


Figure 20: Sensitivity in free-boundary/investment threshold for different volatility of
electricity prices.

Figure 21: Sensitivity in free-boundary/investment threshold for different values of the fixed
feed-in tariff.

5.3.2 Sensitivity in the FIT

In this section we examine the sensitivity of the exercise boundary to changes in the level

of the fixed feed-in tariff.

We find that the exercise boundary decreases as the FIT level increases (see Figure

21). The effect is stronger when the belief in a long-lived FIT scheme increases, since

the investor is increasingly eager to take advantage of the subsidies. When the perceived

policy uncertainty is low (X close to 1), policy makers can have a large impact on the

investment rate in RE capacity by a relatively small change in the FIT. The effect is

significantly lower when the perceived policy uncertainty is high, so a more generous

subsidy is required to achieve the same investment rate.
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6 Conclusion

This paper extends standard real options models by including exogenous arrival of infor-

mation in the decision making process through a Bayesian learning approach. We consider

an investor with a perpetual option to invest in a renewable energy project. The prof-

itability of the project is highly dependent on long-lasting government subsidies. Policy

uncertainty in the form of adverse changes of a subsidy scheme have a large effect on the

investment decision.

A support scheme of fixed feed-in tariff (FIT) is considered, where at some random

point in time, investors expect a retroactive downward adjustment of the FIT. We extend

our model and examine a situation where the subsidy scheme will be retroactively termi-

nated and electricity must be sold on a free market where the market price is uncertain.

The arrival rate of a subsidy revision is unknown, but as time passes, the investor

updates her belief of the expected lifespan of the support scheme. The aim of our paper

is to examine how this learning affects investor behavior.

At every point in time, the investor must weigh the benefits from exercising the in-

vestment option, against continued observation and learning. We find that the optimal

investment decision is characterized by a threshold on the subjective posterior belief of

the current subsidy scheme being long-lived. In an extension of the model, the investor

faces both policy uncertainty and uncertain electricity prices. The optimal investment

threshold is a function of both electricity price and the subjective belief of the investor.

We find that policy uncertainty may introduce risk in the environment given by fixed

FIT regimes, due to the likelihood of a revision. Our results have three important im-

plications for the designers of FITs: i) The investment threshold increases in the arrival

rate of a policy change, thereby reducing the investment rate in renewable energy plants.

ii) We find that investors and policy makers prefer differing combinations of uncertainty

and FITs. Investors who choose to invest will prefer a lower FIT with a long expected

lifespan, while policy makers will prefer a higher FIT with shorter life span. The chal-

lenge for policy makers is to find the right mix of subsidy payment and risk that trigger

the intended amount of investment. This mix should reflect the specific characteristics

of a given RE project. iii) We conclude that policy makers can have a large impact on

the investment rate by a relatively small change in the FIT, when the policy uncertainty

is low. The effect is significantly lower when the policy uncertainty is high, so a more

generous subsidy is required to achieve the same investment rate. Active learning can

greatly reduce the perceived policy uncertainty, and thereby increase the effectiveness of

subsidy schemes.

We can identify at least three potential directions for further research. One possibility

is to examine different type subsidy schemes, e.g. feed-in premiums or green certificates,

in a similar way to Boomsma and Linnerud (2015). Adding another stochastic process
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will however, increase the mathematical complexity of the model, which already requires

advanced numerical methods for partial differential equations.

Information arrival is likely to vary. Some events might lead to a large amount of

information in a short amount of time, and there might be periods of very little or no

information arrival. This effect can be captured by modeling information arrival as a

Poisson process or a jump-diffusion process.

Finally, it is reasonable to assume that investors do have some discretion over the

magnitude of investment. Incorporating capacity choice will allow for an analysis of how

policy uncertainty affects the investment rate and installed capacity at the same time.
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Appendix

A Expectation and variance of YT − Y0

E [YT − Y0] = E

[
∆y

n∑
i=1

Zi

]
=

T

∆t
∆y E[Z]

=
T

∆t
∆y (p− (1− p))

=
T

∆t
∆y (2p− 1) ,

To find the variance, we note that since Zi are independent random variables, their cor-

relation is 0, and the variance of their sum is equal to the sum of their variances.

