represents high-cost power generation from an artifical plant.
This generation ”source” makes it possible to satisfy the demand constraints at all
times, but at a potentially very high cost.

5.2.7 The objective

The objective in this model is to minimize the expected cost of production when
demand and water inflows are uncertain. There are several alternatives for an ob-
jective, e.g. maximizing profits. The Brazilian power system on which this specific
problem is based is highly regulated, so minimization of costs is the most natural
objective.

min
∑
t∈T

∑
r∈RH

∑
j∈J(r)

(SHtrjũHtrj + CH
trju

H
trj) +

∑
t∈T

∑
r∈RF

∑
j∈J(r)

(SFtrjũFtrj + CF
trju

H
trj)

+
∑
t∈T

∑
r∈RT

(STtrũTtr + +CT
tru

T
tr) + E [Q(x, ξ)]

(5.28)

where

Q(x, ξ) = min
∑
t∈T

∑
r∈RH

∑
j∈J(r)

GCH(gHtrj) +
∑
t∈T

∑
r∈RF

∑
j∈J(r)

GCF (gFtrj)

+
∑
t∈T

∑
r∈RT

GCT (gTtr) +
∑
t∈T

∑
r∈RInf

cinfginft

(5.29)

The GC functions are the generating cost functions for their respective technologies
which are all convex.

Now the model will be shown in its entirety.
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Sets

T Set of time periods
S Set of scenarios
I Set of buses
RH Set of hydropower plants with reservoir
RF Set of run-of-river hydropower plants
RT Set of thermal plants
J (r)H Set of units in hydropower plant with reservoir r
J (r)F Set of units in run-of-river hydropower plant r
O(i) Set of receiving buses for lines originating in bus i
O(i)H Set of units in hydropower plants with reservoirs connected to bus i
O(i)F Set of units in run-of-river hydropower plants connected to bus i
O(r)T Set of thermal plants connected to bus i
O(i)Inf Set of artificial infinite plants connected to bus i
U(r, τ) Set of upstream hydropower plants for plant r with travel time τ

Parameters

Dsti System demand in scenario s and time period t at bus i
SHrj Start-up cost for unit j in hydropower plant with reservoir r
SFrj Start-up cost for unit j in run-of-river hydropower plant r
STr Start-up cost for thermal plant r
CH
rj Fixed costs for unit j in hydropower plant with reservoir r

CF
rj Fixed costs for unit j in hydropower run-of-river plant r

CT
r Fixed costs for thermal plant r

Cinf
r Generating cost for artificial plant r

O
H

r Maximum total outflow from hydropower plant with reservoir r
OH
r Minimum total outflow from hydropower plant with reservoir r

G
H
rj Maximum power generation from unit j in hydropower plant with reservoir r

GH
rj Minimum power generation from unit j in hydropower plant with reservoir r

G
F
rj Maximum power generation from unit j in run-of-river hydropower plant r

GF
rj Minimum power generation from unit j in run-of-river hydropower plant r

G
T
r Maximum power generation from thermal plant r

GT
r Minimum power generation from thermal plant r

Lii′ Maximum flow capacity over line from bus i to i′
Y H
str Inflow to hydropower plant with reservoir r at time t in scenario s
Y F
str Inflow to run-of-river hydropower plant r at time t in scenario s
V H
r Reservoir level at starting time in hydropower plant with reservoir r

∆r Ramp limit for thermal plant r
Xii′ Line reactance on line between bus i and i′
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Variables

uHtrj Binary, on/off for unit j in hydropower plant with reservoir r at time t
uFtrj Binary, on/off for unit j in run-of-river hydropower plant r at time t
uTtr Binary, on/off for thermal plant r at time t
ũHtrj Binary, switching on unit j in hydropower plant with reservoir r at time t
ũFtrj Binary, switching on unit j in run-of-river hydropower plant r at time t
ũTtr Binary, switching on thermal plant r at time t
gHtrj Power generated by unit j in hydropower plant with reservoir r at time t
gFtrj Power generated by unit j in run-of-river hydropower plant r at time t
gTtr Power generated by thermal plant r at time t
ginft Power generated by artificial plant at time t
qHtrj Discharge through unit j in hydropower plant with reservoir r at time t
qFtrj Discharge through unit j in run-of-river hydropower plant r at time t
sHtr Spill in hydropower plant with reservoir r at time t
sFtr Spill in run-of-river hydropower plant r at time t
vHtr Reservoir level in hydropower plant with reservoir r at time t
ωti Angle at bus i at time t
ftii′ Power flow in line from bus i to i′ at time t
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minimize
∑
t∈T

∑
r∈RH

∑
j∈J(r)

(SHtrjũHtrj + CH
trju

H
trj) +

∑
t∈T

∑
r∈RF

∑
j∈J(r)

(SFtrjũFtrj + CF
trju

H
trj)

+
∑
t∈T

∑
r∈RT

(STtrũTtr + +CT
tru

T
tr) + E[Q(x, ξ)]

subject to

ũHtrj − uHtrj = 0 t = 0, r ∈ RH , j ∈ J(r) (5.1’)
ũHtrj − uHtrj + uHt−1,rj ≥ 0 t ∈ T \ {0}, r ∈ RH , j ∈ J(r) (5.2’)∑
t∈T

ũHtrj ≤ S
H

r ∈ RH , j ∈ J(r) (5.3’)

ũFtrj − uFtrj = 0 t = 0, r ∈ RF , j ∈ J(r) (5.9’)
ũFtrj − uFtrj + uFt−1,rj ≥ 0 t ∈ T \ {0}, r ∈ RF , j ∈ J(r) (5.10’)∑
t∈T

ũFtrj ≤ S
F

r ∈ RF , j ∈ J(r) (5.11’)

