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Problem description

The costs of electricity generation from most green sources are significantly above average

European market prices for electricity. To ensure competitiveness of renewable electricity

production, various support schemes have been introduced. The implementation of sup-

port schemes have led to a new source of uncertainty for renewable energy investments, as

several unexpected and retroactive revisions of subsidy payments have occurred. These

revisions make policy uncertainty a significant challenge for investors in renewable elec-

tricity plants. Investors’ belief regarding a change in support policy is therefore thought

to be of great importance in investment decisions.

This thesis will examine how learning about the timing of revision or termination of

a support scheme can affect investment behavior. We incorporate Bayesian learning into

a real options model, and analyze the case where an investor updates her probabilistic

belief about the timing of a revision.
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Abstract

In the last decades, several countries have introduced support schemes to accelerate invest-

ments in renewable energy (RE). When support schemes have served their purpose, and

production goals are met, retraction or revision of currently employed support schemes

becomes more likely, as confirmed by several policy changes in European countries.

Investors in RE are greatly affected by the risk of subsidy changes when considering

an investment opportunity. Therefore, they need to evaluate the likelihood of potential

subsidy retractions and revisions, and take it into account when making an investment

decision.

The main purpose of this paper is to examine how investment behavior is affected by

updating a subjective belief on the timing of a subsidy revision. We incorporate Bayesian

learning into a real options modeling approach. Subsidies in the form of fixed feed-in

tariffs (FIT) are considered, and we analyze a scenario where a retroactive downward

adjustment of the FIT is expected through a regime switching model.

We find that investors are less likely to invest when the arrival rate of a policy change

increases. Further, investors prefer a lower FIT with a long expected lifespan, while policy

makers prefer a higher FIT with shorter life span.

In addition, we consider an extension of our model where a FIT scheme is retroactively

retracted and followed by a regime under which electricity is sold on a free market.

We find that if policy uncertainty is high, an increase in the FIT will be less effective at

accelerating investments. However, if policy risk is low, FIT schemes can be very effective

for accelerating investment, even in highly volatile electricity markets.
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Sammendrag

De siste ti̊arene har det i flere land blitt innført støtteordninger med mål om å øke invester-

ingsaktivitet innen fornybar energi. Tilbaketrekning eller endring av støtteordningene er

blitt mer sannsynlig etter hvert som ordningene har tjent sitt form̊al og produksjonsmål

for fornybar energi er n̊add. Dette bekreftes av flere eksempler p̊a tilbaketrekninger og

revisjoner i Europa.

Lønnsomheten til prosjeker innen fornybar energi er i stor grad avhengig av subsi-

dieordninger. Investorer må derfor ansl̊a sannsynligheten for en endring i støtteordninger

og ta høyde for dette i investeringsbeslutninger.

Formålet med denne artikkelen er å undersøke hvordan investeringsbeslutninger p̊avirkes

av at en investor over tid endrer sin oppfatning av risiko, gjennom læring. Vi utvider

en tradisjonell realopsjonmodell ved å inkludere bayesiansk læring og muligheten for et

regimeskifte. Et scenario der en tilbakevirkende nedjustering av faste innmatingstariffer

presenteres.

Vi finner at investeringsniv̊aet reduseres n̊ar sannsynligheten for en endring i tilskud-

dsordninger øker. Videre konkluderer vi med at investorer foretrekker en lavere innmat-

ingstariff over en lang tidshorisont, mens politikere foretrekker en ordning med høyere

tariff og kortere levetid.

I tillegg utvider vi modellen, og ser p̊a et scenario der innmatingstariffen blir fjernet

med tilbakevirkende kraft slik at produsenter må selge elektrisitet i markedet. Vi viser

at hvis den politiske usikkerheten er høy, vil en økning i innmatingstariff ikke p̊avirke

investeringsaktiviteten i særlig grad. Derimot, hvis den politiske usikkerheten er lav, kan

innmatingstariffer være svært effektive for å øke investeringsaktiviteten, selv i volatile

kraftmarkeder.
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1 Introduction

We consider an investment in a renewable energy (RE) project. Policy uncertainty1 in the

form of adverse revisions of support schemes, has a large impact on RE investments. It

is therefore important that investors try to assess this risk through learning. In standard

real option models, learning is an implicit consequence of postponing investment. We

allow for a more realistic modeling of the investment environment, where information is

received, processed and incorporated into the decision making.

The member states of the European Union have agreed to reduce the emission of

greenhouse gases substantially by 2050. Specific targets, like EU2020 and EU2030, have

been set in order to reach this long-term goal. One of the objectives of The European

Strategic Energy Technology Plan (SET-Plan) is to accelerate investments in renewable

energy technologies. As a consequence of the deregulation of the electricity markets in

Europe, it is private investors with an objective of maximizing profit who choose whether

to invest in an RE project or not (Abadie and Chamorro, 2014). At the same time, the

costs of electricity generation from most renewable energy sources are significantly above

average European market prices of electricity (Klessmann et al., 2013). Therefore, several

European countries have changed their policies and introduced various support schemes

to ensure competitiveness of renewable energy production and encourage investment.

Support schemes can be characterized as either quantity-driven2 or price-driven3. The

price-driven feed-in schemes are the most commonly used support mechanism. In 2015

nearly 80 countries had employed feed-in tariffs (FIT) as support policy (REN21, 2015).

FITs are considered to be the most effective scheme for accelerating development of re-

newable energy sources (Couture and Gagnon (2010); del Rio and Mir-Artigues (2012);

Ritzenhofen and Spinler (2016)).

Under a FIT scheme, producers are often guaranteed a market independent and fixed

price for every unit of electricity generated, over the lifetime of a project (Couture and

Gagnon, 2010). However, the problem for investors is that unexpected and retroactive

revisions of vital subsidy payments have occurred in several countries during the last years

(REN21, 2015). Underlying factors for revisions include changes of government, budget

constraints and the fact that investment targets have already been met. When targets

are met, incentives for accelerating investment are not required anymore.

In Bulgaria, Germany, Greece, Italy, and Switzerland, the FIT rate was reduced during

2014, and in Ukraine, the tax exemption for companies that sell renewable electricity has

1In line with other research in this field (e.g. Boomsma and Linnerud (2015); Ritzenhofen and Spinler
(2016); Yang et al. (2008)), the terms ”uncertainty” and ”risk” will be used interchangeably in this paper.

2Quantity-driven schemes include electricity certificates, where producers of renewable energy are
given a number of certificates based on the quantity of electricity supplied to the market.

3Price-driven schemes include feed-in schemes, which can be implemented either as a price premium
paid on top of the electricity price, or as a fixed tariff paid to producers instead of the electricity price.
The fixed tariff is independent of the electricity price.
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been removed (REN21, 2015). In Spain, Belgium, the Czech Republic, Bulgaria and

Greece, the size of subsidy payments was retroactively adjusted, thereby reducing the

profitability of already operating plants (Boomsma and Linnerud, 2015).

According to an estimate, the revision in Spain caused a 40 % cut in expected income

for a large amount of RE projects (The Institute of Energy for South East Europe, 2014).

These cuts made the investors unable to meet their debt payments. As a consequence,

several lawsuits against the Spanish government were filed. In one lawsuit it was concluded

that plaintiff investors could not legitimately expect the FIT scheme to remain unchanged

throughout the life of their RE plants, and that the investors could have easily foreseen

the prospect of a revision.

The possibility of an unexpected subsidy revision has introduced a new source of

uncertainty for investors, since the profitability of RE investments is largely or entirely

dependent on consistent government policy (Helm et al., 2003). White et al. (2013) states

that policy uncertainty is a significant challenge for actors in the renewable energy sector.

This is in line with Europe’s largest producer of renewable energy, Statkraft, who states in

its annual report of 2014 that uncertainty related to framework conditions, such as taxes,

fees and political regulations are highly accentuated in investment decisions (Statkraft,

2014). This is consistent with Canada’s Rural Partnership, who states the importance

of policy support being consistent, long term, and predictable to avoid boom and bust

cycles4 (White et al., 2013). Investors’ subjective belief regarding a change in support

policy is therefore of great importance for investment decisions in the renewable energy

sector.

For investors it is important to acquire experience on how to learn effectively about

policy uncertainty in the energy sector (Fuss et al., 2008). Fuss et al. (2009) find that

increasing policy uncertainty leads to an increase in the expected value of information. As

changes in policies may be harmful to investors, it is reasonable to assume that investors

try to learn about the likelihood of policy revision or retraction. This is in accordance

with White et al. (2013), who argue that a prognosis for future policies must be made

before investments are carried out.

In our model, a risk-neutral profit maximizing investor has the option to invest in

an RE project. Motivated by recently observed revisions, we examine a situation where

an adverse retroactive transition between two regimes of fixed FIT is expected. The

transition can be thought of as a downward adjustment of FIT received by RE produc-

ers. Furthermore, we extend the model and analyze a scenario where investors expect

a retroactive transition from a regime of fixed FIT to a free-market regime, where the

electricity produced must be sold on the spot or futures market at a price that varies over

time.

4Boom and bust cycles involve periods with high investment rates followed by periods with significantly
lower investment rates.
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Similar to Boomsma et al. (2012), Adkins and Paxson (2016), Boomsma and Lin-

nerud (2015) and Ritzenhofen and Spinler (2016), we consider a single subsidy revision.

Our model distinguishes itself from the formerly mentioned in that the transition rate

between the subsidy regimes is unknown. Through Bayesian learning, the investor up-

dates her subjective belief about the value of the transition rate, based on the arrival of

exogenous signals. This is a problem of sequential hypothesis testing, where observations

are made until a hypothesis is accepted, and must not be confused with a quickest detec-

tion problem, where the goal is to detect a change in an observed process as quickly as

possible. Specifically, we consider a fixed but unknown transition rate and not a changing

and unknown rate.

The specification of active learning varies among researchers. In this work, we define

the processing of new information and explicit updating of belief in the decision making as

active learning. This terminology corresponds with Martzoukos (2003), who uses the term

active learning for actions that improve the information available to investors and/or add

value. In our context, observations and research of markets and framework conditions give

rise to active learning. Kolstad (1996) and Kelly and Kolstad (1999) use a more narrow

definition of active learning, and refer to this terminology when the rate of information

arrival can in some degree be influenced. The authors use passive learning for exogenous

arrival of information.

A real options approach allows us to acknowledge the characteristics of RE invest-

ments. First, investment costs are often considered project specific and therefore sunk.

Second, the project value is uncertain, and depends on factors such as fluctuating elec-

tricity prices and changing subsidy schemes. Third, the investor can choose to postpone

the project if the current framework conditions do not justify immediate investment. The

investor has an option to invest in the project, i.e. the right, but not the obligation to

invest.

This approach is further motivated by a recent study by Linnerud et al. (2014) who

suggest that the investment behavior of professional investors in RE projects reflects real

options investment rules, and that uncertainty associated with support schemes delays

investment.

A model formulation assuming retroactive policy revisions and endogenous likelihood

and timing of a revision, is an area for further analysis according to Ritzenhofen and

Spinler (2016). Our model is a step in this direction. Assuming non-retroactive policy

revisions may no longer be realistic (Ritzenhofen and Spinler, 2016).