V ar (YT − Y0) = V ar

(
∆y

n∑
i=1

Zi

)

= (∆y)2
n∑
i=1

V ar (Zi)

= (∆y)2
n∑
i=1

E
[
(Zi)

2]− (E [Zi]
)2

= (∆y)2
n∑
i=1

(
1− (2p− 1)2)

=
T

∆t
(∆y)2 4p(1− p)
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B Derivation of dY

The expectation and the variance of Y over the time horizon are given by

E[YT ] =
T

∆t
∆y(2p− 1), (B.1)

V ar(YT ) =
T

∆t
(∆y)24p(1− p). (B.2)

While taking the limit as ∆t→ 0 we want the variance (B.2) to stay finite and independent

of ∆t. Thus we must have

(∆y)2

∆t
= constant ⇒ (∆y)2 = constant ·∆t

Setting the constant variance equal to σ2 we get

∆y = ln

(
p

1− p

)
= σ
√

∆t ⇒ p =
eσ
√

∆t

1 + eσ
√

∆t
(B.3)

Next, we want the mean, µ, to be independent of ∆t. Substituting (B.3) into (B.1), we

get

σ
√

∆t

∆t

(
2eσ
√

∆t

1 + eσ
√

∆t
− 1

)
=

σ√
∆t

(
−1 + eσ

√
∆t

1 + eσ
√

∆t

)
= µ

Now, taking the series expansion of e, we have

σ√
∆t

−1 + 1 + σ
√

∆t+ 1
2
σ2∆t+O

(
(∆t)

3
2

)
1 + 1 + σ

√
∆t+ 1

2
σ2∆t+O

(
(∆t)

3
2

)


= σ2

1 + 1
2
σ
√

∆t+ 1
6
σ2∆t+O

(
(∆t)

3
2

)
2 + σ

√
∆t+ 1

2
σ2∆t+O

(
(∆t)

3
2

)
 = µ

Finally, we take the limit as ∆t→ 0, and obtain

σ2

2
= µ

Then, in the limit,

dY = µdt+ σdW
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C Derivation of dX

Consider a function F (x, t) that is at least twice differentiable in x and once in t. Itô’s

Lemma gives the differential dF as (Dixit and Pindyck, 1994)

dF =
∂F

∂t
dt+

∂F

∂x
dx+

1

2

∂2F

∂x2
(dx)2

Our starting point is the arithmetic Brownian motion dY , given by

dY =


µ dt+ σ dW Good state

−µ dt+ σ dW Bad state

where Yt = ln Xt

1−Xt

Assuming the Good state and applying Itô’s Lemma, we obtain

dX =
∂X

∂t
dt+

∂X

∂Y
dY +

1

2

∂2X

∂Y 2
(dY )2

=
∂X

∂Y

[
µ dt+ σ dW

]
+

1

2

∂2X

∂Y 2

[
µ dt+ σ dW

]2

.

Using that X = eY

eY +1
, we get

dX =
eY

(eY + 1)2

[
µ dt+ σ dW

]
+

1

2
σ2 e

Y (1− eY )

(eY + 1)3
dt

=
σ2

2

[
eY

(eY + 1)2
+
eY (1− eY )

(eY + 1)3

]
dt+ σ

eY

(eY + 1)2
dW

=
σ2

2

[
2eY

eY + 1

(
1− eY

eY + 1

)2
]
dt+ σ

eY

eY + 1

[
1− eY

eY + 1

]
dW

= σ2X(1−X)2 dt+ σX(1−X) dW,

which describes the evolution of X given the Good state.

Following the same procedure given the Bad state, we get that the process X evolves

according to

dX =


σ2X(1−X)2 dt+ σX(1−X) dW Good state

−σ2X2(1−X) dt+ σX(1−X) dW Bad state
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D The Bellman equation

Starting in regime 0, the value of the option to invest must satisfy the Bellman equation

F0(X) = max

{
V0(X)− I, E[1− λ dt]

1 + r dt
E
[
F0(X + dX)

]
+

E[λ dt]

1 + r dt
E
[
F1

]}
.

