


CHAPTER 6. IMPLEMENTATION 6.1. TEST INSTANCES

Table 6.2: Comparison of the instances

Instance Initial deviation Max # possible visits Zero deviation∑
i∈N |S0

i −Oi|
∑

i∈N\{d} |Mi|
National Theatre 1 24 6 No
National Theatre 2 38 8 No
National Theatre 3 48 8 Yes

Bislett 1 32 8 No
Bislett 2 46 9 No
Bislett 3 48 10 Yes

Grünerløkka 1 56 10 No
Grünerløkka 2 64 12 No
Grünerløkka 3 58 12 Yes

Grønland 1 52 12 No
Grønland 2 74 15 No
Grønland 3 62 12 Yes

Frogner 1 70 14 No
Frogner 2 86 16 No
Frogner 3 106 16 Yes

Theatre to allow more possibilities. 15 instances are created for each of the two areas by varying
the demand at each station, while all other parameters are unchanged, illustrating 15 different days.
Table 6.3 shows a comparison of the total demand in the different instances.

Table 6.3: Comparison of the additional DBRP-model instances. There are 15 instances for each of the two areas.
The instances only differ with regards to demand, and are therefore compared by the sum of the absolute demand at all

stations. Demand is rounded to nearest integer.

Instance number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

National Th.,
∑
i∈N
|DiT

D| 11 20 35 41 51 45 57 63 56 73 81 72 64 45 16

Bislett,
∑
i∈N
|DiT

D| 69 74 65 81 52 69 56 38 54 48 38 56 17 75 75

When studying the operational level, the number of service vehicles is fixed. The mathematical
formulation can handle any number of service vehicles and a heterogeneous fleet. In Oslo, a city
with a little more than 100 stations, there are five service vehicles. In our test instances, two service
vehicles are used to get some complexity into the problem and verify that the formulation returns
feasible solutions when using more than one vehicle. To illustrate the potency of the model, service
vehicles with different capacities for the different instances are used, see Table 6.2. The weighting
parameters α and β, from the objective functions, are set to 0.999 and 0.3, respectively.

57



6.2. TIME CHAPTER 6. IMPLEMENTATION

6.2 Time
All areas include a time matrix for the driving time, TD

ij , between all pair of stations. First, ma-
trices with the absolute distances in kilometres between the stations were computed based on the
coordinates of the stations. The fact that the relationship between the actual driving distance and
the absolute distance between two stations varies from arc to arc is not taken into account. Then,
time matrices were created by multiplying the distance matrices with a constant representing the
driving time per kilometer. This constant is set to 6 min/km, which implies a driving speed of 10
km/h. The value is verified based on the actual driving times between some pair of stations, given
by Google Maps. Differences in speed limits, traffic signals etc. are not considered. An important,
but reasonable assumption, is that the driving time from station i to station k is always shorter than
the sum of the driving times from i to k, via any station j. This is sometimes called the triangle
inequality. The driving time from each vehicle’s starting point to their origin station is set to T o(v)

v .

The maximum times available for re-balancing the system, T S and TD, must also be decided. The
limit is set to 16, 30, 40, 60 and 80 minutes for the SBRP-model for the the National Theatre, Bislett,
Grünerløkka, Grønland and Frogner, respectively, as shown in Table 6.1. These values correspond
to the relative size of the instances. The dynamic time limit, TD, corresponds to the length of the
planning horizon for the DBRP-model, in which the demand is considered constant. By increasing
the dynamic time limit, total demand during the planning period increases, which again increases
the problem complexity. To get instances of varying complexity, TD is set to 20, 40, 50, 60 and 100,
respectively. The parking time, T P , includes parking the vehicle, planning the route etc., and is set
to one minute. For each bike that is either loaded or unloaded from the service vehicle, a handling
time, TH , of 30 seconds is added.

6.3 Demand and States
The initial state, S0

i , and the optimal state,Oi, are determined for all stations. The optimal states are
calculated based on the expected demand for bikes and locks at the stations. By studying historical
data, combined with information about the day of week, the hour, the current weather etc., a demand
forecast can be made. This is elaborated in Chapter 3.2. For the DBRP-model instances, the demand
at the stations is found by multiplying a random number for each station with a fixed number for each
instance. Different fixed numbers are chosen in order to simulate days with different demand levels.
The initial states are set to values that could represent the actual number of bikes at the stations at a
given time.
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An instance with one station that is initially balanced, appears like an instance with one station less
with regard to problem complexity. To get a correct impression of the problem size, none of the
stations in the instances are initially balanced.

For the SBRP-model, all vehicles start and finish empty at the depot. The vehicles in the DBRP-
model, on the other hand, can start and finish at any station and with all possible load of bikes. In
the DBRP-model, the origin station and initial load for each vehicle are set to fabricated values, but
should in practice be the set to the vehicle’s actual position and load. All vehicles must finish at
an artificial destination station, which has a driving time of zero from all other stations. This is a
theoretical station, that must be visited once and only once by all the service vehicles, resulting in
an easier model formulation. In practice, the vehicles finish at the penultimate station.

6.4 Maximum Number of Possible Visits
In the mathematical formulation, a set Mi is defined for each station i ∈ N . This is the set of
possible visits to each station, and hence |Mi| is the maximum number of possible visits to station
i. First, possible ways to compute |Mi| for the SBRP-model is presented, then differences between
|Mi| for the SBRP-model and the DBRP-model are pointed out.

For the SBRP-model, to be entirely sure that the optimal solution is not cut away due to the size of the
setMi, the maximum number of possible visits for each station must equal the difference between
the initial and optimal number of bikes; |Mi| = |S0

i − Oi|. This implies that a service vehicle can
pick up (or deliver) only one bike at each visit and yet manage to perfectly re-balance the station.
The calculation is illustrated using a small example. If a station, say i = 4, has a deviation between
the initial and optimal state equal to 7 bikes (|I4 − O4| = 7), it gives |M4| = 7. This method is
called the upper bound method.

If one on the other hand makes the setMi as small as possible, being willing to risk cutting away the
optimal solution, the maximum number of possible visits can be set to: |Mi| =

⌈
|S0
i−Oi|

minv∈V{QVv }

⌉
. This

formulation makes use of the capacity of the smallest service vehicle, only allowing to visit a station
the minimum number of times that is needed in order to perfectly re-balance the station. Using the
example above, with the smallest service vehicle having a capacity of 10 (minv∈V{QV

v } = 10) we
get |M4| =

⌈
7
10

⌉
= 1, and |M8| =

⌈
12
10

⌉
= 2.

Note that the largest vehicle, maxv∈V{QV
v } should be used to calculate |Mi| in order to find the
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smallest possible size of the set, while maintaining the possibility to obtain a total deviation equal
to zero. However, the formulation using the smallest vehicle is a more realistic choice and is used
here. This is in the following referred to as the lower bound method.

The two different ways of calculating the maximum number of possible visits shown above, form
reasonable upper and lower bounds for |Mi|. Any value between these two is possible. A value
smaller than the lower bound, however, cuts away the possibility of re-balancing the stations per-
fectly. In addition to testing the lower and the upper bound method for |Mi|, we test a method called
lower bound +1 method. This method allows one more visit to each station than the lower bound
method.

For the DBRP-model, the calculation of |Mi| must be slightly modified compared with the SBRP-
model. In addition to the difference between the optimal and initial state, the total demand for the
period is be considered. This is because the demand impacts the total number of bikes it is desirable
to reposition during the planning period. When considering the DBRP-model, the upper bound for
|Mi| can be calculated as follows: |Mi| = |S0

i −Oi−Di|. For the lower bound method, the station
capacity must be included in the computation of |Mi|, and the minimum value of the smallest vehicle
capacity and the station capacity should be used. This results in the following expression for the
lower bound method for the maximum number of possible visits: |Mi| =

⌈
|S0
i−Oi−DiT

D|
min{QSi , minv∈V{QVv }}

⌉
.

Compared with the SBRP-model, we see that the size of the setMi is affected by both the dynamic
time limit and the demand. Therefore, |Mi| is typically larger for the DBRP-model than for the
SBRP-model.
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CHAPTER 7

COMPUTATIONAL STUDY

Using the instances and input data presented in Chapter 6, different formulations, constraints and
extensions of the mathematical models from Chapter 5 are thoroughly tested. Both the quality of the
solution and the computational time are evaluated and discussed. We further elaborate on the size
of solvable instances and illustrate how the models can be used as decision support for the system
operators.

7.1 Computational Analysis of the SBRP-model
Solving the SBRP-model yields routes for the overnight re-balancing. Even though the problem is
static, the service vehicles cannot be expected to wait several hours for their routes to be determined.
Consequently, the computational time is an important issue, and in this section different formulations
are tested and compared aiming at shorten it. Further the usefulness of the model is discussed and
some of its possibilities illustrated.
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7.1.1 Technicalities
Specifications of the computer and software used to solve the SBRP-model are listed in Table 7.1.
To test the different formulations, a base case is defined, consisting of the formulations yielding
the best results in the preliminary testing. The base case is shown in Table 7.2. In each section,
it is explicitly defined how the formulation that is tested deviates from the base case. Of practical
reasons, all executions are terminated after 3,000 seconds.

Table 7.1: Details of computer and solver used for the SBRP-model

Processor Intel Core i7-3770 CPU @ 3.40GHz
RAM 16 GB
Operating system Windows 7 Enterprise 64-bit
Xpress-IVE Version 1.24.06 64-bit
Xpress Optimizer Version 27.01.02
Mosel Version 3.8.0

Table 7.2: Base case for the testing of different constraints and formulation for the SBRP-model

Reduction of variables Yes
Objective function Weighted objective function (5.1)
Subtour elimination MTZ with strengthening (5.20)
Symmetry breaking constraints Visit numbers (5.26) and length of route (5.27)
Valid inequalities (5.29-5.31)
Maximum number of possible visits Lower bound method

7.1.2 Variable Reduction
The mathematical formulation contains many binary and integer variables. By only creating those
variables that are actually needed, the number of variables can be reduced significantly. As a con-
sequence, the computational time is expected to be reduced. Identifying the variables that are pre-
determined to take the value 0 before solving the model, makes it possible to omit creating them.
Some of the variable reductions are listed below. Note that the triangle inequality is assumed to be
valid.

• The arc-variables between i and j, where i = j are not created, because it is never beneficial
to depart from a station and then return directly to the very same station.

• Since the vehicles start out empty, they should always go directly to a pickup station from the
depot. Thus, variables for the arcs from the depot directly to delivery stations are not created.
Of similar reasons, the arcs from pickup stations directly to the depot are not generated.
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• In accordance with constraints (5.2-5.3), the arcs from the depot, d, to all station visits for the
last |V| visit numbers inMd are not created. In the same manner, the variables that end up in
the depot for the first |V| visit numbers are omitted.

• One of the inequalities for the 1-PDTSP from Hernández-Pérez and Salazar-González (2007),
states that the arcs between a pair of stations will never be traversed if the sum of the quantity
to be picked up or delivered exceeds the service vehicle’s capacity. For this inequality to be
valid, a zero-deviation solution must be obtained, the two stations must be of the same type,
and both stations must be visited maximum once.

The model is run both with and without the variable reduction. In our test instances, the number of
variables is reduced 20.8-40.4 %, and the computational times decreases between 68.9 and 99.5 %.
On average, the computational time is reduced by as much as 98.5 %. Fixating the vehicle sequence
at the depot, probably contribute to a great part of the reduction in computational time, as it removes
symmetry. Even a small reduction in the number of binary variables may result in a significantly
smaller B-&-B-tree, which in turn contributes to a large decrease in the computational time.

7.1.3 Subtour Eliminating Constraints
In Section 5.1.3, three different sets of subtour eliminating constraints are proposed. First, the
MTZ-constraints, originally presented by Miller et al. (1960), secondly a strengthened variant of
the MTZ-constraints by Desrochers and Laporte (1991), and finally a recent formulation proposed
by Chemla et al. (2013).

Table 7.3 shows a comparison between the three subtour eliminating formulations, and also a for-
mulation without subtour elimination. With only a few exceptions, the problem is easier to solve
without subtour eliminating constraints. This was anticipated. We see that the solution becomes
better without subtour elimination in terms of total deviation between optimal and final state, and
that the number of subtours increases with the problem size. These solutions are however infeasible.
Note that the shortest computational times are associated with uncertainty as they may be affected
by other tasks run on the computer. Conclusions based on the shortest computational times must
therefore be drawn carefully.

