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Abstract

This thesis proposes two mathematical stochastic optimisation models handling two dif-

ferent aspects of uncertainty in the daily problem of deciding start times for a set of

surgeries in a single operating room. The uncertainty related to surgery durations are

modelled by scenarios generated using moment-matching on a statistical basis of detailed

data on almost 90 000 past surgeries at St. Olavs Hospital.

Both problems have the objective of minimising the expected cost of waiting time, idle

time and overtime. The first is based on the hypothesis that, for some surgeries, the

uncertainty in duration depends on the start time, a hypothesis that is tested using a two-

sample Kolmogorov-Smirnov test of independence. The model formulated to solve this

problem is a mixed integer program including decision-dependent uncertainty, something

that complicates the problem considerably on a computational level. The second problem

includes both stochastic surgery durations and stochastic arrival of emergency patients, a

combination that, to the authors’ best knowledge, has not yet been covered by existing

literature.

The model formulations are tightened by the introduction of several valid inequalities, the

most effective of which is a cut strengthening the link between two types of sequencing

variables. On average this reduces execution time by roughly 40%. To further overcome

the computational challenges posed by decision-dependent uncertainty, and in order to

investigate alternative solution methods, we test the heuristics most commonly used in

surgery scheduling literature. These tests conclude that the best performance is by a

heuristic sorting surgeries by increasing variance, while the popular Bailey-Welch heuristic

shows poor performance.

Based on insights gained from our practical analysis, and with foundation in literature,

we propose a decision rule stating that you should sequence the surgeries by ascending

variance, and set start times with intervals equal to each surgery’s mean duration. We

proceed to show that this rule captures large parts of the total potential gain from solving

the stochastic models using optimisation. Averaged over our problem instances, the model

results signify that the case hospital can reduce waiting time, idle time and overtime by

160, 22, and 16 minutes per day, respectively. The contribution of this thesis is thus both

on a practical and a theoretical level.
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Sammendrag

Denne masteroppgaven presenterer to stokastiske optimeringsmodeller som h̊andterer to

ulike aspekter av det daglige operasjonsplanleggingsproblemet som g̊ar ut p̊a å bestemme

starttidspunkter for en mengde operasjoner p̊a ett operasjonsrom. Usikkerheten forbun-

det med operasjoners varighet er modellert ved hjelp av scenarioer generert ved bruk av

moment-matching p̊a et statistisk grunnlag best̊aende av data fra nesten 90 000 operasjoner

utført ved St. Olavs Hospital.

Målfunksjonen i begge problemene minimerer forventet kostnad relatert til ventetid, dødtid

og overtid. Det første problemet er basert p̊a en hypotese om at usikkerheten i varigheten

til noen operasjoner avhenger av starttidspunktet, en hypotese som undersøkes ved hjelp

av en Kolmogorov-Smirnov-test. Modellen som løser dette problemet formuleres som

et blandet heltallsprogram, og inkluderer beslutningsavhengig usikkerhet som øker den

beregningsmessige kompleksiteten. Det andre problemet hensyntar usikker ankomst av

akuttpasienter i tillegg til usikker varighet, en kombinasjon som, s̊a vidt oss bekjent, ikke

har blitt dekket i eksisterende litteratur.

Modellenes mulighetsomr̊ader reduseres ved hjelp av flere gyldige ulikheter, hvor det mest

effektive kuttet styrker forbindelsen mellom to typer sekvensvariabler. I gjennomsnitt

reduserer dette kjøretiden med omtrent 40%. For å overkomme de beregningsmessige ut-

fordringene som oppst̊ar som følge av beslutningsavhengig usikkerhet, og for å undersøke

alternative løsningsmetoder, tester vi de mest brukte heuristikkene fra litteraturen. Fra

disse testene konkluderes det med at heuristikken som sorterer operasjoner etter økende

varians gir best ytelse, mens den populære Bailey-Welch heuristikken gir d̊arlige resul-

tater.

Basert p̊a innsikt hentet fra praktiske analyser, og med forankring i relevant litteratur,

foresl̊ar vi en ny beslutningsregel om å ordne operasjonene etter økende varians og sette

starttider med intervaller tilsvarende hver operasjons gjennomsnittlige varighet. Vi viser

at denne regelen fanger opp store deler av den totale potensielle forbedringen man kan

oppn̊a ved å løse de stokastiske modellene ved hjelp av modellering. I snitt for v̊are

instanser, viser modellresultatene at sykehuset kan redusere ventetid, dødtid og overtid

med henholdsvis 160, 22 og 16 minutter per dag. Bidraget til denne masteroppgaven er

derfor b̊ade p̊a et praktisk og et teoretisk niv̊a.
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Chapter 1

Introduction

Health care services are a major cost driver in national budgets, and the sector is con-

tinuously challenged to provide high quality treatment with limited resources [1]. The

governmental funding of the somatic specialist health care services in Norway consists of a

basic part and an activity-based part. In 2015, each of these constitute about 50 percent

of the total funding. The activity-based funding makes the budgets depend on the number

of patients and what type of treatment they receive [2]. Surgeries constitute, in this way, a

critical part of the funding, as well as the most expensive activity in many hospitals. The

high costs are first of all a result of expensive resources used in surgery. Secondly, surgery

execution affects many other activities in the hospital [1]. Careful planning and schedul-

ing is therefore crucial to be able to manage human material resources efficiently and to

provide appropriate treatment [1, 3]. Research indicates that inadequate schedules may

be one of the main factors contributing to the inefficiencies in the health sector [3].