In the continuation region, the following must hold

(1 + r dt)F0 = E[1− λ dt]E[F0 + dF0] + E[λ dt]E[F1].

where

F1 = max {V1 − I, 0} = 0, V1 − I < 0 by assumption,

and

E[λ] = XλG + (1−X)λB.

Applying Itô’s lemma and using that X is the probabilistic belief of being in the Good

state, we get

(1 + r dt)F0 =
(

1−XλG dt− (1−X)λB dt
)
E
[
F0 +X (σ2X(1−X)2 dt+ σX(1−X)dW ) ∂F0

∂X

+ (1−X) (σ2X2(1−X) dt+ σX(1−X)dW ) ∂F0

∂X
+ 1

2
σ2X2(1−X)2 ∂2F0

∂X2 dt
]

=
(

1−XλG dt− (1−X)λB dt
)[
F0 + 1

2
σ2X2(1−X)2 ∂2F0

∂X2 dt
]
.

We rearrange the terms, and obtain the following second order ordinary differential equa-

tion, which holds when continuation is optimal,

1

2
σ2X2(1−X)2∂

2F0

∂X2
−
(
XλG + (1−X)λB + r

)
F0 = 0.

Since the ODE is independent of the drift term in dX, we do not have to consider the

two possible states of the world. Hence, we can reduce dX to the much simpler form

dX = σX(1−X) dW,

regardless of the state of the world.
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E Solving the ODE

We seek an analytical solution of the ODE

1

2
σ2X2(1−X)2∂

2F0

∂X2
−
(
XλG + (1−X)λB + r

)
F0 = 0, (E.1)

for X ∈ (0, 1).

Assuming a solution on the form of a Frobenius series

F0(X) = Xc

∞∑
n=0

an(r)Xn. (E.2)

We want to find the terms and coefficients of the series solution corresponding to the

differential equation at hand. Differentiating (E.2) and substituting into (E.1), we get

1

2
σ2X2(1−X)2

∞∑
n=0

(n+c)(n+c−1) an(r)xn+c−2−
(
XλG+(1−X)λB+r

) ∞∑
n=0

an(r)xn+c = 0.

Next, we examine the coefficients of different powers of X. For the first term of the series

(n = 0), we get

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r) a0X
c − (λG − λB) a0X

c+1 = 0. (E.3)

Equation (E.3) has two trivial solutions: a0 = 0 ∨ X = 0. We are however interested in

finding a nontrivial solution, and must examine the three equations

p0(c) =
1

2
σ2c(c− 1)− λB − r,

p1(c) = −σ2c(c− 1)− λG + λB,

p2(c) =
1

2
σ2c(c− 1),

corresponding to the different powers of X.

The possible values of c are determined by p0(c), as we seek the non-trivial solution

(a0 6= 0). Therefore, we get two possible values of c,

c1 =
1

2
+

√
1

4
+

2(λB + r)

σ2
,

c2 =
1

2
−
√

1

4
+

2(λB + r)

σ2
.

The Frobenius method states that the solution corresponding to c2 does not exist if the
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difference between c1 and c2 is an integer (Theorem 7.5.3, Trench (2013)). Hence, if√
1
4

+ 2(λB+r)
σ2 is an integer, only the solution corresponding to c1 will be valid.

Assuming that the difference between c1 and c2 is not an integer, the general solution can

be expressed as

F0(X) = A1X
c1

∞∑
n=0

an(c1)Xn + A2X
c2

∞∑
n=0

an(c2)Xn.

The solution is valid and converges for X ∈ (0, 1) (Trench, 2013).

The option to invest is worthless if X = 0, which is an absorbing state of the belief

process. Therefore, limX→0 F0(X) = 0 should hold. For λB > 0 and/or r > 0, we have

c2 < 0, and Xc2 goes to infinity as X goes to zero. This implies that we must have A2 = 0.

