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Problem Description

The purpose of this thesis is to develop model(s) and solution method(s) to determine
an optimal fleet size and mix to be used in the execution of maintenance operations at
offshore wind farms. The problem is studied from a strategic point of view, where the
aim is to make optimal long-term strategic decisions minimizing maintenance costs. In
this thesis a dual-level stochastic approach is used to be able to account for both long-
term strategic uncertainty and short-term tactical uncertainty, combining decisions with
different time scales in one optimization model. A first version of a dual-level stochastic
model and a scenario generator was developed in our project report. In this master
thesis, the model and scenario generator will be analyzed and improved, and methods for
solving the problem will be explored. Heuristic solution method(s) will be developed for
the model, and computational experiments will be conducted to evaluate the performance
of exact and heuristic solution methods.
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Abstract

Due to high costs, the offshore wind industry is currently not economically viable on its
own. For offshore wind to be a profitable future energy source, it is therefore necessary
to find methods for reducing costs. Operations and maintenance at offshore wind farms
is an important cost driver, and accounts for 20 - 25% of the lifetime costs of wind farms
today. Vessel fleets used to conduct maintenance operations at offshore wind farms are
expensive to acquire and operate. A vessel fleet that is capable of operating in rough
weather conditions gives a high degree of accessibility to wind farms, and hence allows
wind farm owners to reduce revenue loss from unplanned production stops. The potential
savings from determining an optimal fleet size and mix for conducting maintenance at
offshore wind farms can therefore be substantial.

This thesis studies the strategic problem of finding a cost optimal fleet size and mix
for conducting maintenance operations at offshore wind farms (DLPOW). A dual-level
stochastic model has been developed, which accounts for both long-term strategic uncer-
tainty and short-term tactical uncertainty in one optimization model. The model supports
wind farm owners in making strategic decisions regarding the amount, placement, charter
length and types of vessels to long- and short-term charter, to meet maintenance demand
throughout the lifetime of a wind farm. To evaluate the quality of strategic fleet size
and mix decisions, the model also considers the tactical deployment decisions of how to
utilize the fleet to conduct maintenance operations. The model accounts for strategic
uncertainties that have not been considered in previously developed optimization models
for offshore wind, such as uncertainty related to: long-term trends in electricity prices
and subsidy levels, stepwise development of wind farms, and technology development in
the vessel industry.

Several solution methods have been developed to solve the DLPOW. From computational
testing, it can be seen that the use of a standard optimization solver as a solution method
is impractical for anything but small instances due to memory limitations. In order to
solve real-life instances, a heuristic solution method based on the Greedy Randomized
Adaptive Search Procedure (GRASP) has been developed. The reactive metaheuristic
developed exploits the block-separable structure of the DLPOW to decompose the prob-
lem into a master problem and many independent subproblems. The reactive GRASP
constructs strategic fleet size and mix solutions for solving the master problem. A simple
Greedy Tactical Heuristic, embedded in the GRASP, solves the subproblems of tactical
fleet deployment to evaluate the objective function value of a given fleet solution. The
performance of the reactive GRASP has been evaluated by comparing solution time and
quality from the GRASP to the equivalent values obtained from a standard optimization
solver. The results show that the GRASP consistently provides good solutions for the
DLPOW, and finds higher quality solutions for 24 of 29 tested instances, compared to
the solver. Furthermore, the GRASP is able to solve significantly larger problems within
a considerable shorter amount of time.
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Sammendrag

Som følge av høye kostnader, er offshore vindindustri per i dag ikke levedyktig p̊a
egenh̊and. For at offshore vindkraft skal kunne bli en lønnsom energikilde i fremtiden, er
det nødvendig å finne metoder for å redusere kostnader. Drift og vedlikehold av offshore
vindparker er en viktig kostnadsdriver, og utgjør 20 - 25% av livsløpskostnadene til da-
gens vindparker. Fartøysfl̊aten som brukes til å utføre vedlikeholdsaktiviteter er kostbar
å anskaffe og operere. Fl̊ater som kan operere i krevende værforhold gir en høy grad
av tilgjengelighet til vindparker, og gjør dermed at eierne av vindparkene kan redusere
inntektstap fra uventede produksjonsstopp. De potensielle besparelsene fra å bestemme
en optimal fl̊atestørrelse og fl̊atemiks for å utføre vedlikehold p̊a offshore vindparker, kan
derfor ansees som betydelige.

Denne avhandlingen studerer det strategiske problemet som omhandler å finne en kost-
nadsoptimal fl̊atestørrelse og fl̊atemiks for å utføre vedlikehold p̊a offshore vindparker
(DLPOW). En dual-level stokastisk modell, som tar høyde for b̊ade langsiktig strate-
gisk usikkerhet og kortsiktig taktisk usikkerhet i én optimeringsmodell, har blitt utviklet.
Modellen støtter eiere av vindparker i strategisk beslutningstaking relatert til mengde,
plassering, leielengde og type fartøy som bør lang- og korttidsleies, for å møte etterspørsel
av vedlikehold gjennom levetiden til en vindpark. For å evaluere kvaliteten av strategiske
beslutninger relatert til fl̊atestørrelse og fl̊atemiks, tar modellen ogs̊a høyde for taktiske
beslutninger om hvordan fl̊aten skal brukes til å gjøre vedlikehold. Modellen tar høyde
for strategisk usikkerhet som ikke har blitt tatt høyde for i tidligere utviklede optimer-
ingsmodeller for offshore vindindustri, som usikkerhet relatert til: langsiktige trender i
elektrisitetspriser og subsidier, stegvis utvikling av vindparker, og teknologiutvikling i
skipsindustrien.

Flere løsningsmetoder har blitt utviklet for å løse DLPOW. Resultater fra beregningsori-
enterte tester, viser at det å bruke et standard optimeringsverktøy som løsningsmetode
er upraktisk for alt annet enn små instanser p̊a grunn av minnebegrensinger. For å løse
instanser av realistisk størrelse, har en heuristisk løsningsmetode basert p̊a prosedyren
Gr̊adig Randomisert Adaptiv Søkeprosedyre (GRASP) blitt utviklet. Den reaktive meta-
heuristikken som har blitt utviklet, utnytter den blokk-separable strukturen til DLPOW
for å dekomponere problemet til et masterproblem og mange uavhengige subproble-
mer. Den reaktive GRASPen konstruerer strategiske løsninger for masterproblemet.
En enkel gr̊adig taktisk heuristikk er innebygd i GRASPen for å løse de taktiske sub-
problemene relatert til bruk av fl̊ate, og evaluerer objektivfunksjonsverdien av en gitt
fl̊ateløsning. Prestasjonsevnen til den reaktive GRASPen har blitt evaluert ved å sam-
menligne løsningstid og løsningskvalitet fra GRASPen med ekvivalente verdier fra et stan-
dard optimeringsverktøy. Resultatene viser at GRASPen gir konsistent gode løsninger
p̊a DLPOW, og sammenlignet med optimeringsverktøyet finner GRASPen løsninger av
høyere kvalitet for 24 av 29 instanser. Videre klarer GRASPen å løse signifikant større
problemer innen betraktelig kortere tid.
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Chapter 1

Introduction

The world energy demand is increasing, and the EU has set ambitious targets for energy
consumption from renewable sources by 2020 [32]. As a green and renewable energy
source, power generated from offshore wind plays an important part in reaching these
targets. The wind industry has been growing steadily the last years, and power from
wind constituted 15.6% of the EU power mix in 2015. Today, offshore wind only accounts
for a small part of the total wind energy produced. However, the offshore wind industry
is in rapid growth, and it is expected that energy from offshore wind will account for
7.7% of the EU power mix in 2030.

In recent years, wind power generation has been driven offshore for several reasons. Space
is one of the most important contributors, as appropriate locations for onshore wind
farms is becoming a scarce resource. Greater areas offshore allows larger wind farms to
be built, and together with the reduction of noise and visual impact on the coast, moving
wind farms offshore allows the use of larger turbine designs which improve efficiency
[33]. Furthermore, the high wind speeds offshore makes the turbines yield a higher total
electricity production. Where an onshore turbine would generate 2000 - 2500 full load
hours per year, the comparable number for an offshore turbine could be up to 4000 [82].
This makes offshore wind production very attractive, resulting in investments and growth
in the industry.

According to the Global Wind Energy Council (GWEC), offshore wind power has the
potential to meet Europe’s energy demand 7 times over [61]. However, while electricity
from onshore wind farms is becoming cheaper than conventional power in an increasing
number of markets, high costs are still a big challenge for offshore wind [61]. In general,
offshore wind projects are considered to be around 50% more expensive than onshore wind
projects. Due to the high expenses, offshore wind is still not profitable on its own and
depends on governmental subsidies. Operations and maintenance (O&M) costs account
for a substantial amount of the expenses, and is estimated to be around e0.012 - 0.015
per kWh of wind power produced [82]. This constitutes 20 - 25% of the total lifetime
cost of an offshore wind farm [109]. In order to make offshore wind power profitable and
viable without governmental subsidies, finding ways to minimize the O&M costs is hence
of crucial importance.
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The main cost components of maintenance operations are related to the costs of acquiring
and operating a vessel fleet to conduct maintenance, and the loss of revenue incurred
when turbines are shut down due to failures or maintenance execution (downtime cost).
In general, studies show that the cost of acquiring and operating a vessel fleet accounts for
up to 73% of O&M costs [39], while the loss of revenue during downtimes accounts for up
to 66% of O&M costs [26]. The high maintenance cost of offshore wind is to a large extent
caused by the rough weather conditions offshore, which makes the turbines more exposed
to breakdowns and more difficult to access. Difficulties in accessing wind farms to repair
failures may lead to long periods of downtime for the turbines, resulting in significant
loss of revenue. The operational capabilities of the vessels used to conduct maintenance
is therefore important, as the vessels ability to handle harsh weather conditions directly
influence the accessibility of the wind farm.

When composing a vessel fleet for conducting maintenance, different strategic decisions
need to be made, which all have consequences on the costs of conducting O&M. Firstly,
a choice of which vessel concepts to acquire must be made. The characteristics of the
different vessel concepts in the fleet affect the accessibility and travel time to the wind
farm, and the ability to perform maintenance tasks. Secondly, a choice regarding the
method and timing of acquisition needs to be considered. Different charter contracts
have different costs, and the charter rates of vessels can vary significantly from year to
year, and between vessel concepts. Lastly, the decision of where to locate the maintenance
vessels also needs to be considered. Locating vessels offshore in close proximity to the
wind farms can reduce travel times and increase farm accessibility significantly. However,
offshore stations are expensive to install and maintain. Due to the large number of
decisions and possible choices that have to be made, finding an optimal fleet size and mix
which minimizes O&M costs is not easy.

To complicate further, the strategic fleet size and mix decisions place restrictions on the
tactical decisions of how to deploy the fleet to conduct maintenance. In order to evaluate
the quality of fleet size and mix decisions, the cost of optimal deployment hence must be
considered. Furthermore, both the strategic fleet size and mix decision and the tactical
deployment decision are subject to a wide range of uncertainties. At the strategic level,
examples of such uncertainties are: long-term trends in electricity prices, the level of
future governmental subsidies, the introduction of new vessel concepts in the market,
and whether or not new turbines will be added to a wind farm in the future. At the
tactical level, uncertain parameters like weather conditions and demand for maintenance
influence the decision of how to utilize the fleet significantly. Considering the high costs
related to conducting O&M, and the complexity of finding an optimal fleet size and mix,
the use of operations research (OR) can provide wind farm owners with support to make
better and more informed decisions.

In this thesis, the Dual-Level fleet size and mix Problem for conducting maintenance
at Offshore Wind farms (DLPOW) is studied. An OR approach is used to develop a
mathematical model for minimizing the costs of conducting maintenance at one or several
wind farms. The model aims to find an optimal vessel fleet size and mix at the beginning
of a wind farm’s lifetime, while considering the optimal deployment of the fleet and the
possibility of periodic fleet adjustments throughout the wind farms lifetime. In order to
capture uncertainty at both strategic and tactical planning level, a dual-level stochastic
modelling approach is used. The work presented in thesis is a continuation of the authors
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specialisation project, presented in [23], where a first version of the dual-level stochastic
model was developed. In order to solve real-life instances of the DLPOW, heuristic
solution methods for the problem are studied in this thesis. A simple heuristic solution
method is implemented trough the use of a standard optimization solver. Moreover,
a heuristic solution method, based on the metaheuristic Greedy Randomized Adaptive
Search Procedure (GRASP), is developed. The GRASP constructs fleet size and mix
solutions to the DLPOW in an iterative greedy manner, by utilizing a simple greedy
heuristic for evaluating the cost of a given fleet. The heuristic solution methods are
extensively tested in this thesis, and their performance is compared to an exact solution
method.

Offshore wind is a relatively young industry, and the number of publications studying
the fleet size and mix problem for this industry is limited. To the authors knowledge,
previous work on the fleet size and mix problem for offshore wind have only accounted
for uncertainty at the tactical level. The model developed in this thesis hence represents
a new approach to the strategic fleet size and mix problem in offshore wind, as it con-
siders decisions made on two different time scales, and accounts for uncertainty at both
the strategic and the tactical planning level. To the authors knowledge, GRASP has
never been applied on a fleet size and mix problem in any industry. Furthermore, the
metaheuristic developed in this thesis is the first application of GRASP on a dual-level
stochastic model, and possibly the second application on a stochastic model in general
[74].

The thesis is organised as follows. In Chapter 2, relevant background information re-
garding O&M at offshore wind farms is presented. A thorough description of the prob-
lem studied in this thesis is given in Chapter 3, and relevant literature is reviewed in
Chapter 4. A mathematical formulation of the problem, and the underlying model as-
sumptions, are described in Chapter 5. Furthermore, the GRASP developed to solve the
DLPOW is presented in Chapter 6. In order to generate test instances for the solution
methods, a scenario generator has been developed. The scenario generator and the choice
of critical input parameters are described in Chapter 7. In Chapter 8, computational ex-
periments conducted to test the model, the scenario generator and the solution methods
are described. Concluding remarks and suggestions for further research is presented in
Chapter 9.
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Chapter 2

Background

Maintenance Operations at offshore wind farms deal with challenges from two merging
industries: offshore wind and maritime transportation. In this chapter, important as-
pects from these two industries are presented in order to give the reader a thorough
understanding of the problem studied.

2.1 The Energy Sector

The emission of greenhouse gasses is affecting the climate of the earth [76]. The energy
sector is facing enormous challenges both in terms of reducing the emission of greenhouse
gasses, and at the same time meeting the ever-increasing demand for energy. The 21st
Conference of the Parties of the UNFCCC was held in Paris in December 2015, where
the aim was to adopt a new global agreement limiting the emission of greenhouse gasses
[76]. As the global energy production and use currently accounts for 2/3 of the emission,
a large part of the global agreement includes policies for transforming the energy sector
and using more renewable energy sources [76].

According to the International Energy Agency, the world energy demand is expected to
increase with 37% by 2040 [76]. Furthermore, the legally binding target for renewable
energy by 2030, set by the European Union (EU) in 2014, states that at least 27% of the
final energy consumption at European level should come from renewable energy sources
[32]. This translates into 46 - 49% of electricity generated by renewables. The European
Wind Energy Association (EWEA) expects wind energy to take the bigger share, of 21%,
of this [32].

The wind industry is in rapid growth. As illustrated in Figure 2.1, wind power has
increased its share of the total installed power capacity in EU with a factor of 6.5 times
since year 2000, contributing 15.6% in 2015 [35]. Wind energy has hence overtaken hydro
as the third largest power generation capacity in the EU, and is the largest source of
renewable energy[35].
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Figure 2.1: EU power mix in 2000 and 2015, retrieved from [35].

In 2015 the total installed wind power capacity was 141.6 GW in EU and 432.4 GW
globally [60]. In EU, the annual installations of wind power has increased from 3.2 GW
in 2000 to 12.8 GW in 2015 [35]. Globally, annually installed wind power has also grown
steadily from from 1997, with a total of 61.0 GW installed in 2015 [60]. Wind energy is
expected to continue to grow, and play an important role in the future energy market
[60]. EWEA presents three scenarios for 2030 on how wind energy can contribute to
meeting future electricity demand in EU. These scenarios are illustrated in Figure 2.2.
In EWEA’s central scenario, it is expected that wind energy will account for 24.4% of
EU’s electricity demand, with a total of 320 GW installed capacity [32].

Before the early 2000’s, virtually all wind power produced was generated by onshore wind
farms [3], and offshore wind still only accounts for a small fraction of the total installed
wind capacity worldwide. In 2014, the share of EU consumption met by offshore wind
was 1.1%, and 10.4% of European wind energy production was generated offshore [34].
However, offshore wind is expected to meet 7.7% of EU electricity demand in EWEA’s
central scenario for 2030, accounting for 31.6% of the total EU demand met by wind
energy, as shown in Figure 2.2. In the past 15 years, offshore wind has experienced a
steady growth, and as of February 2016 there are 3,230 offshore wind turbines with a
combined capacity of 11.0 GW connected to the European grid [36]. Europe dominates
the offshore wind segment, as more than 95% of global operational offshore installations
are located in European waters [82].

Figure 2.2: EWEA’s 2030 scenarios for wind energy, retrieved from [32].
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2.2 Trends in the Offshore Wind Industry

The offshore wind industry is relatively young. The first offshore wind turbine was
installed in Sweden in 1990. The construction consisted of a single 220 kW turbine located
350 m from the coast at about 6 m depth [47]. Since then, the offshore wind industry has
experienced a rapid growth and significant technological developments, leading to larger
wind farms, increased turbine and more flexibility in the location of the wind farms.

Due to national maritime spatial planning and wind farm developers’ desire to harness
better energy resources out at sea, wind farms are built further and further from the
coast. In 2002, the average European offshore wind turbine was placed 9.8 km from
shore [56]. In comparison, the average distance from shore was 43.3 km in 2015 [36].
The German wind farm Bard Offshore 1 is one of the wind farms placed furthest from
shore with a distance of 100 km [138]. Placement further offshore is advantageous due to
higher wind speed and increased wind stability, as well as the avoidance of visual impact
on the coast. However, larger distances from shore make O&M activities even more
challenging, as transportation times increase and rougher weather conditions increase
the risk of turbines being inaccessible for periods of time.

As wind farms are placed further from shore, the water depth also generally increases.
In 2002, the average depth of operating European wind farms was 6.2 m [56], while in
2015 the average depth was 27.1 m [36]. As the substructures of commercial turbines
are attached to the seabed, the depth of the location is a restricting factor, and current
substructures are economically limited to water depths of 40 to 50 m [33]. However, since
deep-water offshore designs have a great potential for unlocking new promising locations,
extensive R&D efforts have been placed on developing new technologies to overcome this
challenge. An example of such technology is the floating turbine, which has a floating
substructure that is not attached seabed. Currently there are two operative full-scale
floating turbines, Hywind and Windfloat, in use in Europe [33].

As far-shore wind farms generally are more expensive to install and operate, they need
larger wind turbines and higher energy output to balance costs and revenue. This has
led to development of new turbine technology, with considerable increments in turbine
size and capacity to increase energy yields at sea. At the moment, wind turbines with
capacities of up to 7 MW are being tested [46]. In 2015, the average capacity of new
offshore wind turbines installed in Europe was 4.2 MW, a significant increase from 3.0
MW in 2010 [36]. The size of wind farms (given by the total installed capacity) is also
rapidly increasing, leading to benefits from economies of scale. In 2010, the average size
of offshore wind farms in Europe was 155.3 MW, while in 2015 the average was 337.9
MW [36]. The biggest operating offshore wind farm in the world today is London Array
located 20 km offshore Kent in the UK. The wind farm has a total capacity of 630 MW
and consists of 175 turbines. The plan is to expand the wind farm further through a
second installation phase giving an installed capacity of 1 GW [87].

The mentioned trends are expected to continue, leading to even larger wind farms placed
further from shore in deeper waters. The trends can be recognized in current projects
under construction, like Forewind’s Dogger Bank. The Dogger Bank project encompasses
four 1.2 GW wind farms, each with 200 turbines, covering an area of 8660 km2 [55]. The
turbines are located 125 - 290 km offshore the UK in water depths ranging from 18 - 63 m
[55]. The project is developed in stages, and if fully realized, it will be the largest offshore
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wind farm in the world. Projects like the Dogger Bank illustrate another implication of
recent trends: as the projects grow larger and move further offshore, the need for stepwise
installments increase as it takes several years to complete the installment.

2.3 O&M at Offshore Wind Farms

The cost of O&M activities constitute 20 - 25% of the total lifetime costs of an offshore
wind farm [109]. As the name implies, O&M comprises two different streams of activ-
ities conducted during the operational phase of a wind farm. Operations refers to the
high-level management of assets, like remote and environmental monitoring, electricity
sales, marketing and administration [109]. Maintenance is the up-keep and repair of the
physical farm and its systems, and comprises maintenance tasks on various equipment
like turbines, export cable and grid connection, array cables and turbine foundations.
Operations represents a very small proportion of O&M expenditure, while maintenance
accounts for the largest portion of O&M effort, cost and risk [109].

The availability of a wind farm is considered an important measure of the performance
of O&M activities. Availability is defined as the proportion of the time that a turbine,
or the wind farm as a whole, is technically capable of producing electricity [109]. To
ensure a satisfactory level of availability of the turbines, maintenance is required. The
maintenance tasks can be divided in two main categories: preventive (scheduled) and
corrective (unscheduled) maintenance. Preventive maintenance is done precautionary to
prevent failures, while corrective maintenance tasks are performed when an unexpected
failure has occurred.

2.3.1 Preventive Maintenance

Preventive maintenance is conducted with the intention of expanding a turbine’s life-
time, and keeping the need for corrective maintenance at a reasonable level. Preventive
maintenance includes inspections, testing, and maintenance activities like: oil sampling,
pitch calibration, re-tightening of bolts and change of consumables. The frequency of
preventive maintenance vary, and depends on the maintenance strategy of the wind farm
owner. Four different maintenance strategies can be identified: no-maintenance, correc-
tive maintenance only, opportunity maintenance and periodic maintenance [57].

In a no-maintenance strategy only major overhauls every five years are conducted. Given
current levels of turbine failure rates, this strategy is however not a viable option [57]. In a
corrective maintenance only strategy, maintenance is only performed when failures occur,
and no preventive maintenance is conducted. If an opportunity-based strategy is used,
corrective maintenance is executed on demand and preventive maintenance is performed
at the same time. The most commonly used strategy is periodic maintenance. With this
strategy preventive maintenance tasks are scheduled and corrective tasks are conducted
when needed. The frequency of preventive maintenance affects the costs of O&M. To
minimize costs, a balance must be found between conducting maintenance activities too
often and too seldom [124]. Under-maintenance increases the risk of failures, and thereby
the expected loss of revenue due to production stops. Over-maintenance leads to reduction
in incremental benefits, waste of resources, and increased maintenance costs.

7



In a periodic maintenance strategy, preventive maintenance is usually performed once
or twice a year, and several maintenance tasks are accumulated and performed in one
or several visits to each turbine. Normally, preventive maintenance is scheduled to be
executed during summer, as accessibility is higher due to better weather conditions.
Furthermore, average wind speeds are generally lower during summer leading to a lower
impact on production. While conducting certain types of preventive maintenance tasks,
the turbine is shut down upon arrival and restarted when the task is completed. For
other types of tasks, the turbine can continue running while maintenance is performed.
The downtime of the turbine is therefore limited to the time it takes to perform the
maintenance task.

2.3.2 Corrective Maintenance

Corrective maintenance are reactive activities conducted due to unexpected failures, and
typically involves the repair or replacement of failed or damaged components [109]. When
an unexpected failure occurs, the turbine is shut down until the corrective maintenance
task has been conducted. When a failure leads to unscheduled production stops, an
additional cost of lost revenue from electricity sales is introduced, called downtime cost.
To reduce the downtime costs, corrective maintenance should preferably be performed
immediately after a failure has occurred. However, this is not always feasible due to
rough weather conditions and low accessibility to the wind farm. Furthermore, the repair
of a turbine may be delayed if the part that needs replacement is out of stock.

The frequency and timing of turbine failure is subject to significant uncertainty, but is
possible to forecast based on historical data. As the offshore wind industry is relatively
young, such failure data is scarce. However, several studies have been conducted on this
matter for onshore wind turbines. Reliability specialists suggest that the failure rates
of a turbine typically follows a bathtub curve, indicating that most failures occur in the
beginning and end of a turbine’s lifetime [70]. In the middle of its life-time, the turbine
experiences relatively low and constant failure rates. This is shown in Figure 2.3.

Figure 2.3: The bathtub curve of wind turbine failure rates, based on [70].

Wind turbines are complex machines functioning in complex environments. They are
built by the integration of various technologies, and several components can be the source
of failure. A study conducted by the German Wind Energy Measurement Programme,
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gathered statistics on the probabilities of component failures and related turbine down-
time. The study tracked the performance of 1500 onshore wind turbines in Germany
for 10 years, from 1997 to 2006 [96]. The results from the study is shown in Figure 2.4.
As the data is based on onshore turbines, it may not be representative for offshore tur-
bines, which are exposed to rougher conditions and have lower accessibility. However,
the data may serve as a starting point when estimating turbine failure rates for offshore
turbines.

Figure 2.4: Failure rates of onshore wind turbine components, based on [96].

Another approach to forecasting failure rates for offshore turbines, is to base the forecast
on expert knowledge. Such an approach is used by Dinwoodie in [43]. Failures are
categorised into 5 types according to the maintenance impact of the fault, ranging from
last sever to most significant: 1) manual reset, 2) minor repair, 3) medium repair, 4)
major repair and 5) major replacement. Each failure type is given an average annual
failure rate based on expert knowledge from turbine developers.

2.4 Vessel Fleet for O&M

In the execution of O&M activities at offshore wind farms, the choice of vessel fleet size
and mix can have great consequences for the O&M costs, as different vessel types have
different capabilities and characteristics. Three factors that have a large influence on
the utilization of O&M vessels are: distance from harbour, water depth and weather
conditions. Distance to the wind farm from the harbour, together with the vessels transit
speed, determines the transit time to get technicians out to the turbine. For maintenance
tasks requiring lifting, water depths limit the choice of vessels that can be used. Weather
conditions, like wave heights, wind speeds and water currents, place restrictions on vessel
operation as vessels cannot operate safely in all weather conditions. Due to high downtime
costs associated with unexpected failures, having vessels with high transit speed and that
can handle rough weather, can contribute to achieving high wind farm accessibility and
reduce downtime significantly. As an example, in the North Sea, the average number of
days per year with wave heights over 2 m is 255 days. A vessel with a wave limit of 2 m,
would hence only be able to operate 61% of the year. Increasing the wave limit to 3 m
would make the vessel able to operate 86% of the year [64].
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Today, a wide range of vessel types are used to execute maintenance tasks at offshore
wind farms. During the operational phase of a wind farm, the vessels are generally
utilized to perform three broad types of tasks: transferring crew to the turbines, accom-
modate technicians offshore, and to perform heavier maintenance tasks which require
lifting capabilities or transportation of larger spare parts. Different vessels have differ-
ent properties like fuel consumption, transit speed, maximum tonnage, deck space and
passenger capacities. Vessels also differ in their ability to operate under harsh weather
conditions. Furthermore, the operation and acquiring costs differ greatly between vari-
ous vessel types. The most common vessel types utilized in the industry are presented
in the Subsections 2.4.1 - 2.4.3. Subsection 2.4.4 describes how the vessel types can be
acquired.

2.4.1 Crew Transfer Vessels

A crew transfer vessel (CTV) is a relatively small vessel used to transport technicians,
tools, and spare parts to conduct tasks like inspections, minor repairs and technical
problems that can be solved without heavy equipment [12]. A typical CTV has a load
capacity between 1-50 tons, can travel at speeds between 15-30 knots, and are relatively
inexpensive [139]. The four most common types of CTVs are inflatable boats (RIBs),
mono hulls, catamarans and Small Waterplane Area Twin Hull (SWATCH) ships. RIBs
are mainly used as a quick response vessel to provide fast access to site. They are highly
available in the market and highly fuel efficient. However, they are unsuitable for long
transits, have little transportation capacity, and are limited to wave heights of 0.75-1.25
m [92]. Mono hulls are stable, can handle severe weather conditions, and generally have
a larger load capacity than other CTV types. [27].

(a) Mono hull, retrieved from [75] (b) SWATCH, retrieved from [99]

(c) Catamaran, retrieved from [101] (d) RIB, retrieved from [136].

Figure 2.5: Examples of different types of CTVs.
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In later years, catamarans have gained increasing popularity in the industry, due to
speed advantages and good seafaring capabilities [27]. In comparison with a mono hull,
a catamaran cannot carry significant cargo. Due to personnel facilities and comfort,
catamarans are usually unsuitable for journeys longer than 2 hours, and are restricted
by wave heights above 0.60 - 1.75 m [92]. SWATCH ships are relatively new, and are
currently entering the market. These ships are similar to catamarans, but due to design
specifics these ships have significant stability advantages in rougher weather conditions
[27]. This makes them able to operate in wave heights between 1.00 - 2.00 m [92].
However, SWATCH vessels have limited cargo capabilities, designs are more expensive
to build, and they have higher maintenance requirements than other simpler vessels [27].
Examples of CTVs are shown in Figure 2.5 (a) - (d).

2.4.2 Helicopters and Crane Vessels

Similarly to CTVs, helicopters are used to transfer technicians to turbines for inspections
and minor maintenance tasks. Helicopters have the advantage of shorter transit times,
and are not restricted by wave heights. However, they are restricted by weather in terms
of wind speed and visibility. Compared to seafaring vessels, they are generally more
expensive to acquire and operate, and have less transportation capacity. In addition,
helicopters cannot stay at the wind farm while maintenance is being performed and
hence have to return to depot between delivery and pickup of technicians. An example
of a helicopter is shown in Figure 2.6 (a).

Occasionally, heavier maintenance tasks, like replacing a blade or generator, need to
be conducted. These types of maintenance tasks require crane vessels. Crane vessels
are complex and highly specialized ships, which are expensive to acquire and operate.
They are therefore rarely used if heavy-lifting is not required. Crane vessels vary in type
and size. One type of crane vessel is the jack-up barge, which is a self-elevating mobile
platform. An example of a jack-up barge is shown in Figure 2.6 (b). The water depth at
the wind farm often places restrictions on the use of crane vessels. Furthermore, crane
vessels also have limitations related to lifting height and weight.

(a) Helicopter, retrieved from [102]. (b) Jack-up barge, retrieved from
[104].