The formulation by Chemla et al. (2013) generally performs worse than the MTZ-formulations, and
is outperformed by the strengthened MTZ-formulation for all test instances. Thus this formulation
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Table 7.3: Comparison of computational times for different subtour eliminating constraints. The numbers in the
headline refer to the constraint numbers in the mathematical formulation. Dev. is the total number of deviations in the

solution. Zero deviation implies perfect re-balancing
*Miller et al. (1960), **Desrochers and Laporte (1991), ***Chemla et al. (2013)

Instance Without subtour elimination With subtour elimination
Dev. #subtours Comp.time Dev. (5.19)* (5.20)** (5.23-5.25)***

National Th. 1 4 1 0.14 s 6 0.17 s 0.19 s 0.34 s
National Th. 2 14 0 0.22 s 14 0.31 s 0.34 s 0.70 s
National Th. 3 0 0 0.22 s 0 0.23 s 0.20 s 0.45 s

Bislett 1 12 1 0.28 s 14 0.45 s 0.64 s 1.28 s
Bislett 2 10 1 0.06 s 12 0.24 s 0.44 s 0.84 s
Bislett 3 0 0 0.50 s 0 0.60 s 0.62 s 1.37 s

Grünerløkka 1 8 1 1.67 s 8 1.35 s 1.25 s 3.77 s
Grünerløkka 2 16 1 3.86 s 18 7.30 s 7.00 s 29.08 s
Grünerløkka 3 0 2 0.52 s 0 2.00 s 1.25 s 4.74 s

Grønland 1 14 2 3.08 s 18 28.08 s 8.40 s 69.27 s
Grønland 2 30 2 3.49 s 32 20.80 s 17.00 s 41.65 s
Grønland 3 0 2 0.19 s 0 0.72 s 0.40 s 0.66 s

Frogner 1 16 3 273.00 s 18 88.00 s 69.00 s 384.09 s
Frogner 2 22 3 3.60 s 28 75.50 s 15.30 s 22.47 s
Frogner 3 0 2 0.78 s 0 1.40 s 1.07 s 2.93 s
Average 9.7 n/a 19.51 s 11.2 15.15 s 8.21 s 37.58 s

can be rejected. When looking at the two MTZ-formulations, the original MTZ-formulation seems
to perform well at the small instances. But, since the strengthened MTZ-formulation performs
better for all the nine largest instances, we conclude that this variant of the MTZ-formulation is
the best. Using this formulation results in a tighter bound on the visit sequence number variables,
as shown in constraints (5.21-5.22), which evidently is beneficial. Hence, we use the strengthened
MTZ-formulation by Desrochers and Laporte (1991) throughout the thesis.

In the MTZ-formulations implemented in Xpress, the big-M (called A in the constraints) equals the
sum of the maximum number of possible visits over all stations. Ways to reduce the size of the
big-M is not pursued, although it is expected to give some improvement. Reducing the size of the
big-M would require use of problem specific information, and is thus not easily implemented in a
general model.
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7.1.4 Symmetry Breaking Constraints
The problem at hand has symmetrical solutions, which is common for routing problems with more
than one vehicle. To remove some of that symmetry, constraints (5.26-5.28) are introduced. All
symmetry breaking constraints may be used separately, but not necessarily together. The visit se-
quence constraints (5.26) may be used with any of the two others, because they handle a different
type of symmetry. Constraints (5.27) and (5.28), on the other hand, remove the same type of sym-
metry in two different ways, and should therefore not be used together. All the symmetry breaking
constraints are tested separately, and in addition, constraints (5.26) are tested in combination with
both constraints (5.27) and (5.28). The average computational times are presented in Table 7.4.

Table 7.4: Comparison of computational times for the different symmetry breaking constraints. Only average values
are shown. For the first instance in each area, |Mi| = 1 for all the stations, and the visit sequence constraints (5.26) are

inactive. Since the fleet is homogeneous for the Bislett area, constraints (5.27-5.28) are inactive for those instances.
When the constrains are inactive, the corresponding test run is denoted with ”n/a”. There are three rows with average

values in the table in order to make the values comparable.
* Average computational time, all instances

** Average computational time, excluded the instances where |Mi| = 1, ∀i ∈ N
*** Average computational time, excluded the Bislett instances

Instance Without Visit seq. # st. visited Time used (5.26) (5.26)
con. (5.26) (5.27) (5.28) & (5.27) & (5.28)

Average* 15.42 s n/a n/a n/a 8.21 s 6.89 s
Average** 11.37 s 5.45 s n/a n/a 4.80 s 7.37 s
Average*** 19.16 s n/a 14.77 s 10.75 s 10.12 s 8.46 s

Evidently, the symmetry breaking constraints for the visit sequence, (5.26), are very effective. The
computational time is reduced for 9 out of 10 instances, and is on average reduced by 52 %. The
value of using these constraints is expected to increase with the size of the setsMi. A small test
on the National Theatre 3 instance illustrates their importance. When the lower bound + 1 method
is used, the computational time for this instance is reduced from > 3000 s. to 0.25 s., by including
constraints (5.26).

Looking at the symmetry breaking constraints handling the homogeneous fleet, there is a significant
improvement when using constraints (5.27) or (5.28). Constraints (5.28) are faster for the larger
instances and also seem to perform a little better than (5.27) in combination with constraints (5.26),
and are therefore recommended. Note that this result implies a change from the base case.
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7.1.5 Valid Inequalities
Three valid inequalities are presented in Section 5.1.5, namely constraints (5.29-5.31). These have
been tested for the different instances, and the results for the Frogner instances and average results
for all the instances are shown in Table 7.5.

Table 7.5: Computational times when using different valid inequalities for the Frogner instances and average results
for all instances. The table shows the results without valid inequalities, each inequality tested separately and all three

inequalities tested together. The right column shows reduction in comp. time when using all valid inequalities
compared to using none. Not all valid inequalities are active for all instances, resulting in three rows in the table to

make the values in each row comparable. ”n/a” indicates that the constraints in the corresponding test run are inactive.
+Hernández-Pérez and Salazar-González (2007), ++Chemla et al. (2013)

* Average computational time when using all the valid inequalities
** Average computational time when a zero-deviation solution can be obtained

*** Average computational time, excluded the instances where |Mi| = 1, ∀i ∈ N

Instance Without Con.(5.29) Con.(5.30)+ Con.(5.31)++ All Red. using all

Frogner 1 1736.00 s 33.00 s n/a n/a 69.00 s 96.0 %
Frogner 2 154.00 s 27.0 s n/a 156.00 s 15.30 s 90.1 %
Frogner 3 232.00 s 18.80 s 215.00 s 135.00 s 1.07 s 99.5 %

Average* 154.43 s 8.17 s n/a n/a 8.21 s 94.7 %
Average** 69.11 s n/a 47.00 s n/a n/a n/a
Average*** 56.19 s n/a n/a 49.83 s n/a n/a

Studying the computational times with and without constraints (5.29), it is clear that these con-
straints have a positive effect. The computational times are reduced for 13 out of 15 instances, and
the average reduction is 94.7 %.

Constraints (5.30), introduced by Hernández-Pérez and Salazar-González (2007), are only active
when there is enough time available to obtain perfect re-balancing. The results prove that these
constraints are useful, as the computational times are reduced for all instances, on average by 32 %.

The third set of constraints, (5.31), presented by Chemla et al. (2013) requires more than one possible
visit (|Mi| >= 2) for at least two stations to have effect. It is hard to conclude whether these
constraints give a positive contribution to the model or not, as the results point in different directions.
However, for the Frogner 3 instance, these constraints give a considerable decrease in computational
times, from 232.00 s to 135.00 s. The average result also indicates a slightly positive effect.

All the valid inequalities combined reduce the computational times significantly for most of the
instances, on average by as much as 95 %. The effect is negative for three of the instances, but
the positive contributions on the others compensate for this. When constraints are included, but
inactive, they increase the computational time. This is clearly visible for Frogner 1, where includ-
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ing constraints (5.30-5.31) double the computational time, compared to only including constraints
(5.29). For the Frogner 3 instance, all the constraints are active, and including them seems very
useful.

We conclude that constraints (5.29) should always be included, and constraints (5.30-5.31) should
be included when we know a priori that they will be active. The value of using valid inequalities is
expected to increase with the problem size.

7.1.6 Maximum Number of Possible Visits
In Section 6.4, different alternatives for setting the maximum number of possible visits to each
station, |Mi|, are discussed. In Appendix B, Section 4.2, three alternatives are tested to see how
they influence the computational times and the quality of the solution. All the computational times
and the differences in the solutions between the lower bound method and the two other methods are
stated in Table 5 in Appendix B.

On average, the computational times increase about 100 times when the lower bound +1 method
is used, compared to the lower bound method. Using the upper bound method, the computational
time is more than 3,000 seconds for many instances, even some of the smallest. For all instances,
the number of deviations in the optimal solution is the same with all methods. However, when the
lower bound +1 and the upper bound method are used, there is sometimes found solutions where
the vehicles use less time than with the lower bound method. Because the deviations are considered
more important than the driving time, the solutions from the lower bound +1 and the upper bound
method are considered to be only marginally better. For larger instances than those used here, it is
however likely that the quality of the solution would improve more when using the lower bound +1
method compared to the the lower bound method.

The importance of the size of the setsMi can also be explained theoretically. The arc-flow variables
used in the mathematical formulation use station visits, (i,m), making it possible to consider each
possible station visit a distinct node in the graph. Hence, adding one element to the set Mi for
one station i, is equivalent to adding a node to the graph. Each node added to the graph results
in many new binary variables. Looking only at the variable ximjnv, adding one new node gives(

2|V|∑j∈N\{i} |Mj|
)

new binary variables; one new variable for each vehicle both arriving and
departing the node to all other nodes. Considering that one new binary variable in the worst case
may double the size of the B-&-B tree, it is necessary to limit the number of nodes in the graph, and
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hence limiting the maximum number of possible visits to each station.

Both the theory and the computational results presented in this section imply that the lower bound
method should be used in the practical implementation for the SBRP-model, when evaluating both
the solution quality and the computational time.

7.1.7 Time Limit for Re-balancing
By changing the time limit for re-balancing, the optimal solution could change, as the size of the
solution space either increases or decreases. Changing the time limit could also affect the compu-
tational time. In this section we take a deeper look at the time limit for re-balancing, T S , and the
time constraints (5.12).

Figure 3 in Appendix B shows how the computational time varies with different time limits, T S , for
the Grønland 1 instance. It is evident that the time limit has radical impact on the computational
time, and the computational time is shown to peak when the number of deviations is slightly above
zero.

When T S is small, the problem is severely restricted and easy to solve. By setting a short time
limit, many stations are out of reach for the vehicles. For the Grønland 1 instance, with a time limit
of 12 minutes (very short), only 5 out of 12 stations may be part of the solution because of the
driving, handling, and parking times that are needed. When the time limit increases, the deviation
gets closer to zero, the solution space gets bigger, and the problem gets harder to solve. With a
number of deviations close to zero, it is hard to find good lower bounds. As the time limit gets even
higher, the time constraints are no longer binding and it becomes easier to find good lower bounds,
because there exists many feasible routes resulting in zero deviation. Finding good lower bounds
makes it possible to cut away great pars of the B-&-B tree and is therefore essential to the efficiency
of the B-&-B algorithm.

The time constraints, (5.12), give the time limit for re-balancing the system. Studying these con-
straints, it is possible to say something about the value of additional time. In practice, this infor-
mation may be used as decision support for the system operator. The operator must then decide if
she will expand or restrict the time limit, by evaluating the operating costs versus the improvement
in the solution. It is natural to think that this information is obtainable using the dual variables (or
shadow prices) of the time constraints. They would give the change in the objective value for a unit
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increase on the right hand side of the constraints, i.e. increasing the time limit by one unit. As this
is a MIP problem, the dual variables cannot be used, and the value of additional time is found by
solving the problem multiple times for different time limits and record the objective values.

The results from the analysis of the Grünerløkka 2 instance are presented in Figure 7.1. Note that
a low objective value is desirable, which means few deviations and little time usage. The objective
value as a function of the time limit is shown to be partly flat and partly linearly decreasing. On
average, a unit change in the time limit gives a change of 1.3 in the objective value in the region that
is examined here. Note that the ”dual value” may be interpreted as the slope of the curve. Hence,
the ”dual value” would be 0 when the curve is flat and negative when the curve is decreasing.
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Figure 7.1: The objective value as a function of time limit, TS , for the SBRP-model, for the Grünerløkka 2 instance

Referring to the Grünerløkka 2 instance in Figure 7.1, the slope is approximately−2.0 in the interval
between T S

= 36 and T S
= 40. In this interval, each unit increase in the time limit results in the

objective value improving by approximately 2, meaning that two additional bikes are re-positioned.
With T S

= 55, the objective value is close to zero, implying that the system is perfectly re-balanced.
Then the solution only negligible improves by a further increase in the time limit. This analysis is
only valid for the Grünerløkka 2 instance, but still the results give insight to how the time limit may
affect the objective value.

69



7.1. ANALYSIS OF THE SBRP-MODEL CHAPTER 7. COMPUTATIONAL STUDY

7.1.8 Size of Solvable Instances
The number of stations in an instance obviously affects the computational time. Instances with
varying number of stations are tested to determine the capability of the model. As the computational
time is strongly affected by the time limit that is used (see Section 7.1.7), the results in this section
only indicate a general pattern. The lower bound method is used for setting the maximum number
of possible visits, |Mi|.
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Figure 7.2: Computational time for different number of stations, SBRP-model

Computational times for different instance sizes are shown in Figure 7.2. The computational time is
less than one second for the smallest instances, and significantly grows with an increasing number
of stations. The computational time sky rockets between 14 and 17 stations. Solving the instance
with 14 stations to optimality took 69 seconds, while the instance with 17 stations was not solved
to optimality in 3,000 seconds. None of the larger instances were solved to optimality within 3,000
seconds, except the instance with 22 stations, that was solved in 1,065 seconds. The instance with
22 stations probably has an advantageous problem structure, making it easier to solve. However,
it is clear that the model in general is able so solve instances with about 15 stations in reasonable
time. Solving larger instances would require other solutions methods, e.g. decomposition, extended
formulation, or heuristics.
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7.1.9 Service Vehicles
Increasing the number of vehicles results in new flow variables, new pickup/delivery variables,
and new sets of constraints. Hence the model complexity escalates. Having multiple identical
vehicles also introduces symmetry, necessitating effective symmetry breaking constraints. On the
other hand, utilizing many vehicles may improve the solution. The same is true for expanding the
vehicle capacity. These possible changes are tested and discussed in this section.