We continue to examine the coefficients of different powers of X, in order to find the terms

of the series. For the two first terms (n = 0 and n = 1), we get

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r)a0X
c − (λG − λB) a0X

c+1

+
1

2
σ2
(
1− 2X +X2

)
c(c+ 1) a1X

c+1 − (λB + r) a0X
c+1 − (λG − λB) a0X

c+2 = 0.

Collecting the coefficients of Xc+1, we get(
1

2
σ2c(c+ 1)− λB − r

)
a1 −

(
σ2c(c− 1) + λG − λB

)
a0 = 0.

Choosing a0 = 1, gives

a1(c) =
σ2c(c− 1) + λG − λB
1
2
σ2c(c+ 1)− λB − r

= − p1(c)

p0(c+ 1)
.

For the three first terms (n = 0, n = 1 and n = 2), we have

1

2
σ2
(
1− 2X +X2

)
c(c− 1) a0X

c − (λB + r) a0X
c − (λG − λB) a0X

c+1

+
1

2
σ2
(
1− 2X +X2

)
c(c+ 1) a1X

c+1 − (λB + r) a1X
c+1 − (λG − λB) a1X

c+2

+
1

2
σ2
(
1− 2X +X2

)
(c+2−1)(c+2) a2X

c+2−(λB+r) a2X
c+2−(λG−λB) a2X

c+3 = 0.
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Collecting the coefficients of Xc+2, we get

1

2
σ2c(c−1) a0−

(
σ2c(c+ 1) a1 + λg − λB

)
a1 +

(
1

2
σ2(c+ 2− 1)(c+ 2)− λB − r

)
a2 = 0.

Thus,

a2(c) =
2 [σ2c(c+ 1)a1 + λg − λB] a1 −

[
σ2c(c− 1)

]
a0

σ2(c+ 2− 1)(c+ 2)− λB − r

= −p1(c+ 2− 1) a1(c) + p2(c+ 2− 2) a0(c)

p0(c+ 2)
.

Examining the terms n − 2, n − 1 and n and collecting the coefficients of Xc+2, we get

the general expression for the nth coefficient

an(c) = −p1(n+ c− 1) an−1(c) + p2(n+ c− 2) an−2(c)

p0(n+ c)
, n ≥ 2.

Thus, the solution of the ODE can be expressed as

F0(X) = A1X
c1

∞∑
n=0

an(c1)Xn,

where

c1 =
1

2
+

√
1

4
+

2(λB + r)

σ2
,

and

a0(c) = 1,

a1(c) =
σ2c(c− 1)− λB + λG
1
2
σ2c(c+ 1)− λB − r

,

an(c) =
2[σ2

X(n+c−1)(n+c−2)−λB+λG]an−1(c)−[σ2
X(n+c−2)(n+c−3)] an−2(c)

σ2
X(n+c)(n+c−1)−2(λB+r)

, n ≥ 2.
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F Solving the system of PDEs

We want to solve the following system of PDEs

1

2
σ2
XX

2(1−X)2∂
2F0

∂X2
+

1

2
σ2
SS

2∂
2F0

∂S2
+µSS

∂F0

∂S
−
(
XλG+(1−X)λB

)(
F0−F1

)
− rF0 = 0

(F.1)

1

2
σ2
SS

2∂
2F1

∂S2
+ µSS

∂F1

∂S
− rF1 = 0 (F.2)

From the PDE in Equation (F.1), we observe that the value of the option to invest in

Regime 0, F0, depends on the option value in regime 1, F1. Therefore, our starting point

is to find an expression for F1.

Solving Equation (F.2)

In regime 1, a revision has already occurred, and the option value depends only on the

stochastic electricity price. We assume that the solution of (F.2) is on the form

F1(S) = A1S
β1 + A2S

β2 . (F.3)

By substitution, we see that (F.3) satisfies Equation (F.2) if β1 > 1 and β2 < 0 are the

roots of the characteristic equation

Q1(β) =
1

2
σ2
Sβ(β − 1) + µSβ − r.