The inherently uncertain environment of hospitals makes surgery scheduling a complex

task. Not only do the uncertain surgery durations make the schedules prone to disruptions,

but the unpredictable arrival of emergency patients also poses major challenges on the

process of making good plans.

The overall objective of this thesis is to enhance the understanding of how surgery schedul-

ing should account for uncertainty. Specifically, the thesis will investigate a daily problem

of scheduling a given set of surgeries in a single operating room. This will be studied in

the environment of the Department of Orthopaedic Surgery at St. Olavs Hospital, whence

we analyse an extensive collection of surgery data from the past decade.

By applying operations research, we will formulate two different stochastic mathemati-

cal programs with the objective of finding the optimal scheduling strategy when surgery

durations are uncertain. One of these will incorporate decision-dependent uncertainty, a

field that is yet to be given much attention in literature. The other will combine uncertain

3



surgery durations with uncertain arrival of emergency patients in a multi-stage model. The

performance of several heuristics from literature will be evaluated in order to explore alter-

native solution methods. In addition, we aim to extract from our results a simple decision

rule that may contribute to establishing a best practice for surgery scheduling.

This thesis is structured as follows: In Chapter 2, the problems we investigate are put

into context by providing background information about the hospital and their current

practice in terms of surgery scheduling. Chapter 3 provides a review of the relevant

literature in the field of surgery scheduling and classifies our contribution in an academic

context. Also, the chapter describes and explains some of the most relevant theoretical

topics and solution methods used in the thesis. Then, a generalised problem description

is presented in Chapter 4, along with an explanation of the most important assumptions

used. Chapter 5 explains and analyses the statistical basis on which the input data to

the models is generated. The two models proposed in this thesis are presented in Chapter

6, along with suggestions for strengthening the formulations and heuristics that can help

guide the solution process. Then, Chapter 7 provides an extensive computational study,

which starts with a discussion of performance measures before it checks the stability of the

stochastic models we use. The chapter also analyses our results, both on a computational

and on a practical level, and quantifies the value of accounting for uncertainty when

scheduling surgeries. Finally, the conclusion of the thesis is found in Chapter 8.
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Chapter 2

Background

The purpose of this chapter is to provide a context for the problems studied in this thesis,

and a description of the case hospital including its current practice in terms of surgery

scheduling.

2.1 St. Olavs Hospital and the Department of Orthopaedic Surgery

St. Olavs Hospital is located in Trondheim, Norway, with additional services situated in

Orkdal, Røros, and Hysnes, and it is integrated with the Norwegian University of Science

and Technology (NTNU). It is owned by the Central Norway Regional Health Authority

[4], and its activities consist of specialist health care services in both somantic and mental

health care. The hospital functions as a local hospital for the population of Sør-Trøndelag,

in addition to having both regional and national responsibilities for the population of

the three counties of Møre og Romsdal, Sør-Trøndelag and Nord-Trøndelag, performing

patient treatment, education and research. Moreover, it treats complex surgical cases

referred from other Norwegian hospitals.

The Department of Orthopaedic Surgery performs surgical procedures related to condi-

tions concerning the musculoskeletal system, i.e. diseases and injuries in bones, joints,

tendons and muscles [5]. The department employs eleven operating rooms in Trondheim,

five in Orkdal, and two in Røros [6]. When referring to a specific physical hospital in

this thesis, we will refer to it by its location (e.g. the Røros Hospital), while St. Olavs

refers to the hospital organisation as a whole, including all locations. Correspondingly,

when referring to the Department of Orthopaedic Surgery this includes the department’s

activities at all three physical hospitals.
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2.2 Surgery scheduling at St. Olavs Hospital

The process of surgery scheduling is often split into two separate processes. The first

one comprises the allocation of a date, an operating room and a surgical team to all

pending surgeries. This is what the literature refers to as the advance scheduling problem

(ASP). The second problem is referred to as the allocation scheduling problem (ALSP),

and determines the sequence and start times of all surgeries that are to be performed

each day on each operating room. The focus of this thesis is on the latter of the two but,

in order to provide a context of the problem, the following part describes both of these

processes.

2.2.1 The current advance scheduling process

Surgery scheduling at the Department of Orthopaedic Surgery is performed by a dedicated

team of patient coordinators where each coordinator manages different surgical groups

(hand surgeries, prostheses, arthroscopy, etc.). The scheduling is a manual process based

mainly on guidelines and agreements within the hospital, resulting from several interde-

pendent planning processes. Within the boundaries of these agreements, the scheduling

strategy depends on rules of thumb and private knowledge of each patient coordinator.

