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Problem Description

The goal is to understand how profitability factors and other factors affect production de-
cisions for reservoir hydropower producers. How schedulers form expectations regarding
future prices and inflow, is an interesting issue here.
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Abstract

When planning production, a hydro power reservoir managers need to form expectations
for electricity prices in the future. When forming expectations, the Nordic electricity for-
ward market is a useful tool for predicting how the underlying spot price will move. In this
paper we develop a structural estimation model for a single agent hydropower producer in
Norway. With this model, we analyse how primitives in the price process, related to the
forward price, can be inferred from empirical data from actual production time series. By
analyzing trends and patterns in observed time series we have approximately parametrized
the state space transition. Central here is the connection we model between inflow and
price, to capture dry- and wet year dynamics in the two. To demonstrate the model it has
been applied to a specific hydro power plant in Norway. From the results we make a pre-
liminary analysis of to what extent the producer uses forward information when planning
production. The results indicate that this specific producer is inclined to take the forward
price into account when planning, and that a forward price with 6 months to maturity is
favored. An important byproduct of our model is the ability to calculate water values from
the outputs.



Sammendrag

I produksjonsplanleggingsprosesser må vannkraftplanleggere gjøre seg opp forventninger
for hvordan elektrisitetsprisen kommer til å utvikle seg i fremtiden. Disse forventningene
baserer seg blant annet på informasjon fra forwardmarkedet i Norden. I denne studien
utvikler vi en strukturell estimeringsmodell for en norsk vannkraftprodusent. Denne mod-
ellen brukes videre til å analysere hvordan skjulte parametere i prismodeleringsprosessene
relaterer seg til empirisk data. Ved å analysere trender og mønstere i observerte tidserier
finner vi en tilnærmet parameterisering for overgangen mellom tilstandsvariable. I disse
overgangene er særlig sammenhengen mellom tilsig og pris viktig for å reflektere dy-
namikken fra tørr- og våtår. Vi har utprøvd modellen på et norskt vannkraftverk. Ut fra
resultatene kan vi gjennomføre en innledende analyse av hvor mye vannkraftprodusen-
ten vektlegger forwardinformasjon når de planlegger produksjonen. Resultatene indikerer
at den analyserte vannkraftprodusenten er tilbøyelig til å bruke forwardinformasjon når
de planlegger, og at forwardpriser med en 6 måneders tid til modning er foretrukket. Et
nyttig biprodukt fra modellen er muligheten den gir for å gi en indikasjon på hva slags
vannverdier kraftverket har opperert med.
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Chapter 1
Introduction

Managers of reservoir hydropower plants need to form expectations regarding future elec-
tricity prices when balancing immediate and future rewards from releasing water and gen-
erating electricity. Although surveys on forecasting methods employed by Fleten et al.
(2008) shed light on how this happens, we analyse how primitives of this expectation pro-
cess can be inferred from empirical data from actual production time series. Our main
research goal is to apply structural estimation theory of Markov Decision Processes, de-
veloped by Rust (1987), to a hydropower planning problem. The model aims to work as
a descriptive rather than a normative tool for the hydropower industry. In order to demon-
strate the structural estimation model we apply it to a single-case hydropower plant. An
example of insight gained from the demonstration, is to what extent a planning agent put
emphasis on forward information when planning production. Another example is empiri-
cal insight in what expectations the hydro power producers use for future water values.

Structural estimation was first used on an optimal switching problem for buss engines by
Rust (1987) and Rust (1994). The idea is that if we observe a set of states and actions
taken by an agent, we can work backwards to infer the objective function of that agent, by
maximizing the likelihood of matching the observed data. By maximizing the likelihood
function, the analyst can obtain an understanding of parameters hidden in the economic
model. In order to estimate the structural parameters in a stochastic dynamic programming
problem, Rust used an algorithm he called the Nested Fixed Point (NFXP) algorithm. This
algorithm has two parts, an outer loop that searches for the structural parameters with the
maximum likelihood value, and an inner loop that solves the stochastic dynamic program-
ming model given a value for the structural parameter. The NFXP algorithm is the one
studied by Foss and Høst (2011). According to Su and Judd (2012) the NFXP algorithm
is computationally demanding, because it iterates over all structural parameter values and
then solves the underlying stochastic dynamic programming (SDP) model with high accu-
racy for each structural parameter value. To deal with this computational difficulty, they
propose a new strategy, the Mathematical Program with Equilibrium Constraint (MPEC)
approach. What this approach does differently from Rust’s is that instead of having an
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inner loop that runs for each iteration of an outer loop, you have the SDP model as a
constraint in the maximization of the likelihood. This way the only SDP that needs to be
solved exactly is the one corresponding to the final estimate of the structural parameter,
and not all of them. Because of the computational advantages the MPEC approach has
over the NFXP algorithm, we utilize MPEC when applying structural estimation for a hy-
dropower case.

Examples of topics where structural estimation has been utilized are optimal bus engine
replacement (Rust, 1987), call center planning (Aksin et al., 2013), demand for durable
goods (Rapson, 2014), effects from uncertainties on the willingness to invest in the oil
drilling industry (Kellogg, 2014), investment timing for corn ethanol plants (Thome and
Lin, 2015), evaluation of the likelihood of reactivation of temporarily closed oil and gas
wells (Muehlenbachs, 2015) and maintenance and switching costs of peak power plants
(Fleten et al., 2016) and (Johansen, 2015). For hydropower planning, Foss and Høst (2011)
did an initial unsuccessful study where they resolved to focus on aspects of an algorithmic
implementation of the structural estimation problem. Except from that study, structural
estimation have yet to be applied for hydropower planning.

Hydropower planning problems are suitable to be treated as a stochastic dynamic problem,
where a decision today change the reservoir levels and thereby affect future production
opportunities. Here the dynamic properties of the planning problem can be accounted for
together with multiple stochastic variables, such as inflow, price, forward price etc. A
regulated market entails that power companies are obliged to supply electricity to the geo-
graphical area they are responsible for. Nandalal and Bogardi (2007), Tejada-Guibert et al.
(1993), Maidment and Chow (1981), among others use stochastic dynamic programming
for hydropower planning in regulated markets. In such a situation, a cost minimisation
perspective is applicable and price can be treated as a deterministic variable. Norway
was one of the first countries to deregulate their energy market, when the Energy act of
June 1990 was introduced (Wolfgang et al., 2009). For unregulated markets, price can be
treated as a stochastic variable in a stochastic dynamic programming problem. This has
been explored by Fosso et al. (1999), Mo et al. (2001), Fleten et al. (2002) and Wolfgang
et al. (2009), among others. For our case, we treat both inflow and price as stochastic input
state variables in a stochastic dynamic programming problem.

We use a parametric approach suggested by Fleten et al. (2016) to deal with the transi-
tion probabilities in the structural estimation model. However they use a non-parametric
approach in their analysis. The parametric approach involves time series modelling of
state variables as Markovian processes and using them to calculate state space transitions.
The goal of the time series modeling is to capture a sufficient amount of the state vari-
able dynamics to make structural estimation a viable method for gaining insight in the
hydropower planning industry. Time series forecasting approaches typically used for hy-
dropower planning are: Forecasts based on trends and patterns in observed time series for
price, simulation models who describe price formation and forecasts based on prices from
the future market. These approaches are elaborated on in Section 3.2. Ultimately we have
based our time series modeling on theory from Kolsrud and Prokosch (2010), combining
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several of these approaches. Here we model a connection between inflow and price that
capture the dry year-/wet year dynamics of both processes and the dependency of price on
inflow. The inflow-price connection has not been modelled like this before, and we believe
it is a better explanation of reality than earlier models.

Our goal is to build a model that enables us to learn more about to what extent hydropower
planners use forward prices when planning production. To what degree non financial firms
actually use derivatives in practice is a topic for empirical analysis. Previous work on this
includes Fleten et al. (2008), who, from a linear regression model, find that Norwegian
hydropower producers seem to be using electricity forward (swap) prices when planning
production. Näsäkkälä and Keppo (2008) and Fleten et al. (2002) arguments that elec-
tricity forward prices should be used in production planning for hydropower plants. One
approach to inclusion of forwards is described by Mo et al. (2001) as a optimization model,
tested for 38 reservoirs, where trades of forward contracts were incorporated in a utility
function to hedge for very low price values. Fleten et al. (2002) on the other hand creates
a hydropower planning model where the spot price scenarios are set so that the expected
spot price equals the current market price for a forward with delivery at the corresponding
period. According to Näsäkkälä and Keppo (2008), another commonly used approach is
to compare the results of models, such as the EMPS model, with the forward curve. In
the case of large differences, the value of the equilibrium model are adjusted to be closer
to the forward curve values. Our model aims to provide an estimate of to what degree
forward information are used to form expectations of future prices in the hydropower in-
dustry, as suggested done by Näsäkkälä and Keppo (2008), Fleten et al. (2002) and Fleten
et al. (2008).

Based on the results from our structural estimation model we find that our model has the
potential to let external analysts gain insight into water values used by producers when
planning production. This is a valuable finding, since alternatives are time consuming and
costly. From the results we also make a preliminary analysis, which indicates that the
producer uses forward price information when planning, and that a forward price with 6
months to maturity is the most likely choice.

In Chapter 2 we present some major elements in structural estimation theory, including a
basis for the parametric approach and the MPEC formulation. Chapter 3 lays out specifics
on the context of a hydropower environment case. The aim of Chapter 4 is to put structural
estimation in context of a general hydropower planning problem and to explain the back-
ground for specific model detail decisions. Chapter 5 covers model results and discusses
future improvements for the model. Lastly, Chapter 6 has concluding remarks.
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Chapter 2
Structural estimation

In this chapter we present the main elements of structural estimation fro Markov decision
processes. Some assumptions for Markov decision processes are discussed in Section 2.1.
Section 2.2 presents the Bellman equation for structural estimation. Section 2.3 presents
the maximum likelihood estimation problem from the MPEC approach. Finally in Section
2.4 we use a parametric approach for calculating state space transitions and state space
transition probabilities in the model.

2.1 Markov decision processes
Markov decision processes (MDP’s) has been used in many theoretical studies for eco-
nomic problems due to their applicability for most economic problems where decisions
are made over time. MDP’s have commonly been applied as normative models for how
rational decision makers should behave. Later on, analysts have realized that MDP’s also
provide good empirical models for exploring how real-world decision-makers actually be-
have. Under a MDP assumption, where agents are considered rational, we can estimate the
primitives, agent preferences and beliefs, applied in decision making. In order to do that,
we intend to use structural estimation theory of Markov decision processes, developed by
Rust (1987).

For a Markov decision process for structural estimation we define a state space, xt, as a
vector of state variables observed by both the agent and the analyst. By taking decision dt
at state xt, we move to a new state xt+1. We define this transition as the state transition
function, f(xt, dt), in

xt+1 = f(xt, dt) (2.1)

The state transition probability is now denoted by p(dxt+1|xt, dt), which is the probability
of moving from state xt to state xt+1, given decision dt (Gamba and Tesser, 2009).
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Assumptions necessary for structural estimation for Markov decision processes are that
agents really are rational expected-utility maximizers and that the problem can be regarded
as stationary with a infinite horizon (Rust, 1994). In the case of stationarity, transition
probabilities, discount factors and utility functions are the same for all t. In the case of
infinite horizon for a stationary Markovian structure, the future is considered the same
whether the agent is in state xt or xt+k, given that xt = xt+k. This implies that the
only values who are affecting the hydropower release decision is the current state, xt,
combined with the associated probability to go to the state, xt+k. By making an infinite
horizon assumption, we avoid end of horizon effects affecting the decision rules. Thereby
the assumption allow for a unique solution of the Bellman equation when the discount
factor is set to a constant value between 0 and 1 (Rust, 1994).

2.2 Bellman equation
The valuation model of an individual agent can be described as in (2.2). It is formulated
as a discounted discrete decision process, who has an unique solution when assuming the
process is stationary and by assuming an infinite horizon. The Bellman equation is used to
find the optimal policy from a Markovian process, meaning it only depends on the current
state, Xt. Parts of the equation known as the Bellman equation are derived in (2.2)-(2.5).