Finally, F1(S) must satisfy the following boundary conditions

F1(0) = 0, (F.4)

F1(S∗) = S∗
[

1− e−(r−µS)T

r − µS

]
− I, (F.5)

∂F1

∂S

∣∣∣∣
S=S∗

=

[
1− e−(r−µS)T

r − µS

]
. (F.6)

Condition (F.4) arises since S = 0 is an absorbing state of a GBM, and the option is

worthless for S = 0. Since Sβ2 →∞ when S → 0, we must have A2 = 0. Condition (F.5)

is a value-matching condition and condition (F.6) is a smooth-pasting condition. Solving

for A1 and S∗, we get

F1(S) = A1S
β1 , (F.7)
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where

A1 =

(
β1 − 1

I

)β1−1(
e(µS−r)T − 1

β1(µS − r)

)β1
, (F.8)

β1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2r

σ2
, (F.9)

S∗ =
β1

β1 − 1
I

µS − r
e−(r−µS)T − 1

. (F.10)

Rewriting Equation (F.1)

Next, we substitute (F.7) into (F.1) and let u = F0, x = X and s = S. Equation (F.1)

can then be written more compactly as

a(x)
∂2u

∂x2
+ b(s)

∂2u

∂s2
+ c(s)

∂u

∂s
+ d(x)u+ e(x, s) = 0, (F.11)

where

a(x) =
1

2
σ2
xx

2(1− x)2, b(s) =
1

2
σ2
ss

2, c(s) = µss,

d(x) = (λB − λG)x− λB − r, e(x, s) =
(

(λG − λB)x+ λB

)
A1s

β1 .

Boundary conditions

On the bottom boundary, the electricity price is 0, and the option value must be 0. On

the top boundary we are in the stopping region, and the option value must equal the

payoff. We get

u(x, 0) = 0 on Γ1,

u(x, s) = V0(x, s) on Γ4.

On the left boundary we must solve Equation (F.11) for x = 0 and on the right boundary

for x = 1 (see below for derivation), which gives

u(0, s) = C1s
γ1 + A1s

β1 on Γ6,

u(0, s) = V0(0, s) on Γ5,

u(1, s) = D1s
η1 + A1s

β1 on Γ2,

u(1, s) = V0(1, s) on Γ3.
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Figure 22: Domain Ω = (0, 1)× (0, Smax). Dashed line illustrates the free-boundary and
separates the continuation region (light shade) and stopping region (dark shade).

Boundary conditions at X = 0

When X = 0, the transition rate is λB, and the differential equations that must be

satisfied by F0 and F1, is reduced to

1

2
σ2
SS

2F0SS + µSSF0S − λB(F0 − F1)− rF0 = 0 (F.12)

1

2
σ2
SS

2F1SS + µSSF1S − rF1 = 0 (F.13)

The solution of (F.13) is given by equation (F.7). The solution to equation (F.12) takes

the form

F0(0, S) = C1S
γ1 + C2S

γ2 + A1S
β1

where A1 and β1 are specified by equation (F.8) and (F.9), respectively, and γ1 > 1 and

γ2 < 0 are the roots of the characteristic equation

Q2(γ) =
1

2
σ2
Sγ(γ − 1) + µSγ − (r + λB)

Finally, F0(0, S) must satisfy the following boundary conditions

F0(0, 0) = 0,

F0(0, S∗) = K
1− e−(r+λB)T

r + λB
+ S∗

[(
1− e−(r−µS)T

)
r − µS

+

(
e−(r+λB−µS)T − 1

)
r + λB − µS

]
− I,

∂F0

∂S

∣∣∣∣
S=S∗

=
1

r − µS
(
1− e−(r−µS)T

)
+

1

r + λB − µS
(
e−(r+λB−µS)T − 1

)
,
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Since the option is worthless for S = 0, we must have C2 = 0. We therefore have

F0(0, S) = C1S
γ1 + A1S

β1

where

γ1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2(λB + r)

σ2
S

,

and C1 and S∗ are solved for numerically. Note that S∗ defines the left endpoint of the

free-boundary, separating Γ5 from Γ6.