ũTtr − uTtr = 0 t = 0, r ∈ RT (5.16’)
ũTtr − uTtr + uTt−1,r ≥ 0 t ∈ T \ {0}, r ∈ RT (5.17’)∑
t∈T

ũTtr ≤ S
T

r ∈ RT , (5.18’)

uTtr ≥ uTcr − uTc−1,r c ∈ [t− T upi + 1, t− 1], r ∈ RT (5.19’)
uTtr ≤ 1 + (uTcr − uTc−1,r) c ∈ [t− T downi + 1, t− 1], r ∈ RT (5.20’)
uHtrj, ũ

H
trj, u

F
trj, ũ

F
trj, u

T
tr, ũtrjt

T ∈ {0, 1}

where

Q(x, ξ) := minimize
∑
t∈T

∑
r∈RH

∑
j∈J(r)

GCH
rj (gHtrj) +

∑
t∈T

∑
r∈RF

∑
j∈J(r)

GCF
rj(gFtrj)

+
∑
t∈T

∑
r∈RT

GCT
r (gTtr) +

∑
t∈T

Cinf
r ginftr

subject to
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gHtrj ≤ HH
rj(qHtrj, sHtr , vHtr ) t ∈ T, r ∈ RH , j ∈ J(r)

(5.4’)

vtr − V0,r +
∑

j∈J(r)
qHtrj + sHtr = Y H

sr t = 0, r ∈ RH

(5.5’)

vtr − vt−1,r +
∑

j∈J(r)
qHtrj + sHtr = Y H

sr t ∈ T \ {0}, r ∈ RH

(5.6’)

uHtrjG
H
rj ≤ gHtrj ≤ uHtrjG

H

rj t ∈ T, r ∈ RH , j ∈ J(r)
(5.7’)

OH
r ≤

∑
j∈J(r)

qHtrj + sHtr ≤ O
H

r t ∈ T, r ∈ RH

(5.8’)

gFtrj ≤ HF
rj(qFtrj, sFtr) t ∈ T, r ∈ RF , j ∈ J(r)

(5.12’)∑
j∈J(r)

qFtrj + sFtr −
∑
τ∈T

∑
r′∈U(r,τ)

(s(t−τ)r′ +
∑

j′∈J(r′)
q(t−τ)r′j′) = Y F

tr t ∈ T, r ∈ RF

(5.13’)

uFtrjG
F
rj ≤ gFtrj ≤ uFtrjG

F

rj t ∈ T, r ∈ RF , j ∈ J(r)
(5.14’)

OF
r ≤

∑
j∈J(r)

qFtrj + sFtr ≤ O
F

r t ∈ T, r ∈ RF

(5.15’)

uTtr ≤ GT
r t = 0, r ∈ RT

(5.21’)

uTtr − uTt−1,r ≤ ut−1,r∆r + (1− ut−1,r)GT
r t ∈ T \ {0}, r ∈ RT

(5.22’)

− uTtr ≤ utr∆r + (1− ut,r)GT
r t = 0, r ∈ RT

(5.23’)

uTt−1,r − uTtr ≤ utr∆r + (1− ut,r)GT
r t ∈ T \ {0}, r ∈ RT

(5.24’)

uTtrG
T
r ≤ gTtr ≤ uTtrG

T
r t ∈ T, r ∈ RT

(5.25’)

Xii′ftii′ = ωti − ωti′ i ∈ I, i′ ∈ O(i)
(5.26’)
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∑
j∈JH(i)

gHtrj +
∑

j∈J F (i)
gFtrj +

∑
r∈RT (i)

gTtr

+
∑

r∈RInf (i)
ginftr −

∑
i′∈O(i)

(ftii′ − fti′i) ≥ Dti t ∈ T , i ∈ I
(5.27’)

gHtrj, g
F
trj, g

T
tr, g

inf
t , qHtrj, q

F
trj, s

H
rt, s

F
tr, v

H
tr ≥ 0
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5.3 The specific system

This section presents the specific system considered, which is fictitious but based on
the Brazilian power system.

The system consists of:

• 1 hydropower plant with reservoir, with 3 units
• 2 run-of-river hydropower plants, each with 2 units
• 2 thermal power plants
• 2 wind farms
• 4 artificial power plants (one at each bus with non-zero demand)
• 5 buses

One of the run-of-river hydropower plants is downstream from the reservoir (as
shown in figure 5.1 below). The electrical network consists of 5 buses as seen in

Figure 5.1: Topology of the hydropower systems

figure 5.2. A bus is a node in the network where power can be produced and used.

In the specific problem there are several versions of the hydropower production
functions H. The non-convex functions are given below:

HH
t1j = p10(qHt1j) + p11(qHt1j)vt1+

p20(qHt1j)2 + p21(qHt1j)2vt1+
p30(qHt1j)3 + p31(qHt1j)vt1+
p40(qHt1j)4

HF
t1j = p1(qFt1j) + p2(qFt1j)2 + p3(qFt1j)3

HF
t2j = p10(qFt2j) + p11(qFt2j)QF

t2+
p20(qFt2j)2 + p21(qFt2j)2QF

t2+
p30(qFt2j)3 + P31(qFt2j)3QF

t2+
p40(qFt2j)4
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Figure 5.2: Electrical system

where QH
tr and QF

tr are the total amount of water passing through the system, e.g.
QF
t2 = (∑j∈JF (2) q

F
t1j + sFt1). Their respective concave envelopes

HH
1j = p′0q

H
t1j − p′1(qHt1j)2 + p′2qt1jv

H
1j − p′3QH

t1

HF
1j = p′0q

F
t1j − p′1(qFt1j)2

HF
2j = p′0q

F
t2j − p′1(qFt2j)2 − p′2qFt2jQF

t2

where p′0, p
′
1, p
′
2 and p′3 are non-negative so that the envelopes can be seen to be

concave. The other p parameters are given in the appendix.