Table 7.6 illustrates how the computational time is affected by increasing the number of vehicles
for the Grønland 1 instance. The instance is run with a big enough time limit for the system to be
perfectly re-balanced by only one vehicle. This results in a fair comparison of the different runs,
as the number of station visits stay about the same. We see from the table that the computational
time grows rapidly with increasing fleet size. When increasing the number of vehicles above three
vehicles, it seems like the growth in computational time declines. This is assumed to be due to too
many vehicles compared to the number of stations. Imagine an instance with ten stations and five
vehicles, where all vehicles are determined to drive directly from the depot to a pickup node and all
stations can only be visited once. This problem is quite easy to solve and the solution makes little
sense. Note that when the system is required to be perfectly re-balanced, there exists no feasible
solution for this instance using only one vehicle and the lower bound method for the maximum
number of possible visits. To conclude, increased number of service vehicles results in a significant
growth in computational time, which can be explained by an increased amount of variables and
constraints.

Table 7.6: Computational time for different fleet sizes, Grønland 1 instance, assuming perfect re-balancing

Number of vehicles Computational time

1 n/a
2 1.6 seconds
3 23.7 seconds
4 37.4 seconds

For the system operator it may be difficult to decide whether to acquire an extra service vehicle or
not. To support this decision making process, the model can be used to quantify the effect of adding
or removing a service vehicle, in terms of number of deviations. The National Theatre 2, Bislett 2
and Grünerløkka 1 instances are run with different number of service vehicles and the results are
presented in Table 7.7. We see that the increase in the objective value is higher when changing from
one to two vehicles, than from two to three.
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Table 7.7: Objective value for different fleet sizes

Instance 1 vehicle 2 vehicles 3 vehicles

National Theatre 2 23.99 14.02 4.04
Bislett 2 26.00 12.05 6.08
Grünerløkka 1 26.01 8.07 2.11

To show how the objective value is affected by the vehicle capacity,QV
v , the model is solved multiple

times for different values. This is depicted in Figure 7.3 for the National Theatre 2 instance. As
expected, increased vehicle capacity leads to reduced objective value; reduced number of deviations
and/or reduced driving time. For the National Theatre 2 instance, the objective value reaches its
lowest level when the vehicle capacity is six. At that point, the time limit restricts the objective
value from decreasing further. Between QV

v = 1 and QV
v = 6, the objective value is reduced from

30.00 to 14.02, implying an average reduction of 3.2 per unit capacity increase. Figure 7.3 will
look different for all instances, but the overall pattern is the same; the objective value decreases
with increased capacity. The system operator is referred to cost–benefit analysis, for determining if
the reduction in total deviation and time usage is worth the cost of an additional service vehicle or
increased vehicle capacity.
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for the National Theatre 2 instance
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7.1.10 Alternative Formulations of the Objective Function
In this section we shortly describe possible ways of re-formulating the objective function. Changing
the objective function could yield different solutions as input to the system operator.

An alternative way of handling time usage in the objective function is to minimize the time used
by the vehicle driving the longest route. This is called a minimum makespan formulation (MSF),
and could be favourable if a fixed number of drivers were to work a given amount of hours. Using
the current objective function, (5.1), may result in solutions where one vehicle drives a much longer
route than the others. This will especially occur when the time constraints (5.12) are relatively loose.

The deviations in the objective function could be handled differently. One alternative is to utilize
intervals, rather than a fixed number, to describe the optimal state. This provides more flexibility to
the model, presumably making it harder to solve, but it may be more realistic. Another alternative
is to punish large deviations relatively more than small, for instance by squaring the deviation.
Whether one of these alternatives should be used rather than the current formulation, depends on
the information available to the system operator and her utility function.

A third option is to assume perfect re-balancing, i.e. not consider deviations at all, only minimizing
time usage or costs. Making this assumption, multiple adjustments could be made to the original
formulation. The resulting problem would be equivalent to the 1-PDTSP with multiple vehicles
(Hernández-Pérez and Salazar-González, 2003) (if the lower bound method for |Mi| is used). This
problem is simpler than the original, but also less realistic. When there is limited time available,
the model needs to prioritize which stations to re-balance. We argue that this is in accordance with
the real world problem, where time is a scarce resource.

7.2 Computational Analysis of the DBRP-model
The DBRP-model bears many similarities with the SBRP-model, as pointed out in Chapter 4. Thus,
many of the results from the SBRP-model are applicable for the DBRP-model as well, and are not
replicated. This section evaluates the computational results from the SBRP-model in a dynamic
context. Computational testing of the DBRP-model is presented when the results from the SBRP-
model are inapplicable. This is especially true for the valid inequalities and when determining the
maximum size of solvable instances. Preliminary testing indicated that the DBRP-model is difficult
to solve within reasonable time, even for really small instances, thus are the size of solvable instances
important in the analysis of the DBRP-model.
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7.2.1 Technicalities
Specifications of the computer and software used to solve the DBRP-model are listed in Table 7.8,
and the base case is listed in Table 7.9. When necessary, it is explicitly defined how the formulation
that is tested deviates from the base case. Because the DBRP-model should be used in a dynamic
setting and regularly re-solved, long computational times are undesirable. All computations are
therefore stopped after 1,000 seconds.

Table 7.8: Details of computer and solver used for the DBRP-model

Processor Intel Core i5-4300 CPU @ 2.50GHz
RAM 4 GB
Operating system Windows 10 Pro 64-bit
Xpress-IVE Version 1.24.06 64-bit
Xpress Optimizer Version 27.01.02
Mosel Version 3.8.0

Table 7.9: Base case for the testing of different constraints and formulation for the DBRP-model

Reduction of variables Yes
Beta, β 0.3
Valid inequalities (5.73-5.76)
Symmetry breaking constraints Visit numbers (5.26)
Maximum number of possible visits Lower bound method

7.2.2 Variable Reduction
In the SBRP-model, extensive variable reduction is possible, partly because all vehicles must start
and finish empty at the depot. Such variable reduction is however not possible for the DBRP-model,
as there is no depot. For the DBRP-model, as for the SBRP-model, self-loops do not make sense,
and these arc-variables are therefore not created.

If a station is defined to be a pickup station, violations because the station is empty should never
occur. Correspondingly, a delivery station should never get violations because the station is full.
Consequently, these violation variables do not need to be created. When inequality (7.1) is fulfilled
for a station, the violation variables for full stations do not need to be created for this station. Similar
for violation variables for empty stations when inequalities (7.2) are fulfilled.

SO
i −DiT

D ≤ QS
i =⇒ vFim & vEF

i are not created i ∈ N (7.1)

SO
i −DiT

D ≥ 0 =⇒ vEim & vEE
i are not created i ∈ N (7.2)
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In Section 7.1.2, variable reduction is proved to be very effective. Thus, variable reduction is im-
plemented for the DBRP-model, and no analysis of the effect is performed.

7.2.3 Subtour Eliminating Constraints
Unlike for the SBRP-model, subtours are no issue for the DBRP-model because the model uses a
strictly increasing time variable ensuring that it is impossible to make one station visit twice. Sub-
tour eliminating constraints may however work as valid inequalities and introducing them may pos-
sibly strengthen the mathematical formulation. Introduction of the MTZ-constraints with strength-
ening (5.20) is tested in Section 7.2.5. This is the set of subtour eliminating constraints that yields
the best results for the SBRP-model.

7.2.4 Symmetry Breaking Constraints
Because of the visit numbers, there are symmetrical solutions when solving the DBRP-model, sim-
ilar to the SBRP-model. This symmetry is handled by constraints (5.26). These constraints are
tested in Section 7.1.4 for the SBRP-model, and prove to considerably reduce the computational
time. The effect of introducing these symmetry breaking constraints is assumed to be similar for
the DBRP-model, and this is verified in the computational testing. Even though the fleet of vehicles
may be homogeneous in our DBRP-model, the vehicles are considered unequal because they start
at different locations. Constraints removing symmetry in a homogeneous fleet should therefore not
be introduced in the DBRP-model.

7.2.5 Valid Inequalities
The valid inequalities proposed for the DBRP-model, constraints (5.73-5.77), are different from
those introduced in the SBRP-model and are thus not comparable with them. Constraints (5.73-
5.77) are tested and the results are shown in Table 7.10. The MTZ-formulation by Desrochers and
Laporte (1991), introduced in Section 5.1.3 is also tested, to see if it may strengthen the formulation
and have effect as a set of valid inequalities.

It is difficult to see a clear pattern in the results, as the computational times differ substantially.
The valid inequalities used in the base case, (5.73-5.76), yield on average the lowest computational
times, but this is mostly due to the low computational time in instance number 14. In Table 7.11
the inequalities are compared by the number of times they are fastest and slowest. From this table
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Table 7.10: Comparison of computational times using different valid inequalities for the DBRP-model. Tested on 15
instances from the National Theatre area. The instances are distinguished only by the demand.

Inst. None Base case+(5.77) Base case Imp. LP-rel. Bound on qimv Base case+MTZ
(5.73-5.77) (5.73-5.76) (5.73-5.74) (5.75-5.76) (5.73-5.76)+(5.20)

1 0.09 s 0.07 s 0.10 s 0.05 s 0.02 s 0.07 s
2 0.50 s 0.74 s 1.00 s 0.80 s 0.43 s 1.16 s
3 1.28 s 1.26 s 1.90 s 1.61 s 1.32 s 2.84 s
4 4.44 s 2.81 s 2.80 s 3.21 s 3.16 s 3.18 s
5 9.18 s 20.94 s 11.20 s 48.03 s 5.87 s 17.69 s
6 0.61 s 0.53 s 0.50 s 0.58 s 0.97 s 1.11 s
7 3.69 s 6.56 s 4.80 s 6.75 s 4.58 s 5.45 s
8 11.35 s 5.71 s 3.90 s 2.89 s 14.71 s 5.31 s
9 22.70 s 30.77 s 37.20 s 38.59 s 26.77 s 36.82 s
10 1.42 s 1.03 s 1.20 s 1.64 s 1.34 s 1.54 s
11 2.69 s 2.39 s 5.00 s 6.47 s 3.69 s 4.74 s
12 20.90 s 18.57 s 29.20 s 28.09 s 30.69 s 50.41 s
13 26.24 s 26.43 s 24.30 s 43.72 s 28.99 s 42.73 s
14 75.64 s 36.26 s 10.00 s 75.21 s 53.93 s 147.90 s
15 0.04 s 0.02 s 0.10 s 0.05 s 0.04 s 0.36 s
Avg. 12.05 s 10.27 s 8.88 s 17.18 s 11.77 s 12.54 s

it becomes evident that it is beneficial to include some of the valid inequalities for 13 out of the
15 instances. We would recommend using what we call the base case + constraints (5.77), i.e.
(5.73-5.77), as this results in the lowest computational time for one third of the instances and newer
performs worst. Similar testing is done for 15 instances from the Bislett area and these results point
in the same direction. The MTZ-formulation, (5.20), results in general in higher computational
times, and is therefore rejected.

Table 7.11: Comparison of the set of valid inequalities by the number of times they are fastest and slowest for the 15
test instances. The MTZ-constraints are excluded from this comparison as the results from 7.10 indicate that they

clearly are disadvantageous.

Set of inequalities # fastest # slowest

None 2 2
Base case + (5.77) 5 0
Base case 4 4
Imprv. LP-relax. 1 6
Bound on qimv 3 3
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7.2.6 Maximum Number of Possible Visits
Our DBRP-model uses a set of possible visits to each station,Mi, similar to the SBRP-model. The
size of this set depends on the method chosen to calculate the maximum number of possible visits to
each station, as explained in Section 6.4. Additionally, for the DBRP-model, the size ofMi depends
on the demand at station i. In Section 7.1.6 different methods for calculating the maximum number
of possible visits to each station are tested on the SBRP-model, and we conclude that the lower
bound method should be used. By allowing more visits to each station, the computational time sky
rockets and the quality of the solution only gets marginally better. Because demand is taken into
account in the DBRP-model, |Mi| is normally even bigger than for the SBRP-model. Consequently,
the lower bound method should also be used for the DBRP-model as well.

7.2.7 Time Limit for Re-balancing
Section 7.1.7 describes how the computational time depends on the time limit for re-balancing for
the SBRP-model. There is a similar time limit in the DBRP-model; TD. With a short time limit,
the solution space is small and little computational time is needed. When the time limit increases,
the number of possibilities increases and the computational time rises. As the time limit increases
even further, the computational time falls for the SBRP-model. This is however not the case for the
DBRP-model because of the constant demand for bikes and locks. Because of the demand, will an
increasing time limit not result in slack in the time restriction, but bigger sets |Mi| and an increasing
problem complexity. The time limit for the DBRP-model should not however be needlessly long, as
the model is regularly re-solved, and the time limit should only stretch through periods with similar
demand. The peak in computational time seen for the SBRP-model for a certain time limit is not
present for the DBRP-model.

7.2.8 Size of Solvable Instances
The SBRP-model manages to solve problems with up to 15 stations within reasonable time, when
using the lower bound method for calculating |Mi|. In this section, we determine the maximum
size of solvable instances for the DBRP-model.