The scheduling strategy used for one surgery group may therefore differ from the strategy

used for another.

Two other schedules pose restrictions on the surgery schedule. Firstly, the work schedule

of the surgeons determines when each surgeon is available for surgery as opposed to being

occupied with other tasks such as research or lectures. Secondly, the master surgery

schedule shows, for every day of the week, which surgery groups are given priority at

which operating rooms. Figure 2.1 displays the current master surgery schedule for eight

of the operating rooms employed by the Department of Orthopaedic Surgery in Trondheim.

Together with the surgeons’ work schedule, this sets guidelines for the surgery schedules.

The planners also take into account the preference of surgeons to avoid moving between

different operating rooms on the same day, and they coordinate resource usage between

departments and operating rooms such that all equipment, anaesthesia, etc. are available

when needed.

Elective patients are organised in a waiting list, to which they are added upon referral

from a general practitioner and an assessment by an orthopaedics specialist. The assess-

ment determines the appropriate surgical procedure, a deadline before which it must be

performed, and often which surgical team is to perform it. The waiting list is ordered

based on the imminence of each surgery’s deadline, and when allocating operating rooms

and days, the patient coordinators make sure this complies with the work schedule of the

surgeons as well as the master surgery schedule. They generally pick from the top of the

list, but they also try to accommodate special preferences that patients may have.
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Figure 2.1: Master surgery schedule for eight of the operating rooms at the Department of Or-
thopaedic Surgery

Table 2.1: Excerpt from the time matrix, durations specified in minutes

Surgery type Procedure code Pre-time Knife-time Post-time

Athroscopy NBK13 60 40 15
Athroscopy NHL49 45 60 15
Plastic HAD30 45 60 15

2.2.2 The current allocation scheduling process

Once it has been determined what surgeries to perform at a given operating room on a

given day, we get to the problem of this thesis: deciding the start time for each surgery. A

central part of this scheduling process is to determine how much time to allocate. Because

the surgery durations are uncertain, the problem of setting appointment times is not a

trivial one, as stated by Robinson and Chen [7]. Estimates of the duration of all surgical

procedures are given by a time matrix that the hospital has developed based on averages

of historical surgery durations. This specifies the expected time required for preparation

(pre-time), the surgery itself (knife-time), and wrap-up (post-time), all of which take place

in the operating room and therefore cannot be performed in parallel. In addition, the room

must be cleaned between surgeries. An excerpt from the time matrix is given in Table 2.1.

According to the coordinators, the time matrix is primarily used for pre- and post-times,

although they sometimes adjust for patient characteristics such as age, medical conditions,

etc. Knife-time durations, on the other hand, differ from surgeon to surgeon to the extent

that the coordinators rarely adhere to the time matrix, but instead base the estimates

on experience. Naturally, this is especially the case for common surgeries that have been

performed several times by the same surgeon.

The current practice in terms of setting start times for surgeries differs from hospital to

hospital. In Trondheim, all surgeries are planned back to back, such that the preparation

phase of one surgery is set to start exactly when the cleaning after the previous patient is

set to finish. In the ideal and completely unrealistic case of all surgeries lasting exactly as
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long as predicted, this results in zero idle time and zero waiting time. However, knowing

that the durations are unpredictable, this policy is very prone to schedule disruptions, and

without the slack needed to absorb potential delays, it is likely to lead to high waiting

time. Of course, given that the estimated duration actually provides a realistic average of

the durations, you will also have the case of some surgeries lasting shorter than predicted.

This may, to some extent, offset the effects of delays but, since patients and equipment

are not necessarily ready before their scheduled surgery time, the former effect is expected

to dominate. At the Røros hospital, the planners quite often try to eliminate idle time by

scheduling the two first surgeries to start at the same time. The second patient simply

has to wait for the first one to be completed, guaranteeing a delay as they immediately

get behind schedule. This is also likely to lead to high waiting times for both patients and

staff. There is no consistent practice, but with both of the mentioned scheduling policies

allowing waiting time to avoid idle time, there seems to be a certain understanding that

waiting time is preferred to idle time. From the hospital’s point of view, this makes sense,

but the question of exactly how to trade these off against each other is not trivial. Chapter

3 provides a discussion on how to set these weights, and Chapter 7 analyses how different

weight combinations affect the solution of the models we propose.

In addition to the uncertainty in the surgery durations, there is uncertainty related to the

arrival of emergency patients requiring surgery on short notice. Since orthopaedic surgeries

do not concern vital organs, emergency surgeries within this field usually do not require

immediate action but must be treated within one or a few days. The patient coordinators

are given a list of emergency patients that they are required to schedule within a deadline

that is at least twelve hours ahead. This means that, in the beginning of any given day,

they know how many and which emergency patients to schedule, and they can adjust the

planned schedule to accommodate for this. During certain events or seasons (e.g. during

Easter, when skiing accidents peak) there is time allocated for emergency surgeries but,

apart from this, there is no slack or reserved time for such patients. Quite often, the

arrival of an emergency patient therefore leads to either overtime or an elective patient

being rescheduled to another day.