The generating cost functions GC are:

GCT
r = a0r − a1rg

T
tr + a2r(gTtr)2

GCH
rj = GCF

rj = 0

so they are either convex or zero. As the generating cost functions shows the hy-
dropower plants are assumed to have a zero marginal cost of production.
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5.4 Scenario generation

The stochastic parameters in the model are the inflows to the hydropower plants and
the power generated by the wind farms while demand is considered deterministic.
However, the wind farms are assumed to always produce as much as possible, since
their marginal cost of production is negligible. By subtracting the power generated
by the wind farms from the deterministic demand one gets a stochastic parameter
for demand for each time period and bus:

Dtb = dtb −Wtb

This allows for the wind farm to be removed from the model as it is implicitly
modeled through the demand parameter and taken care of in the scenario generation.
A scenario then consists of a demand realization for each bus and inflows into the
three hydropower plants for each time period.

Scenario generation is not the focus in this thesis for several reasons. The system
is fictitious so the specific solutions are not very interesting and the focus is on the
solution process rather than the solutions themselves. The inflows are assumed to
be normally distributed with parameters estimated from several years of historical
data. The power generated by the wind farms have been sampled directly from
the data. The random variables are assumed to be independent even though this
probably isn’t a realistic assumption as wind and rain are correlated to some degree.
They have also been assumed to be independent over time for simplicity. These
assumptions allows for combining the samples randomly together and over time to
generate scenarios.

5.5 Decomposition and properties of the
problem

This section shows the decomposition of the problem and shows several properties
of the decomposed problem.

5.5.1 Constraints and infeasibility

The problem has fixed recourse because the first stage decisions do not affect the
coefficients of the yh variables in the gh(yh) functions. Whether the problem has
complete or relatively complete recourse or not depends on the scenarios used. In-
feasibility can only occur in the third run-of-river plant, which is the one that is
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not downstream from the reservoir. Infeasibility occurs when there is not enough
water in the river so that the units that are active cannot produce more than their
lower generation limits. If units are used without sufficient water they break down.
As discussed earlier when the artificial power plants were introduced, infeasibility
cannot occur with respect to the demand because of the infinite thermal plants that
were added to the system as a way of modeling potential shortfalls of production
instead of allowing infeasibility.

The model was tested incrementally and there were two sets of constraints that
complicated the problem a lot. The minimum up- and downtime constraints for the
thermal plants, 5.19-5.20, that connects the time periods in the operational horizon
and and the introduction of the network and the related constraints, 5.26-5.27.

5.5.2 Optimality and feasibility cuts

As described in section 3.1.1, optimality cuts are formed from the solutions of the
subproblems in each iteration. All necessary parameters in the cut, excluding the
optimal objective value, come from the constraint group

Bhx+ gh(yh) ≤ 0

These constraints contain both x and y, meaning that they are the ones binding
the master and subproblems together. In this case study, these constraints are
the generation bounds, which include both the master problem variables u and the
subproblem variables g:

ūHtrjG
H
rj ≤ gHtrj ≤ ūHtrjG

H

rj t ∈ T, r ∈ RH , j ∈ J(r)

ūFtrjG
F
rj ≤ gFtrj ≤ ūFtrjG

F
rj t ∈ T, r ∈ RF , j ∈ J(r)

ūTtrG
T
r ≤ gTtr ≤ ūTtrG

T
r t ∈ T, r ∈ RT

Transformed to the general form, they become:

GH
rjū

H
trj − gHtrj ≤ 0 [λH1

trj ]

−GH
rjū

H
trj + gHtrj ≤ 0 [λH2

trj ]
GF
rjū

F
trj − gFtrj ≤ 0 [λF1

trj]

−GF

rjū
F
trj + gFtrj ≤ 0 [λF2

trj]
GT
r ū

T
tr − gTtr ≤ 0 [λT1

tr ]

−GT
r ū

T
tr + gTtr ≤ 0 [λT2

tr ]

(5.30)

70



Here, the first term in each corresponds to Bhx, the second to gh(y) and the right
hand side, which is zero, to hh. Each constraint has its corresponding dual variable
λ. Consider the general form of the optimality cut as shown in section 3.1.1:

θ ≥
∑
h∈S

wh(fh(xi, ȳih) + (λih)T (gh(yih) +Bhx))

Given a solution for each subproblem in iteration i: ȳis, which includes the optimal
generation values ḡ), and corresponding optimal dual variables λ as described in
(5.30). The specific optimality cut, in its single-cut form, is:

θ ≥ 1
|S|

∑
h∈S

[ ∑
t∈T

∑
r∈RT

GCT (ḡTtr) +
∑
t∈T

cinf ḡinft )

+
∑
t∈T

∑
r∈RH

∑
j∈J(r)

(
λH1
trj (GH

rju
H
trj − ḡHtrj) + λH2

trj (−G
H
rju

H
trj + ḡHtrj)

)

+
∑
t∈T

∑
r∈RF

∑
j∈J(r)

(
λF1
trj(GF

rju
F
trj − ḡFtrj) + λF2

trj(−G
F
rju

F
trj + ḡFtrj)

)

+
∑
t∈T

∑
r∈RT

(
λT1
tr (GT

r u
T
tr − ḡTtr) + λT2

tr (−GT

r u
T
tr + ḡTtr)

)]
(5.31)

The multi-cut would add add one for each scenario and remove the summation over
scenarios:

θh ≥
1
|S|

∑
t∈T

∑
r∈RT

GCT (ḡTtr) +
∑
t∈T

cinf ḡinft )

+
∑
t∈T

∑
r∈RH

∑
j∈J(r)

(
λH1
trj (GH

rju
H
trj − ḡHtrj) + λH2

trj (−G
H
rju

H
trj + ḡHtrj)

)

+
∑
t∈T

∑
r∈RF

∑
j∈J(r)

(
λF1
trj(GF

rju
F
trj − ḡFtrj) + λF2

trj(−G
F

rju
F
trj + ḡFtrj)

)

+
∑
t∈T

∑
r∈RT

(
λT1
tr (GT

r u
T
tr − ḡTtr) + λT2

tr (−GT
r u

T
tr + ḡTtr)

)
∀h ∈ S

(5.32)

Remember that each g variable is part of the yh vector of second stage variables for
scenario h. The index h is not used for each variable to avoid excessive indices.

