
The Multi-objective Supply Vessel
Planning Problem
A Hybrid Genetic Search Approach

Thomas Borthen
Henrik Loennechen

Industrial Economics and Technology Management

Supervisor: Kjetil Fagerholt, IØT
Co-supervisor: Xin Wang, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2016

Norwegian University of Science and Technology

Problem description from the master’s thesis agree-

ment

The purpose of this thesis is to study and implement solution methods for the supply
vessel planning problem (SVPP) with multiple objectives. The SVPP is a planning
problem that occurs within the offshore petroleum industry and consists of deciding
a fleet of platform supply vessels (PSVs) and the voyages the PSVs shall sail in order
to service a set of offshore installations. The problem definition and test data are
based on experiences and data from Statoil.

i

ii

Preface

This master’s thesis is written as a part of our MSc. in Industrial Economics and
Technology Management at the Norwegian University of Science and Technology,
Department of Industrial Economics and Technology Management. The thesis is a
continuation of the work done in our specialization project during the fall of 2015.

The master’s thesis focuses on tactical planning of Statoil’s offshore supply operations,
which is a part of their upstream supply chain. The work is done as a part of the
MOLO (Maritime Offshore Logistics Optimization) project, a collaboration between
Statoil, the Norwegian University of Science and Technology, the Norwegian Marine
Technology Research Institute (MARINTEK), and Molde University College.

We would like to express our gratitude towards our supervisors Professor Kjetil Fager-
holt and Postdoctoral Fellow Xin Wang for valuable guidance, interesting discussions
and precise and constructive feedback.

Thomas Borthen and Henrik Loennechen

Trondheim, June 2016

iii

iv

Abstract

The supply vessel planning problem (SVPP) is a problem faced by Statoil, the largest
operator on the Norwegian continental shelf. Offshore installations need supplies
from an onshore supply depot in order to operate, and the supplies are transported
by platform supply vessels (PSVs). The objective of the SVPP is to minimize the
costs related to the chartering and operation of PSVs, while maintaining a reliable
supply service. In addition to minimal costs, the decision makers at Statoil have
requested solutions that are persistent and robust. Persistent solutions are solutions
that have few changes from the previous solution, while robust solutions are solutions
that are capable of handling unforeseen events, such as delays. The SVPP with
multiple objectives is referred to as the multi-objective supply vessel planning problem
(MSVPP), and this thesis considers the MSVPP with cost, persistence and robustness
as objectives.

A mathematical formulation for the SVPP is presented, as well as formulations of
how to measure persistence and robustness. Exact methods are unable to solve real-
size instances of the SVPP and the MSVPP due to the complexity of the problem. A
hybrid genetic search heuristic with adaptive diversity control (HGSADC) is therefore
developed for the SVPP, based on the work of Vidal et al. (2014). The heuristic is
extended to solve the MSVPP, generating Pareto fronts that illustrate the trade-off
between cost, persistence and robustness.

The heuristic is tested on problem instances provided by Statoil. The results from
solving the instances with cost as the only objective show that the heuristic is able to
find the optimal solution to the SVPP for all problem instances where exact methods
can prove optimality, and that it seems to find high-quality solutions for real-size
problem instances. The heuristic has stable performance for all problem instances,
and the running time increases linearly with the size of the problem instance. For
the MSVPP, three different sets of objectives were used: cost and persistence, cost
and robustness and finally cost, persistence and robustness. The results show that
the heuristic finds Pareto fronts that are identical or close to the optimal fronts for
problem instances that can be solved by exact methods. The cost of all the solutions
found for the real-size problem instances are less than 1% higher than the cost of the
solutions found by the single-objective heuristic, indicating that adding additional
objectives does not impair the quality of solutions much. The heuristic has stable
performance for the MSVPP, and in the tests, the running time increases linearly
with the number of objectives.

Pareto fronts generated for real-size problem instances show that the persistence
and robustness of the solutions can be improved to optimal or near-optimal values
for a cost increase of less than 1% from the lowest known cost. The Pareto fronts
also illustrate the trade-off between cost and the other objectives, improving the
decision makers insights of how the objectives are related. Decision support tools
that implement the solution methods presented in this thesis are therefore expected
to improve the supply service by reducing costs and improving reliability.

v

vi

Sammendrag

Denne oppgaven handler om taktisk planlegging i forbindelse med transport av for-
syninger til Statoils offshoreinstallasjoner. Offshoreinstallasjoner trenger forsyninger
for å kunne utvinne olje og gass, og forsyningene fraktes fra land med forsynings-
fartøy. Supply vessel planning-problemet (SVPP) g̊ar ut p̊a å bestemme en fl̊ate
av forsyningsfartøy og hvilke turer fartøyene skal seile for å forsyne en mengde med
offshoreinstallasjoner. Målet med SVPP er å ha en p̊alitelig forsyningstjeneste med
minimale kostnader relatert til leie og bruk av forsyningsfartøy. Beslutningstakere
hos Statoil har bedt om løsninger som ikke bare har minimale kostnader, men ogs̊a er
persistente og robuste. Persistente løsninger har f̊a endringer fra forrige løsning, og
robuste løsninger takler forsinkelser og uforutsette hendelser. SVPP med flere objek-
tiver omtales som det multi-objektive supply vessel planning-problemet (MSVPP),
og denne oppgaven omhandler MSVPP med kostnad, persistens og robusthet som
objektiver.

En matematisk formulering for SVPP presenteres, samt formuleringer av hvordan
persistens og robusthet måles. Eksakte metoder klarer ikke å løse probleminstanser
av realistisk størrelse grunnet kompleksiteten til problemet. En hybrid-genetisk søke-
heuristikk med adaptiv mangfoldskontroll utvikles derfor for å løse SVPP, basert p̊a
arbeidet til Vidal et al. (2014). Heuristikken utvides til å løse MSVPP, og genererer
Paretofronter som illustrerer avveiningen mellom kostnad, persistens og robusthet.

Heuristikken er testet p̊a probleminstanser fra Statoil. Resultatene viser at heuris-
tikken for SVPP finner optimal løsning for alle probleminstanser der optimalitet kan
bevises av eksakte metoder, og at den ser ut til å finne løsninger av høy kvalitet
for probleminstanser av realistisk størrelse. Heuristikken er stabil for alle prob-
leminstanser og løsningstiden ser ut til å øke lineært med problemstørrelse.

Den utvidede heuristikken for MSVPP er testet med b̊ade to og tre objektiver. Re-
sultatene viser at heuristikken finner Paretofronter som er identiske eller er svært like
de optimale frontene for probleminstanser som kan løses av eksakte metoder. Kost-
naden til løsningene for MSVPP er under 1% høyere enn kostnaden til løsningene
som ble funnet med kun kostnad som objektiv, noe som indikerer at de ekstra ob-
jektivene ikke forringer kvaliteten til løsningene i særlig grad. Heuristikken er stabil
for probleminstansene som løses, og kjøretiden ser ut til å øke lineært med antall
objektiver.

Paretofronter for probleminstanser av realistisk størrelse viser at persistens og ro-
busthet kan økes til optimale eller nær optimale verdier for en kostnadsøkning p̊a
under 1% av laveste kjente kostnad. I tillegg kan de bidra til å øke beslutningstakeres
innsikt ved å illustrere avveiningen mellom kostnad og andre objektivene. Det er der-
for forventet at beslutningsstøtteverktøy basert p̊a løsningsmetodene som presenteres
i denne oppgaven kan bidra til å forbedre forsyningstjenesten ved å b̊ade redusere
kostnader og øke p̊aliteligheten.

vii

viii

Contents

1 Introduction 1

2 Problem Description 3
2.1 Planning requirements . 5
2.2 Objectives . 5
2.3 Handling multiple objectives . 7

3 Literature Review 9
3.1 The supply vessel planning problem 9
3.2 The periodic vehicle routing problem 11
3.3 Persistence . 12
3.4 Robustness . 13
3.5 Multi-objective optimization . 14

3.5.1 Genetic algorithms for MOPs 16
3.5.2 Multi-objective approaches to the SVPP 17

4 Mathematical Model 19
4.1 Previous work . 19
4.2 Remarks and assumptions . 20
4.3 Mathematical formulation of the SVPP 21
4.4 Measuring persistence . 25
4.5 Measuring robustness of schedules . 26

5 Hybrid genetic search with adaptive diversity control for the SVPP 29
5.1 Overview . 30
5.2 Individual representation . 30
5.3 Search space . 33
5.4 Evaluation of individuals . 33
5.5 Constructing the initial population 35
5.6 Parent selection and crossover . 36
5.7 Education . 38

5.7.1 Voyage improvement . 40
5.7.2 Pattern improvement . 40
5.7.3 Repair . 41

5.8 Population management . 43

ix

5.8.1 Survivor selection . 43
5.8.2 Penalty parameter adjustment 43
5.8.3 Diversification . 43

5.9 Optimizing the fleet size and mix . 44
5.10 Comparison with Vidal et al. (2012a) 45

6 Hybrid genetic search with adaptive diversity control for the MSVPP 51
6.1 Adapting from single-objective to multi-objective 51

6.1.1 Domination criterion and Pareto archive 51
6.1.2 Stopping criterion . 52
6.1.3 Modified biased fitness function 53
6.1.4 Fitness evaluation, diversity control and elitism 53

6.2 Education for persistence . 54
6.3 Optimizing the fleet size and mix . 55

7 Computational Study 59
7.1 Test instances . 59
7.2 Calibration of parameters for the HGSADC 60

7.2.1 The parameters of the HGSADC 61
7.2.2 Parameter calibration . 61
7.2.3 Calibration of education and repair 70

7.3 Results - SVPP . 72
7.3.1 Comparison with the VBM 72
7.3.2 Results for all instances . 73
7.3.3 Stability of the HGSADC . 77

7.4 Results - MSVPP with cost and persistence 80
7.4.1 Results compared with optimal fronts 80
7.4.2 Results for real-size problem instances 84

7.5 Results - MSVPP with cost and robustness 89
7.5.1 Results compared with optimal fronts 90
7.5.2 Results for real-size problem instance 91

7.6 Results - MSVPP with cost, persistence and robustness 92
7.6.1 Results compared with optimal fronts 92
7.6.2 Results for real-size problem instance 93
7.6.3 Running times . 94

8 Economic Implications 97
8.1 The advantages of persistent schedules 97
8.2 The advantages of robust schedules 99
8.3 Combining low cost, high persistence and high robustness 100
8.4 Adding additional objectives . 100
8.5 Limitations of the results . 101

9 Conclusion 103

x

A Voyage-based model 109
A.1 Voyage-based formulation . 109

A.1.1 Voyage generation . 109
A.1.2 Voyage-based model . 110
A.1.3 Measuring persistence . 112
A.1.4 Measuring robustness . 113

B Voyage generation using dynamic programming 115
B.1 The voyage generation procedure . 115
B.2 Label data . 117
B.3 Label extension . 117
B.4 Label domination . 120
B.5 The labelling algorithm . 121

C Code and test instances 125
C.1 Exact methods . 125

C.1.1 Voyage generation . 125
C.1.2 VBM . 125

C.2 HGSADC . 126

xi

xii

List of Figures

2-1 Illustration of a solution to the SVPP 4
2-2 Photo of a PSV and an offshore installation 4
2-3 Illustration of persistent schedules . 7

3-1 Illustration of Pareto fronts . 15

5-1 Illustration of a schedule . 30
5-2 Illustration of an individual and its tour chromosome 33

7-1 Plot of objective value development for 13-44 with INI = 5 000 . . . 66
7-2 Plot of objective value development for 27-80 with INI = 5 000 . . . 67
7-3 Plot of objective value development for 27-80 with INI = 10 000 . . . 67
7-4 Plot of penalty parameters with initial values of 1 69
7-5 Plot of penalty parameters with initial values of 1 000 70
7-6 Plot of sailing cost found by HGSADC vs problem size 74
7-7 Comparison of the running time of the VBM and the HGSADC . . . 78
7-8 Optimal and heuristic fronts for a medium-sized problem instance with

variation case 1 . 81
7-9 Optimal and heuristic fronts for a medium-sized problem instance with

variation case 2 . 82
7-10 Optimal and heuristic fronts for a medium-sized problem instance with

variation case 3 . 82
7-11 Optimal and heuristic fronts for a medium-sized problem instance with

variation case 4 . 83
7-12 Heuristic fronts for a real-sized problem instance with variation case 1 85
7-13 Heuristic fronts for a real-sized problem instance with variation case 2 86
7-14 Heuristic fronts for a real-sized problem instance with variation case 3 87
7-15 Heuristic fronts for a real-sized problem instance with variation case 4 88
7-16 Optimal and heuristic fronts for a medium-sized problem instance with

robustness . 90
7-17 Optimal and heuristic fronts for a medium-sized problem instance with

robustness . 91
7-18 Heuristic fronts for a real-sized problem instance with robustness . . . 92
7-19 Optimal and heuristic fronts for a medium-sized problem instance with

robustness and variation case 1 . 93

xiii

7-20 Heuristic fronts for a real-sized problem instance with robustness and
variation case 3 . 95

xiv

List of Tables

5.1 Installation chromosome . 32
5.2 PSV chromosome . 32

7.1 Parameter values . 62
7.2 Calibration of ξREF . 63
7.3 Calibration of ηELI . 64
7.4 Calibration of µ and λ . 65
7.5 Calibration of INI and ηDIV . 68
7.6 Evaluation of education procedures for single-objective HGSADC . . 71
7.7 Calibration of ρREP . 72
7.8 Comparison of results of the HGSADC and the VBM for the SVPP . 75
7.9 Fleet size and objective value found by the HGSADC for all problem

instances of the SVPP . 76
7.10 Running time and coefficients of variation for the HGSADC for all

problem instances of the SVPP . 79
7.11 Running times for medium-sized instances of the MSVPP with cost

and persistence . 84
7.12 Running times for real-size instances of the MSVPP with cost and

persistence . 89
7.13 Comparison of running times for different objectives 95

xv

xvi

List of Algorithms

1 HGSADC . 31
2 Construction heuristic . 37
3 Crossover operator . 39
4 Reducing the number of voyages . 42
5 Penalty parameter adjustment . 43
6 Optimizing the fleet size and mix . 46
7 Installation pattern improvement for persistence 55
8 Moving PSV departures to improve persistence 56
9 Multi-objective HGSADC with variable fleet 58
10 Pseudocode for voyage generation . 116
11 Pseudocode for voyage generation for one PSV 122
12 Pseudocode for extending a label . 123
13 Pseudocode for adding a label to stage 123

xvii

xviii

Chapter 1

Introduction

The petroleum industry is Norway’s largest industry in terms of investments and
value creation, and the petroleum production on the Norwegian continental shelf
(NCS) has created values of more than NOK 12 000 billion in present value since
the start in 1971, according to the Norwegian government (2015). The petroleum
industry is also Norway’s largest industry in terms of government revenues, and the
Norwegian Petroleum Directorate (2016) reports that the net government cash flow
from petroleum activities in 2015 was about NOK 218 billion, or about 20% of total
government revenues.

Three areas of the NCS are open to petroleum production: the North Sea, the Nor-
wegian Sea and the Barents Sea. Most of the fields in production are located in the
North Sea, but there are also fields in production further north, in the Norwegian
Sea. Despite more than 40 years of production, the Norwegian government (2015)
estimates that only 42% of the total expected resources on the NCS have been ex-
tracted.

The Norwegian State Oil Company, Statoil, was formed in 1972 and has been one
of the most important players in the Norwegian petroleum industry. Statoil is the
leading operator on the NCS, having an annual total revenue of more than NOK 622
billion, operating 45 of the fields in production and being responsible for approxi-
mately 70% of the total production in 2014 (Statoil, 2015).

Statoil operates from offshore installations at the fields. Offshore installations are nor-
mally self-sufficient with regards to water and energy, but require supplies like drilling
mud and pulverized cement in order to operate. The supplies are stored at an onshore
supply depot and transported from the supply depot to the installations by platform
supply vessels (PSVs), vessels specially designed to supply offshore installations.

The costs in the petroleum production in the North Sea has risen faster than any
other industrial sector in the region, according to McKinsey & Company (2014). The
increased costs, combined with the drop in oil prices in late 2014, have made operator
companies more aware of the need for cost reductions. Costs related to the chartering

1

and operating of PSVs are a major part of the costs in the upstream supply chain of
operator companies. More efficient use of the PSVs can reduce these costs.

The use of PSVs is planned at strategic, tactical and operational levels. This thesis
addresses the planning problem at a tactical level, more specifically, deciding how
many and which PSVs to charter, which voyages the PSVs should sail and when they
should sail them. Statoil is currently using optimization-based decision support tools
to aid this planning. The current decision support tools generate fleet compositions
and weekly schedules with minimal PSV chartering and sailing costs as the only
objective.

The planners at Statoil have experienced that the total cost related to the supply
service is affected by more than the chartering and sailing costs. One example is
that the tough weather conditions in the North Sea often cause delays to the PSVs,
and the planners might have to send out extra PSVs, or even helicopters, to avoid
shutdown of the installations. Sending out an extra PSV is costly, and the extra cost
could probably be avoided if a more robust schedule was selected, i.e. a schedule that
handles delays better. The planners therefore prefer schedules that are both robust
and have minimal chartering and sailing costs. The planners have also experienced
that changes in the schedule propagate to other parts of the supply chain, in some
cases causing disruptions and extra costs. Hence, they request schedules that require
few changes from the previous schedule, referred to as persistent schedules. Including
these two additional objectives is expected to to reduce the total costs related to
the supply service. The objectives are often conflicting, meaning that improving one
objective worsens another. Hence, the choice of schedule is a trade-off between the
different objectives that depends on the decision makers’ preference for each objective.
In this thesis, it is argued that the best approach for solving problems with multiple
conflicting objectives is to present decision makers with a set of schedules, and let
them use their experience to select the best schedule given the current circumstances.
This allows decision makers to account for factors that are not included in the model.
The set of schedules also gives decision makers better insight into the relationship
between the different objectives, which improves the decision making process.

A detailed description of the problem is given in Chapter 2. Literature relevant to the
problem is reviewed and discussed in Chapter 3, and in Chapter 4 a mathematical
formulation of the problem is presented. Chapter 5 presents a heuristic for solving
the single-objective problem, based on the Unified Hybrid Genetic Search framework
of Vidal et al. (2014). In Chapter 6, the heuristic is extended to handle multiple
objectives. Chapter 7 shows how the parameters for the heuristic are calibrated and
the results from solving test instances provided by Statoil. The test instances are
solved with different combinations of three objectives: minimizing cost, maximizing
persistence and maximizing robustness. The economic implications of the results and
the usefulness to the decision makers at Statoil are discussed in Chapter 8, before
Chapter 9 concludes the thesis and presents suggestions for further research.

2

Chapter 2

Problem Description

This master’s thesis addresses the multi-objective supply vessel planning problem
(MSVPP), an extension of the supply vessel planning problem (SVPP). The SVPP is
a problem faced by Statoil, the largest operator on the Norwegian continental shelf.
Halvorsen-Weare et al. (2012) present a model and method for solving the SVPP.
Shyshou et al. (2012) present a Large Neighbourhood Search heuristic for solving the
same problem, and Borthen and Loennechen (2015) present a model for the SVPP
that considers persistence as an additional objective. All these studies are based on
the model introduced by Halvorsen-Weare et al. (2012).

The following paragraphs are based on these three studies, and some parts are taken
directly from the original texts. The definition of the SVPP used in the studies is:

Identifying the optimal fleet composition of supply vessels that are to service a given
number of offshore installations from one common onshore depot while at the same
time determining the weekly routes and schedules for these vessels. A route in this
setting is a combination of one or more voyages, starting and ending at the supply
depot, which a vessel sails during a week. During a voyage, the vessels may visit one
or more offshore installations.

A solution to the SVPP determines (1) the size and mix of the fleet of PSVs, (2) the
voyages sailed by each PSV and (3) the departure time(s) from the supply depot for
each PSV. The objective of the SVPP is to minimize the costs related to the usage
and operation of the PSVs while providing a reliable supply service. Two costs are
considered in this problem: the time charter cost of PSVs and the sailing cost of the
voyages sailed by the PSVs.

Figure 2-1 shows an example of a solution to a problem instance with four installations
and two PSVs. In this solution, each PSV sails two voyages. PSV 1 departs on day 1
to service installations 1 and 2 and departs on day 3 to service installations 4, 3 and
2, in that order. PSV 2 departs on day 2 to service installations 3 and 4 and on day
4 to service installations 1 and 2.

The MSVPP is defined as any variant of the SVPP with multiple objectives. The

3

Figure 2-1: Example of a solution to the SVPP for an instance with two PSVs and
four installations.

MSVPP has exactly the same decision variables and constraints as the SVPP, and
differs only in the objectives. This thesis studies three objectives: (1) minimizing
the sum of time charter cost and sailing cost, (2) maximizing the persistence of
the schedule and (3) maximizing the robustness of the schedule. The first of these,
minimizing the sum of the PSV charter and sailing costs, is the same objective as in
the SVPP. The two other objectives are based on the experience and preferences of
the decision makers at Statoil. The constraints, referred to as planning requirements,
are described in Section 2.1, and the objectives and the rationale behind them are
described in Section 2.2. Section 2.3 describes how to handle multiple objectives.

Figure 2-2: PSV and offshore installation. Photo: Business Day News (2011)

4

2.1 Planning requirements

The planning requirements are written in italics in the following. The schedules
are weekly plans that are repeated over several weeks, i.e. each PSV sails the same
voyage(s) each week. PSVs have limited load capacity varying with each PSV type.
Each installation needs to be serviced a given number of times each week, and also
has a weekly demand for supplies that must be satisfied. The demand for supplies
of a single visit is estimated as the weekly demand divided by the number of weekly
visits. The departures from the supply depot are spread evenly over the week in order
to ensure a steady supply. The departures to offshore installations are spread rather
than the visits to these installations, since requests from offshore installations may be
unpredictable and should be met without too much delay. As a result, it is important
to ensure that the time of the next departure to an offshore installation is never too far
in the future. For example, suppose an installation requires three visits per week and
the PSVs visiting the installation are scheduled to leave the base on three consecutive
days. If the installation makes a request just after the third PSV has left, then almost
five days will elapse until the next departure, which can be too long. In such a case, it
may be necessary to reroute another PSV to the installation or send out a helicopter
to fulfil its request. This will in most cases be very costly, and can to a large extent
be avoided if the departures are evenly spread. The service time needed to unload
supplies at the installations and the sailing time may vary with each PSV type. A
PSV needs a given number of hours at the supply depot in order to prepare for a
new voyage. Both the supply depot and some of the offshore installations are subject
to opening hours, meaning a PSV may have to stay idle for a while without being
serviced, either if it arrives outside the opening hours or if the service is not finished
by the closing time. Voyages have a minimum and maximum duration, as well as a
maximum number of installations visited, in order to avoid both short voyages - which
may lead to unexploited PSV capacity - and long voyages - which makes sailing times
uncertain. The capacity at the supply depot is limited, meaning that only a limited
number of PSVs can be prepared for a new voyage each day.

2.2 Objectives

This section describes the three objectives studied: minimizing the cost, maximizing
the persistence of the schedule and maximizing the robustness of the schedule.

Cost

Two costs are considered in the SVPP, the time charter cost of PSVs and the sailing
cost of the voyages sailed by the PSVs. The time charter cost of a PSV is the cost of
chartering the PSV in the spot market for the duration of the planning period. The
sailing cost of a voyage is the sum of the variable costs that occurs when the voyage
is sailed. Of these costs, the fuel consumption cost of sailing the voyage is the largest.
The main objective of the SVPP is to minimize the sum of the time charter cost of
PSVs and the sailing cost of the voyages sailed by the PSVs.

5

Persistence

The weekly schedule of the PSVs (the solution to the SVPP) is usually used by
Statoil until there are large changes in demand. The typical lifetime of a schedule
is a few months. When a new schedule is needed, the input is updated and the
model is solved to optimality. The new schedule has the lowest cost possible, but
can be very different from the existing schedule. This leads to difficulties, as the
offshore installations are organized and adapted to the existing schedule. Changes
in the schedule might disrupt the supply chain in unpredictable ways. Statoil has
therefore requested a model that emphasizes persistent solutions, i.e. they prefer new
schedules that do not differ from the existing schedule when there is a need to change
the input and re-optimize the problem. The word persistent is used to indicate that
a new schedule contains few changes from the existing schedule. In this thesis, it is
distinguished between persistence and change, the former being a general concept and
the latter a well-defined value which can be measured. The most important factor
for Statoil to keep unchanged is when the installations need to place their supply
orders. This is determined by when the voyages to an installation depart from the
supply depot. Thus, only the days of departure to each installation are considered
when measuring the number of changes. Persistent schedules make the operation of
the installations more predictable for both managers and workers, who can focus on
working as efficiently as possible instead of adapting to changes. For an example of
how persistence influences the choice of schedule, see Figure 2-3, which shows three
schedules for a problem with four installations and one PSV. Each box represents a
voyage and the numbers represent the installations that are part of the voyage and
the order of visits. The top line is the old schedule, i.e. the one used until now, while
the bottom two are two new cost-optimal schedules. Note that the new schedules
consist of the same voyages, thus they have the same schedule cost. The first new
schedule contains no changes in the ordering routines for the installations, while in
the second schedule, installations 1 and 4 need to place their orders on different days
than in the existing schedule. Therefore, schedule 1 is preferred, as it is the most
persistent one.

Robustness

Disruptions to the planned schedule can result in installations not receiving the de-
manded supplies, and without the required supplies, an installation can be forced
to do a temporary shut-down of production. A temporary shut-down can result in
millions of USDs in lost income, according to Halvorsen-Weare and Fagerholt (2011).
To avoid costly shut-downs, operators can transport critical supplies by changing the
voyage of a nearby PSV, send out an available PSV from the supply depot or trans-
port the supplies by helicopter, but all of these options result in additional effort for
the planners and increased costs. Disruptions to the planned schedule are mainly
caused by the adverse weather conditions in the North Sea and the Norwegian Sea,
especially during the winter. According to Statoil, PSVs have to reduce the sailing
speed when the wave height exceeds 3.5 meters, and the service time at installations
increases when the wave height exceeds 2.5 meters. Installations cannot service PSVs

6

Figure 2-3: Example where two new schedules are generated. The two schedules have
equal cost, since they consist of the same voyages, but the first solution is preferred,
because it does not involve changes in the departures to the installations. In the
second alternative the PSVs visiting installations 1 and 4 depart on different days
than in the existing schedule, which is unwanted.

if the wave height exceeds 4.5 meters, and the PSVs will have to wait for service until
the weather conditions improve. Disruptions are also caused by the fact that the
demand at the installations may vary. Unexpected orders or increased volume of the
existing orders can cause disruptions the same way bad weather does. For example,
an increase in the volume delivered to an installation will increase the service time at
that installation, which can lead to delays in the schedule.

Due to these uncertain factors, the planners at Statoil have experienced that schedules
that do not consider robustness are difficult to execute in real life. They therefore
request that the schedules generated by solving the SVPP are more robust. In this
thesis, robustness is defined as by Halvorsen-Weare and Fagerholt (2011):

By robustness we mean the capability for a voyage or schedule to allow for unforeseen
events during execution. Robust solutions will reduce the actual costs of the supply
vessel service by avoiding expensive and unplanned means of bringing critical demand
to the offshore installations.

2.3 Handling multiple objectives

Three objectives for the MSVPP were presented in the previous section: minimizing
cost, maximizing persistence and maximizing robustness. In practice, the balancing
of these represents a trade-off, meaning that one cannot optimize them all at the same
time. A robust schedule is likely to be more expensive than an unrobust one, since
robust schedules need more slack, which lead to less efficient utilization of the PSVs.
Similarly, a persistent schedule is likely to be more expensive and less robust than an
impersistent one, since the demand for persistence restricts the problem. Identifying
the optimal solution requires some weighting or prioritization of each objective. In

7

this case, the expected cost of using an impersistent and unrobust schedule is difficult
to quantify, thus it is difficult to state a general weighting of, or preference for, each
objective that can be used for all instances of the MSVPP. The preference for each
objective is likely to vary from time to time, depending on both the experience of
the decision maker and factors which are not captured in the model of the MSVPP.
Based on this, it will be argued that the most appropriate approach is to generate a
set of so-called Pareto-optimal solutions from which the decision maker can choose.
The concept of Pareto-optimality will be elucidated later, but in short it means that
a solution is such that one objective cannot be improved without impairing another
objective.

As mentioned, the objective of the SVPP is to minimize the costs related to the
usage and operation of the PSVs while providing a reliable supply service. It is worth
noting that all the mentioned objectives seek to minimize the realised costs related
to the supply service, i.e. the costs that will actually occur. Maximizing persistence
and robustness is done to avoid unplanned costs and inefficiency, so even though the
objectives seem conflicting, they all seek to minimize the realised costs, either directly
or indirectly.