Figure 2.6: Examples of a helicopter and a crane vessel.
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2.4.3 Accommodation Vessels and Offshore Stations

As offshore projects are growing in size and moving further offshore, the need for offshore
accommodation has grown. CTVs can only stay offshore for a limited period of time, and
long distances from port to the working area makes transit times long and the accessibility
poor. To meet this challenge, new offshore accommodation concepts have been developed.
These concepts are expensive to acquire and operate. However, offshore accommodation
is advantageous as it provides the opportunity of exploiting shorter windows of good
weather, in addition to low travel times and closeness to the wind farm. For this reason,
future projects with a distance from shore exceeding 55 - 75 km, are expected to become
reliant upon offshore accommodation to avoid excessive travel times and low productivity
due to seasickness [92].

Offshore accommodation concepts can take two basic forms: Floating Accommodation
Vessels (AVs) and fixed offshore accommodation stations. AVs include a variety of dif-
ferent vessel concepts. AVs called floatels, has existed in the industry from 2008 [59].
Floatels are usually converted ferries or small cruise ships, which can stay offshore for
long periods. Another AV type called motherships, are custom-made for the industry
and have most of the equipment required for O&M services. Motherships often have the
capability of accommodating helicopters and smaller CTVs, and are made to operate in
rough weather conditions. Examples of AVs are shown in Figure 2.7 (a) and (b). Differ-
ent types of fixed offshore accommodation stations are in development. These stations
reduce transfer times, but do not improve wave height capabilities which is the case with
AVs. Current industry trends therefore suggests that the market is moving more towards
floating accommodation rather than towards the fixed offshore accommodation stations
[92].

(a) Floatel, retrieved from
[59].

(b) Mothership, retrieved from
[103].

(c) Offshore accommodation
station, retrieved from [16].

Figure 2.7: Examples of AVs and offshore accomodation stations.

2.4.4 Fleet Adjustment

Vessels used for conducting O&M can be acquired in different ways, and are normally
long-term contracted, chartered from the open marked on a short-term basis, or bought
from a ship-builder or from a second-hand market.

CTVs are most often contracted on a long-term lease from specialist marine contractors,
but are sometimes bought instead. Larger vessel types, like crane vessels, are generally
contracted on a short- or long-term basis. If a crane vessel is bought, it is primarily done
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for providing installation capacity rather than as a resource for O&M. However, it is
predicted that as offshore projects increase in size, the economic rationale of having jack-
up barges permanently on site will increase [109]. Motherships and offshore platforms
are very new concepts, and contracting regimes for these types of vessels have therefore
not emerged yet. Helicopters are mainly sub-contracted through a specialist helicopter
operator, and it is unlikely that a wind farm owner would choose to buy one [109]. If
a vessel is ordered from a ship builder, there is often a long lead time from the order
is placed until the vessel is available to the owner. For chartering contracts, long lead
times can also be the case for complex and specialized offshore vessels like motherships
and crane vessels [91]. Most CTVs are highly available in the market and have short lead
times independent of the way they are acquired.

There are several advantages and disadvantages related to different ways of acquiring a
vessel. Dalgic et al. [39] compares three different chartering strategies for offshore wind
farms: spot market, short-term charter and long-term charter. In their study, they do not
take into consideration buying vessels, but this can be considered as a long-term charter
of 20 years, as the lifetime of a vessel is approximately 20 years. Their results are shown
in Table 2.1.

Table 2.1: Comparison of vessel chartering strategies, retrieved from [39].

Strategy Advantages Disadvantages

Spot market - Use vessel only after a failure - Potential limited certainty in
Min: 1 month of wind turbine occurs vessel availability
Max: 3 months - Select optimal vessel for each - High uncertainty in mobilisation

turbine failure time and costs
- Only use vessel when required - Day rates and mobilisation costs
- Maximum utilisation of vessel are likely to be very high

Short-term charter - Reduces risk of weather effect - Risk of low utilization in winter
Min: 3 months (if performed during summer) - In case of maintenance/supply
Max: 1 year - Reduce number of vessels being delays, risk of uncompleted/

chartered imperfect repairs
- Can be used across multiple sites

Long-term charter - Reduced mobilisation time and - Paying for vessel even when not
Min: 1 year costs being used
Max: 20 years - Eliminated risk of vessel - High initial investment

unavailability - Vessel not optimised for
- Increased operational control for individual sites

the offshore wind farm operator - A management team is required
- Cost vary less over lifetime to operate the vessel
- Can use across multiple sites - Repair and maintenance expenses
- Better planning may be added
- Stable costs - A port is needed

13



2.5 Technological Developments

The introduction of new technology in the industry provides great potential for cost re-
duction in O&M. Development and refinement of already existing technology, in addition
to the innovation and creation of new technology, affect both wind turbines and ves-
sels used for O&M. This section presents the most important technological developments
in turbine technology and vessel technology, and considers how these developments can
contribute to reducing the O&M costs.

2.5.1 Turbine Technology

Offshore turbine technology is relatively new. In accordance with the technology life
cycle, one can hence consider turbine technology to be in the ascent phase, and that the
technology will reach the maturity phase in the future. In general, studies show that more
mature turbine technology, which has been tested and developed over a longer period of
time, have lower failure rates than new, more immature, technology [119]. It can hence
be expected that as offshore turbine technology develops, reaching the maturity phase,
the need for corrective maintenance will decrease, leading to great cost reductions. In
addition, a more predictable demand for corrective maintenance might reduce O&M costs
further, as the need for vessels also becomes more predictable, making it easier to plan
the acquisition and utilization of vessels.

As the wind farms move further away from shore, where the weather is more beneficial
for power production, there has been a trend towards developing bigger turbines, as
discussed in Section 2.2. Statistical data show that larger (less mature) turbines have a
higher failure rate compared to smaller (more mature) turbines [119]. This can also be
seen in light of the technology life cycle, where the bigger turbines are in an earlier phase,
still requiring testing and further improvement before reaching a maturity phase where
the failure rate starts to decrease.

Wind turbine failures are related to large downtime costs, and continuous monitoring of
the wind turbines’ condition can play an important role in minimizing overall costs of
O&M [6]. Condition monitoring of turbines can be conducted manually by inspection or
automatically through a condition monitoring system (CMS). A CMS carry out differ-
ent measurements to provide the operator with data on the condition of various system
components [118]. As wind farms often experience low accessibility due to weather con-
ditions, technological developments that allow a wireless CMS to be used to monitor the
turbines, could reduce the cost of O&M [100]. Currently there are high costs related to
operating certain types of CMS, causing the monitoring costs to outweigh the benefits
from reduction in O&M costs [100]. If the cost of CMS technology is reduced in the
future, it could be worthwhile to invest more in monitoring technology to better predict
and plan maintenance.
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2.5.2 Vessel Technology and New Concepts

Improvement and availability of new technology affect the vessel design and building
choices that ship builders make. According to Marine Insight [83], technologies that
might affect the vessel industry in the future includes concepts like: shipbuilding robotics,
3D-printing technology and LNG fuelled engines. In a market outlook for the shipping
industry, DNV points at the offshore segment being the leading in employing new and
innovative technology [44]. This is due to the high demand for specialized vessels in this
segment.

One of the highest variable cost drivers for operating a vessel is fuel consumption. Tech-
nology and vessel concepts that can contribute to reducing fuel costs are therefore im-
portant to lower the overall operating costs of vessels. Such vessel technology includes
gas fuelled engines and hybrid propulsion systems. According to a market outlook from
DNV, it is expected that more than 1 out of 10 new-buildings until 2020 will be delivered
with gas fuelled engines. For hybrid propulsion systems, pilot projects for offshore ves-
sels indicate 15% fuel savings. According to DNV [131], hybrid propulsion systems are
most beneficial for vessels with large variations in power demand. Larger and specialized
O&M vessels fit into this category due to their high variation in power demand when
maintenance tasks are being performed.

Newer vessel concepts used for O&M are often specialized and custom made. If the
technology that is used today improves in terms of production costs and efficiency, this
can allow current vessel concepts to be sold at a cheaper price. Furthermore, development
of new technology can result in vessel concepts with capabilities not available today. As an
example, new technology could allow building vessels that can handle rougher weather,
and hence increase the accessibility of wind farms. Siemens recently released the first
purpose built Service Operation Vessel for the industry, which is a vessel that can handle
turbine access in wave height up to 2.5 m [110]. Another new concept is the Surface
Effect Ship, which uses air-cushions to stabilize wave motion. This makes the vessel able
to dock with offshore turbines in higher waves than what is possible today [133].

2.6 Costs of O&M

The cost of conducting maintenance at offshore wind farms can be divided into several
cost components, such as labour costs, material costs, vessels cost and revenue losses
due to production stops [39]. However, looking at the size of the cost components, the
cost of maintenance can mainly be seen as a trade-off between the cost of acquiring and
operating a fleet and the downtime cost. A complex and large fleet is significantly more
expensive to acquire and operate than a smaller fleet. However, such a fleet increases the
accessibility and availability of the wind farm, leading to a reduction in downtime cost. As
Figure 2.8 shows, an appropriate availability level of the wind farm must be found, where
the total maintenance cost is minimized through finding an optimal balance between
the lost revenue of production stops and the direct cost of O&M. These two major cost
components are discussed in the following subsections.
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Figure 2.8: Relation between direct cost of O&M and downtime cost, based on [109].

2.6.1 Downtime Costs

The downtime of a wind turbine is given by the amount of time the turbine has to be shut
down due to technical failures. The downtime costs are related to the loss of revenue from
power that could have been generated during the downtime periods. The downtime cost
can be described in terms of power output, electricity spot price, governmental subsidies
and total downtime.

A turbine attempts to capture as much of the wind’s power as possible and efficiently
convert it into electricity, while also protecting itself from damage [90]. The power output
of a turbine hence depend on the wind speed in the area and the technical capabilities of
the turbine. Depending on the turbine, production of electricity is related to a defined
cut-in, rated and cut-out wind speed as depicted in Figure 2.9. The turbine starts gen-
erating power at the cut-in wind speed, and from that point increase the power output
corresponding to the increased wind speed until it reaches the rated speed where the
power output stabilizes. At the cut-out wind speed, the turbine shuts down to avoid
damages [90].The technical capabilities, such as the turbine capacity, hence determine
how efficiently the wind speed can be utilized. The greater the capacity of the turbine,
the more power is generated in a period of time. Hence, the larger wind speed and
capacity, the larger the downtime cost is.

Figure 2.9: Power output for a 2 MW turbine, based on [90]
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Depending on the country, different schemes for governmental subsidies are available for
producers of electricity from renewable sources. The financial support is often given in
terms of a subsidy per kW of capacity installed, or a payment per kWh produced and
sold [82]. Two major strategies for subsidising offshore wind are outlined by EWEA:
an investment-focused strategy and a generation-based strategy [82]. In an investment-
focused strategy, financial support is given through investment subsidies, soft loans and
tax credits. This is usually measured per unit of installed capacity. In a generation-based
strategy, the financial support is either a fixed premium in addition to the electricity price,
or a fixed regulated feed-in tariff. The design of the subsidy scheme used is important to
the investors, as it affects their risk profile and cost of capital [112]. In the case where
a generation-based strategy with a fixed premium is used, the total revenue per kWh is
the spot price plus the subsidy. In this case, the subsidies hence affect the downtime cost
directly.

The electricity spot price contributes to the downtime cost, and the spot price at the
time of failure can therefore influence the decision of whether to prioritize to fix the
turbine quickly or not. Fluctuations in electricity spot prices are large, and the price
is influenced by several factors like time of the day, season and availability of different
ways of generating electricity [31]. The future outlook for energy prices is uncertain.
Trends in the energy sector point towards an increasing installment and use of unstable
renewable energy sources, with lower marginal cost of production than non-renewable
energy resources. Whether this will contribute to a generally higher or lower spot price
in a long-term perspective is highly uncertain. However, as an increasing amount of
renewable energy sources with unstable supply are connected to the grid, the volatility
of spot prices are expected to increase. This makes it even harder to predict short-term
spot prices in the future.

Given turbine power output, electricity spot prices, and subsidy schemes as described
above, the downtime cost can be summarized in the following equation:

Downtime Costs [e] =

Generated Effect [MW] ∗ (Spot Price + Subsidy)[e/kWh] ∗Downtime [hours]
(2.1)

where the generated effect is given as:

Generated Effect [MW] =
1

2
∗ ρ ∗ A ∗ v3 ∗ Cp (2.2)

where ρ is the air density [kg/m3], A is the swept area of the turbine blades [m2], v is
the wind speed [m/s], and Cp is the average power coefficient [-].
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2.6.2 Direct Costs of O&M

The direct cost of O&M mainly consists of the acquisition and operation costs of the
vessel fleet that is utilized to conduct maintenance. Studies show that the cost of vessels
make up 73% of total O&M costs today [39]. Reducing the cost of the vessel fleet can
therefore have a significant affect on overall O&M cost. The cost of owning and operating
a vessel fleet consists of fixed and variable costs. Among the fixed costs, the main costs
are related to acquiring the vessel. The variable costs of a vessel fleet are related to fuel
costs, labor costs, and costs of maintenance of the vessels.

Factors that influence the cost of acquiring vessels are: vessel type, vessel availability
in the market and the way the vessel is acquired. Charter rates are closely related to
the length of the contracting period, and chartering a vessel for a longer period of time
can decrease daily rates significantly, compared to chartering for a shorter period. This
is illustrated in Figure 2.10, where it is shown how the daily charter rate of a jack-up
barge vary for different lengths of contracting periods. The figure also illustrates that
a vessel’s capabilities to perform O&M tasks influence the charter price. Seasonality is
another factor that affects charter rates. As maintenance operations often are restricted
by rough weather conditions during winter, the charter rate for vessels decrease along
with the decreasing demand in this period. In summer, on the other hand, wind speeds
are lower and weather places less restrictions on performing maintenance. This leads to
an increased demand for vessels, and hence increased charter prices.

Figure 2.10: Daily charter rates for jack-up barges, based on [39].

As wind farms grow larger and are placed in closer proximity to one another, opportunities
for cost reductions in O&M appear. In projects like the Dogger Bank mentioned in Section
2.2, where several large wind farms are placed close together, O&M costs can be saved
through a joint fleet. A joint vessel fleet can lead to economies of scale through efficient
utilization of the fleet by sharing vessels between several wind farm owners. Especially
for complex and expensive ships, such as jack-up barges and AVs, sharing vessels between
several wind farms can lead to significant cost reductions.
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Chapter 3

Problem Description

In this thesis, the problem of determining an optimal fleet size and mix to execute mainte-
nance tasks at one or several offshore wind farms is studied. The problem is studied from
a strategic point of view with a planning horizon of 20-30 years, which coincides with the
lifetime of a wind farm. The objective is to make optimal long-term strategic decisions
that minimize costs. The main cost drivers of maintenance operations are related to the
costs of acquiring and operating the vessels in the fleet, and the downtime costs incurred
when turbines are shut down. The optimal fleet size and mix decision hence needs to
made while finding an appropriate balance between these cost components.

The decisions that have to be considered when approaching the problem studied, can be
divided into two types: long-term strategic decisions and short-term tactical decisions.
The strategic decisions include the initial decision of the fleet size and mix at the be-
ginning of a wind farm’s lifetime, as well as how and when to adjust the fleet through
long- and short-term chartering vessels over the course of the wind farm’s lifetime. The
decision-maker also needs to decide on the length of the charter contracts, the types of
vessels to charter, and where to locate the acquired vessels. The tactical decisions include
the deployment of the fleet to carry out maintenance tasks, and how to prioritize the dif-
ferent maintenance tasks given information about weather conditions and demand for
maintenance. When solving the problem, the main objective is to find the here-and-now
decision, which is the strategic decision regarding the initial fleet size and mix. The tacti-
cal decisions, as well as the future strategic decisions, are mainly relevant for supporting
the here-and-now decision.

An offshore wind farm consist of a number of identical turbines, with the same capacity
and size. A wind farm is located at a certain distance from shore, at a certain water
depth, and in varying weather and wind conditions. The weather conditions and distance
from shore affect traveling times and the accessibility to the wind farm(s). The water
depth restricts the operation of certain types of vessels. A wind farm owner can have
several wind farms placed in close proximity to each other, and can choose to conduct
maintenance collectively at several wind farms. The development of wind farms is often
conducted in stages, where a certain number of turbines are added to the wind farm in
every stage.
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The turbines at offshore wind farm(s) have a demand for maintenance that has to be
met by the wind farm owner. There are two different types of maintenance activities
that have to be executed at offshore wind farms: preventive maintenance and corrective
maintenance. Preventive maintenance is scheduled according to a periodic maintenance
strategy, and the demand is given by the number of turbines at the farm. The demand for
preventive maintenance is hence known with certainty at the beginning of the planning
period. Preventive tasks do not have to be conducted as scheduled, but if preventive tasks
are executed too often or too seldom, the costs of maintenance increases. In addition,
different types of unforeseen turbine failures might occur, which require different types of
corrective maintenance. The demand for corrective maintenance cannot be known with
certainty, but the probability of each type of failure can be forecasted. When unforeseen
failures occur, corrective maintenance should be conducted as soon as possible to keep
downtime cost low.

Different maintenance tasks have different requirements for resources, like spare parts,
time, heavy-lifting and crew. These requirements place restrictions on what types of
vessels that can be used to conduct different tasks, as the different vessel types can have
considerably different capabilities. Due to the varying requirements of maintenance tasks,
a vessel fleet used for maintenance usually consists of different vessel types. Different
vessel types also have different capabilities of handling rough weather conditions, which
places restrictions on the use of the vessels and accessibility of the wind farm. These
restrictions might lead to the need of postponing certain maintenance tasks until a proper
weather window occurs, reducing the availability of the wind farm. As the downtime cost
increases with the time it takes before an unexpected failure is repaired, the vessel fleet’s
capability of handling rough weather has direct consequences on downtime costs. Hence,
the more diverse and complex the fleet is, the more flexibility the wind farm owner has
to perform maintenance tasks and keep downtime costs low. However, such a fleet is
expensive to acquire and operate. A balance must therefore be struck between the cost
of the fleet and the availability of the wind farm(s).

The decision regarding which vessel types to acquire is done based on the capabilities of
the vessels and vessel charter prices. Different vessel types have different charter prices
and operational costs, and vessel types that have more advanced capabilities (e.g. operate
in higher wave heights, or transport more volume) are more expensive to acquire and
operate. The choice of how and when to acquire the vessels affects the costs. The yearly
charter cost decreases with the total length of the charter period and the availability of
vessels, and the possible charter lengths may vary between vessel types.

The decision regarding fleet size and mix is subject to a wide range of uncertainties that
affect the composition and size of the optimal fleet. On a strategic level, when seen
over many years, a wide range of uncertainties need to be considered: electricity prices,
technological developments, long-term charter rates and availability of vessels, the timing
of when new wind farms are built, and the size of the increments built. The potential
availability of new vessel concepts in the future introduces a trade-off between long-term
chartering today’s technology at a lower price, versus short-term chartering vessels today
to be able to acquire prospective new technology in a few years. On a tactical level,
the uncertain parameters include: electricity prices, weather conditions, charter rates of
vessels, and demand for corrective maintenance.
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Chapter 4

Literature Review

This chapter presents a review of relevant literature for the problem and solution methods
studied in this master thesis. As mentioned, the problem studied in this thesis deals
with the problem of deciding an optimal fleet size and mix for conducting maintenance
at offshore wind farms, a logistic problem within the field of O&M. For this reason,
previous work on logistic challenges related to O&M in offshore wind is reviewed in
Section 4.1.

The specific problem studied in this thesis is commonly referred to as a maritime fleet size
and mix problem (MFSMP) in the literature. MFSMPs appear in many industries and
comprise decisions on how many ships of each type to acquire in order to meet demand
of some type of service [105]. A vast amount of research have been conducted on these
problems. However, only a few MFSMPs for the offshore wind industry have been studied
previously in the literature. In order to get a thorough overview of MFSMPs, a review
of MFSMPs for other industries is presented in Section 4.2.

A common classification scheme widely applied to studies of logistics management within
operations research (OR), is to classify problems as strategic, tactical or operational,
according to the length of the planning horizon in the problem [123]. A MFSMP can be
classified either as a strategic or a tactical problem [105]. Strategic problems deal with
long-term decisions that sets the stage for tactical and operational decisions [29]. Within
offshore wind, these types of decisions often affect the wind farm for its entire lifetime
[123]. Tactical problems consider decisions which are updated more frequently [29]. This
classification is used throughout this thesis.

When considering MFSMPs with a long planning horizon, tactical decisions regarding
routing and scheduling often have to be considered in order to evaluate the quality of
strategic decisions [105]. Problems which consider decisions at more than one decision
level are often referred to as dual-level planning problems in the literature. As the problem
of this thesis consider decisions made on both strategic and tactical level, and hence
can be seen as a dual-level problem, some research on such problems is reviewed in
Section 4.3.

In addition to developing a model for the strategic MFSMP for O&M in offshore wind, an
objective of this thesis is to develop an appropriate solution method. MFSMPs have been
approached by a variety of solution methods in different papers, and some of these are
reviewed as problems are presented throughout the chapter. For a summarised overview
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of solution methods for MFSMPs, the reader is referred to [105]. In Section 4.4, some ap-
plications of heuristic solution methods for complex combinatorial optimization problems
are reviewed, with a focus on the metaheuristic used in this thesis.

4.1 Maintenance Logistic Problems in Offshore Wind

Several studies have been conducted for logistic problems within the field of O&M at
offshore wind farms. A recent contribution by Shafiee et al. [123] presents a literature
survey of maintenance logistics in the offshore wind industry per 2015. A total of 137
academic works are reviewed, and it is concluded that strategic maintenance logistic
problems have received most attention. Furthermore, the review shows that OR have
been applied to a vast amount of different maintenance logistic problems in offshore wind,
like spare parts management, maintenance strategy selection, transportation strategy
selection, and maintenance task scheduling. However, only a few of these are considered
to be within the scope of the problem studied in this thesis. For this reason, the following
section mainly focuses on previous work related to maritime transportation problems
within the field of O&M. This includes the tactical problems of routing and scheduling
maintenance vessels, and the strategic problem of how to acquire maintenance vessels
(MFSMP). However, to show some examples of the applicability of OR within the field
of offshore wind, some papers considering other types of maintenance logistic problems
are also reviewed. For a more thorough review and description of the mentioned papers,
the reader is referred to [123].

4.1.1 Maritime Transportation Problems

Within the field of offshore wind, only a few models for the problem of acquiring a
fleet for conducting maintenance have been developed. Gundegjerde and Halvorsen [63]
present a deterministic tactical MFSMP for offshore wind with a planning horizon of one
year. They study the decision of how many vessels to acquire, as well as whether to
use offshore stations or not, in order to meet a given maintenance schedule. The model
does, however, not consider the logistics of spare parts or the day-to-day utilisation of
the fleet [63]. In [64], Gundegjerde and Halvorsen extend this deterministic model, to a
three-stage stochastic model. The stochastic model accounts for uncertainty in vessel spot
rates, weather conditions, electricity prices and wind turbine failure rates. The model is
solved with an exact method, and their computational study shows that the stochastic
model performs significantly better than the deterministic model.

In a thesis by Vefsnmo [134], a strategic MFSMP for offshore wind is studied with a time
horizon of 25 years. The thesis presents a stochastic model for determining the optimal
number of vessels to be acquired, taking short-term uncertainty in turbine failures and
weather conditions into consideration. Furthermore, the model developed by Vefsmo
accounts for stepwise development of wind farms. A computational experiment shows
that the stepwise development of wind farms influence the optimal fleet, and hence is
beneficial to take into consideration. Uncertainty related to the realization of the planned
stepwise development of is not considered.
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A few papers have been written about the tactical decisions of maritime routing and
scheduling of maintenance vessels in offshore wind. Skaar presents a model for optimiza-
tion of routing and scheduling when performing maintenance at offshore wind farms [128].
The model allows maintenance technicians to be left at the wind turbines and be picked
up at a later time, giving a problem structure similar to a pickup-and-delivery problem.
Raknes et al. [116] study the tactical problem of routing and scheduling a given joint
vessel fleet to perform maintenance at multiple offshore wind farms. A deterministic
mixed-integer programming model (MIP) for finding optimal maintenance schedules and
vessel routes is presented. Furthermore, a rolling horizon heuristic is developed, which
solves the problem iteratively by LP-relaxing some parts of the planning period, and fix-
ing the solution for some of the variables that are not LP-relaxed. Their computational
study shows that the heuristic outperforms the exact solution method, both in terms of
solution time and solution quality. Dai et al. [38] also present a model for a routing and
scheduling problem for maintenance at offshore wind farms. Their model determines the
cost optimal assignments of turbines and routes to vessels.

4.1.2 Other Maintenance Logistic Problems

Some examples of strategic maintenance logistic problems in offshore wind studied in the
literature are: location and capacity of maintenance accommodations, selection of wind
farm maintenance strategy and outsourcing of maintenance services [123]. Rademakers et
al. [114] study the strategic problem of selecting a wind farm maintenance strategy. They
present two models for strategic O&M aspects of offshore wind farms. In their paper,
an optimized O&M strategy is presented, giving when and how to conduct maintenance.
Spare part availability, extreme weather conditions and crane availability is taken into
consideration. The models are used to find points of improving baseline, determine the
most cost effective weather windows and quantifying the uncertainties in downtime and
costs.

Another approach to strategic decision making in O&M is the Cost Estimator (OMCE)
developed at the Energy Research Centre of the Netherlands [115]. The OMCE-calculator
aims to help owners and decision-makers to better estimate and control the future O&M
costs. In a paper by van de Pieterman et al. [113], an investigation on the OMCE-
calculator’s potential for optimizing the maintenance strategy of a wind farm is pre-
sented, and the OMCE calculator is used to determine the optimal number of access
vessels needed. The study concludes that long waiting times for suitable weather win-
dows have a major influence on the downtime of the wind farm, leading to large revenue
losses. Furthermore, the study finds that equipment cost and revenue losses contribute
significantly to the total O&M costs.

Besnard et al. [14] present an optimization model that aims to support offshore wind
farm owners on strategic decisions, such as the location of maintenance accommodation,
the number of technicians, the choice of transfer vessel, and the use of a helicopter when
conducting O&M. Jin et al. [77] study the problem of outsourcing maintenance services.
They propose a mathematical model for minimizing O&M costs of wind turbines under
a performance-based service contract. In such a contract, a service provider commits to
ensure that the wind turbines meet a given availability goal.

Within the field of O&M at offshore wind farms, examples of tactical decisions are: the
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allocation of resources (e.g. vessels, technicians and crew) to maintenance activities,
scheduling of maintenance tasks, and spare parts inventory management. Lindqvist et
al. study a spare parts inventory management problem for wind farms in [86]. In their
master thesis, an optimization model is utilized to determine optimal stock levels and
reorder size for critical components.

4.2 Maritime Fleet Size and Mix Problems

The problem of determining the size and composition of a fleet is commonly referred to as
the fleet size and mix problem (FSMP). For land-based industry, a vast amount of models
have been proposed in published works. Hoff et al. give an extensive literature review
of these in [72]. However, land-based FSMPs are not directly applicable to maritime
industries, partly because capital costs are higher. In addition, MFSMPs are subject to
a higher degree of uncertainty than FSMPs, as the lifetime of ships are generally longer
than the lifetime of trucks [9]. Therefore, only FSMPs developed specifically for maritime
industries are reviewed in this literature study. A range of MFSMPs have been studied for
different maritime industries. As the research reviewed in this section consider MFSMPs
in other industries than O&M in offshore wind, their relevance is limited. For a more
thorough overview of literature related to MFSMPs, the reader is referred to a literature
survey presented by Pantuso et al. in [105].

As mentioned, when considering strategic MFSMPs with a long planning horizon, tactical
decisions regarding routing and scheduling often have to be considered in order to evaluate
the quality of long-term decisions. However, Hoff et al. [72] state that in strategic
MFSMPs, it typically does not make sense to include routing and scheduling aspects at
a very detailed level. Hence, pure routing and scheduling problems for other industries
than offshore wind has not been reviewed in this literature review. For interested readers,
ship routing and scheduling problems are reviewed by Christiansen et al. [30] and Ronen
[120].

4.2.1 Deterministic MFSMPs

The first publication on MFSMPs by Dantzig and Fulkerson [41] uses a linear program-
ming (LP) model to minimize the number of identical navy fuel oil tankers needed to meet
a fixed schedule of transportation. The problem has later been modified by Bellmore et al.
[13] to include a utility for each delivery, introducing the opportunity to cancel deliveries
by giving up the corresponding utility. Within the category of strategic MFSMPs, the
first contribution was the problem of composing the US merchant marine fleet, presented
by Everett et al. in 1972 [45]. A LP model is presented with the aim of determining
the best ship designs and sizes to purchase, in order to carry 15% of US foreign trade.
Another strategic MFSMP, for a Chinese coal shipping system, is presented by Zeng and
Yang [137], and seeks to optimize the fleet size and mix, as well as ship schedules. The
fleet design and ship routing decisions are solved simultaneously in an integrated model
by a two-phase tabu search algorithm. In the first phase, a tabu search is conducted
to find good ship designs. For each ship design, a second tabu search is conducted to
determine the optimal ship routing and objective value.
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In a paper by Sigurd et al. [127], the design of a sea-transport system between Norway
and Central Europe is formulated as a set partitioning model and solved by a heuristic
branch-and-price algorithm. The problem is decomposed into a master problem and a
pricing problem, where the master problem selects transportation routes with minimized
cost from a subset of feasible routes. The pricing problem is solved using delayed column
generation, generating new and improving routes until no improving routes can be found.
Murotsu et al. [97] study the strategic MFSMP for crude oil carriers. They combine
dynamic programming and non-linear programming as a solution method, and vessel
characteristics like size and speed are included as variables in the problem.

The earliest paper on tactical MFSPs, published by Schwartz in 1969 [122], presents an
integer programming (IP) model for the MFSMP of a barge line company. The objective
is to determine the number of barges and towboats of different sizes to be chartered in
and out in order to provide a service at minimum cost. Lai and Lo [84] consider the
optimal fleet size, routing and scheduling in a ferry network design problem. Their MIP
problem is solved by developing a two-phase heuristic algorithm, where the first phase
determines the set of feasible fleet size and routing paths, and the second phase evaluates
combinations of paths to search for solution improvements. Performance testing indicates
that the heuristic algorithm produces solutions within 1.3% of optimality.

Fagerholt and Lindstad [48] study the tactical MFSMP of determining which vessels to
use, and their optimal weekly schedules, to service offshore installations from an onshore
depot. The problem is solved by first generating a number of candidate schedules for
all vessels, and then solving an IP model. Only small instances are solved, and hence
all feasible schedules for the vessels are generated, making the solution method exact. A
similar problem is solved with a similar solution approach by Halvorsen-Weare et al. in
[67]. In their problem, aspects like spreads of departures and maximum and minimum
durations of voyages are included. A voyage-based solution method consisting of two
phases is suggested. A number of candidate voyages are generated in the first phase,
by defining all possible subsets of offshore installations and solving a traveling salesman
problem with multiple time windows for each subset. In phase two, the voyage-based
model is solved by choosing the most cost-effective supply vessels and the best pre-
generated voyages.