The goal of this paper is to examine how learning affects investor’s behavior under

policy uncertainty. In standard real options models, the value of the underlying project

often varies according to a stochastic variable, e.g. electricity price. In our model, the

value of the underlying project is not stochastic. Therefore, the value of the option to

invest varies only with a stochastic belief process, describing the investor’s expectation
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about the lifetime of the currently high FIT scheme. The explicit opportunity to learn

about the lifetime of the subsidy scheme, motivates the investor to postpone investment.

An analytical expression for the option value is found, based on the method of Frobe-

nius. The application of this method is relatively new in the financial literature (Pinto

et al., 2009).

In an extension of our model, the value of the option to invest varies in both the

stochastic belief process and the stochastic electricity price. Volatility in electricity prices

and the opportunity to learn about the policy uncertainty, motivates the investor to

postpone investment. We derive a system of second order partial differential equations

(PDE) that the option to invest must satisfy. The complexity of this system does not

allow the derivation of an analytical solution, and must be solved by numerical methods.

We apply the finite element method (FEM), which has been widely used in other fields

of science and engineering (Andalaft-Chacur et al., 2011).

To analyze the results of our model we present a case study based on a wind power

project in Europe. Sensitivity in the option value and the investment threshold is then

examined for selected parameters. The optimal investment strategy is characterized by a

threshold on the probabilistic belief of the high FIT scheme having a long lifespan. In the

extended model, the investment decision is dependent on both this probabilistic belief and

the electricity price. We find that the investment threshold increases in the arrival rate

of a policy change. Hence, investors are more hesitant to invest when a subsidy scheme

is expected to be short-lived compared to an RE project’s lifetime. Investors who choose

to invest will prefer a low FIT with a long expected lifespan, over a higher FIT with a

shorter lifespan. When a termination of the FIT scheme is expected at some point in

time, high volatility in electricity prices has little effect on the investment decision if the

perceived policy uncertainty is low.

Our results also contribute with valuable insight to policy makers. Uncertainty related

to support schemes might drive the renewable energy sector in an unintentional direction.

If a transition to a free market is expected, the investor’s perception of policy uncertainty

significantly affects the investment rate. White et al. (2013) state that sudden, unexpected

policy changes make it more challenging to attract investors.

We conclude that policy makers can have a large impact on the investment rate by

a relatively small change in the FIT, when the policy uncertainty is low. The effect is

significantly lower when the policy uncertainty is high, so a more generous subsidy is

required to achieve the same investment rate. Active learning can greatly reduce the

perceived policy uncertainty, and thereby increase the effectiveness of subsidy schemes.

According to the European Commission (2015), the energy system in Europe is under-

performing, and the current market design is not able to facilitate sufficient investment.
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2 Literature review

Real options theory has been applied by several authors to problems regarding uncertain

market conditions and policy change in the energy sector. With this work we contribute to

two strands of literature. First, we extend the traditional real options model by including

exogenous arrival of information in the decision making. Second, we allow for a more

realistic analysis of RE investments under policy uncertainty, by including an evolving

subjective belief about the timing of a policy revision.

Fuss et al. (2008) analyze the effects of market and policy uncertainty on investment

in a coal-fired electricity generation facility. The price of electricity and CO2 are assumed

to be stochastic. Policy uncertainty is incorporated by an uncertain drift rate in the

price process of CO2, and the true value is revealed at a given date. The authors find

that investors will postpone their decision until the true value of the drift of CO2 prices

is revealed. The results indicate that uncertainty related to government policies affects

investment decisions more than uncertainty in market prices.

Boomsma et al. (2012) examine investment timing and capacity choice under three

stochastic variables; capital cost, electricity price and subsidy payment. They analyze

subsidies in the form of feed-in tariffs and energy certificates. In addition, the authors

look at the possibility of a shift from one support scheme to another, where the change

is modeled by Markov switching. With policy risk, it is shown that the project value

under the current scheme depends on the value under the alternative scheme and the

transition probability. Compared to the case without policy risk, the risk exposure of

energy investors increases. Numerical results show that the value of waiting is higher

when policy uncertainty is present compared to the static case.

Adkins and Paxson (2016) consider a perpetual option to construct a renewable energy

facility at a fixed investment cost. Both the amount of electricity sold and the price per

unit of electricity follow geometric Brownian motions. The authors compare the effective-

ness of different subsidy schemes. A Poisson jump process with a constant intensity factor

is used to model a sudden introduction or retraction of subsidies. It is shown that the

option value always is greater in the presence of a government subsidy than in its absence.

They argue that a subsidy having unexpected withdrawal motivates earlier investment,

compared to the case without subsidies.

Closest to our paper is the work of Boomsma and Linnerud (2015) and Ritzenhofen

and Spinler (2016).

Boomsma and Linnerud (2015) examine how investors in energy projects respond to

possible termination or revision of current support schemes. Policy uncertainty is modeled

as a Markov process with a given jump intensity. They show that the risk of subsidy

retraction will slow down the investment rate if it is retroactively applied, but otherwise

increase the rate. The authors also conclude that policy uncertainty may add substantial
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risk to investments in the energy sector.

Ritzenhofen and Spinler (2016) consider a regime switching model, in which regula-

tors are considering a shift from a FIT scheme to a free market regime. They apply a

lattice approach to model the regime switching situation, where a pentanomial lattice

is constructed to reflect the combined development of the underlying project under two

different regimes. Their results suggest that policy uncertainty has little impact on in-

vestment projects when current FIT regimes are sufficiently attractive. In contrast, when

FIT levels are near electricity market prices, regulatory uncertainty reduces the invest-

ment rate.

Motivated by the recent revisions of support schemes in Europe, we consider, in con-

trast to Ritzenhofen and Spinler (2016), a model with retroactive revision.

Neither of the aforementioned papers consider learning. Within a framework using a

time homogeneous Markov process or a Poisson jump process to model policy changes, the

implicit assumption is made that investors have no information regarding the dynamics

governing the changing policy scheme. Our paper aims to contribute to the existing

literature on policy uncertainty in the renewable energy sector by incorporating Bayesian

learning in the investment decision.

Learning in the real options literature can be characterized by how information arrives

and what generates the information. Learning may be continuous in the sense that at

every point in time some probabilistic belief changes, or discrete in the sense that changes

only occur at discrete points in time. Information can be generated by a process directly

related to the underlying, such as a price or profit process. Alternatively, information

arrives independent of the underlying from some exogenous source, such as news or market

research.

Pawlina and Kort (2005) analyze the case where a policy change arrives when a

stochastic state variable reaches a certain trigger level. The decision maker has incomplete

information and knows only the probability distribution of the state variable, and not the

trigger level itself. Based on the realization of the state variable and whether or not a

policy change has occurred, the decision maker updates her belief about the probability

of a policy change. They show that there is a non-monotonic relationship between the

optimal investment threshold and the trigger level uncertainty. When the uncertainty

is high, the threshold increases with the uncertainty, and the opposite is true when the

uncertainty is low.

Harrison and Sunar (2015) examine investment planning in a continuous-time Bayesian

framework. A firm is considering investment in a project with unknown value. However,

the uncertainty about project value can be reduced by several means of learning. Infor-

mation gathering in any learning mode follows a Brownian motion with exogenously given

drift and incurs a given cost. The optimal learning policy is dependent on the drift and

corresponding cost of a learning mode, versus the signal quality. As our model, this can
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also be classified as a sequential testing problem.

Jensen (1982) develops a model on the adoption behavior of a firm facing the option to

invest in a new innovation. The probability of the innovation being profitable is unknown.

In each time period the decision maker receives a signal indicating the profitability of the

project, and the probabilistic belief is updated in a Bayesian manner. A positive signal

increases both the belief in a good project and the probability of receiving a positive

signal the next period.

Thijssen et al. (2004) examine a firm with the option to invest in a project of unknown

profitability. The decision maker has a prior belief of the project being profitable. The

belief is updated based on the arrival of signals indicating the profitability of the project.

Arrival of signals follows a Poisson process and signals can be both good or bad, and

accurate or inaccurate. Contrary to Jensen (1982), the quality of the signals is independent

of the past. An explicit expression for the critical value of the belief process is obtained.

Our starting point is discrete arrival of signals, as in Thijssen et al. (2004). However,

we use a random walk approximation to derive a stochastic differential equation (SDE)

describing the investor’s belief process where the arrival of signals is continuous. Shiryaev

(1967) and Peskir and Shiryaev (2006) obtain an SDE which is similar to ours, when

studying the problem of minimizing the cost of error when sequentially testing a hypothesis

on the unknown drift rate of a one-dimensional Brownian motion. Further, the SDE

of Shiryaev (1967) is the starting point for Ryan and Lippman (2003) and Kwon and

Lippman (2011) in analyzing decision making under Bayesian learning. Both formulate

their sequential hypothesis testing problem as an optimal stopping problem.

Kwon and Lippman (2011) study a pilot project, with an option to expand or abandon.

The cumulative profit of the project follows an arithmetic Brownian motion. Based on

the observed profit stream, a Bayesian framework is used to update the probability that

the drift rate of the profit is either in a high or low state. The investor has to decide

whether to abandon or expand the pilot project. The optimal decision policy is given by

two thresholds for the posterior probability; a lower for abandonment and a higher for

expansion.

Ryan and Lippman (2003) analyze optimal abandonment policy for an ongoing project

whose profit stream is subject to imperfect information. Cumulative profit is modeled as

an arithmetic Brownian motion, where the drift is either a positive or a negative constant.

The investor has an initial probabilistic belief of the profit process having a positive drift

rate. Based on observations of the realized profit, the decision maker updates the posterior

probability regarding the value of the drift.

Learning related to energy has, to the best of our knowledge, only examined learning

in relation to global warming over time. Examples include Kolstad (1996) and Kelly and

Kolstad (1999).

Kolstad (1996) examines optimal climate-related policy, where the damage due to
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global warming is uncertain. The focus is to reduce this uncertainty about CO2-related

damages through learning. The world is modeled as having a finite set of states, and

there is a finite set of exogenous signals that can arrive for each state. Learning evolves

according to the arrival of these signals. Their numerical results show that the effect

of irreversible abatement capital is stronger than the effect of irreversible environmental

damages.

Kelly and Kolstad (1999) model the relationship between greenhouse gas levels and

global mean temperature in a Bayesian framework. Based on observations of the climate

records, agents update their belief about the state of the uncertain climate response

parameter. The authors show that the rate at which agents can detect evidence of climate

changes, depends on the noise in realized temperature and on the emission policy.

To the best of our knowledge, we are the first to consider Bayesian learning and policy

uncertainty in green investments.
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3 Model

We consider a continuous time model, where time is denoted by t ≥ 0. A risk neutral and

profit maximizing investor has the option to invest in an RE project. At some random

point in time, regulators are expected to revise the current subsidy scheme. The current

fixed FIT scheme offers a subsidy payment of K0, while the subsequent scheme will offer

a subsidy payment of K1. A change is adverse to investors so that K0 > K1.

The state of the world can be in one of two states, a Good state or a Bad state,

denoted by G and B respectively. In the Good state, the duration of the current subsidy

scheme is expected to be long. Conversely, the lifespan of the current subsidy scheme is

expected to be short in the Bad state. Thus, by using λ as notation for the arrival rate

of a subsidy change, we have λB > λG > 0.