8

Chapter 3

Literature Review

This chapter reviews the existing literature related to the MSVPP. Section 3.1 sum-
marizes previous studies of the SVPP and some closely related maritime routing prob-
lems. Section 3.2 gives a brief introduction to the periodic vehicle routing problem
(PVRP) and the current state-of-the-art algorithms for solving different variations
of it, while Section 3.3 describes some relevant studies of persistence in optimization
models. Section 3.4 reviews previous studies on robustness, both generally for ve-
hicle routing problems and specifically for the SVPP. Finally, a short introduction
to multi-objective optimization and the most popular solution methods is given in
Section 3.5, including the most important properties of genetic algorithms for multi-
objective optimization and a summary of earlier work on multi-objective variants of
the SVPP. Borthen and Loennechen (2015) present a literature review of many of
same the topics, and parts of that literature review is used here.

3.1 The supply vessel planning problem

Fagerholt and Lindstad (2000) were among the first to study the supply service in
the Norwegian Sea, solving a relaxed version of the SVPP. The relaxed version ex-
cludes the constraints on supply depot capacity, voyages not starting before they have
returned from the previous voyage and evenly spread departures. Halvorsen-Weare
et al. (2012) present a mathematical model and solution method for the SVPP. The
model has been implemented in a decision support system that is used by Statoil to
plan the supply service. The problem is solved using a voyage-based formulation and
is solved in two steps: (1) Generating feasible candidate voyages for each PSV and
(2) Using the voyages to solve a voyage-based model (VBM) to find the optimal fleet
composition and weekly routes and schedule. A candidate voyage is the voyage with
shortest duration that visits a given set of installations, starting and ending at the de-
pot. Step 1 consists of generating the candidate voyage for all subsets of installations
that satisfy the constraints on PSV capacity and number of installations per voyage.
This corresponds to solving a travelling salesman problem (TSP) with multiple time
windows for each subset. Halvorsen-Weare et al. (2012) also present some extensions

9

of the model, including departures on specific days, robust schedules and collision
avoidance. Shyshou et al. (2012) build on the model presented by Halvorsen-Weare
et al. (2012), but solve the problem heuristically with a large neighbourhood search
(LNS) instead of using the voyage-based model. The LNS heuristic is not guaranteed
to find an optimal solution, but outperforms the VBM on large problem instances; it
is able to find feasible solutions to problem instances with up to 31 installations.

Halvorsen-Weare and Fagerholt (2011) combine the VBM presented by Halvorsen-
Weare et al. (2012) with weather simulations to study the impact of weather more
in depth. They aim to create more robust schedules for the SVPP, that is, sched-
ules that can withstand changes in the environment (e.g. changing weather condi-
tions). Halvorsen-Weare and Fagerholt (2016) present an arc-flow formulation for
the SVPP, and compare it with the work of Halvorsen-Weare and Fagerholt (2011)
and Halvorsen-Weare et al. (2012). Test results show that the arc-flow model is
outperformed by the voyage-based model, but the authors argue that the arc-flow
formulation has some value, since it provides a more precise description of the prob-
lem. Norlund and Gribkovskaia (2013) study the reduction of CO2-emissions by PSVs
through speed optimization, where speed optimization consists of finding voyages with
waiting time and reducing the speed of the PSVs of these in order to reduce fuel con-
sumption. The study is based on the VBM presented by Halvorsen-Weare et al.
(2012), and adds speed optimization in the voyage generation phase. Test results
show an average reduction of fuel consumption by 10%, without increasing the fleet
size. Norlund et al. (2015) build on the work by Norlund and Gribkovskaia (2013),
considering the robustness of schedules and the reduction of emissions. They iden-
tify the trade-off between low emissions and robust schedules, and solve the problem
multiple times with different robustness requirements, in order to present the deci-
sion makers with a set of schedules for different trade-offs between emissions and
robustness.

The SVPP is a type of Fleet Size and Mix Vehicle Routing Problem (FSMVRP),
where one decides which vehicles to use and the routing of the vehicles simultane-
ously. These types of problems have been studied by Christiansen et al. (2006), who
discuss various models of FSMVRPs arising in the shipping industry. Studies have
also been made on the problem of routing a single PSV, modelled as a Single Vehi-
cle Pickup and Delivery Problem with Capacitated Customers (SVPDPCC). In this
model, the storage capacity on the installations is included as a constraint, as well
as the amount of used supplies that are to be delivered back to the depot from the
installations. The objective of the problem is to design a least cost vehicle route
visiting each customer, starting at the depot. There must be sufficient capacity both
in the vehicle and at each customer location to perform the pickup and delivery op-
erations. The limited capacity of the customers make the problem different from
a standard multi-trip Vehicle Routing Problem (VRP). Jahre et al. (2007) present
the SVPDPCC and a mathematical formulation of it, and solve small instances of
the problem. Gribkovskaia et al. (2008) build on this work and present multiple
construction heuristics and a tabu search algorithm for creating voyages for a single
PSV.

10

Aas et al. (2009) focus on the PSVs and their role in the offshore logistics. They
argue that a thorough understanding of one’s logistics is necessary to determine the
best sourcing strategy of PSVs. They further investigate the properties of a PSV,
and point out that a heterogeneous fleet often performs better than a homogeneous
one.

The SVPP is a special case of the periodic vehicle routing problem (PVRP), which
will be discussed in the next section.

3.2 The periodic vehicle routing problem

The PVRP is a type of VRP where the planning period lasts more than one unit of
time. Each vehicle can service one route per unit of time, which is normally one hour,
day, week or month. A description of the PVRP can be found in Francis et al. (2008).
The problem consists of constructing and assigning vehicle routes to a set of vehicles
which are to service a set of customers. Each customer has a required number of
visits and a total demand over the planning period which needs to be fulfilled. The
objective is to minimize the cost while still satisfying the demand and the required
number of visits. For each unit of time one has to decide the route each vehicle
uses. There are usually constraints making sure the delivery to a customer is spread
evenly over the planning period. The SVPP is a special case of the PVRP. In both
the PVRP and the SVPP, the planning period spans several time units, and each
customer (installation) requires a given number of visits. The difference is that in
the SVPP, a route (voyage) can span multiple days, meaning constraints that ensure
that a vehicle finishes a route before starting a new one are needed. The possibility
of routes spanning multiple days is studied by Savelsbergh and Song (2008), who
study the Inventory Routing Problem with Continuous Moves (IRP-CM). The goal
of the IRP-CM is to minimize transportation costs while avoiding stockouts of the
customers’ inventory, and incorporates routes spanning several days. It differs from
the SVPP because it has multiple pick-up points, while the SVPP only considers one
supply depot. The authors use a combination of a randomized greedy heuristic and
local search to solve the IRP-CM.

Vidal et al. (2012a) present a hybrid algorithm for solving a large class of VRPs, in-
cluding the PVRP. They refer to the algorithm as a Hybrid Genetic Search Algorithm
with Advanced Diversity Control (HGSADC), where the term hybrid genetic algorithm
refers to a special class of genetic algorithms. Genetic algorithms are described in Sec-
tion 3.5.1. Hybrid genetic algorithms differ from normal genetic algorithms in that
they utilize problem-specific knowledge by ”incorporating heuristics, approximation
algorithms, local search techniques, specialized recombination operators, truncated
exact methods, etc.” (Moscato and Cotta, 2003). Hybrid algorithms are also re-
ferred to as memetic algorithms. Vidal et al. (2014) generalize the HGSADC to a
Unified Hybrid Genetic Search (UHGS) metaheuristic for solving numerous variants
of multi-attribute vehicle routing problems. The framework matches or outperforms
the current state-of-the-art algorithms for many benchmark instances, including the

11

benchmark instances for PVRP.

The SVPP differs from a standard PVRP due to two factors: The vehicle fleet is
heterogeneous and the routes can span multiple time periods. The fact that routes can
span multiple time periods makes them interdependent, since one needs to make sure
that a vessel has returned from its previous voyage before embarking on a new one.
Vidal et al. (2014) study a large class of multi-attribute VRPs, but interdependent
services are mentioned as a possible extension of the framework. The general class
of VRPs with interdependencies between routes is referred to as the Vehicle Routing
Problem with Multiple Synchronization Constraints (VRPMS). Drexl (2014) presents
an overview of the most studied variants of VRPMSs, and provides a general heuristic
for solving these problems.

3.3 Persistence

The weekly schedule generated by solving the SVPP is used by Statoil every week as
long as there are no major changes in the structure of the problem, and is re-optimized
whenever a major change occurs. When new schedules are generated, Statoil prefers
the new schedules to require small changes in routines from the ones in place, even
if it means that the schedule is suboptimal with regards to cost. In other words,
they are willing to use a schedule with a higher cost if it involves less change. This
preference is common among decision makers, and has been studied by researchers
in the context of other problems. As noted earlier, it is emphasized that the word
persistent is used to indicate that a new plan contains few changes from a previous
plan. It is distinguished between persistence and change, the former being a general
concept and the latter a well-defined value which can be measured. Deciding the
most appropriate method for measuring change is problem-specific and depends on
factors such as the preferences of decision makers and the complexity and structure
of the model. The following section presents some studies which consider persistence
in optimization models.

Brown et al. (1997b) argue that lack of persistence is a major source of complaints
when optimization models are used in real life. Persistence here refers to when new
plans ”retain the features of prior published plans”. Persistent plans increase trust
in and usage of decision support systems. The study provides multiple case examples
where persistence have successfully been included in the optimization model. One
of these is presented by Brown et al. (1996), who find solutions to a ship scheduling
problem that are both low-cost and similar to a previous solution. The new solution
is found by changing the objective function to minimize changes from the previous
solution and setting an upper limit for the cost. Another approach for achieving
persistence is used by Brown et al. (1997a), who use Lagrangian relaxation to penalize
changes from the baseline solution over a specified threshold. Persistence in ship
routing is studied by Fagerholt et al. (2009), who handle the problem by finding a
set of high-quality solutions that are similar to the initial solution in the beginning
of the planning period, and diverse at the end. This is then presented to the decision

12

makers, who can use their experience to select their preferred solution. This approach
reduces the need to quantify the costs related to lack of persistence.

3.4 Robustness

Unforeseen events like adverse weather conditions and changes in demand at instal-
lations can delay voyages and cause costly disruptions to the planned schedule. The
robustness of a voyage or schedule is the capability to allow for unforeseen events
during execution. The planners at Statoil have experienced that schedules that do
not consider robustness are difficult to execute in real life, and have therefore re-
quested schedules that are more robust. This section presents studies that consider
robustness, both in routing problems in general and in the SVPP.

Gendreau et al. (1996) provide a comprehensive summary of the literature on stochas-
tic VRPs, including VRPs with stochastic demand, customers and travel times.
Potvin et al. (2006) solve a vehicle routing and scheduling problem with stochas-
tic travel times and stochastic customer demand. Agra et al. (2013) solve the robust
VRP with time windows, inspired by a maritime transportation problem where de-
lays due to unforeseen events are common. The problem ”falls into the framework of
robust programming, where a solution is said to be feasible only if it is feasible for
all realizations of the data in a predetermined uncertainty set”. They utilize various
robust optimization tools to handle the uncertainty. Agra et al. (2015) also study
a maritime transportation problem with uncertain sailing and waiting times. They
present a two-stage stochastic programming model with recourse, and use a decom-
position approach similar to the L-shaped algorithm to solve it. Fischer et al. (2016)
present multiple slack-based strategies to increase the robustness of voyages sailed in
a fleet deployment problem for roll-on roll-of liner ships.

Robustness in the SVPP

Halvorsen-Weare et al. (2012) suggest a simple method for extending the SVPP to
create robust and cost-efficient schedules. They define the slack of a voyage as ”hours
available after finishing a voyage before starting to prepare for the next voyage at the
supply depot”. To increase the robustness of the generated schedule, a minimum
requirement of slack for each voyage sailed is set. Halvorsen-Weare and Fagerholt
(2011) extend this model further and add a robustness profit that rewards solutions
with equal distribution of slack in the objective function. They also present a solution
method based on simulation and optimization. They add an extra step to the solution
method that assigns a robustness value to each voyage, based on how the voyage
performs when different weather conditions are simulated. The robustness value is
used to estimate the average demand not delivered by each voyage, and a penalty
for missed demand is added to the objective function. The additional cost incurred
by fulfilling the missed demand is referred to as the extra cost. The total cost of a
solution is calculated as the sum of the schedule cost and the extra cost. The results
show that solutions that consider robustness has a slightly higher schedule cost, but

13

a significantly lower extra cost, resulting in a reduced total cost. It is worth to note
that even though the simulation approach yields the biggest reduction of total cost
(∼3%), the simpler, slack-based approaches also perform well (∼2%).

Norlund and Gribkovskaia (2013) use speed optimization to minimize the emissions
of CO2 from the PSVs used by reducing the sailing speed of PSVs. Robustness is not
considered in the solution method, but they expect robust schedules as a side-effect of
reducing the speed, since the PSVs can adapt to unforeseen events by increasing the
speed. Norlund et al. (2015) solve the SVPP with cost, environment and robustness
considerations. A new step is added to the two-step approach presented by Halvorsen-
Weare et al. (2012), in order to make the schedules more robust. Simulations of the
weather conditions in the North Sea are used to obtain a probability distribution of
the voyage duration of each candidate voyage. If the probability that a candidate
voyage is feasible within its assigned duration is less than the robustness parameter
p, the candidate voyage is removed from the set of candidate voyages.

3.5 Multi-objective optimization

The field of multi-objective optimization provides methods for solving problems with
multiple objectives, also known as MOPs (Multi-Objective Problems). The following
section provides some background on multi-objective optimization and some examples
of how MOPs can be solved.

Deb (2014) gives an introduction to multi-objective optimization and the most com-
monly used solution methods. In multi-objective problems, the optimal solutions
make what is known as a Pareto front in the objective space, a set of solutions all
having the property that one cannot improve one objective without impairing other
objectives. Figure 3-1 shows an illustration of Pareto fronts for different objectives. A
solution on the Pareto front is referred to as Pareto-optimal or non-dominated. Thus,
the Pareto front leads to a trade-off situation where the decision makers have to use
their preference for each objective to select which solution to use. Feasible solutions
that are not on the Pareto front are referred to as dominated solutions, since there
exists at least one solution on the Pareto front that is better (dominates) with respect
to one or more of the objectives and at least as good with respect to the rest of the
objectives. The advantage of presenting a Pareto front is that decision makers can
easily see how much an improvement in one objective affects the remaining objectives.
The nature of the Pareto front implies that any solution on the Pareto front may be
considered optimal, depending on your preferences of the objectives. These prefer-
ences may vary from decision maker to decision maker or even from day to day for
the same decision maker. The main purpose of creating a Pareto front is to illustrate
the trade-offs between different solutions, and let the decision maker use his or her
judgment to select the preferred solution. Often it is computationally infeasible to
find the entire Pareto front, and a best-known Pareto front is found instead. Konak
et al. (2006) list three goals that a good best-known Pareto front should achieve: (1)
be as close to the true Pareto front as possible, (2) solutions should be uniformly

14

spread over the Pareto front and (3) capture the whole spectrum of the true Pareto
front.

Figure 3-1: Illustration of Pareto fronts for different bi-objective problems (Taken
from Deb (2014)).

In general there are two main approaches to solving MOPs, and Deb (2014) refers
to them as the preference-based approach and the ideal approach. In the preference-
based approach, information about the preference for each objective is used to give
a weight to each objective. This vector of weights is called the preference vector.
Using the weights, one can combine the objectives into a single objective function
and solve the problem using only this single objective function. The result is the
optimal solution for the given preference vector, which is a Pareto-optimal solution.
The challenge of this method is to determine the preference vector, since this is often
difficult to quantify in real life. In addition, the method only finds one of the solutions
on the Pareto front. In the real world, decision makers often want to have alternatives
to compare and choose from. In the ideal approach, on the other hand, one starts
by finding the Pareto front, and then selects the preferred solution from the Pareto
front. Deb (2014) argues that this approach is more methodical, more practical and
less subjective than the preference-based approach. The three main methods for
finding the Pareto front are:

• The weighted-sum method

• The ε-constraint method

• Genetic algorithms

In the weighted-sum method the preference-based approach is repeated n times, with
a different preference vector each time, resulting in n solutions, all lying on the Pareto

15

front. The main issue with this method is that it cannot find solutions lying on the
non-convex regions of the Pareto front. The ε-constraint method can be used to
avoid this issue. The idea of the ε-constraint method is to optimize only one of the
objectives while adding the remaining objectives as constraints, each limited by some
value. The vector of these values is referred to as ε. One objective is optimized while
the constraints make sure the other objectives are kept within reasonable limits. One
solution on the Pareto front is found for each value of ε. Since the problem needs
to be solved once for each ε, a challenge of this method is finding ε-values that give
enough granularity without taking too much time to solve. In both the weighted-sum
and the ε-constraint method the single-objective problem has to be solved once for
every solution on the Pareto front.

3.5.1 Genetic algorithms for MOPs

In a study of metaheuristics used for solving multi-objective problems performed by
Jones et al. (2002), 70 % of the studied articles used genetic algorithms as the primary
metaheuristic. According to Konak et al. (2006), the main reason for the popularity of
genetic algorithms in multi-objective optimization is that they are population-based
and can thus search multiple regions of the search space simultaneously. In addition,
they require neither convex, continuous nor unimodal (having only one maximum)
solution spaces.

Konak et al. (2006) give a succinct introduction to multi-objective optimization us-
ing genetic algorithms. Genetic algorithms are inspired by the theory of evolution
from the field of biology. Genetic algorithms start out with an initial population of
solutions, referred to as individuals or chromosomes. Each chromosome is evaluated
according to a fitness function. In order to generate a new generation of individuals,
the two genetic operators mutation and crossover are used. Crossover combines two
individuals, known as parents, into a new solution. Chromosomes with higher fit-
ness are more likely to be selected as parents, making each generation more fit than
the previous one. Mutation makes small random changes to the individuals, thus
exploring new parts of the solution space.

Several different genetic algorithms have been used for multi-objective optimization,
Konak et al. (2006) list 13 of them. They are all based on the general genetic algo-
rithm framework described above, but differ in terms of the fitness function used for
evaluating individuals, how population diversity is preserved and how elitism is used.
The main approaches to the fitness function is either to use a weighted objective
function, to alter the objective function during the search or to use Pareto ranking,
i.e. to sort the population into several fronts based on dominance. Preserving a di-
verse population of individuals is important for any genetic algorithm, in order to
explore as much of the search space as possible. This is especially true when solving
multi-objective problems, since diversity is necessary not only during the search, but
also in the final solutions. If no mechanism for preserving diversity is included, the
individuals tend to form clusters close to each other, referred to as genetic drift by
Konak et al. (2006). Genetic drift is undesirable, since one of the goals of the Pareto

16

front is to be as uniformly distributed over the front as possible. Elitism means that
the best individuals, i.e. the non-dominated individuals always survive to the next
generation. This can for example be done by having an external population which
always contains the non-dominated individuals.

3.5.2 Multi-objective approaches to the SVPP

Some multi-objective extensions of the SVPP have been studied, as described in
Section 3.1. All of the mentioned studies have cost as the primary objective, but
enhance the other objectives, e.g. robustness, by adding steps to the two-step solution
method presented by Halvorsen-Weare et al. (2012). Halvorsen-Weare and Fagerholt
(2011) use a weighted-sum approach where a penalty is given to unsatisfied demand,
where the expected unsatisfied demand is found through simulation. The method
provides a single optimal solution, where the weighting of robustness is determined
by the penalty given to unsatisfied demand.

The most extensive study of multiple objectives is the model presented by Norlund
et al. (2015), which aims to minimize cost, maximize robustness and minimize CO2-
emissions. They solve the problem in three steps, one for each objective. First they
use the method of Norlund and Gribkovskaia (2013) to generate the optimal voyages,
with the PSV speed set such that the CO2-emissions are minimized. Then simulation
is performed to find the probability distribution of the duration of each voyage. The
voyages are assigned a duration such that the probability that they actually are
finished within the assigned duration is larger than a given value p. Finally, the
voyage-based model is solved in order to find the minimum cost. An important
decision in this model is to set the value of p. The authors plot the cost of the solution
against this p-value, illustrating the trade-off between cost and robustness, since a
higher p-value implies more robust schedules. The method of solving the model for
different values of p is equivalent to the ε-constraint method, and the resulting plots
are Pareto-fronts, clearly showing how the two conflicting objectives of robustness
and cost are related.

Borthen and Loennechen (2015) solve the SVPP with persistence as an additional
objective, using the ε-constraint method to generate the Pareto fronts for cost and the
number of changes from a given baseline solution. The method is able to generate the
exact Pareto front for problems with up to 11 installations. Heuristics are presented
to reduce the running time, but the method is still unable to solve large problems,
i.e. problems with more than 15 installations.

17

18

Chapter 4

Mathematical Model

This chapter presents a mathematical formulation of the MSVPP. Section 4.1 briefly
summarizes previous formulations of the SVPP and compares them to the formulation
presented in this chapter. Remarks and assumptions are described in 4.2, and Section
4.3 presents a mathematical formulation of the SVPP. Sections 4.4 and 4.5 describe
how persistence and robustness are measured, respectively, and present an objective
function for each objective.

4.1 Previous work

Different mathematical models and solution methods have been used to solve the
SVPP. Halvorsen-Weare et al. (2012) present a voyage-based model, i.e. a path-flow
model, where the problem is solved in two steps: First generating all voyages (paths)
that may be part of an optimal schedule, then solving the voyage-based model using
the pre-generated voyages. The same model is used by Halvorsen-Weare and Fagerholt
(2011) and slightly modified variants of it is presented by Shyshou et al. (2012),
Norlund et al. (2015) and Borthen and Loennechen (2015). An arc-flow model of
the same problem is presented by Halvorsen-Weare and Fagerholt (2016), and results
show that it is more efficient to solve the voyage-based model, including the generation
of voyages, than to solve the arc-flow model. The mathematical model presented
below represents a new approach to modelling the SVPP, based on the model of the
PVRP presented by Vidal et al. (2012b). It replaces the constraints on evenly spread
departures and overlapping voyages with predefined patterns defining both on what
days there are departures to each installation and on what days each PSV departures
from the depot. Apart from this, the model has many similarities with the arc-flow
model of Halvorsen-Weare and Fagerholt (2016), which has been shown to be less
efficient than the voyage-based model. For this reason, it is likely that solving the
model using exact methods would be less efficient than solving a voyage-based model.
Note also that parts of the formulation is non-linear. The formulation is presented,
however, since it relates more closely to the solution methods that will be used in
Chapters 5 and 6 than the other formulations mentioned. The voyage-based model

19

(VBM) presented by Borthen and Loennechen (2015) is used to find the optimal
solutions presented in Chapter 7. The formulation of the VBM can be found in
Appendix A and a description of the procedures used by Borthen and Loennechen
(2015) to generate the candidate voyages for the VBM can be found in Appendix B.

4.2 Remarks and assumptions

This section describes some properties of the problem that are important to note, and
that makes the SVPP different from standard PVRPs. Some reflect the reality for
Statoil in the North Sea, while others are simplifications. The mathematical model
presented in Sections 4.3-4.5 are based on these properties.

Remarks and assumptions about the depot

The supply depot is closed at night, and a full working day is needed to prepare a
PSV for a voyage. This has two implications. The first is that all PSVs that depart
on a certain day has to be at the depot when it opens, since the entire day is needed
to prepare the PSV for a new voyage. The other implication is that all PSVs depart
from the depot when it closes. It is also assumed that servicing multiple PSVs at the
same time does not affect the service time at the depot, as long as the depot capacity
constraint is not violated. In reality, the service time at the depot will vary, but for
planning purposes this is a reasonable assumption.

Remarks and assumptions about the installations

No installations require more than one service per day. It is assumed that the instal-
lations are available for PSV visits at all times, i.e. that none of the installations have
time windows. In reality, this is the case for 23 out of 27 installations, thus this is con-
sidered a reasonable assumption for the purpose of this thesis. It is also assumed that
an installation can be serviced by multiple PSVs at the same time, without affecting
the service time. Another assumption is that the demand of supplies delivered in each
visit is constant and equal for each visit. In reality, the installations report demand
continuously and the demand is subject to variations. The demand is up-scaled by a
load factor to allow some variation, and based on the experience of the planners at
Statoil, the adjustment is sufficient to satisfy demand.

Remarks and assumptions about the PSVs

The sailing speed of all PSVs is assumed to be constant. In reality, the speed will
vary with weather conditions. Including the uncertainty in weather conditions in the
model is a complicated task and outside the scope of this thesis.

Comparison with previous work

Most of the assumptions above are made by previous studies of the SVPP. Halvorsen-
Weare et al. (2012) make all of the same assumptions, except that they do have time

20

windows for the installations. They also present an extension that avoids that two
PSVs visit the same installation at the same time. Halvorsen-Weare and Fagerholt
(2011), Norlund and Gribkovskaia (2013) and Norlund et al. (2015) make many of
the same assumptions, but they consider the PSV speed to be affected by the weather
conditions.

4.3 Mathematical formulation of the SVPP

This section presents a mathematical formulation of the SVPP. The formulation is
based on the PVRP formulation used by Vidal et al. (2012a), and constraints that are
specific to the SVPP are added. The formulation uses departure patterns to decide
both on which days the PSVs depart and on which days there are departures to each
installation. The installation departure patterns define the set of days on which there
should be a departure to the installation. For example, the pattern {0, 3, 5} indicates
that there is a voyage that services the installation departing on Monday, Thursday
and Saturday (days are zero-indexed). Similarly, the PSV departure patterns define
the set of days on which a PSV departs from the depot. The use of patterns replaces
some of the constraints used by Halvorsen-Weare et al. (2012): the installation de-
parture patterns replaces the constraints for ensuring evenly spread departures, while
the PSV departure patterns replaces the constraints on overlapping voyages.

Sets

N - The set of installations and the depot
NCUST = N \ {0} - The set of installations
V - The set of PSVs available
T - The set of days in the planning period
PCUSTi - The set of feasible departure patterns for installation i
PPSVv - The set of feasible departure patterns for PSV v

Variables

There are four main decisions to be made: (1) Which PSVs should be chartered, (2)
on which days there should be a departure to each installation, (3) which PSV should
depart to each installation on these days and (4) in what sequence should each PSV
service the installations. These decisions are reflected in the following variables in the
model:

δv =

{
1, if PSV v is chartered

0, otherwise

xijvt =

{
1, if PSV v sails directly from i to j on a voyage beginning on day t

0, otherwise

21

yivt =

{
1, if PSV v begins a voyage that services installation i on day t

0, otherwise

zip =

{
1, if installation departure pattern p is used for installation i

0, otherwise

uvp =

{
1, if PSV departure pattern p is used for PSV v

0, otherwise

The variable δv is defined for v ∈ V , while xijvt and yivt are defined for i, j ∈ N , v ∈
V and t ∈ T . zip is defined for i ∈ NCUST , p ∈ PCUSTi , and uvp is defined for
v ∈ V , p ∈ PPSVv . An important constraint in the SVPP is that the departures to
each installation should be evenly spread throughout the planning period. This is
handled in the model by predefining all feasible installation departure patterns for
each installation. Similarly, all feasible departure patterns are predefined for each
PSV. The PSV departure patterns are necessary in order to prevent a PSV from
departing on a new voyage before it has returned to the supply depot. It is important
to note the distinction between when a PSV departures to an installation and when
the installation is actually serviced. Since a voyage can last more than one day, the
visit will not necessarily be on the same day as the departure. The index t in xijvt
and yivt indicates that the voyage begins on day t, but on what exact day the PSV
services the installation and on what day the PSV sails from i to j depends on the
order the installations in the voyage are serviced. The feasible installation departure
patterns are contained in the set PCUSTi , i ∈ NCUST , and the feasible PSV departure
patterns are contained in the set PPSVv , v ∈ V . The parameter Apt = 1 if and only
if pattern p contains the day t, where p is any feasible pattern, both for installations
and PSVs. Installations with the same required visit frequency will have the same
set of feasible installation departure patterns.

The following variables are included to keep track of the quantity delivered, duration
and number of installations visited in each voyage:

qvt - Quantity delivered on the voyage sailed by PSV v beginning on day t
τvt - Duration of the voyage sailed by PSV v beginning on day t
nvt - Number of installations visited in the voyage sailed by PSV v

beginning on day t

22

Parameters

CTC
v - Cost of chartering PSV v for the length of the planning period

CS
ijv - Cost of PSV v sailing from i to j, including service cost at j

Tijv - Time taken for PSV v to sail from i to j, including service time at j
Apt - Equals 1 if departure pattern p contains the day t, 0 otherwise
Bt - Depot capacity on day t
Di - Quantity of supplies demanded per visit at installation i
QMIN
v - Minimum quantity of supplies delivered per voyage for PSV v

QMAX
v - Maximum quantity of supplies delivered per voyage for PSV v

TMIN - Minimum duration per voyage
TMAX
pt - Maximum duration for the voyage beginning on day t if pattern p is used
NMIN - Minimum number of installations serviced per voyage
NMAX - Maximum number of installations serviced per voyage

Objective function

The objective function (4.1) minimizes the sum of chartering cost and sailing cost,
where CTC

v is the time charter cost of PSV v, and CS
ijv is the cost for PSV v of sailing

from i to j.

min
∑
v∈V

CTC
v δv +

∑
i∈N

∑
j∈N

∑
v∈V

∑
t∈T

CS
ijvxijvt (4.1)

Constraints

The objective function is subject to the following constraints:

∑
p∈PCUST

i

zip = 1, i ∈ NCUST (4.2)

∑
p∈PPSV

v

uvp = 1, v ∈ V (4.3)

yivt =
∑
j∈N

xijvt, i ∈ N , v ∈ V , t ∈ T (4.4)

∑
v∈V

yivt −
∑

p∈PCUST
i

Aptzip = 0, i ∈ NCUST , t ∈ T (4.5)

23

Constraints (4.2) and (4.3) ensure that exactly one departure pattern is chosen for
each installation and PSV, respectively. Constraints (4.4) connect the x-variables
with the y-variables, while constraints (4.5) make sure that there is a departure to
each installation only on days that are defined in the selected departure pattern.