Boundary conditions at X = 1

When X = 1 the transition rate is λG and the same system of PDEs as for the case with

X = 0 must be solved, only with λG in stead of λG. We get

F0(1, S) = D1S
η1 + A1S

β1

where

η1 =
1

2
− µS
σ2
S

+

√(
µS
σ2
S

− 1

2

)2

+
2(λG + r)

σ2
S

.

and D1 and S∗∗ are solved for numerically from

F0(1, S∗∗) = K
1− e−(r+λG)T

r + λG
+ S∗∗

[(
1− e−(r−µS)T

)
r − µS

+

(
e−(r+λG−µS)T − 1

)
r + λG − µS

]
− I,

∂F0

∂S

∣∣∣∣
S=S∗∗

=
1

r − µS
(
1− e−(r−µS)T

)
+

1

r + λG − µS
(
e−(r+λG−µS)T − 1

)
,

Note that S∗∗ defines the right endpoint of the free-boundary, separating Γ2 from Γ3.

Variational formulation

FEM require the PDE to be expressed in its variational form. To arrive at the varia-

tional formulation we multiply Equation (F.11) with a test function v(x, s) ∈ H1
0 (Ω) =

{v ∈ H1(Ω) : v = 0 on ∂Ω}, to get

a(x)
∂2u

∂x2
v + b(s)

∂2u

∂s2
v + c(s)

∂u

∂s
v + d(x)u v + e(x, s) v = 0.

Then integrating over the domain yields∫
Ω

a(x)
∂2u

∂x2
v +

∫
Ω

b(s)
∂2u

∂s2
v +

∫
Ω

∂u

∂s
v +

∫
Ω

d(x)u v +

∫
Ω

e(x, s) v = 0 = 0 (F.14)
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Applying Green’s Theorem to the first integral gives

∫
Ω

a(x)
∂2u

∂x2
v =

∫
∂Ω

a(x)
∂u

∂x
nxv −

∫
Ω

∂u

∂x

∂

∂x

(
a(x) v

)
,

=

∫
∂Ω

a(x)
∂u

∂x
nxv −

∫
Ω

∂u

∂x

(
∂a(x)

∂x
v + a(x)

∂v

∂x

)
,

= −
∫
Ω

a(x)
∂u

∂x

∂v

∂x
−
∫
Ω

∂u

∂x

∂a(x)

∂x
v. (F.15)

The last equality follows from v being defined to be zero on Dirichlet boundaries.

Applying Green’s Theorem to the second integral gives

∫
Ω

b(s)
∂2u

∂s2
v =

∫
∂Ω

b(s)
∂u

∂s
nsv −

∫
Ω

∂u

∂s

∂

∂s

(
b(s) v

)

=

∫
∂Ω

b(s)
∂u

∂s
nsv −

∫
Ω

∂u

∂s

(
∂b(s)

∂s
v + b(s)

∂v

∂s

)

= −
∫
Ω

b(s)
∂u

∂s

∂v

∂s
−
∫
Ω

∂u

∂s

∂b(s)

∂s
v (F.16)

Now, substitute (F.15) and (F.16) back into (F.14) to get

−
∫
Ω

a(x)
∂u

∂x

∂v

∂x
−
∫
Ω

∂u

∂x

∂a(x)

∂x
v

−
∫
Ω

b(s)
∂u

∂s

∂v

∂s
−
∫
Ω

∂u

∂s

∂b(s)

∂s
v +

∫
Ω

c(s)
∂u

∂s
v +

∫
Ω

d(x)u v +

∫
Ω

e(x, s) v = 0.

Rearranging, gives∫
Ω

(
a(x)

∂v

∂x

∂u

∂x
+ b(s)

∂v

∂s

∂u

∂s

)
+

∫
Ω

∂a(x)

∂x

∂u

∂x
v +

∫
Ω

(
∂ b(s)

∂s
− c(s)

)
∂u

∂s
v =

∫
Ω

d(x)uv +

∫
Ω

e(x, s)v (F.17)
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The variational formulation can then be written as,

Find u such that

u = gΓi
on ∂Ω for i = 1, ..., 6

Equation (F.17) holds for all v, such that v = 0 on ∂Ω

where gΓi
is a given function on the Dirichlet boundary Γi.
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