The most important characteristic for describing the size of the problem is the total maximum num-
ber of possible visits,

∑
i∈N |Mi|. As explained in Section 6.4 does this value depend on the number

of stations, the size of the demand, and the time limit, as well as the capacity of the service vehicles
and the stations. 15 instances from the areas National Theatre and Bislett are created to illustrate

77



7.2. ANALYSIS OF THE DBRP-MODEL CHAPTER 7. COMPUTATIONAL STUDY

the size of solvable instances for the DBRP-model, as described in Section 6.1. The lower bound
method is used for calculating |Mi|. The results are shown in Figure 7.4. Although there are many
outliers, there is clearly an exponential relationship between the computational time and the to-
tal maximum number of possible visits. The computational time sky rockets when the maximum
number of possible visits is about twelve. All the instances tested with

∑
i∈N |Mi| ≤ 7 have a

computational time of less than one second, while none of the instances with
∑

i∈N |Mi| ≥ 13 are
solved within 1,000 seconds. As the figure illustrates, the computational times are very high, even
for quite small instances. Thus, we suggest that heuristics should be developed, in order to yield
meaningful results for realistically sized instances.
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Figure 7.4: Computational time varies with the total maximum number of possible visits,
∑

i∈N |Mi|. Instances in
the National Theatre area are marked with blue and the ones from Bislett are marked with red. The dotted line is an

exponential regression line. The figure to the right is more detailed, as the y-axis is cut on 60 seconds.

Considering the number of service vehicles, the discussion from Section 7.1.9 for the SBRP-model
is considered to be applicable for the DBRP-model as well. An increased fleet size results in more
variables and constraints, raising the problem complexity and computational time.

7.2.9 Solution Stability
Since we consider a dynamic problem, the model should be regularly re-solved to get updated de-
cisions based on new information, e.g. every time a service vehicle arrives at a station. Therefore,
the most important output from the DBRP-model is the first loading decision and the subsequent
choice of station visit. This section studies how the decisions vary for different time limits, TD, and
if the solutions stabilize when the time limit increases. Tests are performed on two instances from
the National Theatre area, and the results are depicted in Table 7.12.
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Table 7.12: The first loading decision and the subsequent routing decision for different values for TD for two
instances from the National Theatre area. With a capacity of ten and an initial load of five, pickup and delivery

quantities are limited to five bikes for both service vehicles. The time limit is restricted to 45 and 60 minutes for the
two instances, respectively, because the computational times get too high with a higher time limit.

Instance 1 v = 1 v = 2

Time Limit, TD Loading at origin Next station Loading at origin Next station

10 -3 3 +1 1
15 -5 3 +1 1
20 -5 3 0 1
25 -2 3 +1 1
30 -4 3 +1 1
35 -4 3 +1 1
40 -5 3 +1 1
45 0 1 +5 2

Instance 2 v = 1 v = 2

Time Limit, TD Loading at origin Next station Loading at origin Next station

10 +5 3 -1 5
15 +5 3 -2 1
20 +5 3 -3 6
25 +5 3 -4 2
30 +5 3 -5 1
35 +5 3 -5 1
40 +5 5 -5 6
45 +5 3 -5 6
50 +5 3 -5 2
55 +5 3 -1 6
60 +5 4 -2 6

From Table 7.12, we see that the solution is dependent on the chosen time limit for re-balancing,
and that it is difficult to find a clear pattern. The solutions are sometimes quite stable, e.g. the next
station decision for both vehicles in Instance 1. However, we see for vehicle 2 in Instance 2 that
the solutions vary a lot. One may expect the results to become more stable when TD increases, but
that does not seem to be the case. In Instance 1, the routing decision is stable until TD

= 45. The
solution changes because the maximum number of possible visits to station 1 increases, as a result
of an increased time limit. With more possible visits, the vehicle could find a more effective route.
This is tested by increasing the maximum number of possible visits for all time limits for Instance
1. Doing this, we observe that vehicle 1 should visit station 1 also for TD

= 40 and TD
= 35. We

conclude that the maximum number of possible visits constrains the problem. With TD ≤ 30 is it
still optimal to visit station 3. To find the optimal solution for Instance 1, the DBRP-model should
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either be solved with TD ≥ 45 or with TD ≥ 35 and more possible visits to each station.

For vehicle 1 in Instance 2, the loading quantity at the origin station is stable for all time limits. The
initial load of bikes at the vehicle is five and all these bikes are needed at the origin station. For
vehicle 2 on the other hand, the loading quantity varies. It is worth noticing that when the time limit
changes, the total demand changes as well. Consider a station with initial inventory of ten bikes, a
negative demand of 0.1 bike per minute, an optimal state of ten bikes, and a planning period of 30
minutes. When considering a planning period of ten minutes instead, we still want to end up with
10 bikes after 30 minutes, but we expect delivery of two bikes during the time between our new
planning period and 30 minutes. Thus, the optimal state should be adjusted to compensate for the
length of the planning period, and set to eight bikes. Such adjustment is not however done for the
instances in Table 7.12, which to some degree may explain why the loading quantities are varying.

An other reason for the solutions to be unstable with regards to the time limit is thresholds caused
by the violations. If the demand is higher than what the service vehicles can manage, an increasing
demand as a result of a longer time limit results in more deviations. When demand increases further,
the stations will at some point experience violations. Since violations are given a higher weight in
the objective function than deviations, this could result in a new prioritization of station visits.

To sum up, is it clear that the solutions are dependent on the chosen time limit for re-balancing. For
some instances, the decision for loading at the origin station and the next station visit stay the same
for almost all time limits, while for other instances the solutions change a lot. It is therefore hard to
conclude which time limit should be used when solving the DBRP-model.

7.2.10 Objective Function
A weakness with the DBRP-model is that the objective function (5.33) does not consider the time
when violations happen. Section 3.2 shows how the demand could be estimated based on historical
data and how these estimates are associated with uncertainty. Estimates regarding the near future
are more secure than estimates reaching further into the future. Consequently, violations expected to
happen in the near future are more likely to actually happen than violations expected to happen later.
The most probable violations are indisputably the most severe, and one could argue that violations
should be discounted based on the time they are expected to happen. Considering the time of the
violations, the objective function would become non-linear. Since we assume relatively short plan-
ning periods and frequent re-solving of the model, discounting of violations are not implemented,
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as the effect would be small. If we were considering longer periods however, violations should be
discounted.

The parameter β is introduced in Section 5.2 and represents the weighting of deviations relative to
violations in the objective function. Deviations are calculated based on gap from the optimal state
and reflect violations happening after the planning period. Zero deviations represents the situation
where the probability of future violations is minimized. Thus, the relative weighting of deviations
in the objective function can be considered a discounting of violations happening after the planning
period. Beta is set by the operator of the BSS, and has great impact on the solution.

Figure 7.5 shows how the number of violations and deviations change with different values for β for
two Bislett instances. Other instances that are tested show the same pattern. Only β-values between
0 and 0.5 are tested. A β above 0.5 is never beneficial, as more weight is given to deviations than
to violations. This is unfavourable, because violations are more severe and violations are closer in
time than deviations, and hence should be given more weight. To clearly distinguish between the
relative importance of violations and deviations would we recommend always setting β below 0.4.
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Figure 7.5: Number of violations and deviations for different values for β are shown in blue and red, respectively.
Note that violations are shown on the left axis, and deviations on the right axis. The Bislett area is used, and results for

instance 9 are shown to the left and instance 10 to the right.

From the figure, it is clear that a β above zero should be used. For β equal to zero, only violations
are weighted. If there are symmetrical solutions, the model will not necessarily find the solution
with the least number of deviations. However, with a β only marginally higher than zero, deviations
are given some weight and better solutions are found. From the figure, it seems like a β ≥ 0.15 is
reasonable for finding good solutions. Hence, we recommend β-values in the interval from 0.15 to
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0.4, as it seems to yield stable solutions with a quite low number of both violations and deviations.

The time limit, TD, impacts the importance of violations relative to deviations. With a low time
limit, deviations are close in time, and hence more important. This could be regarded by setting a
higher beta. With a higher time limit, deviations are however more uncertain, and violations should
be given more weight by setting a lower beta.
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CHAPTER 8

COMPARISON OF SOLUTION METHODS

The SBRP-model and the DBRP-model presented in Chapter 5 are useful for solving small instances
and for describing the problems precisely. It is however shown in Sections 7.1.8 and 7.2.8 that they
only can be solved for instances with up to about 15 and eight stations, respectively. Short compu-
tational time is essential when operating in a dynamic setting and the drivers need updated routes
within few seconds. Consequently, the problem size is a pressing issue for the DBRP-model, and
the DBRP is therefore the focal point of this chapter. Through this chapter, six simple evaluation
techniques used to determine the next station visit in a dynamic setting are presented and evalu-
ated. We call them rules of thumb (ROTs) to emphasize their simplicity and distinguish them from
heuristics that are used to solve a specific mathematical model. The six ROTs and using the solution
from the DBRP-model are different solutions methods for the DBRP and are tested and compared.

8.1 Comparing the SBRP-model with Rules of Thumb
In Appendix B, Section 4.3, two different greedy ROTs are created to imitate the operators’ current
behavior for overnight re-balancing. Solutions from these ROTs are compared with the solution
from the SBRP-model presented in Section 5.1. The SBRP-model is shown to perform significantly
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better than the two ROTs. Further comparison of the SBRP-model with ROTs is not done here.

8.2 Rules of Thumb for Dynamic Bicycle Repositioning
In this section, the six different ROTs for re-balancing during the day are introduced. They use the
number of violations, probability of violations, deviations from the optimal state and the driving
time between the stations in various ways to prioritize which station to visit next. A new decision
is taken every time a vehicle is finished with loading at a station. The different ROTs are developed
in cooperation with Lars Felin, COO at Urban Infrastructure Partner who operates the BSS in Oslo
(Felin, 2016). The ROTs are intentionally made rather simple to better differentiate them.

8.2.1 Number of Violations
In Section 3.2.3, we presented a procedure to compute the number of violations at a station within a
time period, given a deterministic demand. Using this information, we have developed a ROT that
finds the next station visit by evaluating the expression in equation (8.1), i.e. choosing the station
j ∈ N with the highest number of violations divided by the driving time from the current location,
i. We call this method the Num.viol. method. N is the set of stations that the service vehicle is able
to serve with the initial load on board. A service vehicle is able to serve a station if the load is more
than three bikes before visiting a delivery station or if there is room for more than three additional
bikes on the vehicle before visiting a pickup station. Note that if all stations have zero violations,
the vehicle is waiting at its current location.

arg max
j∈N

{
Number of violations at station j

Tij

}
(8.1)

An advantage with this ROT is that it considers the actual number of violations and therefore may
be effective at prioritizing the stations where the effect of a visit is largest. The number of violations
is divided by the driving time to maximize the effect per time. A vehicle should for instance choose
the nearest of two stations with the same number of violations. Of similar reasons are the measure
for all the ROTs divided by the driving time to the relevant station.

It may be favourable to give more weight to the most critical stations, i.e. the stations with the
highest number of violations. To do this, the number of violations could for instance be squared.
We introduce a ROT that is similar to the Num.viol. method, except that the number of violations is
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squared. This method is mathematically described in equation (8.2) and is called the Num.viol.sq.
method. Squaring leads to a higher relative weighting of stations with a high number of violations
that are far away from the current location of the service vehicle. The vehicle therefore uses more
time driving than without the squaring.

arg max
j∈N

{
(Number of violations at station j)2

Tij

}
(8.2)

8.2.2 Probability of Violations
Instead of using the number of violations, this ROT makes the vehicles go to the station with the
highest probability of violations that the vehicle is able to serve with the initial load, as described
in equation (8.3). The procedure of computing the probability of violations at a station is presented
in Section 3.2.3. This ROT is called the Prob.viol. method and may be favourable because it con-
siders uncertainty in demand better than the other ROTs. It does for instance take into account the
probability of violations because of a full station, even though bikes are expected to be picked up
by the users at this station.

arg max
j∈N

{
Probability of violations at station j

Tij

}
(8.3)

Additionally, we introduce a ROT squaring the probability of violations, and name it the Prob.viol.sq.
method. This method, described in equation (8.4), prioritizes high probability of violations rela-
tively more than the Prob.viol. method, but they are otherwise equal. Imagine two stations A and
B, with 100 % and 50 % probability of violations, respectively, and a driving time of one minute.
The Prob.viol. method would give that station A is twice as important at station B, while the
Prob.viol.sq. method would give that A is four times as important.

arg max
j∈N

{
(Probability of violations at station j)2

Tij

}
(8.4)
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8.2.3 Nearest Station
The ROT called the Nearest st. method tells the vehicle to go to the nearest station the vehicle is
able to serve. We also require the number of violations at the station to be larger than zero for the
vehicle to be allowed to go there, implying that if no station has violations, the vehicle is waiting at
its current location. This ROT is mathematically described in equation (8.5), and is very similar to
the STR proposed by Brinkmann et al. (2015b). A favourable characteristics with this ROT is that
it prioritizes to make many station visits. It may however end up with only re-balancing a small part
of the system.

arg min
j∈N

{Tij} (8.5)

8.2.4 Number of Deviations from the Optimal State
Another option is to prioritize the stations based on the deviations from the optimal state. According
to this ROT, the vehicles should visit the stations with the highest ratio for the number of deviations
squared divided by the driving time, in accordance with equation (8.6). We call it the Dev.sq.
method. This ROT may not be the best to avoid violations for the current planning period, but may
be good at preparing the system for future periods. If the optimal state somewhat reflects demand in
the current period, this ROT could perform well also in the current period. The Dev.sq. method is
quite similar to the current practice for re-balancing in the BSS in Oslo (Felin, 2016). When using
this method, there is less need for a proper demand forecast or calculations of number/probability of
violations. The method prioritizes large stations close to the current location of the service vehicle.

arg max
j∈N

{
(Deviation from optimal state at station j)2

Tij

}
(8.6)

8.2.5 Loading decision
All the ROTs determine the loading quantity in the same way. The service vehicle loads or unloads
bikes until the optimal state at the station is reached or until the vehicle has reached its capacity
limit. It may sometimes be suboptimal to load bikes until the optimal state is reached, because the
vehicle rather should drive to a more critical station. This is not however considered here.
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8.3 Implementation
Both the DBRP-model and the ROTs are tested in simulations performed in Excel. In this section,
details of the simulation are elaborated and the test instances presented.