∑
j∈N

x0jvt −
∑

p∈PPSV
v

Aptuvp = 0, v ∈ V , t ∈ T (4.6)

∑
j∈N

x0jvt − yivt ≥ 0, i ∈ N , v ∈ V , t ∈ T (4.7)

yivt ≤ δv, i ∈ N , v ∈ V , t ∈ T (4.8)

∑
j∈N

xjivt −
∑
j∈N

xijvt = 0, i ∈ N , v ∈ V , t ∈ T (4.9)

∑
i∈S

∑
j∈S

xijvt ≤ |S| − 1, S ⊂ N \ {0}, |S| ≥ 2, v ∈ V , t ∈ T (4.10)

Constraints (4.6) make sure the PSVs depart on the days given by their PSV departure
pattern. Constraints (4.7) ensure that a PSV that services an installation leaves
the depot, and constraints (4.8) make sure that only chartered PSVs can service
installations. Constraints (4.9) conserve the flow in and out of all installations and
the depot. Constraints (4.10) eliminate subtours.

qvt =
∑

i∈NCUST

Diyivt, v ∈ V , t ∈ T (4.11)

QMIN
v

∑
p∈PPSV

v

Aptuvp ≤ qvt ≤ QMAX
v , v ∈ V , t ∈ T (4.12)

τvt =
∑
i∈N

∑
j∈N

Tijvxijvt, v ∈ V , t ∈ T (4.13)

24

TMIN
∑

p∈PPSV
v

Aptuvp ≤ τvt ≤
∑

p∈PPSV
v

TMAX
pt uvp, v ∈ V , t ∈ T (4.14)

nvt =
∑

i∈NCUST

yivt, v ∈ V , t ∈ T (4.15)

NMIN
∑

p∈PPSV
v

Aptuvp ≤ nvt ≤ NMAX , v ∈ V , t ∈ T (4.16)

Constraints (4.11), (4.13) and (4.15) define the value of the variables qvt, τvt and nvt.
Constraints (4.12), (4.14) and (4.16) define the limits on these three variables. The
sum on the left-hand side of these constraints indicates whether PSV v departs from
the depot on day t. This sum is multiplied with the lower limits, since the limits only
apply if PSV v departs on a voyage on day t. If it does not depart on that day, the
variables qvt, τvt and nvt will be equal to 0. Note that the upper limit on duration of a
voyage, TMAX

pt , depends on the departure pattern of the PSV sailing it. For example,
if a PSV has a departure on both Monday and Wednesday, the duration of the voyage
beginning on Monday cannot be longer than two days, since it needs to be ready for a
new voyage on Wednesday. The voyage departing on Wednesday, on the other hand,
needs only to be finished before the next Monday, i.e. after five days. In practice,
an upper limit lower than five days will usually be set to reduce delays, since longer
voyages are more prone to delays.

∑
j∈N

∑
v∈V

x0jvt ≤ Bt, t ∈ T (4.17)

Constraints (4.17) ensure that the depot capacity is not exceeded.

4.4 Measuring persistence

Persistence indicates that a new solution has few changes from the existing solution.
The following section describes how to measure persistence in the SVPP. Change is
defined and it is decribed how to maximize persistence by minimizing the number of
changes.

The existing solution is referred to as the baseline solution. The most appropriate
method for measuring changes depends on the preferences of decision makers. In the
following model, only the changes in departures to an installation are used to measure

25

change. This is based on information from Statoil that the most important factor to
be persistent is the supply ordering routines, that is, at what times the installations
need to report their demand. This is determined by the time the PSVs depart from
the supply depot. Let NB be the set of installations in the baseline solution B.
Change from baseline solution B to a new solution is then measured as:

∑
i∈NB∩NCUST

∑
t∈T

|σit − σBit |, (4.18)

where σit is 1 if a PSV that services installation i leaves the supply depot on day t in
the current solution and 0 otherwise. σBit has the corresponding values for the baseline
solution B. Note that σit is a variable, while σBit is a parameter. Also note that σit
is binary, since an installation cannot have more than one departure per day. This
is enforced through constraints (4.5) and the installation departure patterns. The
sum is only including the installations which are both in the current and the baseline
problem to avoid counting the changes that inevitably arise when adding or removing
installations. σit can be calculated using the following formula:

σit =
∑
v∈V

yivt, i ∈ NB ∩NCUST , t ∈ T . (4.19)

To simplify the objective function, a new variable is introduced

γit =

{
1, if there is a change in departures to installation i on day t

0, otherwise

which is defined for all i ∈ NB ∩ NCUST , t ∈ T . In other words, γit = |σit −
σBit |. Expression (4.18) uses the absolute value operator, which is non-linear. The
solution methods that are used in this thesis do not require linearity, but Borthen and
Loennechen (2015) present a possible linearization. After inserting the new variable
into Equation (4.18), the objective function becomes:

min
∑

i∈NB∩NCUST

∑
t∈T

γit (4.20)

4.5 Measuring robustness of schedules

As shown in Section 3.4, several approaches to robustness have been used earlier:
approaches based on the slack of voyages, approaches that combine simulation and
optimization, and more advanced approaches like stochastic programming and robust
optimization techniques. Comparing the slack-based approaches and combinations of

26

simulation and optimization, the latter seem to perform better, but are also more
complex. The slack-based approaches are simpler than combining simulation and
optimization, but still perform well. Since the objective of this thesis is to solve
the MSVPP, not study robustness in detail, a slack-based approach is used due to
its simplicity. Specifically, the robustness measure that will be used is the share of
sailed voyages that have at least a minimum number of hours of slack. Using the
share of sailed voyages instead of number of robust voyages makes it easy to compare
robustness across different problem instances, since the robustness value is in the same
range (i.e. between zero and one) regardless of problem size. The following section
describes how robustness is measured.

A voyage is considered a robust voyage if it has at least a given number of hours of
slack. The variable dvt is introduced to keep track of the duration of a voyage in days:

dvt - The duration, in days, of the voyage sailed by PSV v beginning on day t

dvt is calculated from τvt using the formula

dvt = dτvt + TDEPOT

24
e, (4.21)

where TDEPOT is the time taken to prepare a PSV at the depot. Let the parameter
TROBdvt

define the longest duration, in hours, a voyage lasting dvt days can have and
still be considered robust. For instance, if the depot opens 16 hours after a PSV
departs and the required slack is 4 hours, a voyage that lasts one day needs to be
shorter than 12 hours in order to arrive in time for the opening of the depot and have
the required slack. Similarly, a voyage lasting two days needs to be shorter than 36
hours. Note that the expression above is non-linear, but since the solution methods
in this thesis do not require linearity it can be used here. The required slack can
vary with the duration of the voyage, e.g. two-day voyages can require less slack than
three-day voyages, since longer voyages are more prone to disruptions. Whether a
voyage is robust or not is represented by the variable rvt:

rvt =

{
1, if the voyage sailed by PSV v on day t is robust

0, otherwise

The connection between the duration of a voyage τvt and the variable rvt can be
enforced by the following constraints:

τvt − TROBdvt ≤M(1− rvt), v ∈ V , t ∈ T , (4.22)

27

where M is a sufficiently large number to ensure that the constraint is not binding for
any value of τvt when rvt = 0. Note that the variable dvt is used as an index, making
the expression non-linear. A linear, voyage-based model of the problem can be found
in Appendix A. The robustness of a schedule is defined as the share of voyages sailed
that are robust. Since the goal is to maximize robustness, the new objective can be
written as

max

∑
v∈V

∑
t∈T rvt∑

v∈V
∑

p∈PPSV
v

∑
t∈T Aptuvp

, (4.23)

where the numerator is the number of robust voyages and the denominator is the total
number of voyages sailed in the solution, calculated by summing up all departures in
the PSV patterns used.

A weakness of this robustness measure is that it does not distinguish between a voyage
having zero hours of slack and one that has slack one hour below the threshold, when
in reality there can be a significant difference between the two. Also, the setting of the
slack thresholds is not straightforward. However, the measure is easy to understand
and improving it will improve the robustness of a solution. The measure satisfies the
goal of robustness: reducing the probability that the demand at an installation cannot
be met on time using the planned schedule. Therefore it is used as the robustness
measure here.

28

Chapter 5

Hybrid genetic search with
adaptive diversity control for the
SVPP

This chapter presents the solution method used for solving the SVPP with mini-
mum cost as the only objective. The solution method is extended to handle mul-
tiple objectives in Chapter 6. The method is based on the Unified Hybrid Genetic
Search (UHGS) framework for solving multi-attribute VRPs, developed by Vidal et al.
(2014). UHGS is a generic framework that does not specify all procedures, e.g. local
search and crossover, meaning they need to be tailored to best fit the problem at
hand. Vidal et al. (2014) identify four key concepts that make the UHGS framework
successful:

1. Hybridization of a genetic algorithm with efficient local search procedures

2. A solution representation without trip delimiters

3. Allowing and penalizing infeasible solutions

4. Population management by evaluating solutions by both cost and diversity con-
tribution

One implementation of the UHGS is the Hybrid Genetic Search with Adaptive Di-
versity Control (HGSADC), first presented by Vidal et al. (2012a), which is used for
solving PVRPs and Multi-Depot PVRPS (MDPVRPs). The heuristic used for solv-
ing the SVPP draws heavily on this implementation, although some parts have been
modified to fit the SVPP. The HGSADC is a non-deterministic heuristic, meaning
that it neither guarantees optimal solutions nor the same solutions when run multiple
times. The HGSADC takes a fleet of PSVs as input, and generates a schedule, consist-
ing of a set of voyages each PSV shall sail and when they shall sail them, as output.
A solution to the SVPP consists of an optimal fleet of PSVs and an optimal schedule
given that fleet. By running the HGSADC multiple times with different fleets as
input, a best-known fleet can be found. Note the distinction between a solution and

29

a schedule: a solution consists of both a fleet and a schedule. In the following, the
terms individual and schedule will be used interchangeably, while solution refers to a
combination of a fleet and a schedule.

The following chapter describes the methods used for solving the SVPP in detail.
The adapted version of the HGSADC for solving the SVPP with a fixed fleet of PSVs
is described in Sections 5.1 - 5.8 and Section 5.9 describes how the HGSADC can be
used to optimize the fleet size and mix. The chapter concludes with a comparison
with the work of Vidal et al. (2012a) and Vidal et al. (2014) in Section 5.10.

5.1 Overview

Algorithm 1 describes the overall structure of the HGSADC proposed for solving the
SVPP. The algorithm works on a population of individuals. It keeps the population S
separated in two disjoint subpopulations: The subpopulation of feasible individuals,
SFEASIBLE, and the subpopulation of infeasible individuals, SINFEASIBLE. The al-
gorithm keeps breeding new individuals until there have been INI iterations without
improvement, or the maximum running time limit TMAXRUN is reached. One itera-
tion refers to the breeding and education of a new individual, i.e. one iteration of the
while-loop starting on Line 2 in Algorithm 1. The size of each subpopulation is limited
by the parameters µ and λ. µ is the minimum size and λ is the generation size, such
that the maximum subpopulation size is µ + λ. When the maximum subpopulation
size is reached, individuals are removed until there are only µ individuals left in the
subpopulation, a process referred to as survivor selection. The initial population is
created using the construction heuristic described in Section 5.5.

5.2 Individual representation

An individual is a schedule that determines which voyages each of the PSVs should
sail, and at what day the PSV should start the voyage. An example of a schedule
for a problem spanning four days with four installations and two PSVs is shown in
Figure 5-1. In this example, each voyage has a duration of at most two days.

Figure 5-1: Example of a schedule for a problem with four days, four installations
and two PSVs.

30

Algorithm 1 Hybrid Genetic Search with Adaptive Diversity Control (HGSADC)

1: Initialize population . Section 5.5
2: while Iterations without improvement < INI and time < TMAXRUN do
3: Select parent individuals s1 and s2 . Section 5.6
4: Generate offspring snew from s1 and s2 (crossover) . Section 5.6
5: Educate offspring snew with probability ρEDU . Section 5.7
6: if snew is infeasible then
7: Repair snew with probability ρREP . Section 5.7.3
8: end if
9: if snew is still infeasible then

10: Insert snew into infeasible subpopulation
11: else
12: Insert snew into feasible subpopulation
13: end if
14: if maximum subpopulation size µ+ λ reached then
15: Select survivors . Section 5.8.1
16: end if
17: Adjust penalty parameters for violating feasibility conditions . Section 5.8.2
18: if best individual not improved for IDIV iterations then
19: Diversify population . Section 5.8.3
20: end if
21: Return best feasible individual
22: end while

31

Each individual is represented by three separate chromosomes. The first chromosome
is the installation chromosome, which for each installation defines at what days the
voyages that visit the installation departs from the depot, referred to as the installa-
tion pattern πi(s) for installation i. The installation chromosome for the schedule in
Figure 5-1 is shown in Table 5.1.

Inst i 1 2 3 4
Pat πi(s) {1, 4} {1, 3, 4} {2, 3} {2, 3}

Table 5.1: Installation chromosome corresponding to the individual in Figure 5-1.
The top row shows the installation and the bottom row shows the days on which
there is a departure to the installation.

The second chromosome is the PSV chromosome, which for each PSV defines at what
days the PSV departs from the depot, referred to as the PSV pattern βv(s) for PSV
v. The PSV chromosome for the schedule in Figure 5-1 is shown in Table 5.2.

PSV v 1 2
Pat βv(s) {1, 3} {2, 4}

Table 5.2: PSV chromosome corresponding to the individual in Figure 5-1. The top
row shows the PSV and the bottom row shows the days on which the PSV departs
from the depot.

The installation patterns and PSV patterns correspond directly with the patterns
described in Chapter 4, but are represented in a different way here. If installation i
uses pattern p in individual s, meaning that zip = 1, πi(s) is given by Equation (5.1):

πi(s) = {t | t ∈ T ∧ Apt = 1}. (5.1)

Similarly, if PSV v uses pattern p, meaning that uvp = 1, βv(s) is given by Equation
(5.2):

βv(s) = {t | t ∈ T ∧ Apt = 1}. (5.2)

The final chromosome is the tour chromosome, which defines the complete schedule,
with a voyage rvt assigned to each (v, t), v ∈ V , t ∈ T . A voyage is a sequence of
installations that are to be visited, in the order given by the sequence. If voyage rvt
is empty, PSV v does not depart on a voyage on day t. Figure 5-2 shows a schedule s
and its tour chromosome. The sequence in voyage r13 indicates that PSV 1 departs
on day 3, visiting the installations 4 - 3 - 2, in that order.

32

Figure 5-2: Example of an individual and its corresponding tour chromosome.

5.3 Search space

Optimal individuals often lie at the boundary of feasibility, hence both Korsvik et al.
(2011) and Vidal et al. (2014) argue that allowing infeasible individuals improves
the performance of the search. Therefore, infeasible individuals are included in the
search, but penalized according to how far they are from being feasible. However,
the infeasible individuals are only allowed to violate some of the constraints. All
individuals in the search space, both feasible and infeasible, satisfy the constraints on
(1) number of visits to each installation, (2) spread of departures to each installation
and (3) depot capacity. In addition, all voyages start and end at the depot, and the
individuals do not contain any subtours. The construction heuristic, education and
crossover are all designed to ensure this. The constraints that can be violated are the
lower and upper limits on duration of voyages, capacity of PSVs and the number of
installations visited in each voyage, i.e. constraints (4.12), (4.14) and (4.16).

5.4 Evaluation of individuals

Individuals are evaluated based on their cost, how much they violate the constraints
and how much they contribute to the diversity of the population. Let R(s) be the
set of voyages sailed in individual s ∈ SFEASIBLE ∪SINFEASIBLE. Let cvt be the cost
of sailing voyage rvt, that is, the voyage sailed by PSV v beginning on day t. The
penalized cost φvt of voyage rvt is defined as the cost of the voyage plus any penalties
if the voyage is infeasible, calculated as

33

φvt = cvt

+ ωDmax{0, TMIN − τvt, τvt − TMAX
vt }

+ ωQmax{0, QMIN − qvt, qvt −QMAX
v }

+ ωNmax{0, NMIN − nvt, nvt −NMAX}.
(5.3)

ωD, ωQ and ωN are the penalty parameters per unit violation of the constraints on
duration, capacity and number of installations visited, respectively. τvt, qvt and nvt
are the duration, utilized capacity on the PSV and the number of installations in
voyage rvt, respectively. These are equal to the variables τvt, qvt and nvt presented in
Chapter 4. The maximum duration TMAX

vt of a voyage is determined by what pattern
PSV v uses. Recall that uvp = 1 if PSV v uses pattern p and that TMAX

pt is the
maximum duration of a voyage departing on day t when using PSV pattern p. The
maximum duration of voyage rvt can be calculated as

TMAX
vt =

∑
p∈PPSV

v

uvpT
MAX
pt . (5.4)

The penalized cost of an individual s is the sum of the penalized cost of every voyage
in the individual, φ(s) =

∑
(v,t)∈R(s) φvt. The penalized cost is used to evaluate

the fitness of the individual. One of the key success factors of a population-based
metaheuristic like the HGSADC is to maintain a diverse population of individuals.
Therefore, each individual s is evaluated in terms of its diversity contribution, ∆(s),
defined as the average distance to its nCLO closest neighbours. Let NCLO be the set
containing these neighbours. Then the diversity contribution of individual s becomes

∆(s) =
1

nCLO

∑
s2∈NCLO

δH(s, s2), (5.5)

where δH(s1, s2) is the normalized Hamming distance between individuals s1 and s2,
based on the Hamming distance first presented by Hamming (1950). The normalized
Hamming distance counts the number of installations that have different departure
patterns and the number of installations that are serviced by a different set of PSVs.
The sum is normalized by dividing it by two times the number of installations, giving
a value between 0 and 1. Let Vi(s) be the set of PSVs servicing installation i in

34

individual s. Then the normalized Hamming distance becomes

δH(s1, s2) =
1

2|NCUST |
∑

i∈NCUST

(1(πi(s1) 6= πi(s2)) + 1(Vi(s1) 6= Vi(s2))), (5.6)

where 1(cond) = 1 if condition cond is true and 0 otherwise. Every individual is
ranked based on its penalized cost and its diversity contribution. Let RankC(s)
and RankD(s) be the rank of individual s in terms of penalized cost and diver-
sity contribution, respectively. The individual with the lowest penalized cost will
have RankC(s) = 1, and the individual with the highest penalized cost will have
RankC(s) = |SFEASIBLE| + |SINFEASIBLE|. The ranks are further used to calculate
the biased fitness, given by Equation (5.7), where nELI is the number of elite indi-
viduals wanted to survive to the next generation and S is the current population of
individuals.

BF (s) = RankC(s) + (1− nELI

|S|
) RankD(s) (5.7)

5.5 Constructing the initial population

The initial population is initialized by creating KINITµ individuals and assigning
each individual to the appropriate subpopulation, where µ is the minimum number
of individuals in each subpopulation. The number of individuals created should be
high enough to contribute sufficiently to the diversity of the population, but not too
high, as survivor selection (explained in Section 5.8.1) will restrict the size of each
subpopulation to µ + λ. Note that during the first iterations of the HGSADC, the
balance between feasible and infeasible individuals may be skewed such that one of
the subpopulations contains less than µ individuals.

The initial population is created using the construction heuristic described in Algo-
rithm 2. An individual s is created in three steps, one for each of the chromosomes
used to represent an individual. The first step is to create the installation departure
chromosome by randomly assigning an installation pattern πi to each installation i.
The installation pattern is selected from the set of feasible installation patterns for
installation i, PCUSTi . The union of all the assigned installation patterns is the set
of days that need a departure, denoted T DEP (s). The second step is to create the
PSV departure chromosome by randomly assigning a PSV pattern βv(s) to each PSV
v. The PSV pattern is selected from the set of possible PSV patterns for each PSV
v, PPSVv , that visit at least one day in T DEP (s). When a PSV pattern is assigned,
the days in the pattern are removed from the set of days that need a departure:
T DEP (s) = T DEP (s) \ βv(s). If T DEP (s) 6= ∅ after all PSVs have been assigned
a PSV pattern, at least one installation pattern have days with no PSV departing,

35

and the second step is restarted. The PSV pattern could be selected randomly from
PPSVv , but making sure that the selected pattern includes at least one day in T DEP (s)
reduces the number of restarts significantly, as the chance of having a PSV departing
on all days in T DEP (s) increases. The second step of the construction heuristic is also
restarted if the depot capacity constraint is violated on any day of the planning pe-
riod. In other words, the second step is completed when there is at least one departure
on all days in T DEP (s) and the depot capacity constraint is not violated on any day.
The third step is to create the tour chromosome by allocating installation departures
to a combination of day and PSV. The set of installations that have a departure on
day t, denoted Nt(s), can be generated from the installation departure chromosome.
Likewise, the set of PSVs that have a departure on day t, denoted Vt(s), can be
generated from the PSV departure chromosome. The tour chromosome is created by
iterating through all days in the planning period, t ∈ T , and for each day allocate
each of the installations in Nt(s) to a PSV, randomly selected from Vt(s). After the
three steps are completed, all of the chromosomes that represent an individual have
been created. The individual then undergoes education, as described in Section 5.7,
and is assigned to the appropriate subpopulation.

5.6 Parent selection and crossover

Crossover is the process where the chromosomes of two parent individuals are com-
bined into a new individual. Two parents, s1 and s2 are chosen and the result of
the crossover is a new individual (also known as offspring) snew. Each parent is se-
lected by a binary tournament, i.e. randomly picking two individuals from the entire
population and choosing the one with the best biased fitness as the parent. The
crossover procedure is described in Algorithm 3. The algorithm begins by selecting
which parts of the chromosome should be inherited from which parent. This is done
by randomly dividing the set of (PSV v, day t) couples into three disjoint sets: Λ1,
Λ2 and Λmix, containing the (PSV, day) couples that shall inherit data from s1, s2
and both, respectively. The next step (step 1) is to inherit data from s1. For the
(v, t) couples that are in Λ1, all departures are simply copied from s1 to snew. For the
(v, t) couples that are in Λmix, two random cut-off points, α1

vt and α2
vt, are picked, and

the installation sequence between α1
vt (inclusive) and α2

vt (exclusive) is copied from s1
to snew. Note that α1

vt may be larger than α2
vt, in which case the copied sequence is

formed by removing the sequence between α2
vt and α1

vt.

Step 2 consists of inheriting data from s2. Recall that the constraints on (1) number
of visits to each installation, (2) spread of departures to each installation and (3) de-
pot capacity are not allowed to be violated by any individual. Since each individual
complies with these constraints, the departures copied from s1 are guaranteed to not
violate them. When combining departures from two different individuals, however,
one needs to check that these constraints are not violated before copying departures.
These constraints are enforced by the installation patterns and PSV patterns, there-
fore the algorithm checks that both the installation pattern and PSV pattern resulting
from copying an installation departure i into a voyage are feasible. Line 13 checks

36

Algorithm 2 Construction heuristic

1: individualsCreated ← 0
2: while individualsCreated < KINITµ do

STEP 1: SELECT RANDOM INSTALLATION PATTERN
3: for each installation i ∈ NCUST do
4: πi(s)← random pattern in PCUSTi

5: end for

STEP 2: CREATE PSV PATTERN
6: T DEP (s)←

⋃|NCUST |
i=1 πi(s)

7: for each PSV v ∈ V do
8: βv(s)← random pattern in PPSVv that contains at least one day in T DEP (s)
9: T DEP (s)← T DEP (s) \ βv(s)

10: end for
11: if T DEP (s) 6= ∅ or depot capacity constraint is violated then
12: go to 6 . restart step 2
13: end if

STEP 3: CREATE TOUR CHROMOSOME
14: for each day t ∈ T do
15: for each installation i ∈ Nt(s) do
16: v ← random vessel in Vt(s)
17: Add i to the end of voyage rvt
18: end for
19: end for
20: Educate individual s with probability ρEDU

21: if s is infeasible then
22: Repair with probability ρREP

23: end if
24: if s is still infeasible then
25: Insert s into infeasible subpopulation
26: else
27: Insert s into feasible subpopulation
28: end if
29: individualsCreated← individualsCreated + 1
30: end while

37

that there is no departure to i on day t already and that the resulting installation
pattern is part of at least one of the feasible patterns for i. If the condition is not
satisfied, i cannot be copied to the voyage. If the PSV v already departs on day
t, there is no change in the PSV pattern, and the installation can safely be copied.
If v does not depart, Line 16 checks that there is available depot capacity on that
day and that the resulting PSV pattern is part of at least one feasible PSV pattern.
Here, nPSVt (snew) equals the number of PSVs departing on day t. If both of these
requirements are satisfied, a new voyage is created, and the installation is copied from
s2 to snew.

After all feasible installation departures have been copied from both s1 and s2, there
may still be installations that require more visits. These are inserted in Step 3. The
missing departures are inserted in random order. Each is inserted into the voyage
where it is cheapest, in terms of penalized cost, to insert it, at the cheapest position
in the voyage. The cheapest voyage and position is found by iterating through all
possible positions in all feasible voyages, calculating the increase in penalized cost by
inserting the installation at the given position in the given voyage.

Due to the design of the crossover operator, the offspring individual snew has the
required number of installation visits, has a feasible installation pattern and does not
exceed the depot capacity. It may, however, contain voyages that makes it infea-
sible in terms of number of installations per voyage, capacity of the PSVs and the
maximum or minimum duration of the voyages. These three constraints are the only
constraints that are allowed to be violated, and are handled by penalizing violations
in the penalized cost function. It is important to note that the maximum duration
of a voyage depends on the PSV departure pattern of the PSV sailing that voyage.
For example, if a PSV departs on Monday, Wednesday and Saturday, the maximum
duration of the voyage departing on Monday and Saturday will be two days in order
to be ready for its next departure. The voyage departing on Wednesday, on the other
hand, can last three days, since there are three days from Wednesday to Saturday.

5.7 Education

Education enhances the individuals found and is performed whenever a new individual
is generated, either by the construction heuristic or by combining two parents using
the crossover operator. Education is performed in three steps:

1. Voyage improvement

2. Pattern improvement

3. Voyage improvement once more

Voyage improvement refers to methods aiming to improve the quality of voyages by
reordering the sequence of visits within a voyage. In terms of the chromosomes, this
means that voyage improvement neither changes the installation patterns nor the PSV
patterns. Pattern improvement, on the other hand, tries to improve the individual by

38

Algorithm 3 Crossover operator

STEP 0: INHERITANCE RULE
1: Pick two random numbers between 0 and |T |×|V| according to a uniform distribu-

tion. Let n1 and n2 be the smallest and the largest of these numbers, respectively
2: Randomly select n1 (PSV, day) couples to form the set Λ1

3: Randomly select n2 − n1 remaining couples to form the set Λ2

4: The remaining |V| × |T | − n2 couples make up the set Λmix

STEP 1: INHERIT DATA FROM s1
5: for each (PSV, day) (v, t) belonging to set Λ1 do
6: Copy the sequence of installation departures from rvt(s1) to rvt(snew)
7: end for
8: for each (PSV, day) (v, t) belonging to set Λmix do
9: Randomly (uniform distribution) select two chromosome-cutting points α1

vt

and α2
vt and copy the α1

vt to α2
vt substring of rvt(s1) to rvt(snew)

10: end for

STEP 2: INHERIT DATA FROM s2
11: for each (PSV, day) (v, t) ∈ Λ2 ∪ Λmix selected in random order do
12: for each installation departure i in rvt(s2) do
13: if t /∈ πi(snew) and ∃p ∈ PCUSTi (p ⊃ (t ∪ πi(snew))) then
14: if t ∈ βv(snew) then
15: Copy installation i at the end of rvt(snew)
16: else if nPSVt (snew) < Bt and ∃p ∈ PPSVv (p ⊃ (t ∪ βv(snew))) then
17: Create new voyage rvt(snew) and insert installation i
18: end if
19: end if
20: end for
21: end for

STEP 3: COMPLETE INSTALLATION SERVICES
22: while there are installations with unsatisfied service frequency requirements do
23: i ← random installation for which service frequency requirements are not

satisfied
24: Let F be the set of feasible (PSV, day) combinations (v, t) with respect to the

feasible installation patterns, feasible PSV patterns and depot capacity based
on the visits already in snew.

25: if F = ∅ then
26: go to 1 . no feasible insertion, restart the procedure
27: else
28: Let ψ(i, v, t) be the minimum penalized cost for the insertion of installation

i into the voyage sailed by PSV v on day t.
29: Insert i at least cost position in rvt, where (v, t) = argmin(v,t)∈F ψ(i, v, t).
30: end if
31: end while

39

changing these patterns. Note that some of the pattern improvement methods used
may change the order of visits within a voyage.