Another uncertain element that would be expected to affect the scheduling are patients

failing to meet up for their scheduled surgery, or patients that arrive late. No-shows and

late arrivals lead to high idle time unless there are patients on stand-by that are ready on

short notice. According to the hospital, this does not happen often enough for it to be a

substantial problem and, when it does, they can often summon an inpatient waiting for

surgery to keep the operating room employed. Therefore, no-shows and late arrivals are

kept out of the analysis presented in this thesis.
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2.2.3 Other considerations

In general, when it comes to scheduling the surgeries on a given day at a given operating

room, the coordinators can choose freely how to sequence the surgeries. However, for

certain patients and surgery types there are extra considerations that need to be accounted

for:

1. Travel distance - Patients with a long travel distance are usually not scheduled early

in the morning or late in the afternoon, with regards to the comfort of the patients.

2. Preparations - To avoid operating room idle time, patients that require medical tests,

blood samples or other lenghty preparations prior to surgery are not scheduled as

the first surgery of the day.

3. Health conditions - Patients who, due to their age or medical condition, have prob-

lems fasting a long period of time are scheduled early in the morning to make the

experience as pleasant as possible.

4. Surgery complexity - There is a policy of postponing surgeries to a later day if delays

in prior surgeries mean that they cannot be carried out without the incurrence of

overtime. Since complex surgeries require more planning and coordination in terms

of staffing and equipment, the coordinators reduce the risk of such surgeries being

postponed by scheduling them early in the day.

The majority of the surgeries to be scheduled are not subject to any of the considerations

above, so the mathematical models proposed in this thesis leave these considerations out.

This is important because it facilitates an analysis focusing on the uncertainty aspects we

want to investigate, and it accommodates a pertinent computational study. The reader

should thus note that the considerations listed above are stated only to provide extra

insights to the complexity of the planning process.

2.3 The motivation for the two problems

Based on discussions and interviews with planners and other staff at the hostpital, we

formulated the hypothesis that the probability distribution for the duration of a given

surgery performed by a given surgeon is dependent on the time of the day. For instance,

according to the planners, some surgeons might be less efficient in the afternoon, due to

weariness and lack of concentration, while other surgeons might perform better later in

the day. Especially for complex surgeries, and surgeries that require high precision, the

hypothesis is that these effects become considerable and may affect surgery durations. If

this hypothesis holds, it could play a significant role when determining surgery schedules

because it provides additional information to the planners, who should take this factor

into account when determining the schedules. This is the motivation for the first problem
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proposed in this thesis. The Phase Model, in Section 6.1, is designed to solve this.

The second problem is motivated by what the medical staff claims to be their biggest

challenge in surgery scheduling: stochastic arrival of emergency patients. If time is reserved

for potential emergency patients and no one arrives, idle time will occur. Conversely, if no

available time is reserved and an emergency patient arrives, waiting time or cancellations

are likely to occur. The trade-off between these is difficult to balance, and this is the

objective of the Emergency Model, in Section 6.2. We will study the arrival rate of the

emergency patients and try to determine an optimal scheduling strategy taking this into

account.
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Chapter 3

Literature review

This chapter will review the most relevant literature and theory related to our problem.

We will first give a brief introduction to stochastic programming, in order to establish a

theoretical basis for the models we propose. Further, we will describe different formula-

tions of the ALSP, to give ideas of how the problem can be formulated, including typical

assumptions used by other researchers. Apart from a few special cases, the problem is

too intractable to be solved to optimality [7]. We will therefore present various solution

techniques utilised in literature. Also, in order to evaluate surgery schedules, we will give

a detailed discussion on different performance measures that can be applied. The next

part will describe how uncertainty is modelled, before the last two sections contextualise

the two models we present by introducing decision-dependent uncertainty and stochastic

arrival of emergency patients.

3.1 Introduction to stochastic programming

In deterministic programming, all information is assumed to be known with certainty

in when making decisions [8]. However, since elements in mathematical programming

may be uncertain, they might be more appropriately represented by random variables.

These problems often involve decisions that must be made before important information

is available [9]. Stochastic programming incorporates this uncertainty and information

structure explicitly in the model formulation [10]. Different outcomes of the uncertain

elements are considered collectively and the impact of different scenarios are balanced

against each other [10]. Most common in literature are problems where the decisions do

not impact the uncertainty of the problem [11].

The timing of the decisions relative to the resolution of the uncertainty must be specified in

a stochastic model [10]. Decisions that can be delayed until after disclosure of information
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offers an opportunity to adjust or adapt to the received information [10]. A stochastic

formulation values this flexibility, while a deterministic model do not capture the possibility

of responding to new information [8].