The true state of the world is not known to the investor ex-ante. At time t, the

probabilistic belief of being in state G is given by the belief process Xt ∈ [0, 1] so that

P(Good) = Xt and P (Bad) = 1−Xt. The investor has a subjective prior belief X0. For

ease of notation, we will usually drop the subscript t on X.

To improve the chances of making the best possible decision, the investor should

exploit all available information about the true state of the world. Information can be

drawn from numerous sources, such as news and media sources, observation of the political

environment, communication with other investors and the actions of other players in the

market. Each piece of information can be interpreted as a positive or negative signal that

either strengthens or weakens a hypothesis that the investor has about the likelihood of

policy change. To simplify, we assume that the investor can observe one aggregate stream

of such signals, comprising of the different sources of information. Similarly to Harrison

and Sunar (2015), we assume that the frequency of signal arrivals is sufficient to model the

situation as a Brownian motion where signals arrive continuously. Following a Bayesian

approach, the signals are used to update the investor’s belief about the world.

When X is high, the investor expects the current subsidy scheme to be long-lived and

that there is a low risk of an adverse revision. Learning is modeled as a change in X, such

that the perceived policy uncertainty will vary over time.

In the following, we start by deriving and explaining the learning process in Section

3.1. In Section 3.2, we introduce how policy uncertainty is modeled. In Section 3.3, the

model of a private investor updating the subjective belief of a policy change is introduced.
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3.1 Derivation of the belief process

To construct the Brownian motion we follow Dixit (1993), starting with a random walk

approximation and then look at the limit as the time steps become infinitesimally small.

In each time step, a positive or negative signal is received. The probability of receiving

a correct signal about the true state of the world, is p > 1
2
.5

P (Pos | Good) P (Neg | Good)

P (Pos | Bad) P (Neg | Bad)

 =

 p 1− p

1− p p

 .
Given the prior belief at time t, P (Good) = Xt, the process evolves according to Bayes’

rule,

P (Good | Pos) P (Good | Neg)

P (Bad | Pos) P (Bad | Neg)

 =

 pXt

pXt+(1−p) (1−Xt)
(1−p)Xt

(1−p)Xt+p (1−Xt)

(1−p) (1−Xt)
pXt+(1−p) (1−Xt)

p (1−Xt)
(1−p)·Xt+p (1−Xt)

 .
Thus, the belief of being in the Good state after the arrival of one signal can be

expressed as

Xt+∆t =


pXt

pXt + (1− p) (1−Xt)
if Pos signal,

(1− p)Xt

(1− p)Xt + p (1−Xt)
if Neg signal.

We want a convenient way to express the current value of the process in terms of the

previously realized values. We therefore consider the probability ratio process defined as

Zt = Xt

1−Xt
, which gives

Zt+∆t =


p

1− p
· Zt if Pos signal,

1− p
p
· Zt if Neg signal.

However, it is difficult to compute the expectation and variance of the product of a

sequence of random variables. So, instead we consider the logarithm of the probability

ratio process, defined as Yt = lnZt = ln Xt

1−Xt
so that

5If p < 1
2 , the same analysis can be done by replacing p with 1−p. If p = 1

2 , the signals have no value,
and the investor faces a now-or-never decision, by the net present value rule and using the prior belief
X0.
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Yt+∆t =


Yt + ln

(
p

1− p

)
if Pos signal,

Yt − ln

(
p

1− p

)
if Neg signal.

So far we have only considered the evolution over one time step. Using a binomial

tree, we now consider the evolution over a time interval [0, T ] which we divide into n time

steps of equal length ∆t, so that n = T
∆t

. We define time step i to be [(i− 1)∆t, i∆t].

Figure 2: Binomial tree showing the possible paths of Y over two time steps.

Since the dynamics of the process are different depending on the state of the world,

we treat the Good state and the Bad state separately.

At time t = 0, given that the state is good, the process starts evolving according to

the following scheme: Yt+∆t = Yt + ∆y with probability p, and Yt+∆t = Yt − ∆y with

probability 1− p, where ∆y = ln
(

p
1−p

)
. The increments of the process are independent.

Let (Zi)
n
i=1 be a sequence of independent Bernoulli random variables such that P (Zi =

1) = p and P (Zi = −1) = 1− p.
Then for some initial value, Y0 = y0, the process can be expressed as the sum of

Bernoulli random variables

YT = y0 + ∆y
n∑
i=1

Zi.

Since the increments of the process are independent, the expectation and variance over

11



the time horizon are given by (see Appendix A)

E [YT − Y0] =
T

∆t
∆y (2p− 1) ,

V ar (YT − Y0) =
T

∆t
(∆y)2 4p(1− p).

While keeping the time horizon fixed at T we let n approach infinity in such a way

that the process (Yi)
n
i=1 converges to a continuous-time limit (Yt)t∈[0, T ], where E[YT ] = µT

and V ar(YT ) = σ2T . To accomplish this, we choose the parameters ∆y and p such that

the expectation and variance stay finite while taking the limit, that is

lim
∆t→0

T

∆t
∆y(2p− 1) = µT,

lim
∆t→0

T

∆t
(∆y)24p(1− p) = σ2T.

For this to hold, we must have (∆y)2

∆t
= σ2, which yields

∆y = σ
√

∆t, (3.1)

p =
eσ
√

∆t

1 + eσ
√

∆t
. (3.2)

The process converges to an arithmetic Brownian motion with the desired properties,

given that the step size and probability are consistent with (3.1) and (3.2) (see Appendix

B). Similarly we find, by interchanging the probabilities for up and down increments, the

process given the bad state, so that

dY =


µ dt+ σ dW Good state,

−µ dt+ σ dW Bad state.

where dW is the increment of a Wiener process6. Applying Itô’s Lemma (see Appendix

C), we obtain

dX =


σ2X(1−X)2 dt+ σX(1−X) dW Good state,

−σ2X2(1−X) dt+ σX(1−X) dW Bad state.

By symmetry, the Bellman equation is the same regardless of the state of the world

(see Appendix D), which allows us to only consider

dX = σXX(1−X) dW. (3.3)

6Also called standard Brownian motion.
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where the substitution, σ = σX , is made to avoid confusion later.

Some observations can be made from Equation (3.3), where we interpret dX as the

rate of learning. It is evident that the rate of change in the posterior belief is governed

by the value of σXX(1−X). Firstly, the rate of learning increases as the signal strength,

σX , increases, because each individual signal carries more information. Secondly, the term

X(1−X) reaches its maximum at X = 1
2
, which means that the rate of learning is highest

when the investor has an equal belief of being in either state. Lastly, the rate of learning

decreases as X moves toward its upper or lower bound. If X = 0 or X = 1, then dX = 0

and the process is in an absorbing state.

3.2 Policy uncertainty

Policy uncertainty involves the possibility of a change or termination of the current sup-

port scheme. These events occur at discrete points in time, and policy uncertainty is

modeled as a Markov process, (δt)t≥0, with two regimes {0, 1}, such that

δt =


1, if a policy change has occurred in the time interval [0, t),

0, otherwise,

with δ0 = 0.

Subsidies are normally intended to accelerate investments, as a step to meet production

goals from renewable sources. As technology becomes more mature and cost-effective, and

production goals are met, the need for high subsidy payments decreases. Reduction of

subsidy payments are therefore permanent, and will not be followed by an increase to

previous levels. We only consider one revision, as Boomsma and Linnerud (2015) and

Ritzenhofen and Spinler (2016). If the relevant costs continue to decrease in the long-run,

several revisions might however be expected.

The transition rates of the Markov process are denoted by λij, where

λij =


λ if i = 0, j = 1,

0 if i = 1, j = 0,

and λ ∈ {λG, λB}.
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3.3 Model formulation

When an investor has obtained a license to develop and operate a power plant, she owns

the exclusive right to install the project within a given time frame. For analytical tractabil-

ity we assume that once granted, this exclusive right will be available forever.7

Similar to Boomsma and Linnerud (2015) and Ritzenhofen and Spinler (2016), we

assume that the lifetime of the project is finite and denoted by T , construction is instan-

taneous and the generating capacity is exogenous. The expected production is constant,

and there is no operational flexibility or other options embedded in the facility.

Renewable electricity generation is largely dependent on weather conditions, mak-

ing production highly variable in both short- and medium-term. However, according to

Boomsma et al. (2012), production is less variable in the longer time scales, e.g. yearly.

Less variation in production in the long-term justifies the assumption of constant expected

production.

In contrast to conventional power plants, most of the costs of owning and operating

RE plants are known with great certainty prior to investment (European Wind Energy

Association, 2009). For wind, solar and hydropower, the operation and maintenance

(O&M) costs are relatively low since the energy input is freely available. Capital costs as

interest and depreciation can be predicted with a high accuracy at the time of investment,

and are known for sure once the plant is built and financed. Therefore, the risk is low

with regards to cost assessments in RE plants.

In the current research in this field, O&M costs are often assumed constant and in-

cluded in the investment cost, as in Boomsma and Linnerud (2015), or neglected, as in

Fleten et al. (2007). We assume constant operating costs and can therefore include them

in the irreversible and fixed investment cost denoted by I.

Electricity markets may be considered incomplete due to lack of suitable hedging

instruments for volume risk and risk of revision/retraction of the current support scheme

(Boomsma et al., 2012; Boomsma and Linnerud, 2015). As a consequence, risk-neutral

valuation may not be possible. We therefore assume an exogenously given real discount

rate, denoted by r.

The investor is a price-taker in the relevant markets. Furthermore, we consider sub-

sidies in the form of fixed FIT payments. However, we believe the model easily can be

extended to include static FIT degression.

7A project where the investment decision must be made within a finite amount of time usually demand
a numerical solution, as seen in e.g. Ritzenhofen and Spinler (2016).
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3.3.1 Transition between two regimes of FIT

We consider two regimes, which are characterized by the subsidy scheme in place,

• Regime 0: A change in FIT payment has not yet occurred, the project value is

denoted by V0(X), the option to invest is denoted by F0(X) and the instantaneous

revenue is denoted K0,

• Regime 1: A change in FIT payment has occurred, the project value is denoted by

V1, the option to invest is denoted by F1 and the instantaneous revenue is denoted

K1, where K1 < K0.

Figure 3: Illustration of the transition between the two regimes. Under regime 0 the FIT
payment is K0 and under regime 1 the FIT payment is K1. The transition rate,
λ ∈ {λG, λB}, is unknown to the investor.

With retroactive revision of the subsidy scheme and starting in regime 0, for a given

λ, the project value, calculated as revenue per MWh of electricity produced, is given by

V0 = E
[∫ T

0

K01{δt=0}e
−rt dt

∣∣∣ δ0 = 0

]
+ E

[∫ T

0

K11{δt=1}e
−rt dt

∣∣∣ δ0 = 0

]

= K0

∫ T

0

e−rtP (δt = 0) dt+K1

∫ T

0

e−rtP (δt = 1) dt

= K0

∫ T

0

e−rt
(
1− 1 + e−λt

)
dt+K1

∫ T

0

e−rt
(
1− e−λt

)
dt

= K0
1− e−(r+λ)T

r + λ
+K1

[
1− e−rT

r
− 1− e−(r+λ)T

r + λ

]
.