5.7.1 Voyage improvement

Let the neighborhood of an installation u be defined as the hn closest installations,
where n is the number of installations visited on the voyage and h ∈ [0, 1] is a param-
eter restricting the size of the neighborhood. The idea of the voyage improvement is
to evaluate each installation u and all of its neighbors in random order. Let v be a
neighbor of u, and x and y be the successors of u and v, respectively. The evalua-
tion assesses the following moves in random order, and performs the first move that
improves the penalized cost of the voyage:

• (M1) Remove u and place it after v

• (M2) Remove u and x and place u and x after v

• (M3) Remove u and x and place x and u after v

• (M4) Swap the position of u and v

• (M5) Swap the position of u and x with v

• (M6) Swap the position of u and x with v and y

• (M7) Swap the position of x and v

The voyage improvement stops when all installations and their neighborhoods have
been evaluated.

5.7.2 Pattern improvement

Three different methods are used in the pattern improvement: (1) Changing installa-
tion departure patterns, (2) merging multiple voyages departing on the same day and
(3) moving installation departures from short voyages to other voyages. The goal of
the last two methods is to reduce the cost by reducing the number of voyages sailed.
The reason for this is that the distance between the depot and the installations often
are longer than the distance between installations, resulting in a high start-up cost
for a voyage. Therefore, fewer voyages often lead to cheaper schedules.

Changing installation departure patterns

The installation departure patterns are improved by iterating through all installa-
tions, looking for better patterns for each installation. This is done by removing all
departures to the installation and looping through all feasible departure patterns for
the installation, reinserting the departures on the least cost positions on the days
given by the installation pattern. The pattern resulting in the lowest penalized cost
is chosen.

40

Merging voyages

The goal of this procedure is to reduce the number of voyages sailed by attempting to
merge two voyages departing on the same day into one voyage. This is done by looping
through all days that have more than one voyage and calculating the penalized cost
of merging all combinations of two voyages on that day. The merge which reduces
the penalized cost the most, if any, is performed.

Reducing the number of voyages

The goal of this procedure is to reduce the number of voyages sailed by moving
installation departures from days with short voyages to other days, and it is described
in Algorithm 4. The procedure for changing installation patterns described above
changes the pattern of one installation at a time and evaluates whether the penalized
cost is reduced when the pattern is changed. The new procedure differs in that it
changes the pattern of multiple installations and then evaluates whether the new
individual is improving or not. This is done because sometimes the individual might
be stuck in a local optimum where changing one installation pattern does not improve
the individual, but the individual could be improved by changing multiple installation
patterns. The procedure works as follows: let nREMt (s) be the smallest number of
installation departures that needs to be moved to another day in order to reduce the
number of voyages sailed on day t, calculated as nREMt (s) = |Nt(s)| mod NMAX . The
procedure selects the day t with lowest nREMt (s) and changes the installation pattern
of installations that have a departure on t. Let PMOV

it be the set of feasible patterns
for installation i that do not contain day t. If this set is non-empty, i is movable and
i is included in the set of movable installations with departures on day t, NMOV

t (s).
If nREMt (s) > |NMOV

t (s)|, it is not possible to move enough of the installations to
remove a voyage, and the procedure stops. Else, the procedure continues by finding
the (installation, pattern)-combination (i, p) that results in the lowest penalized cost,
where i ∈ NMOV

t (s), p ∈ PMOV
it . After the pattern is changed, the installation is no

longer part of NMOV
t (s), hence nREMt (s) has decreased by one. The procedure keeps

changing the pattern of the installation with the lowest move cost until nREMt (s) = 0.
If the penalized cost of the individual is reduced as a result of the procedure, the
changes are saved, if not, the procedure does not change anything and individual s
remains as before the procedure started.

5.7.3 Repair

If the resulting individual after education is feasible, it is referred to as naturally
feasible. If it is infeasible, repair is performed with probability ρREP . Repair attempts
to make infeasible individuals feasible by multiplying the penalty parameters by 10
and running the education again. If the individual still is infeasible, the penalty
parameters are multiplied by 100 and the education is run again.

41

Algorithm 4 Reducing the number of voyages

STEP 1: SELECT DAY TO MOVE DEPARTURES FROM
1: for t ∈ T do
2: nREMt (s)← |Nt(s)| mod NMAX

3: end for
4: t← argmint∈T n

REM
t (s)

STEP 2: MOVE INSTALLATION DEPARTURES
5: φBEF (s)← penalized cost of individual s before voyage reduction
6: for i ∈ Nt(s) do
7: PMOV

it ← {p | p ∈ PCUSTi ∧ t /∈ p} . Feasible patterns for i without t
8: end for
9: NMOV

t (s)← {i | i ∈ Nt(s) ∧ |PMOV
it | > 0}

10: while 0 < nREMt (s) ≤ |NMOV
t (s)| do

11: Let ψ(i, p) be the minimum penalized cost of i changing pattern to p
12: (i, p)← argmin(i∈NMOV

t (s),p∈PMOV
it)ψ(i, p)

13: πi(s)← p
14: NMOV

t (s)← NMOV
t (s) \ {i}

15: nREMt (s)← nREMt (s)− 1
16: end while

STEP 3: EVALUATE CHANGE IN PENALIZED COST
17: φAFT (s)← penalized cost of individual s after voyage reduction
18: if φAFT (s) < φBEF (s) then
19: Keep changes
20: else
21: Revert changes and keep input individual s
22: end if

42

5.8 Population management

Three different population management mechanisms are used to improve the search.
These are the survivor selection, penalty parameter adjustment and diversification
mechanisms, all explained below. The aim of these mechanisms is to maintain a
given balance between feasible and infeasible individuals, to maintain the diversity
of the population and to keep high-quality individuals. They have in common that
they affect the entire population simultaneously, contrary to crossover, education and
repair, which only affect one individual at a time.

5.8.1 Survivor selection

The goal of survivor selection is to increase the quality of the population by discarding
both bad quality individuals and clones, i.e. individuals that have a Hamming distance
of zero to another individual. Survivor selection is performed on a subpopulation
whenever the size of the subpopulation reaches its maximum limit, given by µ + λ.
The mechanism removes individuals until there are µ individuals left. The individuals
are removed in order of decreasing biased fitness, first removing clones and when no
clones are left, removing the individuals with highest biased fitness.

5.8.2 Penalty parameter adjustment

The penalty parameters are adjusted every 100 iterations, in order to attain a desired
share of naturally feasible individuals. The last 100 individuals generated are consid-
ered, and each constraint is considered separately. Let ξD, ξQ and ξN be the share of
naturally feasible individuals among the last 100 with respect to duration, capacity
and number of installations, respectively. Let ξREF be the target ratio of naturally
feasible individuals. The penalty parameters are adjusted as shown in Algorithm 5,
where ζUP and ζDOWN are the adjustment factors for the penalties.

Algorithm 5 Penalty parameter adjustment

1: for p = D,Q,N do
2: if ξp ≤ ξREF − 0.05 then
3: ωp = ωpζUP

4: else if ξp ≥ ξREF + 0.05 then
5: ωp = ωpζDOWN

6: end if
7: end for

5.8.3 Diversification

Diversification is used to prevent the algorithm from getting stuck in a local optimum.
In case no improvement has been made to the best individual the last IDIV iterations,
diversification is performed. Diversification works by removing all but the best third
of each subpopulation and generating KDIV µ new individuals.

43

5.9 Optimizing the fleet size and mix

The algorithm described in Sections 5.1 - 5.8 minimizes the sailing cost using a given,
fixed fleet. The objective of the SVPP is to minimize all costs related to the usage
and operation of the PSVs, thus a solution to the SVPP also determines the fleet
size and mix, as explained in Chapter 2. The method used to optimize the fleet is
based on two additional assumptions. The first is that the time charter cost of every
PSV is larger than the total sailing cost of all PSVs. The second is that the sum of
the charter cost of the two cheapest PSVs is higher than the charter cost of the most
expensive PSV. The first assumption makes sure that the reduction in sailing cost
by increasing the fleet size will never offset the increase in charter cost. The second
assumption makes sure that if a feasible fleet is found, the charter cost of that fleet is
lower than the charter cost of all fleets containing more PSVs. The two assumptions
combined imply that if there is a feasible fleet of size k, the size of the optimal fleet
will be at most k. This can be utilized to optimize the fleet size and mix in two
separate stages. Both assumptions are realistic and based on input from the decision
makers at Statoil. The differences in charter cost between different PSVs are small
as of April 2016, and the total sailing cost is around 50% of the charter cost of one
PSV in the largest problem instances solved by the decision makers.

Algorithm 6 describes a method for solving the SVPP with optimal fleet size and
mix, given the two assumptions. The fleet optimization algorithm consists of two
steps: (1) Optimizing the fleet size and (2) Optimizing the fleet mix. The feasibil-
ityCheck(V) procedure consists of running the HGSADC with the input fleet V .
The procedure stops when the algorithm finds a feasible individual or if no feasible
individual is found within INI iterations. The fleet optimization algorithm starts by
running the feasibilityCheck procedure with the entire available fleet as input. If
a feasible individual is found, the PSV with lowest capacity is removed from the fleet,
and feasibilityCheck is run with the resulting fleet as input. This is done until no
feasible individual is found for the input fleet. Let k denote the size of the infeasible
fleet. Even though no feasible individual was found for the input fleet, other fleets of
size k can be feasible, since removing the PSV with the lowest capacity is a heuristic
to reduce the fleet size. Therefore, the algorithm checks the feasibility of all fleets of
size k. If a feasible fleet is found, the algorithm goes back to the loop of removing
the PSV with the lowest capacity and checking the feasibility. If none of the fleets
of size k are feasible, the size of the optimal fleet has to be at least k + 1. Since a
feasible fleet of size k + 1 has been found, the two assumptions imply that the fleet
size is at most k+ 1. In other words, the optimal fleet size must be k+ 1. The second
step of the fleet optimization algorithm is to run HGSADC for all fleets of size k+ 1.
The total cost of a solution is defined as the sum of the charter and sailing costs.
The solution with the lowest total cost is the optimal solution, with optimal schedule
sOPT and optimal fleet VOPT .

Note that in both Line 8 and 14 of the algorithm, all possible fleets of a certain size
are tested. The number of fleets that are tested can be reduced by analyzing the
input data. One improvement is to create an ordering of PSVs, as some PSVs may

44

have properties such that they will always be preferred over another. For instance, if
PSV v has a lower capacity and sailing speed than all the other PSVs, it will never
be preferred with regards to the feasibility of a fleet. If a fleet of size k that does not
contain v is infeasible, a fleet of size k that contains v will also be infeasible. This
means that the fleets containing v does not have to be tested in Line 8. If v also has a
higher charter cost than all of the other PSVs, it does not need to be checked in Line
14. Another way to use the input data is to calculate the required capacity of the
fleet and let feasibilityCheck check that the fleet has sufficient capacity before it
runs HGSADC.

Homogeneous fleet

Even though the HGSADC considers a heterogeneous fleet, the algorithm can be
used with a homogeneous fleet. The fleet optimization algorithm is the same, but the
performance will improve significantly. The reason is that the for-loop described in
Line 8 - 13 will only have one iteration, since there is only one fleet of size k. The
second step of the fleet optimization algorithm is also a for-loop that will be reduced
to one iteration. Note that the assumption about the relationship of the charter and
sailing costs is still needed to determine the optimal fleet size. The second assumption,
that the charter cost of any two PSVs exceeds the charter cost of each single PSV,
will always hold for a homogeneous fleet, since the charter cost is the same for all
PSVs.

5.10 Comparison with Vidal et al. (2012a)

The SVPP differs from the PVRP in two aspects: The fleet is heterogeneous and
the routes can span multiple time periods. These two aspects require the HGSADC
to be changed from that of Vidal et al. (2012a) and Vidal et al. (2014), who solve
both the PVRP and the multi-depot PVRP (MDPVRP). The main difference is that
the individual representation is changed: the depot chromosome used by Vidal et al.
(2012a) is replaced by the PSV (vehicle) chromosome. Since these two chromosomes
are different in structure, additional adaptions are necessary in the construction of the
initial population, crossover and education. In addition, two new education operators
tailored to solve the SVPP are introduced and the fleet optimization algorithm is
adapted to handle a heterogeneous fleet. The following section goes through all the
parts of the heuristic presented above and describes the similarities and differences
with the heuristic presented by Vidal et al. (2012a) and Vidal et al. (2014). All
references to the PVRP, MDPVRP and methods used for solving these refer to these
two papers.

Overview

The overall structure of the HGSADC for the SVPP is the same as the HGSADC for
the MDPVRP, and Algorithm 1 differs from the overall algorithm presented by Vidal
et al. (2012a) only in notation and wording.

45

Algorithm 6 Optimizing the fleet size and mix

STEP 1: OPTIMIZE THE FLEET SIZE
1: feasibleSize← feasibilityCheck(V)
2: while feasibleSize do
3: v ← The PSV in V with lowest capacity
4: V ← V \ {v}
5: feasibleSize← feasibilityCheck(V)
6: end while
7: k ← |V| . The size of the infeasible fleet
8: for all fleets Vk of size k do
9: feasibleSize← feasibilityCheck(Vk)

10: if feasibleSize then
11: go to 2
12: end if
13: end for

STEP 2: OPTIMIZE THE FLEET MIX
14: for all fleets Vk+1 of size k + 1 do
15: s← HGSADC(Vk+1)
16: CTOT ←

∑
v∈Vk+1

CTC
v + φ(s)

17: if CTOT < COPT then
18: sOPT ← s
19: VOPT ← Vk+1

20: COPT ← CTOT

21: end if
22: end for

46

Individual representation

In the MDPVRP, an individual is represented by three chromosomes: an installation
pattern chromosome, a depot chromosome and a giant tour chromosome. For the
SVPP, the depot chromosome is exchanged with a PSV pattern chromosome. The
MDPVRP can be split into independent subproblems, one for each (day, depot)-
combination, each subproblem being a VRP for a given depot, a set of customers to
service and a number of available vehicles. The SVPP is split into one voyage (route)
for each (day, PSV)-combination, each subproblem being a TSP for a given set of
installations (customers) to service and a given PSV (vehicle). The PSV chromosome
is necessary in order to make sure a PSV has returned to the depot before it departs
on a new voyage. Since installations are assigned to a specific PSV, a heterogeneous
fleet can be used. The PSV chromosome is necessary even for a homogeneous fleet,
due to the possibility of multi-day voyages.

The fact that voyages in the SVPP can last multiple days creates interdependencies
between the days, since the availability of a given PSV on a given day depends on
what voyages it sails on other days. Vidal et al. (2014) lists interdependent services
as an extension of the UHGS framework, but in fact the solution method for solving
the PVRP takes care of one interdependency: the spread of departures. This inter-
dependency is taken care of by the installation pattern representation, explained in
Section 5.2. Each installation is assigned a departure pattern, a set of departure days
that does not violate the constraints on spread of departures. Spread of departures
is an important part of the SVPP as well, therefore installation patterns are used in
the same way to solve the SVPP. Pattern representation is also used for the PSVs
in order to solve the interdependencies created by multi-day voyages. A set of PSV
departure patterns is generated, where each pattern is a set of departure days for
one PSV. The upper limit on voyage duration depends on the pattern chosen for the
PSV, thus preventing overlapping voyages.

The change from depot chromosome to PSV chromosome has consequences for the
tour chromosome as well. The MDPVRP is solved by splitting the problem into a
subproblem for each (day, depot)-combination and solving each subproblem sepa-
rately. The set of installations is represented as a giant tour, which is a sequence of
installations to be visited, in the order given by the sequence. In the SVPP, each
subproblem is defined by a (day, PSV)-combination, meaning that each subproblem
is a TSP rather than a VRP, since there is only one PSV available. The tour chro-
mosome defines the set of installation visits and the order of visits for each (day,
PSV)-combination. The name has been changed from giant tour chromosome to tour
chromosome, because giant tour is used to signify that the sequence of installation
visits can be split into multiple voyages, while in the case of SVPP, the sequence
represents a single voyage.

It is important to note that a given installation chromosome and a given depot
chromosome results in only one possible allocation of installations to (day, depot)-
combinations, while there are multiple possible allocations for a given installation
chromosome and a given PSV chromosome. This fact necessitates changes to the con-

47

struction of the initial population, crossover and education, which will be described
below.

Search space

Vidal et al. (2012a) also allow infeasible individuals during the search. The additional
constraints in the SVPP restrict the search space somewhat: the constraints on depot
capacity, overlapping voyages and number of installations visited in a voyage are
all new constraints that are added for the SVPP. The constraints on overlapping
voyages are enforced by the duration constraints, since the upper limit on duration
is determined by which PSV pattern the relevant PSV uses. The constraints on
the number of installations visited in a voyage are handled in the same way as the
constraints on the quantity delivered and duration, i.e. by allowing and penalizing
violations.

Evaluation of individuals

The use of penalized cost, ranking of individuals and the inclusion of a diversity
contribution rank are all used by Vidal et al. (2012a). The last term of the penalized
cost (see Equation (5.3)), i.e. the penalty for violating the constraints on the number
of installation visits in a voyage is added for the SVPP. The normalized Hamming
distance is changed slightly due to the new individual representation. The difference
is that instead of comparing the depot assignment of the installation, the set of PSVs
that service the installation is compared. The calculation of biased fitness is identical,
except for the calculation of ranks. In the solution method for the MDPVRP, the
rank is calculated within each subpopulation, while in the solution method for the
SVPP, the rank is calculated across subpopulations, resulting in a global rank instead
of a local rank. Both local and global rank were tested, and global rank gave the best
results.

Constructing the initial population

The construction heuristic is similar to the construction heuristic used for the MD-
PVRP, but with some modifications due to the changes in individual representation.
The first step of the construction heuristic is identical, selecting a random departure
pattern from the set of feasible departure patterns for each installation. The sec-
ond step in the construction heuristic of the MDPVRP is to randomly assign each
installation to a depot. Equivalently for the SVPP, each PSV is randomly assigned
a PSV pattern. However, for the SVPP, not all combinations of installation pattern
and PSV pattern are feasible. If there is an installation departure on a day without
a PSV departure after all PSVs have been assigned a PSV pattern, the individual is
infeasible and the second step is restarted. The same happens if the depot capacity
constraint is violated. In order to reduce the number of restarts, the PSV pattern
is randomly selected from the set of feasible departure patterns that contain at least
one day with an installation departure and no PSV departure. This modification

48

greatly reduces the number of restarts. Note that the construction heuristic for the
MDPVRP does not restart, since there are no infeasible combinations of departure
patterns and depot assignments, and no constraints on the depot capacity.

The changes in individual representation also affects the third step of the construction
heuristic. In the case of the MDPVRP, the departure pattern and depot assignment
of an installation uniquely identifies which (day, depot)-combination each installation
visit is assigned to. In the case of the SVPP, the installation departure and PSV
departure chromosomes define which day all of the installation visits are assigned to,
and which PSVs that depart on each day. If two PSVs depart on the same day, there
are two possible allocations for all installations having a departure on that day. To
solve this, each installation visit is randomly allocated to one of the available PSVs
in step three of the construction heuristic.

Parent selection and crossover

Binary tournament is used as the parent selection strategy both for the MDPVRP and
the SVPP. The crossover procedure used for the SVPP is strongly inspired by the peri-
odic crossover with insertions (PIX) that is used by Vidal et al. (2012a), but has been
modified to fit the new chromosomes and the additional constraints of the SVPP. All
(day, depot)-combinations in PIX have been replaced by (day, PSV)-combinations,
to reflect the changes in individual representation. Step two have been modified to
ensure the validity of the PSV patterns and the depot capacity constraint. Step three
is similar to step three in PIX, but with two important modifications. The first mod-
ification is that the SVPP does not require the Split-algorithm of Prins (2004), which
is used to split the sequence of customers into separate routes for different vehicles.
Since there is only one PSV available for each (day, PSV)-combination, there is no
need to split the voyage. The second modification is that the crossover procedure
for the SVPP will restart if it is not possible to complete step three. The option to
restart is only needed for the SVPP, and will happen when an unserviced installa-
tion visit cannot be inserted into any (day, PSV)-combination without violating the
installation patterns, PSV patterns or depot capacity constraints. This is likely to
happen if the individual has multiple PSV departing on some days, with no PSVs
available to create new departures on other days. Since the cause of the infeasibility
is the genetic material inherited in the first two steps, the entire crossover procedure
is restarted.

Education

The voyage improvement procedure aims to improve the sequence of a given set of
installation visits. This procedure is the same as the route improvement procedure
used for the MDPVRP, except for the inter-route operators, which are not needed in
the SVPP, since there is only one voyage per subproblem.

The pattern improvement procedure, on the other hand, depends heavily on the
individual representation, and since the chromosomes are changed, the pattern im-

49

provement procedure is changed as well. The pattern improvement procedure for
the MDPVRP iterates through all customers and changes the depot and departure
pattern to the cheapest combination, in effect moving visits between (day, depot)-
combinations. Similarly, the installation pattern improvement procedure of the SVPP
attempts to move installation visits between (day, PSV)-combinations. For each in-
stallation i it finds the installation pattern p resulting in the lowest penalized cost
and changes the installation pattern πi(s) to p.

Two additional pattern improvement procedures are introduced to solve the SVPP:
one that merges voyages starting on the same day and one that attempts to reduce
the number of voyages. Both of the procedures were developed based on initial tests
using only the voyage improvement and installation pattern improvement procedures.
The optimal individuals had fewer and longer voyages than the individuals found
by the HGSADC. These two procedures aim to reduce the number of voyages by
moving multiple installations at the same time, in contrast to the installation pattern
improvement procedure, which only considers one installation at a time.

Population management

The population management consists of three mechanisms: penalty parameter ad-
justment, diversification and survivor selection. The SVPP has a constraint on the
number of installations per voyage, which is not a part of the MDPVRP. Thus, an
extra penalty parameter is added to penalize violations of this constraint, and sub-
sequently added to the penalty parameter adjustment. Diversification and survivor
selection are identical to those used for the MDPVRP.

Optimizing the fleet

The SVPP considers a heterogeneous fleet, while the MDPVRP assumes a homoge-
neous fleet. The procedure used for optimizing the fleet for the SVPP is based on
some additional assumptions that are relevant for the SVPP, and is more complicated
than the procedure presented by Vidal et al. (2012a). When a homogeneous fleet is
used, it simplifies to the same procedure.

50

Chapter 6

Hybrid genetic search with
adaptive diversity control for the
MSVPP

The solution method described in the previous chapter assumes a single objective:
to minimize total cost. In order to solve problems with multiple objectives, some
adjustments and additions are needed. The extension from single-objective to multi-
objective is done by adding the new objectives in the biased fitness function. In addi-
tion, some modifications to the way the best individuals are saved and the stopping
criterion are needed. For persistence as an objective, two new education procedures
are added to enhance the search. Section 6.1 describes the changes necessary to add
additional objectives, Section 6.2 describe the new education procedures for persis-
tence and Section 6.3 describes how the fleet can be optimized for multi-objective
problems.

6.1 Adapting from single-objective to multi-objective

Three changes are necessary when adapting the HGSADC from solving single-objective
problems to multi-objective problems. The first is that the output is a set of non-
dominated individuals rather than a single individual. Individuals need to be com-
pared based on dominance and stored in a Pareto archive. The second and third
change is that the stopping criterion and the biased fitness function are changed.

6.1.1 Domination criterion and Pareto archive

When optimizing multiple objectives, the result is not one single optimal individual,
but a front of Pareto-optimal individuals, constituting the Pareto front. When com-
paring the individuals, the concept of domination is used. An individual s1 dominates
another individual s2, written as s1 ≺ s2, if and only if s1 is at least as good as s2 with

51

respect to all objectives, and is better than s2 with respect to at least one objective.
Mathematically, s1 ≺ s2 if and only if

∀k ∈ O (Objectivek(s1) � Objectivek(s2)), (6.1)

∃k ∈ O (Objectivek(s1) ≺ Objectivek(s2)), (6.2)

where O is the set of objectives to be optimized, Objectivek(s1) � Objectivek(s2)
indicates that s1 is better than or equal to s2 with respect to objective k, and
Objectivek(s1) ≺ Objectivek(s2) indicates that s1 is strictly better than s2 with
respect to objective k. For example, consider the following individuals, where cost
and number of changes are two objectives to be minimized:

s1 : Cost = 600000 NOK,Number of changes = 4

s2 : Cost = 600000 NOK,Number of changes = 2

s3 : Cost = 500000 NOK,Number of changes = 4

Here, s2 ≺ s1, since s2 has the same cost as s1, but fewer changes (fewer is better).
Also, s3 ≺ s1, since s3 has the same number of changes as s1, but lower cost. Neither
s2 nor s3 dominates the other, since s2 has fewer changes while s3 has lower cost.
Each is better than the other with respect to one objective. Since neither s2 nor s3
are dominated by any individual, they constitute the Pareto front.

During the execution of the HGSADC, the best individuals found so far are saved in
an external population SPARETO, or Pareto archive, containing all individuals that
are not dominated by any other individual found so far. Whenever a new individual
is created, it is compared to the individuals in SPARETO. If the new individual is
not dominated by any of the individuals in SPARETO, the new individual is added
to SPARETO. If SPARETO already contains a individual with the same objective
values as the new individual, the new individual is not added. If the new individual
dominates any of the individuals in SPARETO, the dominated individuals are removed
from SPARETO.

6.1.2 Stopping criterion

For the single-objective problem, the algorithm stops when an improving individual
has not been found during the last INI iterations or the maximum time limit is
reached. For the multi-objective problem, INI is the maximum number of iterations
without adding a new individual to the Pareto archive, i.e. the maximum number of
iterations without improving the Pareto front.

52

6.1.3 Modified biased fitness function

The biased fitness function is used to evaluate the quality of an individual, and
determines which individuals survive during survivor selection. A low (lower is better)
biased fitness also increases the probability that the individual will be selected as a
parent. For the single-objective problem, the biased fitness of an individual s is the
sum of two parts: The cost rank RankC(s), and the diversity contribution rank,
RankD(s). The fact that the fitness is based on two different ranks means that the
algorithm already uses multiple objectives when searching. Additional objectives can
simply be added to the biased fitness function. Let Rankk(s) be the rank of individual
s with respect to objective k. The individual with the best value of objective k will
have Rankk(s) = 1, and the individual with the worst value will have Rankk(s) = |S|.
The general biased fitness function for multi-objective problems then becomes

BF (s) =
∑
k∈O

Rankk(s) + (1− nELI

|S|
) RankD(s), (6.3)

where O is the set of objectives to be optimized. Using this function one can select
objectives to optimize as desired. Adding objectives to the biased fitness function
increases the probability that individuals with good values for these objectives sur-
vive, and that their genetic material is passed on to new individuals. Results that
will be described in Chapter 7 show that this simple modification is able to provide
good Pareto fronts for the tested problems and objectives, even without education
procedures improving the new objectives.

6.1.4 Fitness evaluation, diversity control and elitism

Konak et al. (2006) list three main components that separate different multi-objective
genetic algorithms from each other: evaluation of individuals, diversity control and
elitism. In the multi-objective HGSADC presented above, the evaluation of individ-
uals is done by ranking each individual in terms of each objective value. Ranking is
useful when the objective values have different ranges or orders of magnitude, since
it avoids the problem of scaling objectives to the same level. The HGSADC handles
diversity in two ways: by rewarding diverse individuals in the biased fitness function
and by replacing most of the genetic material in the population when no improving
individual has been found for a while, a process referred to as diversification. The
degree of elitism is defined by the parameter nELI , which defines how strongly diver-
sity contribution should be weighted in the biased fitness function. A high value of
nELI gives low weight to diversity, meaning that the biased fitness of an individual
depends mostly on the objective values of the individual. Elitism is also handled by
the external Pareto archive, which saves the best found individuals during the whole
run. The external archive is necessary because a non-dominated individual does not
necessarily have the best biased fitness, meaning that it may be removed from the

53

population during the search.

6.2 Education for persistence

Much of the success of the HGSADC comes from the education procedures. In or-
der to effectively find persistent schedules, two additional education procedures for
persistence are implemented. The first one changes the installation pattern of one
installation, the second one moves a PSV departure from one day to another, both
with the goal of reducing the number of changes from the baseline schedule, i.e.
increasing persistence. In order to find a Pareto front that has individuals in all
parts of the front, individuals go through different combinations of cost-education
and persistence-education. Each individual goes through one of four types of educa-
tion, chosen randomly with equal probability. The four types are:

• Cost-education

• Persistence-education

• First cost-education, then persistence-education

• First persistence-education, then cost-education

Cost-education refers to the procedures described in Section 5.7, while persistence-
education refers to the procedures described in this section. If an individual needs to
be repaired, as described in Section 5.7.3, the same type of education is performed
again, this time with higher penalty parameters.