4.2.2 Stochastic MFSMPs

Only a limited number of publications on FSMPs consider uncertainty [135]. Hoff et.
al [72] state that one of the major critiques of today’s research on FMPS is the lack
of treatment of stochastic aspects, together with concepts of risk and robustness. The
amount of publications within MFSMPs accounting for uncertainty is also scarce. Among
37 publications surveyed by Pantuso et al. in [105], 27 consider planning in a deterministic
context. The remaining 10 papers consider stochastic parameters, but the majority of
these papers do this by replacing data with averages or extreme values in otherwise
deterministic models. When considering maritime transportation, rather few real world
problems can justifiably be considered deterministic. This is especially true for strategic
planning problems with a long planning horizon [105]. This calls for further research on
the use of stochastic approaches to MFSMPs.
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One of the most commonly used OR approaches for dealing with uncertainty is the
use of Stochastic Programming (SP). SP traces its roots back to 1955 when Dantzig
introduced the recourse model in [40]. In general, stochastic programs are generalizations
of deterministic mathematical programs, in which some data are not known with certainty.
SPs are characterized by features like: decisions being made in discrete time periods,
many decision variables having many potential values, having expected values in the
objective, and dealing with (partially) known distributions [20]. A severe amount of
research conducted on SPs contribute to the understanding of properties and the design
of algorithmic approaches for solving SPs [69]. For a thorough presentation of SPs, the
reader is referred to studies by Higle [69] and Birge and Louveaux [20].

Bakkehaug et al. use a SP approach to solve a strategic MFSMP for shipping companies
[9]. They study the problem of how and when to adjust the fleet to efficiently meet
transportation demand. A multi-stage SP model is proposed, where uncertainty in fu-
ture parameters linked to the market situation in maritime shipping are considered. This
includes parameters like: supply and demand of ships, vessel prices, demand of cargo
and operating costs. In the model, all uncertain parameters are assumed perfectly cor-
related, and simplified into one random variable describing the market situation. The
result from their study indicate that taking the inherent uncertainty of the problem into
consideration, through the use of SP, significantly improve fleet adjustments compared to
deterministic approaches. Pantuso et al. [107] also propose a SP model for the MFSMP
and apply it on a case from a liner shipping company. They consider uncertainty in:
building prices, secondhand prices, selling prices, charter rates, sunset values, scrapping
values, variable operating costs, and demands. Similarly to Bakkehaug et al. [9], Pantuso
et al. show that using a SP model gives tangible benefits compared to a deterministic
model. Furthermore, their study show that the importance of uncertainty diminishes in
markets with easier access to vessels and more standardized service frequencies.

In Meng and Wang [93], a tactical MFSMP for a container liner shipping company is
modelled using a stochastic approach to tackle demand uncertainty. The problem is
extended by Meng in [95] to include transshipment, and modelled as a two-stage stochastic
integer programming model. Alvarez et al. [1] present a robust MIP model for the
strategic MFSMP, with random variations in the selling and purchasing prices of ships.
The model is made to assist companies in modifying and deploying the fleet. Fagerholt
et al. [49] use a Monte Carlo simulation framework, built around an optimization-based
decision support system for tactical routing and scheduling, to solve a strategic MFSMP
for a Norwegian tramp shipping company. The model accounts for uncertainty at tactical
level in the timing and quantity of cargoes. The optimization model uses a rolling horizon
principle, revealing information as time goes by, making it possible to deal with stochastic
aspects. Shysou et al. [125] present the problem of finding a cost optimal number of
vessels to long-term charter for anchor handling operations, while considering uncertainty
in weather conditions. The authors use a discrete event simulation framework to evaluate
different fleet sizes. Halvorsen-Weare and Fagerholt [66] extend the deterministic model
from [67], presented in Subsection 4.2.1, and use simulation to ensure more robust routes
and fleet solutions with respect to uncertain weather conditions. Their results show
that the inclusion of robustness criteria, accounting for unforeseen events, gives higher
potential for improvements in costs, compared to the deterministic model.
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4.3 Dual-Level Problems

When solving a strategic optimization problem, decisions on tactical or operational level
often need to be considered in order to evaluate the quality of strategic decisions. This
is necessary as strategic decisions place restrictions on lower level decisions, and the
impact on lower level decisions hence must considered [80]. Accounting for both long-
term (strategic) and short-term (lower level) decisions in one model is challenging, as
these decisions often are made on different time scales: strategic decisions are often made
with several years in between, while lower level decisions are made more frequently i.e.
on a daily, weekly or monthly basis [80]. To complicate further, decisions at all levels may
be subject to uncertainty. Models that include decisions at more than one decision level
have many names in the literature, like hierarchical planning problems [106], multilevel
planning problems [53] and dual-level problems [80]. Inspired by [80], the the term dual-
level stochastic problem is used to refer to problems where uncertainty is accounted for
at more than one decision level, in the remaining chapters of this master thesis.

Several deterministic dual-level models, and dual-level models that consider uncertainty
at one decision level have been developed in the literature. In a paper by De Jonghe et al.
[78], planning models to optimize generation investments in electric power systems are
studied. The models presented in the paper integrate short-term responsiveness in a long-
term model, by using an equilibrium model and a representative profile for a one-period
deterministic model. Pesenti [108], studies the problem of how to purchase and deploy a
number of container ships to meet a certain customer demand. The deterministic model is
formulated as a three level hierarchical resource planning model, with strategic, tactical
and operational decisions being made at each level, respectively. The model is solved
with a heuristic solution method, where information is passed bottom-up and top-down
between the three levels in order to test and receive feedback on the decisions at different
levels. In [121], Schütz et al. present a dual-level problem for the Norwegian meat
industry. The problem is modeled as a two-stage stochastic problem, where uncertainty
in demand is considered at operational level. Sönmez et al. [129] study the strategic
investment decisions concerning technology and capacity choices, in liquefied natural
gas transport. The impact of using a stochastic simulation model for throughput at
operational level is discussed, and it is shown that operational flexibility is important to
cope with short-term variations and has significant impact on profitability when making
strategic decisions.

Only a few examples of dual-level stochastic models which considers uncertainty at more
than one decision level exist in the literature. Kaut et al. [80] argue that standard
modelling approaches, like traditional scenario tree-based SP models, are inappropriate
for dual-level stochastic problems. They argue that with such a modelling approach, it is
not obvious how to combine the different time scales without the model growing extremely
large in size. This issue has been addressed in different manners in the literature. Kaut et
al. [80] present a model for infrastructure-planning in the energy sector, which includes
strategic and operational decisions, both subject to uncertainty. They present a dual-level
optimization approach where important operational features are embedded directly into
the strategic decision model. This allows an immediate evaluation of potential strategic
solutions. The modeling approach is based on a new scenario tree structure, a dual-
level scenario tree, developed by the authors. The dual-level scenario tree separates
between strategic nodes for long-term decisions and operational nodes for short-term
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decisions, leading to a separation between strategic and operational scenarios. Since
strategic decisions typically do not depend directly on any particular operational scenario,
but rather on the overall performance in all operational scenarios, it is considered sufficient
to only branch between strategic stages, and the operational nodes are hence embedded
into their respective strategic nodes. An application of the same scenario tree structure
is presented by Hellemo et al. [68] for a problem in the natural gas industry. In both [68]
and [80], the dual-level stochastic model is only solved for some small instances by the
use of an exact solution method.

In Pantuso et al. [106], a similar modeling approach as in [80], named multistage hierar-
chical stochastic modelling, is developed for a dual-level stochastic MFSMP. The authors
distinguish between two types of decisions in their problem: aggregate level decisions
(ALDs), comprising the decision of which vessels to use and how to acquire them, and
detailed level decisions (DLDs) of deciding how to utilize the fleet to service customer
demand. Both ALDs and DLDs are subject to uncertainty. The authors show that if a
certain structural property can be identified in a dual-level stochastic model, the result-
ing stochastic program has block-separable recourse, as described by Louveaux in [88].
The property of block-separable recourse is beneficial, as it allows treating the multistage
dual-level model as a two-stage stochastic problem, where first-stage decisions represent
ALDs in all strategic nodes and second-stage decisions represent DLDs. For the structural
property to hold, it must be possible to distinguish a set of DLDs that has no influence
on future decisions of any kind, and hence can be forgotten once made.

Furthermore, Pantuso et al. [106] present a heuristic solution method for their problem.
The property of block-separable recourse is exploited to decompose the problem into a
master problem (MP) and many independent LP subproblems. A subset of the subprob-
lems are solved by an exact solution method, when necessary. The MP is solved by a
tabu search heuristic. In the tabu search, the type and number of ships to be acquired or
disposed of are adjusted dynamically in three phases. In the first phase, the fleet size and
mix is adjusted in the root node. In the second phase, the fleet size and mix is adjusted in
the rest of the tree. In the third phase, the size of the fleet is kept constant, while the mix
is adjusted again in the root node. The heuristic solution method is tested against the
deterministic equivalent problem (DEP) solved by a commercial optimization solver. The
results indicate that the heuristic solution procedure is less efficient than the commercial
solver for small instances, but significantly better for larger problem instances. Further-
more, the heuristic is able to generate solutions to test instances where the optimization
solver reaches memory limitations.

4.4 Heuristic Solution Methods

Heuristic solution methods are widely applied to complex combinatorial optimization
problems in the literature. The solution method developed for the problem studied in
this thesis is based on the metaheuristic Greedy Randomized Adaptive Search Procedure
(GRASP). This section therefore mainly focus on reviewing applications of GRASP in
the literature. A few examples of other metaheuristcs are included to show the moti-
vation behind applying metaheuristics as a solution method for stochastic optimization
problems.
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4.4.1 Metaheuristics for Stochastich Optimization Problems

Bianchi et al. [17] present a literature survey on metaheuristics used to solve stochastic
combinatorial optimization problems. They point out that due to the high complexity of
SP models, classical exact solution methods are often incapable of solving large instances
of the problems. Furthermore, they argue that approaches based on metaheuristics often
are capable of finding good, and sometimes optimal, solutions to instances of realistic
size within less computational time [17].

Several papers illustrate the benefits of applying metaheuristics instead of exact methods
to stochastic problems. In Gutjahr [65], a traveling salesman problem with stochastic time
windows is solved with both exact and heuristic methods. The exact method, complete
enumeration, solves instances with 10 customers in about 4 hours. In comparison, the
metaheuristics applied, Ant Colonization and Simulated Annealing, solve instances with
up to 20 customers in a few seconds. Gendrau et al. [58] compares the performance of
the integer L-shaped method and tabu search (TS) on a vehicle routing problem with
stochastic demands and customers, and conclude that TS is significantly faster. Costa et
al. compare the performance of branch & bound (B&B) and TS for solving a sequential
ordering problem with time constraints [37]. Their results show that the TS is much
faster than B&B, and that while the B&B is only able to solve instances with up to 14
causes, the TS solves instances with up to 500 causes.

4.4.2 Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start search procedure, in which each iteration consists of two phases:
construction and local search [117]. The metaheuristic was first introduced by Feo and
Resende in 1989 [50]. Several enhancements and hybridization with other methods like
tabu search, simulated annealing and genetic algorithms have since been proposed. For
an extensive overview of GRASP fundamentals, enhancements, hybridization and appli-
cations, the reader is referred to Festa et al. [52] and Resende et al. [117].

GRASP has been applied to find high quality solutions to a wide range of combinatorial
optimization problems, such as: power systems[18], set covering [51], scheduling [5], man-
ufacturing [11], optimization in graphs [8], location [42], assignment [89], transportation
[7], and inventory-routing [74]. Some examples of GRASP applications are elaborated on
here to illustrate its wide applicability and extensive use in the literature. To the authors
knowledge, no published research has applied GRASP on MFSMPs. Hence, GRASP
applications for other complex combinatorial optimization problems have been reviewed.
Furthermore, only one application of GRASP on stochastic problems is found in the lit-
erature in [74], hence most of the reviewed examples study deterministic problems.

The first application of GRASP was on the set covering problem arising when computing
the incidence matrix of Steiner triple systems [51]. In the construction phase of the
developed GRASP, a cover is constructed by selecting sets that covers the largest number
of yet uncovered elements. In the local search phase, the heuristic seeks to make the
constructed cover smaller by exchanging k-tuples of sets from the current cover with a p-
tuple (p < k) not yet in the cover. Computational results show that the GRASP quickly
produces the best known solutions for all instances considered [51].
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Argüello and Bard propose a GRASP to reconstruct aircraft routings in response to
groundings and delays experienced during a day. The objective is to minimize cost of
reassigning aircrafts to flights whenever a disruption in a schedule appear. In the GRASP,
neighbours of an incumbent solution are generated and evaluated, and the most desirable
neighbours are placed in a restricted candidate list. The results presented in the paper
demonstrate the ability of the heuristic to quickly explore a wide range of options, and
to produce optimal or near-optimal solutions [7].

Hvattum et al. [74] apply GRASP to a scenario tree based formulation of the stochas-
tic inventory-routing problem (SIRP). Only the construction phase is included in the
GRASP, while the local search phase has been left out. The solution is constructed it-
eratively, by increasing the amount of units to deliver to a customer in each iteration,
starting from zero delivery. Two versions of GRASP are implemented and tested on the
SIRP. In an any-node GRASP, insertions at all nodes in the tree are considered in each
iteration, leading to a large number of possible insertions. In order to reduce the num-
ber of possible insertions, a top-down GRASP is developed. In the top-down GRASP,
insertions are restricted to be done in a top-down fashion. All decisions in the root node
are made first, before continuing the construction node by node, recursively in the tree.
In a computational study, the performance of the GRASP heuristic is compared with
an exact solution method and several simple matheuristics implemented directly in an
optimization solver. The results show that the top-down GRASP performs best for the
tested SIRP instances.

Prais and Ribeiro [111] apply GRASP to a matrix decomposition problem arising in the
context of traffic assignment in communication satellites. Furthermore, they propose an
extension of the basic GRASP, called Reactive GRASP, in which the basic parameter
that defines the restrictiveness of the candidate list during the construction phase is self-
adjusted according to the quality of the solutions previously found [111]. Their results
show that the Reactive GRASP outperforms the basic GRASP algorithm for the problem
studied. Moreover, their results show that the Reactive GRASP is more robust, and that
calibration efforts are drastically reduced. The Reactive GRASP approach has later been
used for several other problems. Some examples are: power systems transmission planning
[18], job shop scheduling [19], single source capacitated plant location [42], strip-packing
[2] , and a combined production-distribution problem [22].

4.5 Our Contribution

As presented in this chapter, several studies have been conducted for MFSMPs. However,
only a few models have been developed for the MFSMP in offshore wind. Furthermore,
only a few of these models consider uncertainty. Among the few existing stochastic
models, only short-term tactical uncertainty has been accounted for. Studies on how to
capture both the strategic and the tactical uncertainties in one optimization model do,
to the authors knowledge, not exist for offshore wind.

This master thesis presents a new way to model the strategic fleet size and mix problem for
maintenance at offshore wind farms, by using a dual-level stochastic modelling approach.
The model accounts for uncertain parameters that has not yet been considered for this
problem, like uncertainty related to: technological development, stepwise development of
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wind farms, long-term trends in electricity prices, subsidies, and long-term trends in vessel
charter prices. Furthermore, a method for evaluating the added benefit of accounting for
both long- and short-term uncertainty by using a dual-level optimization approach is
developed.

Several heuristic solution methods for stochastic problems can be found in the literature,
but to the authors knowledge the only heuristic developed for a dual-level stochastic
model is the one presented by Pantuso in [106]. GRASP has, as mentioned, previously
only be applied to one stochastic problem, and has not yet been applied to any MFSMPs.
In this master thesis, a heuristic solution method based on GRASP is developed for the
dual-level stochastic MFSMP for maintenance at offshore wind farms.
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Chapter 5

Mathematical Model

This chapter presents the mathematical formulation of the Dual-Level Stochastic Fleet
Size and Mix Problem for Maintenance at Offshore Wind Farms (DLPOW). The model
was first developed in the authors specialisation project [23]. The assumptions that lie
at the basis of the formulation is presented in Section 5.1. A detailed explanation of
the indices, sets, parameters and decision variables used in the formulation is given in
Section 5.2. The mathematical model is presented in detail in Section 5.3.

5.1 Assumptions

In this section, the underlying assumptions for the mathematical formulation are outlined.
In the first part of this section, the problem structure and uncertain parameters are
explained. In the second part, the assumptions related to charter agreements, vessels,
maintenance tasks, wind farms and downtime cost are explained.

5.1.1 Problem Structure

As described in Chapter 3, the aim of this master thesis is to study the fleet size and
mix problem in offshore wind from a strategic point of view, using decisions at tactical
level to evaluate the quality of strategic decisions. Formulating a model for this problem
is challenging due to combination of different time scales: while the strategic decisions
of fleet size and mix have time horizons of many years, the tactical deployment decisions
are made on a daily or weekly basis. In addition, decisions on both planning levels are
subject to uncertainty. This introduces the issue of how to capture both time scales
in one optimization model, while also accounting for uncertainty at both strategic and
tactical level. As mentioned in Chapter 4, Kaut et al. [80] present an approach for
modeling problems that combine decisions with different time-scales while accounting for
uncertainty. Their approach is to use a dual-level optimization model where the tactical
scenarios are embedded directly into the strategic decision model.

The structure of the mathematical model for DLPOW is based on the dual-level scenario
tree presented by Kaut et al. in [80]. The general structure of the scenario tree used to
model the DLPOW is depicted in Figure 5.1, where the strategic nodes represent points
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in time where strategic decisions are made. The strategic nodes are modelled with a
set of embedded tactical scenarios for each season. The seasons have been introduced in
order to capture seasonal differences in aspects like weather conditions, charter rates and
electricity prices. Each tactical scenario contains a set of periods which denotes the time
interval between two consecutive time-discretisation points. Tactical decisions are made
in each period.

Figure 5.1: Problem structure of the DLPOW, inspired by [80].

The strategic decisions in the DLPOW are to decide how many vessels of each type to
long-term charter, where to locate the vessels, and how long the chartering periods should
be. For each season related to a strategic node, a decision on the amount of vessels to
short-term charter in and out in each season must be made. These decisions are made
with the same information as in the strategic nodes, and can hence be seen as strategic
decisions. In the tactical scenarios, a recourse of the decision on fleet size and mix finds
the optimal deployment cost of the fleet. In the mathematical formulation, the tactical
problem of deployment is modelled on an aggregated level, and is primarily meant to
support the strategic here-and-now decision.

As a consequence of the scenario tree structure used, an assumption is that the strategic
uncertainty realized between the strategic nodes are independent of the tactical uncer-
tainty realized in the tactical scenarios. This means that no strategic decision made in a
strategic node is dependent on tactical decisions made in a tactical scenario. If the oppo-
site was true, it would not be possible to model the problem with a single strategic node
following two or more tactical scenarios. Additionally, the model assumes that the first
tactical decision in a strategic node does not depend on the last tactical decision from
the previous period in the proposed structure. Hence, there is no connection between
tactical scenarios of two consecutive strategic nodes.

The model for DLPOW captures decisions being made on different time scales, and
assumes that the time between strategic and tactical decisions are different. For the
strategic decisions conducted in the strategic nodes, the time between each decision is
given in years. The number of years between each node can vary depending on where
you are in the planning horizon. This gives the modeller flexibility in the frequency of
strategic decisions. All strategic nodes at the same stage in the tree represent a strategic
scenario in the same year. The parameter t(n) denotes the year of each node, and the
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number of years between two strategic nodes a and b is t(a) − t(b). In the remaining
text, this value is referred to as the duration of the strategic node a. All leaf nodes in the
scenario tree are assumed to have the duration of one year. The tactical scenarios are,
as mentioned, composed of a number of periods. Each period represents one day in the
planning horizon, hence tactical decisions are made on a daily basis.

5.1.2 Uncertainty

For the strategic nodes, the uncertain parameters included in the model are: technological
development of vessel concepts, stepwise development of wind farms, trends in electricity
and vessel prices, and governmental subsidies. These strategic uncertainties are long-
term, and new information is revealed with one to several years in between. The realized
electricity price and vessel price can differ between the seasons of a strategic node. For the
tactical scenarios, the short-term uncertain parameters are weather conditions, and the
frequency and timing of turbine failures, giving the demand for corrective maintenance.
These parameters differ from day to day, and are assumed to be known for all periods in
a tactical scenario at the beginning of the respective tactical scenario. A timeline that
depicts the decision structure in relation to new knowledge is shown in Figure 5.2.

Figure 5.2: Timeline of decision structure in relation to new knowledge.

5.1.3 Charter Agreements

The here-and-now decision in the DLPOW is to decide an initial fleet at the beginning of
a wind farms lifetime. For this reason, the mathematical model assumes that the decision-
maker has zero vessels at the beginning of the planning horizon. When making decisions
regarding long-term charter, the decision-maker needs to decide how many vessels of each
type to charter, and how long the charter length for each vessel should be. The model
assumes that the possible long-term charter lengths span from 1 to 25 years. Not all

34



vessels can be chartered for all of the given charter lengths, and each vessel type v has
a given set of possible lease expiration times, Lnv, when chartered in a strategic node
n. The index l∈Lnv gives an expiration time, which is the time t(k) of the node(s) k
in which the vessel of type v leaves the fleet if chartered in node n. It is assumed that
the vessel leaves the fleet at the beginning of year t(k). If a vessel is not available in the
market in a node n, Lnv = ∅. In this way, the formulation models new vessel concepts
appearing in different years and strategic scenarios.

Harbours and offshore stations do not have different lease lengths, as it is assumed that
they can only be acquired for the whole planning horizon or not at all. This implies that
if a harbour or offshore station is used at any point in time during the planning horizon,
the total cost of acquiring and operating the station throughout the planning horizon
is incurred. For short-term chartering, the model assumes that the only possible lease
length is to charter for an entire season. The decisions that have to be made regarding
short-term chartering are hence only how many vessels of each type to short-term charter
in or out for a given season. The actual lease length is not a part of the decision. However,
considering that not all vessel types are available in the market at all times, only vessel
types for which Lvn 6= ∅ can be short-term chartered.

5.1.4 Vessel Types

In the mathematical formulation, a vessel type can be either a ship vessel type or a
helicopter vessel type. The different vessel types are defined by the capabilities: crew
capacity (number of people), capacity of transporting parts (tonnage), wave limit (m),
wind limit (m/s), speed (knots), lifting capacity (tonnage), maximum operation time
(man-hours/day), utilization ratio, occurrence in market (year) and origin (harbour or
offshore station). Each vessel type belongs to a specific harbour or offshore station that
has a given distance to each wind farm. This implies that a vessel that is stationed at at
harbour or offshore station 1 is a different vessel type than a similar vessel with the same
capabilities stationed at harbour or offshore station 2. For each vessel type, its respective
capabilities determine which types of maintenance tasks it can perform, and how long and
under which weather conditions the vessel can operate on a given day. The crew capacity,
MCREW

v , is used to calculate the amount of man-hours that a vessel type can perform
maintenance at a wind farm. It is assumed that if a vessel type can transport MCREW

v

people, this amount of people will always be available for conducting maintenance when
the vessel type is used. Ab utilization ratio is used to give the degree to which a vessel
type can conduct maintenance tasks in parallel. If this ratio is set to 1, maintenance
tasks can be performed in parallel without any time being lost between tasks. If the ratio
is set to 1/MCREW

v , tasks can only be done in sequence. The utilization ratio can also
be seen as a measure of how many hours the crew on a vessel work efficiently, out of the
hours the vessel spend at a wind farm.

5.1.5 Vessel Cost Structure

In the mathematical formulation, the cost of long-term chartering a vessel depends on
the type of vessel to be acquired, the time the chartering agreement is made, and the
length of the lease. Vessels that are able to operate in harsher weather conditions and
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conduct more complex maintenance tasks are assumed to be more expensive to charter
than simpler vessels. Furthermore, long-term chartering of vessels is assumed to have a
declining yearly cost with the length of the charter. As an example, a chartering contract
of 10 years has a lower yearly charter cost than a similar contract of 5 years. In the
model, the chartering costs of different vessel types may vary with the year (strategic
node) the charter agreement is made. This is included to account for the introduction of
new technology and vessel concepts, and gives the opportunity to model long-term trends
in vessel charter rates. For example, one can assume that certain vessels are generally
cheaper to charter 15 years from now due to technological advances and a declining price
trend in the market. In addition, as vessels get older, the maintenance cost of a vessel
generally increase, which may result in lower charter prices for older vessels.

For short-term chartering of vessels, the chartering cost is given by the market price of the
vessel type in a season. The short-term charter prices vary with the season and demand
in the market, but do not vary with lease length. Also for short-term chartering rates,
the model can handle trends showing a decline or increase in charter rates. Furthermore,
the model assumes that the decision-maker can decide to short-term charter out vessels
from the fleet. Only the vessels that are chartered in to the fleet with a long-term charter
contract can be chartered out, and these vessels can only be chartered out on a short-
term basis. The revenue from short-term chartering out vessels during a specific season
are given by the prices in the market. However, due to commission fees, the revenue
retrieved per vessel chartered out is assumed lower than the cost of chartering in the
same vessel.

The variable cost of using each vessel type is calculated per man-hour that the vessel
type is performing maintenance tasks, and travelling to and from wind farms. The
hourly variable cost includes costs related to fuel, crew and labour. The variable costs
apply to all vessels in the fleet that are deployed in a given period, both the long-term
chartered and the short-term chartered vessels. Fixed costs are, on the contrary, assumed
to only apply for the vessels that are chartered with a long-term lease. For the vessels
with a short-term lease, the fixed costs are assumed to be included in the charter price
of the vessel. The fixed costs includes costs related to insurance and vessel maintenance.
The model assumes that the decision-maker does not have any budget restrictions when
making the charter decisions.

5.1.6 Wind Farms and Maintenance Tasks

To model that a wind farm can be developed through stepwise increments, each step of
the development can be modelled as the addition of a new wind farm located at the same
place as a current wind farm. In this way, a large wind farm can be seen as a cluster of
smaller wind farms with the same distance to a given harbour or offshore station. At the
beginning of the planning horizon, there are uncertainties related to the realization of the
planned developments. Both the timing and the size of a stepwise increment of a wind
farm may differ from the plan. Due to this uncertainty, the set Fn is used to indicate
whether a given wind farm exists in a strategic node n. All turbines in a wind farm are
assumed to be of the same type, and hence have the same capacity and generated power
output during a day.
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A maintenance task is one specific task which is to be conducted at one wind farm during
the duration of a tactical scenario. A specific maintenance task takes a certain number of
man-hours to conduct, and requires a certain amount of resources like crew, spare parts
and lifting capacity. In addition, every maintenance task occurs in a specific period, which
is the point in time when a failure on the turbine appeared. is given with a period of
occurrence. A task can be either preventive or corrective. The number of preventive tasks
to be conducted at each wind farm is assumed to only depend on the number of turbines
at the wind farm, and is assumed known at the beginning of the planning horizon. All
preventive tasks hence occur in the first period of a tactical scenario. The total demand for
preventive maintenance in each strategic node, however, is uncertain due to the concept
of stepwise development of wind farms. The demand for corrective maintenance is not
known at the beginning of the planning horizon. This demand is revealed in the beginning
of a tactical scenario. Preventive maintenance tasks can be conducted in any period
during a tactical scenario, and corrective maintenance tasks can be conducted in any
period after its occurrence. However, delaying corrective maintenance with many periods
leads to large downtime costs, as described in the following subsection, and corrective
maintenance should therefore be conducted as quickly as possible.

Since the demand for corrective maintenance is uncertain, some tactical scenarios may
have an abnormally high demand for maintenance. If all maintenance tasks must be
conducted, the wind farm owner may be forced to acquire an unrealistically large fleet
to be able to fulfill the demand in such scenarios. To avoid this effect, a penalty cost
has been introduced, related to not conducting a maintenance task. A binary variable
is used to make the constraints that force all maintenance tasks to be conducted soft,
and is set to one if a specific task is not conducted. The binary variable and penalty
cost is added to the objective function, giving the wind farm owner a trade-off between
acquiring a large fleet to be able to fulfill even the highest demand scenarios, or acquiring
a smaller fleet, and paying a penalty cost when the fleet renders insufficient for serving
all maintenance demand.

5.1.7 Downtime Costs

In the mathematical model, the costs of downtime related to conducting both corrective
and preventive maintenance tasks are included. As discussed in Subsection 2.6.1, the
main factors that influence downtime costs are: electricity price and subsidy scheme,
wind speed, turbine size, turbine efficiency, and time of failure relative to the time of
maintenance execution.

For preventive maintenance, the downtime is assumed to be equal to the sum of opera-
tional hours that one or several vessel(s) use to conduct a preventive task. It is assumed
that it is necessary to shut down the turbine during all kinds of preventive maintenance.
The hourly downtime cost of preventive maintenance is given by a step function, using
a uniform time-discretisation. Each time interval has the length of one day, implying
that wind speeds and electricity prices are assumed constant during one day. The daily
generated power output is shown in Figure 5.3(a), and is calculated based on the realized
wind speed that day. The daily generated power output of a turbine is used to calculate
the hourly downtime cost on a given day, as illustrated in Figure 5.3(b).
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(a) Daily generated power output given real-
ized wind speed

(b) Daily downtime cost per hour for preventive
maintenance

(c) Accumulated downtime cost for corrective
maintenance

Figure 5.3: Example of downtime costs for a 4 MW turbine.

For corrective maintenance, the length of the downtime is modelled as the number of
days from the failure occurs until it is corrected. For each day corrective maintenance
is delayed, the full downtime cost of that day is incurred. The downtime cost is hence
accumulated from the point of failure until the corrective maintenance task is completed,
as shown in Figure 5.3 (c). To model the downtime cost of corrective maintenance, the
parameter CDTC

nqspfm is used. This parameter gives the cost of waiting until period p to
complete a corrective maintenance task m, which occurred in an earlier period at wind
farm f . A binary variable is used to handle whether a corrective maintenance task is
completed in period p or not.
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5.2 Definitions

Lower-case letters are used to represent decision variables and indices, while capital let-

ters represent constants and sets.

Indices:

n Strategic node.

q Season type.

s Tactical scenario.

p Period.

f Wind farm.

m Maintenance task.

v Vessel type.

d Harbour or offshore station.

l Lease expiration time.

k Type of restricting weather condition.

Sets:

N Set of strategic nodes, N : {1, ..., |N |}.
An Set of ancestor nodes of node n, where An ⊆ N .