Various solution methods are used to solve mathematical problems with uncertain el-

ements. If the number of possible outcomes or scenarios in the stochastic program is

sufficiently small, deterministic solution approaches may be appropriate with the use of

the deterministic equivalent of the stochastic formulation. This is often not the case and

solution methods that exploit the structure of the stochastic model must be applied [10].

One common approach is decomposition, e.g. the L-shaped method or Benders’ decom-

position, which decompose the stochastic problem by stages [10]. Another approach is to

use statistically based methods such as sample average approximation.

3.2 Formulations of the allocation scheduling problem

The ALSP has a close resemblance to machine scheduling problems, about which there

exists extensive research. However, an important distinction should be pointed out. Once

appointments are set in surgery scheduling, patients are not available prior to the scheduled

start time, even if the server, i.e. operating room, is idle. In general, there is a lot more

flexibility related to shuffling jobs around in machine scheduling. Thus, this review will

focus on research related to surgery scheduling, but will to some degree find inspiration

from other more generalised scheduling literature, such as job shop scheduling and flow

shop scheduling.

Pham and Klinkert [12] address the deterministic ALSP by extending the job shop prob-

lem. As in the classical job shop problem there are n jobs to be processed on m machines,

where a common objective is to minimise the makespan. Each job consists of several ac-

tivities, which is the processing of the job on a given resource for a known duration. The

set of resources needed for an activity is called a mode, and there may be several possible

modes for a given activity. Once a mode is chosen, the resources of the mode are occupied

for the entire processing duration. In this framework, Pham and Klinkert [12] formulate

the scheduling problem as a mixed integer linear program (MIP) that assigns a mode to

each activity and determinesx5 the start- and end time of the modes. The authors argue

that this formulation gives a lot of flexibility and adaptability.

Charnetski [13] looks at the stochastic version of the ALSP, determines the start times for a

given sequence of surgeries, and proposes a simulation procedure to model it. He utilises a

two-stage Monte Carlo sampling plan, which generates both the surgery type and duration

based on empirical data. The purpose of this study is to determine a relationship between

the scheduled time for a surgery and the average waiting- and idle time. The paper uses a

heuristic to determine the amount of time scheduled for surgery i, given by di(h) = µi+hσi,

where h is a constant. The goal is to find approximate functions for the waiting time and
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idle time given by µ,σ and h, and the value of h that minimises the weighted sum of

these.

Batun et al. [14] look at daily decisions that include the number of operating rooms to

open, assignment of surgeries to operating rooms, and the sequence within each operating

room and start time for each surgeon. They formulate a two-stage stochastic program

to evaluate the effect of pooling operating rooms as a shared resource and utilise parallel

surgery processing.

Wang [15] studies the problem of scheduling n jobs to a single-server system. He con-

siders both the static and the dynamic case, where revisions of the scheduled arrivals

throughout the day are only included in the latter. The author assumes exponential ser-

vice times where the goal is to minimise the weighted sum of customer flow time and

system completion time.

Wang [16] extends his previous study to any service time distribution that can be approxi-

mated with a phase-type distribution, using the assumption of independent and identically

distributed (i.i.d.) service durations. As pointed out by Mancilla and Storer [17], the se-

quencing of jobs are irrelevant in cases like this, because durations are assumed i.i.d. and

the costs of waiting are equal for all jobs. However, even with these assumptions, the op-

timal arrival time intervals for the individual jobs are not equal, but dome-shaped. That

is, more time is allotted to patients in the middle of the day.

In contrast to the paper by Wang [16], Denton and Gupta [18] assume that the job sequence

is fixed, and address the problem of determining the start time and job allowance for each

job. The goal is to minimise the weighted sum of expected waiting times, idle times

and tardiness. The jobs have uncertain durations, which can be drawn from different

distributions, relaxing the assumption of i.i.d. durations. The authors model the ALSP as

a two-stage stochastic program. The first-stage decisions are the job allowances, while the

waiting times, idle times, tardiness and earliness are second-stage decisions. They perform

some experiments, indicating that the first two moments are sufficient to compute well

performing job allowances when idle costs are high relative to waiting costs. To solve the

model, they recognise that it exhibits a block-diagonal structure and exploit this in an

adaption of the standard L-shaped method.

Denton et al. [19] further extend the model proposed by Denton and Gupta [18] by in-

troducing the sequence of surgeries as decisions. They also provide a two stage stochastic

program, where first stage binary variables represent the job allowances and the sequenc-

ing decisions. The sequencing decisions make the model considerably more complex than

that of Denton and Gupta [18]. Thus, heuristic approaches are proposed, tested and eval-

uated. To find the optimal solution when total enumeration gives unacceptable computa-

tion times, a pairwise interchange heuristic, with similar steps as the L-shaped method, is

used.
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Mancilla and Storer [17] address the same problem as Denton et al. [19], but formulate

a slightly different model. Instead of letting the first stage variables determine the job

allowances and surgery precedence, they define binary variables to be equal to 1 when a

surgery j is in position i and a continuous variable for the scheduled surgery start time.