V (x) := max
d∈D

Ed
( ∞∑
t=0

βtg(Xt, dt)

∣∣∣∣X0 = x

)
, (2.2)

Here β denotes the discount factor and g(Xt, dt) is the profit function give state Xt and
decision dt. The expression Ed(·|X0 = x) denotes the expectation with respect to state
transition probability p(·|x, d). Taking the immediate profit term outside the summation,
and having the remaining future value conditional on the state in the next stage, gives

V (x) = max
d∈D

Ed
(
g (X0, d) + βEd′

( ∞∑
t=0

βtg (Xt+1, dt+1)
∣∣X1 = x′

)∣∣∣∣X0 = x

)
(2.3)

As the expected future value is the definition of the value function (2.2) in the next stage,
we can write (2.3) as

V (x) = max
d∈D

Ed
(
g(X0, d) + βV (X1)

∣∣∣∣X0 = x

)
(2.4)

Further on the immediate profit are moved outside the expectation, so that

V (x) = max
d∈D

(
g(x, d) + βEd

(
V (Xt+1)

∣∣∣Xt = x
))

(2.5)

In the Bellman equation, stated in (2.5), the maximum are calculated over all decisions, d,
and depend s only on the present values of the state variables in x.
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When so on assuming stationarity, the future looks exactly the same in time t as it does in
time t+k, as long as Xt = Xt+k. Then Xt+1 is distributed conditional on Xt in the same
way as X1 is distributed conditional on X0, hence we express the conditional expectation
based on X0 from now on, the same way as Fleten et al. (2016). The Bellman function is
then a fixed point for

V (x) = max
d∈D

(
g(x; d) + βEd

(
V (X1)

∣∣∣X0 = x
))

(2.6)

Error term
According to Rust (1994), when the SDP is stationary and has an infinite horizon, the
optimal decision rule of the hydropower planner is a deterministic function of the observed
states. This implies that if the analyst is able to observe all the states, the person would be
able to perfectly predict the behavoir of each hydropower plant. As such a capability is not
realistic, an error term is included in the form of an idiosyncratic shock, ε(d). The ε(d)
can be interpreted as an unobservable, meaning a variable observed by the agent but not
by the analyst. It is formulated as a vector with at least as many components as the number
of possible decisions, D. The profit function is, in (2.7), written as an additive separable
decomposition of the profit from observable decisions and the idiosyncratic shock, ε(d),
as done by Rust (1994) and Fleten et al. (2016).

g(x, ε; d) = g(x; d) + ε(d) (2.7)

State transition with error term
When the error term is included, the state transition can be written as

(xt+1, εt+1) = f(xt, εt, dt) (2.8)

The state transition probability is then

π(dxt+1,dεt+1|xt, εt, dt), (2.9)

We assume the processes for x and ε to be conditionally independent, so

π(dxt+1,dεt+1|xt, εt, dt) = E(dεt+1|xt+1)p(dxt+1|xt, dt), (2.10)

where E(·) is the transition probability of ε (Rust, 1987).

Value function with error term
With the help of (2.7) and (2.8) the value function with the idiosyncratic shock can be
written as

V (x, ε) = max
d∈D
{g(x; d) + ε(d) + βEd

(∫
V (X1, ε1)E(dε1|X1)

∣∣∣∣X0 = x

)
} (2.11)

We define the expected value function
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v(x, d) := Ed
(∫

V (X1, ε1)E(dε1|X1)

∣∣∣∣X0 = x

)
, (2.12)

which is to be used as the constraint in the maximum likelihood estimator in the structural
estimation part later, keeping in mind that Ed(·|X0 = x) denotes expectation with respect
to p(·|x, d).
We can now put V (X, ε) from (2.11) into the expected value function v(x), i.e. take the
expectation of (2.11)

v(x, d) = Ed
(∫

max
d∈D
{g(X1; d) + ε1(d) + β · v(X1)}E(dε1|X1)

∣∣∣∣X0 = x

)
(2.13)

which is the fixed point equation for v.

Simplification using the Gumbel distribution
From extreme value theory we know that the normalized maximum converge to an ex-
treme value distribution. Because of the maximization in the v(x, d) function in (2.13)
it is reasonable to specify ε as a mutually independent process of Gumbel variables, also
independent from X . Fleten et al. (2016) remark that the extreme value distribution is
closed under maximization. This allows for a simplification made by using the explicit
formula for the conditional choice probability defined from (2.14) and (2.15).∫

max
d∈D

(ε(d) + cd)E(dε|x) = b · log

(∑
d∈D

exp
(cd
b

))
(2.14)

Here the b can be interpreted as the degree of uncertainty in the Gumbel distribution, a
proportional scaling parameter of the standard deviation of the distribution. Following
Rust (1994) we use a value for the Gumbel scale parameter b that is normalized to 1. The
term, cd from (2.14) are defined to be

cd := g(X1; d) + β · v(X1) (2.15)

Using (2.14) and (2.15), we can write (2.13) as

v(x, d) = Ed

(
b · log

(∑
d′∈D

exp

(
g(X1; d′) + β · v(X1)

b

))∣∣∣∣∣X0 = x

)
(2.16)

Fixed point Bellman operator
For notational convenience we define the operator

tθ(v)(x, d) := Ed

(
b · log

(∑
d′∈D

exp

(
g(X1; d′) + β · v(X1)

b

))∣∣∣∣∣X0 = x

)
(2.17)

This way we can write the fixed point Bellman equation as.
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v = tθ(v), (2.18)

and use it as a constraint in the maximum likelihood estimation in the structural estimation
formulation (Johansen, 2015)

2.3 Structural estimation
The structural parameters that are to be estimated are collected in a vector θ. Given a θ,
the maximum likelihood estimation problem in the MPEC approach, described by Su and
Judd (2012), is formulated as

maxi
θ
mize L(θ, vθ, (Xn, dn)Nn=1)

s.t. vθ = tθ(vθ)
(2.19)

Here the constraint vθ is the fixed point Bellman equation (2.18). The objective function
is the log-likelihood function, based on the likelihood function l(θ, vθ, (Xn, dn)Nn=0). The
function l is the likelihood of observing date (Xn, dn)Nn=0) given a certain θ. As a suitable
maximum likelihood estimator we use the choice probability formula

Pv(d|x) =
exp

(
g(x;d)+β·v(x,d)

b

)
∑
d′∈D(x) exp

(
g(x;d′)+β·v(x,d′)

b

) , (2.20)

which is given from the Gumbel distribution assumption for ε, as shown by Fleten et al.
(2016). This is the probability of making decision d given state x. We can use (2.20) to
write the likelihood function

l(θ, vθ, (Xn, dn)Nn=0) =

N∏
n=1

Pv(dn|Xn) (2.21)

It follow from this that the log-likelihood function is

L(θ, vθ, (Xn, dn)Nn=0) =

N∑
n=1

log(Pv(dn|Xn)), (2.22)

which is used in the maximum likelihood estimation in (2.19).

2.4 Estimation of conditional expectation
In the constraint of the maximum likelihood estimator (2.19), the operator tθ(vθ) is an ex-
pectation conditional on {X0 = x}. To be able to evaluate tθ(vθ) we need to evaluate the
conditional expectation. Fleten et al. (2016) suggest two different methods for computing
the conditional expectation, one parametric approach using a time series model that follow
an auto-regressive (AR) scheme and one non-parametric approach using kernel estima-
tors. We are using the parametric approach in this paper, but expand upon their approach
by having a set of AR processes that depend on each other instead of a single one.
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State space transition
Given state space xt, containing a set of state variables that follow an AR scheme, we
write the state transition as

xt+1 = f(xt, dt) = Axt + Be + c (2.23)

Here xt+1 and xt are the state vectors at time t+ 1 and t respectively, A is a matrix with
parameters for the state vector, e are the error terms of independent random variables, B is
a matrix with parameters for the error terms and c is a vector with additional deterministic
constants.

Some of the state variables might have correlated errors. In order to simulate multiple
correlated errors, we first find their covariance matrix, Σ. Σ is then decomposed, using
Cholesky decomposition, to obtain its lower triangular matrix L, such that L ∗ LT = Σ.
By left-side multiplying L with uncorrelated standard Gaussian random errors, e′, we can
obtain the desired correlated random errors, e. Eq. (2.23) can then be written as

xt+1 = f(xt, dt) = Axt + BLe′ + c (2.24)

Parametric Bellman equation
For notational purposes, we define a function

h(x) := b · log

(∑
d∈D

exp

(
g(x; d) + β · v(x)

b

))
(2.25)

Since the state variables in x follow an AR scheme, we can write (2.17) as (2.26), reducing
the conditional expectation to a simple expectation (Fleten et al., 2016).

tθ(v)(x, d) = Ed(h(X1)|X0 = x) = Eh(Ax+ c+BLe), (2.26)

As we can see in (2.23), the state transition also includes the decision, which means the
expectation, E, in (2.26) is no longer conditional on the decision, d.
This new, simple, expectation can be further simplified by discretizing the error terms in
e, and weighting the different discrete levels by an appropriate probability weight. Given
N state variables, this discretization leads to

tθ(v)(x, d) ∼
M1∑
i1=1

· · ·
MN∑
iN=1

wi1 · · ·wiNh(Ax+ c+BLẽ)), (2.27)

which is our operator used as a constraint in the maximum likelihood estimation in (2.19).
The discretized error terms, ẽ, in (2.27) are described as

ẽ =


ẽi1
·
·
·
ẽiN

 (2.28)
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Here ẽin is a Mn × 1 vector of center points for a Mn-point approximation of a normal
distributed random variable and win is aMn×1 vector with the corresponding probability
weights, for n = 1, . . . , N .

Until now we have described the background for a parametric approach to structural es-
timation. From now on we will attempt to apply (2.19), with (2.27) as a constraint, on a
specific hydropower plant, using a set of parametric time series models.
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Chapter 3
Hydropower

We are interested in demonstrating the structural estimation model described in Chapter
2 for a specific case of a single-agent hydropower producer. The structural estimation al-
gorithm is estimating the log likelihood of the results from the decision model replicating
observed data. In order to get statistically significant results we need to have access to
sufficiently long time series. The observed time series also serve as a basis for the mod-
elling of the different state variable processes in Section 4.1. To obtain an insight into the
data that are relevant for our problem we first explain some of the characteristics of the
Norwegian power market in 3.1. Then we go into more dept on how hydropower planning
commonly is done in Norway in Section 3.2. Section 3.6 describe observed data for our
hydropower planning case. Lastly Sections 3.3, 3.4, 3.5 and 3.7 elaborate on externally
observed time series and how they interact.

3.1 The Norwegian power market
We study the Nordic power market. This market was the first to deregulate, with Norway
as a first mover in 1991, making it the market with the most data to use for analysis of
deregulated market behavior. Even if Nord Pool has expanded to many countries in Eu-
rope later, bidding mechanisms are still grouped in such a way that for Norway, only the
Nordic countries are affecting the pricing. In a normal year, around half of the electricity
production in the Nordic countries is from hydropower (NordPool, 2016) and (Kolsrud
and Prokosch, 2010). When isolating Norway, about 95% of the total electricity is gener-
ated by hydropower (NVE, 2016). This implies that the market will be largely affected by
hydrological changes and aggregated decision processes in the hydropower industry.

In this text the terms futures, forwards and swaps will be used interchangeably for a finan-
cial instrument where two parties agree today on the terms for selling or buying an asset
some time in the future. Forward contracts are traded as a purely financial contract, while
the spot market includes physical trades (Botterud et al., 2002) and (NordPool, 2016).
Since its opening in 1995, the financial market for derivative products at Nord Pool has
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gone through considerable changes in terms of gradually changing the portfolio of prod-
ucts offered. Included in the changes are a transition from NOK/MWh to Euro/MWh and
changes in the maturity times of the products offered. Futures are traded continuously dur-
ing a trading day (Fleten et al., 2008). When the forward prices are set, the system price
serves as a reference price, implying they are closely interlinked.

3.2 Hydropower planning in Norway
On the operations side of hydropower planning, Stochastic Dynamic Programming (SDP)
are usually used for calculating water values, optimize power generation, manage reservoir
levels and forecast prices. SDP has been used for this in Sweden and Norway for many
years (Fleten et al., 2002). The decision to release water involves a trade off between re-
ducing risk of spill by releasing water today and reduces risk of having to sell at low prices
in the future if saving water. Water values are defined as the opportunity cost of using wa-
ter immediately in stead of storing it (Botterud et al., 2010). The models named Vansimtap
and EMPS are the most commonly used energy models by large hydropower producers in
Norway. In the Vansimtap model, market price is exogenously given, usually from the
EMPS model. In Vansimtap, both price and inflow are treated as stochastic variables in
the short term planning problem (SINTEF, 2016b). For different hydropower producers,
frequencies of running the model, adjustment for the amount of snow pack and short term
inflow, and chosen data exchange vary when using the Vansimtap model (SKM-Energy,
2016).