The third equality holds since the time to termination is exponentially distributed.

Under regime 1, the project value is given by

V1 = E
[∫ T

0

K1e
−rt dt

∣∣∣ δt = 1

]
(3.4)

= K1

[
1− e−rT

r

]
.
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For δt = 0, the belief of being in the Good state at time t is given by the process Xt,

P (Good) = P (λ = λG) = Xt,

P (Bad) = P (λ = λB) = 1−Xt.

Starting in regime 0, and considering the two possible transition probabilities, the

expected value of the project is

V0(X) = X

[
K0

1− e−(r+λG)T

r + λG
+K1

(
1− e−rT

r
− 1− e−(r+λG)T

r + λG

)]

+ (1−X)

[
K0

1− e−(r+λB)T

r + λB
+K1

(
1− e−rT

r
− 1− e−(r+λB)T

r + λB

)]
.

(3.5)

We assume that V0(0)− I < 0, otherwise there would be no value of waiting and the

investor would invest as long as the net present value (NPV) is positive. This assumption

is further motivated by the retroactive changes of the subsidy regime in 2014 in Spain,

which led to a significant decrease in profitability for RE producers and a drastic slowdown

in investments (CSPWorld (2014); REN21 (2015)).

At every point in time the investor has to decide whether to invest, paying the in-

vestment cost I and start accumulating profits in accordance with V0(X), or to delay

investment and continue learning.

We want to find the threshold of the subjective belief at which it is optimal to invest,

X∗, i.e. the free-boundary of the continuation region. The free-boundary separates the

continuation region from the stopping region. In the continuation region, X < X∗, post-

poning investment and learning is more valuable than immediate investment. Therefore,

the option value is higher than the expected payoff from immediate investment and the

optimal decision is to postpone. In the stopping region, X ≥ X∗, the expected gain

from immediate investment is greater than or equal to the option value, and the optimal

decision is to invest.

Starting in regime 0, the value of the option to invest must satisfy the Bellman equa-

tion, which represents the two choices available to the investor

F0(X) = max

{
V0(X)− I, E [1− λ dt]

1 + r dt
E
[
F0(X + dX)

]
+

E [λ dt]

1 + r dt
E
[
F1

]}
.

In the continuation region, the following must hold

(1 + r dt)F0 = E [1− λ dt]E [F0 + dF0] + E [λ dt]E [F1] .
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where

F1 = max {V1 − I, 0} = 0,

and

E [λ] = XλG + (1−X)λB.

The probability of a change in subsidy payment during a short time interval dt is

E [λ dt], and the probability that a change will not occur is E [1− λ dt]. In regime 1,

the revenue is a fixed tariff of K1 for the remaining lifetime of the facility. The fixed

tariff makes the option to postpone investment worthless, since there is no uncertainty.

In addition, the net present value is assumed to be negative, therefore the value of the

option to invest in regime 1 is zero.

Applying Itô’s lemma and rearranging terms, we obtain the following second order

linear ODE (see Appendix D), which holds when continuation is optimal

1

2
σ2
XX

2(1−X)2∂
2F0

∂X2
−
(
XλG + (1−X)λB + r

)
F0 = 0, (3.6)

Equation (3.6) does not have a closed form solution. The differential equation is

singular at X = 0 and X = 1, thus no solution exists for these values of X. We are,

however, only interested in a solution on the interval X ∈ (0, 1), since X = 0 and X = 1

are absorbing and not reachable from any other state.

We find an analytical solution in the form of a power series (see Appendix E)

F0(X) = A1X
c

∞∑
n=0

an(c)Xn,

where

c =
1

2
+

√
1

4
+

2(λB + r)

σ2
X

,

and

a0(c) = 1,

a1(c) =
σ2c(c− 1)− λB + λG
1
2
σ2c(c+ 1)− λB − r

,

an(c) =
2[σ2

X(n+c−1)(n+c−2)−λB+λG]an−1(c)−[σ2
X(n+c−2)(n+c−3)] an−2(c)

σ2
X(n+c)(n+c−1)−2(λB+r)

, n ≥ 2.

Following Dixit and Pindyck (1994), the option to invest, F0(x), must satisfy the value-

matching and smooth pasting conditions given by Equation (3.7) and (3.8), respectively.

These equations allow us to solve for the investment threshold X∗ and the coefficient A1.
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Since the expression for F0(X) is not on a closed-form, some numerical technique must

be used.

F0(X∗) = V0(X∗)− I (3.7)

∂F0

∂X

∣∣∣∣
X=X∗

=
∂V0

∂X

∣∣∣∣
X=X∗

(3.8)

Pinto et al. (2009) also encounters a differential equation with no closed form solu-

tion, and they use a mixed analytical/numerical solution process based on the method of

Frobenius. As us, they solve the value-matching and smooth pasting conditions numeri-

cally.
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4 Numerical results

In this section we obtain the investment threshold and the option value numerically for a

case study based on a wind power project. We also examine sensitivity of the investment

threshold and option value to changes in selected parameters.

4.1 Case study

Our case study focuses on an investment in a single onshore wind turbine. Wind is

globally the most important source of renewable energy for electricity generation, and

onshore wind represents the largest fraction (REN21, 2015). Although we focus on a

single wind turbine, the results extend to for instance an investment in a wind park

containing several turbines or an investment in solar power. The parameter values used

in our calculations below are summarized in Table 1.

The parameters are based on a typical 2 MW wind turbine installed in Europe (Eu-

ropean Wind Energy Association, 2009). The investment cost and the project life of the

wind power turbine are set to I = 3 320 000 EUR and T = 20 years. The investment cost

include upfront costs and operations and maintenance (O&M) costs, and is calculated

using a risk-adjusted nominal discount rate of 7.5 %. The O&M costs are set equal to 15

EUR per MWh of generated electricity (McKenna et al., 2014). The capacity factor of

an electricity generating facility is the amount of electricity generated during a year di-

vided by the amount of electricity generated with the facility running at maximum power

output in all 8 760 hours of a year. For wind turbines the typical capacity factors are in

the range 20 – 35 %. We set the capacity factor to FCap = 30 %, which is in line with

Boccard (2009). The exact capacity factor of a plant can be estimated to a high degree

of accuracy by analytical tools and simulations, and will depend on e.g. wind conditions

and the specific technology used.

Our model is solved using dynamic programming, which entails setting an exogenous

risk-adjusted discount rate in the analysis. The risk-adjusted discount rate is calculated

as a sum of the risk-free interest rate and a risk premium reflecting the risk embedded

in the project. As Boomsma and Linnerud (2015), we set the risk adjusted real discount

rate equal to 5 %. The real discount rate corresponds to a nominal rate of 7.5 % and

an inflation rate of 2.5 %. Since I is constant over time, we implicitly assume that the

investment cost will grow with the inflation rate.

The FIT is K0 = 65 EUR/MWh and K1 = 30 EUR/MWh, for regime 0 and regime

1, respectively. The FIT under regime 0 is in line with the rates in Spain and Germany

as reported by the European Wind Energy Association (2009). The FIT under regime

1 corresponds to the average day-ahead price of electricity for the period April 2012 to

19



April 2016, based on weekly data from the Nordic electricity exchange Nord Pool8.

The transition rates are set to λG = 0.05 and λB = 0.2, implying an expected regime

change in 20 years and 5 years, respectively. Hence, in the Good state, the investor

expects to receive subsidy payments throughout the project lifetime.

The signal strength of the belief process is set to σX = 0.3. The signal strength affects

the rate of learning and the value of the option.

Table 1: Parameter values in base case.

Parameter Value Unit Description

I 3 320 000 EUR Investment cost
K0 65 EUR/MWh FIT in regime 0
K1 30 EUR/MWh FIT in regime 1
T 20 Years Lifetime of RE project
λG 0.05 - Rate of revision, Good state
λB 0.2 - Rate of revision, Bad state
σX 0.3 - Signal strength, belief process
r 0.05 - Real discount rate
Capacity 2 MW Capacity of power plant
FCap 0.3 - Capacity factor

4.2 Results

Based on the values in the presented case study (see Table 1), the investment threshold

and option value are calculated numerically.9

We obtain an investment threshold of X∗ = 0.799. Hence, the investor must have a

strong belief in the subsidies of regime 0 being long-lived before she is willing to invest.

We show in Figure 4 how the value of the option and the NPV varies with X. The

investment threshold, X∗, lies at the tangency point of the option value and the NPV.

In a now-or-never scenario, the investor will invest if X is greater than or equal to 0.693.

For lower values of X, the project will be rejected even though it might turn out to be

profitable at a later point in time.

The difference between the NPV of investing at the optimal threshold and investing

suboptimally, is called the value of waiting (Dixit and Pindyck, 1994).

We show that the NPV rule can be very misleading and that the value of waiting can

be substantial up to the optimal threshold (see Figure 4) .

8http://www.nordpoolspot.com - Nord Pool is Europe’s leading market for physical and financial
power contracts. The day-ahead market consists of about 360 buyers and sellers of power, and is the
main arena for trading. The electricity price is determined by supply and demand.

9All numerical results are obtained using MATLAB R2015a. F0(X) is expanded to n=1000 terms, so
that the error is of order << 10−10.
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Figure 4: Option value and NPV vs belief of being in the Good state.

4.3 Sensitivity analysis

In this section we examine the sensitivity of the option value and the investment threshold

to selected parameters, and discuss the implications for investors and policy makers.

4.3.1 Sensitivity in the signal strength

In this subsection we analyze how changes in the signal strength, σX , affects the investment

threshold and the option value.

One important difference between our model and standard real option models, is that

the option dynamics are governed by the evolution of the belief process and not by a

process related to the value of the project. A change in σX does not affect the value of

the project, but does affect the rate of learning. One can interpret σX as the amount of

information received per signal. With a higher information arrival, the rate of learning

increases, leading to a higher option value as illustrated in Figure 5a.

An increase in the signal strength results in a more volatile belief process, and the

belief of being in the Good state can therefore change quickly. For high σX it is more

likely that X reaches high values even when the true state of the world is Bad. The higher

rate of learning, and the possibility of a quickly changing belief, leads to an increase in

the investment threshold as shown in Figure 5b. When σX goes to zero, no information

arrives and there is no value of learning. Since the investor’s initial belief about the state

of the world will not change, she faces a now-or-never scenario with investment according

to the NPV rule.

Generally, in real option models, a higher investment threshold is associated with a
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lower investment rate (Dixit and Pindyck, 1994). In our model, the effects of a higher

or lower investment threshold are not as straightforward. The timing of the investment

decision depends on two effects, the rate of learning and the level of the investment

threshold. An increase in the investment threshold may be counteracted by an increase

in the rate of learning. We might therefore observe a higher investment rate at a higher

investment threshold.

The optimal policy of the investor is characterized by a single threshold. The expected

time to investment is infinite due to a positive probability that the belief process will never

reach this threshold (Kwon and Lippman, 2011). To illustrate how the investment rate

is affected by a change in the signal strength, we have run Monte Carlo simulations of

the probability process. Since the expected time to investment is infinite, the results are

relative, however suitable for our analysis. By discretizising X as given by Equation (3.3),

we have generated 10 000 sample paths of the belief process in the base case (Table 1),

with the initial belief, X0, set to 0.4.