These variable definitions are useful when they use Benders’ decomposition to solve the

problem. The rest of the model, however, is equivalent to that of Denton et al. [19]. The

authors propose a heuristic based on Benders’ decomposition, where they evaluate three

different algorithms to improve the heuristic.

3.3 Solution methods

The ALSP is considered a computationally difficult problem [20], which makes solution

methods often include heuristics. Literature often studies decision rules based on statistical

measures of the uncertain duration of a surgery.

Among the first papers on the topic, Bailey [21] and Welch and Bailey [22] propose a

scheduling rule where k patients are scheduled to arrive at the beginning of a session,

while the subsequent patients are scheduled at intervals equal to the average surgery

duration. They conclude that using k = 2 provides the best trade-off between patient

waiting time and idle time for the surgical team. Ho and Lau [23] evaluate nine scheduling

rules using simulation. These include heuristics found in literature, in addition to some

that are original for their paper. After testing several rules and variations of parameters,

the authors are unable to dislodge the simple Bailey-Welch rules, and reveal that they are

surprisingly robust.

Weiss [24] proves that the optimal sequence of two surgeries are in order of increasing vari-

ance of duration for certain distributions of durations. He also shows that this sequencing

rule does not guarantee optimality when the number of jobs increases. According to

Wang [16], the optimal sequence of surgeries is in order of the mean surgery durations if

the durations are exponential distributed, the horizon is zero, and the goal is to minimise

a convex combination of waiting- and idle time.

Three heuristics are proposed by Denton et al. [19]. The first sequences surgeries in order

of increasing mean of durations, and the second in order of increasing variance of durations.

The third sequences in order of increasing coefficient of variation (CV) of durations. The

authors conclude that the second heuristic dominates the other two in nearly all tests

and that the effects of optimal sequencing depend on the relative weight of performance

measures. Dexter and Marcon [25] analyse the impact of several sequencing rules on

staffing. They find that the commonly used rule of sequencing the longest surgeries first

performs poorly from a staffing perspective, while sequencing the shortest surgeries first

is more efficient.

Sicking and Kolisch [26] provide a generalisation of the Bailey-Welch rules. This is used
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to find an initial schedule for a neighbourhood search heuristic. They divide a surgery

day into n service slots. The core of this heuristic is the definition of the neighbourhood,

which comprises all schedules that can be found by increasing the number of patients in

slot i by one, while decreasing the number of patients of a slot j ≠ i by one.

Bosch and Dietz [27] claim there are no easy sequencing rules based on patient character-

istics. Instead, they use a local search heuristic suggested by Bosch [28], that on average

gives a cost 0.02% higher than the optimum. The heuristic first determines the cost of an

initial sequence. Then, for each possible pairwise swap on this sequence, the cost of the

optimal schedule is determined. If the best of these swaps result in an improved sequence,

the heuristic goes back to the step of pairwise swaps, otherwise the current sequence is

accepted as the optimal one. Robinson and Chen [7] use Monte Carlo-based techniques

to compare the performance of several heuristics to determine patient appointment times.

They use a cost based formulation, where the value of patient waiting time is expressed

as a fraction of the value of surgeon idle time.

Kaandorp and Koole [29] derive a local search procedure, where the goal is to minimise a

weighted average of expected waiting time, idle time and tardiness. It is also possible to

include no-shows of patients. They prove that the scheduling algorithm converges to the

global optimum by showing that their objective is multimodular. They also report that the

appointment intervals in the optimal solutions are dome-shaped, equal to the observations

made by Wang [15], Robinson and Chen [7] and Denton and Gupta [18].

Robinson and Chen [7] notice that almost all published heuristics are tested only against

other heuristics, and not against the optimal policy. Regarding uncertain surgery dura-

tions, the authors also report that most papers do not even recognise that the means of

the surgery durations can be eliminated from the formulation, leading to arbitrarily poor

performance. This supports the findings of Bosch [28] some years earlier, who realises

that the optimal sequence of surgeries places patients with identical characteristics at

very different places in the schedule.

Batun et al. [14] have trouble solving their two-stage stochastic model for realistically

sized instances. They use the L-shaped method to decompose the problem, but fails to

solve even small problems within a reasonable amount of time. This is because the θ

they define carries only limited information between the two stages of the model. To

speed up the convergence time of the L-shaped method, they strengthen the formulation

using lower bounding valid inequalities for θ, based on Jensen’s inequality [30]. Similarly,

Laporte et al. [31] derive two lower bounds for θ, used in optimality cuts in the L-shaped

method.

Surgery scheduling is a specialisation of job shop scheduling and usually has additional

constraints. However, solution methods proposed for machine scheduling can be useful

in constructing procedures for surgery scheduling and should be considered. Applegate

and Cook [32] describe a cutting-plane method for obtaining lower bounds on job-shop
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problems and look at several cuts for this problem. They describe eight different inequal-

ities from other job shop literature, such as Balas [33] and Dyer and Wolsey [34]. The

basic cuts they consider impose restrictions on the possible sequences of jobs on a given

machine, which is dependent on the earliest possible start time on that machine. Their

results show bounds superior to the standard methods, but requires a greater computa-

tional effort. They also argue that finding classes of valid inequalities that will close the

large optimality gap within a reasonable amount of computation time, remains a research

challenge.