Botterud et al. (2010) name information typically available to market participants as:
weather forecasts (temperature, precipitation, wind), reservoir levels, inflow forecasts,
current and expected future snow pack, hydro balance, fuel and emission prices, power
plant and transmission line outages, market prices (history and future/forwards) and im-
port/export. As for price forecasts, Botterud et al. (2010) claim them to commonly be
bought from analytics companies, or created in-house. Therefore price information might
typically vary for different market participants, as they might model it differently, pre-
pare the available data differently, or interpret the results differently. The drivers utilized
for price forecasting are therefore hidden from external analysts and only visible for the
hydropower planner. We use structural estimation to gain insight in what drives the fore-
casting process for price in a case study of a hydropower planning process. Botterud
et al. (2010) highlights 3 different approaches for forecasting future market price for hy-
dropower production planning:

1. Forecasts based on trends and patterns in observed time series for price: This
approach is forecasting in its simplest form and demands long time series in order
to make reliable estimates of the stochastic parameters. An example of this is time
series models using a discount rate and other market participants beliefs based on
observed data and reduced-form regression models for how the price will develop.

2. Use simulation models that describe price formations: SINTEF (2016a) high-
lights this alternative, in the form of the EMPS model, to be the most commonly
used model for price simulation in the hydropower industry. In this model, the
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objective is to minimize the expected cost in the whole system of hydropower plan-
ners, given stochastic inflow scenarios. The entire dispatch system is simulated for
different inflow scenarios, drawn from a randomized pool of observed time series
(Wolfgang et al., 2009). The result, aggregated over all hydropower producers, with
transmission constraints, is representative for water values. These water values are
again used to simulate prices, given different inflow scenarios (SINTEF, 2016a),
(Fosso et al., 1999) and (Botterud et al., 2010). As the EMPS model is a bottom-
up model, it requires a substantial amount of planning resources. This typically
involves preparing and analyzing data and running large SDP models.

3. Forecasts based on prices from the future market: Future prices are a repre-
sentation of the general market consensus for future delivery of electricity. In an
efficient market, the forward price reflect the value of future delivery of electricity.
According to Näsäkkälä and Keppo (2008), production planning based on forward
curve dynamics and value maximization can give expected earnings within 2.6% of
the theoretical upper bound. To include forward price in a planning model who is
approximating release decisions they create a regression model. Here they use the
difference between the spot price today and forward prices for different maturity
dates to help planners decide if they should produce today or wait for a later day.
If the forward price is higher then the current spot price, the producers can expect
higher prices in the future and therefore they have an incentive to save water.

Our model is meant to describe the main dynamics of the above mentioned price fore-
casting methods in order to enable analysis of the weighting on different strategies in
observed production time series. In order to do that, we use a combination of a forecast
based on trends and patterns in observed time series, with inclusion of dynamics from
inflow and observed reservoir level, and forward information, mentioned in approach 2.
As, mentioned, time series models are based on subjective discount rates and other not
easily estimated market participant beliefs. Therefore, an inclusion of forward price data,
representing the market consensus, should provide a valuable price model improvement.
The connection between inflow and price simulations, used as a basis for our scheduling
problem, is largely based on an empirical model by Kolsrud and Prokosch (2010). Based
on their approach, we incorporate a connection between the combination of inflow and
overall reservoir levels with modeled spot prices. The influence of inflow and reservoir
state variables, in our price model, make our model more informative than approach 1,
and makes the dynamics more similar to that from the EMPS model in approach 2. The
model used in this study is meant to simplify scheduling procedures, as the most common
approaches is based on complicated bottom-up models, such as the EMPS model (Kolsrud
and Prokosch, 2010).

3.3 Electricity price data
As a basis for our time series models we have system spot price data from 01.01.1993 to
25.02.2016. When modelling the spot price later, we use the logarithm of the price. The
reason for using log prices is twofold. First of all we want to scale the extremes in the spot
price down, which for instance makes it easier to fit a seasonal function to the data. Using
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the logarithm of the price is also helps avoid negative values in price simulations. Both
the spot price and the log of the spot price, is shown in Figure 3.1, in e/MWh and log
e/MWh respectively. In order to calculate the system price, Nord Pool aggregate all pur-
chase and sell orders from the Nordic region that are submitted before the daily deadline at
noon. The intersection between the demand and supply curve is then used for calculating
the resulting system price for each hour of the next day, making it a result of interactions
between overall supply and demand.

(a) Spot price

(b) Log price

Figure 3.1: (a) Spot price and (b) log price from 1993 to 2016

From the price plots we can see that there is seasonal dependencies in the price. The price
is usually lower in the summer, and higher in the winter. The high electricity prices during
winters in Norway are mainly driven by a substantial increase in demand because electric-
ity is used for heating during cold winters in Norway. Also accumulated national inflow
levels during winters are small, due to precipitation coming as snow, making electricity a
scarce resource (Kolsrud and Prokosch, 2010). The low prices during the spring are influ-
enced by the restriction imposed by the degree of regulation of Norwegian power plants.
For power plants with a low degree of regulation, very high inflow levels will force them
to produce, driving prices down. During this period, demand for heating is low, driving
prices further down.

As most of the total electricity in Norway is generated from hydropower, production is
easily changed on short notice. This makes the daily spot prices vary less than in purely
thermal markets, as production shortages can be easily regulated. Seasonal fluctuations
tend to be more prominant (Botterud et al., 2002). Nevertheless, spot prices commonly in-
cludes high prices or spikes. These can be explained by very low reservoir levels and they
rarely last for more than a couple of days. As we increase our time resolution to a week,
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and prices is calculated as an average of the weekly price, the effect from these spikes are
limited. Combined with the transformation to log prices the spikes are even more reduced.

We choose to use system prices instead of area prices. As the price forecast model we
use compare information from the forward market with spot price forecasts and it is the
system price which is used for pricing financial contracts, it is the most relevant price for
comparison with forward information (Botterud et al., 2002) and (NordPool, 2016). What
separates system price and forward price is that transmission capacities are not included
in the system price calculations, while it is included for area prices. As long as no system
congestion between bidding areas is present, the system price is the prevailing market
price. The bidding area used for calculating the system price is constituted by Norway,
Denmark, Sweden and Finland. On the other hand, by using area prices, we could have
reflected the actual price expectations for the local producer more closely. Anyhow, our
power plant area price is rarely affected by congestion restriction. Therefore, choosing to
use the system price instead of the area price for production planning do not impose large
differences.

3.4 Forward price data
Since we want to investigate how forward prices affect producers expectation of future
prices, we need observed time series for the forward price. We have daily data for forwards
with different time to maturity from 01.01.2006 to 31.12.2015. In order to obtain a weekly
resolution we use the average weekly forward price. We can see the dynamics of a set of
forward prices with different maturity dates in comparison to the spot price in Figure 3.2.
As expected, the variance of forwards with a long time to maturity is lower than the ones
with shorter times to maturity. Also, all of the forwards follow the realized spot price
closely, with a slightly higher mean. This is expected as futures prices tend to be higher
than spot prices due to risk premiums (Botterud et al., 2010).

Figure 3.2: Comparison between forwards with different time to maturity, 2 months (blue), 6 months
(red), 1 year (yellow) forward and spot price (black). From 2006 to 2016.
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3.5 Aggregated reservoir data
We want to use the the deviation from aggregated reservoir levels over a large area as a
factor in our price model. Weekly aggregated reservoir levels in Norway from 01.01.1993
to 25.02.2016, retrieved from NVE (2016), are shown in Figure 3.3. As we model the
system price, which is based on bids from the entire Nordic region, reservoir levels from
the entire region should be used. Anyhow, we only have access to data for the entire region
from 01.01.2013 to 25.02.2016 (NordPool, 2016). When comparing the deviation from
Norway alone and the entire Nordic region, we observe them to be highly correlated. We
therefore conclude that Norwegian reservoir level deviation is a reasonable approximation
for the entire region.

Figure 3.3: Deviation from normal overall reservoir level in Norway

3.6 Power producer data
Our study is based on observed time series of inflow, production and reservoir levels for a
single hydropower station in Norway. Here we use data from Kolsvik, a reservoir owned
by Helgelandskraft.

3.6.1 Production planning model
We want the planning model used in our analysis to be a reasonable approximation of what
is done in real life for our case power plant. Also the model should be general enough to
have the possibility of incorporating more hydropower planners later on. Assumptions we
use in our model include: one-reservoir approximation, constant head assumption, suf-
ficient reservoir flexibility assumption, sufficient production capacity assumption, price
taker assumption, no marginal production cost and insignificant start-up and shutdown
cost. In the appendix, Section 6.1, we elaborate on the mentioned assumptions and discuss
if they are applicable for our case plant.

For production planning Helgelandskraft buys planning models from Markedskraft and
SKM, suppliers of power market analyses and corresponding services for the energy mar-
kets. Both Markedskraft and SKM Energy use the detailed EMPS simulation model
(Samkjøringsmodellen), developed by SINTEF, to forecast prices (Markeskraft, 2016).
In Helgelandskraft, these forecasts are directly used in the VanSimTap model, provided by
SKM Energy (SKM-Energy, 2016). As the EMPS model are the most commonly used,
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results from Kolsvik can give some initial insight into the industry standard. Also the Van-
SimTap use an one reservoir approximation, the same as we use. Therefore Kolsvik is a
suitable case for our analysis.

Figure 3.4: Overview of Helgelandskraft - Kolsvik

3.6.2 Inflow data
Daily and weekly inflow from 28.03.2000 to 31.12.2015, for the relevant catchment area,
are shown in Figure 3.5. The data shows clear seasonal tendencies. The low periods
can be explained by precipitation coming down as snow during winter, resulting in low
inflow. The high periods can be explained by snow melting during spring and summer,
resulting in high inflow and spring floods. There is also some small peaks in the fall,
when there usually is a lot of rain in Norway. The occurrence of negative inflow levels,
especially for daily inflow, indicates low measurement precision. For a weekly resolution,
this will not be a prominent problem when we, as done by Kolsrud and Prokosch (2010),
assume that producers correct the errors observed from negative values quickly after they
occur. When that is the case, aggregating the data to a weekly resolution accounts for part
of the measurement errors. The remaining negative values in the data set can be set to
0. When doing this, the difference between processed total seasonal inflow and original
total seasonal inflow is relatively low, at only 0.37%. For a daily resolution, removing
the negative values will result in a 1.16% difference in seasonal accumulated inflow for
processed and unprocessed data. The reduction in difference when reducing the resolution
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indicates that Kolsrud and Prokosch (2010) are right when assuming the producers correct
the measurement errors. Later on, when modeling the inflow time series, in Section 4.1,
the same removal of negative values is done. When modelling inflow we also work with
the absolute values. We could have used a transformation to log prices, similar to what we
do for the price. Using the logarithm is however not an option, since the inflow is often
zero. A different transformation would have been needed. Further work on this could
possibly improve the model.

(a) Daily

(b) Weekly

Figure 3.5: (a) Daily and (b) weekly inflow from 2000 to 2016

3.6.3 Reservoir data
We need information on the local reservoir levels as they are used as a factor in our price
model. We have reservoir data measured each hour for 26.09.1996 to 31.12.2015 from
Kolsvik. As we have a weekly resolution in our analysis, we convert the resolution of
observed reservoir levels by using the average reservoir level each week and interpolating
where reservoir data are missing. Weekly reservoir level data are plotted in Figure 3.6.
The plot reveals a yearly seasonal trend, where reservoir levels are at their lowest during
spring, for so to increase towards max during summer and fall. The seasonality is a result
of the relationship between demand and water availability.

Figure 3.6: Local reservoir level, from 1996 to 2015
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3.6.4 Production data
Production time series are used in the maximum likelihood estimation, where our model
production results are compared to observed time series on production. For Kolsvik, the
production data are given on an hourly basis from 01.01.1996 to 31.12.2015. When con-
verting to weekly resolution, we simply sum all hourly production data for each week.
From Figure 3.7, we observe that using three discretization levels for the production is a
reasonable assumption for an hourly production. When aggregating the data for daily and
weekly resolutions, the validity of the assumption decrease. Nevertheless, three produc-
tion levels are still clearly visible, even at a weekly resolution. To cope with the large
amount of memory needed for the structural estimation model, we find it necessary to use
only two levels, which is the bare minimum.