We find that the relative time to investment is decreasing in σX (see simulations in

Figure 6). The increasing investment threshold is therefore offset by a higher rate of

learning, and the result is a higher investment rate.

In practice, high information arrival can correspond to a transparent government,

which clearly communicates the current and intended framework conditions to RE in-

vestors.

In the next sections, we will use that for constant σX , a lower investment threshold

corresponds to a higher investment rate.

(a) (b)

Figure 5: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the signal strength.
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Figure 6: Relative time to investment as a function of the signal strength.

4.3.2 Sensitivity in the investment cost

In the following we will analyze the sensitivity of the investment threshold and the option

value in the investment cost.

The investment threshold increases in the investment cost, see Figure 7b. This is

an intuitive and standard result in real options analysis. As the expected gain from

investment decreases, the investor must be more certain of the high FIT scheme being

long-lasting before investing.

Similarly, the option value naturally decreases in the investment cost. However the

optimal payoff is non-monotonic in the investment cost as seen in Figure 7a. For a

standard option to invest the relationship is monotonically increasing (Dixit and Pindyck,

1994). When the value of the underlying project is derived from an unbounded stochastic

variable, such as price, the optimal payoff can always increase to offset an increase in

the investment cost. In our model, the stochastic variable is a probability measure and

bounded between 0 and 1. Since the project value is static in both states of the world,

the expected value can not exceed the value in the Good state. The combination of the

bounded stochastic variable and the static value of the project leads to the non-monotonic

relationship.

One can see from Figure 7a and 7b that the option to learn only has value for a limited

range of investment costs. When the investment cost approaches the project value given

the Bad state, the potential loss from investment decreases. When the potential loss is

zero the investment threshold is X∗ = 0, which means that the investor would invest

immediately. The NPV in both the Good and the Bad state would be non-negative, and

there would be no downside from investing. By postponing investment the investor will

miss out on the higher revenues under regime 0. When the investment cost approaches

the project value in the Good state, the potential upside from investing goes to zero and

naturally the investment trigger goes to X∗ = 1. Investment would never happen, since
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(a) (b)

Figure 7: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the investment cost (in millions in (a)).

NPV in both states is less than or equal to zero.

From the perspective of an investor, uncertain payoff can be compensated by a reduc-

tion in investment cost. A lower total investment cost can either be achieved through lower

upfront costs or lower O&M costs. The investor will therefore invest at a lower subjective

belief if technology progress and/or additional subsidies reduce the investment cost. From

the perspective of policy makers, the investment rate can be influenced through subsidiz-

ing the investment cost by introducing for example tax credits. In the United States, RE

plants are subsidized through investment tax credits (ITC)10 and production tax credits

(PTC)11 (US Department of Energy (2015a), US Department of Energy (2015b)). Our

results indicate that reducing the total investment cost of investors by issuing ITC, lowers

the investment threshold and increase the investment rate in RE plants.

4.3.3 Sensitivity in the transition rates

In this section we analyze the sensitivity of the investment threshold and the option value

in the transition rates.

We start by examining the sensitivity in λG. There are two effects that cause the

option value to decrease in λG (see Figure 8a). First, a higher transition rate means that

a revision of the high FIT scheme is expected to arrive sooner. This effect makes it less

attractive to delay the investment. Second, as λG increases, the expected value of the

project goes to zero since the expected lifespan of regime 0 will go to zero.

If λG = 0, a revision of the subsidy scheme will never occur and the project would

10Investment tax credits allow eligible RE producers to subtract a percentage of the investment cost
from the amount of tax owed to the government, indirectly reducing the investment cost.

11Production tax credits reduces the tax owed to the government for eligible RE producers, based on
the amount of electricity produced.
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receive the high FIT throughout its lifetime, given that the world is in the Good state.

The difference between the NPV in the Good and the Bad state is largest, and the option

value is at its maximum, all else equal. In addition, postponement has no negative effect

and will eventually reveal which state the world is in. Therefore, the value of learning is

at its highest.

The investment threshold is affected by two opposing effects when λG increases. First,

the shorter expected time to a revision makes it less attractive to postpone investment.

As a consequence, the investment threshold decreases. Second, the expected value of the

project decreases, which causes the investment threshold to increase. The first effect is

always dominated by the second effect, as illustrated by the monotonic relationship in

Figure 8b.

In the following we examine the sensitivity in λB. As seen in Figure 9a and 10, the

sensitivity in λB and λG is similar. However, a change in λB does not affect the value of

the project in the Good state, and the value of waiting is non-monotonic in λB. As λB

increases, the expected lifespan of the high FIT scheme decreases, therefore the option to

postpone investment has less value. In effect, for large enough λB, it becomes costlier to

wait instead of investing (see Figure 9b).

The investment threshold increases in λB, by the same reasoning as for λG. From

equation (3.4) and (3.5), we see that the value in the Bad state approaches the value of

the project under regime 1 for large λB. Since the potential downside has a lower bound

and the NPV in the Good state is positive for all λB, the investment threshold is less

sensitive for larger λB.

(a) (b)

Figure 8: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the arrival rate of a policy change, given the Good state.
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(a) (b)

Figure 9: The figures (a) and (b) show the sensitivity of the option value to the arrival rate
of a policy change, given the Bad state. Plot (b) is zoomed in to illustrate the
non-monotonic optimal NPV.

Figure 10: Sensitivity of the investment threshold to the arrival rate of a policy change,
given the Bad state.

4.3.4 Sensitivity in the FIT

In this section we analyze how changes in the subsidy payments affect the option value

and the investment threshold.

We start by looking at the FIT level in regime 0. As shown in Figure 11a, the option

value increases in K0. This result is intuitive, since a higher K0 leads to a higher expected

value of the project. However, the optimal payoff is non-monotonic in K0, by the same

reasoning as for I.

The investment threshold decreases in K0 (see Figure 11b). As K0 decreases, the NPV

of the project in the Good state goes to zero, and the investor needs to be more certain

of regime 0 being long-lasting before investment.

The sensitivity in investment threshold and option value and the non-monotonic op-
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timal payoff is similar for K1, as shown in Figure 12a and 12b. As K1 increases, the

expected value of the project increases, and naturally the option to invest becomes more

valuable.

Since the expected project value in regime 1 increases in K1, the investment decision

is less dependent on the lifespan of the high FIT scheme. As a result, the investment

threshold decreases in K1.

(a) (b)

Figure 11: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the fixed feed-in tariff in regime 0.

(a) (b)

Figure 12: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the fixed feed-in tariff in regime 1.

4.3.5 Relationship between FIT and transition rate

The purpose of this subsection is to examine the relationship between the FIT payment

and the transition rates, while keeping the investment rate constant. The fixed investment
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rate corresponds to the investment threshold for the parameters in Table 1.12

We show the FIT payment needed for a constant investment threshold for different

transition rates in Figure 13, 14, 15a and 16a.

As previously stated, the investment trigger increases in the arrival rate and decreases

in the FIT level. Thus, in order to keep the investment trigger and investment rate

constant, an increase in λ must be offset by an increase in K, and vice versa. The

marginal required subsidy level decreases in λB (see Figures 13b and 14b). This result

follows from the fact that the investment trigger becomes less sensitive to changes in λB

as λB increases. Similarly, a diminishing increase in K1 for increasing λG is illustrated in

Figure 14a.

The results indicate that a lower subsidy payment, which is expected to be sustainable

in the long term, gives the same investment rate as a higher payment which is believed

to be less sustainable.

In figure 15b, we plot the expected NPV at the time of investment, V0(X∗) − I, for

the different combinations of K0, λG and λB found in Figure 15a.13 Interestingly, even

though the expected NPV at investment varies greatly for the different combinations of

subsidy payment and transition rates, the investment rate is the same. We find that the

expected NPV is higher for a combination of lower K0, λG and λB. This implies that an

investor who chooses to invest will prefer a lower subsidy payment for a longer horizon.

The expected NPV at the time of investment is lowest for high λG and low λB (see

15b). This combination of transition rates and K0, leads to the lowest difference between

the value of the project in the two states of the world. The NPV in the Good state is

positive and close to zero, and in the Bad state it is negative and close to zero. Therefore,

the increase in expected NPV is small for increasing X, and the value of waiting is low.

The combination of low NPVs and a low value of waiting leads to a low option value, and

correspondingly a low V0(X∗) − I. From the point of view of policy makers, a subsidy

scheme with this combination of a high λG, low λB and corresponding K0 gives the lowest

amount of FIT paid to RE producers. If policy makers are consistent in their policies,

the difference between λG and λB should be small. Hence, for policy makers it is in their

best interest to be consistent.

The same conclusions can be made by examining the relationship between K1 for a

given combination of λG and λB and the corresponding expected NPV at the time of

investment (see Figure 16a and 16b).

12X∗ = 0.799
13For a given combination of λG and λB , we find the necessary K0 for keeping the investment threshold

constant. Based on the investment threshold, X∗ = 0.799, we calculate V0(X∗) − I for this mix of K0,
λG and λB . The other parameters are given by Table 1.
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(a) (b)

Figure 13: The figures show the relationship between the fixed feed-in tariff in regime 0 and
the arrival rate of a policy change for a constant investment rate, given (a) the Good state
and (b) the Bad state.

(a) (b)

Figure 14: The figures show the relationship between the fixed feed-in tariff in regime 1 and
the arrival rate of a policy change for a constant investment rate, given (a) the Good state
and (b) the Bad state.
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(a) (b)

Figure 15: The figures show, for a constant investment rate, (a) the relationship between
K0, λG and λB and (b) the expected NPV at investment for different values of λG and λB
(and implicitly K0 as given in (a)).

(a) (b)

Figure 16: The figures show, for a constant investment rate, (a) the relationship between
K1, λG and λB and (b) the expected NPV at investment for different values of λG and λB
(and implicitly K1 as given in (a)).
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5 Model extension

So far we have considered a policy change in the form of a retroactive downward adjust-

ment of the FIT received by RE producers. In the following, we extend our model and

examine a scenario where investors expect an adverse retroactive transition from a regime

of FIT to a regime where electricity is sold in a free market. Investors are now exposed

to both the policy uncertainty and fluctuating electricity prices.

5.1 Model formulation

We still take the perspective of a single RE investor, and consider two regimes

• Regime 0: the termination has not yet occurred, project value denoted by V0(X,S),

option to invest denoted by F0(X,S) and instantaneous revenue denoted K,

• Regime 1: a termination of the subsidy scheme has occurred, project value denoted

by V1(S), option to invest denoted by F1(S) and instantaneous revenue at time t

denoted St.

Figure 17: Illustration of the transition between the two regimes. Under regime 0, the FIT
payment is K, and under regime 1 the electricity is sold on a free market at the spot price S.
The transition rate, λ ∈ {λG, λB}, is unknown to the investor.