Installation pattern improvement for persistence

The goal of this procedure is to improve the persistence of the individual by changing
the departure pattern of one of the installations. The procedure is described in
Algorithm 7. It starts by selecting a random installation and changing the departure
pattern of the installation to the one given by the baseline pattern. If the selected
installation is not in the baseline schedule, or already uses the baseline pattern, a
new random installation is selected. For each day in the new pattern, the installation
visit is inserted into the voyage and position in the voyage that results in the lowest
penalized cost. As in the crossover algorithm, ψ(i, v, t) is the minimum penalized cost
for the insertion of installation i into the voyage sailed by PSV v on day t.

Moving PSV departures to other days

The feasibility of a individual depends heavily on the combination of the installation
and PSV patterns: in order for an individual to be feasible, there needs to be enough
PSVs departing on each day to service all the installations requiring a visit on that day,
as specified by the installation patterns. The goal of this procedure is to ensure that
there are enough PSVs departing on each day, by moving a PSV departure from one
day to another, and moving installation visits along with the PSV. The installations

54

Algorithm 7 Installation pattern improvement for persistence

1: i← installation randomly picked from NCUST

2: if i /∈ NB or πi(s) = πBi then
3: go to line 1
4: else
5: Remove all visits to installation i in individual s
6: πi(s)← πBi
7: for t ∈ πBi do
8: v = argminv∈V ψ(i, v, t)
9: Insert i into rvt at least cost position

10: end for
11: end if

that are moved are picked from all voyages departing on the given day, not only
the voyage that is serviced by the PSV that is moved. The procedure is described
in Algorithm 8 and consists of three steps: (1) deciding a day t− to remove a PSV
departure and a day t+ to add a new PSV departure, (2) moving installation visits
from day t− to the new voyage on t+ and (3) merging the remaining installation visits
on t− into the remaining voyages. The procedure begins by calculating the minimum
number of PSVs that need to depart on each day in order to attain the baseline
pattern and the number of PSVs departing in the current individual. It then selects a
random pair of days (t−, t+), where day t− has more PSVs departures than required
to attain zero changes from the baseline schedule and day t+ has fewer. Line 9 checks
that there is at least one PSV departure on t− that can be moved to t+, i.e. that the
previous voyage of the PSV is finished before t+. It also checks that there is sufficient
depot capacity for another PSV to depart on t+. If no such PSV exists, a new pair
of days is selected. The PSV with the most time from t+ until its next departure is
chosen as the PSV v to move, since it can sail the longest voyage, and a new voyage
rv,t+ is created for PSV v on day t+. In Step 2, randomly selected installations are
removed from the set of installations with a departure on t−, Nt− , and added to
the end of rv,t+ . This is done until the new voyage visits the maximum number of
installations, or there are no more installation visits left on t−. An installation i is
moved only if it has no departure on t+ already and if t− is not in the baseline pattern
for i. Finally, the remaining installations from the removed voyage are inserted into
the least cost positions in the other voyages on that day.

6.3 Optimizing the fleet size and mix

Finding the optimal fleet size and mix becomes more complicated when including
persistence and robustness as objectives. The fleet optimization procedure described
in Section 5.10 is based on two assumptions: the first is that the time charter cost of
every PSV is larger than the total sailing cost of all PSVs. The second is that the
sum of the charter cost of the two cheapest PSVs is higher than the charter cost of

55

Algorithm 8 Moving PSV departures to improve persistence

STEP 1: SELECT DAYS TO MOVE DEPARTURE FROM AND TO
1: for t ∈ T do
2: nBt ← Number of PSV departures required on day t to attain baseline pattern
3: nt(s)← Number of PSV departures on day t in current individual s
4: end for
5: T − ← {t ∈ T | nt(s) < nBt } . Days with too few PSVs departing
6: T + ← {t ∈ T | nt(s) > nBt } . Days with excess PSVs departing
7: T C ← T − × T +

8: (t−, t+)← Random pair of days in T C
9: if not feasible to move PSV departure from t− to t+ then

10: T C ← T C \ {(t−, t+)}
11: if T C 6= ∅ then
12: go to 8
13: else
14: terminate procedure
15: end if
16: end if
17: v ← PSV with highest number of days from t+ until next departure

STEP 2: MOVE INSTALLATION VISITS TO NEW DAY
18: Create new voyage rv,t+
19: Nt− ← installations with departure on t−

20: while |rv,t+ | < NMAX and |Nt−| > 0 do
21: i← random installation in Nt−
22: if i has no departure on t+ already and t /∈ πbi then
23: Remove i from its voyage on t−

24: Add i at the end of rv,t+
25: end if
26: end while

STEP 3: MERGE REMAINING INSTALLATION VISITS
27: for i ∈ Nt− do . Remaining installations in the removed voyage, rv,t−
28: v = argminv∈Vt− ψ(i, v, t−)
29: Insert i into rv,t− at least cost position
30: end for

56

the most expensive PSV. When minimizing cost is the only objective, these assump-
tions imply that there is only one optimal fleet size. When maximizing persistence
and maximizing robustness are added as objectives, larger fleets can provide Pareto-
optimal individuals, meaning that one needs to solve the problem for multiple fleet
sizes. Algorithm 9 describes a procedure for doing this. The minimum fleet size is
found the same way as for the single-objective problem, but the HGSADC needs to
be run on increasingly large fleets until the guaranteed maximum fleet size is found.
All Pareto-optimal individuals from each run are stored together in a common Pareto
archive, and the function MergeParetoFronts merges two Pareto-fronts into one
and removes all individuals dominated by any individual in the combined front. The
maximum fleet size is found when a individual in which all objectives except cost have
their optimal value is found. Optimal value here refers to the best possible value for
that objective. For example, when an individual with zero changes from the baseline
and a robustness value of 1.0 is found, one can conclude that no fleet larger than the
current one can dominate this individual. This is because an individual with optimal
persistence and robustness can only be dominated by an individual with lower cost,
and due to the assumptions about PSV charter cost, a larger fleet cannot provide an
individual with lower cost.

57

Algorithm 9 Multi-objective HGSADC with variable fleet

STEP 1: FIND MINIMUM FLEET SIZE
1: feasibleSize← feasibilityCheck(V)
2: while feasibleSize do
3: v ← The PSV in V with lowest capacity
4: V ← V \ {v}
5: feasibleSize← feasibilityCheck(V)
6: end while
7: k ← |V| . The size of the infeasible fleet
8: for all fleets Vk of size k do
9: feasibleSize← feasibilityCheck(Vk)

10: if feasibleSize then
11: go to 2
12: end if
13: end for

STEP 2: FIND NON-DOMINATED INDIVIDUALS FOR VARIOUS FLEETS
14: i← 1
15: while not MaxFleetSizeFound do
16: for all fleets Vk+i of size k + i do
17: SPARETO(Vk+i)← HGSADC(Vk+i) . Pareto front found for fleet Vk+i
18: SPARETO ← MergeParetoFronts(SPARETO, SPARETO(Vk+i))
19: if ∃s ∈ SPARETO where all objectives except cost have optimal value then
20: MaxFleetSizeFound← TRUE
21: end if
22: end for
23: i← i+ 1
24: end while
25: return SPARETO

58

Chapter 7

Computational Study

This chapter contains a computational study of the HGSADC for the SVPP, as de-
scribed in Chapters 5 and 6. The results are compared with the results from the
voyage-based model (VBM) of Borthen and Loennechen (2015), where such results
are available. The complete VBM can be found in Appendix A, and a detailed de-
scription of the algorithms used to generate the voyages can found in Appendix B.

The HGSADC and the voyage generation procedure was implemented using Java 1.8
and run on a MacBook Pro with a 2.4 GHz Intel Core i5 processor and 8 GB of RAM,
running OS X El Capitan. The voyage-based model, including the epsilon-constraint
method, was implemented in the commercial optimization software Xpress IVE and
run on a computer with a 3.4 GHz Intel Core i7 processor and 16 GB of RAM running
Windows 7 Enterprise. Version 1.24.06 of the Xpress IVE was used, with version 3.8.0
of Xpress Mosel and version 27.01.02 of Xpress Optimizer.

Section 7.1 describes the test instances used and Section 7.2 presents the parameter
values used for the HGSADC and how they were calibrated. Section 7.3 presents the
results of solving the SVPP with minimum cost as the only objective. The MSVPP
was solved for three different sets of objectives: (1) cost and persistence, (2) cost and
robustness and (3) cost, persistence and robustness. Sections 7.4 - 7.6 present the
results of these tests.

7.1 Test instances

25 different problem instances were tested, all of them based on the situation for
Statoil in the North Sea as of April 2016. The instances contain one supply depot,
the Mongstad supply depot, and between three and 27 offshore installations. All
consider a planning period of one week, i.e. a weekly schedule that can be used
multiple weeks in a row is to be generated.

The names of the test instances have the format X-Z, where X is the number of
installations and Z is the total number of installation visits per week. For example,

59

the test instance named 12-40 has 12 installations and a total of 40 visits. Note that
Halvorsen-Weare et al. (2012) and Borthen and Loennechen (2015) use the name
format X-Y-Z, where X and Z are the same as in this thesis, and Y is the number
installations with time windows. The name format is changed in this thesis, since
only problem instances without time windows are considered.

All test instances consider a planning period of one week. The number of visits
required by each installation ranges from one to five per week while the total number
of required visits ranges from 10 to 80 per week. The service time at each installation
ranges from one and a half to four hours, while the service time at the supply depot
is eight hours. Each voyage is constrained to visit minimum one and maximum eight
installations, and can last maximum three days. This includes the eight hour service
time at the supply depot, so in practice, a voyage can last maximum 64 hours. There
is no lower limit on the duration of a voyage and no constraints on the capacity of
the PSVs in any of the test instances. This is based on the practice at Statoil, where
the maximum limit of eight installations is found to be sufficient to ensure that the
capacity is not exceeded. The depot is closed on Sundays in all of the test instances,
based on input from Statoil.

A fleet of six PSVs have been used in all test instances, as it was provided by Statoil
as the maximum number of available PSVs. All of the PSVs are identical, with a
sailing speed of 10 knots and capacity of 600 m2. In other words, all instances have
been solved with a homogeneous fleet. Even though the solution method assumes a
heterogeneous fleet, no changes are needed for a homogeneous fleet. The only part
of the HGSADC that is affected is the fleet optimization algorithm, as explained in
Section 5.9.

7.2 Calibration of parameters for the HGSADC

The performance of metaheuristics usually depends on the values of the input pa-
rameters, and this is especially true for evolutionary algorithms. Vidal et al. (2012a)
perform extensive parameter testing for the HGSADC, using a metacalibration ap-
proach to find the optimal set of parameter values. They found that all of the optimal
parameter values appeared to be independent of the problem class, except for the gen-
eration size, λ. Since most of the parameter values appeared to be independent of
the problem class, and implementing a metacalibration approach is outside the scope
of this thesis, a simpler approach to parameter testing is used in this thesis. The
HGSADC for the SVPP has 18 parameters, all listed and explained in Section 7.2.1
along with their chosen values. Parameter testing was done to decide the values of
the parameters that are expected to affect the performance the most. The results and
choice of values are explained in Section 7.2.2. Education and repair are calibrated
in Section 7.2.3.

Note that no parameter testing was done for the multi-objective HGSADC, in order
to limit the time spent on parameter testing and because good results were obtained
without a new calibration of the parameters. The values listed in Section 7.2.1 are

60

used for all instances solved by the multi-objective HGSADC. The only exception is
that a repair rate of 0.5 is used for some of the larger instances, as it increased the
number of feasible solutions. This indicates that a parameter test probably will im-
prove the performance of the multi-objective HGSADC, and that no set of parameter
values works best in all cases. The fact that the multi-objective HGSADC works well
with the same parameter values do however indicate that the heuristic is quite robust
with regards to parameter values.

7.2.1 The parameters of the HGSADC

The parameters of this implementation of the HGSADC are listed in Table 7.1. Most
of the parameters affect the evaluation and education of a single individual, such as
h, defining the neighborhood size in the voyage improvement procedure. µ, λ, INI ,
ηDIV , ηELI and ξREF are parameters that affect the search of the algorithm and the
number of iterations, and are therefore expected to affect the performance the most.
Different values have been tested for these parameters. The values of the constraint
penalty parameters ωT , ωQ and ωN are also different from the values used by Vidal
et al. (2012a), based on observations of the performance of the algorithm. The testing
of all of the mentioned parameters is explained in Section 7.2.2. KINIT , KDIV , ζUP

and ζDOWN are not treated as parameters by Vidal et al. (2012a), but rather as
constant values. The values used by Vidal et al. (2012a) are therefore expected to
work well in our implementation as well, and no testing was conducted for these
parameters. The rest of the parameters are not expected to affect the performance
much, and therefore the values that worked well for Vidal et al. (2012a) are used for
these parameters without further testing. The only exception is that different values
are tested for the repair rate in Section 7.2.3, since it is related to education, and a
different value is chosen. The maximum running time is set to 3 600 seconds. This
limit was found to allow the algorithm to converge and terminate due to maximum
number of iterations without improvement in most cases, while still providing good
results in these cases where it was reached. All parameter tests were performed with
cost as the only objective.

7.2.2 Parameter calibration

Different values were tested for the parameters that were expected to affect the per-
formance most. Problem instances 12-40, 20-68 and 27-80 were selected as parameter
test instances. 12-40 was selected since it is the largest instance that the VBM is
able to solve to optimality, and 27-80 was selected because it reflects the real problem
faced by Statoil as of April 2016. 20-68 was selected to avoid selecting parameter
values that only work well for 27-80. Since the HGSADC is non-deterministic, all pa-
rameter values were tested five times. The average running time is reported, as well
as the average gap from the best known objective value. The average gap is calcu-
lated as the gap between the average objective value of five runs and the best known
objective value. The objective value is the sum of the time charter cost and sailing

61

Parameter Value Description

µ 25 Minimum subpopulation size

λ 75 Generation size

INI 5 000 Max. number of iterations without improvement

ηDIV 0.1 Proportion of INI , such that IDIV = ηDIV INI

ηELI 0.4 Proportion of elite individuals,

such that nELI = ηELI × |S|
ηCLO 0.2 Proportion of individuals considered in diversity

contribution, such that nCLO = ηCLOµ

ρEDU 1 Education rate

ρREP 0.5 / 0 Repair rate in construction heuristic / in normal iteration

KINIT 4 Construction heuristic size factor

KDIV 4 Diversification size factor

ξREF 0.6 Target ratio of feasible individuals

ωQ 1 000 Capacity violation penalty

ωT 1 000 Duration violation penalty

ωN 1 000 Number of installations violation penalty

ζUP 1.2 Penalty adjustment factor, up

ζDOWN 0.85 Penalty adjustment factor, down

h 0.4 Neighbourhood size in voyage improvement

TMAXRUN 3 600 Maximum running time (seconds)

Table 7.1: Parameters used in the HGSADC and their values after parameter testing.

cost. In Tables 7.2 - 7.5, the average running time and objective gap for different
parameter settings are reported. When assessing the results of different parameter
values, the objective gap is considered more important than the running time, since
most of the running times are far from the maximum time limit. In addition, the
results of instance 27-80 are considered more important than the results of the other
instances, since it is the largest instance and the instance that is actually solved by
Statoil. The values used by Vidal et al. (2012a) were used as the starting point for
the parameter testing. The parameters that were tested were λ, ηDIV , ξREF , ωQ, ωT ,
ωN and ρREP . All other parameters were set to the same values as those used by
Vidal et al. (2012a).

Calibrating the target ratio of feasible individuals ξREF

Recall that ξREF is the target ratio of feasible individuals used in the penalty param-
eter adjustment mechanism, described in Section 5.8.2. A high value for ξREF will
result in higher penalties and guide the HGSADC towards more feasible solutions.

62

Table 7.2 shows the average running time and objective gap for different values of
ξREF . ξREF = 0.6 gives the lowest average objective gap for both 20-68 and 27-80,
hence it is chosen as the value. The running times for ξREF = 0.6 are also good, with
the lowest running time for 27-80 and low running times for the two other instances.
The high objective gap for ξREF = 0.2 and 20-68 is caused by one run where the
solution uses a fleet of five PSVs, where all of the other solutions use four. This hap-
pened because no feasible solution was found for a fleet of four PSVs within INI = 5
000. Since the charter cost is high, increasing the fleet size has a big impact on the
objective gap. Also note that one of the other runs for ξREF = 0.2 and 20-68 did not
find a feasible solution at all. This happened because no feasible solution was found
within INI = 5 000 for a fleet of four PSVs, and when the fleet size was increased to
five PSVs, no feasible solution was found within INI = 5 000. Note that the algorithm
did find a feasible solution for a fleet of five PSVs before the fleet size was reduced to
four, but not when the fleet size was increased back to five. An explanation of why
these two rare cases happen for the same parameter value and instance, is that a low
value for ξREF guides the search towards more infeasible solutions, and in some cases
results in no feasible solution found within INI .

ξREF = 0.2 ξREF = 0.4 ξREF = 0.6 ξREF = 0.8

Instance Time (s) / Gap Time (s) / Gap Time (s) / Gap Time (s) / Gap

12-40 99.1 / 0.00% 93.1 / 0.00% 85.9 / 0.00% 82.2 / 0.00%

20-68 733.6 / 5.65%* 779.7 / 0.11% 639.0 / 0.06% 578.6 / 0.08%

27-80 902.8 / 0.23% 778.9 / 0.22% 713.9 / 0.18% 949.0 / 0.28%

* The average of four runs

Table 7.2: The average running time and gap from the best known objective value
for different values of ξREF . The average gap from the best known objective value
is calculated as the gap between the average objective value and the lowest known
objective value for the instance. All averages are calculated from five runs, except
for ξREF = 0.2 for instance 20-68, where one of the runs did not find a feasible
solution.

Calibrating the proportion of elite individuals ηELI

ηELI is the proportion of elite individuals and is used in the biased fitness measure,
described in Section 5.4. A higher value of ηELI increases the importance of the
penalized cost rank and decreases the importance of the diversity rank, resulting in
increased elitism in the HGSADC. Table 7.3 shows the average running time and
objective gap for different values of ηELI . ηELI = 0.4 results in the lowest objective
gaps and the highest running times, and since the objective gaps are considered more
important than the running times, 0.4 is chosen as the value of ηELI .

63

ηELI = 0.2 ηELI = 0.4 ηELI = 0.6 ηELI = 0.8

Instance Time (s) / Gap Time (s) / Gap Time (s) / Gap Time (s) / Gap

12-40 141.3 / 0.00% 149.5 / 0.00% 140.5 / 0.00% 131.2 / 0.00%

20-68 947.3 / 0.11% 1 079.9 / 0.05% 948.5 / 0.05% 762.6 / 0.11%

27-80 829.9 / 0.38% 1 348.5 / 0.20% 1 045.7 / 0.25% 778.3 / 0.27%

Table 7.3: The average running time and gap from the best known objective value
for different values of ηELI . The average gap from the best known objective value
is calculated as the gap between the average objective value and the lowest known
objective value for the instance. All averages are calculated from five runs.

Calibrating the population size µ and the generation size λ

The optimal values for some of the parameters are likely to be correlated, meaning
that the optimal value of one parameter depends on the values of the other parameters.
This implies that each parameter cannot be tested separately. Some of the parameters
are expected to be more correlated than others, and are therefore tested together. The
minimum subpopulation size, µ, and the generation size, λ, are expected to have a
high correlation, since both adjust the size of the population. The population size
affects the diversity of the population and the search of the HGSADC. Table 7.4
shows the average running time and objective gap for different values of µ and λ.
µ = 25 and λ = 75 gives the lowest objective gap for both 20-68 and 27-80, and are
therefore selected as values. The running times are not among the highest or lowest
for the two instances. For 12-40, increasing the value of µ and λ increases the running
time, but the objective gap of the larger instances is considered more important.

Calibrating the stopping criterion INI and the diversification criterion ηDIV

Recall that INI is the maximum number of iterations that the HGSADC can do with-
out improvement. If INI iterations are done without finding any improving solution,
the algorithm terminates. Figure 7-1 shows the objective value of the best found
solution throughout a run of HGSADC for instance 13-44 with INI = 5 000. The plot
shows that in this particular run, INI could be reduced to ∼1 000 without affecting
the objective value, since the largest number of iterations between finding two improv-
ing solutions is less than 1 000. Reducing INI would reduce the number of iterations
by about 50% and thus also the running time. Since HGSADC is non-deterministic,
reducing INI to 1 000 might affect the objective value for some runs. To be sure
not to affect the objective value, INI should not be reduced to the minimum possible
value found based on one run. The value of INI could be adapted to the problem size
in order to find the most effective value for INI for a given problem instance. This
would require the problem instance to be tested several times and the search to be
analysed, like in Figure 7-1. This is a time consuming process that would have to be
done for all instances. Selecting a constant value for INI is a simpler and more robust

64

λ = 25 λ = 50 λ = 75 λ = 100

Instance µ Time (s) / Gap Time (s) / Gap Time (s) / Gap Time (s) / Gap

12-40

15 77.0 / 0.00% 95.8 / 0.00% 95.9 / 0.00% 120.9 / 0.00%

25 86.8 / 0.00% 100.6 / 0.00% 113.3 / 0.00% 148.8 / 0.00%

35 95.4 / 0.00% 110.8 / 0.00% 130.9 / 0.00% 182.3 / 0.00%

20-68

15 567.2 / 0.13% 743.9 / 0.10% 708.2 / 0.06% 651.4 / 0.08%

25 960.5 / 0.05% 724.8 / 0.05% 707.0 / 0.03% 814.0 / 0.06%

35 780.7 / 0.05% 963.2 / 0.04% 845.6 / 0.05% 1089.1 / 0.05%

27-80

15 818.3 / 0.32% 678.6 / 0.20% 868.0 / 0.19% 852.3 / 0.20%

25 746.5 / 0.22% 691.2 / 0.21% 867.0 / 0.15% 875.8 / 0.25%

35 899.2 / 0.17% 1230.9 / 0.23% 781.6 / 0.26% 1655.6 / 0.20%

Table 7.4: The average running time and gap from the best known solution for
different values of µ and λ. The average gap from the best known objective value
is calculated as the gap between the average objective value and the lowest known
objective value for the instance. All averages are calculated from five runs.

approach, where both the problem of affecting the objective value and the problem
of extensive testing are avoided. The downside of this approach is that the running
times are higher than necessary, especially for the smaller instances. The constant
value approach is chosen in this thesis, due to the simplicity and robustness. Note
that Vidal et al. (2012a) also use a constant value for INI .

If the best found solution has not improved for IDIV , the diversification procedure
is called. Since IDIV = ηDIV × INI , the values of both INI and ηDIV were tested
together. Table 7.5 shows the results for different values of INI and ηDIV . INI has a
big impact on the running time, which makes sense, since INI is a stopping criterion.
The impact on the objective gap, however, is lower. Keep in mind that increasing
INI only makes the algorithm search longer, so the expected objective value will be
at least as good. However, the lowest objective gap is the same for the two values of
INI , indicating that improving solutions are rarely found after INI = 5 000. Since
increasing INI to 10 000 does not seem to improve the solutions, 5 000 is chosen as
the value. ηDIV = 0.1 gives the best objective gap for 27-80, and is therefore chosen
as the value. The high objective gap for ηDIV = 0.7 and INI = 10 000 for instance
27-80 is caused by one run where the solution uses a fleet of five PSVs, where all of
the other solutions use four. This happened because no feasible solution was found
for a fleet of four PSVs within INI = 10 000. A poor initial population and a high
value of ηDIV can explain why no feasible solution was found. A high value of ηDIV

65

Figure 7-1: Plot of the objective value during the run of the HGSADC for problem
instance 13-44 with INI = 5 000.

leads to few diversifications and increases the impact of the initial population on the
search of the HGSADC.

Figures 7-2 and 7-3 show the plot of the objective value of the best found solution
throughout a run of HGSADC for instance 27-80 with INI = 5 000 and 10 000,
respectively. Figure 7-2 shows that in that particular run the longest period without
improvement is around 4 000 iterations, and therefore INI = 5 000 is a good choice.
Figure 7-3 shows that increasing INI to 10 000 only affected the last 10 000 iterations
for that particular run, since all improving solutions are found within 5 000 iterations
of the previous improving solution. This supports the choice of INI = 5 000 as a good
trade-off between solution quality and running time. Note that INI will also affect
the time used to optimize the fleet, since the algorithm will do INI iterations if no
feasible solution is found. It is therefore an incentive to keep INI as low as possible,
without affecting the objective value.

Calibrating the starting values of the penalty parameters ωQ, ωT and ωN

The values of the penalty parameters ωQ, ωT and ωN are adjusted dynamically by
the algorithm, in order to find solutions on the border between feasible and infeasible
solutions. Vidal et al. (2012a) use initial values ωQ = c

q
and ωT = 1, where c and

q are the average distance between all pairs of customers and the average demand,
respectively. Figures 7-4 and 7-5 show plots of subpopulation size and penalty pa-
rameter values for initial penalty values of 1 and 1 000, respectively. The plots show

66

Figure 7-2: Plot of the objective value during the run of the HGSADC for problem
instance 27-80 with INI = 5 000.

Figure 7-3: Plot of the objective value during the run of the HGSADC for problem
instance 27-80 with INI = 10 000.

67

INI = 5 000 INI = 10 000

Instance ηDIV Time (s) / Gap Time (s) / Gap

12-40

0.1 89.6 / 0.00% 152.1 / 0.00%

0.4 81.9 / 0.00% 146.5 / 0.00%

0.7 86.5 / 0.00% 147.3 / 0.00%

20-68

0.1 753.5 / 0.05% 1 077.7 / 0.07%

0.4 781.5 / 0.05% 1 196.7 / 0.05%

0.7 602.2 / 0.09% 1 024.8 / 0.05%

27-80

0.1 781.3 / 0.18% 1 229.8 / 0.21%

0.4 1 023.2 / 0.21% 1 061.8 / 0.18%

0.7 789.9 / 0.22% 1 257.8 / 4.60%

Table 7.5: The average running time and gap from the best known solution for
different values of INI and ηDIV . The average gap from the best known objective
value is calculated as the gap between the average objective value and the lowest
known objective value for the instance. All averages are calculated from five runs.

that the first feasible solution is found much later when the initial penalties are 1 than
when they are 1 000. The reason is that no feasible solutions are found when the
penalties are low, and the penalty values are adjusted to an appropriate level in the
first phase of the algorithm. Observing that no feasible solutions are found when the
penalty values are less than 1 000, the time spent on this first phase can be reduced
by increasing the initial penalty values. Initial tests showed that the penalty values
stabilize at different levels for different problem instances and for each penalty, but
the levels do not differ significantly, thus 1 000 is chosen as the initial value for all of
the penalty parameters. This simple approach avoids calibrating the initial penalty
values for all problem instances. Both of the plots show that ωQ stabilize at very
low levels. As explained in Section 7.1, the test instances have no constraint on the
capacity, hence it is expected that ωQ will decrease.

Concluding remarks on parameter calibration

Three of the tested parameters, ηELI , µ and λ, have the same or nearly the same values
as the values used by Vidal et al. (2012a), while the three other parameters, ξREF , INI

and ηDIV , have different values. The different value of ξREF can be explained by the
additional constraints of the SVPP, making it harder to find feasible solutions. Vidal
et al. (2012a) do not perform parameter testing for INI and ηDIV , but adjust INI

based on the instances and the desired running time, and keep ηDIV = 0.4. They often

68

Figure 7-4: Plots showing the size of the subpopulations and the values of the penalty
parameters during the run of the HGSADC for problem instance 27-80 with initial
penalty values of 1.

use INI = 10 000, but INI = 5 000 proved sufficient for the test instances considered
in this thesis. The reason might be that additional education procedures are used
for the SVPP, which leads to finding better solutions faster. The lower value of ηDIV

for the SVPP can be explained by the differences in the construction heuristic. The
construction heuristic for the SVPP is less random than the one used by Vidal et al.
(2012a), as explained in Section 5.5, which makes the generated solutions less diverse
and might make it necessary to perform the diversification more often.

The parameter testing is made up of 390 runs of the HGSADC for different parameter
settings and problem instances. In two of the runs, the fleet size of the solution
is larger than the fleet size of the best known solution, and in one run, no feasible
solution was found. This happened for the lowest tested value of ξREF and the highest
tested value of ηDIV . Increasing the fleet size has a big effect on the objective value,
and parameter values that can result in increased fleet size should be avoided. The
HGSADC is stable with regards to fleet size for the other tested parameter settings,
finding the same optimal fleet for all runs. For these parameter settings, the largest
deviation in average objective gap is 0.10% and 0.23% for instance 20-68 and 27-80,
respectively. None of the parameter settings affected the objective gap for instance
12-40. Note that a deviation in objective gap is expected for the larger instances,
since the HGSADC is non-deterministic and different objective values are found in
different runs even with the same parameter settings. In other words, the HGSADC

69

Figure 7-5: Plots showing the size of the subpopulations and the values of the penalty
parameters during the run of the HGSADC for problem instance 27-80 with initial
penalty values of 1 000.

seems stable with regards to different parameter settings, except for settings that
makes it hard to find feasible solutions.

7.2.3 Calibration of education and repair

This section describes the results of different levels of education and repair in the
HGSADC. The importance of education is discussed first, followed by a test of dif-
ferent values for the repair rate, ρREP .