(a) Hourly

(b) Weekly

Figure 3.7: (a) Hourly production for the first quarter of 2014 and (b) weekly production from 1996
to 2016

(a) Hours (b) Days (c) Weeks

Figure 3.8: Histogram of different production levels, for hours, days and weeks
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3.7 Correlation between data series
To form a basic understanding of the relationships between the different observed time
series, later on accounted for in the time series model, we briefly presents how they corre-
late.

Correlation between inflow and reservoir deviation
High inflow in one region of Norway over a longer time will raise the total reservoir level
in the country. Hence we can expect that there is a positive correlation between the ac-
cumulated inflow in one area of Norway and the reservoir level in all of Norway. More
specifically, we look for a correlation between the cumulative local deviation from the
normal historical inflow value, and the overall reservoir level deviation from the normal
historical value in Norway as a whole. The amount of correlation will vary depending
on where in Norway the power plant is, the size of the area and topography of the inflow
catchment area. The correlation should anyhow always be positive. In Figure 3.9 we have
plotted the deviation from normal cumulative local inflow for Kolsvik, and deviation from
normal overall reservoir level in Norway. There is clearly a high correlation between the
two time series, and the correlation coefficient, of 0.6578, is significantly different from
zero.

Figure 3.9: Deviation from normal cumulative local inflow (blue) and deviation from normal overall
reservoir level in Norway (red), from 2000 to 2016

Correlation between spot price and reservoir deviation
As mentioned in Section 3.1, hydropower production accounts for about half of the total
electricity generation in the Nordic region. And we showed in Section 3.5 that deviation
from normal overall reservoir level in Norway is a good approximation for the deviation in
all Nordic countries. We therefore expect the system spot price to be negatively correlated
with the overall reservoir deviation in Norway. We show time series of the two in Figure
3.10.
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Figure 3.10: System spot price (blue) and deviation from normal overall reservoir level in Norway
(red), from 1993 to 2016

From the figure we can see a trend that high overall reservoir deviation seem to lead to
low spot price, and vice versa. We can also see that sudden drops or inclines in overall
reservoir deviation may cause the reverse behaviour in spot prices. From this we conclude
that there is a negative correlation between the two, something the correlation coefficient
of −0.4241 confirms.

Correlation between inflow and spot price
Based on the two previous paragraphs we expect the cumulative local inflow deviation
to also be negatively correlated with system spot price. Figure 3.11 shows the two time
series, with inflow from Kolsvik. The figure doesn’t show as strong dependency as Figure
3.10 did, in the previous section between price and overall reservoir deviation, which a
correlation coefficient of −0.275 also shows. It is however significantly different from
zero, and the figure also shows clear tendencies of negative correlation.

Figure 3.11: System spot price (blue) and deviation from normal cumulative local inflow (red), from
1993 to 2016

Correlation between spot price and forward price
Since the electricity forward price is written on the electricity spot price, we expect that
they are highly correlated. This correlation vary with forward contracts with different
maturity dates, the ones with shorter time to maturity being more correlated with the spot
price than those with longer time to maturity. But all of them should still be positively
correlated with the spot price. Figure 3.12 shows time series for the system spot price
and a forward price with 2 months to maturity. The forward price closely follows the spot
price, with the spot price having a slightly higher variance. The correlation coefficient is as
high as 0.8692. (Fleten et al., 2008) points out that the seasonal component of the forward
price is in total accordance with the behavior of the system price, as we also can see in
Figure 3.12.
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Figure 3.12: System spot price (blue) and 2 months to maturity electricity forward price (red), from
2006 to 2016

Correlation between forward price and reservoir deviation
Based on the previous paragraph, and the fact that spot price and overall reservoir deviation
are negatively correlated, we expect the forward price and the overall reservoir deviation
to also be negatively correlated. Figure 3.13 shows a forward with 2 months to maturity
and the overall reservoir deviation, and a correlation coefficient of −0.456 confirms there
is a significant correlation between the two.

Figure 3.13: Electricity forward price with 2 months to maturity (blue) and deviation from normal
overall reservoir level in Norway (red), from 2006 to 2016

We have now described the environment for hydropower planning and the details for a
specific hydropower plant. This information will from now on be used together with the
structural estimation model, introduced in Chapter 2.
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Chapter 4
Structural estimation for
hydropower

The aim of this chapter is to put structural estimation, defined in Chapter 2 in context of
a general hydropower planning problem, described in Chapter 3, and to explain the back-
ground for specific model detail decisions. Figure 4.1 provides an overview of the model
structure used for our analysis.

Connection between inflow
and system price (4.1.2)

Forward price
model (4.1.3)

Inflow model
(4.1.1)

Spot price
model (4.1.4)

Structural es-
timation (4.2)

Local reservoir
level (4.1.5)

Figure 4.1: Overview of the model structure

The overall model use a combination of sub-models to analyze the decision-making done
for a hydropower plant. In order to obtain the parametric approach for conditional expec-
tations we model the state variables in Section 4.1.1, 4.1.2, 4.1.3 and 4.1.4 as Markovian
time series. This enables us to use the time series in a parametric approach for the struc-
tural estimation problem in Section 4.2.
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4.1 State variable processes
In this section we describe the different state variables in our hydropower case, and their
state transition processes. The state variables used are the price, Pt, used in the profit
function, and the reservoir level, St, and inflow, It, which are needed to know the reservoir
level evolution. We also want a connection between inflow and price. Therefore we include
the cumulative local inflow deviation, Ct, and the overall reservoir deviation, Rt, as state
variables. Lastly, we have to model the forward price, Ft, which is closely linked to the
structural parameter we want to estimate, and enters into the price process. Hence forward
price is also a state variable. We assume inflow, overall reservoir deviation, price and
forward price all to be auto-correlated with one lag, as elaborated in Appendix 6.1. This
is in accordance with the Markov property in the Markov decision process, i.e. the state
transition can only depend on the current state.

4.1.1 Inflow, It
To include both the serial correlation and the seasonal variations, we build a model con-
sisting of two parts. As our aim is to duplicate the decision regime used by producers,
such an inflow model is suitable in our case. In the same manner as done by Kolsrud and
Prokosch (2010), we model inflow as a combination of an auto-regressive base process,
XI
t , and a seasonal function, f I(t).

It = f I(t) +XI
t (4.1)

Inflow seasonality
The seasonal component is

f I(t) = AI1cos(
2π

52
t+ φI1) +AI2cos(

4π

52
t+ φI2) +DI , (4.2)

where A is the amplitude, φ, the phase shift and a constant, D. This seasonal function is
for a weekly resolution, hence the frequency is 2π

52 . The parameter values are estimated
through a Fourier transformation, and can be found in Table 6.1, in Appendix 6.2. The
resulting inflow seasonality can be seen in Figure 4.2. We can see that the amount of inflow
in the spring, due to snow melting, vary from one year to the next. Hence we are unable
to capture the total effect by only using a simple deterministic seasonal function. In order
to predict the magnitude of the inflow coming in during the melting season information
about the snow packs in the mountain could have been used. We do however not have data
for snow packs, and thus we do not model such an effect.
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Figure 4.2: Observed inflow time series (blue) and seasonal component (red)

Base process
In order to obtain a Markovian inflow model, we use a simple auto-regressive model with
one lag for the base inflow, XI

t .

XI
t = γXI

t−1 + εIt (4.3)

In (4.3), γ is the auto-regressive coefficient, and εIt is a normal random error with mean
0 and standard deviation σI . The parameters are estimated based on the observed inflow
time series, by using the estimate-function in MATLAB. We find γ to be 0.5212 and σI to
be 14.1. Figure 4.3 shows the resulting simulation based on the parameters, together with
the observed base inflow time series.

Figure 4.3: Observed base inflow time series (blue) and simulated base inflow (red)

Removal of negative inflows
In our observed inflow time series, described in Section 3.5, we see that the weekly inflow
at times drops below zero. Negative inflow values can create problems in our SDP algo-
rithm, since negative inflow would mean there is a possibility to reach a negative reservoir
level. Hence we want to avoid this problem in our model. To do this we set all negative
values to zero. Doing this will raise the mean slightly, something we fix by adjusting the
seasonal component downwards the same amount.

Final process
Eq. (4.4) shows the inflow state variable transition expressed in terms of other state vari-
ables, in this case only itself.

It = γIt−1 + εIt + f I(t)− γF I(t− 1) (4.4)
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A simulation for the resulting inflow process, in comparison to the observed inflow time
series, is plotted in Figure 4.4. The descriptive statistics in Table 6.4, in Appendix 6.2,
shows the mean, standard deviation, minimum value, maximum value and the median
for both the observed inflow time series and when simulating (4.4). Both the mean and
standard deviation match quite well. The minimum value differ a little, but that is because
we set the simulated values larger or equal to zero.

Figure 4.4: Observed inflow time series (blue) and simulated inflow (red)

4.1.2 Connection between inflow and system price
As mentioned in Section 3.1, there is a strong connection between local inflow, the overall
reservoir level in Norway and the system price in the Nordic countries. This is because
hydropower in these countries constitutes a large portion of total power production, and
the fact that there is often similar weather across the region because it is a relatively small
geographical area. Kolsrud and Prokosch (2010) present a model where this mentioned
connection between local inflow, the aggregate reservoir level in Norway and the system
price is accounted for. Instead of using the actual level, they use the deviation from the
historical average as a scaling factor. In Section 3.7 we observed overall reservoir deviation
to be positively correlated with local inflow and a negative correlation between overall
reservoir level in Norway and the system price. As the local inflow cannot fully explain
the overall reservoir deviation, we model the aggregate reservoir deviation as its own state
variable, Rt, which is depend on the cumulative local inflow deviation, Ct, and has an
additional error term. By doing this, we account for the difference between local inflow
and aggregate reservoir level, resulting from differences between local inflow and inflow
in other parts of the country (Kolsrud and Prokosch, 2010).

Deviation from normal cumulative inflow, Ct
Since overall reservoir deviation,Rt, depends on cumulative local inflow deviation, Ct, Ct
needs to be a state variable. All state variables need to be Markovian. Hence we need to
model Ct so that it only depends on the previous state. In order to achieve this, we model
it as an exponentially weighted moving average. This way the cumulative inflow devia-
tion in this state will only depend on local inflow in the previous state and the cumulative
inflow deviation in the previous state.

The cumulative inflow is defined as
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it :=

∞∑
j=1

ρj−1It−j (4.5)

Here it is the cumulative local inflow, weighted heavily on recent inflow, and less on inflow
information from long ago. It−j is the inflow at time t − j, and ρ is a weighting factor,
deciding how much influence the cumulative inflow levels of last week should have on the
levels in this weeks. Eq. (4.5) can be written as

it = It−1 + ρit−1 (4.6)

We would like it to reflect the cumulative inflow, approximately, the last half a year. First
we calculate the cumulative inflow the last 26 weeks, i∗t , from the inflow time series di-
rectly, i.e. i∗t is always the sum of the inflow the last 26 weeks.

i∗t =

26∑
k=1

It−k (4.7)

We can then estimate ρ by fitting it to i∗t . Doing this we find ρ to be 0.97.

Deviations from historical average cumulative inflow, Ct, is defined as

Ct :=
it − it
it

, (4.8)

where it is the cumulative inflow from (4.6), while it denotes the average of the observed
cumulative local inflow over the corresponding sequence of days. Inserting (4.6) into (4.8)
gives (4.9), which is the state variable transition for the cumulative local inflow deviation.