Feasibility cuts

The general feasibility cuts shown in section 3.1.1 are also made from the constraint
group:

Bhx+ gh(yh) ≤ 0

because infeasibility can only occur when there is not enough water to produce more
than the lower generation limit, but the unit is turned on, for units in hydro plant
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3. Written out the the constraints in question are:

ūFtrjG
F
rj = z−k + gFtrj t ∈ T, r ∈ RF , j ∈ J(r)

which becomes, when written in the general form shown above:

GF
rjū

F
trj − gFtrj − z−k = 0 [σF1

trj ] (5.33)

where the dual variables σ are used to construct the feasibility cuts.

0 ≥ (σjh)T (gh(yjs) +Bhx)∀j,∀h ∈ S

becomes

0 ≥ 1
|S|

∑
t∈T

∑
r∈RT

GCT (ḡTtr) +
∑
t∈T

cinf ḡinft )

+
∑
t∈T

∑
r∈RF

∑
j∈J(r)

(
σF1
trj(GF

rju
F
trj − ḡFtrj)

)
∀h ∈ S

(5.34)

However, due to knowing why infeasibility occurs a better alternative is to use valid
inequalities. As mentioned earlier, infeasibility can only occur when there is not
enough inflows to hydropower plant 3, but the units are switched on. If there isn’t
enough inflow in some period then the following inequality will restrict the number
of units allowed to be switched on:

∑
j∈J(2)

uFt2j ≤ |J(2)| − 1 for t where infeasibility occurs (5.35)

and if infeasibility occurs again the inequality can be strengthened:

∑
j∈J(2)

uFt2j ≤ |J(2)| − 2 for t where infeasibility occurs twice (5.36)

and so on. The third hydropower plant only has two units so the two inequalities
above suffice. The valid inequalities are much more efficient for approximating the
feasible set than the general feasibility cuts. This also means that since it is possible
to extract the time period where infeasibility occurs the feasibility problems are not
necessary.
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5.6 Decomposition

By decomposing the problem as described in chapter 3 we get the following master
problem:

min
∑
t∈T

∑
r∈RT

STr ũ
T
tr + θ

subject to θ ≥
∑
s∈S

1
|S|

(uis)T (hs − Tsxi), i ∈ T k

∑
j∈J(2)

ut2j ≤ |J(2)| − 1, for every t where infeasibility occurs once

∑
j∈J(2)

ut2j ≤ |J(2)| − 2, for every t where infeasibility occurs twice

∑
r∈{r:x(t)

r =1,r=1,...,nx}

xr

−
∑

r∈{r:x(t)
r =0,r=1,...,nx}

xr ≤ |{r : x(t)
r = 1}| − 1 ∀t ∈ T k

(5.1)− (5.3), (5.9)− (5.11), (5.16)− (5.20)
uHtrj, ũ

H
trj, u

F
trj, ũ

F
trj, u

T
tr, ũ

T
tr ∈ {0, 1}

θ ∈ R
(RMPk’)

i is the number of iterations. The subproblems, one for each scenario h ∈ S, takes
the form:

min
∑
t∈T

∑
r∈RT

GCT (gTtr) +
∑
t∈T

cinfginft

subject to ūHtrjG
H
rj ≤ gHtrj ≤ ūHtrjG

H
rj t ∈ T, r ∈ RH , j ∈ J(r)

ūFtrjG
F
rj ≤ gFtrj ≤ ūFtrjG

F

rj t ∈ T, r ∈ RF , j ∈ J(r)

ūTtrG
T
r ≤ gTtr ≤ ūTtrG

T

r t ∈ T, r ∈ RT

(5.4)− (5.6), (5.8), (5.12)− (5.13), (5.15), (5.21)− (5.24), (5.26)− (5.27)
gHtrj, g

F
trj, g

T
tr, g

inf
tb , q

H
trj, q

F
trj, s

H
tr , s

F
tr, v

H
tr ≥ 0

(PBPh’)

Where ū are the first stage decisions concerning which units to turn on at which
time. Note that these are treated as parameters in the subproblem, hence the ū
notation. The feasibility problems becomes:
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min ||z−k ||+ ||z+
k ||

subject to H
trj − z−k = ūHtrjG

H
rj t ∈ T, r ∈ RH , j ∈ J(r)

H
trj + z+

k = ūHtrjG
H

rj t ∈ T, r ∈ RH , j ∈ J(r)
F
trj − z−k = ūFtrjG

F
rj t ∈ T, r ∈ RF , j ∈ J(r)

F
trj + z+

k = ūFtrjG
F
rj t ∈ T, r ∈ RF , j ∈ J(r)

T
tr − z−k = ūTtrG

T
r t ∈ T, r ∈ RT

T
tr + z+

k = ūTtrG
T

r t ∈ T, r ∈ RT

(5.4)− (5.6), (5.8), (5.12)− (5.13), (5.15), (5.21)− (5.24), (5.26)− (5.27)
gHtrj, g

F
trj, g

T
tr, g

inf
tb , q

H
trj, q

F
trj, s

H
tr , s

F
tr, v

H
tr , z

−
k , z

+
k ≥ 0

(FPh’)

where all the numbered constraints are assumed to be rewritten with slack variables
as equality constraints.