Q Set of season types, Q : {Summer,Winter}.
Snq Set of tactical scenarios in node n, season q, Snq : {1, ..., |Snq|}.
Pnqs Set of periods in tactical scenario s, of node n, season q, P : {1, ..., |Pnqs|}.
V Set of vessel types, V : {1, ..., |V |}.
Vd Set of vessel types that belong to a harbour or offshore station d, where Vd ⊆ V .

Vm Set of vessel types able to conduct maintenance task m, where Vm ⊆ V .

Fn Set of wind farms that exist in node n, Fn : {1, ..., |Fn|}.
Mnqsf Set of maintenance tasks to be conducted at wind farm f in node n,

season q, scenario s, Mnqsf : {1, ..., |Mnqsf |}.
MPREV

nqf Set of preventive maintenance tasks to be conducted at wind farm f in node n,

season q, where MPREV
nqf ⊆Mnqsf .

MCORR
nqsf Set of corrective maintenance tasks to be conducted at wind farm f in node n,

season q, scenario s, where MCORR
nqsf ⊆Mnqsf .

D Set of harbours and offshore stations, D : {1, ..., |D|}.
Ln Set of possible lease expiration times when chartering is conducted in node n,

Ln : {t(n+ 1), ..., t(N)}.
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Lnv Set of possible lease expiration times for vessel of type v being chartered in

node n. The lease expiration times are given as the year during the planning

horizon in which the vessel lease expires. The vessel will leave the fleet at the

beginning of this year. Lnv ⊆ Ln.

K Set of restricting weather conditions, K : {1, ..., |K|}.

Parameters:

CTC
nvl Total charter cost of a vessel of type v long-term chartered in node n with

lease expiration l.

CF
nv Fixed cost for vessel of type v in node n.

CD
d Total cost of using harbour or offshore station d.

CV
v Variable cost per man-hour of operating a vessel of type v.

CDTP
nqspf Downtime cost per hour of conducting preventive maintenance at wind farm f

in period p, in node n, season q, scenario s.

CDTC
nqspfm Downtime cost of corrective maintenance task m at wind farm f , when the task

is finished in period p, in node n, season q, scenario s.

CP
m Penalty cost of not conducting maintenance task m.

CST
nqv Cost of short-term chartering in a vessel of type v in node n, season q.

Rnqv Revenue of short-term chartering out a vessel of type v in node n, season q.

Zn Discount rate in node n.

BS
n Probability of strategic node n.

BT
nqs Probability of tactical scenario s in node n and season q.

MD
d Maximum capacity at harbour or offshore station d.

Gvd Amount of capacity one vessel of type v needs at harbour or offshore station d.

TMm Man-hours needed to perform maintenance task m.

T Tfv Transit time of a vessel of type v for travelling back and forth to wind farm f .

TMAX
v Maximum operation time for a vessel of type v in one period.

Ev Utilization ratio of man-hours during maintenance execution with a vessel of

type v.

MCREW
v Maximum size of crew at a vessel of type v.

MK
vk Weather capabilities k of a vessel of type v.

Unqspk Value of weather type k in node n, season q, scenario s, period p.

t(n) Time of node n.

a(n) Ancestor of node n.
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Decision variables:

xnvl Number of vessels of type v long-term chartered in node n with expiration

time l.

wnv Number of long-term chartered vessels of type v in the fleet in node n.

yINnqv Number of vessels of type v short-term chartered in, in node n, season q.

yOUTnqv Number of vessels of type v short-term chartered out, in node n, season q.

unqspfv Number of vessels of type v that operates on wind farm f in node n, season q,

scenario s, period p.

tnqspfmv Amount of man-hours vessels of type v use to conduct maintenance task m at

wind farm f in node n, season q, scenario s, period p.

γnqspfm Binary variable. 1 if corrective maintenance task m on wind farm f is

conducted in node n, season q, scenario s, period p. 0 otherwise.

βnqsfm Binary variable. 1 if maintenance task m occurring at wind farm f , in node n,

season q, scenario s is not conducted. 0 otherwise.

δd Binary variable. 1 if harbour or offshore station d is used. 0 otherwise.
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5.3 The Dual-Level Stochastic Model

A stochastic node formulation of the DLPOW is presented in detail in this section. The
objective function is presented first, followed by the constraints. A plain version of the
model is presented Appendix A.

5.3.1 Objective Function

min z =
∑
n∈N

∑
v∈V

BS
n

Zn

(∑
l∈Lnv
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nvlxnvl + CF

nvwnv +
∑
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nqvy

IN
nqv −Rnqvy
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)
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+
∑
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∑
m∈Mnqsf

CP
mβnqsfm

 (5.5)

The objective function z minimizes the total cost of conducting maintenance tasks through-
out the planning horizon. The first term of (5.1) gives the total charter cost of all long-
term chartered vessels. The second term of (5.1) gives the fixed cost of all vessels that are
in the fleet in a given node n. The third term of (5.1) gives the short-term charter costs
of the vessels chartered in, while the fourth term gives the short-term charter revenue of
the vessels chartered out, in each season. Part (5.1) is discounted with a discount factor
to express the present value of future costs, and multiplied with the probability of going
through each strategic node. Part (5.2) gives the total cost of using harbours and/or
offshore stations. Part (5.3) gives the variable operating cost for all the vessels deployed.
The first term gives the variable cost of using vessels to conduct maintenance tasks, while
the second term gives the cost of transit between wind farms and vessel origins. Part (5.4)
gives the downtime costs due to production stops. The first term gives the preventive
downtime cost, while the second term gives the corrective downtime cost. Part (5.5)
gives the penalty cost of not conducting maintenance tasks. All the parts (5.3) – (5.5)
are discounted and multiplied with the probability of ending up in tactical scenario s of
season q and node n.
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5.3.2 Constraints for Strategic Nodes

Fleet balance
The number of long-term chartered vessels in the fleet in node n, is the number of vessels
long-term chartered in the node, plus the existing fleet from the direct ancestor node a(n),
minus the vessels whose lease expire in n. This is handled in Constraints (5.6).∑

l∈Lnv

xnvl + wa(n)v −
∑
n′∈An

xn′vt(n) = wnv, n∈N\{1}, v∈V (5.6)

Constraints (5.7) handle the fact that the decision-maker has no initial fleet in the first
node. Hence, in this node, the number of long-term chartered vessels in the fleet is equal
to the number of vessels long-term chartered in this node.∑

l∈Lnv

xnvl = wnv, n = 1, v∈V (5.7)

Chartering out
To ensure that the decision-maker does not charter out vessels she does not possess,
Constraints (5.8) state that the number of vessels of type v chartered out in node n,
season q, cannot exceed the amount of such long-term chartered vessels available in the
fleet in node n.

yOUTnqv ≤ wnv, n∈N, q∈Q, v∈V (5.8)

Offshore stations
Constraints (5.9) ensure that the capacity required by the vessels in the fleet belonging
to harbour or offshore station d does not exceed the total capacity of this harbour or
offshore station. If any vessel type belonging to harbour or offshore station d is chartered
during the planning horizon, the corresponding harbour or offshore station is used and
the cost of using it needs to be accounted for in the objective.

∑
v∈Vd

Gvd(wnv + yINnqv) ≤MD
d δd, n∈N, q∈Q, d∈D (5.9)

5.3.3 Constraints for Tactical Scenarios

Maintenance demand
During the duration of a strategic node, the demand for preventive and corrective main-
tenance tasks must be met. Constraints (5.10) ensure that if a maintenance task is
conducted, the number of man-hours used to conduct the maintenance task must be at
least the number of man-hours required to conduct task m. If not, the task is assumed
to not be conducted at all.∑

p∈Pnqs

∑
v∈Vm

tnqspfmv ≥ TMm (1− βnqsfm), n∈N, q∈Q, s∈Snq, f∈Fn,m∈Mnqsf (5.10)
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Operation time
The amount of man-hours that a vessel of type v operates on a wind farm f during a
period, must be smaller than the maximum man-hours available for this vessel type during
one period. The maximum man-hours for a vessel type is calculated as the utilization
ratio of man-hours multiplied with the crew capacity of the vessel type, multiplied with
the maximum operation time for the vessel, minus the transit time of the vessel to wind
farm f . As several vessels of the same type may operate on a wind farm, the maximum
operation time of a vessel type is multiplied by the number of vessels of that type operating
on a wind farm in a period. Constraints (5.11) handle this.∑

m∈Mnqsf

tnqspfmv ≤ EvM
CREW
v (TMAX

v − T Tfv)unqspfv,

n∈N, q∈Q, s∈Snq, p∈Pnqs, f∈Fn, v∈Vm. (5.11)

The sum of all vessels operating at a wind farm f in period p, in addition to all vessels
not in use, needs to be equal to the size of the fleet. Constraints (5.12) determine the
number of each vessel of type v located at each wind farm, or at its origin 0, in each
period.∑

f∈{0}∪Fn

unqspfv = (wnv + yINnqv − yOUTnqv ), n∈N, q∈Q, s∈Snq, p∈Pnqs, v∈V (5.12)

Weather
Constraints (5.13) ensure that no vessel type can operate in a period if its weather
capabilities are exceeded by the realised weather conditions in that period.

(MK
vk − Unqspk)

∑
m∈Mnqsf

∑
f∈Fn

tnqspfmv ≥ 0, n∈N, q∈Q, s∈Snq, p∈Pnqs, v∈Vm (5.13)

These constraints can be handled by prepossessing the input data, but are given here
explicitly for completeness of the model.

Timing of corrective maintenance
For corrective maintenance tasks, the downtime costs are calculated based on when the
tasks occur and when they are completed. Constraints (5.14) find the time at which each
maintenance task is completed. The constraints ensure that when γnqspfm related to task
m is set to 1 in a period, the task has been completed and no further time can be spent
on the task in the following periods.∑

p′={(p+1),...,|Pnqs|}

∑
v∈Vm

tnqsp′fmv ≤ TMm (1− γnqspfm),

n∈N, q∈Q, s∈Snq, p∈Pnqs, f∈Fn,m∈MCORR
nqsf (5.14)
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Constraints (5.15) give the convexity constraints for γnqspfm, and ensure that if a correc-
tive maintenance task is conducted, it is completed in a specific period. If this is not the
case, the task is not finished, and the variable βnqsfm, which enforces the penalty cost, is
set to 1.

∑
p∈Pnqs

(γnqspfm + βnqsfm) = 1, n∈N, q∈Q, s∈Snq, f∈Fn,m∈MCORR
nqsf (5.15)

Non-negativity, integrality and binary constraints
Constraints (5.16) – (5.24) impose non-negativity, integrality, and binary constraints on
the respective decision variables. As all chartering is done in strategic nodes, Constraints
(5.16) – (5.19) and (5.24) apply to strategic nodes. The remaining consraints apply to
the tactical scenarios. For short-term charter, only vessels available in the market can be
charted. This is handled by constraints (5.18).

xnvl ≥ 0 and integer, n∈N, v∈V, l∈Lnv (5.16)

wnv ≥ 0 and integer, n∈N, v∈V (5.17)

yINnqv ≥ 0 and integer, n∈N, q∈Q, v∈V |Lnv 6= ∅ (5.18)

yOUTnqv ≥ 0 and integer, n∈N, q∈Q, v∈V (5.19)

unqspfv ≥ 0 and integer, n∈N, q∈Q, s∈Snq, p∈Pnqs, v∈V, f∈Fn ∪ {0} (5.20)

tnqspfmv ≥ 0, n∈N, q∈Q, s∈Snq, p∈Pnqs, v∈Vm, f∈Fn,m∈Mnqsf (5.21)

γnqspfm∈{0, 1}, n∈N, q∈Q, s∈Snq, p∈Pnqs, f∈Fn,m∈MCORR
nqsf (5.22)

βnqsfm∈{0, 1}, n∈N, q∈Q, s∈Snq, p∈Pnqs, f∈Fn,m∈Mnqsf (5.23)

δd∈{0, 1}, d∈D (5.24)
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Chapter 6

Solution Methods

Several examples from the literature show that exact solution methods often are incapable
of solving large problems instances of complex stochastic optimization problems, and that
approaches based on metaheuristics often outperform exact solution methods for these
types of problems. The DLPOW is formulated with a dual-level stochastic modelling
approach, which results in a rapid growth in problem size. For this reason, it is expected
that the use of a standard optimization solver directly on the mathematical formulation
only is applicable for small instances. In order to solve real-life instances of the problem
within a reasonable amount time, a metaheuristic has been developed for the DLPOW.
In this chapter, the metaheuristic and its main features are presented.

6.1 A Metaheuristic for the DLPOW

The metaheuristic developed to solve the DLPOW is a Greedy Randomized Adaptive
Search Procedure (GRASP), with an embedded Greedy Tactical Heuristic, that takes ad-
vantage of the structural properties of the problem. The heuristic developed for DLPOW
is mainly inspired by the previous work of Pantuso et al. [106], Resende et al. [117],
Hvattum et al. [74] and Prais et al. [111].

GRASP is an iterative metaheuristic for solving combinatorial optimization problems.
Traditionally, each iteration consists of two phases: construction and local search [117].
In the construction phase, a feasible solution is built from scratch through making greedy
choices. In order to generate different solutions in each iteration, the procedure includes
some randomness when making these greedy choices. During the construction of a solu-
tion, the possible choices that can be made are updated as the solution evolve. This makes
the procedure adaptive. In the local search phase, the neighborhood of the constructed
solution is investigated until a local minimum is found [117]. In the GRASP developed
for the DLPOW, the local search phase has been left out. As mentioned in Chapter 4,
Prais et. al propose an extension of the basic GRASP, called Reactive GRASP, in which
one of the basic parameters used in the construction phase is self-adjusted with respect
to historically good values. Inspired by this, a reactive extension has been implemented
in the GRASP developed for DLPOW. The embedded Greedy Tactical Heuristic is based
on the concept of a simple greedy heuristic. A greedy heuristic is a construction heuristic
that constructs solutions based on a myopic evaluation criteria [73].
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As presented in Chapter 4, Pantuso et al. show that if a dual-level stochastic model has a
certain structural property, the resulting stochastic program has block-separable recourse
[106]. According to Pantuso et al., the property of block-separable recourse is beneficial as
it allows treating the multistage dual-level model as a two-stage stochastic program, which
can be decomposed into a master problem (MP) and many independent LP subproblems.
This facilitates the isolation and reduction of the complicating mixed-integer component
of the problem [106]. As discussed in Section 5.1, one of the basic assumptions for the
DLPOW is that no tactical decision influences future decisions. Hence, the structural
property presented by Pantuso et al. [106], stating that it must be possible to distinguish
a set of decisions that have no influence on any other future decisions, holds for the
DLPOW.

Inspired by Pantuso et al. [106], the DLPOW has been decomposed into a MP and
many independent subproblems. The block-separable structure of the problem is illus-
trated in Figure 6.1. The MP of the DLPOW is the problem of deciding the cost optimal
fleet size and mix in all strategic nodes, including seasonal decisions. The MP consists
of Objective function terms (5.1)-(5.2) and Constraints (5.6)-(5.9) presented in Chap-
ter 5. Constraints (5.6), shown in the figure with a dark blue rectangle, are complicating
constraints that bind all nodes together. Constraints (5.7)-(5.9), shown in light blue, are
separable for each node. Constraints (5.7) only applies to the root node. The subproblem
in the DLPOW is the problem of deploying the available fleet in a given scenario at the
minimal cost, and includes Objective function terms (5.3)-(5.5) and Constraints (5.10)-
(5.15). All constraints in the subproblem are separable for each scenario, resulting in one
subproblem for each scenario as illustrated with grey rectangles in Figure 6.1.

Figure 6.1: Block-Separable Structure of the DLPOW.

As each tactical scenario is independent, the decomposition allows solving each tactical
scenario separately for a given fleet size and mix solution of the MP. In order to take
advantage of this structural property, the construction phase of the GRASP builds so-
lutions to the MP, while an independent Greedy Tactical Heuristic is embedded in the
GRASP to solve the subproblems.
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The main procedures of the GRASP for DLPOW, and the flow between the proce-
dures are outlined in Figure 6.2. The Reactive GRASP procedure is executed with a
given set of calibration parameters and an initial solution Initial Fleet. In each it-
eration, the procedure Greedy Randomized Construction is executed with the given
calibration parameters, a randomly drawn α-value, and an initial fleet solution. The
Greedy Randomized Construction starts from the initial solution given, and constructs
a fleet size and mix solution iteratively by evaluating all feasible changes to the current
partial solution. In each iteration, a specialized set called the reduced candidate list
(RCL) is constructed, containing a subset of feasible and improving changes to the cur-
rent partial solution, and the current partial solution is updated by drawing one element
randomly from the RCL. The procedure Greedy Tactical Heuristic is executed once
for each feasible change to the current solution, in order to calculate the objective function
value of deploying the fleet that results from making this change in the current partial
solution. When the RCL becomes empty, the constructed solution is stored as the best
solution if it is better than the best solution found so far. The Reactive GRASP proce-
dure ends when Greedy Randomized Construction has been executed Max Iterations

number of times. The best solution from all iterations is returned upon termination.

Figure 6.2: Flow of GRASP heuristic developed for DLPOW.

The procedures of the GRASP are described in detail in the remaining parts of this chap-
ter. In Section 6.2, the overall GRASP procedure Reactive GRASP is explained in detail.
Section 6.3 gives a detailed explanation of the construction phase of the GRASP, handled
by the procedure Greedy Randomized Construction. In Section 6.4, the reactive exten-
sion of the GRASP is explained, while Section 6.5 presents The Greedy Tactical Heuristic
implemented for solving the tactical subproblems. Finally, in Section 6.6, strategies used
to increase the computational efficiency of the GRASP are presented.
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6.2 The Reactive GRASP Procedure

The main outline of the reactive GRASP developed for the DLPOW is shown in Algo-
rithm 1. The GRASP procedure ensures that construction and evaluation of new solutions
are conducted iteratively a given number of times.

1 procedure Reactive GRASP(Max Iterations, Initial Fleet, Top Down, Rank Based,
A = {α1, ..., αm}, Block Iterations, δ)

2 Best Solution = Initial Fleet;
3 Initialize Alpha(A = {α1, ..., αm});
4 for iteration k = 1, ..., Max Iterations do
5 i = Draw Alpha(A = {α1, ..., αm});
6 if Top Down = true then
7 Current Partial Solution = Initial Fleet;
8 for n = 1, ..., |Nodes | do
9 Current Partial Solution =

Greedy Randomized Construction(Current Partial Solution, αi,
Top Down, Rank Based, n);

10 end
11 Solution = Current Partial Solution;

12 end
13 else
14 Solution = Greedy Randomized Construction(Initial Fleet, αi,

Top Down, Rank Based, 1);

15 end
16 sumi = sumi + Solution;
17 iterationsi = iterationsi +1;
18 Update Solution(Solution, Best Solution);
19 if ( k modulo Block Iterations ) = 0 then
20 Update Probabilities(Best Solution, A = {α1, ..., αm}, δ)
21 end

22 end
23 return Best Solution;

24 end Reactive GRASP

Algorithm 1: Overall Reactive GRASP procedure developed for DLPOW.

The procedure Reactive GRASP is executed with a given number of maximum itera-
tions (Max Iterations), a set of calibration parameters (A = {α1, ...αm}, Rank Based,
Top Down, Block Iterations and δ), and a given initial fleet (Initial Fleet) from
which construction starts. The initial fleet is set to the zero fleet by default. The pa-
rameter Best Solution holds the best fleet size and mix solution found, and the cor-
responding objective function value. Initially, Best Solution is set to the initial fleet
and the corresponding objective value of deploying this fleet. In each iteration, new so-
lutions are constructed with the procedure Greedy Randomized Construction, which is
outlined in Algorithm 2. The boolean flag Top Down determines whether this construc-
tion is conducted node for node, or if the construction is conducted once for the entire
scenario tree as a whole. If the construction is conducted node for node, the parameter
Current Partial Solution holds the solution under construction.
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In each iteration, Greedy Randomized Construction is called with an α-value which is
drawn with a given probability from the set A. The procedure Initialize Alpha sets the
initial probability of drawing each α-value to be 1/m. The probability of drawing each
α-value is later updated every Block Iteration iteration (handled by line 16 - 18). The
parameters iterationsi and sumi hold the number of iterations that a given αi-value,
, has been used, and the sum of the objective function values found in these iterations,
respectively. Together, line 3, 5, and 16 - 21 constitute the reactive extension of the
GRASP, which is explained more thoroughly in Section 6.4.

The procedure Update Solution compares the new solution found in an iteration (Solution),
with the current best solution (Best Solution), and updates the parameter Best Solution

when a better solution is found. After all GRASP iterations have been executed, the glob-
ally best solution is returned as the final result.

6.3 The Greedy Randomized Construction

In the construction phase of the reactive GRASP, a feasible solution is built from scratch
through greedy choices. The procedure Greedy Randomized Construction is executed
with a current partial solution (Current Partial Solution), a RCL parameter (α), two
boolean flags (Top Down and Rank Based), and a node (n), which guide the construction
of a solution. The main outline of the procedure is shown in Algorithm 2.

1 procedure Greedy Randomized Construction(Current Partial Solution, α,
Top Down, Rank Based, n)

2 Candidates = Valid Candidates(Current Partial Solution, Top Down, n);
3 RCL = Find RCL(Candidates, α, Rank Based);
4 while RCL 6= ∅ do
5 Select a candidate c randomly from RCL;
6 Update Current Partial Solution according to c;
7 Candidates = Valid Candidates(Current Partial Solution, Top Down, n);
8 for candidate j = 1, ..., |Candidates | do
9 Calculate objective value of candidate with

Greedy Tactical Heuristic(Current Partial Solution, j);

10 end
11 RCL = Find RCL(Candidates, α, Rank Based);

12 end
13 Solution = Current Partial Solution;
14 return Solution;

15 end Greedy Randomized Construction

Algorithm 2: The construction phase of the GRASP for DLPOW.

The current partial solution (Current Partial Solution) gives the starting point from
which as solution is constructed. The solution is built iteratively by making changes to
the current partial solution. The allowed changes, called candidate insertions, are found
by the procedure Valid Candidates. All the candidate insertions are evaluated by cal-
culating the objective function value resulting from incorporating the candidate insertion
into the current partial solution. Based on the candidates and their evaluation, a RCL is
constructed with the procedure Find RCL, and a candidate insertion is randomly selected
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from the RCL. The current partial solution is then updated by incorporating the selected
candidate insertion. From this point, the construction continues by finding the new valid
candidate insertions, given the new current partial solution. When no more feasible and
improving changes to the partial solution can be found, the RCL becomes empty, and
Greedy Randomized Construction terminates by returning a fleet size and mix solution
to the GRASP procedure Reactive GRASP. The three main operations, conducted in each
iteration of the Greedy Randomized Construction, hence are: (1) finding valid candi-
date insertions, (2) evaluating valid candidate insertions, and (3) constructing the RCL
and selecting a valid candidate insertion. These operations are explained in detail in the
following subsections.

6.3.1 Finding Valid Candidate Insertions

In each iteration of Greedy Randomized Construction, a choice must be made regarding
which candidate to insert next in the partial solution under construction. In each iter-
ation, the procedure Find Valid Candidates finds a candidate list (Candidates) that
contains all valid candidate insertions. The valid candidates are determined by using
a rule stating the allowed changes in the partial solution during one iteration of the
construction. A typical rule governing the allowed changes is to assign a value to one
variable in each iteration, and keep it fixed for the duration of the current construction
[117]. However, as the DLPOW has no upper bound on how many vessels that can be
chartered in, and hence has an unbounded solution space, this rule is considered insuffi-
cient for the DLPOW as it would lead to an unbounded candidate list. Furthermore, as
the typical rule only allows alternating one variable at the time, myopic solutions would
initially be chosen, as it would initially seem better to charter many vessels of one type.
Hence, solutions composed of different vessel types with different charter lengths would
not necessarily be explored. To avoid these problems, a specialized decision rule has been
developed for the DLPOW. In each iteration of the construction phase, valid candidates
are given by the rule:

Rule 6.1 (Valid Candidates) Increase one of the strategic decision variables in the
current partial solution (xnvl, y

IN
nqv or yOUTnqv ) by 1.

Due to the decomposition of the DLPOW, only the strategic variables are considered to
be a part of the solution under construction. The Rule (6.1) makes the candidate list
bounded, and reduce the risk of myopic solution being chosen early in the construction.
Only feasible solutions are accepted, and hence candidates violating Constraints (5.8),
that restricts the farm owner from chartering out vessels she does not posses, are not
accepted.

6.3.2 Evaluating Candidate Solutions

In order select a candidate to incorporate into the current partial solution, the quality
of each valid candidate needs to be evaluated. A candidate is usually evaluated by
calculating the change in the objective function value that results from incorporating the
candidate insertion into the current partial solution [117]. This value hence needs to be
calculated for each valid candidate.
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The strategic cost components of the objective function for the DLPOW can easily be cal-
culated based on the size and mix of the fleet, and is hence directly given by the candidate
and current partial solution. However, the tactical decision variables are not explicitly
given by the fleet size and mix decision, meaning that for each candidate insertion, all
tactical subproblems need to be solved for the given fleet. To handle this, a Greedy
Tactical Heuristic (Greedy Tactical Heuristic) has been embedded in the GRASP for
solving the tactical subproblems. The heuristic solves all tactical subproblems in the
entire strategic scenario tree for a given fleet size and mix solution, and returns the to-
tal objective function value of acquiring and deploying the given fleet. The procedure
Greedy Tactical Heuristic is outlined in more detail in Subsection 6.5.

6.3.3 Constructing the RCL

When all valid candidates in Candidates are evaluated, one candidate has to be cho-
sen to be incorporated into the current partial solution. In a GRASP, this is done by
randomly selecting a candidate from a RCL [74]. The RCL is constructed by the greedy
evaluation function Find RCL, which takes the set of valid candidates, the RCL parameter
α and a boolean flag Rank Based as input. The RCL returned by Find RCL is a subset
of Candidates, and contains the candidates with the best evaluations, namely those
candidates which result in the largest decrement in objective function value if selected.
Non-improving candidates, with negative decremental objective function values, are not
included in the RCL.

In a GRASP, the size of the RCL is restricted by a RCL parameter α ∈ [0.00, 1.00]. The
selection of which candidates to include in the RCL can be decided either by the number
of candidates (rank based) or by the quality of the candidates (value based) [74]. The
boolean flag Rank Based determines whether a rank based or value based selection is
used.

With a rank based selection, the RCL contains the x valid candidates giving the highest
decrement in objective function value, where:

x = max[1, dα ∗ |Valid Candidates|e] (6.1)

With a value based selection, the RCL contains the subset of candidates that give a
decrement in objective function value close to that of the best candidate, where closeness
is defined by α. Explicitly, the selection criterion in the value based selection for the
DLPOW can be stated as:

evalc ≥ evalMAX + α ∗ (evalMIN − evalMAX) (6.2)

where evalc is the decrement in objective function value caused by a given candidate
insertion c, evalMAX is the maximum positive decremental cost of any feasible and im-
proving candidate, and evalMIN is the minimum positive decremental cost of any feasible
and improving candidate.
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6.4 The Reactive Extension of the GRASP

The RCL parameter, α, defines the restrictiveness of the RCL. The performance of a
GRASP is sensitive to this parameter, as it affects the amount of greediness and ran-
domness in the metaheuristic [117]. From Equation (6.1) and (6.2), it can be seen that
if α = 1.00, all feasible and improving candidates are included in the RCL, making the
GRASP purely random. If α = 0.00, the RCL only consists of the best candidate so-
lution(s), and the GRASP is hence purely greedy. Resende et al. present GRASP as a
repetitive sampling technique, where each iteration produces a sample solution from an
unknown distribution, whose mean and variance are functions of α [117]. A high α-value
leads to a bad average solution, but a high variance and a high number of diverse solu-
tions. A low α-value leads to a good average solution, but a smaller part of the solution
space is examined, and hence the probability of finding the optimal solution decreases.
Furthermore, Resende et al. [117] show that the computational time generally decrease
with a decreasing α-value, as the search becomes more greedy and the size of the RCL
decreases.

In a basic GRASP, the α-value is kept constant at a fixed value in all iterations of
the GRASP. However, Prais et al. [111] show that using a single fixed α-value often
hinders finding high-quality solutions that could have been found if another value was
used. For this reason, using a fixed α requires extensive calibration efforts in order to
find an appropriate α-value. A common variation of GRASP that avoids this problem,
is the Reactive GRASP first introduced by Prais et al. in [111]. Examples from the
literature show that the reactive approach leads to improvements over the basic GRASP,
in terms of robustness and solution quality, due to greater diversification and less reliance
on parameter tuning [117]. For these reasons, the GRASP developed for the DLPOW has
been made reactive. The reactive extension to the GRASP for DLPOW is implemented
based on the approach suggested by Prais et al. in [111], and is explained in the following
paragraphs.

In a Reactive GRASP, the α-value is self-adjusted according to the quality of the so-
lutions previously found [111]. Instead of using a constant α-value, a discrete set A =
{α1, ..., αm}, containing m predetermined values, is used. In each iteration of the con-
struction phase, an α-value is randomly selected from A. When the GRASP procedure
starts, the probability distribution P (X) of selecting a particular αi is set to the uniform
distribution, where P (X = αi) = probabilityi = 1/m. Throughout the search, the
probabilities are periodically updated to favour α-values that have historically lead to
good solutions.

Several approaches on how to periodically update the probability distribution P (X) are
suggested in the literature. The strategy chosen for the GRASP developed for DLPOW
is based on the strategy used in [111], and is shown in Algorithm 3. The parameter
averagei, is calculated as the average objective function value found in iterations where
αi is used. For each αi-value, a weight is calculated based on the best solution found
so far in the GRASP, over averagei. A high value of the parameter weighti indicates
that a given αi has resulted in good solutions in previous iterations. The probability
of selecting an αi, probabilityi, is calculated based on the value of weighti, and αi
values that have given historically good solutions are hence given a higher probability.
The exponent δ can be used to attenuate the updated values of the probabilities.
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1 procedure Update Probabilities(Best Solution, A = {α1, ..., αm}, δ)
2 totalWeight = 0;
3 for i = 1, ...,m do
4 averagei = sumi /iterationsi;

5 weighti = (Best Solution/averagei )δ;
6 totalWeight = totalWeight + weighti;

7 end
8 for i = 1, ...,m do
9 probabilityi = weighti/totalWeight;

10 end

11 end Update Probabilities

Algorithm 3: Updating probabilities of all α-values.