Ct =
It−1 + ρit−1Ct−1 + ρit−1

it
− 1 (4.9)

An example scenario for the resulting model from (4.9) is illustrated in Figure 4.5. In the
descriptive statistics in Table 6.1, in Appendix 6.2, we can see that the values match quite
well, but that the variance is a little higher for the simulation. This should however not be
a problem later, since we discretize the cumulative local inflow deviation into only high
and low values.
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Figure 4.5: Deviation from normal cumulative local inflow, observed time series (blue) and simula-
tion (red)

Deviation from aggregate reservoir level, Rt
Deviations from historical average aggregate reservoir level, Rt−1, is defined as

Rt :=
rt − rt
rt

(4.10)

Here rt is the aggregate reservoir level in Norway at day t, while rt is the average of
the observed aggregate reservoir levels in Norway at day, t, in a year. We use the same
approach as Kolsrud and Prokosch (2010) to model the deviation from normal aggregate
reservoir level in

Rt = β1Rt−1 + β2Ct−1 + εRt (4.11)

In (4.11), Rt is an ARX(1)-process depending on yesterdays aggregate reservoir level de-
viation, Rt−1, and yesterdays cumulative local inflow deviation, Ct−1, as an additional
predictor. Here β1 is the auto-regressive coefficient, β2 is the coefficient for the predictor
and εRt is a normal random error with mean 0 and standard deviation σR. With the esti-
mate-function in MATLAB we find β1 to be 0.956, β2 to be 0.0559 and σR to be 0.0247.
Eq. (4.11) is the state transition for the aggregate reservoir level deviation. A resulting
trajectory from eq. (4.11) together with the corresponding observed time series are shown
in Figure 4.6. In the descriptive statistics in Table 6.1, in Appendix 6.2, we see that the
values for observed and simulated process is quite similar. The simulation has a slightly
higher mean, but we deem that acceptable.

Figure 4.6: Deviation from normal overall reservoir level, observed time series (blue) and simulation
(red)
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4.1.3 Forward price, Ft

We want to investigate if forward prices affect producers expectation of future prices. To
do so, we need to incorporate a process for the forward price into the price process. By
letting the time to maturity for the forward be sometime into the future, T , we can test if
the producer uses the forward price Ft,T , at time t, when planning for the future. When
going from time t to time t + 1, the time to maturity will change from T to T + 1. This
way the forward price process will always have a constant time to maturity, T − t. From
here on we write the forward price Ft,T as Ft, to simplify notation. The forward price
process is modelled with a deterministic seasonal component, fF (t), and a base process
(or error), XF

t .

Ft = fF (t) +XF
t , (4.12)

Seasonality, fF (t)
The seasonal component for the forward price is

fF (t) = AF cos(
2π

52
t+ φF ) +DF , (4.13)

where AF is the amplitude, φF , the phase shift and DF is a constant. As with the inflow,
the seasonal function is for a weekly resolution. Hence the frequency is 2π

52 . The parameter
values are estimated through a Fourier transformation, and are shown in Table 6.2, in
Appendix 6.2. The resulting seasonal function for the forward price is plotted in Figure
4.7.

Figure 4.7: Observed 2 months to maturity forward price time series (blue) and seasonal component
of the 2 months to maturity forward price (red)

Base process, XF
t

The base process is modelled as an ARX(1)-process where XF
t is dependent on the value

of the previous day, XF
t−1. In the Nordic market, the forward price dynamics depend on

the observed hydrological situation at the time. This involves the current content of water
and snow in the reservoirs, hydro inflow and prices (Audet et al., 2004) and (Botterud
et al., 2010). Therefore the overall reservoir deviation, Rt−1, are included as an additional
predictor in
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XF
t = ϕ1X

F
t−1 + ϕ2Rt−1 + εFt (4.14)

As we pointed out in the data description in Section 4.1.2, the aggregate reservoir devia-
tion, Rt, is dependent on the cumulative local inflow deviation, Ct. Thereby, the inclusion
of Rt, accounts for both the influence of inflow and reservoir levels. In (4.14) ϕ1 is the
auto-regressive parameter, ϕ2 is the parameter for the predictor and εFt is a normal random
error term with mean 0 and standard deviation σF . The parameters are estimated using
the estimate-function in MATLAB and subsequently manually fine tuned in order to better
match the moments. The parameter values for the different forwards are shown in Table
4.1

Table 4.1: Parameter values for forward with 2 months-, 6 months- and 1 year to maturity

ϕ1 ϕ2 σF

2 months 0.96 -0.02 0.08
6 months 0.97 -0.019 0.057
1 year 0.98 -0.0031 0.0451

Final process
The state variable transition for the forward price, expressed in terms of other state vari-
ables is then

Ft = ϕ1Ft−1 + ϕ2Rt−1 + εFt + fF (t)− ϕ1f
F (t− 1) (4.15)

Figure 4.8 shows a trajectory for the forward price with 2 months to maturity together
with the corresponding observed time series. In Table 6.1, in Appendix 6.2, the descriptive
statistics for the observed forward time series and simulation is shown, for time to maturity
of two months, six months and one year. Both the means and the standard deviations are
good matches for all the processes, while the min and max values are not perfect matches.

Figure 4.8: Observed 2 months to maturity log forward price time series (blue) and simulated 2
months to maturity log forward price (red)
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4.1.4 Price, Pt

We define the entire price process as

Pt := fP (t) + Y Pt + ζ(Ft − Y Pt − fP (t)) (4.16)

It consists of a deterministic seasonal component, fP (t), and a stochastic base process,
Y Pt . The expression also has an adjustment factor, ζ, to include the forward price into the
process. In our model, we use the forward price as the expected spot price. However, in
reality the difference is not 0, as the forward often includes a risk premium. The forward
price is by Näsäkkälä and Keppo (2008) described as the risk adjusted expected spot price.
In our model we assume the risk premium to be so small it disappears in the noise of the
base price process.

How much a producer decides to use the forward price in favor of the seasonal function
and base process is denoted by the parameter ζ. If ζ is 1 the producer only uses the for-
ward price to form expectations, if ζ is 0 a producer is indifferent towards the forward
price. The emphasis placed on forward price information in production planning, ζ, is the
main parameter we want to estimate.

To estimate the price process model, we first assume that the price process is explained
without the forward price. Hence, when we estimate the parameters of the base process
and seasonality function, we set ζ equal to zero. In that case the price process is simply
reduced to only include the base process for the price Y Pt plus the seasonality fP (t)

Pt := fP (t) + Y Pt (4.17)

Seasonality
The seasonal function for the price is

fP (t) = AP cos(
2π

52
t+ φP ) +DP , (4.18)

where AP is the amplitude, φP is the phase shift and DP is a constant. The seasonal
function for the price is with a weekly resolution, hence the frequency 2π

52 . The parameters
is estimated with Fourier transformation, and are shown in Table 6.3, in Appendix 6.2.
The resulting seasonal function, together with the observed price time series, can be seen
in Figure 4.9.

Figure 4.9: Observed log price time series (blue) and seasonal component of the log price (red)
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State-space model
As remarked on in the data description Section 3.7, the spot price is negatively correlated
with the aggregate reservoir deviation. Since the deviation from normal overall reservoir
level is free of any seasonality, the correlation is incorporated in the base process of the
price. Therefore we model the base process as a state-space model. A state-space model
have an underlying AR(1)-process, XP

t , which is unknown from an observers point of
view. The underlying process XP

t is

XP
t = δXP

t−1 + εPt , (4.19)

where δ is the auto-regressive coefficient and εPt a normal random error with mean 0
and standard deviation σP . The state space model also includes an observed process, Y Pt ,
which is our base price process. The base price, (4.20), consists of the unknown underlying
process XP

t plus an additional predictor. In our case, the predictor is a term depending on
the overall reservoir deviation, Rt.

Y Pt = XP
t + ηRt (4.20)

The predictor term, ηRt, will act as a mean reversion level for the price. The base pro-
cess of the price, Y Pt , will in the long run move towards the value of Rt, scaled by some
parameter η. The scaling parameter, η, is effectively a measure of how much the price
is affected by the aggregate reservoir deviation, which again is affected by local inflow,
giving a connection between local inflow and price.

Using ηRt as a mean reversion level for the base price was proposed by Kolsrud and
Prokosch (2010). They estimated the η parameter by changing it to fit the correlation
between Y Pt andRt to its historical level. We take a different approach, by formulating the
base price as a state-space model. Based on the observed price time series, the parameters
of the model is estimated via maximum likelihood, with the help of Kalman filtering in
MATLAB (Durbin and Koopman, 2001). We find δ to be 0.96, η to be−0.3192 and σP to
be 0.102. A simulation of the base price, the time series for the base price and the overall
reservoir deviation time series are plotted in Figure 4.10.

Figure 4.10: Observed log base price time series (blue), simulated log base price (green) and overall
reservoir deviation (red)
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Final process
The state variable transition for the price, expressed in terms of other state variables is

Pt = δPt−1 + ζ(ϕ1 − δ)Ft−1 + ((β1 − δ)η + ζ(ϕ2 − (β1 − δ)η))Rt−1+

(1− ζ)ηβ2Ct−1 + (1− ζ)εPt + ζεFt + (1− ζ)ηεRt +

fP (t)− δfP (t− 1) + ζ(fF (t)− ϕ1f
F (t− 1)− (fP (t)− δfP (t− 1))) (4.21)

A trajectory of the resulting price process, in comparison to the observed price time series
and the overall reservoir deviation time series is plotted in Figure 4.11.

Figure 4.11: Observed price time series (blue), simulated price (green) and overall reservoir devia-
tion (red)

We can see that the simulation reacts to the extremes in overall reservoir deviation in a
similar manner as the observed price does. It is however hard to model the spikes in the
price at the correct moments. This is because the observed price does not react uniformly
to similar values of the overall reservoir deviation, making the extremes tough to predict.
The unpredictable behavior can come from other factors, like higher demand due to lower
temperature, but our model is not advanced enough to include such factors. Including si-
multaneity to react to influence from the demand in price is suggested in the assumptions
section, 6.1, of the appendix as a possible improvement for the future.

Descriptive statistics for the price are in Table 6.1, in Appendix 6.2, for both the observed
time series and the simulation. Here we can see that both the mean and the standard
deviation is very close for observation and simulation.

4.1.5 Local reservoir level, St

Hydro reservoir balance
We also need to describe how the reservoir level is updated when going from one state
to the next. The hydro reservoir balance in (4.22) describes this transition. In contrast to
the other state variables, It, Ct, Rt, Ft and Pt, who are exogenous state variables in our
model, St is a endogenously calculated state variable. This means it is dependent on the
decision variable d.
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St = min{St−1 + It−1 − u(Xt−1, dt−1), Smax} (4.22)

The reservoir level at time t, St, is the level at time t − 1, St−1, plus the inflow into
the system from time t − 1 to t, It−1, minus the amount released from time t − 1 to
t, u(Xt−1, dt−1), as long as this sum is less than the maximum reservoir level allowed,
Smax. Otherwise the reservoir level is equal to Smax. Any excess water will then spill
over, and not be utilized. The release function is described in Section 4.2. The hydro reser-
voir balance could also reflect evaporation loss. In large reservoirs, evaporation affects are
relatively small and they do not effect the nature of our problem. For that reason they are
not included (Tejada-Guibert et al., 1993).

Reservoir storage constraint
Eq. (4.23) forces the reservoir level, St, to stay inside the lower and upper bounds, Smin

and Smax respectively.

Smin ≤ St ≤ Smax (4.23)

This reservoir constraint equation is not explicitly enforced in our model, but implicitly
included through (4.22) for the upper bound, Smax, and (4.25) for the lower bound, Smin.

4.1.6 State discretization
Discretizing the state variables into a finite set of levels are necessary when implementing
the model. The main reason for this is that we need to know the value function, tθ in (2.27)
at each possible state. Hence there needs to be a finite number of states in order to limit
the memory usage to a feasible range for the solver. Increasing the number of states, i.e.
the number of discrete levels for each state variable, has a huge impact on the memory
usage. In order to capture as much of the dynamics of the problem as possible, the state
space discretization should be as dense as possible, while staying below the memory limit
of the solver.

With discretizing state variables we need to map values that fall outside the grid to the op-
timal grid point. This is done by simply rounding to the closest point. When discretizing
the different state variables, it is important to remember that they interact with each other.
This is especially important to take into consideration for the reservoir level transition,
denoted in equation (4.22). If the sum of inflow and release at time t is not large enough to
let the mapping of the reservoir level increase/decrease from time t to time t+ 1, releasing
water will not affect the reservoir level. That again means you can generate electricity
without loosing any of the water in your storage. To avoid this effect we discretize the
three variables incorporated in the state transition, inflow, reservoir level and release, on
the same grid. That avoids the problem of producing without changing reservoir level, as
well as not having to round to the closest grid point for the reservoir level, since the next
state reservoir level always falls on the grid.
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The fact that inflow, release and reservoir level need to lie on the same grid leads to some
problems. The numeric difference between an empty and a full reservoir is large, com-
pared to the size of weekly inflow levels. Therefore the reservoir level needs to be divided
into a lot of levels for one unit of inflow and release in order to fall on the same grid. For
the reservoir transition to work as it should, inflow, release and reservoir levels should also
be discretized so that is captures the state transition dynamics.