5.6.1 Convexity of the relaxed problem

The objective function of the subproblems, both the convexified problems PBPh’ and
the original problems PPl, can be seen to be the sum of different GC(·) functions
that are all convex. The sum of convex functions is also convex and so the objec-
tive is convex. All constraints in the problem are linear, except for the generation
constraints. The generation constraints (5.4) and (5.12) in the convexified problem
describe a convex set since the convexified H functions are seen to be concave and
the constraints are less than or equal than a concave surface. Non-negativity are
also imposed on the variables in question so the feasible set with regard to the non-
linear constraints in the convexified problem is convex. Together, this means that
the whole feasible set is convex. Note that equalities in the convexified generation
constraints would have made the set non-convex; however, it is not necessary to
enforce equality because the objective implicitly enforces this restriction since one
always prefers the highest g allowed for a given amount of discharge q.

5.6.2 Slater’s condition

The subproblems for problem (PBPh’’) are easily seen to contain a Slater point. The
only non-linear constraints are the generation constraints (5.4) and (5.12). There will
always exist a feasible combination of q = (qHtrj, qFtrj, qTtr) and g = (gHtrj, gFtrj, gTtrj, ginf )
that makes the generation constraint inequalities hold strictly. These points are
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thus Slater points. Slater’s condition is therefore satisfied and strong duality holds
for problems (PBPk

h) and (FPk
h). Strong duality also implies that there is a set of

optimal multiplier vectors associated with the optimal solution for every subprob-
lem. Additionally each subproblem is finite since the problem is bounded in every
direction.

5.6.3 Convergence

Given that the integer variables are part of a finite, discrete set {0, 1}n and that
any given x̄ will never appear twice, except for when optimality has been reached,
convergence follows from theorem 3.1.5.

Property (P’) also holds for the convexified problem (LBP) since the objective func-
tion is separable in the variables ũ and g while the constraints are also separable in
g, meaning that no components of ũ or g ever occur together in any term.

5.6.4 Problem size

The size of the problem, measured in total number of variables and constraints,
is most strongly impacted by the number of periods and the number of scenarios.
The problem considered in this case study has 24 periods. The number of scenarios
ranges from 1 to 10,000, which makes it the main determinant of the overall problem
size. Tables 5.1 show the number of variables and constraints for different numbers
of scenarios.

Table 5.1: Problem size

Number of scenarios 1 10 100 500 1000 10,000
Number of binary variables 432 432 432 432 432 432
Number of continuous variables 145 1441 14,401 72,001 144,001 1,440,001
Number of constraints 384 1464 12,264 60,264 120,264 1,200,264

5.7 Implementation

This section describes several of the implementational choices that have been made
in the development and the reasons behind choices. The implementation differs in
some respects from the distributed algorithm presented in chapter 4. The hardware
and software used to run and test the algorithm is also described.
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5.7.1 Feasibility cuts and valid inequalities

The general feasibility cuts was replaced with the valid inequalities presented earlier
in this chapter. The main reason for this is the fact that the general feasibility
cuts are too slow in approximating the feasible set, while the valid inequalities are
very efficient. There are a total of 48 possible valid inequalities and if a cut is
added the source of infeasibility is eliminated for future iterations. The general
feasibility cuts however only cuts away the integer configuration that led to the
infeasibility, but not necessarily the source of the infeasibility. This means that
the next integer configuration the master problem wants to try can be an integer
configuration that is equal except for a few variables. This integer realization will
likely lead to another infeasibility stemming from the same source as it is found
in the same attractive region of the solution space that the algorithm wants to
search. During development we observed long runs of infeasible iterations where the
described scenario took place. These iterations provides no progress, but takes just
as much time as a normal iteration. The general feasibility cuts weren’t fast enough
and some other approach like the valid inequalities as specific infeasibility cuts was
necessary.

5.7.2 Cut strategy in the implementation

The theory on cut strategies presented in chapter 2 and chapter 4 tells us that a
single cut or something close to that end of the spectrum would be best for a parallel
algorithm because the master problem will be much smaller at every stage compared
to the problem in with the multi-cut approach. This is good for parallelization
because the non-parallelizable part, which is the master problem, is smaller and
the potential for better performance through parallelization is increased. However,
through continuous testing in the implementation phase, the effect on the runtime of
a smaller master problem turned out to be less important than the effect of needing
more iterations to converge. In fact, with a single-cut approach the convexified
problem did not converge within 24 hours even for small instances with less than
ten scenarios. More cuts consistently performed better in terms of total runtime so
the extreme multi-cut approach was adopted in the implementation. There might be
several reasons for this, but one reason is that GUROBI, which handles the master
problem, is a very good solver for problems like the master problem. The main
downside of the multi-cut strategy is that it reduces the potential for parallelization
and distribution decreases since the bulk of the time in each iteration is spent in
the master problem and the master problem is the non-parallelizable part of the
algorithm.
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For a reduced version of the case study the single cut strategy performed well and
big reductions in runtime were possible. We will come back to this issue in the next
chapter.

5.7.3 Bundle methods

The bundle method addition turned out to be a necessity. For the problem in its
current form the algorithm was not able to solve even small instances with no more
than 10 scenarios within 24 hours. The tail-off effect was a major problem: The
solution gap would practically stop converging at a certain point in time. Since
bundle methods are in part used specifically to counter the tail-off effect, it was only
natural to include one. The doubly stabilized method turned out to be the most
efficient of the ones we tried; it significantly sped up the solution time and decreased
the tail-off effect.

5.7.4 Software and hardware

The algorithm has been tested on a computing cluster consisting of 2688 nodes of
four different types described in the following table. A computing cluster is a system
of several computers that are connected through some network, but that have been
designed and set up so to act more or less as a logically single, powerful computer.