Calibration of education

Vidal et al. (2012a) present a sensitivity analysis of the main components of the
HGSADC, and report that the education component affects the objective value the
most. The education component in this implementation of the HGSADC consists
of voyage improvement and pattern improvement, where pattern improvement con-
sists of three procedures. One of the pattern improvement procedures improves the
individual by considering the installation departure patterns, while the two other pro-
cedures improves the individual by attempting to increase the length of voyages and
reduce the number of voyages. The first procedure is similar to the pattern improve-
ment procedure proposed by Vidal et al. (2012a), while the two other procedures are
developed for the SVPP. Table 7.6 shows the effect of different levels education. No

70

education means that no parts of the education component is used, neither voyage
improvement nor pattern improvement procedures. Simple education includes the
same education as used by Vidal et al. (2012a), i.e. the voyage improvement proce-
dure and only the first pattern improvement procedure. Full education includes all of
the described education procedures. The objective gap is a lot higher for no education
than the other two levels of education. Both instance 12-40 and 20-68 have runs that
do not return a feasible solution, and the objective gaps of the solutions with feasible
solutions are high. The high gaps are caused by an increased fleet size for some of the
runs. The difference between simple and full education is smaller. Simple education
leads to a lower running time than full education, while full education has a lower
objective gap. The difference in objective gap between simple and full education is
small, but since the objective gap is considered more important than the running
time, full education is chosen. The results of the HGSADC with no education clearly
illustrates the importance of the education component.

No education Simple education Full education

Instance Time (s) / Gap Time (s) / Gap Time (s) / Gap

12-40 84.2 / 14.17%* 116.6 / 0.00% 129.1 / 0.00%

20-68 140.8 / 1.06%** 835.1 / 0.03% 1 125.1 / 0.02%

27-80 184.7 / 23.98% 681.8 / 0.24% 824.4 / 0.18%

* The average of three runs
** The average of four runs

Table 7.6: The average running time and gap from the best known
solution for no, simple and full education. The average gap from
the best known solution is calculated as the gap between the av-
erage objective value and the lowest known sailing cost for the
instance. All averages are calculated from five runs, unless other-
wise specified.

Calibration of repair rate ρREP

Table 7.7 shows the results for different values of the repair rate ρREP . Note that
the repair rate in the construction heuristic has a value of 0.5 in all of the tests.
in order to limit the scope of the testing. During preliminary testing, the repair
rate seemed to have a big impact on instance 19-65, so the instance was included in
the parameter test. The reason might be that 19-65 is the largest instance that is
serviced by a fleet of three PSVs, making it more vulnerable to disturbances in the
search. The results in Table 7.7 show that the effect of the repair rate is largest for
19-65. Increasing the repair rate increases the running time for all instances, which
makes sense, since it increases the number of calls of the education procedures. The
objective gap, on the other hand, does not seem to reduce with increased repair rate.
Even though ρREP = 1 gives the lowest objective gap for 27-80, the objective gap

71

for 19-65 is very high for both ρREP = 0.5 and ρREP = 1. One of the runs does not
find a feasible solution and one finds a solution with increased fleet size, which causes
high objective gaps. This is the case for both of the values. Since ρREP = 0 provides
low objective gaps for all of the instances, it is chosen as value. This means that the
repair mechanism is only used in the contruction heuristic.

ρREP = 0 ρREP = 0.5 ρREP = 1

Instance Time (s) / Gap Time (s) / Gap Time (s) / Gap

12-40 86.2 / 0.00% 104.6 / 0.00% 127.8 / 0.00%

19-65 428.1 / 0.07% 534.0 / 7.18%* 671.9 / 7.16%*

20-68 573.2 / 0.06% 694.1 / 0.06% 907.2 / 0.07%

27-80 727.5 / 0.17% 759.0 / 0.27% 1 270.0 / 0.12%

* The average of four runs

Table 7.7: The average running time and gap from the best
known objective value for different values of ρREP . The aver-
age gap from the best known objective value is calculated as the
gap between the average objective value and the lowest known
objective value for the instance. All averages are calculated from
five runs, unless otherwise specified.

7.3 Results - SVPP

This section discusses the performance of the HGSADC with a variable fleet and min-
imum cost as the only objective. First, the performance of the HGSADC is compared
to the performance of the VBM presented by Borthen and Loennechen (2015), then
the performance of the HGSADC on larger problem instances is described and dis-
cussed. The VBM was implemented in the commercial optimization software Xpress
IVE and the candidate voyages used as input to the VBM were generated using
dynamic programming. The VBM can be found in Appendix A and a detailed de-
scription of the dynamic programming algorithm for generating the candidate voyages
can be found in Appendix B.

7.3.1 Comparison with the VBM

The results from running the HGSADC are compared with the results from solving
the voyage-based model (VBM). Table 7.8 compares the results of the HGSADC with
the results of solving the VBM with a commercial solver. The running times reported
on the VBM include the time used to generate voyages and solving the voyage-based
model. The HGSADC is a non-deterministic algorithm, meaning that it can behave
differently on different runs for the same input. The reported results are therefore an

72

average of ten runs. The commercial solver was able to solve all problem instances
up to 12-40 to optimality. For problem instance 13-44 and 14-48, the commercial
solver was stopped after 10 000 seconds, indicated by a running time of >10 000 in
the table. The commercial solver was not able to find a feasible solution to bigger
problem instances than 14-48, so the HGSADC is only compared to instances 3-10 to
14-48. The high optimality gaps of problem instances 13-44 and 14-48 are probably
caused by the increase in fleet size from two to three PSVs. The commercial solver is
probably not able to prove that there does not exist a solution with two PSVs within
the time limit of 10 000 seconds, resulting in low dual bounds and high optimality
gaps. The HGSADC finds the optimal solution for all of the problem instances that
the commercial solver is able to solve to optimality, even though the running time is
higher for the small instances. For instance 13-44 and 14-48, the HGSADC finds a
better solution than the commercial solver in less than 3% of the time used by the
solver. To further compare the HGSADC and the VBM, the VBM was solved with
a fixed fleet of three PSVs. The commercial solver was able to solve 13-44 and 14-48
to optimality with a fixed fleet of three PSVs, and the optimal solutions were the
same as the solutions found by the HGSADC for a variable fleet. The results show
that the HGSADC finds at least as good solutions as the commercial solver in all
runs, and that it outperforms the VBM for the instances that the solver is unable to
solve to optimality. The running time of the VBM increases rapidly when increasing
problem size from 12 to 13 installations, while the running time of the HGSADC only
increases slightly.

7.3.2 Results for all instances

Table 7.9 shows the number of PSVs, the number of voyages and the costs of the
solution found by the HGSADC for all problem instances. Each problem instance was
solved ten times and the results are the average of the ten solutions. The solutions
to each problem instance have the same number of PSVs and voyages, e.g. all of
the solutions to problem instance 3-10 have two PSVs and four voyages. A stable
fleet size is important for the stability of the HGSADC with regards to cost, since
the charter cost is a lot higher than the sailing cost. Figure 7-6 shows a plot of the
average sailing cost found by the HGSADC and the number of visits for all problem
instances. For problem instances with up to 40 visits, exact methods are able to prove
that the HGSADC finds the optimal solution. The plot shows that the sailing cost
seems to increase linearly with the number of visits for all instances, indicating that
the HGSADC finds good solutions to larger problem instances as well. Note that a
new installation is added when the number of visits increases, and that the variation
in how much the sailing cost increases is partly caused by the location of the added
installation. The sailing cost is plotted instead of the total cost to make it easier to
see the trend. The fleet size increases in a natural way for larger problem instances,
and since the HGSADC finds the same fleet size for all runs, the charter cost of the
larger instances is also assumed to be good. The sailing cost is plotted against the
number of visits instead of the number of installations, since the number of visits
affects the cost more.

73

Figure 7-6: Plot of the average sailing cost found by the HGSADC versus the number
of visits for all problem instances. Exact methods are only able to solve instances
with up to 40 visits to optimality.

74

VBM HGSADC

Problem Optimality Gap from

instance gap Time (s) VBM Time (s)

3-10 0.0% 0.5 0.00% 17.2

4-13 0.0% 0.5 0.00% 26.5

5-16 0.0% 0.6 0.00% 60.4

6-17 0.0% 0.7 0.00% 60.6

7-22 0.0% 1.6 0.00% 66.4

8-26 0.0% 3.8 0.00% 74.1

9-29 0.0% 12.9 0.00% 96.4

10-32 0.0% 69.9 0.00% 93.5

11-36 0.0% 197.9 0.00% 118.4

12-40 0.0% 43.1 0.00% 129.6

13-44 22.3% >10 000 -0.03% 238.5

14-48 19.4% >10 000 -0.60% 166.9

Table 7.8: Results from solving the SVPP with minimum cost as the only objec-
tive. The running times on the VBM include both generating voyages and solving
the voyage-based model. Optimality gaps are calculated from the best lower bound
reported by the VBM. The results for the HGSADC are the average of ten runs.

75

Problem PSVs Voy. Total Charter Sailing

instance (#) (#) cost (NOK) cost (NOK) cost (NOK)

3-10 2 4 3 043 629 2 800 000 243 629

4-13 2 4 3 058 070 2 800 000 258 070

5-16 2 4 3 071 043 2 800 000 271 043

6-17 2 4 3 074 204 2 800 000 274 204

7-22 2 5 3 141 015 2 800 000 341 015

8-26 2 5 3 163 891 2 800 000 363 891

9-29 2 5 3 174 896 2 800 000 374 896

10-32 2 5 3 185 820 2 800 000 385 820

11-36 2 5 3 205 145 2 800 000 405 145

12-40 2 6 3 249 252 2 800 000 449 252

13-44 3 6 4 669 339 4 200 000 469 339

14-48 3 6 4 692 392 4 200 000 492 392

15-52 3 7 4 737 684 4 200 000 537 684

16-55 3 8 4 767 888 4 200 000 567 888

17-59 3 8 4 782 530 4 200 000 582 530

18-62 3 8 4 826 968 4 200 000 626 968

19-65 3 9 4 859 061 4 200 000 659 061

20-68 4 9 6 265 321 5 600 000 665 321

21-69 4 9 6 271 154 5 600 000 671 154

22-71 4 9 6 280 756 5 600 000 680 756

23-73 4 10 6 302 165 5 600 000 702 165

24-74 4 10 6 305 637 5 600 000 705 637

25-75 4 10 6 311 997 5 600 000 711 997

26-78 4 10 6 330 891 5 600 000 730 891

27-80 4 11 6 359 404 5 600 000 759 404

Table 7.9: Results from using the HGSADC to solve the SVPP with minimum cost
as the only objective. The total cost is the sum of charter and sailing cost. All results
are the average of ten runs. # PSVs and # Voy. are the number of PSVs and voyages
used in the solution, respectively.

76

7.3.3 Stability of the HGSADC

Table 7.10 shows the average running time of each problem instance, calculated from
ten runs. In addition, the coefficient of variation (CV) of the total cost, sailing cost
and running time are shown for each problem instance. The CV is calculated as
the standard deviation divided by the mean. The sailing cost has a CV of 0 for
all problem instances up to 14-48, indicating that the HGSADC is very stable for
the smaller instances. As explained, the HGSADC finds the optimal solution to all
problem instances up to 12-40. Tests not presented here showed that problem instance
15-52 is the largest problem instance the commercial solver is able to solve with a
fixed fleet, and the optimal solution to 15-52 with a fixed fleet is the same as the
best solution found by the HGSADC. In other words, the HGSADC finds the optimal
solution for the problem instances up to 14-48 with a CV of 0, and seems to find
good solutions for the larger problem instances with small variations. The average
CV of the total and sailing cost are 0.02% and 0.19%, respectively, so the HGSADC
is considered very stable with regards to solution quality. The average CV of the
running time is 16.37%, and the highest standard deviation of running time is about
five minutes. The HGSADC is therefore considered stable with regards to solution
time for the tested problem instances. The running times of the HGSADC and VBM
are plotted for all problem instances in Figure 7-7. The plot clearly illustrates how
much lower the running time of the HGSADC is for the larger problem instances.
The plot indicates that the running time of the HGSADC increases linearly with the
number of installations. Based on the results, it seems that the HGSADC finds good
solutions to all problem instances, the running time increases linearly, and it seems
stable with regards to both solution quality and running time.

77

Figure 7-7: Plots of the running time of the HGSADC and the VBM for all of the
test instances. The maximum running time was 10 000 seconds for the VBM and 3
600 seconds for the HGSADC. The VBM was not able to solve instances with more
than 14 installations, hence no running time is reported for these instances.

78

Coefficient of variation

Problem Total Sailing

instance Time (s) cost cost Time

3-10 17.2 0.00% 0.00% 8.18%

4-13 26.5 0.00% 0.00% 7.22%

5-16 60.4 0.00% 0.00% 7.37%

6-17 60.6 0.00% 0.00% 0.91%

7-22 66.4 0.00% 0.00% 0.58%

8-26 74.1 0.00% 0.00% 2.38%

9-29 96.4 0.00% 0.00% 6.85%

10-32 93.5 0.00% 0.00% 5.46%

11-36 118.4 0.00% 0.00% 14.11%

12-40 129.6 0.00% 0.00% 7.60%

13-44 238.5 0.00% 0.00% 4.49%

14-48 166.9 0.00% 0.00% 11.86%

15-52 254.9 0.00% 0.01% 24.51%

16-55 445.7 0.02% 0.18% 27.48%

17-59 421.2 0.01% 0.12% 28.12%

18-62 426.4 0.16% 1.22% 16.66%

19-65 542.3 0.04% 0.31% 16.67%

20-68 661.0 0.04% 0.34% 17.06%

21-69 973.5 0.04% 0.37% 26.09%

22-71 1 030.0 0.03% 0.28% 22.73%

23-73 904.1 0.02% 0.21% 31.88%

24-74 672.7 0.03% 0.24% 35.55%

25-75 743.9 0.03% 0.26% 21.54%

26-78 873.8 0.05% 0.43% 36.38%

27-80 976.6 0.08% 0.68% 27.59%

Average N/A 0.02% 0.19% 16.37%

Table 7.10: Results from using the HGSADC to solve the SVPP with minimum cost
as the only objective. All numbers are calculated from the results of ten runs.

79

7.4 Results - MSVPP with cost and persistence

This section presents the results from solving the multi-objective SVPP with two
objectives: Minimizing cost and minimizing the number of changes from a given
baseline solution. The latter is equivalent to maximizing persistence and the number
of changes is measured as described in Section 4.5. Four different variation cases have
been tested. These cases represent typical scenarios where the model is re-optimized,
and are based on the experience of the decision makers at Statoil. For the multi-
objective problem, the fleet is considered fixed, based on the preferences of Statoil.
The reason for this preference is that the time charter cost of one PSV is significantly
higher than the total sailing cost of a schedule in all of the test instances. Thus, the
increased cost of chartering additional PSVs is so large that it is not desirable, even
if it means that one needs to have changes in the schedule. Fixing the fleet results in
smaller Pareto fronts than if the fleet is variable, since the number of PSVs limits the
solution space. In order to remove all changes and acquire the entire Pareto front, it
may be necessary to charter additional PSVs, as explained in Section 6.3.

7.4.1 Results compared with optimal fronts

The problem instances with 13 or fewer installations can be solved to optimality with
a fixed fleet using the ε-constraint method, as presented by Borthen and Loennechen
(2015). This section compares the Pareto fronts found by the HGSADC (heuristic
fronts) with the optimal fronts found by the ε-constraint method for four different
variation cases. For each case, the fronts from three runs of the HGSADC are shown,
since the HGSADC is non-deterministic. The horizontal axis shows the number of
changes from the baseline solution, while the vertical axis shows the total cost of the
solution, expressed as percentage increase from the lowest known total cost of the
problem instance. Note that when counting the number of changes, only the instal-
lations that are both in the current instance and the baseline solution are considered.
This means, for example, that when adding a new installation, the departures to this
installation do not count towards the number of changes.

Case 1: Add new installations

Figure 7-8 shows the Pareto fronts for problem instance 12-40 using the optimal
solution to instance 9-29 as the baseline. In other words, three new installations have
been added. The optimal front consists of four solutions. The number of changes can
be reduced from 22 to 16 by increasing the cost by less than 0.35%. The HGSADC
finds three of the optimal solutions in all runs, the last solution is only slightly more
expensive than the optimal one for two of the runs. The fronts also show that it is
not possible to reduce the number of changes below 16 without increasing the fleet
size.

80

Figure 7-8: Optimal and heuristic fronts for case 1 - add new installations. Problem
instance 12-40 is solved and problem instance 9-29 is used as baseline.

Case 2: Load reduction

Figure 7-9 shows the Pareto fronts for problem instance 12-40, modified by reducing
the demand and service time at each installation by 25%. The optimal solution to
12-40 with normal demand and service time is used as the baseline. The optimal
front consists of five points, with the number of changes ranging from zero to 18. For
a cost increase of less than 0.7%, the number of changes can be reduced to zero. The
HGSADC found four of the optimal solutions in all runs, but failed to find the last
solution on the optimal front in all runs.

Case 3: Shutdown installations

Figure 7-10 shows the Pareto fronts for problem instance 12-40, using the optimal
solution to instance 15-52 as the baseline. In other words, three installations have
been shut down and removed from the problem. The optimal front consists of five
solutions, with number of changes between 30 and 40. For a cost increase of less than
0.3%, the number of changes can be reduced from 40 to 30. The HGSADC finds
the optimal front in two out of three runs, the last one has a slightly higher cost for
one of the solutions, shown by the green triangle in the figure. The reason for the
high number of changes and that no solution with zero changes can be found is that
problem instance 12-40 requires two PSVs and instance 15-52 requires three PSVs.

81

Figure 7-9: Optimal and heuristic fronts for case 2 - load reduction. Problem instance
12-40 with demand and service time reduced by 25% is solved and problem instance
12-40 with normal demand and lay time is used as baseline.

Figure 7-10: Optimal and heuristic fronts for case 3 - shutdown installations. Problem
instance 12-40 is solved and problem instance 15-52 is used as baseline.

82

Figure 7-11: Optimal and heuristic fronts for case 4 - add visits to installations.
Problem instance 11-39 is solved and problem instance 11-36 is used as baseline.

Case 4: Add visits to installations

Figure 7-11 shows the Pareto fronts for problem instance 11-39, which is the same
as instance 11-36, with the addition of one extra visit to three of the installations.
The optimal solution to 11-36 is used as the baseline. The optimal front consists of
three solutions, with the number of changes ranging from 20 to 23, and a maximum
cost increase of ∼ 0.3%. All three heuristic fronts are equal and consist of two points,
both lying on the optimal front. All heuristic runs fail to find the solution with the
minimum number of changes possible. It is impossible to have less than 20 changes
without increasing the fleet size.

Running times

Table 7.11 shows the time used to solve the cases described above, both using the
ε-constraint method and the HGSADC. The HGSADC is slower than the ε-constraint
method for all of the cases. As for the single-objective problems, the exact method
using the VBM is faster than the HGSADC for the small problems. The running
times for the HGSADC increase when adding persistence as an objective, the average
running time of the HGSADC for the single-objective instance of 12-40 is 98 seconds,
compared to 387 seconds for the multi-objective instance. The coefficient of variation
of the running times is 3.8% for the single-objective instance of 12-40, while Table
7.11 shows much higher CVs. The reason for the increase in running time and CV
is that the search space has been expanded to two dimensions, such that the search

83

is looking for multiple optimal solutions, using different fitness measures. A higher
CV is expected, due to the already mentioned reasons, but also because the single-
objective running times are the average of five runs, while the multi-objective ones
are the average of three runs.

ε-constraint HGSADC

Problem Average CV of

instance Variation case Time (s) time (s) time

12-40 Case 1 - Add installations 142 583 17%

12-40 Case 2 - Load reduction 138 290 15%

12-40 Case 3 - Shutdown installations 183 439 6%

11-39 Case 4 - Add visits 49 236 17%

Avg. 128 387 14%

Table 7.11: Running times for medium-sized instances of the MSVPP with cost and
persistence as objectives. The running times for the HGSADC are the average of
three runs.

Overall performance on medium-sized instances

In the results above, the HGSADC consistently found optimal or close to optimal
fronts for all of the four cases given by Statoil. From these results, it seems that the
method finds high-quality fronts in reasonable time, and that the results are stable,
i.e. that the method finds approximately the same front for each run. Thus, the
HGSADC achieves the first goal when generating best-known Pareto fronts: be as
close to the true Pareto front as possible (Konak et al., 2006). The HGSADC is
slower than the ε-constraint method, which guarantees optimal fronts. This means
that for the medium-sized problem instances, the ε-constraint method is both faster
and provides better solutions. The ε-constraint method is, however, not able to solve
problem instances with more than 13 installations. Since the ε-constraint method is
solving the VBM multiple times, the running time is expected to increase faster than
for the VBM. The HGSADC is therefore expected to outperform the ε-constraint
method on all instances larger than 12-40. The next section shows the results of
applying the HGSADC on real-size problem instances.

7.4.2 Results for real-size problem instances

This section shows the non-dominated fronts found by running the HGSADC on larger
problem instances. The instances represent the situation for Statoil in the North Sea
as of April 2016, and the variation cases are typical changes that Statoil face in their
operations. As of April 2016, Statoil has 27 installations that are serviced by the same
depot, hence the optimal solution to 27-80 is used as baseline for all variation cases.

84

Figure 7-12: Heuristic fronts for case 1 - add new installations. Problem instance
30-87 is solved and problem instance 27-80 is used as baseline.

For these problem instances, no optimal fronts can be obtained due to the problem
size, thus only the heuristic fronts are shown. The percentage increase in total cost is
calculated from the minimum total cost found by the single-objective HGSADC for
each variation case. The dashed line shows the average cost of the solutions found by
the single-objective HGSADC.

Case 1: Add new installations

Figure 7-12 shows the Pareto fronts for problem instance 30-87 using a solution to
27-80 as the baseline. In other words, three new installations have been added. Two
of the fronts have three solutions each, while the last one consists of seven solutions.
The cheapest solution found costs about 0.5% more than the minimum cost solution
found by the single-objective HGSADC, but the fronts are relatively flat, meaning
that the number of changes can be reduced cheaply.

Case 2: Load reduction

Figure 7-13 shows the Pareto fronts for problem instance 27-80, modified by reducing
the demand and lay time at each installation by 25%. A solution to 27-80 with normal
demand and service times is used as the baseline. All three fronts found are exactly
the same, and consist of two solutions. The number of changes can be reduced from
six to zero for a cost increase of about 0.01 percentage points. However, the solutions

85

Figure 7-13: Heuristic fronts for case 2 - load reduction. Problem instance 27-80
with demand and lay time reduced by 25% is solved and problem instance 27-80 with
normal demand and lay time is used as baseline.

have higher cost than the cheapest solution found by the single-objective HGSADC.
The solution with zero changes is ∼0.21% more expensive than the minimum cost
solution.

Case 3: Shutdown installations

Figure 7-14 shows the Pareto fronts for problem instance 22-71, using the solution to
instance 27-80 as the baseline. Five installations have been shut down and removed
from the problem. The yellow front shows that the number of changes can be reduced
from eight to zero for a cost increase of less than 0.6%. All solutions are slightly more
expensive than the average solution found using single-objective HGSADC. None of
the fronts dominates any of the others, so in practice, the best possible front is found
by combining the best solutions from all three fronts.

Case 4: Add visits to installations

Figure 7-15 shows the Pareto fronts for problem instance 27-83, which is the same as
instance 27-80, but with the addition of one extra visit to three of the installations. A
solution to 27-80 is used as the baseline. The fronts consist of two and three solutions,
all with less than 0.4% increase in cost from the minimum cost solution found by the
single-objective HGSADC. The number of changes can be reduced for a cost increase

86

Figure 7-14: Heuristic fronts for case 3 - shutdown installations. Problem instance
22-71 is solved and problem instance 27-80 is used as baseline.

of around 0.1% for all of the fronts. The front shown as green triangles dominates
the two others, and the cheapest solution is as cheap as the average solution found
using single-objective HGSADC.

Running times

The running times for solving the real-size problems with cost and persistence as
objectives are presented in Table 7.12. The righmost column shows the running
times for solving the same problems with cost as the only objective. On average,
the running time increases by ∼ 22% from single-objective to multi-objective. The
running times are not directly comparable between single- and multi-objective, since
the runs do not find the same solutions. Nonetheless, the data show that the running
time does not increase significantly when including an additional objective. The
results illustrate the usefulness of using a genetic algorithm when solving for multiple
objectives: since the HGSADC already works with a population of solutions, it is a
small step to change the search from finding one high-quality solution to finding a
set of high-quality solutions. This is not the case for methods like the ε-constraint,
which requires the problem to be solved one time for each solution on the Pareto
front, meaning that the running time increases rapidly as objectives are added and
the optimal solution space grows. Recall that the algorithm terminates after 5 000
iterations without adding a new solution to the non-dominated front. The maximum
time limit was 3 600 seconds, a time limit that was reached by two of the runs

87

Figure 7-15: Heuristic fronts for case 4 - add visits to installations. Problem instance
27-83 is solved and problem instance 27-80 is used as baseline.

on problem instance 30-87. In these cases, the results may have improved if the
maximum time limit was increased. Overall, the running times are reasonable, given
the frequency at which the problem needs to be solved, which is less than once a
week.

Overall performance on real-size instances

The HGSADC is less stable for the real-size instances than the medium-sized ones,
but it is still considered stable. Even though the fronts found in different runs for
the same problem instance and variation case differ both in number of solutions and
quality of solutions, they are similar with regards to both the number of changes and
cost. No fronts have a difference of more than 0.3% cost for the same number of
changes. The cost of the cheapest solution of the front is less than 0.7% higher than
the lowest cost found by the single-objective heuristic for all cases and runs, indicating
that the inclusion of another objective does impair the quality of the solutions much.
The algorithm was able to find a solution with zero changes in only two of the cases,
probably due to the fixed fleet. As explained, one often needs to charter more PSVs
to reduce the number of changes to zero. The HGSADC is stable for the real-size
instances and provides Pareto fronts with sufficiently many and diverse solutions to
give the decision makers both flexibility in choosing a schedule and insight into the
trade-off between cost and persistence. In all of the cases studied, the number of
changes could be reduced significantly for an increase in cost of less than 0.7%. The

88

Cost and

persistence Cost

Problem Average CV of Average

instance Variation case time (s) time time(s)

30-87 Case 1 - Add installations 3136 26% 1814

27-80 Case 2 - Load reduction 757 3% 1536

22-71 Case 3 - Shutdown installations 1672 3% 1068

27-83 Case 4 - Add visits 972 16% 939

Avg. 1634 12% 1339

Table 7.12: Running times for real-size instances of the MSVPP with cost and per-
sistence as objectives using the HGSADC and using only cost as the objective. All
numbers are calculated from the results of three runs, all solved with a fixed fleet.

fact that the heuristic returns different Pareto fronts for different runs implies that
the best way to use the heuristic is to run it multiple times in order to get multiple
Pareto fronts. These fronts can then be combined to find the best-known Pareto front
based on multiple runs. For example, consider the fronts in Figure 7-14. The best
possible front based on these solutions is a combination of solutions from all three
fronts. Recall the three goals of a best-known Pareto front, listed by Konak et al.
(2006): (1) be as close to the true Pareto front as possible, (2) the solutions should
be uniformly spread over the Pareto front and (3) capture the whole spectrum of
the true Pareto front. For the real-size instances, all the fronts contain at least one
solution with no more than half the number of changes of the cheapest one found, with
multiple solutions in between these two. This indicates that the fronts capture the
spectrum of the true Pareto front and that the solutions are uniformly spread. None
of the fronts find the minimum cost solution found by the single-objective HGSADC,
but all solutions are less than 0.8% more expensive than it, supporting that the fronts
are close to the true Pareto front. In other words, all of the three goals seem to be
achieved.

7.5 Results - MSVPP with cost and robustness

This section presents the results from solving three problem instances with two ob-
jectives: minimizing cost and maximizing robustness. Robustness is defined and
measured as described in Section 4.5. For the first two instances, the fronts generated
by the HGSADC are compared with the optimal front, found using the ε-constraint
method. As in the previous section, all instances are solved with a fixed fleet, due to
the assumption that chartering additional PSVs is not a viable option.

89

Figure 7-16: Optimal and heuristic fronts for 11-36 with robustness.

7.5.1 Results compared with optimal fronts

Problem instance 11-36 and 13-44 are solved with both the ε-constraint method and
the HGSADC. The horizontal axis shows the robustness value, which is the share of
voyages sailed that have the minimum required slack, while the vertical axis shows
the total cost of the solution, expressed as percentage increase from the lowest known
total cost of the problem instance. Four hours of slack is required for voyages lasting
one or two days to be considered robust, and six hours are required for three-day
voyages. No voyages longer than three days are allowed.

11-36 with robustness

Figure 7-16 shows the optimal and heuristic fronts for problem 11-36 with robustness.
The optimal front has four solutions, and the heuristic finds all of the optimal solutions
in two of three runs, and a front where one solution is slightly more expensive in the
third run. The fronts show that all voyages can be made robust for less than 1%
increase in costs.