As maintaining the dynamics of inflow, reservoir level and release are a major priority
when discretizing the state space, the discretization of the other state variable might suffer.
Variables like the price and the overall reservoir deviation are therefore severely limited
in order to not exceed the memory limit. As weeks are also used as an additional state
variable, memory usage is even more restrained. In our case the model is therefore forced
to contain the minimum amount of discrete levels for all of the state variables to allow the
program to run without further algorithm improvements.

4.2 Structural estimation
Based on the processes from Section 4.1, in combination with knowledge about the state
space composition, we formulate a structural estimation model for a single agent hy-
dropower producer. First we define what structural parameters we want to estimate, before
we describe the specific profit function. After this we describe the state space transition
in relation to the state variables in the previous section, and then we use this to finally get
our fixed point Bellman operator for the hydropower producer case, which we use in the
maximum likelihood estimation constraint from Section 2.19.

Structural parameters to be estimated
The structural parameters, or primitives, we want to estimate are collected in the set θ. As
these parameters are changed we can estimate what value gives the closest fit to observed
time series by maximizing the log likelihood value. In our hydropower specific case θ
contains only ζ.

θ = (ζ) (4.24)

Here ζ denotes to what degree the forward price information is taken into account when
deciding on water release.

Release, u(·)
The release, u(Xt, dt), is the amount of water, in GWh, produced when a decision, dt, is
taken. It is simply the decision, dt, scaled with a production factor, Q. However, if there is
not enough water in the reservoir to release as much as the producer wants to, the release
is set to the current reservoir level, St, minus the lower limit for the reservoir level, Smin,
plus the inflow, It. This way the release is never large enough to empty the reservoir below
its lower limit. The lower restriction on the release is the reason u(Xt, dt) is dependent on
the current state Xt.
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u(Xt, dt) = min{St − Smin + It, dtQ} (4.25)

Decision, dt
At time t the single agent hydropower producer takes a decision, dt, related to release. This
decision is one level in the discrete decision space D. The reason the decision space needs
to have discrete levels is that we also discretize the different state variables, including St
and It, as mentioned in section 4.1.6. Since they are discretized, St and It stay on a grid,
which means that for (4.22) to make sense, u(Xt, dt) needs to stay on the same grid, i.e.
be discretized. For a similar reason, the amount of discrete levels, H , is dependent on the
discretization of the other state variables. This is because a finer discretization on release,
compared to for instance reservoir level, could mean a decision is made that does not affect
the reservoir level transition, as mentioned in Section 4.1.6. The discretized decision space
is then dt ∈ D = {1, ...,H}.

Profit function, g(·)
The profit function to be used in the constraint of (2.19) needs to be defined. In appendix
6.1 we assume no marginal production cost and no start-up cost. We also assume a constant
head and that the single agent power producer is a price taker, hence the profits from
production can be formulated as a simple linear relationship between price and produced
electricity, without any cost part.

g(Xt; dt) := Ptu(Xt, dt) (4.26)

State space transition
The different state variables in Section 4.1 are combined into the state space vector xt.

xt = (It, Ct, Rt, Ft, Pt, St) (4.27)

Here It is the inflow, Ct the deviation from normal cumulative local inflow, Rt the devia-
tion from normal overall reservoir level, Ft the forward price with maturity some specified
time in the future, Pt is the price and St the local reservoir level.

The state transition function for going from state xt to xt+1, (2.1), is then for a single
agent hydropower producer

xt+1 = f(xt, dt) = (It+1, Ct+1, Rt+1, Ft+1, Pt+1, St+1) (4.28)

Using the state variable transitions described in Section 4.1, we can write (4.28) on vector
form, like

xt+1 = f(xt, dt) = Atxt + BLe′ + ct (4.29)

Eq. (4.29) is the hydropower specific version of (2.24). Due to seasonality in some of the
state variables, the matrices A and c in (2.24) need time-of-the-year indices. The matrices
in (4.29) are described in detail in (4.30).
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xt+1 =


It+1

Ct+1

Rt+1

Ft+1

Pt+1

 ,xt =


It
Ct
Rt
Ft
Pt

 ,

At =


γ 0 0 0 0
1

it+1

ρit
it+1

0 0 0

0 β2 β1 0 0
0 0 ϕ2 ϕ1 0

0 (1− ζ)ηβ2 ((β1 − δ)η + ζ(ϕ2 − (β1 − δ)η)) ζ(ϕ1 − δ) δ

 ,

B =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 (1− ζ)η ζ (1− ζ)

 ,

e′ =


ε1
0
ε2
ε3
ε4

 ,

ct =


f I(t+ 1)− γf I(t)

ρit
it+1
− 1

0
fF (t+ 1)− ϕ1f

F (t)
fP (t+ 1)− δfP (t) + ζ(fF (t+ 1)− ϕ1f

F (t)− (fP (t+ 1)− δfP (t)))


(4.30)

At is the matrix containing all the parameters for the state variable transitions from Section
4.1. ct contains the additional deterministic values, like the seasonal functions. e′ is the
error matrix, where ε1, ε2, ε3 and ε4 are independent standard Gaussian random errors,
and correspond to εIt from (4.3), εRt from (4.11), εFt from (4.14) and εPt from (4.19)
respectively. B is the matrix of parameters for the errors, while L is the lower triangular
matrix of (4.31), which ensures that the errors are correlated correctly.

Σ =


cov(εIt , ε

I
t ) 0 cov(εRt , ε

I
t ) cov(εFt , ε

I
t ) cov(εPt , ε

I
t )

0 0 0 0 0
cov(εIt , ε

R
t ) 0 cov(εRt , ε

R
t ) cov(εFt , ε

R
t ) cov(εPt , ε

R
t )

cov(εIt , ε
F
t ) 0 cov(εRt , ε

F
t ) cov(εFt , ε

F
t ) cov(εPt , ε

F
t )

cov(εIt , ε
P
t ) 0 cov(εRt , ε

P
t ) cov(εFt , ε

P
t ) cov(εPt , ε

P
t )

 (4.31)

The state variable transition for the reservoir level, (4.22), is not included in (4.30), but it
is still part of the state transition on vector form in (4.29). The reason for not including
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it in the matrix form, is only because of the difficulty surrounding the min-operator. For
convenience we therefore leave it out of (4.30), but we write it again here for consistency

St = min{St−1 + It−1 − u(Xt−1, dt−1), Smax}

Achieving stationarity
In the general definition of structural estimation in Section 2.1 we have assumed station-
arity for the Markov decision process, i.e. that the future looks exactly the same in state
xt at time t as it does in state xt+k at time t + k, given that xt = xt+k. In the specific
case of hydropower production, this does not hold true. The future does not look exactly
the same as long as xt = xt+k for all k. The seasonality in the different state variables
causes the problem to be dependent on time. This is a problem, since time as a state
variable will cause the total number of states to increase massively, especially for large
time series. Foss and Høst (2011) propose a strategy for approximating the stationarity
assumption for a hydropower problem. Since the seasonal part of the problem stays the
same for different years, it will be sufficient to let the problem be conditional upon time
of the year. Foss and Høst (2011) call this a weaker form of stationarity. They assume that
the future looks the same from time t and time t + k, as long as xt = xt+k for some k,
where k = ϕi, i = 0, 1, 2, ... where ϕ is the amount of time units in a year (e.g. 52 for a
weekly time index). If we set time of the year as a state variable, the problem is reduced
from a non-stationary to an approximate stationary problem. When we for instance have
a weekly resolution in our problem, we set ϕ = 52, implying that the future will look the
same from time t and time t+52i, as long as xt = xt+52i. The Markov decision process is
then stationary between years, for a given week. This will reduce the number of additional
states due to seasonality from the total number of observation to only the amount of time
units in a year. The state space will still increase a lot, but we find this way to handle the
problem to be the best solution available.

Fixed point Bellman equation for hydropower
We can now use the newly stated approximate stationarity and the state space transition
described earlier in this section to write a fixed point Bellman equation for a hydropower
producer. In the hydropower producer case we have four random error terms, one for
inflow, overall reservoir deviation, forward price and for price. Meaning that (2.27) will get
a quadruple sum and corresponding weights, one for each random error term. Combining
(2.27) with the state transition for our hydropower case (4.29), we get our hydropower-
specific fixed point Bellman equation

tθ(v)(x, d, t) ∼
Mi∑
i=1

Mr∑
r=1

Mf∑
f=1

Mp∑
p=1

wiwrwfwph(Atx+ ct +BLẽ)), (4.32)

where tθ now is dependent upon time of the year. ẽ from (4.32) is described in (4.33).
ẽi, ẽr, ẽf and ẽp are the center points for Mi-, Mr-, Mf - and Mp point approximations,
respectively, of normal distributed random variables and wi, wr, wf and wp are the corre-
sponding probability weights.
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ẽ =


ẽi
0
ẽr
ẽf
ẽp

 (4.33)

Using the state space transition from (4.29), we can write the h-function in (2.27) as (4.34).
A

(5)
t , c(5)t and (BL)(5) represents the fifth row of each respective matrix in (4.30), and is

the price part of the state transition process.

h(Atx+ ct +BLẽ) =

b · log

(∑
d∈D

exp

(
(A

(5)
t x+ c

(5)
t + (BL)(5)ẽ) · u(Atx+ ct +BLẽ, d)

b

+
β · v(Atx+ ct +BLẽ

b

))
(4.34)

Eq. (4.34) can now be used to write the fixed point Bellman operator in (2.27) as (4.35),
remembering that the decision, d, is part of the state transition (4.29).

tθ(v)(x, d, t) ∼
5∑
i=1

5∑
r=1

5∑
p=1

5∑
f=1

wiwrwpwf

b · log

( ∑
d′∈D

exp

(
(A

(5)
t x+ c

(5)
t + (BL)(5)ẽ) · u(Atx+ ct +BLẽ, d′)

b

+
β · v(Atx+ ct +BLẽ)

b

))
, (4.35)

where the release function in (4.35) is explicitly

u(Atx+ ct +BLẽ, d′) = min{min{St − Smin + It − u(x, d), Smax}
− Smin + γIt + (BL)(1)ẽ+ f I(t+ 1)− γf I(t), d′Q} (4.36)

(BL)(1) represents the first row of BL, which is inflow.

Now we have established a base for structural estimation of hydropower. From this chap-
ter, the next-state release function (4.36) describes how one decision depends on the pre-
vious one. Eq. (4.36), together with the rest of (4.35), denotes how the expectation,
conditional on both state and decision, is handled in the parametric approach. Here (4.35)
represent the hydropower-specific fixed point Bellman operator, used as the constraint in
the maximum likelihood estimation. These equations are in the next chapter utilized in a
demonstration of structural estimation for hydro power.
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Chapter 5
Empirical Analysis

As mentioned in the introduction, the goal of this study is to examine the potential for
applying structural estimation theory of Markov Decision Processes, developed by Rust
(1987), to a single hydropower planning problem. In the case where such a model is
viable, it can provide a descriptive base for analyzing unobservable parameters, or primi-
tives, for hydropower policy generation. In our attempt we are using a parametric approach
to deal with state transitions. The previous sections describe this model. In this section we
want to go one step further by introducing some tentative results and use those to discuss
the validity of our model. As stated by Rust (1994): "Put simply, since structural models
can be falsified but never proven to be true, their predictions should always be treated as
tentative and subject to continual verification".

In order to implement the main optimization problem in (2.19) we use AMPL (A Mathe-
matical Programming Language), which is an algebraic modelling language used to solve
complex mathematical optimization problems. In combination with AMPL we use the
open source solver IPOPT (version 3.10.1), used for large-scale nonlinear optimization.
This version of IPOPT is limited to a total memory usage of about 2Gb, which affect the
size of the total state space. This forces us to use the minimum number of discrete levels
for all of the state variables. The total number of variables and constraints IPOPT uses is
still very large, each of them being 16960.

Due to the large number of variables and constraint, the solve time is consequently long.
The solver time increase because the ζ enters the model in the state transition equation in
(4.1). In order to ensure linearity, we need to treat it as a parameter in stead of a variable
in the implementation in AMPL. Therefore, the model has to be solved for each individ-
ual value of ζ, then to manually search for the ζ with the highest resulting log likelihood
value. Solving the model for one value of ζ takes approximately 1 minute, which means
solving for 26 values of ζ, which we have done, takes approximately 26 minutes. To find
the parameters for the different state variable processes, and for general data processing
and analysing, we use MATLAB.
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We should point out that we do not have access to internal price forecasts for Kolsvik.
This means that we, in what follows, assume that our model provides forecasts are close to
what Kolsvik actually uses. That is not necessarily a correct assumption, and could affect
the results.