Table 5.2: Computational nodes information

HP dl140 HP dl160 G5 HP dl160 G3 HP bl165
CPU 2x1.6GHz Intel

E5110 Xeon – 2
core

2x3.0GHz Intel
E5472 Xeon – 4
core

2x2.4GHz AMD
Opteron 2431 – 6
core

4x2.2GHz AMD
Opteron 6274 –
16 core

Memory 8GB RAM 16GB RAM 24GB RAM 128GB RAM
Disk 72Gb 7200rpm

SATA
72Gb SAS 15k
rpm

150Gb SAS 15k
rpm

300Gb SAS 15k
rpm

All nodes are running CentOS 6.4 and are managed with RocksClusters 6.1 SP1.
The solvers are IPOPT v3.12.4 and Bonmin v1.8.4, both described above, for the
subproblems and the master problem respectively. MPI is implemented with open-
MPI v. 1.10. The problem has been implemented in C++, using interfaces provided
by COIN-OR and GUROBI, libraries from the solvers and OpenMPI. The program
is compiled using the GNU g++ compiler inside an OpenMPI wrapper compiler.
Scenarios have been generated with R. The code can be found in the appendix.
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Chapter 6

Results and discussion

The results are divided into three parts. The algorithm has been tested on a reduced
version of the convexified problem (to test the scalability of the implementation), the
full convex problem and the full non-convex problem. The results for each problem
is presented separately and discussed before we summarize our findings in the last
section.

6.1 Results

The two first sets of results are concerned with the convexified problem. The only
differences between the non-convex and the convex version of the problem are in the
hydropower production function. In the convex problem the concave envelopes are
used as the hydropower production functions, H. In this case the NGBD method
reduces to the GBD method. The third set of results are obtained from the non-
convex problem which uses the non-convex hydropower production functions shown
in chapter 5.

6.1.1 Reduced convexified problem

The smaller problem does not take the network into account and can be thought
of as a single bus network where all the power plants and demand is at the same
bus. The minimum and maximum uptime constraints for the thermal power plants
are not considered either. The cut strategy used is the extreme single-cut strategy
meaning that only one aggregated cut is added in each iteration. The number of
time periods is reduced to 12 hours which significantly reduces the problem size.
The scenarios are all feasible so that the problem has complete recourse.

The details of the smaller problem are given in table 6.1.
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Table 6.1: Problem size, 12 periods

Number of scenarios 1 10 100 1000 10000 100000
Binary variables 216 216 215 216 216 216
Continuous variables 289 2,881 28,801 288,001 2,880,001 28,800,001
Constraints 593 4,895 47,915 478,115 4,780,115 47,800,115

Figure 6.1: Runtimes for 10,000 scenarios in reduced problem

Figures 6.1 and 6.2 show that the runtime can be decreased by a factor of approx-
imately 80 when the numbers of nodes are increased from 1 to 200 in the problem
with 10,000 scenarios, and by a factor of approximately 13.5 when the number of
nodes are increased from 10 to 200 in the problem with 100,000 scenarios. The par-
allelization clearly gives significant reductions in runtime for the reduced problem.

Figure 6.3 show how the runtime develops when the number of scenarios increase and
confirms the expected linear relationship between runtime and number of scenarios
for different numbers of computational nodes used.

Tables for more detailed results are found in tables C1 to C5.

80



Figure 6.2: Runtimes for 100,000 scenarios in reduced problem

6.1.2 Convexified problem

The results from the convex problem show that there is an effect from parallelizing,
but that it flattens out when the number of scenarios per node decrease beyond
some treshold. Figure 6.4 shows that the time spent in the subproblem phase almost
halves when the number of nodes go from 1 to 10. However, when the number of
nodes is increased further the time spent in the subproblem phase does not change
much, although it does decrease slightly. The time spent in the master problem is
more or less constant, which is to be expected as the same cuts are added and the
problem is the same in every iteration, no matter how many nodes are used.

The same kinds of results occur when the problem is solved with 1000 scenarios as
shown in figure 6.5. It is interesting to note that the problem is solved faster with
more scenarios. Closer inspection of the integer realizations visited by the algorithm
shows that the additional infeasibilities actually make the problem easier because if
there are enough infeasible time periods the third hydropower plant, which is the
only source of infeasibility, is practically removed from the problem. This makes the
remaining problem easier because the size of the feasible set is decreased and the
remaining problem cannot be infeasible.
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Figure 6.3: Runtimes for increasing number of scenarios with the same number of
nodes

The difference can also be explained by looking at the difference in the number of
iterations required to converge. While the problem with 1000 scenarios require only
14 iterations to converge, the one with 100 scenarios require 59 iterations. The single
scenario problem needed 609 iterations to converge, but in this case the iterations
are fast.

This is a weakness of the case study and the scenario generation assumptions that
were made about the independence between time periods and the random variables
and their respective distributions. A more realistic distribution for the random
variable concerned with the inflows into the third hydropower plant would be much
more skewed, with fewer occurrences of very high or very low inflow, and most of the
time there would be enough to stay within the limits. For a more realistic problem,
scenario generation should be reconsidered.

When the number of scenarios are more than 1000 the solution time is longer than
10,000 seconds and the procedure stopped. Only two long runs have been performed.
One of them with 10,000 scenarios on one node, which took approximately 70,000
seconds with 25,000 of them spent in the master phase and the remaining 45,000
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Figure 6.4: Runtimes for 100 scenarios

seconds in the subproblem phase. The second long run was done with 100 nodes for
the same 10,000 scenarios. It took a total of 45,000 seconds where approximately
the same amount of time was spent in the master problem phase and the rest in
the subproblem phase. This means that the parallelization decreased the runtime
by 25,000 seconds, more than halving the time spent in the subproblem phase.
Additional nodes would most likely give further decreases in the runtime as the
number of subproblems per node is still high. The flattening out effect is seen at 10
scenarios per node and 40 scenarios per node for the problems with 100 and 1000
scenarios respectively.