We assume that the electricity price (St)t≥0 follows a geometric Brownian motion

(GBM), such that

dSt = µSSt dt+ σSSt dWSt,

where µS and σS are constants that represent the drift and volatility of the electricity

price, respectively, and dWSt is the increment of a Wiener process.14

While Lucia and Schwartz (2002) find that two factor models15 provide a better fit than

one factor models to the data of the Nordic electricity market, Nord Pool, Schwartz and

Smith (2000) claim that the short-term variations can be neglected for long-term invest-

ments. Similarly, when considering long-term commodity related investments, Pindyck

14For ease of notation, we will drop the subscript t on S in the following.
15In two factor models of energy prices, short-term variations are often assumed to follow a mean

reverting process and long-term variations are assumed to follow a GBM.
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(2001) states that the assumption of energy prices following a GBM will not lead to large

errors. Fleten et al. (2007) argue that an investment in an RE generation unit should

be treated as a long-term investment. Correspondingly, Fleten et al. (2007) assumes that

long-term electricity prices follow a GBM. Other research using a GBM to model electric-

ity prices include Boomsma and Linnerud (2015), Boomsma et al. (2012), and Ritzenhofen

and Spinler (2016).

The belief process is assumed to be independent of the electricity price, such that

E [dWXdWS] = 0. In addition, the policy change is independent of the electricity price.

With retroactive revision of the subsidy scheme and starting in regime 0, for a given

λ, the project value, calculated as revenue per MWh of electricity produced, is given by

V0(S) = E
[∫ T

0

K1{δt=0}e
−rt dt

∣∣∣ δ0 = 0

]
+ E

[∫ T

0

St1{δt=1}e
−rt dt

∣∣∣ S0 = S, δ0 = 0

]
= K

∫ T

0

e−rt P(δt = 0) dt+ S

∫ T

0

e−(r−µS)t P(δt = 1) dt

= K

∫ T

0

e−rt
(
1− 1 + e−λt

)
dt+ S

∫ T

0

e−(r−µS)t
(
1− e−λt

)
dt

= K
1− e−(r+λ)T

r + λ
+ S

(
1− e−(r−µS)T

r − µS
− 1− e−(r+λ−µS)T

r + λ− µS

)
.

The third equality holds since the time to termination is exponentially distributed.

Starting in regime 0, and considering the two possible transition rates, the expected

value of the project is equal to

V0(X,S) = X

[
K

1− e−(r+λG)T

r + λG
+ S

(
1− e−(r−µS)T

r − µS
− 1− e−(r+λG−µS)T

r + λG − µS

)]

+ (1−X)

[
K

1− e−(r+λB)T

r + λB
+ S

(
1− e−(r−µS)T

r − µS
− 1− e−(r+λB−µS)T

r + λB − µS

)]
.

Under regime 1, the project value is given by

V1(S) = E
[∫ T

0

Ste
−rt dt

∣∣∣ S0 = S, δt = 1

]
= S

[
1− e−(r−µS)T

r − µS

]
.

The value of the option to invest in the two regimes must then satisfy the following

Bellman equations

F0(X,S) = max

{
V0(X,S)−I, E[1− λ dt]

1 + r dt
E[F0(X+dX, S+dS)]+

E[λ dt]

1 + r dt
E[F1(S+dS)]

}
,
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F1(S) = max

{
V1(S)− I, 1

1 + r dt
E[F1(S + dS)]

}
.

Since the electricity price is stochastic, the option to invest under regime 1 has positive

value, in contrast to the model in Section 3.3.1.

Applying Itô’s lemma and rearranging terms, we obtain the following system of second

order partial differential equations (PDE), which holds when continuation is optimal

1

2
σ2
XX

2(1−X)2∂
2F0

∂X2
+

1

2
σ2
SS

2∂
2F0

∂S2
+ µSS

∂F0

∂S

−
(
XλG + (1−X)λB

)(
F0 − F1

)
− rF0 = 0, (5.1)

1

2
σ2
SS

2∂
2F1

∂S2
+ µSS

∂F1

∂S
− rF1 = 0. (5.2)

Equation (5.2) can be solved analytically to obtain (see Appendix F for details)

F1(S) = A1S
β1 . (5.3)

Let u = F0, x = X and s = S, then substituting (5.3) into (5.1) we get

a(x)
∂2u

∂x2
+ b(s)

∂2u

∂s2
+ c(s)

∂u

∂s
+ d(x)u+ e(x, s) = 0, (5.4)

with coefficients

a(x) =
1

2
σ2
xx

2(1− x)2,

b(s) =
1

2
σ2
ss

2,

c(s) = µss,

d(x) = (λB − λG)x− λB − r,

e(x, s) =
(

(λG − λB)x+ λB

)
A1s

β1 .

The resulting PDE (Equation (5.4)) is solved using the finite element method (FEM).

In order to use FEM, a bounded computational domain with appropriate boundary con-

ditions must be defined. The variable x is naturally bounded. s however, is not bounded

so we need to choose an upper bound, Smax, small enough to be computationally feasible,

and large enough so that the free-boundary is fully contained in the domain. The bound-

ary of the domain, ∂Ω, is divided into non-overlapping segments so that ∂Ω = ∪6
i=1Γi. We

impose Dirichlet type boundary conditions on all parts of the boundary (see Appendix F

for details and derivation).

Next, FEM require the PDE to be expressed in its variational form. To arrive at the

variational formulation we multiply Equation (5.4) with a test function v(x, s), defined to
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Figure 18: Domain Ω = (0, 1)× (0, Smax). Dashed line illustrates the
free-boundary/exercise boundary and separates the continuation region (light shade) and
stopping region (dark shade).

be zero on the Dirichlet boundaries, and integrate over the domain.∫
Ω

(
a(x)

∂u

∂x

∂v

∂x
+ b(s)

∂u

∂s

∂v

∂s

)
+

∫
Ω

∂a(x)

∂x

∂u

∂x
v

+

∫
Ω

(
∂b(s)

∂s
− c(s)

)
∂u

∂s
v =

∫
Ω

d(x)uv +

∫
Ω

e(x, s)v. (5.5)

The PDE is solved on the domain and the free-boundary is recovered by a level-set

method.

5.2 Numerical results

In this section, we solve the model presented in Section 5.1 numerically based on the case

study presented in Section 4.1.16 We also examine sensitivity in the investment threshold

to the volatility in electricity prices and the FIT level.

A retroactive termination of the FIT scheme will happen at a random point in time.

Following the termination, the electricity produced will be sold on a free market. The FIT

is set equal to K = 65 EUR/MWh. For the electricity price, we set µS = 0 and σS = 0.06,

as Boomsma and Linnerud (2015).17 Setting the drift term equal to zero implies that the

16The variational formulation (5.5) is solved by FEM using FreeFem++ (Hecht, 2012). Level-set and
plots have been made using MATLAB R2015a.

17Boomsma and Linnerud (2015) estimate σS by the annual standard deviation of the log returns
implied by average weekly prices of three-year forward contracts traded at NASDAQ OMX for the period
1 January 2005 to 30 April 2015.
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electricity price will grow according to the inflation rate. All other values are as in Table

1.

The optimal investment threshold is characterized by both the electricity price and

the investor’s belief in the FIT scheme being long-lived. In effect, the threshold for under-

taking investment, the free-boundary, is defined by a line that separates the continuation

region from the stopping region (see Figure 19). At each point in time, the investor

observes the electricity price, and must decide whether the combination of the expected

lifespan of the FIT scheme and electricity price justifies investment. The first time this

combination is at or above the free-boundary, the investor will choose to invest.

If the investor expects the lifespan of the FIT scheme to be short, a higher electricity

price is needed before she is willing to invest. Hence, we can conclude that either a high

electricity price or a high probabilistic belief of an attractive FIT scheme being long-lived,

is needed in order to motivate investment.

The effect of the FIT scheme on the investment behavior is largely dependent on the

perceived policy uncertainty. For high X, investors expect the lifespan of the FIT scheme

to be long. Hence, a high X corresponds to a low perceived policy uncertainty.

In regime 1, where the FIT has been terminated, we find that the investor will choose

to invest at an electricity price of 60 EUR/MWh (see Equation (F.10) in Appendix F).

In Figure 19b we show that FITs with a low expected lifespan will accelerate investments.

However, FIT schemes are most effective when the perceived risk of a revision is low.

Active learning, as modeled by an increasing X, can significantly decrease the elec-

tricity price at which it is optimal to invest.

5.3 Sensitivity analysis

In this section we examine the sensitivity of the investment threshold to the volatility

in electricity prices and the FIT, and discuss the implications for investors and policy

makers.

5.3.1 Sensitivity in the volatility of electricity price

In the following we consider the sensitivity of the exercise boundary to changes in the

volatility of electricity price.

For standard real option models, an increase in the volatility of an underlying price

process will increase the value of the project (Dixit and Pindyck, 1994). Therefore, the

value of the option to invest and the critical price at which it is optimal to invest increase.

The critical price increases since the option value is more sensitive to changes in volatility

than the project value. For a higher volatility the investment rate is expected to decrease,

due to the higher investment threshold.

We conclude that the exercise boundary increases in the volatility of electricity prices
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(a) (b)

Figure 19: The figures show (a) the option value as a function of X and S (free-boundary
as solid line), and (b) the free-boundary that separates the continuation region from the
stopping region in two dimensions. The area below the free-boundary is called the
continuation region (postponing investment is optimal) and the area above the free-boundary
is called the stopping region (investment is optimal). Investment is undertaken as soon as
the combination of X and observed S is above the free-boundary.

(see Figure 20). For a given X, the required S at which it is optimal to invest, increases

in σS. This effect is decreasing for larger values of X. As the investor becomes more

confident in the FIT scheme being long-lived, a higher volatility in electricity prices has

less effect on the investment decision.

For investors in more volatile electricity markets, the FIT scheme is less effective at

accelerating RE investment when the perceived risk of a revision is high. When X = 0,

the investor expects the revision to arrive in a relative short amount of time and the

policy uncertainty is high. At this point, there is a large difference between the electricity

price at which it is optimal to invest for a high and a low σS. Conversely, when X = 1,

the policy uncertainty is low and and a larger σS has little effect on the electricity price

needed for investment.
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Figure 20: Sensitivity in free-boundary/investment threshold for different volatility of
electricity prices.

Figure 21: Sensitivity in free-boundary/investment threshold for different values of the fixed
feed-in tariff.

5.3.2 Sensitivity in the FIT

In this section we examine the sensitivity of the exercise boundary to changes in the level

of the fixed feed-in tariff.

We find that the exercise boundary decreases as the FIT level increases (see Figure

21). The effect is stronger when the belief in a long-lived FIT scheme increases, since

the investor is increasingly eager to take advantage of the subsidies. When the perceived

policy uncertainty is low (X close to 1), policy makers can have a large impact on the

investment rate in RE capacity by a relatively small change in the FIT. The effect is

significantly lower when the perceived policy uncertainty is high, so a more generous

subsidy is required to achieve the same investment rate.
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6 Conclusion

This paper extends standard real options models by including exogenous arrival of infor-

mation in the decision making process through a Bayesian learning approach. We consider

an investor with a perpetual option to invest in a renewable energy project. The prof-

itability of the project is highly dependent on long-lasting government subsidies. Policy

uncertainty in the form of adverse changes of a subsidy scheme have a large effect on the

investment decision.

A support scheme of fixed feed-in tariff (FIT) is considered, where at some random

point in time, investors expect a retroactive downward adjustment of the FIT. We extend

our model and examine a situation where the subsidy scheme will be retroactively termi-

nated and electricity must be sold on a free market where the market price is uncertain.