5.1 Results
Water value comparison
If the structural estimation model is consistent with reality, we expect to observe some of
the same dynamics for water values, for different weeks and reservoir levels, as given from
the EMPS model. The water value is the expected marginal value of the energy stored in
the reservoir, described in Section 3.2. In our model we can output the expected value
function (4.35) for different reservoir levels throughout the year. By finding the derivative
of the expected value with respect to the reservoir level, i.e. divide the change in expected
value by the change in reservoir level, we can find the water values. This is a valuable
finding, and an important by-product of our model. For an external agent, this is a cost
effective and fast way for finding the marginal cost of production. In Figure 5.1 (a) we
have plotted water values based on the value function from our model. They are plotted
for each reservoir level and each week of the year. Figure 5.1 (b) displays a comparable
plot of water values from the EMPS model.

(a) Water values from our model for Kolsvik (b) Water values from the EMPS model for
a reservoir in south of Norway (Gebrekiros
et al., 2013)

Figure 5.1: Water values plotted for different reservoir levels throughout a year

For a given reservoir level, the water values should be low in the spring, when there is a
lot of inflow to the reservoir, since getting one more unit of water gives little extra value.
However, in the winter, when the inflow levels are low, getting one more unit of water
is very valuable. In Figure 5.1 we can clearly see similarities in the two plots, in the
dynamics through the year, with lower water values in the spring and higher values in the
winter. The minimum is around week 20 in both figures. After week 20 the values increase
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quickly to a maximum around week 40, before they decrease slightly through the winter
until they drop down towards the minimum in the spring. This dynamic is consistent with
our perception of reality.

The water values for our model should develop in a similar manner as it does for the
EMPS-model at the extremes. When the reservoir is full, the water values should be very
close to 0, i.e. an extra unit of water is almost worthless. At the other extreme, when the
reservoir is close to empty and little inflow is coming in, an extra unit of water is valu-
able. This often occurs during winters. In Figure 5.1 (a) we see that the values have an
inclination to be low when the reservoir is full and slightly higher when the reservoir is
close to empty. We do however not see the same extreme instances as shown in the EMPS-
model. Because of the limitations in memory we need to discretize the reservoir level quite
coarsely, as mentioned in 4.1.6, which might leave us unable to explore what happens at
the outer extremes. To explore this, our model might need a denser discretization grid.

Another trait we see in Figure 5.1 (b) is that the graph for the water values is convex,
i.e. the water values increase more than linear when reservoir level decreases. This is not
consistent with the water values from our model, in Figure 5.1 (a). Here the graph for
the water values is close to linear. This could be an indication of problems in the model.
Another reason could be that the results in Figure 5.1 (a) actually reflect how Kolsvik has
operated, and that this deviate from the optimal strategy.

The water values from our model should be in the same range as the ones from the EMPS
model. From Figure 5.1 we can see that the water values for our model are in a range of
10 to 40, while the EMPS water values are between 0 to over 75. This is somewhat consis-
tent with our expectations. Apart from the extremes, the water values from our model are
in the same range as the ones from EMPS. We can also plot the distribution of the price
simulations from our model, which should be in the same range as the water values from
our model. In Figure 5.2 we can see that the price simulation distribution has a mean at
around 35 e/MWh. That is somewhat higher compared to our water values, which has
a mean closer to 25 e/MWh. As simulated prices and water values in our model are in
the same range, they indicate our model is behaving as expected. When also comparing
the water values from our model with the EMPS model the observations provide are good
indications that our model is working.

Figure 5.2: Distribution for the simulated price
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Summed up, we see that the water values are low in the spring and high in the winter, as
expected. At the extremes our results deviate from the comparable EMPS results, indi-
cating that the level of discretization is too coarse. In addition the water values from our
model misses the convexity from the ones from the EMPS model. On the other hand, the
similarity between water values form our model and the EMPS model is a good indication
that the model is working. Even though there are some inconsistencies in our results, we
deem them as small enough to conclude that our model is quite sensible. We hereby treat
the results as a satisfactory representation of our expectations of reality to be able to go on
discussing the results from the maximum likelihood estimation.

Forward curve information results
One of the aims of our model exemplification was to estimate to what degree the price
is adjusted towards the forward price, or if the forward price is used directly as expected
price. The value of ζ which gives the best fit to observed data, the one with the highest
log likelihood, can provide such an indication. As our model can be improved, the results
could be influenced by such as the low state space resolution used. All conclusions should
therefore be viewed as preliminary results and mostly as an example of how structural es-
timation results from a hydropower planning problem can be interpreted.

If our model is consistent with reality, we expect that ζ is in the range between 0 and 1.
This is because we do not expect the producer to scale the price forecasts down if ζ < 0
or up if ζ > 1. Such values would mean the producer uses a price larger than the forward
price or smaller than the forecasted spot price when planning. If our model is approxi-
mately in the desired value range, a shift between what forecast is emphasized would be
expected. We can see from both Figure 5.3 and Figure 5.4 that a value of 0 < ζ < 1
approximately holds. A local max at a ζ > 1 might indicate shortcomings in our price
simulation model. A value over 1, might per example indicate that both the price and for-
ward price forecast are underestimating the price value.

We would expect ζ to reflect the views of Näsäkkälä and Keppo (2008), Fleten et al. (2002)
and Fleten et al. (2008). If such is the case we expect a value of ζ near 1 to give the highest
likelihood. Such a value should imply that this specific hydropower producer uses infor-
mation from the forward market when planning. In Figure 5.3 we plot the likelihood for
different values of ζ, using a forward price with 2 months to maturity. Here we observe
a global maximum likelihood value at about ζ = 0.5. If the model is valid, such a value
implies that the producer use a mixture of the two approaches. This is to some degree
consistent with our expectations.
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Figure 5.3: Likelihood for different ζ’s, 2 months to maturity forward

To further investigate the use of forward price information by the producer, we can change
the time horizon for the forward price. By changing the time to maturity, we expect there
to be a change in optimal ζ due to the differences in the dynamics of the two forward
prices. In Figure 5.4 we have plotted the likelihood for different ζ’s for a forward con-
tract with 6 months to maturity. Now there is a global maximum at ζ = 0.7. In addition
there is a local maximum around a ζ of 1.3. As we observe two maximums, the validity
of the results are put to trial. Nevertheless, consistent maximum likelihood values close
to ζ = 1, instead of ζ close to 0 strengthens the indication towards a strong emphasis on
using forward information in hydropower planning, given the validity of our model results.

Figure 5.4: Likelihood for different ζ’s for a forward contract with 6 months to maturity

Implication of changes in horizon of forward information
Another part of the model results we can explore is what forward horizon gives the best
fit to the data. The forward with the highest maximum likelihood value should then be
the type of forward price that is the most likely to have been used by the producer, and
the corresponding ζ should tell us in to what degree the producer use the forward price
information when planning. In Figure 5.5 we have plotted the likelihood for different ζ’s,
for forward contracts with time to maturity of 2 months, 6 months and 1 year respectively.
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Figure 5.5: Likelihood for different ζ’s, forward with 2 months- (blue), 6 months- (red) and 1 year
(yellow) to maturity

We expect all the forward contracts to provide valuable data for the production planning,
thereby give optimal ζ values close to 1. From Figure 5.5 we notice that this is the case.
Even though the global maximum is a little smaller, the likelihood plot is weighted heav-
ily towards a higher ζ. That is a further indication that the producers uses forward price
information when planning for the future, since the likelihood for the different forward
contracts is generally higher around ζ = 1 than ζ = 0.

We expect the highest likelihood value to be found for a forward price with time to matu-
rity not too far into the future. Comparing the three plots for the likelihood, we find that
highest maximum for the likelihood is for the 6 months to maturity forward price. It is
slightly higher than for the 1 year to maturity forward, which again is higher than for the
2 months to maturity forward. The higher maximum likelihood value and the optimal ζ
close to 1 indicates that the producer is inclined to look as far as 6 months into the future
when planning. That is contrary to our expectations that the producer do not look to far
into the future. The fact that the maximum likelihood is higher for the 6 months to matu-
rity forward than the 1 year to maturity forward does however give an inclination towards
a shorter horizon being used. A degree of regulation for Kolsvik of about 38% suggest
that a forward with time to maturity of 6 months is not such a bad result. The degree of
regulation tells us how much of the water, coming in through the year, the reservoir is able
to store. A degree of regulation of 38% then means the reservoir of Kolsvik is able to hold
water for almost 5 months without it spilling over, on average. Looking 6 months ahead
when planning might consequently, not be that far off.

We can interpret these results as an indication that this producer is more inclined to use a
price forecast similar to our 6 months forward price model in (4.12) than our price model
without any influence from the forward price, as in (4.17). Consequently this indicates
that our specific hydropower producer uses information from the forward market when
planning for the future.

Implication of changes in interest rate
If we plot the likelihood for the same forward but use different interest rates, we can see
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which rate gives highest maximum likelihood and hence which it is more likely that the
producer actually uses. Fleten et al. (2002) points out that modern financial theory dictates
the appropriate discounting factor to be equal to the risk free rate for a risk neutral produc-
tion planner. Bøckman et al. (2008) assumes this risk free rate for hydropower plants to
be at 5.8%. We therefore expect the likelihood to be higher for an interest rate around this
value. In Figure 5.6 we have plotted the likelihood for the forward contract with 6 months
to maturity, with interest rates of 6%, 8% and 10% respectively.

Figure 5.6: Likelihood for different ζ’s, for 6% (blue), 8% (red) and 10% (yellow) interest rate,
forward with 6 months to maturity

Here we can clearly see that the likelihood is higher for lower interest rates. This result
is in accordance with our expectations that the industry uses generally low interest rates
when planning. Our model is however not able to solve for lower than 6% interest rate,
so we can not see what happens when we approach an interest rate of 0. The preliminary
result in Figure 5.6 is nonetheless an indication that our model is working, since it predicts
what we expect it to do.

5.2 Further Development
The model presented in this study is meant as a first attempt to utilize structural estimation
for hydropower. To later on improve the validity of the result, the model is subject to
further improvement. Due to the large number of variables and constraint, the solve time
is consequently long and the state space severely limited. In further studies, memory usage
should therefore be reduced, p.a. by using a non-parametric approach. The state variable
processes can also be improved to better represent the underlying expectation processes.
To further validate the model the reservoir dynamics should be simulated and to gain a
broader industry insight the analysis should be extended to more hydropower producers.

Reduction of memory usage, by using a non-parametric approach
A very limiting shortcoming in our model is the restrictions on computational memory
capacity, and the implications of this. In our approach we are forced to use as small a
state space as possible, while still being able to describe the dynamics of the problem.
A way to reduce memory usage could be to use a non-parametric approach to deal with
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the conditional expectation in Section 2.4, instead of our parametric approach that uses
the state variable processes in Section 4.1. Johansen (2015) uses an example of such an
approach. He applies something called k-means clustering to reduce the number of state
space transitions by grouping together observations into k clusters, and also compute the
probability of moving between these clusters. This method could also be applied to our
problem, and help reduce the state space. It could however mean loosing some of the
dynamics in our model, especially the connection between inflow and price.

Improvements in state variable processes
In further studies, more details can be included and improvements done in the state vari-
able processes in order to capture even more of the hydropower environment dynamics.
An example of a possible change is to use a two-factor model where the two factors are
correlated. This can be used instead of an one factor model for the forward price process,
as proposed by Lucia and Schwartz (2002). In their process, the system price is an impor-
tant factor in the model. While in our process, reservoir levels have a larger emphasize.
However this raises the problem that the price is dependent on the forward price, while
the forward price is dependent on the price. Lucia and Schwartz (2002) also mention that
volatility is consistently different between cold and warm seasons. Therefore they propose
a mean reverting diffusion process for further studies for volatility for the forward process.
Also, including jumps in the spot price process can be an additional detail included in fur-
ther studies. If so, such jumps would need to be Markovian, and could not, for instance,
decay over time. Controlled environment experiments for what main drivers and attributes
of time series processes are observed for hydropower plants can be done in future studies.