Tables for more detailed results are found in tables C6 and C7.

6.1.3 Non-convex problem

Due to using a local solver for the non-convex subproblems, the NGBD implemen-
tation did not converge within 10,000 seconds for any number of scenarios. The
optimality gaps at termination for different numbers of scenarios are shown in table
6.2. As can be seen in the table, most of the gaps hover around 25%, which obvi-
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Figure 6.5: Runtimes for 1000 scenarios

ously is not very good. However, it is important to note that this is the worst-case
distance from the optimal solution; the actual gap is somewhere between 0% and
25%, there is just no way of knowing without a global optimizer which can provide
a real lower bound. A part of the gap is also attributable to the difference between
the non-convex functions and their convex relaxations, which mostly lies between 0
and 10%.

Regarding parallelization, there is definitely potential. A majority of the time spent
was in the convex and non-convex subproblem phase, i.e. the phases that are par-
allelizable. The addition of the non-convex subproblem phase also means that this
algorithm theoretically is even better suited than the GBD algorithm, a notion that
is supported by our initial runs. However, without any finished runs it is impossible
to provide any significant quantification of the actual speed-up.

6.2 Further discussion

The difference in the improvement in the runtime for the smaller convex problem
and the full convex problem is a result of the difference between the difficulty of the
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Table 6.2: Optimality gap in non-convex algorithm after 10,000 seconds

Scenarios Optimality gap
1 11.14%
10 29.59%
100 14.94%
250 25.72%
500 25.85%
1000 26.21%

master problems. In the smaller problem there are only 216 binary variables and
the most difficult constraints are not considered while the full problem has twice as
many binary variables due to the time horizon of 24 hours. The full problem also
has more constraints such as the minimum and maximum uptime constraints which
complicates the problem by connecting the time periods.

The effect of parallelization clearly flattens out when the number of scenarios per
node decrease below some treshold. This can be seen from the results for the reduced
and full convex problem. This treshold is larger than one subproblem per node. The
reason that this happens while the number of scenarios per node is greater than one
is that some scenarios are much harder to solve and it is not possible to reduce the
time spent in the subproblem phase to less than the amount of time it takes to
solve the hardest subproblem. This explains the fact that the parallelization effect
flattens while the number of scenarios per node is still greater than one.

Using additional nodes for a problem when the parallelization has started flattening
out is not helpful because of the fact that some subproblems are much harder to
solve and when the number of subproblems per node is small enough the hardest
subproblem becomes the determining factor of the time spent in the subproblem
phase. Since parallelization does not reduce the time required for any one sub-
problem, the effect of additional nodes when the parallelization effect flattens out is
limited.

Regarding the non-convex problem, the results show that a global solver, or at
least a better heuristic strategy, is required to solve it in a satisfactory way. Even
though the solutions might be good, there is no consistent way to verify their quality
beyond the optimality gap given by the algorithm. It is important to note that the
non-convex algorithm always will use more time than the convex algorithm (given
equal parameters and scenarios), since the whole GBD procedure is contained within
the NGBD procedure. Thus, the results from the GBD algorithm can be taken as
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best-case results for the NGBD algorithm.
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Chapter 7

Concluding remarks

We have developed a distributed implementation of a parallel version of the NGBD
method presented in chapter 3 with bundle methods incorporated into the algorithm.
The main goal of the thesis was to explore the potential for parallelization of the
method while the second goal was solve a stochastic unit commitment problem which
was formulated and presented in the case study in chapter 5. We are able to solve
the problem for quite large instances with up to 1000 scenarios in less than 1500
seconds for the convex problem within 2.5% of the true optimal value. The non-
convex problem has not been solved to desired optimality, mainly because of the
lack of an appropriate global solver.

The results from the case study shows that parallelization improves runtime sig-
nificantly, up to a factor of approximately 2 for the full convex problem with 1000
scenarios and with a factor of up to approximately 80 for the reduced problem with
up to 100,000 scenarios if enough nodes are added. The initial results from the non-
convex algorithm also show promise with regards to parallelization, but the actual
speed-up remains to be measured. We do recognize that although the results are
promising, there are also some limitations to our approach. The rest of the thesis
is dedicated to to discussing these limitations and to propose our ideas for further
research.

While the results are promising and show that a massively parallel approach has
the potential to solve problems with large numbers of scenarios, as can be seen from
the results from the reduced version of the convex problem, they also show that it
is essential that the master problem is relatively easy to solve. If this is not the case
parallelization has limited potential because most of the time is spent solving the
master problem which is not parallelizable. This suggests that a direction for further
research is to find better cut selection strategies and cut management strategies. The
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reduced convex problem is solvable with a single-cut approach and benefits greatly
from parallelization, while for the full problem the convergence was too slow with
single-cuts. The extreme multi-cut approach adopted in the implementation for the
full problem makes the master problem very large as in each iteration one cut for
each scenario is added. A cut management strategy that is able to eliminate cuts
as they become redundant could potentially reduce the size of the master problem
significantly. This would make it possible to solve problems with more scenarios
while at the same time increasing the portion of the problem that is parallelizable,
so that the problem would benefit more from parallelization. Fischetti et al. (2010)
presents an alternative cut selection strategy for the standard Benders decomposition
method.

In general it is a good idea to try and utilize the available computing resources as
much as possible. In the non-convex and extended convex problem a significant
amount of time is spent in the master problem which is contained in one node while
the rest of the nodes are idle. There are several possible uses for these nodes. They
can be used to solve subproblems that potentially might be useful. An example
of this can be subproblems obtained by trying to predict integer realizations for
problems (PBP) while the master problem is being solved. Another idea is to
have several master nodes that start trying to find new lower bounds and integer
realizations before the subproblem phase is finished by using information obtained
from the subproblems that are already solved. It can be thought of as doing partial
iterations. Li (2013) mentions a similar idea that he calls bounding parallelization.