6.5 The Greedy Tactical Heuristic

The Greedy Tactical Heuristic embedded in the GRASP is outlined in detail in Algo-
rithm 4. The procedure Greedy Tactical Heuristic solves all tactical scenarios for a
given fleet size and mix solution in a greedy manner, and returns the total objective func-
tion value. The fleet is found by incorporating the candidate insertion, c, into the current
partial solution (Solution). The procedure developed ensures that no tactical constraints
from the mathematical formulation, presented in Chapter 5, are violated.

1 procedure Greedy Tactical Heuristic(Solution, c)
2 Calculate strategic costs in all nodes, Cost =

Calculate Strategic Cost(Solution, c);
3 for node n = 1, ..., |Nodes | do
4 Find fleet size and mix for node n, Wn = Find Fleet(Solution, n, c);
5 for season q = 1, ..., |Seasons | do
6 for scenario s = 1, ..., |Scenarios | do
7 Perform corrective maintenance with Corrective Maintenance();
8 Perform preventive maintenance with Preventive Maintenance();

9 end

10 end

11 end
12 return Cost;

13 end Greedy Tactical Heuristic

Algorithm 4: Greedy Tactical

The strategic cost of a fleet is calculated by the procedure Calculate Strategic Cost

as: the charter costs of all vessels long- or short-term chartered in all nodes, the revenue
from short-term chartering out vessels in all nodes, the fixed costs of all vessels long-term
chartered in each node, and the cost of using harbour(s) and/or offshore station(s). This
cost is calculated directly based on the candidate and the current partial solution. In
order to find the total objective value of a candidate, the choice of how and when to
perform maintenance tasks need to be made. For each node, season and scenario, these
choices are made in a greedy manner and the related tactical costs are calculated. Several
greedy choices need to be made, including the choice of: wind farm, vessel, maintenance
task and vessel type.
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In each strategic node, the available fleet given by the candidate and current partial so-
lution is found with the procedure Find Fleet. For each scenario, the procedure first
considers how to utilize the fleet to perform corrective maintenance tasks in a greedy
manner. The preventive maintenance tasks are conducted with the spare capacity that
remains in the fleet after corrective maintenance has been conducted. This greedy choice
ensures that corrective maintenance tasks, which are more expensive to delay, are always
prioritized over preventive maintenance tasks. Algorithm 5 and 6 explains the work-
ings of the procedures Corrective Maintenance and Preventive Maintenance, which
are greedy algorithms that handle how preventive and corrective maintenance tasks are
conducted, respectively.

6.5.1 Corrective Maintenance

Initially, a set M Corr f containing the corrective maintenance tasks occurring in the
first period, is constructed for each wind farm. These sets are updated dynamically
when maintenance is performed and when new periods give new demand for corrective
maintenance. A cumulative cost, C f, is calculated for each wind farm, as the sum of the
accumulated downtime cost incurred if all tasks remaining in M Corr f are delayed to the
next period.

For each period, all vessels in the fleet that are able to operate under the realised weather
conditions are saved in the list Vessels. The set Vessels is dynamically updated to
reflect the amount of vessels that have not yet been used. While there still are unused
vessels and unfinished corrective maintenance tasks at any wind farm in the given period,
a wind farm and a vessel is chosen in a greedy manner. The selected vessel is sent to the
selected wind farm, where it conducts maintenance in a greedy manner. When the vessel
has been exhausted, or there are no corrective maintenance tasks left at the selected wind
farm, the cumulative cost (C f) of the selected wind farm is updated, and a wind farm and
vessel is selected again with a new greedy evaluation. When the total vessel fleet has been
exhausted for the current period or all tasks are finished, the sets of maintenance tasks
(M Corr f) are updated for all wind farms, and the tasks occurring in the next period are
added. The cumulative costs (C f) are also recalculated to reflect the changes in M Corr f.
The procedure Corrective Maintenance stops when all corrective maintenance tasks are
conducted or when the fleet is exhausted in all periods.
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1 procedure Corrective Maintenance()

2 for farm f = 1, ..., |Farms | do
3 Create set of corrective tasks M Corr f occurring in first period;
4 Calculate cost of delaying each task in M Corr f to next period;
5 Calculate cumulative cost C f of delaying all tasks in M Corr f;

6 end
7 for period p = 1, ..., |Periods | do
8 Add all vessels in fleet W n that can operate in period p to list Vessels;
9 while Vessels 6= ∅ & all sets M Corr f 6= ∅ do

10 Select farm with highest cumulative cost f = Greedy Farm(C f);
11 Select cheapest vessels v = Greedy Vessel(Vessels, f ) for farm f ;
12 Send vessel v to farm f ;
13 Add cost of sending vessel v to farm f to Cost;
14 while vessel v has more capacity & M Corr f 6= ∅ do
15 Select most expensive task m = Greedy Maintenance(M Corr f);
16 Assign vessel v to perform maintenance task m;
17 Add cost of performing task m to Cost;
18 if task m is completed then
19 Remove maintenance task m from M Corr f;
20 end
21 else
22 Update hours left of task m;
23 end
24 Update capacity left on vessel v;

25 end
26 Remove vessel v from Vessels;
27 Update cumulative cost C f of remaining tasks in M Corr f for farm f ;

28 end
29 if period p 6= last period then
30 for farm f = 1, ..., |Farms | do
31 Add all tasks occurring in the next period to M Corr f;
32 Update cumulative cost C f of dealying all tasks in M Corr f;

33 end

34 end
35 else
36 for farm f = 1, ..., |Farms | do
37 Add penalty cost of all remaining tasks in M Corr f to Cost;
38 end

39 end

40 end

41 end Corrective Maintenance

Algorithm 5: Corrective Maintenance
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The greedy choice of a wind farm is conducted by choosing the wind farm that has the
highest cumulative cost of delaying maintenance (C f). The consequence of this greedy
criterion is that the algorithm chooses the wind farm with the most remaining man-hours
left (at the highest cost). The cheapest vessel for a given wind farm is found by evaluating
the maximum hours a vessel can operate on a given day at the wind farm, in relation
to the maximum variable cost incurred when using the full capacity of the vessel at that
farm:

Maximum Hours Available

Maximum Variable Cost
=

Crew ∗ Utilization Ratio ∗ (Maximum Operation Time - Transit Time)

Crew ∗ Utilization Ratio ∗Maximum Operation Time ∗ Variable Cost
= (6.3)

Maximum Operation Time - Transit Time

Maximum Operation Time ∗ Variable Cost

The vessel with the highest ratio is chosen, as this gives the most man-hours available per
euro spent. The greedy choice of a corrective maintenance task is made by choosing the
task with the highest accumulated downtime cost in the current period, relative to the
amount of man-hours needed to finish the task. This means that the greedy algorithm
finds a balance between prioritizing tasks that occurred early and tasks that can be
finished fast (including small tasks and tasks that have already been started).

The tactical costs incurred from sending vessels to wind farms and from conducting
maintenance tasks, are added to the the parameter Cost as tactical decisions are made.
At the end of the last period, the penalty cost of all remaining tasks in the sets M Corr f

for all wind farms is added to the total cost, as these tasks have not been finished.

6.5.2 Preventive Maintenance

As the downtime cost of preventive tasks only occur while the tasks are actually being
conducted, it is lucrative to conduct preventive maintenance in periods with low wind
speed, where the hourly preventive downtime cost is low. This differs from corrective
maintenance, where it is best to conduct tasks as soon as possible to keep the accumulated
downtime cost low. For this reason, the greedy algorithm for conducting preventive
maintenance tasks is constructed somewhat different compared to the greedy algorithm
for corrective maintenance tasks.

At the beginning of the procedure Preventive Maintenance, a set M Prev f containing
the preventive maintenance tasks occurring in the scenario is constructed for each wind
farm. During the procedure, this set is updated dynamically to reflect that tasks have
been conducted. Preventive tasks are conducted with the remaining fleet capacity after
corrective maintenance tasks have been conducted, either until the total fleet is exhausted
in all periods, or until all preventive maintenance tasks have been finished at all wind
farms. The algorithm attempts to use the cheapest vessel type, for a given wind farm, as
much as possible in all periods. The periods in a scenario are sorted in a greedy manner
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1 procedure Preventive Maintenance()

2 for farm f = 1, ..., |Farms | do
3 Create set of preventive tasks M Prev f to be conducted in scenario s;
4 end
5 Create list Sorted Periods with periods sorted from cheapest to most expensive;
6 Find spare capacity of all vessels of each type and add to matrix Spare Capacity;
7 while Spare Capacity 6= ∅ & all sets M Prev f 6= ∅ do
8 Select farm with most preventive maintenance left f = Greedy Farm Prev();
9 Select cheapest vessel type t = Greedy Vessel Type(Spare Capacity, f );

10 Define break point Outer Loop;
11 for period p in Sorted Periods do
12 while M Prev f 6= ∅ do
13 for vessel v of type t in Spare Capacity do
14 if vessel v of type t is located at depot then
15 Add cost of sending vessel v of type t to farm f to Cost;
16 end
17 while vessel v of type t has capacity do
18 Select smallest preventive task m =

Greedy Maintenance(M Prev f);
19 Assign vessel v of type t to perform maintenance task m;
20 Add cost of performing task m to Cost;
21 if task m is completed then
22 Remove maintenance task m from M Prev f;
23 end
24 else
25 Update hours left of task m in M Prev f;
26 end
27 Update capacity on vessel v of type t in Spare Capacity;

28 end
29 Evaluate whether to change farm with Greedy Farm Prev();
30 if new farm f is selected then
31 break Outer Loop;
32 end

33 end

34 end

35 end

36 end
37 for farm f = 1, ..., |Farms | do
38 Add penalty cost of all remaining tasks in M Prev f to Cost;
39 end

40 end Preventive Maintenance

Algorithm 6: Preventive Maintenance

based on the hourly downtime cost of performing preventive maintenance at the wind
farm with the largest turbines, from lowest to highest. In this way, the algorithm attempts
to utilize the cheapest vessel in the cheapest period first, before it considers using the
cheapest vessel in the second cheapest period. The second cheapest vessel is only utilized
after all capacity of the cheapest vessel type has been exhausted in all periods.
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The greedy choice of wind farm is made by selecting the farm that has most preventive
maintenance tasks, with the highest downtime cost, left. The cheapest vessel type is
found by the greedy criterion given in Equation 6.3. When a vessel type has been chosen,
the algorithm assigns a vessels of this type to the selected wind farm. The algorithm
always tries to use vessels of this type that have already been sent to the farm first,
before sending a vessel from depot. If the vessel has not already been sent to the wind
farm to conduct corrective maintenance, the cost of sending the vessel to the wind farm
is added to cost parameter Cost. The selected vessel is then used to conduct preventive
tasks until its capacity is exhausted or no tasks are left at the wind farm. The preventive
maintenance task with fewest hours left at the selected wind farm is conducted first, in
order to prioritize completing tasks that have already been started. When the capacity
of the vessel has been exhausted, the algorithm re-evaluates the choice of wind farm. If a
new wind farm is chosen, the algorithm breaks out of the loop Outer Loop, re-evaluates
the vessel type, and starts evaluating the cheapest period again. Similarly as for corrective
maintenance, the cost of conducting maintenance tasks and the penalty cost of remaining
tasks are added to the parameter Cost as tactical decisions are made.

6.6 Strategies for Increasing Efficiency

Several measures have been taken to reduce computational time required by the GRASP.
The measures can be categorized into two main strategies: reducing the number of valid
candidates and using memory structures to avoid recalculations. These measures are
described in the following subsections. In addition, the choice of leaving out the local
search phase has been made in order to limit computational effort needed. In general, a
local search phase increase the probability of finding high quality solution at the cost of
an overhead in computational time. As the GRASP for the DLPOW use a rule in the
construction phase that leads to the possibility of constructing all feasible solutions, it
is considered likely that the GRASP will manage to find high quality solutions without
a local search phase. It is therefore expected that a local search phase will not lead
to a significant enough improvement in solution quality, to compensate for the added
computational effort.

6.6.1 Reducing the Number of Valid Candidates

Evaluating a candidate insertion is time consuming, as this requires all tactical subprob-
lems to be solved for the given fleet size and mix solution. In each iteration of the
construction phase, a large number of possible candidate insertions, (xnvl, y

IN
nqv, y

OUT
nqv ),

need to be evaluated. As an example, for a small problem instance with 4 nodes, 4 vessel
types and 3 possible lease lengths, the number of candidates that need to be evaluated
equals:

|N | ∗ |V | ∗ |L|+ 2 ∗ |N | ∗ |Q| ∗ |V | = 4 ∗ 4 ∗ 3 + 2 ∗ 4 ∗ 2 ∗ 4 = 112 (6.4)

Considering this, one way of reducing computational effort is to reduce the number of
candidate insertions that needs to be evaluated in each iteration of the construction.
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To prevent certain low-quality insertions from being considered, an additional rule has
been added to the original rule, Rule 6.1, used to find valid candidates. This additional
rule prohibits decisions where vessels of the same type are short-term chartered in and
out in the same season. Such decisions can be considered irrational, as chartering in a
vessel with the sole purpose of chartering it out always leads to an additional cost without
any gain. The additional rule is given as:

Rule 6.2 (Short-Term Chartering Rule) If a vessel of type v is chartered out in
season s of node n, no vessels of this type can be chartered in, in this season and node
combination. If a vessel of type v is chartered in in season s of node n, no vessels of this
type can be chartered out in this season and node combination.

The original rule, Rule 6.1, allows increasing one strategic decision variable with 1 in
each iteration. This rule has mainly been chosen to avoid myopic choices early in the
construction, as discussed Subection 6.2. However, this rule also has a positive effect on
computational effort, as it restricts the number of candidate insertions. As an example,
an allowed increase of 2 would double the amount of candidates in each iteration, and
hence increase computational time significantly.

The structure of the problem can also be exploited to reduce the number of valid candi-
dates. As described in Section 4.4, Hvattum et al. [74] exploits the scenario tree structure
of their problem in order to reduce the number of candidate solutions. In the top-down
version of their GRASP, they limit the valid insertions in a top-down fashion. All deci-
sions made in the root node are considered first, before continuing the construction node
by node, recursively, in the tree. Reducing the number of allowed insertions in a top-down
fashion is expected to have a significant impact on the computational time required by
the GRASP, as this reduces the number of valid candidates with a factor of |N |. How-
ever, while hopefully being more efficient, the top-down version of the GRASP places
extra restrictions on the search space available to the metaheuristic, which may lead to
myopic solutions. The starting point for the construction of solutions in the GRASP for
DLPOW is always the zero-fleet. This means that at the start of the construction, there
are no vessels available to conduct maintenance in any node of the scenario tree. When
only considering chartering vessels in the root node first, long-term chartering for the full
length of the planning horizon may seem unrealistically good, as this has positive effects
for all children nodes in the tree. For this reason, the top-down version of the GRASP
may give lower quality solutions, where too many vessels are long-term chartered in the
root node. Two different version of the GRASP for DLPOW have therefore been im-
plemented: a top-down GRASP (TDG) and an any-node GRASP (ANG). Having an
any-node version of the GRASP gives the option of not restricting the solution space in
a top-down down manner, at the expense of increased computational time. The boolean
flag Top Down, determines which of the GRASP versions that are used.

6.6.2 Using Memory Structures to Avoid Recalculations

The structure of the DLPOW can also be utilized to increase efficiency in other ways.
When evaluating candidate insertions, each possible insertion does not necessarily affect
the fleet size and mix in all nodes and seasons of the scenario tree. As an example, if
the insertion made in the current partial solution is an increase of short-term charter
in summer in node n, only the cost of scenarios during summer in node n differ in the
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potentially new partial solution, when compared to the current partial solution. Similarly,
if the insertion made is a long-term charter in node n, only the tactical costs of scenarios
in node n and its children are affected.

To exemplify further, Figure 6.3 illustrates one insertion into a current partial solution
for a problem instance with two vessel types and seven nodes. To the left in the figure,
the current partial solution and the resulting fleet size and mix in each node is shown.
The partial solution resulting after one candidate insertion is illustrated to the right
in the figure. The insertion exemplified is the increase of the decision variable x2,2,15,
meaning that the amount of vessels of type 2, with a lease length that expires in year 15,
is increased with 1 in node 2. As shown in the figure, only node 2, 4 and 5 are affected
by the insertion, and hence only scenarios belonging to these nodes need to be solved to
evaluate this candidate insertion.

Figure 6.3: Candidate insertion into a current partial solution.

Recalculations can also be avoided by considering similarities in strategic solutions. When
deploying the fleet in tactical scenarios, the strategic decision of how to acquire vessels
does not affect the tactical costs. Only the total number of vessels of each type available
in a tactical scenario affect the tactical costs, as this restricts the deployment of the
fleet. Various fleet size and mix decisions, which results in the same fleet size and mix,
but differ in how vessels are acquired, are therefore considered equivalent from a tactical
point of view. As an example, in a case with two nodes, two strategic solutions that are
equivalent from a tactical perspective are: (1) long-term chartering 3 vessels of type 1 for
the whole planning horizon in the root node, and (2) short-term chartering 3 vessels of
type 1 in both seasons of each node.

To avoid resolving tactical scenarios where the cost of deploying a specific fleet has already
been calculated, a hashing-based data structure is utilized. The data structure stores
the tactical cost of deploying a given fleet in all scenarios belonging to a given node
and season combination. When the Greedy Tactical Heuristic is executed to evaluate a
specific candidate, the hashing-based data structure is checked to determine whether the
tactical scenarios have been solved previously. In this way, the Greedy Tactical Heuristic
avoids recalculation of tactical costs both due to the strategic nodes that are not affected
by the insertion under consideration, and due to the different strategic solutions which
are equivalent from a tactical perspective.
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Chapter 7

Method of Computational Study

The solution methods for the DLPOW have been implemented in two different computer
software. The mathematical model presented in Chapter 5 has been implemented in
Mosel trough the commercial optimization software FICO(TM) Xpress-IVE. A scenario
generator and the metaheuristic presented in Chapter 6, have been implemented in Java
through the Java Integrated Development Environment (IDE) from Eclipse.

Static input parameters provided by users require preprocessing and calculation before
they are used by the optimization software or by the metaheuristic. Input parameters
are given by the user in an Excel file. This data is read by a scenario generator which
preprocesses data, calculates parameters and generates tactical and strategic scenarios.
The output from the scenario generator is a text file containing an instance of the strategic
fleet size and mix problem. The text file is provided as an input file to the optimization
software and to the metaheuristic, and includes all sets and parameters required to run the
mathematical model. Figure 7.1 shows the interaction between the Excel file, the scenario
generator, the problem instance, the optimization solver and the metaheuristic.

Figure 7.1: Interaction between components used in the computational study.
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The choice of static input parameters used in the computational study is described in
Section 7.1. The scenario generator developed to create test instances is presented in
Section 7.2. The calculation of input parameters and sets required by the mathematical
model is described in Section 7.3. Section 7.4 discuss methods to evaluate the imple-
mented scenario generator, while Section 7.5 discuss methods to evaluate the value of
including uncertainty in strategic parameters in the mathematical model.

7.1 Selection of Input Data

In order to simulate realistic problem instances for the DLPOW, input data used in the
computational study is been based on previous research from the offshore wind industry.
This section describes the deterministic data used to generate test instances for the
computational study in Chapter 8.

7.1.1 Vessels, Harbours and Offshore Stations

The mathematical model can consider the use of many different vessel types, ranging from
helicopters and jack-up barges to CTVs. In addition, the model can separate between
vessel types available in the market today, and vessel types that may become available in
the future. For simplicity, only CTVs have been used in the computational study. This
implies that no heavy-lifting can be done by any of the vessels, and for the computational
study it is hence assumed that no maintenance tasks require any heavy-lifting. The
input data related to vessel types are based on Gundegjerde et al.[64], Vefsnmo [134],
Dinwoodie [43] and Dalgic [39]. The operational characteristics of the vessels types used
in the computational study are shown in Table 7.1. Both vessel types are assumed to be
available in the market from the beginning of the planning horizon. The capacity values
are given relative to a harbour or offshore station’s maximum capacity, and do not reflect
any real world unit of measure. Table 7.1 does not extensively show all vessel types used
in the computational study, as a vessel type is defined uniquely for the harbour or offshore
station it belongs to.

Table 7.1: Operational characteristics of different vessels types.

Vessel Vessel Crew Speed Wave Limit Wind Limit Utilization Capacity
Number Type [#people] [knots] [m] [m/s] [%] [-]

1 CTV (small) 12 20 1,5 20 0.7 2
2 CTV (large) 26 18 2,5 25 0.6 3

As mentioned in Section 2.6.2, the cost of acquiring a vessel varies with its type and oper-
ational characteristics. Furthermore, the acquisition costs are influenced by other factors,
such as the length of the charter agreement, seasonality and the availability of vessels in
the market. While an offshore wind farm owner is likely to have good access to vessel
cost data, such data is not easily available from any public source. However, the main
purpose of the computational study in this thesis is to test the mathematical model and
solution methods, rather than to analyze costs. With this in mind, the cost parameters’
size relative to each other is more important than the accuracy of the independent cost
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parameters. For this reason, all vessel cost parameters used in the computational study
are estimated based on data from Gundegjerde et al. [64], Dinwoodie [43] and Kaiser
[79].

Cost parameters for the vessel types, outlined above, are presented in Table 7.2. The
costs of long-term chartering vessels are presented in the column labeled ”1 year”, and
the values give the costs of chartering vessels for one year in the beginning of the planning
horizon. The 1 year charter rates are used to calculate the total long-term charter rates
relative to the lease lengths. The charter rates may vary between strategic nodes to
reflect long-term trends. Short-term charter rates and revenues are given per season, and
are assumed to be higher in summer than in winter. The costs are estimated in such a
manner that it is never profitable to charter in vessels for the sole purpose of chartering
them out.

Table 7.2: Main cost parameters of different vessel types.

Vessel 1 year Summer(in) Summer(out) Winter(in) Winter(out) Fixed Variable
Number [me/yr] [me] [me] [me] [me] [me/yr] [e/h]

1 1.1 0.72 0.33 0.69 0.23 0.10 300
2 1.8 1.17 0.54 1.12 0.44 0.15 600

The harbours and offshore stations used in the computational study are illustrated in
Table 7.3. The total cost of a station includes all fixed and variable costs related to acqui-
sition and use, and is given for the whole planning horizon. The distances to the various
wind farms are given in nautical miles. All harbours are assumed to be located onshore,
and are assumed to have larger capacity and lower costs than offshore stations.

Table 7.3: Characteristics of harbours and offshore stations.

Station Station Total Max Distance to Distance to Distance to
Number Type Cost Capacity Farm 1 Farm 2 Farm 3

[-] [me] [-] [nmi] [nmi] [nmi]
1 Harbour 36 100 90 90 50
2 Offshore Station 40 80 70 70 50
3 Offshore Station 38 60 60 10 80

7.1.2 Wind Farms and Maintenance Tasks

The input parameters for wind farms are based on widely used turbine technology devel-
oped by Siemens [126], and is presented in Table 7.4. The column ”Year” indicates the
number of years until the wind farm is planned to be fully realized, relative to the start
of the planning horizon. Table 7.4 illustrates a case where two co-located wind farms,
with a total of 200 turbines, exist from the beginning of the planning horizon, while one
larger wind farm is planned to be realized after 10 years. The wind farm planned to
be realized in year 10 has been given larger wind turbines to reflect turbine technology
trends, as discussed in Section 2.2. All wind farms are assumed to have turbines with
the same cut-in and cut-out speed, at 5 m/s and 25 m/s, respectively.
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Table 7.4: Characteristics of wind farms.

Wind farm Year Number of Turbines Capacity [MW] Swept Area [m2]
1 0 100 4 13,300
2 0 100 5 13,300
3 10 100 6 18,600

Input parameters related to maintenance tasks are illustrated in Table 7.5, and is based
on data from [43]. Each failure rate is given as the average number of failures per turbine
per year. Preventive maintenance is scheduled to be conducted once a year per turbine,
and it is assumed that no preventive maintenance is conducted during winter. Random
failures have been divided into four different types, with different failure rates and resource
requirements, leading to four types of corrective maintenance tasks. In order to simplify,
resource requirements related to heavy-lifting and supplement of spare parts have not
been included.

Table 7.5: Characteristics of maintenance tasks.

Maintenance Type of Repair Time Minimum Technicians Failure Rate
Type Task [#man-hours] [#people] [#failures/yr]

Preventive Annual service 180 3 1
Corrective Major repair 104 4 0.04
Corrective Medium repair 66 3 0.275
Corrective Minor repair 15 2 3.0
Corrective Manual reset 6 2 7.5

7.2 Scenario Generation

In this section, the scenario generator developed for the DLPOW is explained in detail.
When considering the uncertain parameters in the problem, it is difficult to determine
whether one realization of uncertainty is more likely to occur than another. For this
reason, all strategic scenarios are considered to have equal probabilities. The same applies
for tactical scenarios.

7.2.1 Generation of Tactical Scenarios

The tactical uncertainty is related to two parameters: weather conditions and demand
for corrective maintenance. For each tactical scenario, the scenario generator randomly
generates values for these parameters, by sampling from historical weather data and a
Poisson distribution of the number of failures. Correlation between weather conditions
and demand for corrective maintenance has not been considered.

The mathematical model can account for several types of weather conditions, such as
wind speed, wave height, ocean current and wind direction. However, for simplicity,
only wave height and wind speed are considered in the scenario generator. To generate
weather scenarios, historical data from an offshore platform in the Central North Sea
[43] has been used. To ensure that seasonal trends in weather conditions are accounted
for, the historical data is separated into two sets, representing data for summer and
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winter separately. The weather scenarios are generated by sampling historical data for
all tactical scenarios, and assigning sampled wind speed and wave height to each period
in each scenario. To ensure correlation between weather conditions at consecutive days,
the sampling method draws a weather realization for the first period randomly from
the historical data, while the rest of the periods in the scenario are assigned weather
realizations from the consecutive days in the dataset.

The generation of corrective maintenance demand is based on yearly failure rates given
by Dinwoodie [43], presented in Table 7.5. The average failure rate, of each failure type
e at one farm in one scenario, is calculated as:

λe =
Ae ∗ |Turbinesf | ∗ |Periods|

365
(7.1)

where Ae is the yearly average failure rate of failure type e, |Turbinesf | is the total number
of turbines at farm f , and |Periods| is the number of periods in the scenario.

In every scenario, a random number of failures for each failure type, Re, is drawn for
each farm based on the value of λe. The random number Re is drawn from a Poisson
distribution expressing the probability of a given number of failures of a type occurring
at the farm within the length of the scenario:

f(k;λe) = Pr(Re = k) =
λke ∗ e−λe

k!
(7.2)

When the number of failures for each type, Re, has been randomly generated, the occur-
rence of each failure in the scenario is generated randomly. The period in which a failure
occurs is drawn from a uniform distribution for each failure at each farm.

As discussed in Subsection 2.3.2, the average failure rates of a turbine often follow a
bathtub curve, with a higher number of failures in the early and late stages of a turbine’s
lifetime. The scenario generator can easily incorporate the bathtub curve, by calculating
the average failure rate for each strategic node separately. The average failure rate is then
given for each node and farm, and adjusted to reflect the age of the wind turbines. How-
ever, the bathtub curve has not been included in the failure rates for the computational
study of this thesis.

7.2.2 Generation of Strategic Scenarios

The data used to generate strategic scenarios are given by the user, and no random-
ness is introduced in the strategic scenario generation. The scenario generator considers
uncertainty related to long-term trends in electricity price and stepwise development of
wind farms. Other uncertainties, such as uncertainties in governmental subsidy schemes,
vessel technology, and fluctuations in vessel charter rates, can also be handled by the
the mathematical model, but have not been implemented in the scenario generator. As
the problem grows rapidly in size with an increasing number of strategic nodes, strategic
scenarios are generated for one type of strategic uncertainty at the time. This allows rel-
atively small instances to be generated, that are expected to be solved within reasonable
time.
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Uncertainty in Electricity Price

Uncertainty in long-term trends of electricity prices is modelled as a Markov chain, where
the electricity price in a strategic node is given with a deviation from the electricity price
in its direct parent node. The user gives an initial electricity price for each season in the
first node of the planning horizon, which is used to set the electricity price in all following
nodes. Each strategic scenario represents a percentage deviation from the electricity
price in the direct ancestor node. The electricity price in a node hence depends on the
initial electricity price given for the root node and the electricity prices in all previous
ancestor nodes. The percentage deviations in each strategic scenario is given by the
user. An example of a scenario tree with uncertainty in electricity price is illustrated in
Figure 7.2.

Figure 7.2: A scenario tree with uncertainty in long-term trends of electricity prices.

Uncertainty in Stepwise Development of Wind Farms

The strategic uncertainty related to stepwise development of wind farms considers whether
a wind farm development project is fully realized in the planned year or not. The strate-
gic scenarios indicate how many of the planned number of turbines that are installed and
operative in a given year. As an example, if a wind farm project with a total of 100
turbines is planned to be fully realized in year 10, three scenarios for year 10 could be
that: 0 turbines are installed (0% of the planned number), 50 turbines are installed (50%
of the planned number) or all 100 turbines are installed (100% of the planned number).
In the case where 0 or 50 turbines are installed, the remaining turbines could still be
installed in a later period. Figure 7.3 shows the scenario tree for this example. More
stages could be added in the scenario tree to allow delaying the project further.
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Figure 7.3: A scenario tree with uncertainty in stepwise development of wind farms.

The scenario generator creates the strategic scenarios based on input from the user. The
user gives the branching factor of the root node, and the percentages of the planned
number of turbines that may be installed in a certain year. In addition, the user states
the number of strategic stages in the tree, consequently giving the number of times that
the wind farm development can be delayed. To obtain the tree given in Figure 7.3,
the user would give the input: 3 stages, branching factor = 3, and the percentages
{0%, 50%, 100%}. In general, if a strategic node n in a tree where the root node has M
children and xi ∈ {x1, ..., xi, ..., xM} of the planned turbines are operative in n, then node
n has |{xi, ..., xM}| children.

7.3 Calculation of Parameters

In order to create test instances that can be used by the solution methods for DLPOW,
calculations need to be conduced on the static input data provided by users. This section
outlines the calculation of important input parameters, and some simple preprocessing
handled by the scenario generator.

7.3.1 Structure of the Scenario Tree

The structure of the scenario tree is generated based on calculations on user input. The
user provides input regarding: the number of strategic stages in the scenario tree, the
number of strategic scenarios, the duration of time between the strategic stages, the
number of tactical scenarios, and the number of periods in each scenario. All parameters
and sets related to the structure of the scenario tree, such as the set of ancestor nodes
and the set of possible lease lengths, are created based on this input. The mathematical
model can include all four seasons of the year, but for simplicity only summer and winter
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are considered in the computational study, where each season is assigned a length of
6 months. The number of tactical scenarios per season and the number of periods in
each scenario are assumed to be the same throughout the scenario tree, even though the
mathematical formulation allows variations in these parameters. These simplifications
are done to avoid excessive user input and reduce the risk of mistakes in user input as
the tree grows large.