The arrival rate of a subsidy revision is unknown, but as time passes, the investor

updates her belief of the expected lifespan of the support scheme. The aim of our paper

is to examine how this learning affects investor behavior.

At every point in time, the investor must weigh the benefits from exercising the in-

vestment option, against continued observation and learning. We find that the optimal

investment decision is characterized by a threshold on the subjective posterior belief of

the current subsidy scheme being long-lived. In an extension of the model, the investor

faces both policy uncertainty and uncertain electricity prices. The optimal investment

threshold is a function of both electricity price and the subjective belief of the investor.

We find that policy uncertainty may introduce risk in the environment given by fixed

FIT regimes, due to the likelihood of a revision. Our results have three important im-

plications for the designers of FITs: i) The investment threshold increases in the arrival

rate of a policy change, thereby reducing the investment rate in renewable energy plants.

ii) We find that investors and policy makers prefer differing combinations of uncertainty

and FITs. Investors who choose to invest will prefer a lower FIT with a long expected

lifespan, while policy makers will prefer a higher FIT with shorter life span. The chal-

lenge for policy makers is to find the right mix of subsidy payment and risk that trigger

the intended amount of investment. This mix should reflect the specific characteristics

of a given RE project. iii) We conclude that policy makers can have a large impact on

the investment rate by a relatively small change in the FIT, when the policy uncertainty

is low. The effect is significantly lower when the policy uncertainty is high, so a more

generous subsidy is required to achieve the same investment rate. Active learning can

greatly reduce the perceived policy uncertainty, and thereby increase the effectiveness of

subsidy schemes.

We can identify at least three potential directions for further research. One possibility

is to examine different type subsidy schemes, e.g. feed-in premiums or green certificates,

in a similar way to Boomsma and Linnerud (2015). Adding another stochastic process
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will however, increase the mathematical complexity of the model, which already requires

advanced numerical methods for partial differential equations.

Information arrival is likely to vary. Some events might lead to a large amount of

information in a short amount of time, and there might be periods of very little or no

information arrival. This effect can be captured by modeling information arrival as a

Poisson process or a jump-diffusion process.

Finally, it is reasonable to assume that investors do have some discretion over the

magnitude of investment. Incorporating capacity choice will allow for an analysis of how

policy uncertainty affects the investment rate and installed capacity at the same time.
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Appendix

A Expectation and variance of YT − Y0

E [YT − Y0] = E

[
∆y

n∑
i=1

Zi

]
=

T

∆t
∆y E[Z]

=
T

∆t
∆y (p− (1− p))

=
T

∆t
∆y (2p− 1) ,

To find the variance, we note that since Zi are independent random variables, their cor-

relation is 0, and the variance of their sum is equal to the sum of their variances.

V ar (YT − Y0) = V ar

(
∆y

n∑
i=1

Zi

)

= (∆y)2
n∑
i=1

V ar (Zi)

= (∆y)2
n∑
i=1

E
[
(Zi)

2]− (E [Zi]
)2

= (∆y)2
n∑
i=1

(
1− (2p− 1)2)

=
T

∆t
(∆y)2 4p(1− p)
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B Derivation of dY

The expectation and the variance of Y over the time horizon are given by

E[YT ] =
T

∆t
∆y(2p− 1), (B.1)

V ar(YT ) =
T

∆t
(∆y)24p(1− p). (B.2)

While taking the limit as ∆t→ 0 we want the variance (B.2) to stay finite and independent

of ∆t. Thus we must have

(∆y)2

∆t
= constant ⇒ (∆y)2 = constant ·∆t

Setting the constant variance equal to σ2 we get

∆y = ln

(
p

1− p

)
= σ
√

∆t ⇒ p =
eσ
√

∆t

1 + eσ
√

∆t
(B.3)

Next, we want the mean, µ, to be independent of ∆t. Substituting (B.3) into (B.1), we

get

σ
√

∆t

∆t

(
2eσ
√

∆t

1 + eσ
√

∆t
− 1

)
=

σ√
∆t

(
−1 + eσ

√
∆t

1 + eσ
√

∆t

)
= µ

Now, taking the series expansion of e, we have

σ√
∆t

−1 + 1 + σ
√

∆t+ 1
2
σ2∆t+O

(
(∆t)

3
2

)
1 + 1 + σ

√
∆t+ 1

2
σ2∆t+O

(
(∆t)

3
2

)


= σ2

1 + 1
2
σ
√

∆t+ 1
6
σ2∆t+O

(
(∆t)

3
2

)
2 + σ

√
∆t+ 1

2
σ2∆t+O

(
(∆t)

3
2

)
 = µ

Finally, we take the limit as ∆t→ 0, and obtain

σ2

2
= µ

Then, in the limit,

dY = µdt+ σdW
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C Derivation of dX

Consider a function F (x, t) that is at least twice differentiable in x and once in t. Itô’s

Lemma gives the differential dF as (Dixit and Pindyck, 1994)

dF =
∂F

∂t
dt+

∂F

∂x
dx+

1

2

∂2F

∂x2
(dx)2

Our starting point is the arithmetic Brownian motion dY , given by

dY =


µ dt+ σ dW Good state

−µ dt+ σ dW Bad state

where Yt = ln Xt

1−Xt

Assuming the Good state and applying Itô’s Lemma, we obtain

dX =
∂X

∂t
dt+

∂X

∂Y
dY +

1

2

∂2X

∂Y 2
(dY )2

=
∂X

∂Y

[
µ dt+ σ dW

]
+

1

2

∂2X

∂Y 2

[
µ dt+ σ dW

]2

.

Using that X = eY

eY +1
, we get

dX =
eY

(eY + 1)2

[
µ dt+ σ dW

]
+

1

2
σ2 e

Y (1− eY )

(eY + 1)3
dt

=
σ2

2

[
eY

(eY + 1)2
+
eY (1− eY )

(eY + 1)3

]
dt+ σ

eY

(eY + 1)2
dW

=
σ2

2

[
2eY

eY + 1

(
1− eY

eY + 1

)2
]
dt+ σ

eY

eY + 1

[
1− eY

eY + 1

]
dW

= σ2X(1−X)2 dt+ σX(1−X) dW,

which describes the evolution of X given the Good state.

Following the same procedure given the Bad state, we get that the process X evolves

according to

dX =


σ2X(1−X)2 dt+ σX(1−X) dW Good state

−σ2X2(1−X) dt+ σX(1−X) dW Bad state
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D The Bellman equation

Starting in regime 0, the value of the option to invest must satisfy the Bellman equation

F0(X) = max

{
V0(X)− I, E[1− λ dt]

1 + r dt
E
[
F0(X + dX)

]
+

E[λ dt]

1 + r dt
E
[
F1

]}
.

In the continuation region, the following must hold

(1 + r dt)F0 = E[1− λ dt]E[F0 + dF0] + E[λ dt]E[F1].

where

F1 = max {V1 − I, 0} = 0, V1 − I < 0 by assumption,

and

E[λ] = XλG + (1−X)λB.

Applying Itô’s lemma and using that X is the probabilistic belief of being in the Good

state, we get

(1 + r dt)F0 =
(

1−XλG dt− (1−X)λB dt
)
E
[
F0 +X (σ2X(1−X)2 dt+ σX(1−X)dW ) ∂F0

∂X

+ (1−X) (σ2X2(1−X) dt+ σX(1−X)dW ) ∂F0

∂X
+ 1

2
σ2X2(1−X)2 ∂2F0

∂X2 dt
]

=
(

1−XλG dt− (1−X)λB dt
)[
F0 + 1

2
σ2X2(1−X)2 ∂2F0

∂X2 dt
]
.

We rearrange the terms, and obtain the following second order ordinary differential equa-

tion, which holds when continuation is optimal,

1

2
σ2X2(1−X)2∂

2F0

∂X2
−
(
XλG + (1−X)λB + r

)
F0 = 0.

Since the ODE is independent of the drift term in dX, we do not have to consider the

two possible states of the world. Hence, we can reduce dX to the much simpler form

dX = σX(1−X) dW,

regardless of the state of the world.
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E Solving the ODE

We seek an analytical solution of the ODE

1

2
σ2X2(1−X)2∂

2F0

∂X2
−
(
XλG + (1−X)λB + r

)
F0 = 0, (E.1)

for X ∈ (0, 1).

Assuming a solution on the form of a Frobenius series

F0(X) = Xc

∞∑
n=0

an(r)Xn. (E.2)

We want to find the terms and coefficients of the series solution corresponding to the

differential equation at hand. Differentiating (E.2) and substituting into (E.1), we get

1

2
σ2X2(1−X)2

∞∑
n=0

(n+c)(n+c−1) an(r)xn+c−2−
(
XλG+(1−X)λB+r

) ∞∑
n=0

an(r)xn+c = 0.

Next, we examine the coefficients of different powers of X. For the first term of the series

(n = 0), we get

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r) a0X
c − (λG − λB) a0X

c+1 = 0. (E.3)

Equation (E.3) has two trivial solutions: a0 = 0 ∨ X = 0. We are however interested in

finding a nontrivial solution, and must examine the three equations

p0(c) =
1

2
σ2c(c− 1)− λB − r,

p1(c) = −σ2c(c− 1)− λG + λB,

p2(c) =
1

2
σ2c(c− 1),

corresponding to the different powers of X.

The possible values of c are determined by p0(c), as we seek the non-trivial solution

(a0 6= 0). Therefore, we get two possible values of c,

c1 =
1

2
+

√
1

4
+

2(λB + r)

σ2
,

c2 =
1

2
−
√

1

4
+

2(λB + r)

σ2
.

The Frobenius method states that the solution corresponding to c2 does not exist if the
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difference between c1 and c2 is an integer (Theorem 7.5.3, Trench (2013)). Hence, if√
1
4

+ 2(λB+r)
σ2 is an integer, only the solution corresponding to c1 will be valid.

Assuming that the difference between c1 and c2 is not an integer, the general solution can

be expressed as

F0(X) = A1X
c1

∞∑
n=0

an(c1)Xn + A2X
c2

∞∑
n=0

an(c2)Xn.

The solution is valid and converges for X ∈ (0, 1) (Trench, 2013).

The option to invest is worthless if X = 0, which is an absorbing state of the belief

process. Therefore, limX→0 F0(X) = 0 should hold. For λB > 0 and/or r > 0, we have

c2 < 0, and Xc2 goes to infinity as X goes to zero. This implies that we must have A2 = 0.

We continue to examine the coefficients of different powers of X, in order to find the terms

of the series. For the two first terms (n = 0 and n = 1), we get

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r)a0X
c − (λG − λB) a0X

c+1

+
1

2
σ2
(
1− 2X +X2

)
c(c+ 1) a1X

c+1 − (λB + r) a0X
c+1 − (λG − λB) a0X

c+2 = 0.

Collecting the coefficients of Xc+1, we get(
1

2
σ2c(c+ 1)− λB − r

)
a1 −

(
σ2c(c− 1) + λG − λB

)
a0 = 0.

Choosing a0 = 1, gives

a1(c) =
σ2c(c− 1) + λG − λB
1
2
σ2c(c+ 1)− λB − r

= − p1(c)

p0(c+ 1)
.