Finally, the clearest way forward is to generalize the algorithm to multi-stage prob-
lems. Kaut et al. (2014) presents what they call a multi-horizon strategy where the
strategic decisions and the operational decisions are assumed to be independent.
This assumption makes it possible to drastically reduce the number of scenarios and
also for parallelization, without sacrificing much if the assumption is reasonable.
However, this is often not the case because the operational and strategic stage are
very often intimately connected. In the unit commitment problem it is clear that
there are several variables that are connected over time, such as reservoir levels
and which units are on when one operational horizon ends. Some approach for the
transitioning between periods are thus necessary. Another approach to multi-stage
problems is a nested NGBD method where a multi-stage problem is solved as a
sequence of two-stage problems (Birge et al., 1996).
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Appendix A

Source code

The source code can be found in the following dropbox:

https://www.dropbox.com/sh/yvglzo1zayzfx23/AADczVFOPzysLzwuOXEKDP3ka?dl=0
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Appendix B

Parameters and options

The parameters and options used for the solvers can be found in the parameter files
included in the source code. The files are called ipopt.opt and gurobi.prm. The
parameters for the GBD and NGBD algorithms are found in the parameters folder.
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Appendix C

Tables

C.1 Detailed results for the reduced convex
problem

Table C1: Results for the reduced convex problem with one computational node

Number of scenarios 1 10 100 1000 10000 100000
Number of binary variables 216 216 216 216 216 216
Number of continuous vari-
ables

289 2,881 28,801 288,001 2,880,001 28,800,001

Total time 7.3 32.1 204.6 2671.9 27145.44 -
Time for SPs 0.3 22.0 202.3 2659.6 27121.2 -
Time for MP 7.0 10.1 2.3 12.3 24.24 -
UBD at termination 7.32e6 7.57e5 9.26e5 1.16e6 1.08e06 -
LBD at termination 7.30e6 7.40e5 9.05e5 1.13e6 1.05e06 -

Table C2: Results for the reduced convex problem with 10 computational nodes

Number of scenarios 1 10 100 1000 10000 100000
Number of binary variables 216 216 216 216 216 216
Number of continuous vari-
ables

289 2,881 28,801 288,001 2,880,001 28,800,001

Total time 7.3 20.6 32.3 298.7 2791.8 23021.6
Time for SPs 0.3 7.1 20.6 286.2 2767.5 22.6
Time for MP 7.0 13.4 11.7 12.5 24.3 22999.0
UBD at termination 7.32e6 3.94e6 1.78e6 1.16e6 1.08e6 1.02e6
LBD at termination 7.30e6 3.91e6 1.74e6 1.13e6 1.05e6 9.95e5

97



Table C3: Results for the reduced convex problem with 50 computational nodes

Number of scenarios 1 10 100 1000 10000 100000
Number of binary variables 216 216 216 216 216 216
Number of continuous vari-
ables

289 2,881 28,801 288,001 2,880,001 28,800,001

Total time 7.3 20.6 47.8 134.0 548.4 4963.7
Time for SPs 0.3 7.1 25.5 122.4 546.1 4941.1
Time for MP 7.0 13.4 22.3 11.6 2.3 22.6
UBD at termination 7.32e6 3.94e6 9.26e5 9.79e5 9.89e5 1.02e6
LBD at termination 7.30e6 3.91e6 9.04e5 9.59e5 9.69e5 9.95e5

Table C4: Results for the reduced convex problem with 100 computational nodes

Number of scenarios 1 10 100 1000 10000 100000
Number of binary variables 216 216 216 216 216 216
Number of continuous vari-
ables

289 2,881 28,801 288,001 2,880,001 28,800,001

Total time 7.3 20.6 29.2 106.9 418.4 2591.7
Time for SPs 0.3 7.1 17.4 94.4 393.9 2569.1
Time for MP 7.0 13.4 11.8 12.4 24.4 22.6
UBD at termination 7.32e6 3.94e6 1.78e6 1.16e6 1.08e6 1.02e6
LBD at termination 7.30e6 3.91e6 1.75e6 1.13e6 1.05e6 9.96e5

Table C5: Results for the reduced convex problem with 200 computational nodes

Number of scenarios 1 10 100 1000 10000 100000
Number of binary variables 216 216 216 216 216 216
Number of continuous vari-
ables

289 2,881 28,801 288,001 2,880,001 28,800,001

Total time 7.3 20.6 29.2 99.1 336.7 1714.7
Time for SPs 0.3 7.1 17.4 87.2 312.3 1691.8
Time for MP 7.0 13.4 11.8 11.9 24.3 22.8
UBD at termination 7.32e6 3.94e6 1.78e6 1.15e6 1.08e6 1.02e6
LBD at termination 7.30e6 3.91e6 1.75e6 1.12e6 1.05e6 9.96e5
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C.2 Detailed results for the full convex problem

Table C6: Results from the full convex problem with 100 scenarios

Number of nodes 1 10 25 50 100
Time spent in MP 1251.23 1247.39 1252.71 1255.50 1242.23
Time spent in SPs 3686.13 1929.13 1835.40 12785.36 1774.13
Total time 4937.36 3176.52 3088.11 3040.86 3016.36

Table C7: Results from the full convex problem with 1000 scenarios

Number of nodes 1 10 25 50 100
Time spent in MP 1071.23 1064.39 1078.57 1095.53 1070.51
Time spent in SPs 1470.37 635.74 372.67 287.00 332.12
Total time 2541.97 1700.13 1451.24 1382.53 1313.79
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