The tactical level in the DLPOW has a daily time resolution. If each scenario was to
be represented with the number of periods equal to the actual number of days in the
duration of the strategic node, the problem would grow rapidly in size. As an example, if
the duration of a strategic node is 5 years, a scenario occurring during either summer or
winter would have 365

2
∗5 = 912.5 periods. As this would be computationally expensive to

represent, the scenarios are represented by including only a fraction of the periods. The
costs occurring in each scenario are adjusted with a multiplier to estimate the full cost
throughout the duration of a strategic node. The multiplier of node n, Mn, is calculated
as:

Mn =
365

|Seasons| ∗ |Periods|
∗ (t(n+ 1)− t(n)) (7.3)

where |Seasons| is the number of seasons, |Periods| is the number of periods in each
scenario, and t(n+ 1)− t(n) gives the duration of the strategic node n.

7.3.2 Lease Lengths and End of Horizon Effects

As mentioned in Chapter 5, lease lengths of vessels are represented by the year in which
the lease expires. In order to ensure that the model can handle the fleet balance of char-
tered vessels correctly, these expiration years must correspond to the year of a strategic
node in the scenario tree. As a result, the possible charter lengths get shorter and shorter
downwards in the tree, and the set of possible charter lengths gets smaller. As chartering
for a shorter time period is more expensive than chartering for many years, this results in
increasingly expensive charter rates downwards in the tree. This might lead to solutions
that rent too much in the early nodes to satisfy demand in later nodes. Such problems
are often referred to as end of horizon effects, and are common when a finite and fixed
horizon is imposed on a problem which may have a longer horizon in reality.

To counteract this issue, the possibility of chartering a vessel for at least 10 years in every
node has been added. For nodes where the remaining duration of the planning horizon
is less than 10 years, the total charter cost have been adjusted so that costs running
outside the planning horizon are not taken into account. As an example, in the leaf
nodes, that have a one year duration, this gives the wind farm owner the alternatives of
either chartering vessels for 1 year at a high price, or chartering vessels for 10 years and
pay 1/10 of the lower 10-year-charter cost. As a result, if any vessels are chosen to be
long-term chartered in the leaf nodes, they will always be chartered for 10 years. Hence,
alternative charter lengths have been removed in the root node.
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7.3.3 Penalty Costs

In the mathematical model, penalty costs are incurred when the decision-maker decides
not to conduct a certain maintenance task on a turbine. Finding an appropriate level
for the penalty costs is important in order to encourage a balanced fleet size and mix. A
penalty cost that is too low leads to no maintenance being conducted at all, as this makes
it cheaper to pay the penalty cost than to acquire vessels to conduct maintenance. On the
other hand, a penalty cost that is too high eliminates the effect of allowing maintenance
tasks not to be conducted in the first place. The method for calculating the penalty costs
used in the computational study is inspired by the previous work of Raknes et al. [116],
and Gundegjerde and Halvorsen[64].

The penalty cost for preventive and corrective maintenance tasks are calculated differ-
ently. For preventive tasks, the consequence of not conducting a task is the increased
probability of failures occurring in the future. To ensure that preventive tasks are given
an incentive to be conducted, the penalty cost is calculated as the largest possible cost of
conducting the task. The cost of conducting a preventive maintenance task, when con-
sidering the vessel acquisition as sunk, is the downtime cost incurred while maintenance
is being conducted, and the variable cost of using a vessel to conduct it. The largest
possible cost of conducting preventive maintenance would hence be incurred if the vessel
with the highest variable cost is used at the time where the downtime cost is highest.
The downtime cost is at its highest when the turbines at a wind farm produce at their
maximum effect. The penalty cost of not completing a preventive task can hence be
calculated as:

Preventive Penalty Cost [e] = Max Effect of Turbine [MW]

∗ (Electricity Price + Subsidy)[e/MWh] ∗Man-Hours [h]

+ Variable Cost of Vessel [e/h] ∗ (Transit Time to Farm + Man-Hours) [h] (7.4)

For corrective maintenance, the consequence of not conducting a maintenance task is rev-
enue loss due to a turbine not being able to generate power. As this is a considerable cost,
the penalty cost of not conducting a corrective task should be larger than for preventive
tasks, to give an incentive to prioritize corrective maintenance over preventive mainte-
nance. The penalty cost of not conducting a corrective task is set equal to the short-term
charter rate of the cheapest vessel that is able to conduct the task. In this way, the cost
of chartering an extra vessel to be able to conduct the task with certainty is equal to the
penalty cost incurred if the fleet is unable to meet demand for maintenance.

7.3.4 Other Calculations

Downtime costs have been calculated as described in Subsection 2.6.1 and Subsection 5.1.7.
The travel time for each vessel type to each wind farm is calculated based on the speed
of the vessel type and the distance from the harbour or offshore station that the vessel
type belongs to. Furthermore, the scenario generator calculates the total charter cost of
vessels based on yearly charter rates and lease lengths. For a given lease length, the total
charter cost, TC, is calculated as:
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TC [e] = Yearly Charter Cost [e] ∗ Lease Length [years] ∗ (1 - Discount) (7.5)

The discount is conditional on lease length, and is included to reflect the fact that ves-
sel agreements with long lease lengths have a lower yearly cost (as described in Sec-
tion 2.4.4).

7.3.5 Preprocessing

To reduce the number of constraints in the problem, some simple preprocessing is con-
ducted in the scenario generator. Constraints (5.13) are preprocessed and removed from
the model by making the utility ratio Ev dependent on node, season, scenario and period.
The new utility ratio Enqspv is set to zero if the weather capabilities of a vessel type is
exceeded by the weather realization in a given period.

7.4 Evaluating the Scenario Generation Method

In the generation of tactical scenarios, randomness is introduced by the scenario gener-
ator in two ways: by sampling weather conditions from historical weather data and by
randomly generating demand for corrective maintenance. When stochastic parameters
are discretely approximated with this approach, a concern about the quality of the sce-
nario generation method is introduced. Kaut and Wallace introduce a method for testing
the practical performance of a scenario generation method in [81]. They present two
minimal requirements that scenario generation methods must satisfy: stability and bias.
These requirements are important to ensure that the generated scenarios are usable for
a given model, and to ensure a certain quality of the solution found by the optimization
model. Furthermore, the paper separates between two types of stability: in-sample and
out-of-sample stability [81].

According to Kaut and Wallance, stability is obtained if all scenario trees generated on the
same input gives the same objective value and solution in the scenario-based optimization
problem [81]. In-sample stability guarantees that when generating several scenario trees
with the same input, the optimal value of the objective function and solution reported
by the model itself is (approximately) the same, regardless of the scenario tree that is
used [81]. Formally, if K scenario trees are generated with the discretisation {ξ̆tk} for the
stochastic process {ξ̃t}, then the in-sample stability can be defined as:

F (x∗k; ξ̆tk) ≈ F (x∗l ; ξ̆tl) k, l ∈ 1, . . . , K (7.6)

where x∗k is the optimal solution found when solving the optimization problem with each

of the scenario trees, k = 1, . . . , K, and F (x∗k; ξ̆tk) is the objective function obtained when

the process {ξ̃t} is approximated by a scenario tree {ξ̆tk}.

Out-of-sample stability is obtained if the solutions of all scenario trees generated with
the same input get (approximately) the same value as the value of the true objective
function, F (x; ξ̃t) [81]. Out-of-sample stability is only necessary to test if in-sample
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stability in solution is not obtained, as it is otherwise guaranteed. However, the reverse
does not hold. Using the same notation as described above, out-of-sample stability can
be defined as:

F (x∗k; ξ̃t) ≈ F (x∗l ; ξ̃t) k, l ∈ 1, . . . , K (7.7)

If the scenario generation method has out-of-sample stability, the real performance of the
solution found by the optimization model is stable [81]. The scenario generation method
would hence provide solutions of good quality. However, if the scenario generation method
does not have in-sample stability as well, it would not be obvious how good these solutions
actually are. In order to evaluate how good the quality of the solution is, it would be then
necessary to find an average solution value by solving several instances in the optimization
model, as the different scenario trees might give different solutions. However, having out-
of-sample stability without in-sample stability is still preferable to the opposite: having in-
sample stability without out-of-sample stability. In the latter case, the real performance
of the solution found would depend on the scenario tree used.

In a sampling method, the strongest candidate for instability is often the lack of sce-
narios [81]. The aim of stability testing can therefore be to investigate the number of
scenarios needed to ensure stability in the scenario generation method. In-sample stabil-
ity is tested by generating several scenario trees on the same input, and comparing the
objective function value and solution found by the optimization model. Bias and out-
of-sample stability is hard to test, as testing requires evaluation of the ”true” objective
function value, found by solving the problem with the ”true” continuous distribution of
the stochastic parameters[81]. Regardless, testing of the out-of-sample stability can be
conducted by approximating the ”true” distribution with a large reference tree. Bias has
not been tested for the DLPOW, and is therefore not presented further.

7.5 Evaluating the Dual-Level Stochastic Model

Stochastic models are often computationally demanding, and require specific solution
methods. It is therefore beneficial to evaluate whether using a stochastic model is nec-
essary to begin with, or if a deterministic approach would be sufficient. Two common
methods for evaluating stochastic models are the value of stochastic solution (VSS) and
the expected value of perfect information (EVPI). EVPI is defined as the amount of money
a decision-maker is willing to pay in return for complete information about the future [20].
Obtaining complete information on future electricity and vessel prices, introduction of
new vessel concepts, and delays in stepwise wind farm development is impossible. EVPI
can therefore be seen as a purely theoretical value for the model for DLPOW. According
to Birge et al. [20], when this is the case and no future information is available, the VSS
becomes more practically relevant. Hence, focus has been put on evaluating VSS in the
computational study and EVPI is therefore not discussed further.

VSS measures the value of using a stochastic approach over a deterministic approach,
and hence measures the value of knowing and using probability distributions on future
outcomes [20]. The VSS is calculated as the difference between the expected value of using
an expected value approach (EEV) and the optimal solution to the stochastic problem
(SP). To find the EEV, the solution from solving the expected value (EV) problem is
used. The EV problem is a deterministic version of the problem, where all stochastic
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parameters have been replaced with their expected values. For a traditional stochastic
two-stage model, the EEV is found by solving the SP with the first stage decisions fixed
to the solution found in the EV problem [20].

7.5.1 Value of Strategic Stochastic Solution

While VSS has been frequently used to evaluate traditional two-stage and multi-stage
stochastic models, it has not, to the authors knowledge, been applied on dual-level
stochastic models. Using VSS on a dual-level stochastic model is complicated in terms of
deciding how and which variables to fix at strategic and tactical level when calculating
the EEV. Our approach is to only consider the strategic nodes when calculating VSS,
resulting in what we call the Value of the Strategic Stochastic Solution (VSSS). VSSS
measures the value of introducing strategic uncertainty on top of a stochastic model with
tactical uncertainty. In the VSSS calculation, only decisions made at the strategic level
are fixed when calculating the EEV. The decisions made at tactical level are never fixed.
The VSSS is calculated with a similar approach as used for calculating a traditional VSS
for multi-stage stochastic models. However, in the VSSS calculation, the embedded tac-
tical scenarios are included in all strategic nodes when finding the EV solution. Hence,
our method differ from the traditional approach by including scenarios at tactical level
in the otherwise deterministic problem used to find the EV solutions.

Calculating V(S)SS for multi-stage stochastic models is not straightforward, as (strategic)
decisions are made on several stages. A decision regarding which (strategic) variables to
fix at each stage must therefore be made. A trivial approach would be to only fix decisions
made in the first stage. Such a method would, however, not be sufficiently beneficial to
the stochastic model developed in this thesis, as the fleet size and mix can be modified
in all strategic nodes at consecutive stages in the EEV after uncertain parameters are
revealed. Another approach suggested in [20], is to determine the EV by solving the
expected value problem for all stages and fixing these decisions in all stages when solving
the EEV. Using this approach to calculate the VSSS for our model would enforce the
same fleet size and mix in all strategic nodes at the same stage in the scenario tree,
giving a large advantage to the stochastic model. In yet another approach, suggested
in [54], a chain of EV problems are solved. With this approach the deterministic model
used to find the EV solutions, is allowed to update decisions at the consecutive stages
based on new information. This approach has been used when calculating VSSS in the
computational study.

Figure 7.4 illustrates how the EEV is calculated for the DLPOW for a dual-level problem
with 3 stages in the strategic scenario tree. Figure 7.4 (a) illustrates the EV1 problem
that is solved to find the EV solution for the first strategic node of the tree. The EV2
problems, one for each strategic node at the second stage, find the optimal solution to the
EV problem in the respective strategic node. In the EV2 problems, the strategic decisions
in the first node have been fixed to the optimal solution of EV1. This is illustrated in
Figure 7.4 (b). The EEV is then calculated by fixing the strategic decisions in the first
node to the optimal solution found in the EV1 problem, and fixing the strategic decisions
made in the nodes on the second stage to the solutions found in the respective EV2
problems. This is illustrated in Figure 7.4 (c). The number of EV2 problems is always
equal to the number of strategic nodes at the second stage in the SP.
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(a)
EV1

(b) EV2 (c) EEV

Figure 7.4: Illustration of EEV calculation used to calculate VSSS.

When the EEV is calculated, the VSSS is given as:

V SSS = EEV − SP

For a minimization problem, Birge and Louveaux [20] show that the following property
must hold for all stochastic problems:

EEV ≥ SP

If the property does not hold, the SP is not the optimal solution to the stochastic problem,
as the expected value solution also is valid for the stochastic problem, and hence could
have been chosen to get a better solution [20].
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Chapter 8

Computational Study

In this chapter, the mathematical model, scenario generator and solution methods for
the DLPOW are tested by the use of computational experiments. In Section 8.1, the
number of scenarios and periods needed to ensure in- and out-of-sample stability in the
scenario generator is investigated. The solution methods used to solve the DLPOW are
tested in Section 8.2 - Section 8.4. The performance of the Greedy Tactical Heuristic,
used to solve tactical subproblems in the GRASP, is tested in Section 8.2. In Section 8.3,
calibration testing is conducted on the GRASP, in order to find the best parameter
settings. The performance of the GRASP and the commercial optimization solver is
examined in Section 8.4. In Section 8.5, the value of accounting for uncertainty at both
strategic and tactical level in one optimization model is investigated through conducting
VSSS calculations.

In the computational experiments described throughout this chapter, several test cases are
solved by the metaheuristic described in Chapter 6 and/or by the commercial optimization
solver. In this master thesis, a test case is defined as a set of test instances generated on
the exact same input. All input parameters in a test case are hence equal. A test instance
is simply a problem instance, and two test instances within the same test case only differ
in their tactical scenario tree. All test instances used in the computational study are
generated based on the input presented in Section 7.1, unless otherwise specified.

All tests conducted in the computational study are performed on a computer with an
Intel(R) Core(TM) i7-3770, CPU 3.4 GHz processor and 16 GB RAM. All tests instances
solved with the commercial optimization solver, FICO(TM) XPress-IVE Version 1.24.06
64-bit, have been run with standard parameter settings and an aggressive cutting strategy.
All test instances solved with the GRASP in Eclipse Mars 4.5.1 have been solved in the
Java Runtime Environment(JRE) 1.8.0 73, with a heap-space limitation of 4 GB.

8.1 Stability in the Tactical Scenario Generator

As discussed in Section 7.4, stability in the scenario generator is desired to ensure that
the solutions found by the optimization model can be trusted to be representative for
the input provided, and do not depend on the specific problem instance (scenario tree)
generated. The tactical scenario generator, presented in Subsection 7.2.1, is tested for in-
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and out-of-sample stability in this computational study. Stability testing is not conducted
for the strategic scenarios, as these are not generated randomly and such testing is hence
not necessary. The aim of the stability testing is to investigate the number of tactical
scenarios needed to ensure stability, and to investigate how the number of periods in each
tactical scenario affect stability.

As the stability testing is conducted to test stability in the generation of tactical scenarios,
the test instances that have been used only have one strategic node with a duration of
one year. Furthermore, all test instances have 2 farms, 1 harbour, 1 offshore station,
and 4 vessel types. All test instances have been solved in the optimization solver. The
following subsections present the results from the stability testing.

8.1.1 In-Sample Stability

In order to test the scenario generation method for in-sample stability, 28 test cases with
15 test instances each, have been solved. The test cases only differ in the number of
tactical scenarios and periods, ranging from 5 - 120 scenarios and 3 - 15 periods. Each
test instance has been solved to an optimality gap of 0.05%. In order to evaluate the in-
sample stability, the coefficient of variation (COV) between the 15 test instances within
each test case has been used as a measure of spread in objective function value. The
COV expresses the amount of variability relative to the average objective function value,
and has for each test case been calculated as:

COV =
σ

µ
(8.1)

where σ is the standard deviation, and µ is the average objective function value in the
test case.

Table 8.1, Figure 8.1 and Figure 8.2 show the results from the in-sample stability testing.
Table 8.1 presents the COV in objective function value for each test case. Figure 8.1
(a) shows a graphical representation of the COV for each test case, while Figure 8.1 (b)
illustrates the average objective function value for each test case. Finally, Figure 8.2 shows
the average computational time needed to solve one instance from each test case.

Table 8.1: COV in the in-sample stability test cases.

Scenarios 3 Periods 5 Periods 10 Periods 15 Periods
[%] [%] [%] [%]

5 5.52 6.14 5.56 3.73
10 5.25 2.58 3.82 2.17
20 3.14 3.39 2.41 2.03
30 3.75 2.61 2.79 1.85
50 2.50 1.88 2.22 1.34
100 1.76 1.58 1.56 0.85
120 1.32 1.44 1.28 0.72
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(a) COV in objective function value for each test
case.

(b) Average objective function value of each test
case.

Figure 8.1: Results from in-sample stability testing.

As can be seen in Table 8.1 and Figure 8.1 (a), the in-sample stability clearly increase
with the number of tactical scenarios. This is expected, as the impact of extreme value
scenarios on the solution generally decrease with an increasing amount of scenarios. All
test instances from 100 scenarios onwards have a COV lower than 2%, regardless of
the number of periods. The lowest COV of 0.72% is found for the test case with 120
scenarios and 15 periods. Additionally, Figure 8.1 (b) show that the average objective
function values are highly unstable for all test cases with less than 50 scenarios. Based
on these results, 100 scenarios is considered as an absolute minimum for ensuring in-
sample stability for 3, 5, and 10 periods, while 50 scenarios is seen as a minimum for 15
periods.

Figure 8.2: Average computational time for each test case.

Considering the effect of periods on the in-sample stability, it can be seen from Table 8.1
and Figure 8.1 that using 15 periods gives the best COV for all scenarios, and that an
increased number of periods generally seems to give a better in-sample stability. The
results reported in Figure 8.1 (b) show that the average objective function value reported
by test cases with 5 periods generally are too high, compared to the other test instances.
The reason for this disparity is not evident, but 5 periods is consequently considered an
unsuitable choice to ensure stability. Based on the results presented above, the choice
of 10 or 15 periods appear best in order to ensure in-sample stability. However, when
considering the computational time, the results in Figure 8.2 show that the number of
periods clearly affect computational time. Comparing test cases with the same amount
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of scenarios, the average computational time for a test instance with 15 periods is sig-
nificantly higher than for a test instance with a lower number of periods. Hence, when
deciding the number of periods, a trade-off between computational time and in-sample
stability must be made.

The results discussed so far measure the in-sample stability in objective function value.
However, it is possible to have in-sample stability in solution without having in-sample
stability in objective function value. For this reason, the fleet size and mix solutions found
in each test instance of all test cases have been inspected, where the aim of the inspection
is to asses the degree of in-sample stability in the solutions found. Looking at the various
solutions found, it is evident that the number of different solutions found within each test
case decrease with an increasing number of scenarios. For all test cases with 120 scenarios,
only 2 different solutions are found. For the test cases with 5 scenarios up to 10 different
solutions are found. This indicates a higher degree of in-sample stability in solution for
test cases with a high number of scenarios. However, no test case in the tested range reach
perfect in-sample stability in solution, which require only one solution to be found across
all 15 test instances. In order to conclude on the number of tactical scenarios and periods
required to ensure stability, out-of-sample stability testing is therefore necessary.

8.1.2 Out-Of-Sample Stability

In the out-of-sample stability testing, the real distribution of uncertain parameters have
been approximated through a reference scenario tree consisting of 10,000 scenarios and
10 periods in each tactical scenario. All the fleet size and mix solutions found in the
in-sample stability testing have been tested on the reference tree to evaluate the real
performance of these solutions. The real performance is given by the objective function
value obtained when solving the reference tree, with the strategic solution fixed to the
values found in a test instance. For each of the 28 in-sample test cases, the solutions
found for all 15 test instances within the respective test case are used to calculate an
out-of-sample COV, as a measure of the stability in real performance. Table 8.2 and
Figure 8.3 show the results from the out-of-sample stability testing. Table 8.2 presents
the COV in the objective function values obtained from the reference tree for the different
solutions found in each test case. Figure 8.3 (a) shows a graphical representation of the
COV for each test case, while Figure 8.3 (b) illustrates the average objective function
value found by the reference tree for each test case.

Table 8.2: COV in the out-of-sample stability test cases.

Scenarios 3 Periods 5 Periods 10 Periods 15 Periods
[%] [%] [%] [%]

5 - 34.05 9.87 8.54
10 35.19 3.07 8.65 0.82
20 8.62 0.71 0.91 0.82
30 4.35 0.61 0.75 0.80
50 0.41 0.53 0.77 0.61
100 0.06 0.22 0.31 0.56
120 0.06 0.23 0.04 0.07
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(a) COV in objective function value for each test
case.

(b) Average objective function value of each test
case.

Figure 8.3: Results from out-of-sample stability testing.

The results from the out-of-sample stability testing show that the out-of-sample stability
improves for an increasing number of scenarios. For all test cases with more than 50
scenarios, the COV is below 1% regardless of the number of periods in the tactical sce-
narios. The lowest COV in the tested range is found for the test case with 120 scenarios
and 10 periods. The results from the reference tree indicate that, even though perfect
in-sample stability is not reached for any number of tactical scenarios, the different solu-
tions found for instances with more than 50 scenarios are approximately identical in real
performance. These test cases can hence be regarded as out-of-sample stable. Further-
more, the results show that for a lower number of scenarios, the test cases with a lower
number of periods perform significantly worse. However, for test cases with 50 scenarios
or more, the number of periods does not appear to influence the stability to any large
extent. Figure 8.3 (b) show that the average objective value stabilise for test instance
with more than 50 scenarios, and that the value converges towards the same value for all
test instances, regardless of the number of periods. Furthermore, Figure 8.3 (b) shows
that the performance of a solution (given by the objective value of the solution found by
the reference tree) improves as the number of scenarios increases. Based on these results,
50 scenarios is seen as the absolute minimum for ensuring out-of-sample stability for all
periods.

8.1.3 Conclusion of Stability Testing

As the results from the in-sample testing indicate, perfect in-sample stability in solution
and objective value is not obtained within the tested range. However, for the DLPOW, the
strategic here-and-now decisions are considered most important. It is hence considered
sufficient to have a level of stability where the real performance of the different strategic
fleet size and mix solutions found is approximately the same. When choosing the number
of periods and scenarios, ensuring the highest possible degree of out-of-sample stability
has therefore been emphasised. The slight in-sample instability for test cases with more
than 50 scenarios is not considered problematic, as these test cases are considered as
out-of-sample stable, and hence give strategic solutions with approximately the same real
performance.
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Comparing the average objective function values reported in the in- and out-of-sample-
testing, an observation can be made: for many test cases with few scenarios, the in-
sample objective values reported are significantly lower than the out-of-sample (true)
values. According to Kaut et al. [81], this means that the real performance of these
solutions are notably worse than what the model states (the solutions have a higher
’true’ objective function value). This is a common observation, and is caused by the
fact that when the number of scenarios is low, the solution found is over-fitted to each
scenario, and hence the model underestimates the ’real cost’ [81]. From this, it can be
seen that the test cases with 15 periods never underestimate costs. However, all test
cases with 10 periods and less than 100 scenarios underestimate costs. In light of this
observation, the number of periods and scenarios should be chosen in such a manner that
the objective function value reported by the model is approximately equal to the ’true’
objective function value, reported by the out-of-sample reference tree.

On account of the discussion above, the choice of 120 tactical scenarios and 10 periods is
considered as the best option. This is due to the fact that this test case have the lowest
out-of-sample COV, a relatively low in-sample COV, and an average in-sample objective
function value that coincides with the value that the average out-of sample objective
converge towards (73 me). The test case with 100 scenarios and 3 periods could also
be a good option, as this test case only has a slightly worse out-of-sample COV, report
approximately the true objective function value, and has a significantly lower average
computational time. However, when also taking in-sample stability into consideration,
120 scenarios and 10 periods performs better than 100 scenarios and 3 periods. As
ensuring stability is considered more important than having low computational time, 120
scenarios and 10 periods is regarded as the best option. In the remaining part of the
computational study, all test instances used have been generated with 120 scenarios and
10 periods (unless otherwise specified).

8.2 Performance of the Greedy Tactical Heuristic

In this section, the performance of the Greedy Tactical Heuristic used to solve tactical
subproblems, presented in Subsection 6.5, is tested. The performance of this heuristic
is crucial for the overall performance of the GRASP, as its results are used to evaluate
candidate insertions when constructing solutions. As the optimization solver has perfect
look-ahead and utilize more information when making decisions, it is unrealistic to expect
a simple greedy heuristic to make the exact same choices as the optimization solver. In
Subsection 8.2.1, a simple test by inspection is therefore conducted in order to identify
similarities and differences between the tactical decisions made by the heuristic and the
optimization solver. In Subsection 8.2.2, the difference in tactical cost resulting from
unsimilar decisions made by the two solution methods is evaluated. Furthermore, when
considering the role of the Greedy Tactical Heuristic in the GRASP, the most important
concern is that the Greedy Tactical Heuristic deploys the fleet in such a way that ”good”
fleet size and mix solutions result in lower costs than ”bad” fleet size and mix solutions.
This is tested in Section 8.2.3.
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8.2.1 Differences in Tactical Deployment Decisions

As mentioned, the optimization solver and the Greedy Tactical Heuristic use fundamen-
tally different approaches to solve the DLPOW. As the solution methods use different
logic when making deployment decisions, the Greedy Tactical Heuristic is expected to
make somewhat different tactical decisions. To identify and analyse these differences,
some simple test instances have been solved with the strategic solutions fixed to a given
fleet. The tactical decisions made by the two solution methods have subsequently been
compared to each other by inspection. The differences in logic observed, and their effect
on tactical decisions and costs, are discussed in the following paragraphs.

Difference in Utilization of Vessels in Periods

In order to keep the downtime costs of corrective tasks low, the Greedy Tactical Heuristic
attempts to conduct corrective tasks as soon as possible, by exhausting the fleet (or
conducting all uncompleted tasks) in each period. In each period, the Greedy Tactical
Heuristic chooses to exhaust the capacity of the cheapest vessel first, before considering
the second cheapest vessel. However, the heuristic does not consider that it might be
cheaper to wait until a later period to conduct a corrective maintenance task with a
cheaper vessel, rather than doing it as soon as possible with a more expensive vessel.
This results in an over utilization of expensive vessels in the Greedy Tactical Heuristic
compared to the optimization solver. In turn, this results in increased variable cost, and
decreased corrective downtime cost in the Greedy Tactical Heuristic.

When conducting preventive maintenance, the Greedy Tactical Heuristic attempts to
utilize the cheapest vessel in all periods before it considers using the second cheapest vessel
in any period. The periods are sorted in a greedy manner, and the heuristic first conducts
as much preventive maintenance as possible with the cheapest vessel in the period with
the lowest preventive downtime cost. However, the heuristic does not consider the trade-
off between using an expensive vessel in a cheap period versus using a cheap vessel in an
expensive period. The Greedy Tactical Heuristic therefore generally decides to conduct
more preventive maintenance in more expensive periods compared to the optimization
solver. This results in higher preventive downtime costs in the Greedy Tactical Heuristic.
However, when conducting preventive maintenance, the heuristic utilize cheaper vessels
to a larger extent than the optimization solver, resulting in decreased variable costs.

Difference in Utilization of Vessels at Farms

While the optimization solver can consider all possible combinations of sending different
vessels to different farms in various periods, the Greedy Tactical Heuristic only considers
one period and one vessel type at the time. The heuristic therefore struggles more with
utilizing the capacity of the fleet in an optimal way, when considering the amount of
vessels to send to each farm in each period. Generally, the heuristic tends to send out
marginally more vessels compared to the optimization solver, which leads to higher transit
costs in the heuristic.

When conducting preventive maintenance, the Greedy Tactical Heuristic only considers
one vessel type and one period at the time. When sending out vessels from depot to
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farms, the heuristic do not take into consideration that there might already be a vessel
with spare capacity located at the farm in the same period, or that a vessel sent to the
farm in another period has spare capacity. Hence, in some cases, the heuristic sends too
many vessels to one farm, rather than exploiting the spare capacity of vessels already
located at the farm. Overall, this may result in spare capacity at one farm, and lack of
capacity to finish all preventive tasks at another farm. In result, the heuristic sometimes
faces penalty costs that the optimization solver avoids.

Furthermore, the Greedy Tactical Heuristic does not take into consideration the fact that
if it is not possible to finish a preventive task, it is better to not start the task at all.
Hence, the heuristic might choose to do a fraction of one task. This is a choice that
the optimization solver never makes, as it leads to an increase in variable costs without
any decrease in penalty costs. Furthermore, when conducting maintenance, the Greedy
Tactical Heuristic selects a farm based on a myopic criteria every time one vessel have
been exhausted. As the farm with the highest cumulative cost is chosen first, this does
in some cases result in using the last capacity of the fleet to do a fraction of a task at
one farm, rather than completing a task started at another farm. These differences in
decision-making result in higher penalty costs in the heuristic. This is especially the
case when evaluating fleets with under-capacity or with little slack in terms of available
operational hours.

8.2.2 Differences in Tactical Costs

As the Greedy Tactical Heuristic does not always make the same tactical decisions as the
optimization solver, it is important to evaluate how the difference in decisions affects the
total tactical cost. This has been tested by comparing the tactical costs found by the
Greedy Tactical Heuristic against the tactical costs found by the optimization solver for
a set of test instances.