13-44 with robustness

Figure 7-17 shows the optimal and heuristic fronts for instance 13-44 with robust-
ness. The optimal front has two solutions, and the heuristic finds one of the optimal
solutions in all of the three runs. The second solution found by the heuristic has
the same cost as the optimal solution, but is slightly less robust. Note that all of

90

Figure 7-17: Optimal and heuristic fronts for 13-44 with robustness.

the fronts show that the robustness can be increased to 1, meaning that all of the
voyages are robust for a cost increase of 0.001%, or about 47 NOK. It is worth noting
that a solution method than only considers cost would return the cheapest solution,
even though the solution with best robustness is probably preferred by the decision
makers.

7.5.2 Results for real-size problem instance

Figure 7-18 shows the heuristic fronts found when solving problem 27-80 with cost
and robustness as objectives. The solutions have low cost, in fact two of the runs
have solutions with lower cost than the average cost found by the single-objective
HGSADC. Adding robustness as an objective does not seem to impair the quality
of the solutions. The fronts show that robustness can be increased from 0.73 to
0.91 for a cost increase of around 0.3%. The HGSADC is only tested for one large
instance, but the results for 27-80 are promising given that no education is used, and
the performance is stable. The fronts are likely to be close to the true Pareto front,
since cheap solutions are found; they cover a wide range of robustness values and
the solutions are uniformly distributed on the fronts, with the exception of the third
front, which only contains two solutions.

It is interesting to note that even though no education is used for robustness, the
HGSADC finds the entire or almost the entire optimal Pareto front for the small
instances and finds high-quality fronts for the large instance. The changes made to

91

Figure 7-18: Heuristic fronts for 27-80 with robustness.

the algorithm in order to include robustness as an objective consist only of adding
the robustness rank to the biased fitness function. This shows that adding a new ob-
jective to the HGSADC is very simple and can be effective, even without complicated
education procedures, opening up for a wide range of possibilities when it comes to
extending the problem.

7.6 Results - MSVPP with cost, persistence and

robustness

This section presents the results from solving two problem instances with three ob-
jectives: minimizing cost, maximizing persistence and maximizing robustness. The
fronts generated by the HGSADC are compared with the optimal front for the first
instance. The optimal front is found using the ε-constraint method and the VBM
found in Appendix A. Exact methods are unable to solve the second instance due to
the problem size. Both instances are solved with a fixed fleet, due to the assumption
that chartering additional PSVs is not a viable option.

7.6.1 Results compared with optimal fronts

Figure 7-19 shows the optimal and heuristic fronts for instance 11-36, with robustness
and three installations added as variation case. Since the MSVPP is solved with three
objectives, cost, persistence and robustness, the solution is a three-dimensional Pareto

92

Figure 7-19: Optimal and heuristic fronts for variation case 1 - add new installations
and robustness. Problem instance 11-36 is solved and problem instance 8-26 is used
as baseline. Solutions that are connected represent one front, the boxes next to the
fronts show the robustness value for the front.

front. The three-dimensional front is represented in two dimensions by plotting one
front for each level of robustness. This means that the four optimal fronts in Figure
7-19 are the representation of one optimal front in three dimensions. The figure shows
that the heuristic finds the same solutions as the optimal front for two of the levels
of robustness. For the two other levels, the heuristic finds solutions that are close to
or part of the optimal front, but none of the heuristic runs find all of the solutions
on the optimal front. The fronts clearly illustrate a trade-off between robustness and
persistence, as higher robustness value increases the number of changes. For all levels
of robustness, the number of changes can be reduced for a small increase in cost.
The fronts are close to the true Pareto fronts, but for high robustness levels they do
not cover the entire spectrum of the true Pareto front, since they contain too few
solutions.

7.6.2 Results for real-size problem instance

Figure 7-20 shows the heuristic front for problem instance 22-71 with robustness and
the shutdown of five installations as variation case. 27-80 is used as baseline and the
variation case is defined by Statoil, so the front shows solutions for a real-size problem
with a realistic variation case. Only one front is shown due to the high number of
solutions on the front, making it difficult to visually compare fronts from different

93

runs. Results show that similar fronts are found for additional runs, indicating that
the HGSADC is stable with regards to solution quality for three objectives and real-
size problem instances as well. The three-dimensional front is represented in two
dimensions by plotting one front for each value of robustness. The front consists of
22 non-dominated solutions, with the number of changes ranging from 19 to zero, the
robustness ranging from 0.64 to 1 and the cost ranging between 0.1% and 0.8% of the
lowest known cost found by the single-objective heuristic. The front shows that the
robustness can be increased from 0.78 to 1 for a cost increase of around 0.6%, and
that for a robustness of 1, the number of changes can be reduced from nine to two for
a cost increase in 0.01%. The front also shows that a solution with zero changes and
a robustness level of 0.91 can be obtained by increasing the cost by around 0.7%. For
all levels of robustness except one, the number of changes can be reduced for a small
increase in cost. In many cases the robustness can be increased without affecting the
number of changes for a small increase in cost. The front presents decision makers
with a diverse set of solutions and clearly illustrates the trade-offs between the three
objectives. Note that the two solutions in the upper left corner have a high quality
with regards to persistence and cost, and only cost around 0.7% more than the lowest
cost found by the single-objective HGSADC. The low cost of the solutions indicate
that the front is close to the true front; the solutions contain solutions with a wide
range of persistence and robustness values and the solutions are relatively uniformly
distributed. In other words, the goals of a best-known Pareto front seem to be
achieved.

7.6.3 Running times

The running times of the HGSADC increases, on average, for every objective added.
Two samples of how the average running time for solving an instance changes with
choice of objectives are shown in Table 7.13. The running time increases as objec-
tives are added, and these samples indicate that it increases linearly with number of
objectives. For both these examples, the running time with three objectives is about
three times as long as with one objective. The running time will of course depend
on the objectives, both on how computationally heavy it is to calculate the objective
values and other factors affecting the search space. The numbers show an important
benefit of using genetic algorithms for multi-objective optimization: they are scalable
and can easily be extended by adding more objectives without increasing the running
time by much. This is a huge benefit compared to a method such as the ε-constraint
method, where both the number of iterations and the time spent on each iteration
increase rapidly with each additional objective.

94

Figure 7-20: Heuristic front for variation case 3 - shutdown installations and robust-
ness. Problem instance 22-71 is solved and problem instance 27-80 is used as baseline.
Solutions that are connected represent one front, the boxes next to the fronts show
the robustness value for the front.

Problem Cost and Cost and Cost, pers.
instance Variation case Cost persistence robustness and rob.

22-71 Shutdown 5 installations 1068 1672 2504 2667
27-80 Add 3 installations 977 2211 1737 3374

Table 7.13: Average running times in seconds for different choices of objectives.

95

96

Chapter 8

Economic Implications

The objective of the SVPP is to minimize the costs related to the usage and operation
of the PSVs while providing a reliable supply service. This section describes why
solving the MSVPP instead of the SVPP and presenting the decision makers with
Pareto fronts leads to reduced costs, a more reliable supply service and better insights
for the decision makers.

One way to solve the SVPP is to identify the costs related to the PSVs, e.g. the cost
of chartering and sailing the PSVs, and to minimize these costs while satisfying the
relevant constraints. This approach will produce schedules that minimize the direct
costs related to the usage and operation of the PSVs, the costs that are directly
attributable to the PSVs. However, since the supply service is part of a supply chain,
there are many indirect costs related to the usage and operation of the PSVs, costs
that are affected by the PSVs, but not directly attributable. These indirect costs
may be difficult to quantify or predict and are therefore unsuitable to be included in
an optimization model. Experienced decision makers can, however, to some extent
predict what factors will lead to high indirect costs. Including these factors in the
optimization model and presenting decision makers with multiple solutions combines
the computational efficiency of optimization models with the experience of decision
makers. Based on the experience of planners at Statoil, the two most important
drivers of indirect costs are persistence and robustness. Sections 8.1-8.3 describe how
including these factors as objectives benefit planners at Statoil, Section 8.4 explains
the opportunities for including additional objectives and Section 8.5 summarizes some
limitations of the results.

8.1 The advantages of persistent schedules

According to the decision makers at Statoil, persistence is one of the most important
characteristics of a schedule, apart from the direct costs. The different parts of the
upstream petroleum supply chain are interconnected, and rely on each other in a
way such that changes in one part, e.g. in the PSV schedules, cause unpredictable

97

consequences in other parts. Changes in the PSV schedule need to be communicated
to and implemented by all relevant parties, a process that takes time and resources.
The crews at installations often create their schedules and shifts based on when the
PSVs depart from the supply depot, meaning that changes in the PSV schedule
cause disturbances in the operations on the installations. From this, it is clear that
persistent schedules can make for both smoother operations and reduced costs, which
means decision makers should be willing to accept somewhat higher direct costs in
order to increase the persistence of a schedule. The decision makers are able to
quantify persistence as the number of changes from the previous schedule, but it is
difficult to convert the number of changes into cost, since the relationship between
cost and the number of changes depends on external factors, like how long it has been
since the previous change of schedule. In addition, the relationship between cost and
the number of changes is non-linear. For example, a reduction from 25 to 20 changes
is worth considerably less than a reduction from five to zero changes, since staffing is
likely to change for both 25 and 20 changes, while it is not affected when the schedule
has no changes. A Pareto front clearly illustrates the relationship between direct costs
and persistence, making it easier for the decision makers to select the solutions that
lead to the best supply service.

The decision makers at Statoil have come up with four common variation cases where
the input is changed and a new schedule is needed. Figures 7-12 - 7-15 in Chapter
7 show the Pareto fronts for the variation cases on real-size problem instances. The
fronts show that persistence can be improved by a small increase in cost for all of the
cases. In the load reduction case, the number of changes can be reduced to zero by
increasing the direct cost by less than 0.3%. Given the increase of costs in other parts
of the supply chain and the extra work to inform all affected parts about the new
schedule, the solution with zero changes is probably preferred by decision makers.
The other variation cases have similar fronts, where the number of changes can be
reduced for a modest increase in cost. All solutions have a cost that is less than 1%
higher than the lowest known cost for the problem instance, meaning that generating
a Pareto front does not impair the quality of the solutions much, as compared to
finding only a single solution.

It is assumed that increasing the persistence of schedules significantly reduces in-
direct costs, since the decision makers emphasize it as one of the most important
characteristics of a schedule. Under this assumption, the total cost can be reduced by
presenting the decision makers with Pareto fronts instead of just the minimum cost
solution. This is supported by the results of the variation cases for real-size problem
instances, where the number of changes can be reduced to zero for a cost increase of
less than 0.6% in two of the variation cases. A small increase of the direct costs leads
to a large reduction of the indirect costs, and hence reduces the total cost.

In some of the variation cases, no solution with zero changes is found. The reason is
that additional visits to installations are added, which can make it impossible to find
a solution with zero changes without increasing the fleet size. The same problem can
arise when shutting down installations, if the baseline solution uses more PSVs than

98

the new problem requires. The charter cost of a PSV is ∼200% of the total sailing cost
for the real-size problem instances, so it is assumed that the decision makers would
never prefer to increase the fleet size to improve persistence. Even if the Pareto front
does not present a solution with zero changes, it may be of value to the decision
makers. The fronts show that a large reduction of the number of changes is possible
for a small increase in cost, even though it cannot be reduced zero. For instance,
in the real-size problem with variation case 1 - adding installations - the number of
changes can be reduced from 35 to 15 for a cost increase of less than 0.6% compared
to the minimum cost solution found, while for variation case 4 - adding visits - the
number of changes can be reduced from 19 to seven for a cost increase of 0.2%. In
addition, a Pareto front can help the decision makers to justify and communicate
their decisions to other parts of the organization, such as explaining that there will
be changes to the schedule, since chartering another vessel to avoid the changes is too
expensive, but that it is minimized as much as possible with the current fleet size.

8.2 The advantages of robust schedules

The objective of the SVPP is not only to minimize costs, but also to provide a reliable
supply service. The supply service is considered reliable if the required amount of
supplies is delivered at the planned time. The service and sailing times are affected
by the rough weather conditions in the North Sea, and to ensure that the supplies are
delivered at the planned time, the planners decide the appropriate level of robustness.
More robust schedules have higher direct costs, since robustness is increased by adding
slack to the voyages, which decreases the number of installations that can be serviced
in one voyage. However, robust schedules are expected to have less of the indirect
costs that arise when unexpected events necessitate re-routing or chartering additional
PSVs. A solution to the SVPP is thus a trade-off between cost and robustness. The
value of robustness depends on many factors, for example, the weather conditions in
the North Sea are significantly tougher during the winter season, increasing the value
of robustness in the winter. Instead of attempting to quantify the value of robust
voyages, the decision makers are presented with a Pareto front that illustrates the
trade-off between between robustness and cost. This way, decision makers can use
their own judgment of both the likelihood of delays and the importance of robustness
to select the best schedule.

Figure 7-18 shows Pareto fronts for problem instance 27-80, representing Statoil’s
supply service as of April 2016. The fronts show that the share of robust voyages can
be increased from 0.73 to 0.91 for a cost increase of around 0.3%. A cost increase of
0.3% is very little compared to the cost of chartering an additional PSV in case of
delay, and the decision makers will probably accept a small cost increase to improve
the reliability of the schedule.

99

8.3 Combining low cost, high persistence and high

robustness

Above it has been argued that the increased direct costs of both persistent schedules
and robust schedules can be offset by the reduction in indirect costs that persistence
and robustness provide. The discussions above have explained the trade-off between
direct costs and persistence and between direct costs and robustness, but decision
makers also face a trade-off between persistence and robustness. Thus, the most
interesting Pareto front is one where all three objectives are included: cost, persistence
and robustness. Figure 7-20 in Chapter 7 shows such a Pareto front for a real-size
problem instance. The front shows that the number of changes can be reduced for
a cost increase of around 0.1% for all levels of robustness. Two of the solutions are
probably very interesting to decision makers. One of the solutions have zero changes
from baseline and a robustness of 0.91, and another solution has three changes from
baseline and a robustness of 1. These two solutions are optimal with regards to
one of the objectives and close to optimal for the other, and both cost only around
0.7% more than the best solution found by the single-objective HGSADC. These two
solutions are probably preferred by decision makers and are likely to both reduce the
realised costs and improve the reliability of the supply service. One should also note
the trade-off between persistence and robustness: no solution which maximizes both
persistence and robustness is found for the given fleet.

All of the objectives described above aim to reduce the sum of direct and indirect
costs. Persistence and robustness are increased in order to avoid unplanned costs and
extra work, and to increase the reliability of the supply service. A solution with low
persistence and robustness would have lower sailing and charter costs on paper, but
the realised costs for Statoil would be much higher. Finding the best solution to the
SVPP is therefore done by finding the most appropriate trade-off between the objec-
tives. Presenting the decision makers with Pareto fronts that clearly illustrates the
trade-offs gives them valuable insights into how these objectives are related. Combin-
ing these insights with their knowledge and experience is likely to provide solutions
that more effectively balance the objectives, resulting in lower realised costs. The re-
sults from real-size problem instances also show that both persistence and robustness
can be improved to optimal or near optimal values for a very small increase in sailing
and chartering costs. Decision support tools based on the solution method presented
in this thesis are therefore expected to be valuable to the decision makers at Statoil,
leading to reduced costs, a more reliable supply service and better insights for the
decision makers.

8.4 Adding additional objectives

The solution method for the MSVPP presented in this thesis can easily be extended
to other objectives. If an objective can be quantified, it can be added to the solution
method. The presented solution method can therefore be used to add additional

100

objectives and further improve the solutions of the MSVPP. The decision makers can
use the solution method to get insights about the trade-off between cost and different
characteristics of the schedules, and to get better and more realistic solutions to the
MSVPP.

8.5 Limitations of the results

The results from solving the MSVPP using the solution methods presented in this
thesis are promising. There are, however, some limitations of the results. The problem
considered in this thesis is a simplified variant of the problem solved by the decision
makers at Statoil, because it does not include time windows or handle collisions at
the installations, i.e. PSVs arriving at an installation at the same time. Additional
constraints and adaptions are necessary in order to use the solution methods to solve
the actual problem. The effect of the additional constraints and adaptions on solution
quality and running time is not known. Another limitation of the results is that no
comparable results are available for the larger problem instances. The cost of the
solutions on the heuristic fronts are close to the cost found for the single-objective
problem, but the quality of the solutions to the single-objective problem is not verified,
due to the lack of comparable results. However, the results for smaller instances are
good, both for the SVPP and the MSVPP, and the objective value seems to increase
at a constant rate as the problem size increases, indicating that the solutions found
are high-quality solutions.

101

102

Chapter 9

Conclusion

This master’s thesis has discussed the planning of Statoil’s offshore supply service
at a tactical level, formulated as the multi-objective supply vessel planning prob-
lem (MSVPP). The MSVPP is an extension of the supply vessel planning problem
(SVPP), presented by Halvorsen-Weare et al. (2012), where multiple objectives are
considered.

The decision makers at Statoil have experienced that several characteristics of a so-
lution affects how it performs in reality, and have therefore requested solutions that
consider multiple objectives. More specifically, they have requested solutions with
few changes from the previously used solution and solutions that can handle delays.
These two characteristics were defined as the persistence and robustness of a solution,
respectively. A formulation of the SVPP was presented, along with formulations of
persistence and robustness.

For the single-objective SVPP, exact solution methods are not able to solve problem
instances with more than 14 installations, and a hybrid genetic search with adaptive
diversity control (HGSADC) was developed to solve real-size problem instances, based
on the work of Vidal et al. (2012a). The HGSADC was able to find the optimal
solution for all problem instances where optimality was proven by exact methods.
and seemed to find good solutions for all larger problem instances. Solutions to real-
size problem instances were found within 1 000 seconds on average, and the cost of
these solutions correlated with problem size in a manner that indicated that they
were high-quality solutions. The running time increased linearly with the size of
the problem instance, which is a large improvement compared to the exact methods,
for which the running time increases exponentially. The HGSADC showed stable
performance, having small variations in objective value between each run.

The solutions to the MSVPP were presented as Pareto fronts. Exact solution methods
are unsuited for large instances of the MSVPP, as they have to solve the SVPP once
for each solution on the Pareto front. The HGSADC, on the other hand, maintains a
population of solutions during the search, and is therefore well suited to solve multi-
objective problems. The HGSADC was adapted to solve the MSVPP, and was able

103

to find fronts identical or close to the optimal fronts for the problem instances that
could be solved by exact methods. The HGSADC found Pareto fronts for real-size
problem instances for all of the objectives, and all solutions had a cost that was less
than 1% higher than the best solutions found by the single-objective HGSADC. This
indicates that adding additional objectives does not impair the quality of solutions
much. In the tests performed, the running time of the HGSADC increased linearly
for each objective added. The results on real-size problem instances show that both
robustness and persistence can be improved to optimal or near-optimal values for a
cost increase of less than 1%. Solving the MSVPP with the proposed solution method
is therefore expected to be a valuable tool for decision makers, and implementing it
in decision support tools is expected to improve the supply service of Statoil.

The HGSADC utilizes the Unified Hybrid Genetic Search (UHGS) framework of Vi-
dal et al. (2014), which can be applied to many different classes of multi-attribute
VRPs. The work in this thesis displays the usefulness of this framework and is an
example of how it can be applied to a real-life problem, with special constraints that
separate it from a standard PVRP. Previous work with the UHGS has mainly been
focused on single-objective problems, but the results from this thesis have shown that
the framework can easily be extended to handle multiple objectives, and that these
extensions perform well, both in terms of the quality of solutions and the running
time of the heuristic. This supports earlier work showing that genetic algorithms are
both efficient and effective for multi-objective optimization.

Future research

There are many possible areas of future research for the MSVPP and the HGSADC.
The MSVPP can be extended by adding elements such as time-windows for the service
of installations, multiple depots, variable departure time from the depot and collision
avoidance at the installations. This can make the solution method more applicable
for the decision makers at Statoil.

Another possible area of research is to improve the performance of the HGSADC. One
way of improving the performance is to add a decomposition phase to the HGSADC,
as described by Vidal et al. (2013). The HGSADC can also be adapted to use the
Split-algorithm for a homogeneous fleet or for heterogeneous fleets with multiple PSVs
of each PSV type. Testing different variations of the multi-objective HGSADC might
also improve the performance of it, for instance, changing fitness evaluation to use
Pareto ranking or measuring distance between individuals in objective space when
calculating the diversity contribution.

Adapting the multi-objective HGSADC to other types of VRPs is also a possible area
of future research. The framework presented by Vidal et al. (2014) can be used to
adapt the HGSADC to a large range of VRPs, and by using the adaptions presented
in this thesis, the VRPs can be solved with multiple objectives. Generating Pareto
fronts for different objectives can improve the solutions and the insights of managers
for many real-life problems.

104

Bibliography

B. Aas, Ø. Halskau Sr, and S. W. Wallace. The role of supply vessels in offshore
logistics. Maritime Economics & Logistics, 1(3):302–325, 2009.

A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo.
The robust vehicle routing problem with time windows. Computers & Operations
Research, 40(3):856–866, 2013.

A. Agra, M. Christiansen, A. Delgado, and L. M. Hvattum. A maritime inventory
routing problem with stochastic sailing and port times. Computers & Operations
Research, 61:18–30, 2015.

T. Borthen and H. Loennechen. The Supply Vessel Planning Problem with Persis-
tence, Project Report. NTNU, 2015.

G. G. Brown, R. F. Dell, and R. A. Farmer. Scheduling coast guard district cutters.
Interfaces, 26:59–72, 1996.

G. G. Brown, K. J. Cormican, S. Lawphongpanich, and D. B. Widdis. Optimizing
submarine berthing with a persistence incentive. Naval Research Logistics, 44:
301–318, 1997a.

G. G. Brown, R. F. Dell, and R. K. Wood. Optimization and persistence. Interfaces,
27:15–37, 1997b.

Business Day News. Rolls-royce secures order for platform supply vessels
from Paxocean Engineering, 2011. Retrieved 21 September 2015, from
www.bday.net/rolls-royce-secures-order-for-platform-supply-vessels-

from-paxocean-engineering/.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation.
Transportation, 14:189–284, 2006.

K. Deb. Multi-objective optimization. In E. K. Burke and G. Kendall, editors,
Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques, pages 403–449. Springer US, 2014. ISBN 978-1-4614-6939-1.

M. Drexl. A generic heuristic for vehicle routing problems with multiple synchroniza-
tion constraints. Technical report, Johannes Gutenberg University Mainz, 2014.

105

www.bday.net/rolls-royce-secures-order-for-platform-supply-vessels-from-paxocean-engineering/
www.bday.net/rolls-royce-secures-order-for-platform-supply-vessels-from-paxocean-engineering/

K. Fagerholt and H. Lindstad. Optimal policies for maintaining a supply service in
the Norwegian Sea. Omega, 28(3):269–275, 2000.

K. Fagerholt, J. Korsvik, and A. Løkketangen. Ship routing scheduling with persis-
tence and distance objectives. Innovations in Distribution Logistics, 619:89–107,
2009.

A. Fischer, H. Nokhart, H. Olsen, K. Fagerholt, J. G. Rakke, and M. St̊alhane. Robust
planning and disruption management in roll-on roll-off liner shipping. Transporta-
tion Research Part E: Logistics and Transportation Review, 91:51–67, 2016.

P. M. Francis, K. R. Smilowitz, and M. Tzur. The period vehicle routing problem and
its extensions. In The vehicle routing problem: Latest advances and new challenges,
pages 73–102. Springer, 2008.

M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European
Journal of Operational Research, 88(1):3–12, 1996.

I. Gribkovskaia, G. Laporte, and A. Shlopak. A tabu search heuristic for a rout-
ing problem arising in servicing of offshore oil and gas platforms. Journal of the
Operational Research Society, 59(11):1449–1459, 2008.

E. Halvorsen-Weare and K. Fagerholt. Optimization in offshore supply vessel plan-
ning. Optimization and Engineering, pages 1–25, 2016.

E. E. Halvorsen-Weare and K. Fagerholt. Robust supply vessel planning. In Network
optimization, pages 559–573. Springer, 2011.

E. E. Halvorsen-Weare, K. Fagerholt, L. M. Non̊as, and B. E. Asbjørnslett. Optimal
fleet composition and periodic routing of offshore supply vessels. European Journal
of Operational Research, 223(2):508–517, 2012.

R. W. Hamming. Error detecting and error correcting codes. Bell System technical
journal, 29(2):147–160, 1950.

M. Jahre, G. Persson, B. Aas, I. Gribkovskaia, Ø. Halskau Sr, and A. Shlopak. Rout-
ing of supply vessels to petroleum installations. International Journal of Physical
Distribution & Logistics Management, 37(2):164–179, 2007.

D. F. Jones, S. K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An
overview of the current state-of-the-art. European journal of operational research,
137(1):1–9, 2002.

A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007,
2006.

J. E. Korsvik, K. Fagerholt, and G. Laporte. A large neighbourhood search heuristic
for ship routing and scheduling with split loads. Computers & Operations Research,
38(2):474–483, 2011.

106

J. Lundgren, M. Rönnqvist, and P. Värbrand. Dynamic programming. In Optimiza-
tion, pages 481–494. Studentlitteratur AB, 2010.

McKinsey & Company. Meeting the challenge of increasing North Sea costs,
2014. Retrieved 9 December 2015, from http://www.mckinsey.com/~/media/

mckinsey/dotcom/client_service/oil%20and%20gas/pdfs/meeting_the_

challenge_of_increasing_north_sea_costs.ashx.

P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In Handbook
of metaheuristics, pages 105–144. Springer, 2003.

E. K. Norlund and I. Gribkovskaia. Reducing emissions through speed optimiza-
tion in supply vessel operations. Transportation Research Part D: Transport and
Environment, 23:105–113, 2013.

E. K. Norlund, I. Gribkovskaia, and G. Laporte. Supply vessel planning under cost,
environment and robustness considerations. Omega, 2015.

Norwegian government. Norway’s oil history in 5 minutes, 2015. Retrieved 8 De-
cember 2015, from https://www.regjeringen.no/en/topics/energy/oil-and-

gas/norways-oil-history-in-5-minutes/id440538/.

Norwegian Petroleum Directorate. The government’s revenues, 2016. Retrieved 31
May 2016, from http://www.norskpetroleum2.no/en/economy/governments-

revenues/.

J.-Y. Potvin, Y. Xu, and I. Benyahia. Vehicle routing and scheduling with dynamic
travel times. Computers & Operations Research, 33(4):1129–1137, 2006.

C. Prins. A simple and effective evolutionary algorithm for the vehicle routing prob-
lem. Computers & Operations Research, 31(12):1985–2002, 2004.

M. Savelsbergh and J.-H. Song. An optimization algorithm for the inventory routing
problem with continuous moves. Computers & operations research, 35(7):2266–
2282, 2008.

A. Shyshou, I. Gribkovskaia, G. Laporte, and K. Fagerholt. A large neighbourhood
search heuristic for a periodic supply vessel planning problem arising in offshore
oil and gas operations. INFOR: Information Systems and Operational Research, 50
(4):195–204, 2012.

Statoil. Annual report on form 20-F, 2015. Retrieved 9 December 2015, from http:

//www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2014/

Documents/DownloadCentreFiles/01_KeyDownloads/20-F_2014.pdf.

T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic al-
gorithm for multidepot and periodic vehicle routing problems. Operations Research,
60(3):611–624, 2012a.

107

http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/oil%20and%20gas/pdfs/meeting_the_challenge_of_increasing_north_sea_costs.ashx
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/oil%20and%20gas/pdfs/meeting_the_challenge_of_increasing_north_sea_costs.ashx
http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/oil%20and%20gas/pdfs/meeting_the_challenge_of_increasing_north_sea_costs.ashx
https://www.regjeringen.no/en/topics/energy/oil-and-gas/norways-oil-history-in-5-minutes/id440538/
https://www.regjeringen.no/en/topics/energy/oil-and-gas/norways-oil-history-in-5-minutes/id440538/
http://www.norskpetroleum2.no/en/economy/governments-revenues/
http://www.norskpetroleum2.no/en/economy/governments-revenues/
http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2014/Documents/DownloadCentreFiles/01_KeyDownloads/20-F_2014.pdf
http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2014/Documents/DownloadCentreFiles/01_KeyDownloads/20-F_2014.pdf
http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2014/Documents/DownloadCentreFiles/01_KeyDownloads/20-F_2014.pdf

T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. Electronic com-
panion - a hybrid genetic algorithm for multidepot and periodic vehicle routing
problems. Operations Research, 2012b. URL http://dx.doi.org/10.1287/opre.

1120.1048.

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Computers & Operations Research, 40(1):475–489, 2013.

T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A unified solution framework
for multi-attribute vehicle routing problems. European Journal of Operational Re-
search, 234(3):658–673, 2014.

108

http://dx.doi.org/10.1287/opre.1120.1048
http://dx.doi.org/10.1287/opre.1120.1048

Appendix A

Voyage-based model

The following model is the voyage-based model (VBM) presented by Borthen and
Loennechen (2015). All results referred to in the text as from the VBM are from an
implementation of this model. Section A.1.4 contains new variables and constraints
that add robustness to the model.