8.3.1 Simulation in Excel
To test the different ROTs, we have developed a simulation model. The model uses fixed-time
incrementing, where each time increment results in a new row in the spreadsheet. For each time
increment, all stations are updated with pickup and delivery events, and the current inventory and
accumulated violations are adjusted. The location of and load on the service vehicle is also updated.

The service vehicle will at some point arrive at a station. Bikes are then loaded or unloaded until the
optimal state at the station is reached or until the vehicle has reached its capacity limit. As long as
the vehicle is located at a station, a new loading decision is taken every time increment. When the
loading decision is to do nothing, the vehicle is routed to a new station based on the chosen ROT.
Note that the loading decisions are equal for all ROTs, it is only the routing decisions that differ.
Driving times between stations are found in driving-time matrices similar to those introduced in
Section 6.2.

The time increment in the simulations is set to 0.5 minutes, as this corresponds to the lowest time
unit in the problem; the time used to load or unload one bike. All simulations consider the system
over a two-hour period. The ROTs that use number of violations and probability of violations both
compute these values based on the next 30 minutes.

The simulations are implemented and executed in Microsoft Excel 2016, and the ROTs are created
using Microsoft Visual Basic for Applications (VBA) version 7.1.

8.3.2 Random Numbers and Exponential Distributed Events
The exponential distribution is commonly used for modeling queues, and Seo et al. (2015), Raviv
and Kolka (2013), and Schuijbroek et al. (2013) use it to model demand in BSSs. Time between
events cannot be negative, which is one of several reasons why the exponential distribution is suited.

In the simulations, time between pickup and deliveries of bikes at the stations are assumed to be
exponentially distributed with a pickup rate and a delivery rate at station j equal to λj and µj , re-
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spectively. Then, expected time between pickup events equals 1/λj and the expected time between
delivery events equals 1/µj . These parameters could be derived from some forecast based on histor-
ical data, see Section 3.2.1. Assuming a Poisson distribution where the arrival times are independent
and identically distributed, and the number of arrivals in the time interval [0, t] has a mean of λt,
the arrivals can be represented using an exponential distribution with a mean of 1/λ.

To check if a pickup and/or a delivery event has occurred at a station during the previous time
increment, the acceptance-rejection method is used. Random numbers are generated using the
= RAND()-function in Excel, and these numbers are compared to the cumulative distribution func-
tions for pickup and delivery events. To simplify, the probability distributions are constant for the
entire simulation period.

The exponential distribution assumes all events to be independent and identically distributed. This
assumption may be inaccurate, as users often arrive in small groups, e.g. in connection with public
transportation. When using fixed-time incrementing, it is not possible to have more than one pickup
and one delivery event at each station in a single time increment. In the simulations, the length of
the time increments are 0.5 minutes, which is small enough to make this simplification insignificant.

8.3.3 Instances
Two different areas are used in the simulations, a small area with six stations and a larger area with
20 stations. Both areas are based on parts of the BSS in Oslo. The smaller area is needed to simulate
the system when using the DBRP-model to determine the next station visit, as the model is hard to
solve for the larger instances. Driving times are estimated as described in Section 6.2, and vary
between one and 20 minutes. The stations have capacities between 13 and 20 slots, and all of them
have a safety margin of two slots.

Three different instances are created for the area with six stations, and five for the area with 20
stations. The instances are created by setting mean pickup and mean delivery to random numbers
between zero and 0.3 bikes per minute for each station, and the initial inventory to a random num-
ber within the station’s capacity. Instances are manually verified to have a total demand close to
zero (pickup − delivery ≈ 0) and total initial inventory close to half of the total station capacity.
The demand at the stations are in the same order of magnitude as typical stations in the Oslo BSS
during a busy period. The optimal state at each station is calculated based on the demand, using a
simplification of the procedure presented in Section 3.2.4.
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8.4 Comparison of the DBRP-model with the Rules of Thumb
The DBRP-model is tested in a simulation on the instances from the area with six stations. While the
system behaviour is simulated, routing and loading decisions are found by solving the DBRP-model
with Xpress. The performance of the DBRP-model is compared with the ROTs from Section 8.2.

8.4.1 Simulation Details
As presented in Section 7.2.8, the DBRP-model is incapable of solving large instances. The test
instances are therefore made so that

∑
i∈N |Mi| varies between eight and eleven. For simplicity

there is only one vehicle, with a capacity of 15 bikes. The system is simulated over a period of two
hours. This system is clearly too small to be a realistic imitation of an actual BSS, but the results
may still give valuable information about the performance of the DBRP-model and the ROTs.

Three instances with different expected demand and different initial and optimal states are created.
These instances are simulated three times with different realizations of the random variables, which
for instance may represent three different days. The DBRP-model and all the ROTs are tested using
the same realization of the random variables, making the results from each instance comparable.
Each solution method is tested nine times in total. Note that since the instances only have six stations,
the decision of which station to visit next is sometimes trivial.

In the DBRP-model, the time limit is set to 60 minutes and the weighting between deviations and
violations in the objective function, β, is set to 0.3. The ROTs are programmed in VBA and called
directly from the simulation procedure. As the DBRP-model is programmed in Xpress, information
must be sent between the two programs and the simulation takes additional time. Solving the DBRP-
model once in Xpress may take several minutes, and one simulation run requires multiple solutions
of the model.

8.4.2 Results
Table 8.1 shows the results from the test runs described in Section 8.4.1. The solution methods
are tested nine times, which is insufficient to draw any conclusions, but the results may still indi-
cate which solution methods that are favourable and some characteristics of the different solutions.
Both average total violations, loading quantity and number of station visits are presented for all the
solution methods.
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The main objective when repositioning bikes in a BSS during the day is to minimize the number
of violations. Based on this measure, the DBRP-model and the Prob.viol.sq. method perform best.
They both obtain average total violations of 9.5 for the tested instances. Even though this is better
than the other solution methods, it is hard to conclude whether these methods actually are better
based on only nine runs. The DBRP-model is however assumed to generally perform well, which is
discussed in Section 8.4.3.

Table 8.1: Comparison of the performance of the DBRP-model and six different ROTs. All methods are tested on
nine instances, based on three different demand parameter sets. The values in the table represent the averages over

these nine simulation runs. The instances have six stations, one vehicle and are simulated over a period of two hours.

Solution method Avg. tot. violations Avg. tot. loading quantity Avg. # of station visits

DBRP-model 9.5 88.0 11.4
Num.viol. method 14.0 79.9 6.8
Prob.viol. method 15.9 74.8 15.2
Num.viol.sq. method 13.0 78.6 6.6
Prob.viol.sq. 9.5 91.2 10.7
Nearest st. method 13.1 78.5 6.7
Dev.sq. method 11.2 89.2 10.6

When looking at the average total loading quantity, it is evident that the ROTs leading to the largest
loading quantities also perform well when looking at total violations. The DBRP-model, the Prob.viol.sq.
method and the Dev.sq. method have the largest average total loading quantities and the lowest av-
erage total violations.

Another characteristic is that the ROTs that on average visit the most stations during the period, also
have the lowest number of violations. The exception from this pattern is the Prob.viol. method,
which has the highest number of station visits, but also the lowest loading quantity and the highest
number of violations. This behavior is explained by the fact that a station may be perfectly balanced,
but still have a probability of both full and empty violations. Because the probability is divided by
the driving time, a station with 10 % probability of both full and empty violations and a driving
time of one minute is prioritized over a station with 90 % probability of violations and ten minutes
driving time. With two stations being close to each other, the Prob.viol. method may result in
solutions where the vehicle drives back and forth between these two stations, doing quite few loading
operations. Because of this behavior, the Prob.viol. method is not recommended. The Prob.viol.sq.
method does not however have this problem and seems to perform very well.

Table 8.1 indicates that the results for the Num.viol. method, the Num.viol.sq. method and the
Nearest st. method are quite similar. For an instance with only six stations, there is often only
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one station of the right type with more than zero violations. When this is the case, these three
ROTs chose the same station. For instances with more stations or higher demand, these rules would
probably give more distinct results and be easier to distinguish from each other.

To sum up, the DBRP-model and the Prob.viol.sq. method seems to be the two best solution methods
for the tested instances. Visiting many stations and loading many bikes are shown to be favourable
characteristics of a ROT.

8.4.3 Characteristics of the DBRP-model in the Simulation
The DBRP-model performed well in the simulations, but the number of violations could probably
be reduced by tailoring the DBRP-model to the simulation setting.

In the simulation of the DBRP-model, the loading quantity is computed together with the routing
decision when the service vehicle leaves a station. The loading may therefore start up to 20 minutes
after the decision is taken. During this time, there can be many pickup and delivery events, and
the loading decision is not necessarily optimal when the loading actually happens. If the loading
decision is updated when the service vehicle arrives at a station, the DBRP-model probably performs
better, especially when the demand is high. For the ROTs, a new decision is made before every single
loading operation, making these solution methods more flexible.

To improve the simulation results from the DBRP-model, deviations could be omitted for the entire
or for the last part of the simulation period. Deviations are considered for an optimal state one hour
into the future. The DBRP-model therefore makes decisions that probably are beneficial to get a
well-functioning system in the longer run, but not when considering violations in the simulation
results.

While there might be only few minutes left of the simulation, the DBRP-model plans a total route for
the next 60 minutes. This results in solutions that are good with a long perspective, but sometimes
not when looking at only the last move. Changing the time limit in the DBRP-model in accordance
with the remaining time of the simulation would improve its simulated performance.

To conclude, the number of violations for the DBRP-model in Table 8.1 could be reduced if the
model is customized to the simulation. The value of using such a model in practise is evident when
comparing to simple ROTs, but modifications of the model are needed for solving larger instances.
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8.5 Comparison of the Rules of Thumb
The testing in Section 8.4 was made on quite small instances, and only a few simulations was con-
ducted. To make a better comparison of the ROTs, we have created larger instances and conducted
numerous simulations.

8.5.1 Simulation Details
The ROTs are tested on five different instances from an area with 20 stations. For simplicity, the
area is serviced by only one vehicle, which has a capacity of 23 bikes, making it identical to the
actual service vehicles operating in Oslo. The instances differ with regard to demand and initial and
optimal state, and the system is simulated over a period of two hours. In addition to simulating the
system when using the six ROTs from Section 8.2, the system is simulated when the vehicle is doing
nothing and when the vehicle chooses its next destination at random, as a basis of comparison. Note
that the Random method determines the loading and unloading quantities in the same way as the
ROTs, see Section 8.2.5.

All solution methods are simulated 1,000 times for every instance and the total number of violations
in the system is recorded for each simulation. This is done using DataTable from the What-if analysis
tool in Excel, resulting in 5,000 simulations of the system for every ROT. Unlike the simulation in
Section 8.4, the realization of the random variables is different for every simulation, necessitating
many simulations to make the results for the different ROTs comparable. With this approach is
it impossible to compare results from single simulations, only average values for whole sets of
simulations.

8.5.2 Results
Results from the simulations are showed in Table 8.2. Each instance is simulated 1,000 times,
resulting in 1,000 violation values for each ROT, and the average values shown in the table. We note
that doing nothing and choosing station visits at random are the worst and second-worst methods for
every instance. The Num.viol. method has the lowest total average number of violations, but it is not
much better than the Num.viol.sq., the Prob.viol., and the Nearest st. method. Out of the six ROTs
the Prob.viol. method performs worst, and the Dev.sq. method results in a few more violations than
the top four.

T-tests and F-tests are performed to see if the results from the six ROTs are significantly different. F-
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Table 8.2: Comparison of six different ROTs for determining the next station visit. The results are compared to doing
nothing and to choose station visits at random. Each ROT is simulated 1,000 times for five different instances. The

instances are based on an area with 20 stations and one vehicle, and are simulated over a two hour period.

Solution method Average total violations Avg.tot.viol.Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Num.viol. method 39.8 76.5 43.5 66.5 87.6 62.8
Prob.viol. method 53.4 105.2 89.3 101.9 105.6 91.1
Num.viol.sq. method 40.4 77.0 45.8 68.8 90.8 64.6
Prob.viol.sq. method 41.5 78.6 42.7 67.4 88.8 63.8
Nearest st. method 40.1 77.5 44.0 65.8 90.9 63.7
Dev.sq. method 44.1 84.0 44.3 67.7 94.9 67.0
Random 68.6 123.7 81.7 116.7 132.7 104.7
Do nothing 94.1 148.0 108.7 148.8 165.8 133.1

tests are used to test the null hypothesis that the variances of two populations are equal. Results from
F-tests executed in Excel indicate that the variances are unequal, hence two-sample t-tests assuming
unequal variances are performed. A t-test of two samples yields a p-value, which is the probability of
observing the two samples given that they represent the same distribution. We choose a significance
level of α = 1%, i.e. two methods are to considered to yield different number of violations if it is
less than one percent probability of getting the observed results given that the methods yield the
same number of violations. Then, there is no instance where one ROT is significantly better than
all the others. Table 8.3 shows the ROT with the lowest average total violation for each instance,
as well as the ROTs with an average value insignificantly worse than the best. With α = 1%, it is
impossible to distinguish between the ROTs listed for each instance.