4 test cases, each with 10 test instances, have been evaluated. The test cases all have
1 strategic node and 120 scenarios, and the test instances in the 4 test cases only differ
in the amount of periods used in each tactical scenario. In addition to evaluating the
difference in tactical costs, the test cases are also used to evaluate whether the number of
periods affect the difference in cost. The fleet size and mix solution has been fixed in all
test instances at: x1,3,10 = 2, x1,4,10 = 2, yIN1,1,3 = 2, resulting in a fleet of 6 vessels during
summer, and 4 vessels during winter. This fleet size and mix solution has been chosen as
it occurs most often in the most stable in-sample test cases presented in Section 8.1. To
evaluate the differences in tactical costs between the two solution methods, a percentage
deviation is calculated. For each test instance, the percentage difference between the
tactical cost found by the Greedy Tactical Heuristic and the tactical cost found by the
optimization solver is given by:

Difference [%] =
Tactical Cost [Heuristic] - Tactical Cost [Solver]

Tactical Cost [Solver]
∗ 100 (8.2)
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A positive percentage indicates that the Greedy Tactical Heuristic gives a higher (worse)
tactical cost than the optimization solver. The results from the testing are shown in
Figure 8.4, which reports the average difference of the 10 test instances in each test case.
As the figure shows, the average tactical cost found for a given fleet is 1.5-3.0% higher
in the Greedy Tactical Heuristic than in the optimization solver. The average difference
in tactical cost is higher during winter than during summer, regardless of the number of
periods. Furthermore, Figure 8.4 shows that the average difference in total tactical cost
is higher for the test case with 3 periods than for any other test case.

Figure 8.4: Average differences in tactical costs.

The difference in tactical costs between the two solution methods indicates that the
Greedy Tactical Heuristic is not able to utilize the given fleet as well as the optimization
solver, especially in the winter season. In winter, the weather conditions are harsher
and the time windows for maintenance are hence shorter. This increases the importance
of optimal fleet deployment, and the consequence of not being able to deploy the fleet
optimally hence becomes more severe. As discussed in the previous section, the Greedy
Tactical Heuristic does not deploy the fleet optimally, resulting in higher tactical costs
when using this solution method. However, it can be argued that the decisions made by
the Greedy Tactical Heuristic are more realistic than the decisions made by the solver.
The optimization solver has perfect look-ahead, and for this reason it is likely to over-
optimize. The over-optimization makes it hard for a real-life wind farm owner to actually
accomplish the suggested tactical deployment of a fleet from the solver. In result, the
optimization solver might tend to choose a fleet size and mix solution that is too small,
compared to what would be optimal in real-life. This kind of over-optimization is not
performed by the Greedy Tactical Heuristic, and the tactical costs and decision made in
the heuristic can hence be regarded more realistic.

8.2.3 Evaluation of Fleet Size and Mix Solutions

As shown in the previous subsections, there is a slight difference in both decisions and
tactical costs reported by the two solution methods. This calls for further evaluation to
ensure that these differences do not influence what is considered as the best strategic
fleet size and mix solution. The aim of the testing in this subsection is hence to analyse
whether both solution methods consider the same fleet size and mix decisions to be best
or worst. For this to be the case, a solution that is considered to be good (low objective
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value) in the optimization solver also needs to be considered good by the Greedy Tactical
Heuristic, and vice versa.

In order to test how different solutions are evaluated, 10 different fleet size and mix
solutions (fleets) have been fixed in the same test instance. For each fixed fleet, the test
instance has been solved once by each solution method. The test instance used have
1 strategic node, 120 tactical scenarios and 10 periods. Table 8.3 shows the objective
function value found by each solution method for the various fixed fleets. Furthermore,
the table shows how the different fleets are ranked within each solution method, based
on their objective function value. The last column gives the difference in the tactical
costs found by the two solution methods, calculated as described by Equation 8.2. An
overview of the 10 fleet size and mix solutions used is given in Appendix B.2.

Table 8.3: Ranking of fleets according to objective function value.

Optimization Solver Greedy Tactical Heuristic
Fleet Objective Rank Objective Rank Difference

[me] [-] [me] [-] [%]
1 73.77 1 74.32 1 1.70
2 74.02 2 74.37 2 1.13
3 74.11 3 74.54 3 1.36
4 75.60 4 76.86 5 3.65
5 75.64 5 76.90 6 3.57
6 76.43 6 76.84 4 1.33
7 82.10 7 83.56 7 3.55
8 114.89 8 117.78 8 3.76
9 201.22 9 207.26 9 3.65
10 1,550.64 10 1,550.64 10 0.00

The results from Table 8.3 show that both the optimization solver and the greedy heuristic
rank the best and the worst fleet size and mix solutions equally. 7 of the 10 fleets have
the same rank in both solution methods, where the best fleets (1, 2, and 3) and the
worst fleets (7, 8, 9, and 10) are ranked equally. However, the fleets ranked in the middle
(4, 5, and 6), are ranked differently. This could be due the fact that these fleets are
very close in terms of objective function value in both solution methods, with an average
percentage difference of 0.73% in the objective function values found by the optimization
solver. However, the average percentage difference in the objective function values found
by the solver for fleets 1, 2 and 3 is 0.31%. This shows that the heuristic is able to
differentiate solutions that are almost equal in terms of objective function value, and the
different rankings of fleets 4, 5 and 6 can hence not be explained solely by the closeness
in objective function value.

The dissimilar ranking of 4, 5, and 6 can more likely be explained by the differences
in fleet size between these instances. As the Greedy Tactical Heuristic struggle with
deploying a fleet optimally, it may prefer fleets that are slightly larger than what the
optimization solver prefers. Furthermore, an inspection of the results shows that the
difference in the tactical cost found by the two solution methods are generally larger for
small fleets, than for large fleets. This results in a slight rearrangement in the ranking
performed by the heuristic compared to the optimization solver. However, as these fleet
size and mix solutions are approximately equal in terms of objective function value, and
the best fleets are still evaluated as best by the Greedy Tactical Heuristic, this slight
rearrangement is not considered to be a major issue.
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8.2.4 Conclusion of Performance Testing

As discussed in this section, there are differences in how the two solution methods make
choices regarding deployment of a given fleet. Due to the lack of look-ahead in the Greedy
Tactical Heuristic, this solution method is not able to utilize a given fleet as optimally as
the optimization solver. This results in a small difference in tactical costs found by the
Greedy Tactical Heuristic and the optimization solver, where the heuristic always returns
a slightly higher cost of deploying a given fleet. However, despite these differences in
deployment decisions and costs, it has been shown that the overall performance of the
Greedy Tactical Heuristic is good. Both solution methods rank fleet size and mix solutions
equally, and a good fleet in the optimization solver is likely to be evaluated as a good
fleet in the heuristic as well. Hence, the performance of the embedded Greedy Tactical
Heuristic is considered sufficiently good for its intended use in the GRASP.

8.3 Calibration of the Reactive GRASP

When using the reactive GRASP to solve the DLPOW, several parameters affect the
performance of the metaheuristic. As presented in Subsection 6.2, the GRASP is exe-
cuted with several input parameters: Max Iterations, Top Down, Rank Based, δ, A =
{α1, ..., αm} and Block Iterations. These parameters affect both the computational
time and the quality of the solutions found by the GRASP. The aim of the calibration
testing conducted in this section, is to examine combinations of parameter values and
find the combination for which the GRASP performs the best. Hvattum et al. [74] state
that due to the vast number of possible combinations of parameter values, exhaustive
calibration testing of all possible combinations is not possible. Hvattum et al. therefore
suggest that calibration testing can be conducted by examining the parameters in a se-
quential manner, where one parameter is changed at the time and untested parameters
are kept constant at reasonable values.

To calibrate the GRASP, 10 test instances have been used. To keep the calibration testing
unbiased towards a specific type of test instance, the 10 instances have been generated
with different user input. The test instances vary greatly in size, having between 1 - 13
strategic nodes, arranged in strategic scenario trees of different shapes. Different strate-
gic uncertainty is considered in the test instances, and each test instance accounts for
either: no strategic uncertainty (Deterministic), uncertainty in electricity prices (Elec-
tricity Price) or uncertainty in stepwise development of wind farms (Farms). The number
of vessel types vary from 4 - 6, and the number of wind farms vary from 2 - 3. All test
instances have 120 scenarios and 10 periods. Table 8.4 contains a summary of the test
instances, showing which type of strategic uncertainty each instance accounts for, the
number of nodes at each level of the strategic scenario tree, the total number of strategic
nodes, the number of vessel types, and the number of wind farms.

As discussed in Section 6.6, two versions of the reactive GRASP have been implemented:
an any-node reactive GRASP (ANG) and a top-down reactive GRASP (TDG). These two
versions differ in the way candidate insertions and solutions are constructed, and what is
considered to be the the best parameter values may differ for these two versions. For this
reason, the parameters are tuned separately for the ANG and for the TDG in the cali-
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Table 8.4: Test instances used in the calibration testing of the GRASP.

Instance Strategic #Nodes at #Strategic #Vessel Types #Farms
Name Uncertainty Each Stage Nodes (#Stations) (#Turbines)

T1 Deterministic (1, 1, 1) 3 4 (2) 2 (200)
T2 Deterministic (1, 1, 1, 1, 1) 5 4 (2) 2 (200)
T3 Farms (1, 2, 3)∗ 6 4 (2) 3 (300)
T4 Farms (1, 3, 6)∗ 10 4 (2) 3 (300)
T5 Electricity Price (1, 2) 3 4 (2) 2 (200)
T6 Electricity Price (1, 2, 4) 7 6 (3) 2 (200)
T7 Deterministic (1, 1, 1) 3 6 (3) 2 (200)
T8 Farms (1, 3, 6)∗ 10 6 (3) 3 (300)
T9 Electricity Price (1, 3) 4 6 (3) 2 (200)
T10 Electricity Price (1, 3, 9) 13 6 (3) 2 (200)

*The strategic scenario trees for these instances are unbalanced. Their structure is explained in Subsec-
tion 7.2.2.

bration testing. Systematic testing has been conducted on the parameters Rank Based,
A = {α1, ..., αm}, and Max Iterations, introduced in Chapter 6. The parameter δ, is
set to 10 as suggested by Prais et al. in [111]. The parameter Block Iterations is also
set to 10. The calibration testing is conducted in three stages where different parame-
ters are tuned in each stage. The tests conducted in the three stages are presented in
Subsection 8.3.1 - Subsection 8.3.3, respectively.

8.3.1 Stage 1: Rank versus Value Based Selection

In stage 1, the aim is to analyse how the performance of the GRASP is affected by the use
of a rank based versus a value based selection when constructing the RCL. The testing
is done by running each of the 10 test instances twice in both the TDG and the ANG,
once with a rank based selection and once with a value based selection. For the testing
in this stage, the GRASP is run with Max Iterations = 1000, and α-values are drawn
from the set A = {0.00, 0.10, 0.20, ..., 1.00}. The test results from this stage are used to
decide whether to use a rank based or value based selection in all further tests in the
computational study.

The objective function values found for the test instances by the TDG and the ANG
are shown in Table 8.5 and Table 8.6, respectively. The tables also depict the iteration
number at which the best solution was found (Best Itr), the alpha value used when the
best solution was found (Best α) and the computational time for 1000 iterations (Total
Time).

The results reported in Table 8.5 show that the TDG finds solutions of equally good
quality for 8 of the 10 tested instances, regardless of whether a rank based or a value
based selection is used. However, for some of the larger instances (T4 and T8), the use
of a value based selection results in a better solution. Furthermore, the results show that
the use of a value based selection outperforms the use of a rank based selection in terms
of computational time for 8 of 10 test instances. When a value based selection is used,
the best solution is found at an earlier iteration for 9 of 10 instances. This could indicate
that a lower number of iterations is needed if a value based selection is used.
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Table 8.5: Results from stage 1 calibration testing of the TDG.

Rank Based Value Based
Test Best Best Best Total Best Best Best Total

Instance Objective Itr α Time Objective Itr α Time
[me] [#] [-] [sec] [me] [#] [-] [sec]

T1 885.06 44 0.10 278 885.06 4 0.00 100
T2 873.73 18 0.10 408 873.73 3 0.00 272
T3 1,039.47 867 0.10 1,352 1,039.47 16 0.00 790
T4 1,071.08 931 0.10 846 1,068.53 119 0.20 790
T5 913.62 23 0.10 232 913.62 1 0.00 215
T6 837.96 926 0.10 2,110 837.96 1 0.00 721
T7 874.06 104 0.10 605 874.06 5 0.00 362
T8 1,049.21 941 0.10 3,665 1,030.24 18 0.00 4,535
T9 893.09 61 0.10 509 893.09 17 0.00 362
T10 849.82 56 0.10 2,085 849.82 364 0.20 2,467

Table 8.6: Results from stage 1 calibration testing of the ANG.

Rank Based Value Based
Test Best Best Best Total Best Best Best Total

Instance Objective Itr α Time Objective Itr α Time
[me] [#] [-] [sec] [me] [#] [-] [sec]

T1 885.06 611 0.10 141 885.06 1 0.00 107
T2 873.67 428 0.20 319 868.28 6 0.10 213
T3 1,051.51 853 0.10 1,886 1,035.20 6 0.00 488
T4 1,110.11 28 0.10 1,689 1,068.31 171 0.10 1,760
T5 913.62 664 0.20 329 910.07 40 0.10 207
T6 843.89 377 0.10 1,397 837.96 10 0.00 902
T7 876.87 643 0.10 500 874.06 3 0.00 344
T8 1,082.45 487 0.10 5,346 1,028.65 36 0.00 4,593
T9 893.09 579 0.10 613 889.54 117 0.10 418
T10 873.98 169 0.10 4,631 849.28 650 0.20 2,718

The results for the ANG reported in Table 8.6 show that, similarly as for the TDG, the
value based selection outperforms the rank based selection in terms of computational time
and in terms of the iteration number at which the best solution is found. Furthermore,
the table shows that a better solution is found for 9 of 10 instances when a value based
selection is used in the ANG. Only for T1, the smallest test instance, does the solution
quality not differ between the two approaches. Hence, the choice between a value based
versus a rank based selection seems to have a higher consequence on solution quality for
the ANG compared to the TDG. In conclusion, a value based selection is considered best
for both the ANG and TDG, and is hence used in the remaining tests presented in this
chapter.

8.3.2 Stage 2: Set of RCL Parameter Values A = {α1, ..., αm}

In the second stage of the calibration, the reactive extension of the GRASP is tested
to find an appropriate set of α-values to be used in the construction of the RCL. The
aim of the testing is to find a good maximum value for α, and the appropriate number
of equidistant values to select from. Each test instance is solved by both the TGD and
the ANG. The maximum value for α and the equidistance between the values are varied,
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while holding the minimum value of α constant at 0.00. As shown in the test results from
stage 1, presented in Table 8.5 and Table 8.6, the best solutions in stage 1 were found for
α-values in the range [0.00, 0.20] for both TDG and ANG, when a value based selection
was used. Based on these results, both versions of the GRASP are tested with a maximum
α-value of 0.20, to assess whether this leads to an improvement in performance. In order
to evaluate how the number of values in the range affect performance, two different sets
have been tested: A1 = {0.00, 0.10, 0.20} and A2 = {0.00, 0.05, 0.10, 0.15, 0.20}, with
the equidistances 0.1 and 0.05, respectively. The results from the testing are shown in
Table 8.7 and Table 8.8.

Table 8.7: Results from stage 2 calibration testing of the TDG.

A1 = {0.00, 0.10, 0.20} A2 = {0.00, 0.05, ..., 0.20}
Test Best Best Best Total Best Best Best Total

Instance Objective Itr α Time Objective Itr α Time
[me] [#] [-] [sec] [me] [#] [-] [sec]

T1 885.06 1 0.00 41 885.06 10 0.00 30
T2 873.73 3 0.00 76 873.73 2 0.15 75
T3 1,039.47 3 0.00 184 1,039.47 3 0.00 177
T4 1,068.53 45 0.20 307 1,068.53 28 0.20 314
T5 913.62 1 0.00 40 913.62 1 0.15 40
T6 837.96 3 0.00 227 837.96 6 0.00 229
T7 874.06 3 0.00 96 874.06 1 0.10 88
T8 1,030.24 3 0.00 919 1,030.24 1 0.00 929
T9 893.09 4 0.00 149 893.09 7 0.00 133
T10 849.82 228 0.20 487 849.82 206 0.20 486

Table 8.8: Results from stage 2 calibration testing of the ANG.

A1 = {0.00, 0.10, 0.20} A2 = {0.00, 0.05, ..., 0.20}
Test Best Best Best Total Best Best Best Total

Instance Objective Itr α Time Objective Itr α Time
[me] [#] [-] [sec] [me] [#] [-] [sec]

T1 885.06 2 0.00 52 885.06 6 0.10 48
T2 868.28 8 0.10 103 868.28 14 0.10 115
T3 1,035.20 3 0.00 259 1,035.20 4 0.00 260
T4 1,068.31 18 0.10 752 1,068.31 15 0.05 753
T5 910.07 7 0.20 51 910.07 12 0.05 49
T6 837.96 1 0.00 390 837.96 1 0.05 392
T7 874.06 2 0.00 121 874.06 5 0.05 124
T8 1,028.65 1 0.00 2,344 1,028.65 3 0.00 1,997
T9 889.54 115 0.10 189 889.54 8 0.05 187
T10 849.82 204 0.20 1,499 849.28 7 0.20 1,517

As the results show, reducing the maximum value on alpha from 1.00 to 0.20 does not
deteriorate the quality of the solutions found by either the TDG or the ANG. For both
GRASP versions, the same solution is found when using the sets A1 and A2 as with
the original range used in stage 1 (A = {0.00, 0.10, ..., 1.00}). However, using the sets
A1 and A2 results in a significant decrease in computational time for all test instances.
Additionally, when 0.2 is used as the maximum value for α, 14 of 20 solutions found by
the TDG and 15 of 20 solutions found by the ANG are found at an earlier iteration, when
compared to using a maximum α-value of 1.0 as in stage 1. Furthermore, the results show
that when considering computational time, solution quality, and number of iterations, A1
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and A2 have no significant difference in performance. The results hence indicate that the
number of equidistant values within the tested range does not affect the performance of
the GRASP to any large extent.

Furthermore, as can be seen from the results from both stage 1 and stage 2, the same
solutions are sometimes found for different α-values by both TDG and ANG. This shows
that the GRASP is robust when it comes to parameter settings, and that the best solution
found is not sensitive to specific parameter values. In conclusion, the results indicate
that using a maximum value of 0.20 for alpha is desirable, as the computational effort is
reduced without loss in solution quality. The set A2 has been chosen for use in further
testing, as this set gives a slight increase in flexibility and diversification in the search,
without any extra overhead in computational time.

8.3.3 Stage 3: Maximum Number of Iterations

The parameter Max Iterations is a stopping criterion for the GRASP. Setting this pa-
rameter to a high value increases the probability of finding many different solutions, and
hence the probability of finding the optimal solution [117]. Decreasing the number of iter-
ations reduce this probability, but also the computational time. The number of iterations
needed to ensure high-quality solutions depends on the parameter α . For a high α-value,
where the GRASP is more random than greedy, the number of iterations needs to be
high to ensure that most elements in the RCL are eventually investigated. However, if
the α-value is zero, the RCL is smaller, and fewer iterations are needed. With a Reactive
GRASP, where α is drawn randomly from a given range, the amount of iterations needs
to be large enough for good α-values to be discovered and used.

The aim of the third stage of the calibration testing is to find an appropriate maximum
number of iterations for the GRASP. As the test instances differ significantly in terms
of complexity and size, the number of GRASP iterations needed to ensure high-quality
solutions might differ between the instances. The number of strategic nodes and vessel
types in a problem instance are especially expected to affect the number of iterations
needed, as these directly affect the number of valid candidate solutions in each iteration.
Rather than deciding one constant value of maximum iterations to be used for all test
instances, the value of max iterations has been set relative to the size of the problem. This
allows larger test instances to be run with a higher number of iterations. The number
of iterations is considered as a function of the number of strategic nodes, the number of
vessel types and a factor β: Max Iterations = strategic nodes ∗ vessel types ∗β. Hence,
to find an appropriate maximum number of iterations, an appropriate value of the factor
β must be found. This is done by testing 4 different β values on test instances T1, T6,
T8 and T10, and comparing the best solutions found with the best solutions from stage
1, where Max Iterations was set to 1000. The β values tested are: 0.20, 0.50, 0.75 and
2.00. Table 8.9 shows the number of iterations for each test instance for each of the
respective β-values.

The results from stage 3 testing are presented in Table 8.10 and Table 8.11. For each
value of β, the differences in objective function values found for this β-value, relative to
the objective function values found in stage 1, are presented. A positive percentage value
indicates that the objective function value found for a given β-value is worse (higher)
than the objective function value found in stage 1 with 1000 iterations.
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Table 8.9: Maximum iterations for each test instance for each β-value.

Test 0.20 0.50 0.75 2.00
Instance Itr [#] Itr [#] Itr [#] Itr [#]

T1 2 6 9 24
T6 8 21 31 84
T8 12 30 45 120
T10 15 39 58 156

Table 8.10: Results from stage 3 calibration testing of the TDG.

Test 0.20 Time 0.50 Time 0.75 Time 2.00 Time
Instance [%] [sec] [%] [sec] [%] [sec] [%] [sec]

T1 4.0 21 0.0 26 0.0 36 0.0 35
T6 0.0 118 0.0 114 0.0 149 0.0 155
T8 0.0 346 0.0 471 0.0 516 0.0 706
T10 0.0 202 0.0 298 0.0 245 0.0 355

Table 8.11: Results from stage 3 calibration testing of the ANG.

Test 0.20 Time 0.50 Time 0.75 Time 2.00 Time
Instance [%] [sec] [%] [sec] [%] [sec] [%] [sec]

T1 3.9 21 0.0 28 0.0 33 0.0 37
T6 0.0 110 0.0 161 0.0 152 0.0 213
T8 0.0 386 0.0 555 0.0 644 0.0 907
T10 0.0 197 0.0 259 0.0 346 0.0 504

The results from the testing show that having a β-factor of 0.2 results in a noticeable
decrease in solution quality for the smallest test instance, and this factor is hence too low.
For β-values higher than 0.5, the same solution as found in stage 1, is found in all cases
for both TDG and ANG. All β-values above 0.5 are hence considered to be sufficient.
As can be seen from Table 8.9, these β-values all result in a relatively low number of
maximum iterations. This can be seen in connection to the range of α-values for which
the GRASP performs the best ([0.00,0.20]), where the GRASP is relatively greedy. The
results in Table 8.10 and Table 8.11 also show that the computational time increase with
the value of the β-factor. The difference in computational time between β = 0.5 and
β = 0.75 is relatively small, while the computational time when β = 2.00 is significantly
worse. Compared to β = 0.50, setting β = 0.75 results in an increased probability of
finding a good solution, without any significant overhead in computational time. Hence,
this value has been chosen and is used in all further testing.

8.4 Performance of Solution Methods

Two fundamentally different solution methods are used to solve the DLPOW, a GRASP
and a commercial optimization solver. In this section, tests are conducted to evaluate
the performance and limitations of these solution methods. In order to conduct such
tests, 33 test instances have been generated with various input. All test instances have
120 scenarios and 10 periods, but the size of the test instances vary greatly. The number
of strategic nodes vary between 1 - 63, structured in strategic scenario trees of different
shapes. Different types of strategic uncertainties are accounted for by the test instances,
and the number of stations, vessel types and wind farms vary between test instances.
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Some of the generated instances are meant to be fairly easy to solve, while other are
meant to test the limitations of the solution methods. A summary of the characteristics
of the test instances used is given in Table 8.12.

Table 8.12: Test instances used in the performance testing.

Instance Strategic #Nodes at #Strategic #Vessel Types #Farms
Name Uncertainty Each Stage Nodes (#Stations) (#Turbines)

D1 Deterministic (1) 1 4 (2) 2 (200)
D3 Deterministic (1, 1, 1) 3 4 (2) 2 (200)
D5 Deterministic (1, 1, 1, 1, 1) 5 4 (2) 2 (200)
D10 Deterministic (1, 1, 1, ... , 1) 10 4 (2) 2 (200)
D25 Deterministic (1, 1, 1, ... , 1) 25 4 (2) 2 (200)
F6 Farms (1, 2, 3)∗ 6 4 (2) 3 (300)
F10 Farms (1, 3, 6)∗ 10 4 (2) 3 (300)
F35 Farms (1, 3, 6, 10, 15)∗ 35 4 (2) 3 (300)
F56 Farms (1, 5, 15, 35)∗ 56 4 (2) 3 (300)
F56’ Farms (1, 3, 6, 10, 15, 21)∗ 56 4 (2) 3 (300)
EP3 Electricity Price (1, 2) 3 4 (2) 2 (200)
EP4 Electricity Price (1, 3) 4 4 (2) 2 (200)
EP7 Electricity Price (1, 2, 4) 7 4 (2) 2 (200)
EP13 Electricity Price (1, 3, 9) 13 4 (2) 2 (200)
EP21 Electricity Price (1, 4, 16) 21 4 (2) 2 (200)
EP40 Electricity Price (1, 3, 9, 27) 40 4 (2) 2 (200)
EP63 Electricity Price (1, 2, 4, 8, 16, 32) 63 4 (2) 2 (200)
D1.2 Deterministic (1) 1 6 (3) 2 (200)
D3.2 Deterministic (1, 1, 1) 3 6 (3) 2 (200)
D5.2 Deterministic (1, 1, 1, 1, 1) 5 6 (3) 2 (200)
D10.2 Deterministic (1, 1, 1, ... , 1) 10 6 (3) 2 (200)
D25.2 Deterministic (1, 1, 1, ... , 1) 25 6 (3) 2 (200)
F6.2 Farms (1, 2, 3)∗ 6 6 (3) 3 (300)
F10.2 Farms (1, 3, 6)∗ 10 6 (3) 3 (300)
F35.2 Farms (1, 3, 6, 10, 15)∗ 35 6 (3) 3 (300)
F56.2 Farms (1, 5, 15, 35)∗ 56 6 (3) 3 (300)
F56’.2 Farms (1, 3, 6, 10, 15, 21)∗ 56 6 (3) 3 (300)
EP3.2 Electricity Price (1, 2) 3 6 (3) 2 (200)
EP4.2 Electricity Price (1, 3) 4 6 (3) 2 (200)
EP7.2 Electricity Price (1, 2, 4) 7 6 (3) 2 (200)
EP13.2 Electricity Price (1, 3, 9) 13 6 (3) 2 (200)
EP40.2 Electricity Price (1, 3, 9, 27) 40 6 (3) 2 (200)
EP63.2 Electricity Price (1, 2, 4, 8, 16, 32) 63 6 (3) 2 (200)

*The strategic scenario trees for these instances are unbalanced. Their structure is explained in Subection 7.2.2.

8.4.1 Performance of the Optimization Solver

In order to test the performance of the optimization solver, two different methods have
been used for solving the 33 test instances. Both methods use the standard settings
of the optimization solver and an aggressive cutting strategy. The first method, Exact,
solves the original DLPOW problem with a 12 hour time limit (43,200 seconds). The
second method, Matheuristic, is a simple matheuristic implemented in the solver. The
simple matheuristic consists of two steps, both given a time limit of 12 hours. Step one
solves a version of the problem where the integrality constraints of all tactical variables
are relaxed, providing a dual bound. In step two, the original problem is solved with the
strategic solution fixed to the solution found in step one, providing a primal bound.
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Several approaches can be used to find a dual bound in step one, e.g. solving the LP-
relaxed problem. The idea behind the method used is to provide the solver with a
problem that is easier to solve than the unrelaxed DLPOW, but which may still provide
useful information. Since the strategic decision variables are kept integer feasible, and
the variables represent feasible real-life actions, it is expected that the approach used in
step one of Matheuristic will find a solution of higher quality, and a tighter dual bound,
compared to the LP-relaxation.

The results for the two methods are reported in Table 8.13. The best primal and dual
bounds found within the time limit, the optimality gap, and the time at which the
solver terminates, are reported. None of the tested instances can be solved to optimality
(0.01%), and the time reported is hence the time at which the solver reaches its memory
limitation. Values marked with a ’-’ indicate that no solution could be found before
the solver reached memory limitations. The reported gap for each test instance is the
optimality gap of the primal feasible solution found, calculated as:

Optimality Gap [%] =
Primal Bound− Best Dual Bound

Primal Bound
∗ 100 (8.3)

where ’Best Dual Bound’ is the globally best dual bound found by either of the two meth-
ods. The solutions proven to be within 1.00% of optimality are shown in boldface.

As Table 8.13 shows, only 18 of the 33 tested instances can be handled in its MIP form
by the optimization solver, even when the strategic solutions are fixed. The optimization
solver is not able to close the optimality gap for any test instance. The smallest optimality
gap found is for test instance EP4.2, with a proven optimality gap of 0.11% when solved
by the method Exact. Only the 8 smallest and easiest problem instances can be solved
to an optimality gap of 1.00% by the method Exact. The method Matheuristic is not
able to find a primal feasible solution within 1% of optimality for any test instance. The
smallest optimality gap of 5.6% found by this method is for test instance D1. The largest
test instance (in terms of size) for which a solution is found within 1% optimality is
EP7.2, when using the method Exact. This test instance has 7 strategic nodes, 1,504,440
rows, 5,599,997 columns, and 33,740,110 nonzeros in the constraint matrix. The largest
instance for which any feasible solution is found by either method, EP13, has 13 strategic
nodes, 2,612,752 rows, 7,602,858 columns and 43,400,476 nonzeros.

The results for Matheuristic in Table 8.13, show that the optimization solver only can
handle one more instance when the tactical integrality constraints are relaxed, compared
to when solving the original MIP formulation. Furthermore, the results show that the
fleet size and mix solution found by Matheuristic is worse than the one found by Exact
for 17 of 18 instances. This indicates that the approach used in step one of Matheuristic
does not provide good solutions. When inspecting the fleet size and mix solutions found
in step one of Matheuristic, it can be seen that the fleets chosen generally are too small
compared to what is considered optimal in the original MIP formulation. Furthermore,
the results show that Exact finds tighter dual bounds than Matheurinstic for 17 of 18
instances. In conclusion, the method Exact outperforms Matheuristic, as it generally
provides both a better solution and better bounds to the problem. However, the results
show that, even with an aggressive cutting strategy and a time limitation of 12 hours,
finding good solutions with the optimization solver is difficult for anything but small
instances.
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Table 8.13: Solution values found by the optimization solver.