When constructing search algorithms for generalised job shop and surgery scheduling prob-

lems, similar same trade-offs must be considered. Common considerations are regarding

the neighbourhood function and size, and whether to search the neighbourhood using first

or best improvement. Vaessens et al. [35] state that the solution representation is a crucial

ingredient of a local search algorithm together with the neighbourhood function. They dis-

cuss several neighbourhoods used in literature, including neighbourhood functions based

on interchanges, swaps and reinsertions.

3.4 Performance measures

There are a variety of performance measures used in literature to evaluate surgery plan-

ning and scheduling procedures. Cardoen et al. [36] mention several widely used metrics:

utilisation, makespan, levelling, throughput, patient deferrals, financial measures, and

preferences. The utilisation should be maximised as unused resources are wasteful. Con-

versely, high utilisation often results in dense schedules, which implies solutions that are

sensitive to changes. A similar measure is the minimisation of makespan which is the

length of time required to complete all operations [37]. Decreasing makespan often in-

volves a more dense schedule, i.e. higher utilisation, and will therefore have challenges

similar to maximisation of utilisation. Levelling may reduce capacity problems by avoid-

ing peaks of resource usage. Throughput of patients is the number of patients treated

within a certain time period, which is a common metric. Moreover, minimisation of pa-

tient deferrals is another, making sure that the patients are treated within adequate time.

Cardoen et al. [36] argue that the financial measure is the most general of all, as all of the

measures can be represented by costs.

In the ALSP, performance is often measured using waiting time, idle time and overtime

[38]. The interpretation and valuation of these measures varies. Waiting time may be

valued as the patients’ or surgical teams’ waiting time. Idle time may be understood

as the cost of not using the operating room or a surgical team. Overtime is sometimes

interpreted as the cost of having a surgical team working after hours, and sometimes as

a penalty for exceeding your estimates. The trade-off between these measures must be

addressed by the decision maker. A common approach is to assign relative weights, as

opposed to monetary values, and minimise the expected total cost of the system [38]. Fries
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and Marathe [39] point out that the determination of these weights may be difficult. They

write that the costs related to idle time are often available from standard cost accounting,

but that assigning costs to waiting time requires the inclusion of intanglible aspects such

as the effect on goodwill and social welfare. In addition, costs may differ across surgeries,

further complicating the decision.

Denton and Gupta [18] minimise the expected cost of patients’ waiting, operating room

idling and overtime penalty when the session lasts longer than expected. They assume

that the cost of all three performance measures are equal across surgeries. Values between

1 and 9 are tested for all measures, and these values are used by Kong et al. [40]. They

also test costs of waiting time and overtime of 1 and 1-40, respectively.

Denton et al. [19] estimate the value of their costs based on consultations with the hospital

staff. The waiting cost is set to 3 when a surgical team performs consecutive surgeries.

When the surgical team is changed between surgeries, the cost of waiting time is set to 8

to include the cost of both patient and surgical team waiting. Operating room idle time is

set to cost 8 and overtime cost to 4. Overtime is viewed as a penalty for late completion

rather than a precise overtime cost. In addition, they perform a cost sensitivity analysis

where they use 1 and 3 for waiting and overtime cost, respectively, and set idling cost

to 0. They conclude that the relative importance of optimising sequence and start time

depends on the choice of weights.

Cayirli et al. [41] minimise average patients’ waiting time, surgeons’ idle time per patient

and surgeons’ overtime per patient. Different ratios between idle time and waiting time

are calculated depending on the scheduling scheme. The overtime cost is set to 1.5 times

the idle cost. The same cost combinations are used by Cayirli et al. [42] with idling cost

normalised to 1 and the overtime set to either 1.5 or 3. Zacharias and Pinedo [43] interpret

the costs the same way as Cayirli et al. [41] and similarly normalise the idle time cost to

1 and overtime cost to 1.5. The patients’ waiting cost is tested for several values between

0 and 1. Cayirli et al. [42] state that the best scheduling strategy is related to the choice

of costs.

As opposed to the previous mentioned papers, Mancilla and Storer [17] use test cases with

both equal and different cost across surgeries. For example, the idle cost of one surgery

may be different from the idle cost of another. In all cases, waiting and idle costs are

independently drawn from a uniform (20,150) distribution, and these are tested both with

and without overtime. When overtime is included, this is set to 1.5 times the average

waiting cost.

Some papers use monetary terms for the cost of waiting time, idle time and overtime.

Batun et al. [14] estimate the cost parameters based on historical data from St. Marys

Hospital in Rochester, MN. The overtime is estimated to $12.37 per minute, which is

50% higher than the regular operating room cost. Due to difficulties in estimating the

exact cost of surgeon idle time, they define both a low and high idle time costs, which are
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calculated as fractions of the daily fixed cost of opening an operating room. The low and

high idle time costs they use are $17.75 and $88.74 per minute, respectively. The authors

do not consider patient waiting time. Keller and Laughhunn [44] operate similarly and

estimate the cost of idle time by dividing the annual surgeon salary by the number of

hours worked per year and use the minimum wage as the opportunity cost of the patients’

waiting time.