Table 8.3: For every instance, the table shows which ROT that yields the lowest average number of violations for
1,000 simulations. The table also shows which ROTs that according to a t-test have more than 1% probability of

yielding the same number of violations as the best.

Instance Best ROT ROTs with p-value ≥ 1%

1 Num.viol. method Nearest st. method Num.viol.sq. method
2 Num.viol. method Num.viol.sq. method Nearest st. method
3 Prob.viol.sq. method Num.viol. method Nearest st. method
4 Nearest st. method Num.viol. method Prob.viol.sq. method
5 Num.viol. method Prob.viol.sq. method

From Table 8.3 we see that the Num.viol. method has the lowest average violation for three of the
instances and is among the best ROTs for all five instances. Further we see that the Nearest st.
method is among the best for four instances, the Prob.viol.sq. method is among the best for three
instances, and that the Num.viol.sq. method is among the best for two instances. When using a
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simple ROT for deciding the next station visit, one should therefore choose one of the four methods
highlighted here. Our results indicate further that the Num.viol. method. is the preferred ROT.

It is possible that the driving matrix (the topography of the area) favours some of the solution meth-
ods to others. When considering an even larger system we are expecting the Nearest st. method to
perform worse, as the vehicle is likely to get stuck in one area. Of similar reasons we are expecting
the Num.viol.sq. method and the Prob.viol.sq. method to improve relative to the Num.viol. method
and the Prob.viol. method when the problem size increases.

A weakness with the simulations is that all instances are taken from the same area. To better illustrate
the differences between the ROTs, it would be interesting to do simulations from different areas.
Another possible weakness is that the system is simulated over a two hour period. This may be
insufficient to shed light on the differences between the ROTs. By increasing the planning horizon
it is likely that differences between them would be easier to spot.

The best and worst ROTs, namely the Num.viol. method. and the Prob.viol. method, differ with
28,3 in average violations. The simulated instances have 20 stations and are served by one service
vehicle over a two hour period. By comparison, the BSS in Oslo is open 18 hours a day, has a total
of 100 stations, and is served by five service vehicles. This implies that using a clever ROT instead
of a poor one, could reduce the total violations in the BSS in Oslo by as much as 250 violations per
day, or more than 90,000 violations per year.

8.6 Final Remarks
In this chapter, the DBRP-model was tested in a simulation and compared to six different ROTs.
Further, the ROTs have been exhaustively tested through a large number of simulations. Even though
the number of simulations is too small to draw a conclusion, the DBRP-model seems to perform
well compared to the ROTs. It is important to note that the DBRP-model is expected to yield better
results in the simulations if β = 0, i.e. only considering violations in the objective function. Re-
optimizing the DBRP-model when the service vehicle arrives at a station in order to determine the
loading quantity, should further improve the model’s performance in the simulations.

When simulating a larger system to compare the ROTs, we see that four of the methods result in
approximately the same number of violations in the system. It may however be argued that the
Num.viol. method. is slightly preferable to the others. Further testing, for instance by simulating
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different areas and different planning horizons could unveil greater differences between the ROTs.

Using the results from this chapter, it is possible to combine the desired elements from the different
ROTs and create a smarter and more detailed ROT. In addition, one could implement more intelligent
strategies for only considering the stations that are not balanced, and test other alternatives than
to square or not square the different measures. Creating a smarter ROT would require additional
simulations to adjust the parameters and verify its performance.
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CHAPTER 9

CONCLUSION

There are currently 1,029 BSSs around the world, and about 320 more are under planning or con-
struction. Using optimization for the operation of these systems is getting increased attention. This
thesis thoroughly gathers the research on the operational level, i.e. both the SBRP and the DBRP,
in an exhaustive literature survey, where the studies are systematized and compared. As far as we
know, a survey of this scope on the operational level-literature is not conducted before. Most of the
studies introduce a mathematical model to solve the problems, but often is realism not prioritized or
the models are incomplete. We therefore present new detailed mathematical formulations for both
the SBRP and the DBRP.

Trough a comparison with the literature (Table 1 in Appendix B), it is evident that the SBRP-model
presented here makes fewer assumptions and allows more possibilities than most existing models.
Our SBRP-model allows a heterogeneous fleet, multiple visits to each station, and non-perfect re-
balancing. The DBRP-model also takes more real-life aspects into account than most of the models
in the literature (Table 9.1 at the end of this chapter). In addition to the aspects mentioned for the
SBRP-model, it stands out by giving a complete driving route, specific loading instructions, and by
taking the timing of events into account. However, it does not consider the stochasticity in demand,
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but uses a deterministic continuous demand.

The demand for bikes and locks are fluctuating, and a thorough understanding of the demand is
essential for rational re-balancing. When forecasting the demand, it is important to consider the
geographical location of the station, the day of week, the time of day, and the weather, as our anal-
yses show that the system usage is greatly dependent on these parameters. Using historical data
from representative days, we could get an expectation and a variance for future demand. With this
information, we show how to find the number of violations in the system, and the probability of
violations at each station. The optimal state is an important input in both the SBRP- and the DBRP-
model, and we suggest that the optimal state is set to the point where the probability of violations
caused the station being full equals the probability of violations caused by the station being empty.

Various formulations and constraints are examined for the SBRP-model. For subtour elimination,
the MTZ-formulation (Miller et al., 1960) with strengthening proposed by Desrochers and Laporte
(1991), yields the best results. Three valid inequalities and three symmetry breaking constraints
are introduced and evaluated. All the valid inequalities reduce the computational time, and the
combination of all of them is very effective. The symmetry breaking constraints handling visit
sequence, are shown to work very well in combination with the constraints for differentiating the
vehicles by time usage. There are various ways for reducing the number of binary and integer
variables in the problem. Enforcing variable reduction reduces the average computational time as
much as 98.5 %. We show that the computational time depends greatly on the time limit that is
used, and peaks when the time limit is set so that the total deviation is slightly above zero. When
the total deviation is close to zero, the solution space is large and it is difficult to find good lower
bounds.

Most of the results from the computational study for the SBRP-model apply for the DBRP-model
as well. Examining different valid inequalities for the DBRP-model, we conclude that constraints
(5.73-5.77) should be enforced. As the system is dynamic, the DBRP-model should be re-solved
after every station visit. Hence, the most important part of the DBRP is to decide which station to
visit first. Studying the stability of the solution with different time limits, it is clear that the first
station visit in the solution is dependent on the chosen time limit. For some instances, the solutions
are quite stable, while for others every new time limit for re-balancing results in a new solution. It is
therefore difficult to conclude which time limit should be used when solving the DBRP-model. The
weighting between deviations and violations in the objective function is examined, and we argue that
it should depend on the planning horizon. Our analysis shows that a weight-parameter, β, between
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0.15 and 0.40 yields the best results, but the weight on the deviations should be reduced as the time
limit increases.

Both the number of stations and the maximum number of possible visits are crucial to the compu-
tational time, as they make the problem size increase significantly. Adding an extra possible visit
at a station gives almost the same increase in problem complexity as adding a new station. The
SBRP-model and the DBRP-model can only be solved to optimality for about 15 and eight sta-
tions, respectively. This is natural, as realism is prioritized, and heuristics and decomposition are
not used. As the models presented here are only able to solve quite small instances, simple ROTs
are very useful in practice. We introduce six different ROTs and perform numerous simulations in
Excel to compare them with the DBRP-model and with each other. The DBRP-model is shown to
give great results and could probably be customized to perform even better in the simulation setting.
Several of the ROTs perform well, but the Exp.viol. method seems to yield the best results overall.

The main contributions of this thesis are an extensive literature survey on optimization of BSS
operation and new mathematical models for the SBRP and the DBRP. The models are more detailed
and captures more real-life aspects than most existing models. In addition, ROTs for re-balancing
of BSSs are developed, evaluated, and compared.

99



CHAPTER 9. CONCLUSION

Table 9.1: Characteristics of the DBRP-model. Could be seen in relation to the corresponding Table 2.5.

Parameter DBRP-model

Preprocessed / Online Preprocessed / Online

Modeling demand Expected value

Modeling time Continuous

Re-balancing Continuous time

Objective function Min. weight of violations and
deviations

Complete routing Yes

Multiple vehicles Yes

Multiple visits to a station Yes

Modeling handling Yes

Selective pickup/delivery Yes

Solution algorithm Exact

Size of solvable instances 8 stations, 2 vehicles

Contribution Realistic, complete model
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FURTHER WORK

The SBRP- and DBRP-models presented in this thesis are able to find optimal solutions within
reasonable time for instances with up to about 15 and eight stations, respectively. Knowing that the
BSS in Oslo has 100 stations (300 stations from 2017), it is obvious that the utility of these models
is limited. In this chapter we present possible extensions for further work.

10.1 Solve Larger Instances
Further development of the SBRP- and DBRP-models could focus on solution methods making it
possible to solve larger instances. This may be challenging, as every added station visit makes the
problem bigger and more complex, as discussed in Section 6.4.

To solve larger instances using the mathematical models, there are three main alternatives. Firstly,
the models could be simplified. This can be done for the SBRP-model by relaxing the time restriction
and assume perfect re-balancing. Both models could be simplified by assuming only one vehicle
and/or that the vehicle(s) can only visit each station once. Also, the vehicles could be restricted to
always drive to one of the n stations nearest to its current location, which could result in a huge
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reduction in the number of arc-variables.

Instead of, or in addition to simplifying the problem, heuristics could be developed to find primal
and dual bounds. Heuristic solution methods do not guarantee that the optimal solution is found, but
a good heuristic could yield satisfactory solutions with little computational effort. From the litera-
ture, it seems like both tabu search (Chemla et al. (2013) and Ho and Szeto (2014)) and LNS/VNS
(Rainer-Harbach et al. (2013b) and Gaspero et al. (2015)) would work well for the SBRP-model.
Some form of neighborhood search could also be implemented for the DBRP-model, as illustrated
by Vogel et al. (2014), Kloimüllner et al. (2014), and Brinkmann et al. (2015a). An alternative
heuristic approach for both the SBRP- and the DBRP-model is to use a clustering algorithm. By
grouping stations using a clustering heuristic, the routing problem for each cluster may be allocated
to one vehicle and solved to optimality with the current models. Each cluster must then have less than
15 stations for overnight re-balancing and less than eight stations for through-the-day re-balancing.
This method is called cluster first route second, and is implemented for the SBRP by Schuijbroek
et al. (2013) and Forma et al. (2015).

Using decomposition is a third method to solve larger instances. Decomposition may be an effective
way of finding the optimal solution. Looking at the literature on SBRP-models, Benders’ decompo-
sition have been used with convincing results (Erdoğan et al. (2014) and (2015)). The DBRP-model
is commonly decomposed into problem specific sub-problems, e.g. one problem for determining
routes and another for determining loading quantities (Angeloudis et al., 2014) or one problem for
prioritizing the need for re-balancing and another for determining the routes (Regue and Recker,
2014).

10.2 Improve the Rules of Thumb
In Section 8.2 different ROTs for the DBRP are tested and compared. There is a need for such ROTs
when solutions to large problems are wanted fast. Using the results from Section 8.5 is it possible
to create a smarter ROT that combines elements from the other ROTs and in a better way make
use of both system data and demand forecasts. Creating a smarter ROT also requires additional
simulations to adjust the parameters and verify its performance.
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10.3 Determine the Optimal State
A weakness of the SBRP- and the DBRP-models, is that the optimal state is considered known for
all stations. This is a simplification, as the optimal state is a function of many stochastic parameters
and is normally unknown. Determining the optimal number of bikes at each station at a given time
is a problem at the tactical level. This problem may either be solved separately or together with
the repositioning problem. One option is to further develop the ideas presented in Section 3.2.4 to
create a mathematical model that calculates the optimal state at each station using the probability
of violations. As the decisions on the tactical and the operational levels are closely related, it could
be meaningful to study them together. By doing this, the optimal state becomes a variable in the
model, determined by, among other things, the season, day of week, demand profile and the time of
day.