For the three first terms (n = 0, n = 1 and n = 2), we have

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r) a0X
c − (λG − λB) a0X

c+1

+
1

2
σ2
(
1− 2X +X2

)
c(c+ 1) a1X

c+1 − (λB + r) a1X
c+1 − (λG − λB) a1X

c+2

+
1

2
σ2
(
1− 2X +X2

)
(c+2−1)(c+2) a2X

c+2−(λB+r) a2X
c+2−(λG−λB) a2X

c+3 = 0.
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Collecting the coefficients of Xc+2, we get

1

2
σ2c(c−1) a0−

(
σ2c(c+ 1) a1 + λg − λB

)
a1 +

(
1

2
σ2(c+ 2− 1)(c+ 2)− λB − r

)
a2 = 0.

Thus,

a2(c) =
2 [σ2c(c+ 1)a1 + λg − λB] a1 −

[
σ2c(c− 1)

]
a0

σ2(c+ 2− 1)(c+ 2)− λB − r

= −p1(c+ 2− 1) a1(c) + p2(c+ 2− 2) a0(c)

p0(c+ 2)
.

Examining the terms n − 2, n − 1 and n and collecting the coefficients of Xc+2, we get

the general expression for the nth coefficient

an(c) = −p1(n+ c− 1) an−1(c) + p2(n+ c− 2) an−2(c)

p0(n+ c)
, n ≥ 2.

Thus, the solution of the ODE can be expressed as

F0(X) = A1X
c1

∞∑
n=0

an(c1)Xn,

where

c1 =
1

2
+

√
1

4
+

2(λB + r)

σ2
,

and

a0(c) = 1,

a1(c) =
σ2c(c− 1)− λB + λG
1
2
σ2c(c+ 1)− λB − r

,

an(c) =
2[σ2

X(n+c−1)(n+c−2)−λB+λG]an−1(c)−[σ2
X(n+c−2)(n+c−3)] an−2(c)

σ2
X(n+c)(n+c−1)−2(λB+r)

, n ≥ 2.
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F Solving the system of PDEs

We want to solve the following system of PDEs

1

2
σ2
XX

2(1−X)2∂
2F0

∂X2
+

1

2
σ2
SS

2∂
2F0

∂S2
+µSS

∂F0

∂S
−
(
XλG+(1−X)λB

)(
F0−F1

)
− rF0 = 0

(F.1)

1

2
σ2
SS

2∂
2F1

∂S2
+ µSS

∂F1

∂S
− rF1 = 0 (F.2)

From the PDE in Equation (F.1), we observe that the value of the option to invest in

Regime 0, F0, depends on the option value in regime 1, F1. Therefore, our starting point

is to find an expression for F1.

Solving Equation (F.2)

In regime 1, a revision has already occurred, and the option value depends only on the

stochastic electricity price. We assume that the solution of (F.2) is on the form

F1(S) = A1S
β1 + A2S

β2 . (F.3)

By substitution, we see that (F.3) satisfies Equation (F.2) if β1 > 1 and β2 < 0 are the

roots of the characteristic equation

Q1(β) =
1

2
σ2
Sβ(β − 1) + µSβ − r.

Finally, F1(S) must satisfy the following boundary conditions

F1(0) = 0, (F.4)

F1(S∗) = S∗
[

1− e−(r−µS)T

r − µS

]
− I, (F.5)

∂F1

∂S

∣∣∣∣
S=S∗

=

[
1− e−(r−µS)T

r − µS

]
. (F.6)

Condition (F.4) arises since S = 0 is an absorbing state of a GBM, and the option is

worthless for S = 0. Since Sβ2 →∞ when S → 0, we must have A2 = 0. Condition (F.5)

is a value-matching condition and condition (F.6) is a smooth-pasting condition. Solving

for A1 and S∗, we get

F1(S) = A1S
β1 , (F.7)
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where

A1 =

(
β1 − 1

I

)β1−1(
e(µS−r)T − 1

β1(µS − r)

)β1
, (F.8)

β1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2r

σ2
, (F.9)

S∗ =
β1

β1 − 1
I

µS − r
e−(r−µS)T − 1

. (F.10)

Rewriting Equation (F.1)

Next, we substitute (F.7) into (F.1) and let u = F0, x = X and s = S. Equation (F.1)

can then be written more compactly as

a(x)
∂2u

∂x2
+ b(s)

∂2u

∂s2
+ c(s)

∂u

∂s
+ d(x)u+ e(x, s) = 0, (F.11)

where

a(x) =
1

2
σ2
xx

2(1− x)2, b(s) =
1

2
σ2
ss

2, c(s) = µss,

d(x) = (λB − λG)x− λB − r, e(x, s) =
(

(λG − λB)x+ λB

)
A1s

β1 .

Boundary conditions

On the bottom boundary, the electricity price is 0, and the option value must be 0. On

the top boundary we are in the stopping region, and the option value must equal the

payoff. We get

u(x, 0) = 0 on Γ1,

u(x, s) = V0(x, s) on Γ4.

On the left boundary we must solve Equation (F.11) for x = 0 and on the right boundary

for x = 1 (see below for derivation), which gives

u(0, s) = C1s
γ1 + A1s

β1 on Γ6,

u(0, s) = V0(0, s) on Γ5,

u(1, s) = D1s
η1 + A1s

β1 on Γ2,

u(1, s) = V0(1, s) on Γ3.
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Figure 22: Domain Ω = (0, 1)× (0, Smax). Dashed line illustrates the free-boundary and
separates the continuation region (light shade) and stopping region (dark shade).

Boundary conditions at X = 0

When X = 0, the transition rate is λB, and the differential equations that must be

satisfied by F0 and F1, is reduced to

1

2
σ2
SS

2F0SS + µSSF0S − λB(F0 − F1)− rF0 = 0 (F.12)

1

2
σ2
SS

2F1SS + µSSF1S − rF1 = 0 (F.13)

The solution of (F.13) is given by equation (F.7). The solution to equation (F.12) takes

the form

F0(0, S) = C1S
γ1 + C2S

γ2 + A1S
β1

where A1 and β1 are specified by equation (F.8) and (F.9), respectively, and γ1 > 1 and

γ2 < 0 are the roots of the characteristic equation

Q2(γ) =
1

2
σ2
Sγ(γ − 1) + µSγ − (r + λB)

Finally, F0(0, S) must satisfy the following boundary conditions

F0(0, 0) = 0,

F0(0, S∗) = K
1− e−(r+λB)T

r + λB
+ S∗

[(
1− e−(r−µS)T

)
r − µS

+

(
e−(r+λB−µS)T − 1

)
r + λB − µS

]
− I,

∂F0

∂S

∣∣∣∣
S=S∗

=
1

r − µS
(
1− e−(r−µS)T

)
+

1

r + λB − µS
(
e−(r+λB−µS)T − 1

)
,
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Since the option is worthless for S = 0, we must have C2 = 0. We therefore have

F0(0, S) = C1S
γ1 + A1S

β1

where

γ1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2(λB + r)

σ2
S

,

and C1 and S∗ are solved for numerically. Note that S∗ defines the left endpoint of the

free-boundary, separating Γ5 from Γ6.

Boundary conditions at X = 1

When X = 1 the transition rate is λG and the same system of PDEs as for the case with

X = 0 must be solved, only with λG in stead of λG. We get

F0(1, S) = D1S
η1 + A1S

β1

where

η1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2(λG + r)

σ2
S

.

and D1 and S∗∗ are solved for numerically from

F0(1, S∗∗) = K
1− e−(r+λG)T

r + λG
+ S∗∗

[(
1− e−(r−µS)T

)
r − µS

+

(
e−(r+λG−µS)T − 1

)
r + λG − µS

]
− I,

∂F0

∂S

∣∣∣∣
S=S∗∗

=
1

r − µS
(
1− e−(r−µS)T

)
+

1

r + λG − µS
(
e−(r+λG−µS)T − 1

)
,

Note that S∗∗ defines the right endpoint of the free-boundary, separating Γ2 from Γ3.

Variational formulation

FEM require the PDE to be expressed in its variational form. To arrive at the varia-

tional formulation we multiply Equation (F.11) with a test function v(x, s) ∈ H1
0 (Ω) =

{v ∈ H1(Ω) : v = 0 on ∂Ω}, to get

a(x)
∂2u

∂x2
v + b(s)

∂2u

∂s2
v + c(s)

∂u

∂s
v + d(x)u v + e(x, s) v = 0.

Then integrating over the domain yields∫
Ω

a(x)
∂2u

∂x2
v +

∫
Ω

b(s)
∂2u

∂s2
v +

∫
Ω

∂u

∂s
v +

∫
Ω

d(x)u v +

∫
Ω

e(x, s) v = 0 = 0 (F.14)
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Applying Green’s Theorem to the first integral gives

∫
Ω

a(x)
∂2u

∂x2
v =

∫
∂Ω

a(x)
∂u

∂x
nxv −

∫
Ω

∂u

∂x

∂

∂x

(
a(x) v

)
,

=

∫
∂Ω

a(x)
∂u

∂x
nxv −

∫
Ω

∂u

∂x

(
∂a(x)

∂x
v + a(x)

∂v

∂x

)
,

= −
∫
Ω

a(x)
∂u

∂x

∂v

∂x
−
∫
Ω

∂u

∂x

∂a(x)

∂x
v. (F.15)

The last equality follows from v being defined to be zero on Dirichlet boundaries.

Applying Green’s Theorem to the second integral gives

∫
Ω

b(s)
∂2u

∂s2
v =

∫
∂Ω

b(s)
∂u

∂s
nsv −

∫
Ω

∂u

∂s

∂

∂s

(
b(s) v

)

=

∫
∂Ω

b(s)
∂u

∂s
nsv −

∫
Ω

∂u

∂s

(
∂b(s)

∂s
v + b(s)

∂v

∂s

)

= −
∫
Ω

b(s)
∂u

∂s

∂v

∂s
−
∫
Ω

∂u

∂s

∂b(s)

∂s
v (F.16)

Now, substitute (F.15) and (F.16) back into (F.14) to get

−
∫
Ω

a(x)
∂u

∂x

∂v

∂x
−
∫
Ω

∂u

∂x

∂a(x)

∂x
v

−
∫
Ω

b(s)
∂u

∂s

∂v

∂s
−
∫
Ω

∂u

∂s

∂b(s)

∂s
v +

∫
Ω

c(s)
∂u

∂s
v +

∫
Ω

d(x)u v +

∫
Ω

e(x, s) v = 0.

Rearranging, gives∫
Ω

(
a(x)

∂v

∂x

∂u

∂x
+ b(s)

∂v

∂s

∂u

∂s

)
+

∫
Ω

∂a(x)

∂x

∂u

∂x
v +

∫
Ω

(
∂ b(s)

∂s
− c(s)

)
∂u

∂s
v =

∫
Ω

d(x)uv +

∫
Ω

e(x, s)v (F.17)
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The variational formulation can then be written as,

Find u such that

u = gΓi
on ∂Ω for i = 1, ..., 6

Equation (F.17) holds for all v, such that v = 0 on ∂Ω

where gΓi
is a given function on the Dirichlet boundary Γi.
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