Instance Exact Matheuristic
Name Primal Dual Gap Time Primal Dual Gap Time

[me] [me] [%] [sec] [me] [me] [%] [sec]
D1 71.66 71.25 0.6 11,071 75.48 69.19 5.6 14,898
D3 863.74 855.27 1.0 10,815 1,008.17 814.22 15.2 14,726
D5 848.00 842.02 0.7 10,491 991.89 811.53 15.1 6,167
D10 961.21 831.85 13.5 43,011 1,068.02 822.80 22.1 20,721
D25 - - - - - - - -
F6 1,088.34 984.58 9.5 13,419 1,043.34 968.79 5.6 6,448
F10 - 956.04 - 990 39,401.78 964.06 97.6 5,913
F35 - - - - - - - -
F56 - - - - - - - -
F56’ - - - - - - - -
EP3 927.01 919.49 0.8 3,033 1,138.97 882.36 19.3 19,236
EP4 900.33 898.32 0.2 5,475 1,001.64 854.86 10.3 7,125
EP7 886.74 848.06 4.4 17,555 954.25 840.09 11.1 24,234
EP13 968.78 788.81 18.6 952 33,418.48 784.15 97.6 1,385
EP21 - - - - - - - -
EP40 - - - - - - - -
EP63 - - - - - - - -
D1.2 73.31 73.19 0.2 8,071 83.01 71.40 11.8 26,281
D3.2 842.98 841.73 0.1 12,749 1,107.87 808.20 24.0 15,060
D5.2 881.07 805.46 8.6 33,172 975.90 802.36 17.4 31,194
D10.2 955.68 776.77 18.7 1,494 32,370.55 772.31 97.6 2,244
D25.2 - - - - - - - -
F6.2 1,138.09 980.95 13.8 30,158 1,187.77 978.89 17.4 24,227
F10.2 - - - - - - - -
F35.2 - - - - - - - -
F56.2 - - - - - - - -
F56’.2 - - - - - - - -
EP3.2 880.99 841.73 4.5 12,749 1,031.10 835.75 18.4 14,486
EP4.2 874.52 873.55 0.1 14,314 1,159.82 839.40 24.7 1,887
EP7.2 860.10 853.50 0.8 41,803 1,082.63 822.38 21.2 26,756
EP13.2 - - - - - - - -
EP40.2 - - - - - - - -
EP63.2 - - - - - - - -

8.4.2 Performance of the GRASP

To evaluate the performance of the GRASP, 29 of the 33 test instances have been solved
with both the TDG and the ANG. These solution methods have been given a time
limit of 2 hours (7,200 seconds), and have been run with calibration parameter values as
concluded in Section 8.3. Table 8.14 shows the results obtained for the test instances by
the two GRASP versions, together with the computational time required to solve each
test instance. For the test instances where the time limitation is reached, the GRASP
has been interrupted before reaching the maximum number of iterations. The solutions
presented are hence the best solutions found by the GRASP within the maximum number
of iterations or within the time limit.
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As the GRASP offers no guarantee on solution quality, the quality of the GRASP solu-
tions have been assessed by comparing their objective function values to the objective
function values found by the solver. The difference (Diff to Solver) reported in Table 8.14,
show the improvement/deterioration in solution quality when using the GRASP over the
optimization solver, and is calculated as:

Diff to Solver [%] =
Best Objective [GRASP]− Best Objective [Solver]

Best Objective [Solver]
∗ 100 (8.4)

A negative value indicate that the TDG/ANG finds a lower objective function value, and
hence a better solution. The solutions found by the TDG/ANG which are better than
the best primal feasible solution found by the solver are shown in boldface. The reported
gap in Table 8.14 is the optimality gap for each TDG/ANG solution, which are calculated
as shown in Equation 8.3. The optimality gap in the best primal feasible solution found
by the solver is reported for comparison in Table 8.14.

Table 8.14: Solution values found by the GRASP.

Solver TDG ANG
Test Opt Best Total Diff to Opt Best Total Diff to Opt

Instance Gap Objective Time Solver Gap Objective Time Solver Gap
[me] [me] [sec] [%] [%] [me] [sec] [%] [%]

D1 0.6 71.92 7 0.4 0.9 71.92 6 0.4 0.9
D3 1.0 868.93 42 0.6 1.6 868.93 40 0.6 1.6
D5 0.7 863.10 82 1.8 2.4 862.22 83 -1.7 2.3
D10 13.5 871.16 132 -9.4 4.5 867.45 171 -9.7 4.1
D25 - 869.48 600 - - 860.89 964 - -
F6 5.6 1,024.43 174 -1.8 3.9 1,022.94 147 -2.0 3.7
F10 97.6 1,051.39 228 -97.3 8.3 1,051.59 267 -97.1 8.3
F35 - 1,116.24 1,452 - - 1,105.87 5,890 - -
F56’ - 1,147.05 7,200 - - 1,131.80 7,200 - -
EP3 0.8 938.13 29 1.2 2.0 938.13 32 1.2 2.0
EP4 0.2 914.19 53 1.5 1.7 914.19 59 1.5 1.7
EP7 4.4 880.91 79 -0.7 3.7 880.91 82 -0.7 3.7
EP13 18.6 873.57 130 -9.7 5.1 873.57 165 -9.7 5.1
EP21 - 868.64 241 - - 868.64 539 - -
EP40 - 884.58 571 - - 884.58 5,671 - -
EP63 - 840.93 7,200 - - 839.10 7,200 - -
D1.2 0.2 73.84 14 0.7 0.9 73.84 12 0.7 0.9
D3.2 0.1 855.01 75 1.4 1.6 855.01 70 1.4 1.6
D5.2 8.6 849.34 162 -3.6 5.2 847.20 142 -3.8 4.9
D10.2 18.7 858.85 258 -10.1 9.4 856.40 337 -10.4 9.2
D25.2 - 832.19 1,734 - - 826.57 2,569 - -
F6.2 13.8 1,035.16 350 -9.0 5.2 1,028.55 300 -9.6 4.6
F10.2 - 1,019.97 549 - - 1,015.95 682 - -
F56.2 - 1,113.50 7,200 - - 1,128.50 7,200 - -
EP3.2 4.5 893.40 54 1.4 5.8 889.85 52 1.0 5.4
EP4.2 0.1 890.75 87 1.9 1.9 890.75 88 1.9 1.9
EP7.2 0.8 866.61 165 0.8 1.5 866.61 146 0.8 1.5
EP13.2 - 856.98 289 - - 856.98 357 - -
EP40.2 - 856.06 1,433 - - 856.06 7,200 - -
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From Table 8.14 it can be seen that both the TDG and ANG are able to find a feasible
solution for all the tested instances, within the time limit of 2 hours. Hence, they are
both able to solve much larger instances than the optimization solver within a significantly
shorter amount of time. However, for the largest instances the time limit is reached in
both methods before the procedure has completed the given number of iterations. For
the 18 instances where the solver finds a feasible solution, the GRASP finds a better
solution for the 8 largest instances, with an improvement in objective function value in
the range 1.8% - 97.3%, when compared to the solutions found by the solver. However,
the GRASP finds slightly worse solutions for the 10 smaller instances, with a percentage
difference in the range 0.4% - 1.9%, compared to the solver.

For the test instances where it is possible to calculate an optimality gap, 16 out of
18 solutions found by TDG/ANG are within 5.8% of optimality. For the remaining
2 instances, both GRASP versions find solutions within 9.4% of optimality, which is
significantly lower than what the solver finds. This is considered good, as the non-
optimal deployment of the fleet accounts for a part of this gap. In addition, the dual
bounds found by the solver might not be very tight, especially for the larger instances.
Hence, a high optimality gap in the TDG/ANG solution does not necessarily mean that
the solution found is far away from the optimal solution.

All of the test instances (except D1) solve more or less the same problem of finding an
optimal fleet to conduct maintenance at 2-3 offshore wind farms, with a planning horizon
of 25 years. The problems mainly differ in the amount of vessels to choose from, how
often the fleet can be adjusted, and the uncertainty that is accounted for. For this reason,
the objective function values for the various test instances should be at approximately the
same level (except the instances with uncertainty in stepwise farm development, which
have a higher demand for maintenance). When considering the 10 test instances where
the solver has not been able to find a solution, it can hence be seen that the objective
function values found by the GRASP is at a reasonable level for all test instances. Hence,
the results in Table 8.14 indicate that the two GRASP versions find good solutions also
for the instances which the solver cannot solve.

When comparing the performance of the TDG to the performance of the ANG, it can be
seen that in terms of solution quality, the ANG finds better solutions for 12 of 29 instances.
The TDG finds better solutions for 2 of 29 instances. However, the percentage differences
in the objective function values found by the two solution methods are relatively small,
ranging from 0.00 - 1.34%. In terms of computational time, it can be seen that for
smaller instances with up to 13 strategic nodes, the difference in computational time is
insignificant. However, for some of the larger instances, the TDG is significantly faster
than the ANG. This difference in computational time for large instances is caused by
the substantial difference in memory requirements for the two GRASP versions, as the
ANG evaluate many more candidate insertions in each iteration. For large instances, the
java application hence needs to hold a lot more information in memory while running the
ANG than the TDG. As the instances solved by the ANG grow in size, the application
starts reaching the memory limitation of the runtime environment, having to spend much
time on releasing memory to keep the ANG running. This slows down each iteration of
the ANG significantly. This is not a problem for the smaller instances, as these instances
have a problem size that allows both GRASP versions to run well within the memory
limitation of the runtime environment.
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When inspecting the fleet size and mix solutions found by the GRASP, the only solution
that is identical to the one found by the optimization solver is the solution for test
instance D3. However, when looking at the objective function values (Best Objective)
reported in Table 8.14, even though both the TDG and the ANG finds the same solution
as the solver, the objective function value is worse. This is caused by the fact that the
GRASP is not able to deploy the fleet in an optimal way. In order to give a more fair
evaluation of the objective function value of the strategic solutions found by the GRASP,
two new variations of the solver, S-TDG and S-ANG, have been used. S-TDG/S-ANG
uses standard settings in the optimization solver and an aggressive cutting strategy,
and solves the problem with the strategic solution fixed to the solution found by the
TDG/ANG. Hence, the solution methods find the objective function value of the feet
size and mix solution from the TDG/ANG, when deployed optimally.

As the GRASP versions already have proven themselves to provide significantly better
objective function values than the solver for the larger instances, only the smallest test
instances have been tested. The results from S-TDG and S-ANG are reported in Ta-
ble 8.15. Objective values found by the S-TDG/S-ANG which are better than the best
primal feasible solution found by Exact/Matheuristic are shown in boldface. The im-
provement in objective function values in the S-TDG/S-ANG, compared to TDG/ANG,
are reported as the difference between the two values as a percentage of the TDG/ANG
objective. The reported gap is calculated as given in Equation 8.3.

Table 8.15: Objective values of GRASP solutions when fixed in solver.

S-TDG S-ANG
Instance Best Diff to Opt Best Diff to Opt

Name Objective TDG Gap Best ANG Gap
[me] [%] [%] [me] [%] [%]

D1 71.38 -0.7 0.2 71.38 -0.7 0.2
D3 857.26 -1.3 0.2 857.26 -1.3 0.2
D5 855.27 -0.9 1.5 857.24 -0.6 1.8
D10 866.06 -0.6 4.0 862.10 -0.6 2.1
F6 1,013.13 -1.1 2.8 1,016.39 -0.6 3.1

EP3 925.77 -1.3 0.7 925.77 -1.3 0.7
EP4 901.55 -1.4 0.4 901.55 -1.4 0.4
EP7 875.75 -0.6 3.2 875.75 -0.6 3.2
D1.2 73.32 -0.7 0.2 73.32 -0.7 0.2
D3.2 842.66 -1.4 0.1 842.66 -1.4 0.1
D5.2 839.73 -1.1 4.1 841.50 -0.7 4.3
D10.2 852.63 -0.7 8.9 849.57 -0.8 8.6
F6.2 1,024.35 -1.0 4.2 1,018.03 -1.0 3.6

EP3.2 881.11 -1.4 4.5 877.55 -1.4 4.1
EP4.2 877.85 -1.4 0.5 877.85 -1.4 0.5
EP7.2 854.91 -1.4 0.2 854.91 -1.4 0.2

The results in Table 8.15 show that when the fleet is deployed optimally, the objective
function value for the fleet size and mix solutions found by the TDG/ANG are between
0.6% and 1.4% lower than when the fleet is deployed by the GRASP. This shows that the
strategic solutions found by the TDG and ANG are slightly better than what the objective
values in Table 8.14 imply. The difference in objective function value found by the TDG
and the S-TDG is purely a result of the non-optimal deployment of the fleet in the TDG.
The same holds for the S-ANG and ANG. It can hence be seen that, when the cost of
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non-optimal deployment is removed, the TDG and ANG find a better overall solution
than Exact and Matheuristic for 13 of the 18 instances which can be handled by the
optimization solver. Furthermore, the results show that, when the tactical deployment
decisions are made by the solver, the strategic GRASP solutions are maximum 8.9% away
from optimality.

8.4.3 Conclution of Performance Testing

In conclusion, the GRASP is considered as the best solution method for the DLPOW
as it outperforms the optimization solver in terms of solution time, and is able to solve
significantly larger problems. Furthermore, the GRASP consistently provides good solu-
tions for the DLPOW, and the solutions found by the GRASP is better than those of
the solver for most of the tested instances. Even though the GRASP versions do not
deploy the fleet optimally, a better solution is found for 19 of the 29 tested instances.
Furthermore, when the cost of the non-optimal deployment is removed, a better solution
is found for 24 of 29 instances. The two GRASP versions have similar performance, but
the ANG finds slightly better solutions for some instances. On the other hand, the total
computational time of the ANG is higher than the computational time of the TDG for
larger problem instances. The two GRASP variations are hence considered equally good
in terms of performance.

8.5 Value of Dual-Level Scenario Tree

The DLPOW has been modelled to capture uncertainties at two decision levels with differ-
ent time scales. Having strategic uncertainty with embedded tactical uncertainty results
in increased complexity and problem size. A question regarding the value of includ-
ing strategic uncertainty in the model is therefore raised. Such evaluation is conducted
through calculations of the Value of Strategic Stochastic Solution (VSSS), as presented
in Section 7.5.1. Since test instances are generated with only one type of strategic un-
certainty at the time, VSSS calculations need to be conducted for each type of strategic
uncertainty separately. The VSSS related to uncertainty in electricity prices and stepwise
development of wind farms is evaluated in this section.

As mentioned in Chapter 7, the input data used in this thesis is estimated based on
data from the literature. As the availability of good and accurate vessel cost data is
limited, the cost parameters used in this thesis may not be appropriate for a real-life
wind farm. In order to ensure that the VSSS is not biased towards the choice of input
parameter values used in this thesis, different sets of input parameters have been used
when calculating VSSS. The motivation behind each input parameter set is explained in
the following paragraphs.

A hypothesis is that the total capital cost of acquiring a vessel fleet has consequences
for the VSSS. When the capital costs are low, relative to the downtime costs and the
variable costs of deploying the fleet, it is suspected that fleet decisions are more guided
by the tactical scenarios in a strategic node, rather than future strategic uncertainty. In
such cases, the stochastic model might make decisions similarly to a deterministic model,
which reduces the VSSS. In order to test how charter costs affect the VSSS, a new input
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set has been used in the VSSS calculations. In the new input set, the yearly long-term
charter costs have been increased, resulting in higher total charter costs. As the cost
of short-term chartering vessels in or out should be at an appropriate level relative to
the yearly long-term charter cost, the short-term cost and revenue have been increased
proportionally to the long-term charter cost. The specific values of the cost parameters
used in the new input set is given in Appendix B.3.1.

The size of the lease length discount used to calculate total charter cost of long-term
chartering a vessel, as given by Equation (7.5) in Chapter 7, is also expected to influence
the VSSS. The discount is given per year, meaning that a yearly discount of 1.5% and a
charter contract for 10 years result in a total discount of 15%. If the discount is large,
charter contracts with long lease lengths get significantly cheaper yearly charter costs
than charter contracts with shorter lease lengths. A high discount may give the effect
that it is always cheaper to long-term charter in the root node, where longer contracts
are available, rather than chartering at later stages. In such a case, the stochastic model
may never choose to wait and adjust the fleet at later stages after uncertainty is revealed.
To test how this aspect influence the VSSS, two different values have been used for the
lease length discount. To test the effect of increased charter costs and the lease length
discount, 4 different sets of input parameters have been used. The difference in the 4 sets
of input parameters used are shown in Table 8.16.

Table 8.16: Input sets used in VSSS calculations.

Input Set Chartering Costs Lease Length Discount
1 Cost parameters given in Chapter 7 1.5% per year
2 Increased charters costs and revenue. 1.5% per year
3 Same cost parameters as in Input 1. 0.5% per year
4 Same cost parameters as in Input 2. 0.5% per year

To evaluate VSSS, 16 test instances have been used. These 16 test instances can be di-
vided into 4 different types, where all instances of the same type have the same strategic
scenario tree, vessel types, wind farms, harbours and offshore stations. The characteris-
tics of the instance types are given in Table 8.17. In the instances with uncertainty in
electricity price (electricity instances), the electricity price in a strategic node may devi-
ate with 8% from its direct parent node, giving a maximum possible change in electricity
price of 15.36% throughout the planning horizon. In the instances with uncertainty in
stepwise development of wind farms (farm instances), a wind farm with 100 turbines is
expected to be fully realized in year 10 (stage 2). Figures of the scenario trees for the
test instance types are shown in Appendix B.3.2.

Table 8.17: Test instance types used in VSSS Calculations.

Instance Strategic #Nodes at #Strategic #Vessel Types #Farms
Name Uncertainty Each Stage Nodes (#Stations) (#Turbines)

E1 Electricity Price (1, 2, 4) 7 4 (2) 2 (200)
E2 Electricity Price (1, 4, 16) 21 4 (2) 2 (200)
F1 Farms (1, 2, 3)* 6 4 (2) 3 (300)
F2 Farms (1, 3, 6)* 10 4 (2) 3 (300)

*The strategic scenario trees for these instances are unbalanced. Their structure is explained in Subec-
tion 7.2.2.
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As the optimization solver is impractical to use for solving anything but small instances,
all test instances needed for calculating VSSS have been solved by the GRASP. The
ANG version of the GRASP has been used, as this version gives slightly better solutions,
and the computational time needed to solve the test instance types in Table 8.17 is
approximately the same for both GRASP versions. The calibration parameters have
been set as concluded in Section 8.3. The VSSS results are shown in Table 8.18.

Table 8.18: Value of Strategic Stochastic Solution.

Instance Input 1 Input 2 Input 3 Input 4
[me] [%] [me] [%] [me] [%] [me] [%]

E1 0.45 0.1 5.53 0.6 0.00 0.0 0.00 0.0
E2 0.00 0.0 5.30 0.5 0.00 0.0 1.92 0.2
F1 4.02 0.4 5.86 0.5 21.42 2.0 7.71 0.6
F2 2.96 0.3 10.40 0.9 2.62 0.2 1.06 0.1

The results in Table 8.18 show a non-negative VSSS for all test instances, which coheres
with Property (7.5.1) discussed in Chapter 7. For 12 of the 16 tested instances, the
results show a positive VSSS. The reduction in cost from including strategic uncertainty
for these 12 instances range from 0.45 - 21.42 me. For the electricity instances, the
cost reductions range from 0.45 - 5.53 me, while the similar range for farm instances is
1.06 - 21.42 me. The results hence indicate that the benefit of accounting for strategic
uncertainty in stepwise wind farm development is higher than the benefit of accounting
for strategic uncertainty in electricity prices.

Comparing the results for Input 1 with the results for Input 2 shows that an increased
charter cost leads to a higher VSSS value for both types of uncertainty. Comparing Input
1 to Input 3, and Input 2 to Input 4, shows that reducing the lease length discount for
long-term charter has a negative consequence for the VSSS of the electricity instances.
For the farm instances, the effect of reducing the lease length discount is more ambiguous,
as it results in an increased VSSS for F1, and a reduced VSSS for F2. Comparing the
difference in VSSS between EV1 and EV2, and F1 and F2, the results do not give any
clear indication that the VSSS increase with an increasing number of strategic scenarios.
However, as all the tested instances have relatively few strategic scenarios, this does not
necessarily indicate a low added value of introducing strategic uncertainty.

To analyse whether the positive VSSS results are a consequence of different strategic
solutions being made and not a result of the slight tactical in-sample instability, the fleet
size and mix solutions of the EEV problem and the SP problem have been compared. For
the farm instances, differences caused by the strategic uncertainty can be identified. As
an example, in the F2 instance generated on Input 2, the SP chooses to long-term charter
a larger fleet in the root node than the EEV. In scenarios where no turbines are built, the
SP compensates by chartering out some vessels. The EEV, on the other hand, long-term
charters extra vessels when the number of turbines built is larger than expected. This is
logical, as the high lease length discount in Input 2 makes it cheaper to long-term charter
for 25 years, and rather charter some vessels out when not needed, than to long-term
charter for 15 years at the second stage. The SP hence makes a decision in the root
node which results in a position that is better for handling future uncertainty. Similar
differences can be identified for some of the other farm instances as well. In the electricity
instances, the differences in the fleet size and mix decisions made by the SP and the EEV
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are not unambiguously caused by strategic uncertainty. The EEV makes different choices
than the SP, but it is more difficult to conclude that this is a direct consequence of the
strategic uncertainty in electricity price.

Having new turbines added to a wind farm results in an increased demand for main-
tenance, and in this case the need for a larger fleet is evident. However, the effect of
the electricity price on the fleet size and mix is more indirect. An increased (decreased)
electricity price results in increased (decreased) downtime costs. The variation in elec-
tricity price hence only affect the importance of conducting corrective maintenance tasks
as soon as possible. If the change in electricity price is large enough, this might offset
the preferred size and mix of the fleet. However, the combination of input parameters
currently used in the model already gives incentive to have a large fleet that makes it
possible to conduct maintenance relatively fast. In order for the SP to make significantly
different choices than the EEV, the change in electricity price hence most likely needs
to be relatively large. The change in electricity price in the test instances used does not
manage to do this, and the tested instances hence do not show a clear benefit of including
strategic uncertainty in electricity prices.

In conclusion, the results show that there is a small positive value of accounting for
strategic uncertainty. Increasing the chartering costs result in increased VSSS for both
types of uncertainties. However, it is not evident from the results how changing the lease
length discount affect VSSS. The results indicate a benefit of accounting for uncertainty
in stepwise wind farm development. The results are, however, more ambiguous when it
comes to the benefit of accounting for uncertainty in electricity prices. Furthermore, the
results indicate that several input parameters have a positive or negative effect on the
VSSS. As the input parameters used in this thesis are estimated based on data from the
literature, and hence may not be accurate for the industry, it makes more sense to analyse
the effect of different input parameters and the VSSS when having more appropriate input
data.
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Chapter 9

Concluding Remarks

The aim of this thesis has been to study the strategic fleet size and mix problem for
conducting maintenance at offshore wind farms. A dual-level stochastic model for the
DLPOW has been developed, which accounts for both long-term strategic uncertainty
and short-term tactical uncertainty, combining decisions with two different time scales
in one optimization model. The model supports wind farm owners in making strategic
decisions regarding the amount, placement, charter length and types of vessels to long-
and short-term charter, to meet maintenance demand throughout the lifetime of a wind
farm. To evaluate the quality of these strategic decisions, the model also considers the cost
of optimal deployment of the fleet acquired, in light of uncertain demand for maintenance
and realizations of weather conditions.

The developed model is the first application of a dual-level stochastic modelling approach
for a fleet size and mix problem in offshore wind. The model can account for strategic
uncertainties that have not been considered in previously developed optimization models
for offshore wind, such as uncertainty related to: long-term trends in electricity prices
and subsidy levels, stepwise development of wind farms, and technological development in
the vessel industry. A new method, called value of strategic stochastic solution, has been
developed to evaluate the added value of including strategic uncertainty in a model that
accounts for tactical uncertainty. VSSS calculations conducted for the DLPOW indicate
a benefit of accounting for strategic uncertainty.

A scenario generator has been developed to create test instances for the mathematical
model. The scenario generator creates tactical scenarios with uncertainty in weather
realizations and turbine failures, and strategic scenarios with uncertainty in electricity
prices or stepwise development of wind farms. Extensive in- and out-of-sample stability
testing has been conducted on the scenario generator to ensure stability. The results from
the testing indicate stability in both objective function value and solution, for problem
instances with 120 tactical scenarios and 10 periods.

In order to test the applicability of a standard optimization solver on the DLPOW, the
solver has been applied both as an exact and as a heuristic solution method. Extensive
tests show that the solver is impractical to use for anything but small problem instances
due to rapid growth in problem size and memory limitations. The optimization solver is
hence considered inadequate for solving problems of realistic sizes. A heuristic solution
method, based on the metaheuristic GRASP, has therefore been developed to solve the
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DLPOW. This metaheuristic is possibly the second application of a GRASP in a stochas-
tic setting [74], and the first GRASP developed for a dual-level stochastic problem [52].
The reactive GRASP heuristic exploits the block-separable structure of the DLPOW to
decompose the problem into a master problem and many independent subproblems. The
GRASP constructs strategic fleet size and mix solutions for solving the master problem.
A simple Greedy Tactical Heuristic, embedded in the GRASP, solves the subproblems of
tactical fleet deployment to evaluate the objective function value of a given fleet solution.
Two versions of the reactive GRASP have been developed, where the top-down version
is more restricted in terms of how solutions are constructed, compared to the any-node
version.

Extensive testing has been conducted on the reactive GRASP. Testing of the Greedy
Tactical Heuristic shows that the heuristic performs sufficiently good for its intended
use, as it evaluates fleet size and mix solutions similarly as the optimization solver. In
addition, tests show that the Greedy Tactical Heuristic finds deployment decisions which
are close to the optimal solution in terms of cost. Calibration testing on the reactive
GRASP shows that the solution method developed is robust with regards to parameter
settings. The performance of the reactive GRASP has been evaluated by comparing
solution time and quality from the GRASP to the equivalent values obtained from a
standard optimization solver. Test results show that the GRASP consistently provides
good solutions for the DLPOW. Compared to the solver, the GRASP finds a better fleet
size and mix solution for 24 of the 29 tested instances. Furthermore, the GRASP manages
to solve significantly larger instances than the optimization solver, within a considerable
shorter amount of time. A comparison of the performance of the two GRASP versions
indicates that the TDG is better in terms of computational time, while the ANG finds
better solutions.

In order to evaluate the practical applicability of the model developed in this thesis, a
suggestion for further work is to test the model on a real-life case from the industry,
assessing the models ability to contribute to cost reductions for a real-life wind farm.
Another suggestion is to conduct further VSSS testing when more accurate input data is
available.
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Appendix A

Mathematical Formulation

This appendix contains a plain version of the mathematical formulation of the DLPOW,
without explanations. It is added for readers who prefer to read the whole model without
interruptions. A thorough explanation of the mathematical formulation is presented in
Section 5.3.
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Constraints for Strategic Nodes∑
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Non-negativity, integrality and binary constraints

xnvl ≥ 0 and integer, n∈N, v∈V, l∈Lnv (A.16)

wnv ≥ 0 and integer, n∈N, v∈V (A.17)

yINnqv ≥ 0 and integer, n∈N, q∈Q, v∈V |Lnv 6= ∅ (A.18)

yOUTnqv ≥ 0 and integer, n∈N, q∈Q, v∈V (A.19)
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δd∈{0, 1}, d∈D (A.24)
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Appendix B

Additional Info on Test Instances

In this appendix, some additional information about the test instances used in the com-
putational study is given.

B.1 Duration of strategic nodes

Table B.1 provides information about the duration of the strategic nodes in the various
test instances used in the computational study. All test instances with the same number
of stages in the strategic scenario tree have the same duration of strategic nodes at each
stage in the tree. As an example, a scenario tree with 3 stages hence has strategic nodes
at year 0, year 10 and year 24.

Table B.1: Duration of strategic nodes in test instances.

#Stages Start Year for Each Stage
1 (0)
2 (0, 24)
3 (0, 10, 24)
4 (0, 5, 10, 24)
5 (0, 5, 10, 15, 24)
6 (0, 2, 5, 10, 15, 24)
7 (0, 2, 5, 10, 15, 20, 24)
10 (0, 2, 4, 6, 8, 10, 12, 14, 18, 24)
25 (1, 2,..., 23, 24)

B.2 Fleet Solutions used in Tactical Testing

The 10 different fleet size and mix solutions used to evaluate the Greedy Tactical Heuristic
in Subsection 8.2.3, is given in Table B.2. The two vessel types used are the ones given in
Table 7.1, belonging to station 2 in Table 7.3. All long-term chartered vessels are charted
for 1 year at the cost of a 10 year charter contract. No vessels are chartered out.
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Table B.2: Fleet solutions used in testing of Greedy Tactical Heuristic.

Fleet Long-term Charter Short-Term Charter
Number Summer Winter

Vessel 1 Vessel 2 Vessel 1 Vessel 2 Vessel 1 Vessel 2
1 2 2 1 0 0 0
2 2 2 2 0 0 0
3 3 2 1 0 0 0
4 2 1 2 0 0 1
5 2 1 1 0 0 1
6 3 3 1 1 0 0
7 2 1 2 1 0 0
8 2 0 1 0 0 2
9 2 0 2 2 0 0
10 0 0 0 0 0 0

B.3 Extra info on Test Instances for VSSS Tests

B.3.1 Vessel Cost Input

The two sets of vessel cost input used in VSSS testing are given in Table B.3. Input set
1 gives the original input data used in all computational tests throughout this master
thesis. Input set 2 gives a case where the vessel acquisition costs have been increased,
and is the data set used for Input 2 and Input 4 in the VSSS testing.

Table B.3: Vessel cost parameters used in VSSS testing.

Input Vessel 1 year Summer (in) Summer (out) Winter (in) Winter (out)
Set Number [me/yr] [me] [me] [me] [me]

1
1 1.1 0.72 0.33 0.69 0.23
2 1.8 1.17 0.54 1.12 0.44

2
1 2.2 1.5 0.44 1.44 0.34
2 3.6 2.4 0.72 2.34 0.62

B.3.2 Scenario Trees

The value of strategic stochastic solution is calculated for test instances with uncertainty
in electricity price or stepwise development of wind farms. The scenario trees used in
test instance types E1 and F2 are depicted in Figure B.1 and Figure B.2, respectively.
Figure B.1 shows how the electricity price, of e78.0 per MWh in the root node, varies
throughout the scenario tree. The percentages given for each scenario at the end of
the planning horizon indicate the total change in electricity price relative to the original
electricity price in the root node.

Figure B.2 shows a strategic scenario tree with uncertainty in stepwise wind farm devel-
opment, where 100 turbines are planned to be realised in year 10 (stage 2). The number
in each strategic node indicates the number of turbines at the farm in that respective
node. The percentage next to each strategic node gives the percentage of the 100 planned
turbines which have been built in that strategic node. The percentages given for each
strategic scenario at the end of the planning horizon give the total fraction of the planned
wind farm that is built.
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Figure B.1: Scenario tree for test instances of type E1.

Figure B.2: Scenario tree for test instances of type F2.
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