10.4 Create a Model for Demand Forecasting
Understanding the demand is essential to be able to make good decisions during system operation.
A reliable demand forecast for all stations is needed to determine the optimal state, as an direct input
in the DBRP-model, and to calculate the next station visits using ROTs. Section 3.1 highlights many
of the aspects that must be considered in a demand forecast, but a complete forecasting model is yet
to be developed. A forecasting model should be based on historical data and adjust for the day, the
time and the weather. During peak hours many stations are either full or empty. A main challenge
using historical data is therefore to make good estimates for demand in periods when the stations
are either full or empty.
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APPENDIX A

ACRONYMS

1-PDTSP One-Commodity Pickup and Delivery Traveling Salesman Problem
B-&-B Branch-and-Bound
B-&-C Branch-and-Cut
BRSP Bike Request Scheduling Problem
BSS Bike Sharing System
DBRP Dynamic Bicycle Repositioning Problem
GIS Geographical Information Systems
GRASP Greedy Randomized Adaptive Search Procedure
IP Integer Program
LNS Large Neighborhood Search
LP Linear Program
LTR Long-Term Relocation
MIP Mixed Integer Program
MSF MakeSpan Formulation
MTZ Miller-Tucker-Zemlin (Set of constraints used to eliminate subtours)
OR Operational Research
PDP Pickup and Delivery Problem
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PILOT Preferred Iterative LOok ahead Technique
ROT Rule of Thumb
SBRP Static Bicycle Repositioning Problem
STR Short-Term Relocation
TSP Travelling Salesman Problem
UDF User Dissatisfaction Function
VBA Visual Basic for Applications
VND Variable Neighborhood Decent
VNS Variable Neighborhood Search
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The Static Bicycle Repositioning Problem -
Literature Survey and New Formulation

Hans Martin Espegren, Johannes Kristianslund, Henrik Andersson, and Kjetil
Fagerholt

Department of Industrial Economics and Technology Management, Norwegian
University of Science and Technology, Trondheim, Norway

Abstract. This paper considers the static bicycle repositioning problem
(SBRP), which deals with optimally re-balancing bike sharing systems
(BSS) overnight, i.e. using service vehicles to move bikes from (nearly)
full stations to (nearly) empty stations. An exhaustive literature survey
comparing existing models is presented, and a new and improved math-
ematical formulation for the SBRP is proposed. The model is tested on
a number of instances generated based on data from a real BSS.

1 Introduction

As urbanization proceeds throughout the world, public decision makers are look-
ing for effective, affordable, and environmentally friendly means of transporta-
tion. Bike sharing fulfills these criteria for short distance traveling within city
centres, and consequently bike sharing is getting increased attention from both
governments and the public. Currently there are 948 cities with an active Bike
Sharing System (BSS) and 273 with a system under planning or construction
[10]. Figure 1 shows the expansion of bike sharing the recent years, expressed as
number of cities in the world with a public BSS. For an extensive review of the
historical development of BSSs, the reader is referred to [9], [34], and [23].

Fig. 1. Worldwide development in number of cities with a public BSS, 2000-2014 [10]
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Bike sharing is a public system for automatic or semi-automatic lending of
bicycles for use within a restricted time period and area. A bike can be lent at
one station and delivered at another. Note that during the night most systems
are either closed or in limited use. For the system to function well, it is crucial
that there are bikes available at a station when someone wants to pick up a
bike and that there are free slots available when someone wants to return one.
To achieve this, most BSSs use service vehicles to re-balance the system, i.e. to
move bikes from (nearly) full stations to (nearly) empty stations. This paper
studies one important aspect of the operation of BSSs, namely the logistics of
the service vehicles used to re-balance the system overnight.

The planning problems arising from BSSs are divided into three levels in ac-
cordance with [36]; a strategic, a tactical, and an operational level, as illustrated
in Figure 2. The strategic level contains problems that arise when designing the
system, e.g. determining the optimal number of bikes and locations of stations.
On the tactical level the objective is to find an optimal distribution of bikes be-
tween the stations at a specific time, while finding optimal routes for the service
vehicles to re-balance the system is the objective at the operational level.

Fig. 2. Planning levels of BSS optimization
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SBRP DBRP

Execution

System
design

Fill
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It is common to divide the operational level in two: static and dynamic
problems. In line with [30], the problems are named static bicycle reposition-
ing problem (SBRP) and dynamic bicycle repositioning problem (DBRP). The
SBRP is typically used for overnight balancing, when the demand forecast for the
operating period is not considered; the problem is static and deterministic. To
describe the SBRP we introduce the concept of states, i.e. a distribution of bikes
throughout the system, expressed as a specific number of bikes at each station.
The optimal state is the desired distribution of bikes at the end of the planning
period, i.e. early in the morning, while the initial state is the distribution at
the beginning of the planning period, i.e. late in the evening. After solving the
model, we get the final state. The difference between the final state and optimal
state is called deviation. All stations and vehicles have restricted capacities, and
the fleet of service vehicles may be either homogeneous or heterogeneous. For
every vehicle, a complete route and the number of bikes to pick up or deliver
at each station must be decided. Hence the SBRP can be classified as a static
many-to-many one-commodity pickup and delivery problem with selective pick-
ups and selective deliveries, in accordance with [3]. The DBRP is on the other
hand used for intraday re-balancing, as the demand during the operating time
is taken into account. Hence, the DBRP is both dynamic and stochastic.
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In this paper we focus on the SBRP. Our contributions are 1) to present
an exhaustive literature survey on the SBRP, including a comparison of the
existing models, and 2) to propose a new mathematical model of the problem that
captures more real-life aspects. We also propose symmetry-breaking constraints
and valid inequalities to tighten the formulation. The model is tested on a number
of test instances based on data from a real BSS.

Section 2 provides the literature survey on the SBRP, while a new mathe-
matical model for the SBRP is introduced in Section 3. A computational study
is presented in Section 4 and concluding remarks are given in Section 5.

2 Literature Survey

In this literature survey we focus on the static bicycle repositioning problem
(SBRP). For studies on the strategic level, we refer to [16], [22], and [32] that
determine the number of stations and their locations, and to [15] that finds the
optimal number of bikes in the system and the number of slots at each station. At
the tactical level we can refer to [29], [33], and [37] for analyses of the placement
of bikes, while [20] studies the detection of broken bikes in the system. There
are also a number of studies regarding the DBRP, see for example [1], [4], [5],
[7], [21], [25], [26], [31], and [38].

The SBRP was first studied in [2]. They describe the system using graph-
theory. The objective is to move bikes along the arcs so each station is perfectly
re-balanced at minimal cost. One of the main findings is that the SBRP is NP-
hard. In [6], the work from [2] is continued. An optimization model is presented,
but shows to be hard to solve, so they relax the problem by removing the se-
quential dimension and solve it using a branch-and-cut (B&C) algorithm.

In [30], two different mixed integer programming formulations are introduced;
an arc-indexed and a time-indexed. The objective is to minimize a weighted
sum of the stations’ penalty costs for deviations and the operating cost. The
authors conclude that the arc-indexed model provides the best results for most
instances, but the time-indexed formulation is easier to adapt to the DBRP. Valid
inequalities and dominance rules are proposed to strengthen the formulations.

The arc-indexed formulation from [30] is enhanced in [19] and [14], both
proposing methods for solving larger instances. In [19], the formulation is sim-
plified by allowing only one vehicle, stating that a station is either a pickup or
delivery station and assuming that each station only can be visited once. The
objective is to minimize a penalty function depending on the number of bikes
at each station. The authors present a construction heuristic used to generate
an initial solution followed by a tabu search. On the other hand, the model is
expanded in [14] by using a three-step algorithm. In the first step, stations are
clustered using a saving heuristic. In the second step, vehicles are assigned to
clusters, while the routes for each vehicle are determined in the third step.

The SBRP is represented using a complete directed graph in [27] and [28].
Further, several metaheuristics are presented and tested. The authors conclude
that Variable Neighborhood Search (VNS) yields the best results on instances of
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moderate size, while a PILOT/GRASP hybrid turns out to be superior on large
instances. A neighborhood search is also used in [17]. Two formulations for the
SBRP are also developed; a routing model and a step model, both incorporated
in a Large Neighborhood Search (LNS). The routing model uses an arc-indexed
formulation, while the step model allocates all station visits to routes.

In [33], the SBRP is solved in combination with the tactical level problem of
finding the optimal states. The routes from the SBRP must satisfy the service
level requirements from an inventory problem. The objective is to minimize the
maximal route length, hence it is formulated as a makespan problem. To solve
the model the authors propose a cluster first route second heuristic.

Four possible formulations of the SBRP are tested and discussed in [8]. To
handle the exponential number of subtour eliminating constraints, a B&C algo-
rithm is proposed in addition to both valid inequalities and separation proce-
dures. The authors conclude that the subtour elimination and separation tech-
niques proposed by [18] for the 1-PDTSP give the best computational results.

A decomposition method is introduced in [35], consisting of a request gen-
eration algorithm and a bike request scheduling problem (BRSP). The request
generation algorithm uses various data to generate repositioning requests. A re-
quest includes the location and number of bikes to be picked up or delivered, a
time window and an importance weight. The BRSP determines which requests
to execute and assigns them to vehicles. The objective is to minimize the total
weight of rejected requests.

The objective of the SBRP-model in [26] is to maximize the number of re-
balanced stations, only allowing pickup and delivery of full truckloads of bikes.
The authors use a heuristic that solves the one-vehicle problem for each vehicle.

In [13], the SBRP is decomposed using a Benders decomposition scheme. The
subproblem determines the pickup and delivery quantities along a fixed route
of station visits, while the master problem finds new routes visiting all stations
with too few or too many bikes. In a later study, [12], the authors use insights
from [13] to solve the SBRP formulation from [6]. Whilst [6] could only find
heuristic solutions for realistically sized instances, the method from [12] yield
optimal solutions.

Table 1 shows a comparison of the main characteristics of the SBRP models
in the studies surveyed above, as well as some key information about the solu-
tion methods. Note that the mathematical model proposed in Section 3 is also
included in the table. The numbers in the top row correspond to the numbers
in Table 2.

From the table it becomes evident that half of the studies solve the problem
with only one service vehicle, even though most problems of realistic size use
several. Note that many articles use clustering algorithms. By assigning each
cluster to a vehicle, the SBRP could be solved once for each vehicle. Among
the studies allowing multiple vehicles, two assume the fleet to be homogeneous.
Half of the studies allow multiple visits to a station, while the other half does
not. When the deviation between the optimal and initial state is larger than the
vehicle capacity, allowing multiple visits to each station seems most reasonable.
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Table 2. Articles overview for Table 1

1 Benchimol et al. [2] 8 Sörensen and Dilip [35]
2 Chemla et al. [6] 9 Gaspero et al. [17]
3 Raviv et al. [30] 10 Erdoğan et al. [13]
4 Rainer-Harbach et al. [27] & [28] 11 Erdoğan et al. [12]
5 Schuijbroek et al. [33] 12 O’Mahony and Shmoys [26]
6 Ho and Szeto [19] 13 Forma et al. [14]
7 Dell’Amico et al. [8] 14 Espegren et al. (this study)

Five studies assume that there is no time usage or cost associated with the
loading and unloading operations at the stations, three use an average time and
five studies let the time usage depend on the number of bikes handled. Note that
none of the studies take traffic congestion into account, but presume the driving
time between two stations to be constant. Just one study, [26], allows only full
truckloads.

The studies by [2], [6], [33], [8], [13], and [12] minimize the time and/or cost
associated with repositioning the bikes. In these studies, the solutions are only
valid if the number of deviations is zero, i.e. the system is perfectly re-balanced.
The remaining studies use objective functions that in various ways minimize the
number of deviations.

All but two studies ([2] and [35]) include computational experiments on either
theoretical or real instances. The majority use some kind of heuristics to solve
the instances. All studies that use exact methods fail to find the optimal solution
when the problem size increases and only yield upper and lower bounds. Since the
problems include binary and/or integer variables, a common approach is to use
B&C algorithms. The cuts can be generated using inequalities from [18] or using
Benders decomposition [12]. Popular heuristics are tabu search and VNS/LNS.
In [14] the problem is decomposed, and one part is solved by a heuristic and
another part using exact methods.

The studies using a time-variable do not need subtour eliminating constraints.
Among the remaining articles, the MTZ-formulation [24] is widely used to avoid
subtours, while three studies, [8], [13], and [12], eliminate subtours using sepa-
ration algorithms and cuts.

3 Mathematical Formulation

In this section, we propose a new mathematical model for the SBRP. The ob-
jective of the model is to minimize a weighted combination of total deviation
and the time used. We assume a heterogeneous fleet of service vehicles that start
and finish their routes empty at the depot. Several vehicles can visit the same
station and a single vehicle can visit the same station several times. We presume
the driving time between stations to be constant and independent of the hour.
In addition to the driving time, each vehicle uses a fixed parking time at each
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station visit. Time used to load and unload bikes at a station is proportional to
the number of bikes handled plus a given parking time. All stations are defined
as either pickup stations or delivery stations depending on their initial state rel-
ative to their optimal state. It is not possible to pick up bicycles at a delivery
station or deliver them at pickup station.

Each station i ∈ N has a set of possible visits Mi. Note that the depot
is included in this set. Our formulation uses arc flow variables ximjnv, i ∈ N ,
m ∈Mi, j ∈ N , n ∈Mj , v ∈ V indicating whether vehicle v drives from station
visit (i,m) to station visit (j,n) or not, where m and n are the station visit
numbers. The entire notation is presented in Table 3.