Simulate reservoir dynamics for model verification
We can verify our model further by making simulations of optimal decision policies, based
on our processes in section 4.1. These simulated optimal decision policies can then be
used as input into the structural estimation model. If the model is correct, the output
should show results that are consistent with the input to the model. For instance if we
were to assume a ζ of 1 when making policy simulations, the results from the maximum
likelihood estimation should also show a ζ of 1. This however has to be a future endeavour.
Because we model our structural estimation problem with the SDP embedded in the model
implementation in AMPL, we can not easily extract the generated policies. To do so, we
would have to built a separate stochastic dynamic programming model, which is beyond
the scope of this paper. One could however build such a model based on our value function
in Section 2.2 and the state variable processes in Section 4.1.

Extend the analysis to more hydropower producers
This preliminary study only includes a singular hydropower producer who is approxi-
mately utilizing the industry standard policy generation strategies. Therefore, we are at
best getting a indication of practices in the general hydropower industry from studying
this single producer. To get a more general perception of the wider industry behaviour,
we suggest applying the model on as many producers as possible, choosing producers of
different sizes and geographical locations to get an as general selection as possible. Such a
model expansion should give the statistical significance to tell something about the overall
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practice in the hydropower industry. The model should be applicable to a wide range of
producers, as long as the assumptions in Section (6.1) are met. When doing this, you would
have to keep in mind that different producers have different inflow dynamics, which leads
to different parameters for the processes related to specific hydropower plants. That could
lead to a complicated model, where you would have to switch between a huge number of
processes and parameters within the model when looking at a lot of different producers. It
can however be done, if you were willing to take the time to do so.
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Chapter 6
Conclusion

In this paper, we develop a structural estimation model for the hydropower planning indus-
try and demonstrate it on a single hydropower reservoir. By using our structural estimation
model, we analyse how primitives in the decision process can be inferred from empirical
data from actual production time series. To exemplify the analysis of primitives, we anal-
yse to what extent forward information is used when planning production.

Our model has the potential to let external analysts gain insight in water values used by pro-
ducers when planning production. This is a valuable finding for potential external agents
looking at the company from the outside. This could p.a. be relevant for regulatory bodies,
as they could calculate the marginal cost of production and thereby improve their tools for
analyzing and controlling if the producer exploit their market power. The preliminary re-
sults from the water value calculation shows some inconsistencies with our expectations,
but we deem them small enough to conclude that our model is sensible. Especially the
shape of the water value plot in Figure 5.1 (a) for different reservoir levels throughout the
year supports this conclusion.

The ζ’s we find for different forwards have a maximum likelihood in the range between 0
and 1, which is consistent with what we expect and what they should be. Our results show
a clear indication that the ζ which gives the highest likelihood is located closer to 1 than
to 0. Based on this we conclude that the producer uses forward price information to form
expectation for the price. By comparing forward contracts with different time to maturity,
we find that a forward with time to maturity of 6 months has the highest likelihood value.
The producers reservoir is able to store water for up to 5 months before spilling over, hence
using a forward price with time to maturity of 6 months, when planning, is quite consistent
with expectations. We also find the likelihood for different interest rates. The results show
that an interest rate of 6% has higher likelihood than a higher interest rate of, for instance,
10%, which is as expected and in line with what producers actually do. These results are
indications that our model is working, and able to estimate underlying parameters in how
hydropower producers form expectations of the future.
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From structural estimation of hydropower plants, the scope of the analysis has the potential
to be broadened to also include marginal cost, start-up costs, increasingly detailed price
simulations, varying effects from overall reservoir level, etc. Further studies should also be
done to validate the model by doing a simulation of optimal decisions. These simulations
can then be used as inputs to the model, in order to better analyse the validation results.
The model should be applied to a general selection of producers, in order to obtain results
for the overall hydro power industry. To deal with the large state space and high memory
use, the model could be altered by using a non-parametric approach to handle transition
probabilities, instead of the parametric approach we used.
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Appendix
6.1 Hydropower planning assumptions
• One-reservoir approximation: We assume an one-reservoir approximation when

planning production. This will save us computational complexity, as solving the
Stochastic Dynamic Programming problem, with the inclusion of more than one
reservoir, results in a large amount of states, usually referred to in literature as the
curse of dimensionality (Nandalal and Bogardi, 2007). Hence it is advantageous
to choose a plant that has one single reservoir, or where they use such an approxi-
mation when planning production. As shown in figure 3.4, Kolsvik has three main
reservoirs, in addition to several smaller lakes and rivers. The combined maximum
capacity of the two smaller reservoirs is only 13.1% relative to the largest reser-
voir. Since one reservoir is much larger than the others, we assume an one-reservoir
approximation is suitable. Also, Bente Sund, production planner for the reservoir,
has confirmed that they use a one-reservoir approximation, when using the already
mentioned Vansimtap model. Therefore we deem an one-reservoir approximation
suitable for our case company in particular. Such an assumption allows for inclusion
of more hydropower plants in future studies.

• Constant head assumption: Possible head changes affects the value of the energy
equivalent, in (6.1), denoting how much energy is stored in each m3 of water in
kWh/m3. We are assuming a constant energy equivalent and thereby also a con-
stant head in our model. The parameter η is the power plant efficiency in % and γ
denotes the water density in kg/m3. A change in head would also affect the produc-
tion capacity, as seen in (6.2), denoting how much energy the turbines are capable of
producing at max release. The parameter Q here denotes the discharge capacity of
the hydropower plant in m3/s. Head is defined as the difference in height between
the reservoir and the turbine in m, thereby it changes as reservoir level changes. In
order to be able to assume a constant head, our data should have negligible change in
head from max to min levels in reservoir filling. The assumption is more reasonable
the higher the head is compared to reservoir level difference. In our case company,
the change in head is less than 10% of the average head, which we deem low enough
to ignore. For each new hydropower plant included in the analysis, the change in
head should be checked to assure the applicability of a constant head assumption.

e =
1

3.6 · 106
· γ · g ·H · η (6.1)

U = e ·Q · 3600

1000
(6.2)

• Sufficient reservoir flexibility: In order for the hydropower plant to be relevant
for analysis, it should have sufficient flexibility in terms of storage and production
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capacity. From Figure 3.4, we see that Kolsvik have a degree of regulation of 37, 9%,
which means that a third of the yearly inflow can be stored in the reservoir. The
degree of regulation of a reservoir provides an indication on how much water the
plant is able to store. If the aggregated inflow minus production exceeds the reservoir
volume, the inflow will be non-storable and have to be used continuously. A too low
degree of regulation will lead to a reduced long term flexibility, thereby limiting the
relevance of a SDP model. We deem a degree of regulation of 37, 9% to be high
enough for Kolsvik to make a relevant case.

• Sufficient production capacity: The yearly capacity factor tells us how much of
the incoming inflow the turbines are able to produce electricity from. It is measured
in average yearly inflow divided by production capacity. The capacity factor for
our case reservoir is 52, 3% and just over 200% during flooding season, lasting for
about two months. If the accumulated inflow over a period raise the capacity factor
above 100% at the same time as the reservoir levels are high, the reservoir will face
a risk of spillage and thereby wasted water. Our case power plant do not face any
major limitations concerning production capacity, as long as they make sure they
have sufficient room in reservoirs during the spring flood.

• Price taker assumption: We also assume our case company to be a price taker. A
price taking assumption is common when modeling Norwegian power plants. The
price taking assumption is a necessary condition for a free market to be econom-
ically efficient. Such an assumption also avoid considerable modeling complexity
as a result of oligopoly (Fosso et al., 1999). Total electricity production from hy-
dropower in Norway is 132, 3 TWh (NVE, 2016). As the maximum production at
Kolsvik is 504 GWh, Kolsvik will have a market share of only 0, 38%. This indi-
cates that they will not have any market power. Also, as the Norwegian electricity
market has about 70 generating companies, a single producer will likely not have
large enough share of the market to have a significant impact on prices. Mirza and
Bergland (2012) find that market power for Norwegian hydropower planners at the
most extreme never exceeds 1%. With such a low possible market power, we find
a price taker assumption reasonable enough as a general assumption in the Norwe-
gian hydropower industry. On the other hand Johnsen (2001) states that for each
individual, price is given, while at the market level the price is endogenous. This
is because all market players in the hydropower industry to some degree respond to
the same rational market mechanisms. Therefore Johnsen (2001) developed a model
for simultaneous determination of supply, demand and price in the competitive Nor-
wegian electricity market. For later studies a simultaneous modeling approach can
be a more reasonable assumption for price modeling.

• No marginal production cost: We assume the producer is strictly profit maximiz-
ing. Fosso et al. (1999) state that, in a deregulated market, a generation company
has in principle no other objective then to produce and sell electricity with a maxi-
mum profit. This implies that we can assume no production requirements or start-up
costs for our scheduling problem, and for most Norwegian hydropower plants. For-
mulation of the profit function as a strictly profit maximizing function is therefore
reasonable.
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• Insignificant start-up and shutdown cost: As the granularity of the model is one
week at its finest, start-up and shutdown costs become insignificant for our hy-
dropower planning problem.

• AR-1 assumption: We assume inflow, overall reservoir deviation, price and forward
price all to be auto-correlated with one lag. As we use the Markovian property, this
assumption is a model necessity. All the different time series exhibit varying degree
of auto-correlation. For inflow time series monthly the assumption holds as weekly
and especially daily and hourly inflows generally exhibit high serial correlations.
Because we are working with a daily (and weekly) resolution we find it reasonable
to incorporate the serial correlation attribute in our inflow model. For price model-
ing, Botterud et al. (2010) state that analysis they have done of price scenarios shows
that prices from one week are strongly dependent on observed prices from the fore-
going week, therefore an AR(1)-assumption is reasonable for our price process. For
inflow modeling, Nandalal and Bogardi (2007) claim that the Markov-I assumption
is commonly used, as this sufficiently reflect reality, without being overly complex.
Also Botterud et al. (2010) mention inflow time series to commonly be modeled
with a multivariate first order auto-regressive model. By using the auto-correlation
function in MATLAB, we find all mentioned time series to be highly auto corre-
lated. Therefore an AR-2 assumption could increasingly reflect reality, but entails
increasingly computational complexity (Nandalal and Bogardi, 2007). Also an AR-
2 assumption does not suit our model structure.

6.2 Descriptive statistics and parameter values
Below are the parameters estimated for the different seasonal function, for inflow, f I(t),
in Table 6.1, forward price, fF (t), in Table 6.2 and the price, fP (t), in Table 6.3.

Table 6.1: Parameters for inflow seasonal function

DI AI1 AI2 φI1 φI2
11.9786 7.6571 3.8396 8.6783 3.7237

Table 6.2: Parameters for forward price seasonal function, for 2 months, 6 months and 1 year
forward

DF AF φF

2 months 3.6727 0.1467 5.3249
6 months 3.7118 0.1610 5.3249
1 year 3.6836 0.1125 5.3249
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Table 6.3: Parameters for price seasonal function

DP AP φP

3.5836 0.1739 12.0945

In Table 6.4 are the discriptive statistics for all the state variables, both for the observed
time series and for the process simulations.

Table 6.4: Descriptive statistics for the state variable processes, for both observed time series and
simulations

Mean Stdev Min Max Median
Inflow
(GWh)

Obs 11.9776 13.1096 -7.8992 74.8820 6.6924
Sim 12.0983 13.0358 0 65.3079 8.2314

Cumulativ inflow deviation
(%)

Obs 0.0320 0.1373 -0.2839 0.4179 0.0150
Sim 0.0467 0.2200 -0.5244 0.9628 0.0147

Overall reservoir deviation
(%)

Obs 0.0009 0.1721 -0.4690 0.4668 0.0235
Sim 0.0545 0.2120 -0.4158 0.5064 0.0563

2 months forward
(log e/MWh)

Obs 3.6316 0.3279 2.5537 4.3453 3.6433
Sim 3.6307 0.3165 2.7223 4.6126 3.5996

6 months forward
(log e/MWh)

Obs 3.6798 0.2834 2.6358 4.4060 3.6941
Sim 3.6525 0.2786 2.9539 4.6788 3.7428

1 year forward
(log e/MWh)

Obs 3.6721 0.2426 2.9774 4.1016 3.7257
Sim 3.6710 0.2404 3.1802 4.1814 3.6436

Price
(log e/MWh)

Obs 3.5629 0.3916 2.0483 4.4609 3.5918
Sim 3.5534 0.3883 2.3800 4.2385 3.2614
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