A.1 Voyage-based formulation

The voyage-based formulation decomposes the problem into two separate problems,
where the first problem is to generate all voyages that can be part of an optimal
solution and the second problem is to decide a fleet of PSVs and assign the voyages
to the PSVs using a voyage-based model. The problems are solved in sequence, that is,
all voyages are first generated, and then the voyage-based model assigns these voyages
to PSVs. Note the distinction between the voyage-based formulation, referring to the
overall problem, and the voyage-based model, referring only to the model used in
assigning voyages.

A.1.1 Voyage generation

The set of all voyages that can be part of an optimal solution, hereafter referred to
as the candidate voyages, consists of the feasible voyage with lowest cost and the
feasible voyage with shortest duration for each subset of installations that satisfy the
constraints on PSV capacity and number of installations per voyage. Note that the
cheapest voyage can also be the voyage with shortest duration. The voyage generation
handles constraints on opening hours, capacity, minimum and maximum duration of
a voyage and maximum number of installations visited in a voyage. The voyage
generation uses the following parameters and variables:

109

T Sij - Sailing time from installation i to installation j
T SERi - Service time at installation i
TOid - Opening hour of installation i on day d of the voyage
TOid - Closing hour of installation i on day d of the voyage

T
V OY

- Maximum duration of a voyage
T V OY - Minimum duration of a voyage
FCS

ij - Fuel cost of sailing from i to j
FCI - Fuel cost per hour idle at installation
Fi - The number of weekly visits demanded by installation i
Di - The weekly demand of installation i
Q - The total loading capacity of the PSV
M - Maximum number of installations in a voyage
hWi - Waiting time at installation i
tAi - Arrival time at installation i

Note that in the voyage generation, the opening and closing hour of an installation
is defined as the number of hours after the voyage departs from the supply depot.
Therefore, the opening and closing hours are indexed by installation and the day of
the voyage. For example, an opening hour of 07:00 of installation i corresponds to
TOi1 = 15 and TOi2 = 39, as the installation opens 15 hours after the departure from
the supply depot on the first day of the voyage, and 39 hours after the departure on
the second day.

A.1.2 Voyage-based model

The voyage-based model looks as follows: Let V be the set of all PSVs available for
time charter, indexed by v, let N be the set of all offshore installations serviced from
the supply depot, indexed by i, and F the possible required number of visits to an
installation, indexed by f . Nf are the subsets of N containing the installations that
require f ∈ F visits. Let T be the set of days in the planning period, indexed by t,
L be the set of all possible voyage durations (in days), indexed by l, and R be the
set of all candidate voyages, indexed by r. Rv is the set of all candidate voyages that
PSV v ∈ V may sail. From Rv the subsets Rvi and Rvl are defined. Rvi contains
the candidate voyages of PSV v that visits installation i ∈ N and Rvl contains the
candidate voyages of PSV v that has duration l ∈ L.

CTC
v is the cost of chartering PSV v the whole planning period, and CS

vr the sailing
and service costs of PSV v sailing voyage r. Si is the number of visits required by
installation i, Fv is the number of days PSV v may be used during the planning period,
and Bt is the maximum number of PSVs that may be serviced at the supply depot on
day t. In order to ensure that departures are spread evenly throughout the planning
period, the approach presented by Shyshou et al. (2012) is used, where a sub-horizon
hf is defined for installations requiring f ∈ F visits. For each sub-horizon hf there
must be at least Pf and no more than Pf departures to each relevant installation.
For example, if the planning period is seven days, an installation which requires three

110

visits (i.e. f = 3) needs at least one and no more than two departures to it every
three days, corresponding to h3 = 3, Pf = 1 and Pf = 2.

The two decision variables are:

δv =

{
1, if PSV v is chartered

0, otherwise

xvrt =

{
1, if PSV v sails voyage r starting on day t

0, otherwise

The objective function

min
∑
v∈V

CTC
v δv +

∑
v∈V

∑
r∈Rv

∑
t∈T

CS
vrxvrt (A.1)

minimizes the sum of chartering cost and sailing cost. This objective is subject to
the following constraints:∑

v∈V

∑
r∈Rvi

∑
t∈T

xvrt ≥ Si, i ∈ N (A.2)

ensure all installations are serviced the required number of times.∑
l∈L

∑
r∈Rvl

∑
t∈T

lxvrt − Fvδv ≤ 0, v ∈ V (A.3)

ensure each PSV does not sail more days than allowed.∑
v∈V

∑
r∈Rv

xvrt ≤ Bt, t ∈ T (A.4)

constrain the number of PSVs at the supply depot at a given day.

∑
r∈Rvl

xvrt +
∑
r∈Rv

l−1∑
τ=1

xvr,(t+τ)mod|T | ≤ δv, v ∈ V , t ∈ T , l ∈ L (A.5)

ensure a PSV does not begin a new voyage before it has returned from its previous
voyage.

Pf ≤
∑
v∈V

∑
r∈Rvi

hf∑
h=0

xvr,(t+h)mod|T | ≤ Pf , i ∈ Nf , f ∈ F , t ∈ T (A.6)

make sure departures from the supply depot are evenly spread throughout the plan-
ning period. Due to the assumption that no installation require more visits than there
are days in the planning period, these constraints are created such that there is never
more than one departure to an installation on any day. Note that the formulation of

111

constraints (A.2) and (A.3) have been modified from those in Shyshou et al. (2012) by
utilizing the sets Rvi and Rvl. Finally, there are binary constraints on the variables:

δv ∈ {0, 1}, v ∈ V , (A.7)

xvrt ∈ {0, 1}, v ∈ V , r ∈ Rv, t ∈ T . (A.8)

A.1.3 Measuring persistence

The following section describes the extensions needed in order to minimize both cost
and the number of changes from the existing solution. The objective is to minimize
the number of changes from the existing solution. The existing solution is referred
to as the baseline solution. The most appropriate method for measuring changes
depends on the preferences of decision makers. In the following model, only the
changes in departures to an installation are used to measure change. This is based
on information from Statoil that the most important factor to be persistent is the
supply ordering routines, that is, at what times the installations need to report their
demand. This is determined by the time the PSVs depart from the supply depot. Let
NB be the set of installations in the baseline solution B. Change from an existing
(baseline) solution B to a new solution is then measured as:

∑
t∈T

∑
i∈N∩NB

|σit − σBit |, (A.9)

where σit is 1 if a PSV which services installation i leaves the supply depot on day
t in the current solution and 0 otherwise. σBit has the corresponding values for the
baseline solution B. Note that σit is a variable, while σBit is a parameter. Also note
that σit is binary due to constraints (A.6), which limit the number of departures to a
platform to one per day. The sum is only including the installations which are both in
the current and the baseline problem to avoid counting the changes which inevitably
arise when adding or removing installations. σit can be calculated using the following
formula:

σit =
∑
v∈V

∑
r∈Rvi

xvrt, i ∈ N ∩NB, t ∈ T . (A.10)

Expression (A.9) uses the absolute value operator, which is non-linear. In order for
us to use it in a mixed integer problem, it needs to be linearized. First, introduce a
new variable

112

γit =

{
1, if there is a change in departures to installation i on day t

0, otherwise

which is defined for all i ∈ N ∩ NB, t ∈ T . In other words, γit = |σit − σBit |. Thus
expression (A.9) can be replaced with the following:

∑
i∈N∩NB

∑
t∈T

γit. (A.11)

In order to link γit with σit and linearize the absolute value operator, constraints
(A.12) - (A.14) are added to the mathematical model:

γit ≥ σit − σBit , i ∈ N ∩NB, t ∈ T , (A.12)

γit ≥ σBit − σit, i ∈ N ∩NB, t ∈ T , (A.13)

γit ∈ {0, 1}, i ∈ N ∩NB, t ∈ T . (A.14)

By adding constraints (A.12) - (A.14) to the voyage-based model the problem is
redefined to include two objectives, minimizing cost and minimizing the number of
changes from an existing solution, as follows:

min
∑
v∈V

CTC
v δv +

∑
v∈V

∑
r∈Rv

∑
t∈T

CS
vrxvrt, (A.1 revisited)

min
∑

i∈N∩NB

∑
t∈T

γit, (A.15)

A.1.4 Measuring robustness

The slack of a voyage is measured as the number of hours from the vessel arrives at
the supply depot until the next time the supply depot opens. This is based on the
assumption that a vessel that arrives within the opening hours of the supply depot
is not serviced until the next day. Let S be the set of all possible slack durations (in
hours), indexed by s. Rvls is a subset ofRvl, and contains the voyages with a duration

113

of l ∈ L that PSV v ∈ V may sail that have a slack of s ∈ S hours. Robustness is
measured as the share of voyages with a slack above a minimum threshold, αl, l ∈ L.
The number of robust voyages in the solution can be found using the formula:

∑
v∈V

∑
l∈L

∑
s∈S|s≥αl

∑
r∈Rvls

∑
t∈T

xvrt, (A.16)

where αl is the minimum hours of slack for voyages of length l ∈ L. This expression
can be normalized by dividing by the total number of voyages used in the solution,
such that the robustness value is the share of voyages used that have the required
amount of slack. This value would be calculated as follows:

∑
v∈V

∑
l∈L

∑
s∈S|s≥αl

∑
r∈Rvls

∑
t∈T xvrt∑

v∈V
∑

r∈Rv

∑
t∈T xvrt

. (A.17)

114

Appendix B

Voyage generation using dynamic
programming

This section describes the dynamic programming approach used to generate the set
of candidate voyages, R, for the VBM presented in Appendix A. The text is taken
from Borthen and Loennechen (2015). First, the voyage generation procedure is de-
scribed, and an introduction to the dynamic programming approach is given. Second,
label data, label extension and label domination is explained. Finally, the dynamic
programming algorithm is described.

B.1 The voyage generation procedure

The voyage generation procedure generates the set of all candidate voyages, R. Al-
gorithm 10 shows pseudocode describing the voyage generation procedure. As in
Halvorsen-Weare et al. (2012), the candidate voyages are generated for all PSVs with
similar properties at the same time. If two PSVs have the same sailing speed and fuel
consumption rates, a voyage will have the same duration and cost for the two PSVs.
Therefore, the candidate voyages of the PSV with lowest capacity of the two will be a
subset of the candidate voyages of the PSV with highest capacity. This relationship
is utilized in Algorithm 10. The first step of the algorithm is to generate all subsets
of PSVs, VS ⊆ V , that have the same sailing speed and fuel consumption rates. Let
W be the set containing all these subsets of PSVs. Then the algorithm loops through
all sets of PSVs VS ∈ W , and for each VS, the PSV with the highest capacity, vMX ,
is identified. The candidate voyages of vMX , RvMX , are generated. For the rest of
the PSVs in the set, the set of candidate voyages is the subset of RvMX that uses a
capacity lower than or equal to the PSV capacity, Qv.

Algorithm 10 is very similar to what is used by Halvorsen-Weare et al. (2012). The
difference is how the candidate voyages of vMX are generated. In order to generate the
candidate voyages of vMX , Halvorsen-Weare et al. (2012) generate all feasible subsets
of installations. For each subset, all possible orderings of visits are enumerated, and

115

Algorithm 10 Pseudocode describing the voyage generation. The function gener-
ateVoyageSet is described in Algorithm 11.

1: procedure generateVoyages(Maximum number of installations M)
2: W ←set of subsets of PSVs with equal sailing speed and fuel consumption

rates
3: for all subsets of PSVs VS ∈ W do
4: vMX ← PSV with highest capacity in VS
5: RvMX ← generateVoyageSet(vMX , M) . Candidate voyages of vMX

6: for all PSVs v ∈ VS|v 6= vMX do
7: for all voyages r ∈ RvMX do
8: if capacity used by voyage r ≤ Qv then . Qv is the capacity of v
9: Rv ← Rv ∪ {r}

10: end if
11: end for
12: end for
13: end for
14: end procedure

the feasible voyage with the shortest duration is added to the set of candidate voyages.
This is a simple and straightforward approach, but it is computationally heavy. A
dynamic programming approach is likely to be much more efficient. Therefore, a
labelling algorithm utilizing dynamic programming is implemented to generate the
candidate voyages. The output of the implemented algorithm is the same as that of
the total enumeration approach, but the algorithm removes infeasible and dominated
voyages, and utilizes already computed partial voyages to reduce the computational
time of the voyage generation.

Candidate voyages are generated for a given set of PSVs. The voyage generation is
equivalent to finding the shortest paths through a connected, directed graph, where
the supply depot and each installation is a node, and all nodes are connected. Let N
be the number of installations. A destination node with index N + 1 is added to the
graph because all voyages have to return to the supply depot. The problem is solved
by generating all feasible, undominated paths from the start node, with index 0, to
the destination node. One such path represents a feasible voyage that has either the
lowest cost or the shortest duration for the set of visited installations.

Using the terminology of dynamic programming presented by Lundgren et al. (2010),
each subproblem is called a stage. In each stage, states represent partial voyages, and
each state is represented by a label.

116

B.2 Label data

A label contains the following information:

n − Current installation

t − Departure time from the current installation

c − Cost of the voyage so far

q − Quantity of supplies delivered to installations so far

v − Integer number representing the visited installations

m − Number of installations visited, including the supply depot

p − The predecessor label

(B.1)

A complete label is written

L = (n, t, c, q, v,m, p).

The current installation of a label L is denoted by n(L) and the departure time
from the current installation is denoted by t(L). The quantity of supplies delivered,
denoted by q(L), is the sum of supplies delivered to visited installations. The cost of
a label is the sum of sailing, waiting and service costs, and is denoted by c(L). To
speed up the algorithm, the set of installations already visited is represented by an
integer, denoted by v(L). The number 2i is added to v when installation i is visited.
Accordingly, a node is visited if

v mod 2i+1 ≥ 2i.

The number of installations visited is saved in order to determine whether the voyage
has visited the maximum number of installations, and is denoted by m(L). To be
able to find the sequence of visits, a label contains information about its predecessor,
denoted by p(L). The initial stage corresponds to all partial candidate voyages of size
one, and contains only the initial label

L0 = (0, 0, 0, 0, 20, 1, ∅).

The initial label represents a partial voyage starting at the supply depot. It has no
predecessor label, denoted by ∅ (the empty set), and has visited one installation.

B.3 Label extension

Using the terminology of dynamical programming, a resource corresponds to a quan-
tity that varies along a path according to functions called resource extension func-
tions. When a label LA is extended along the arc (i, j) from its current installation,
n(LA) = i, to another installation, j, a new label LB is created. The resources of LB

117

are set according to the following resource extension functions:

n(LB) = j, (B.2)

j is the current installation of LB.

t(LB) = t(LA) + T Sij + hWj + T SERj , (B.3)

where T Sij is the sailing time from i to j, T SERj is the service time at j and hWj is the
waiting time at installation j. If j 6= N + 1, the waiting time is defined by

hWj =


TOjd − tAj , if tAj < TOjd
TOj,d+1 − tAj , if tAj ≥ TCjd
TOj,d+1 − TCjd, if TOjd ≤ tAj < TCjd and tAj + T SERj > TCjd
0, otherwise

(B.4)

and if j = N + 1, the waiting time is defined by

hWj =

{
TOjd − tAj , if tAj ≤ TOjd
TOj,d+1 − tAj , if tAj > TOjd

(B.5)

where tAj = t(LA) + T Sij is the arrival time at j, d is the day of arrival, TOjd is the
opening hour of j on d and TCjd is the closing hour of j on d.

If a PSV arrives before the installation opens, it has to wait until the opening hour. If
a PSV arrives after the installation closes, it has to wait until the installation opens
the next day. If a PSV arrives within the opening hours, but does not finish the
service before the closing hour, it has to wait until the installation opens again the
next day and continue the service. Otherwise, the PSV arrives within the opening
hours and finishes the service before the closing hours, hence it does not have to
wait at all. As mentioned in the assumptions of the mathematical model in Section
4.2, it is assumed that the service time of an installation is always shorter than the
opening hours, i.e. if a PSV arrives before the installation opens it will always finish
service before the installation closes again. The assumption simplifies the waiting
time calculation.

If j = N + 1, the voyage is finished, and t(LB) corresponds to the duration of a
finished voyage. Note that in this context the supply depot has a service time of 0,
since the service is captured in the departure time when starting the voyage.

c(LB) = c(LA) + FCS
ij + FCI(t(LB)− (t(LA) + T Sij)), (B.6)

where FCS
ij is the fuel cost of sailing from i to j and FCI is the fuel cost per hour at

118

an installation.

q(LB) =

q(LA), if j = N + 1

q(LA) +
Dj

Fj
, otherwise

(B.7)

where Dj is the weekly demand of installation j and Fj is the number of weekly visits
demanded by installation j.

v(LB) = v(LA) + 2j, (B.8)

installation j is marked as visited in LB by adding 2j to v(LA), the integer representing
visited installations.

m(LB) =

{
m(LA), if j = N + 1

m(LA) + 1, otherwise.
(B.9)

The number of visited installations is increased by 1 if j is not the supply depot.

p(LB) = LA (B.10)

LA is the predecessor of LB.

The above-mentioned extension from LA to LB along (i, j) is called a resource feasible
extension if and only if:

n(LA) 6= N + 1 (B.11)

If the current installation of LA is N +1, it means that the PSV has already returned
to the supply depot, hence the label should not be extended.

t(LB) ≤ T
V OY

(B.12)

The departure time of a label must be less than the maximum duration of a voyage,

T
V OY

.

t(LB) ≥ T V OY , if j = n+ 1 (B.13)

The duration of a finished voyage must be greater than the minimum duration of a
voyage, T V OY .

q(LB) ≤ Q (B.14)

The quantity of supplies delivered must be less than the load capacity of the PSV,
Q.

v(LA) mod 2j + 1 < 2j (B.15)

119

The current installation of the new label cannot be already visited by the voyage.

m(LB) ≤M (B.16)

The number of visited installations must be less than or equal to the maximum
number of installations in a voyage.

B.4 Label domination

Label extension ensures that all generated paths are feasible, but by itself, it results
in a total enumeration of all feasible voyages. By using label dominance, the number
of generated paths is significantly reduced. If label LA dominates LB, denoted by
LA ≺ LB, LB is not extended, and hence none of the successors of LB are generated.
The general dominance criteria are:

LA ≺ LB if and only if

• The labels are in the same node

• Every resource feasible extension of LB is resource feasible for LA

• For every resource feasible extension of LB, the cost is greater than or equal to
the cost of the same extension of LA

All of the resource extension functions of the defined label are non-decreasing and
separable. A resource extension function is separable if there exists no interdepen-
dencies between the resource it is describing and the other resources. For a resource
with a non-decreasing and separable resource extension function, it is true that if two
labels have consumed the same amount of the resource, they have the same resource
feasible extensions with regards to that resource. It is also true that if the resource
is a positive resource, a higher consumption is better, and if it is negative a lower
consumption is better. This results in the following dominance criteria for the defined
label:

LA ≺ LB if and only if

n(LA) = n(LB) (B.17)

v(LA) = v(LB) (B.18)

c(LA) ≤ c(LB) (B.19)

t(LA) ≤ t(LB) (B.20)

120

Criterion (B.17) ensures that the first general dominance criterion is satisfied, namely
that the labels are in the same node. Criterion (B.18) ensures that the labels have
visited the same installations, meaning that v(LA) = v(LB) and m(LA) = m(LB).
Since the demand of supplies of an installation is the same regardless of when it is
visited, q(LA) = q(LB) holds if (B.18) is satisfied. Criterion (B.19) ensures that LA
has a lower or equal cost and criterion (B.20) ensures the same for departure time. In
other words, criterion (B.17) - (B.20) ensures that every resource feasible extensions
of LB is resource feasible for LA, satisfying the second general dominance criterion.
Since both the cheapest voyage and the voyage with the shortest duration are needed
for the candidate voyages, every resource feasible extension of LB must have an equal
or higher cost and an equal or longer duration than the same extension from LA for
LB to be dominated. Criterion (B.19) and (B.20) ensures this, hence the third and
final general dominance criterion is satisfied.

Note that the order in which the dominance criterion are checked affects the number
of labels checked for dominance. The more labels a criterion affects, the earlier it
should be checked. As most labels will have visited different installations, criterion
(B.18) is ideally checked first. Second, the current installation of a label should be
checked. The sequence of checking the cost and departure time is assumed to not
differ much in the number of affected labels.

B.5 The labelling algorithm

The problem of finding the candidate voyages for a set of installations can be decom-
posed into M subproblems, where M is the maximum number of installations visited
in a voyage. A subproblem is to find the set of feasible, undominated voyages, partial
or finished, of size k, k ∈ {1, 2, ..., |M | + 1}. This set is called Mk and represents
one stage. Note that the candidate voyages of length k are the feasible, undominated
labels of subproblem k that satisfy n(L) = N+1, in other words, the voyages that are
finished. Dominance criteria (B.17) - (B.20) ensure that each feasible, undominated
label of length k has a feasible, undominated label found in subproblem k − 1 as a
predecessor. In other words, for every candidate voyage of length k, the voyage visit-
ing the k − 1 first installations is a feasible, undominated label in subproblem k − 1.
To utilize the optimal substructure of the problem, the labelling algorithm extends
all labels in a stage before extending the labels of the next stage, starting at stage 1.

The pseudocode presented in Algorithm 11 shows the generation of candidate voyages
for a PSV v and a maximum number of installations in a voyage, M . The initial
label L0 is created and added to the initial stage M1. Then all stages are looped
through, starting at M1, and all unfinished labels in a stage are extended. A label is
unfinished if the current installation of the label is not the supply depot. Algorithm
12 shows the pseudocode for the extension of a label. After all unfinished labels
have been extended, each stage Mk contains the set of undominated, feasible labels
corresponding to a partial or finished voyage of length k. The labels with the supply
depot as current node are added to the set of candidate voyages.

121

The algorithm described in Algorithm 12 loops through all installations i ∈ N for
the given label, LA. If LA has visited i, there should be no extension from LA to i,
so the algorithm continues to the next installation. If i has not been visited, there
is an extension from LA to i, resulting in label LB. The extension is defined by the
resource extension functions (B.2) - (B.10). LB is a feasible label if it satisfies (B.11) -
(B.16). If LB is feasible, it is added to the next stage by Algorithm 13. Algorithm 13
goes through all the existing labels in the next stage, and if any of the existing labels
dominate LB, the algorithm terminates. If none of the existing labels dominates LB,
the algorithm goes through the labels again. If LB dominates any of the existing
labels, they are removed from the stage. Finally, LB is added to the next stage.

When the labelling algorithm has extended the labels of stage one through M , all
candidate voyages have been generated. The output of the algorithm is the set of all
candidate voyages for PSV v, Rv. The output is used in Algorithm 10, as described
earlier.

Algorithm 11 Algorithm for generating the candidate voyages for a given PSV. Used
in Algorithm 10

1: procedure generateVoyageSet(PSV v, Maximum number of installations
M)

2: Rv ← ∅ . Set of candidate voyages for PSV v
3: L0 = (0, 16, 0, 0, 20, 1, ∅)
4: M1 ←M1 ∪ {L0}
5: for (k=1 to M) do
6: for all unfinished labels LU ∈Mk | n(LU) 6= n+ 1 do
7: extend(LU , k)
8: end for
9: for all finished labels LF ∈Mk | n(LF) = n+ 1 do

10: Rv ← Rv ∪ {LF}
11: end for
12: end for
13: end procedure

122

Algorithm 12 Algorithm for extending a label in a given stage. Used in Algorithm
11

1: procedure extend(label LA, stage k)
2: for all installations i ∈ N do
3: if v(LA) mod 2i+1 ≥ 2i then . has already visited i
4: continue
5: else
6: LB ← the label created when LA is extended from LA to i
7: if LB is feasible then
8: addToStage(LB, k + 1)
9: end if

10: end if
11: end for
12: end procedure

Algorithm 13 Algorithm for adding a label to a stage. Used in Algorithm 12

1: procedure addToStage(label LX , stage k)
2: for all existing label LY ∈Mk do
3: if LX � LY then
4: stop procedure
5: end if
6: end for
7: for all existing label LY ∈Mk do
8: if LX ≺ LY then
9: Mk ←Mk \ {LX}

10: end if
11: end for
12: Mk ←Mk ∪ {LY }
13: end procedure

123

124

Appendix C

Code and test instances

All programmed code, test instances and relevant output files are provided in a zipped
archive file. The archive contains two folders: (1) Exact methods, containing the im-
plementation and data for the VBM and (2) HGSADC, containing the implementation
and data for the HGSADC.

C.1 Exact methods

The folder named ”Exact methods” contains all files related to the voyage-generation,
the VBM and the ε-constraint method, described in Appendices A and B. It contains
the folders ”Voyage generation” and ”VBM”.

C.1.1 Voyage generation

The folder named ”Voyage generation” contains the code and input files for the voyage
generator. The source code can be found in the folder ”src”, and the input found is
an excel file found in ”data/input”. The parameter values for the voyage generation
is set in the first sheet of the excel file, ”Parameters”, and the test instances in this
thesis is found in the sheet named ”April 2016”. Voyages can be generated by running
the file called ”voyageGeneration.jar”, which uses the excel file as input. The output
is found in ”data/output”.

C.1.2 VBM

The folder named ”VBM” contains the code, input files and output data for the
voyage-based model and the ε-constraint method. The source code is found in the
file ”VoyageBasedModel.mos” in the folder ”src”. The settings of the model can be
set by changing the parameters at the beginning of the file. Here one can define what
input files to use, the timeout limit, the output file folder, the accepted optimality
gap and whether to use the ε-constraint method. The input files are in the folder

125

”data/input/april 2016”. The subfolder ”baseline” contains the baseline solutions for
each problem size, the subfolders ”fixed fleet” and ”variable fleet” contain the input
files for the fixed fleet and variable fleet problem, respectively. The output files used
are in the folder ”data/output”. The subfolder ”epsilon” contains the optimal pareto
fronts generated by the ε-constraint method, while the subfolders ”fixed fleet” and
”variable fleet” contain the output files for the fixed fleet and variable fleet problem,
respectively. The folder ”src/VBMSolver” contains a program for solving multiple
problem instances. This program is currently not adapted for general use.

C.2 HGSADC

The folder named ”HGSADC” contains the input files, all of the programmed code
and the output data of the HGSADC. The input files can be found in the folder
”hgs/input”. The parameters used in the HGSADC and all test instances are found
in the excel file called ”input data hgs.xls”. The parameter values for the voyage
generation is set in the first sheet of the excel file, ”Parameters”, and the test instances
in this thesis is found in the sheet named ”April 2016”. The output files of all data
described in the master’s thesis can be found in the folder named ”data/hgs/output”.
All results for the different objectives of the MSVPP can be found in the folder named
”MSVPP”, and all results of the SVPP, including the parameter testing, can be found
in the folder named ”SVPP”.

All of the source code can be found in the folder named ”src”, and python procedures
used to plot the results are found in the folder named ”plotting”.

Execute the file called ”HGSADC.jar” found in the HGSADC-folder in order to run
the HGSADC. The file uses ”input data hgs.xls” as input, and generates output in
the folder named ”data/hgs/output”.

126

	Introduction
	Problem Description
	Planning requirements
	Objectives
	Handling multiple objectives

	Literature Review
	The supply vessel planning problem
	The periodic vehicle routing problem
	Persistence
	Robustness
	Multi-objective optimization
	Genetic algorithms for MOPs
	Multi-objective approaches to the SVPP

	Mathematical Model
	Previous work
	Remarks and assumptions
	Mathematical formulation of the SVPP
	Measuring persistence
	Measuring robustness of schedules

	Hybrid genetic search with adaptive diversity control for the SVPP
	Overview
	Individual representation
	Search space
	Evaluation of individuals
	Constructing the initial population
	Parent selection and crossover
	Education
	Voyage improvement
	Pattern improvement
	Repair

	Population management
	Survivor selection
	Penalty parameter adjustment
	Diversification

	Optimizing the fleet size and mix
	Comparison with Vidal et al. (2012)

	Hybrid genetic search with adaptive diversity control for the MSVPP
	Adapting from single-objective to multi-objective
	Domination criterion and Pareto archive
	Stopping criterion
	Modified biased fitness function
	Fitness evaluation, diversity control and elitism

	Education for persistence
	Optimizing the fleet size and mix

	Computational Study
	Test instances
	Calibration of parameters for the HGSADC
	The parameters of the HGSADC
	Parameter calibration
	Calibration of education and repair

	Results - SVPP
	Comparison with the VBM
	Results for all instances
	Stability of the HGSADC

	Results - MSVPP with cost and persistence
	Results compared with optimal fronts
	Results for real-size problem instances

	Results - MSVPP with cost and robustness
	Results compared with optimal fronts
	Results for real-size problem instance

	Results - MSVPP with cost, persistence and robustness
	Results compared with optimal fronts
	Results for real-size problem instance
	Running times

	Economic Implications
	The advantages of persistent schedules
	The advantages of robust schedules
	Combining low cost, high persistence and high robustness
	Adding additional objectives
	Limitations of the results

	Conclusion
	Voyage-based model
	Voyage-based formulation
	Voyage generation
	Voyage-based model
	Measuring persistence
	Measuring robustness

	Voyage generation using dynamic programming
	The voyage generation procedure
	Label data
	Label extension
	Label domination
	The labelling algorithm

	Code and test instances
	Exact methods
	Voyage generation
	VBM

	HGSADC