Table 3. Notation used in the mathematical formulation

Sets
N Set of stations, indexed by i, j
V Set of vehicles, indexed by v
Mi Set of possible visits at station i, indexed by m, n
Parameters
TD
ij Driving time between stations i and j
TP Time used for parking a vehicle
TH Handling time used for loading or unloading a bike
T Time limit for operation of service vehicles
Qv Capacity of vehicle v
Ji 1 if station i is a pickup station, and -1 if it is a delivery station
α Weight on deviations in the objective function relative to time usage
A Maximum number of station visits for a vehicle
Ii Initial state, number of bikes at station i
Oi Optimal state, number of bikes at station i
Variables
ximjnv 1 if vehicle v is driving directly from station visit (i, m) to station

visit (j, n), 0 otherwise
fijv Total number of bikes carried by vehicle v between stations i and j
qiv Number of bikes either picked up or delivered at station i by vehicle v
yi Final state, number of bikes at station i
uimv The sequence number in which station visit (i,m) is made by vehicle v

min α
∑

i∈N
Ji(yi −Oi)

+(1− α)


∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

∑

v∈V

(
TD
ij + TP

)
ximjnv +

∑

i∈N

∑

v∈V
THqiv




(1)

subject to: ∑

j∈N

∑

n∈Mj

xdvjnv = 1 v ∈ V (2)
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∑

i∈N

∑

m∈Mi

ximd(v+|V|)v = 1 v ∈ V (3)

∑

j∈N

∑

n∈Mj

xjnimv −
∑

j∈N

∑

n∈Mj

ximjnv = 0 i ∈ N \ {d},m ∈Mi, v ∈ V (4)

∑

j∈N

∑

n∈Mj

∑

v∈V
ximjnv ≤ 1 i ∈ N ,m ∈Mi (5)

∑

j∈N
fjiv + Jiqiv −

∑

j∈N
fijv = 0 i ∈ N , v ∈ V (6)

yi +
∑

v∈V
Jiqiv = Ii i ∈ N (7)

∑

v∈V
qiv − Ji(Ii −Oi) ≤ 0 i ∈ N (8)

fijv −
∑

m∈Mi

∑

n∈Mj

Qvximjnv ≤ 0 i, j ∈ N , v ∈ V (9)

∑

j∈N
fdjv = 0 v ∈ V (10)

∑

i∈N
fidv = 0 v ∈ V (11)

∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

(
TD
ij + TP

)
ximjnv +

∑

i∈N
THqiv ≤ T v ∈ V (12)

uimv − ujnv + (A− 1)ximjnv + (A− 3)xjnimv ≤ A− 2

i, j ∈ N ,m ∈Mi, n ∈Mj , v ∈ V
(13)

ximjnv ∈ {0, 1} i, j ∈ N ,m ∈Mi, n ∈Mj , v ∈ V (14)
fijv ≥ 0, integer i, j ∈ N , v ∈ V (15)
qiv ≥ 0, integer i ∈ N , v ∈ V (16)
yi ≥ 0, integer i ∈ N (17)

uimv ≥ 0, integer i ∈ N ,m ∈Mi, v ∈ V (18)

The objective function (1) consists of two terms that are to be minimized.
The first term is the deviation in number of bikes between the final state, yi,
and the optimal state, Oi, for all stations. Having too many and too few bikes
are equally penalized. The second term is the total time used to obtain the final
state. Total time corresponds to the sum of driving time, TD

ij , parking time, TP ,
and handling time, TH . By setting α slightly below one, the most effective routes
minimizing the deviation are found.

Constraints (2) and (3) force the vehicles to start and end at the depot, d.
Symmetry at the depot is handled by stating that vehicle v uses visit numbers
v and v + |V| when leaving and arriving at the depot, respectively. Constraints
(4) ensure that a vehicle that enters a station visit, leaves the same station visit,
while constraints (5) make sure all station visits happen at most once.
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The loading and unloading constraints (6) ensure that the flow of bikes into
station i, fjiv, equals the flow out of the station, fijv, plus the net pickup, qiv.
Since the problem is static, only the total net pickup is considered. Constraints
(7) and (8) assign values to the final state, yi. In addition, constraints (8) give
an upper bound on the net pickup at station i by vehicle v, qiv.

The vehicle capacity constraints (9) make sure that a vehicle never carries
more bikes along an arc than the vehicle’s capacity multiplied by the number of
times the arc is traversed. Constraints (10) and (11) state that the service vehicles
must be empty when leaving and returning to the depot. Capacity constraints
for the stations are handled implicitly. The total time spent for each vehicle is
limited to T by constraints (12).

Subtours are handled in constraints (13), similar to the Miller-Tucker-Zemlin
(MTZ) constraints [24], but with a strengthening proposed in [11]. Various meth-
ods for eliminating subtours have been tested, and these constraints showed to
perform best.

Symmetry breaking constraints remove solutions that are mathematically
different, but practically identical, while adding valid inequalities is a way of
improving the solution of the linear relaxation. Various symmetry breaking con-
straints and valid inequalities have been tested, and the ones presented here are
those found most effective.
∑

j∈N

∑

n∈Mj

∑

v∈V

(
ximjnv − xi(m−1)jnv

)
≤ 0 i ∈ N \ {d},m ∈Mi \ {1} (19)

∑

i∈N

∑

m∈Mi

∑

j∈N

∑

n∈Mj

(
TD
ij + TP

) (
ximjnv − ximjn(v+1)

)

+
∑

i∈N
TH

(
qiv − qi(v+1)v

)
≥ 0 v ∈ V \ {|V|}

∣∣∣ Qv = Q(v+1)

(20)

Constraints (19) reduce symmetry by handling the station visits, so that they
appear in the right sequence. By introducing constraints (20), symmetry that
occurs when using a homogeneous fleet of service vehicles is reduced.
∑

v∈V
qiv − | (Ii −Oi) |

∑

m∈Mi

∑

j∈N

∑

n∈Mj

∑

v∈V
ximjnv ≤ 0 i ∈ N (21)

∑

v∈V

∑

m∈Mi

∑

n∈Mj

ximjnv +
∑

v∈V

∑

m∈Mi

∑

n∈Mj

xjnimv ≤ 1 i, j ∈ N
∣∣∣Ji = Jj (22)

Constraints (21) force the ximjnv-variables to take values closer to one or zero
in the linear relaxation. For instance, for a station to be perfectly rebalanced,
the sum over the ximjnv-variables associated with that station must equal one.
In [6] it is shown that the arcs between two stations of similar type need not be
traversed more than once, resulting in constraints (22).

Table 1 includes a comparison of this mathematical model with the models
in previous studies.
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4 Computational Study

The mathematical model presented in Section 3 has been implemented in Xpress-
IVE 1.24.06 using the Mosel programming language. The computational exper-
iments have been executed on a computer with Intel Core i7-3770 3.40 GHz
processor, 16 GB of RAM and running Windows 7.

4.1 Test Instances

Based on the BSS in Oslo, Norway, six test areas (geographical regions) have
been identified. Details about the areas can be found in Table 4. The areas have
an estimated optimal state for each station and a driving time matrix, TD

ij . A
parking time, TP , set to one minute, is added for each station, while the handling
time for each bike, TH , is set to 30 seconds. All areas have two service vehicles.
For each area, three instances are created by varying the initial states, while all
other parameters are unchanged. Note that we assume perfect re-balancing for
the third instance in each area, making the instances easier to solve because of
a simpler structure.

Table 4. Test areas

Area |N | Avg. driving time T |V| Cap. v = 1 Cap. v = 2

1 6 2 min 16 min 2 10 10
2 8 6 min 30 min 2 10 15
3 10 6 min 40 min 2 12 12
4 12 5 min 30 min 2 10 10
5 14 7 min 45 min 2 12 12

4.2 Computational Results

Various parameters in the model affect the computational time; the time limit,
T , the number of stations, |N |, the maximum possible number of visits to each
station, |Mi|, and the number of service vehicles, |V|. Among these, the time
limit and the maximum possible number of visits are studied here.

Figure 3 shows that the computational time peaks when the time limit is
set so that the total deviation is slightly above zero. By only changing the time
limit, the computational time varies from less than one second to more than 35
minutes. The same pattern is seen for all instances.

The use of station visit numbers,m,n ∈Mi, is a new approach for the SBRP,
allowing multiple station visits without a time-index. Though this formulation
has some advantages, both the solution and the computational time depends on
the value of |Mi|, i.e. the maximum possible number of visits to each station.
Each possible station visit (i,m) could be considered a distinct node in the graph.
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Fig. 3. The computational time depicted for different time limits, T , for instance 4.1,
i.e. the first instance from area 4. The numbers beside the markers indicate the total
deviation between the initial and optimal state in the solution.
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Hence, adding one element to the setMi for one station i, is equivalent to adding
a node to the graph.

Consequences of using different values for |Mi| is illustrated in Table 5.
The lower bound method is the smallest number of visits to each station to
allow perfect re-balancing, defined as: |Mi| =

⌈
|Ii−Oi|

minv∈V CV
v

⌉
. The lower bound +1

method allows one more visit to each station than the lower bound method. The
upper bound method is defined as |Mi| = |Ii − Oi|. For all our test instances
the total number of deviations at the stations were the same for every method,
independent of |Mi|, hence only improvement in driving time is recorded in the
table. Consequently, the lower bound method is recommended as it yields near
optimal solutions with much less computational effort.

Depending on the input parameters, the mathematical model from Section
3 can be solved to optimality for instances of about 15 stations. Combined with
some form of clustering, this could be enough to solve many realistically sized
instances.

4.3 Comparison with Rules of Thumb

Today, in the Oslo BSS, the operators utilize their experience and common sense
to decide the routes and the pickup and delivery quantities. Here, two greedy
rules of thumb are created to imitate the operators behavior. The first rule of
thumb states that the service vehicle should visit the nearest pickup and delivery
stations in sequence, unless it is able to meet the demand at two subsequent
stations of the same type. The vehicle should serve the entire demand of bikes at
the stations, but is restricted by its capacity and the time limit for re-balancing.
The second rule of thumb works quite similar, but the vehicle always goes to the
station with the largest deviation.

A comparison is made between the results obtained with these rules of thumb
and the ones obtained by solving the model from Section 3. The comparison is
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Table 5. Comparison of number of nodes in the graph, computational times, and
quality of solution for three different methods for setting the maximum possible number
of visits,Mi. The improvement in solution is relative to the lower bound method. Note
that the deviation between the initial and optimal state is equal for all methods, hence
improvement in solution only refers to driving time.

Lower bound Lower bound +1 Upper bound

Instance
∑
i∈N
|Mi| Comp. ∑

i∈N
|Mi| Comp. Imprv. ∑

i∈N
|Mi| Comp. Imprv.

time time in sol. time in sol.

1.1 6 0.19s 12 5.60s 0.0 % 24 139.70s 0.0 %
1.2 8 0.34s 14 1.91s 0.0 % 38 47.40s 0.0 %
1.3 8 0.20s 14 0.23s 0.0 % 48 >3000s ≥0.0 %

2.1 8 0.64s 16 697.00s 0.0 % 32 >3000s ≥0.0 %
2.2 9 0.44s 17 1.51s 0.0 % 46 >3000s ≥0.0 %
2.3 10 0.62s 18 7.81s 3.6 % 48 462.00s 3.6 %

3.1 10 1.25s 20 279.50s 0.0 % 56 >3000s ≥0.0 %
3.2 12 7.00s 22 281.00s 0.0 % 64 >3000s ≥0.0 %
3.3 12 1.25s 22 74.70s 0.0 % 58 >3000s ≥0.0 %

4.1 12 8.40s 24 >3000s ≥0.0 % 52 >3000s ≥0.0 %
4.2 15 17.00s 27 2089.00s 0.0 % 74 >3000s ≥0.0 %
4.3 12 0.40s 24 20.30s 3.3 % 62 286.50s 3.3 %

5.1 14 69.00s 28 >3000s ≥0.0 % 70 >3000s ≥0.0 %
5.2 16 15.30s 30 2708.00s 0.0 % 86 >3000s ≥0.0 %
5.3 16 1.07s 30 57.70s 7.7 % 106 >3000s ≥7.7 %
Average n/a 8.21s n/a >814.95 s ≥1.6 % n/a >2262.00 s ≥1.6 %

only made for instances 2.1 and 3.1, and to simplify only one vehicle is used.
With regard to deviations, the SBRP-model finds solutions that are between 20.0
and 56.6% better than the two rules of thumb. A characteristic for the optimal
solution is that it has less slack in the time restriction than the rules of thumb.

4.4 Practical Use of the Model

Six of the 13 articles listed in Table 1 minimize time usage or cost, given that the
system will be perfectly re-balanced. By assuming zero deviation, several sim-
plifications can be made, and the computational time will decrease significantly,
as indicated in Figure 3.

It is possible to utilize intervals, rather than a fixed number, to describe the
optimal state. This provides more flexibility to the model, presumably making it
harder to solve, but it may be more realistic. An alternative to use intervals, is
to punish large deviations relatively more than small, for example by punishing
the square of the deviation.

In addition to serving as a tool for operational planning, the SBRP-model
could be used to support both strategic and tactical decisions. Analyzing changes
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in parameter values can be done by re-solving the problem for different values. By
increasing the time limit for re-balancing operations, the number of deviations
could go down. The operator may use this information to decide whether to
expand the time limit or not. To support the decision of whether to acquire or
dispose a service vehicle, the SBRP-model may be used to quantify the effect.
Increased vehicle capacity leads, as expected, to a reduced objective value. At
a certain point, the objective value reaches its lowest point, where the total
deviation is zero or the time limit restricts the objective value from decreasing
further. To compare a change in the objective value with the cost of changing a
parameter, the system operator is referred to a cost–benefit analysis.

5 Concluding Remarks

As the SBRP is a relatively novel problem, a review of the research made on the
topic is missing in the literature. An extensive literature survey, consisting of the
review and comparison of 13 studies, has therefore been conducted. As can be
seen from Table 1, many studies make assumptions that are unrealistic for most
practical problems. We have proposed a new mathematical model for the SBRP
that makes fewer assumptions and allows more possibilities than many existing
models. For instance does this model allow a heterogeneous fleet, multiple visits
to each station, and non-perfect re-balancing.

Since we have focused on the modeling and not on solution algorithms in
this study, we are only able to solve relatively small instances. The model should
however provide a good starting point for proposing more advanced solution
methods, for instance as an important part of a clustering algorithm for solving
realistically sized instances.
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