All the previously reviewed literature assumes a linear relationship between waiting time,

idle time and overtime. Klassen and Rohleder [45], however, point out that this rela-

tionship may actually be non-linear, because one patient waiting 40 minutes may have a

different cost than 20 patients waiting 2 minutes each. Some papers include other mea-

sures to test whether their solution is biased. F8or example, Cayirli et al. [42] include

a fairness measure which is measured as the standard deviation of the patients waiting

time.

3.5 Distributions used for modelling surgery durations

A variety of probability distributions are chosen in papers addressing uncertain surgery

durations. Some suggest distributions based on empirical data from clinics [27, 46], while

other analytical studies assume the durations are drawn from distributions that make their

models more tractable [38]. According to Cayirli and Veral [38], the majority of studies

use i.i.d. surgery durations for all patients. Other papers divide the patients into unique

patient classes where the surgery durations are i.i.d. within each class. Charnetski [13]

notices that different types of procedures have different service time distributions. This

is revisited by Gupta and Denton [47], who assume that surgery durations are normally

distributed.

The CV is commonly used as a measure for the variability of surgery durations. Denton

and Gupta [18] find that optimal solutions are mostly dependent on mean and variance,

but may exhibit some dependence on higher moments like skewness. On the other hand,

May et al. [48] found the skewness to be important, while the CV to have little impact

when selecting which type of lognormal distribution to use. According to May et al.

[48], literature suggests that normal and lognormal distributions are the only two viable

candidate distributions to consider. They seek to find the distribution that gives the best

overall fit to data by using an appropriate statistical test.

Based on previous studies, Soriano [49] defines a gamma distribution for the surgery

durations. The author also performs a chi-square goodness of fit test to show that the

fitted distribution is satisfactory at a significance level of 0.05. According to Yang et

al. [50], Ho and Lau [51] show that the exact shape of a surgery duration distribution is

not important. For this reason, Yang et al. [50] choose to use the gamma distribution to

replicate the surgery durations.
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O’Keefe [52] finds empirically that the higher moments of surgery duration distributions

can be of significance, such that the distributions are not sufficiently described by simple

two-parameter density functions. For this reason, he uses a lognormal distribution that

includes skewness and kurtosis. Similarly, Hancock et al. [53] observe that surgery duration

plots usually reveal a truncation on the left side and a tail on the right side, which they

argue might be better represented by a two-parameter lognormal distribution. Robb and

Silver [54], on the other hand, use a three-parameter lognormal distribution.

Different from the papers reviewed so far, Jansson [55] and Fries and Marathe [39] as-

sume that surgery durations are exponentially distributed to make an analytical solution

approach tractable. Liao et al. [56] consider a dynamic arrival problem where surgery du-

rations are Erlang distributed. Bosch [28] extends and formalises Simeoni’s [57] approach

that also assumes that surgery durations follow an Erlang distribution. Bosch [28] justifies

the chosen distribution, as he claims there is good evidence in his case that the optimal

schedule is relatively insensitive to the third and higher moments. Lastly, papers like Liu

and Liu [58] compare a simulation scheme for multiple types of distributions, including

uniform, exponential, and Weibull.

3.6 Decision-dependent uncertainty

Stochastic problems may be classified as exogenous or endogenous. Exogenous uncertainty

is widely studied in literature and includes problems where the uncertainty is independent

of the decisions. In endogenous stochastic problems, the decisions have an impact on the

uncertainty, either by changing the information structure or the probability of different

outcomes [11]. Literature addressing this type of stochastic problems is far more sparse, as

they are significantly more difficult to solve [59]. Decision-dependent probability problems

include both problems where the decisions affect the probability of different outcomes and

the parameters in the problem. To the best of our knowledge, no publications regarding

allocation scheduling incorporate endogenous uncertainty. To provide insights into liter-

ature on endogenous uncertainty, papers of subjects outside allocation scheduling will be

reviewed in this section. The main focus is on decision-dependent probabilities, but papers

addressing decision-dependent information structure will be mentioned.

A general stochastic program without decision-dependent uncertainty may be formulated

as

min F (x;P ) ∶= Ep[f(x,ω)] on X (1)

where P denotes the probability distribution of the possible outcomes ω ∈ Ω and X is a

closed non-empty subset of a Euclidian space. The decision x is made before the disclosure

of ω. The cost of the decision is quantified by a real-valued function f(x,ω) [60].
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In contrast, a stochastic problem with decision-dependent uncertainty may be formulated

as

min F (x) ∶= ∫
Ω
f(x,ω)P (x;ω) on X (2)

which differs from equation (1) by making the probability distribution dependent on the

decisions [60]. Even though f(x,ω) may be convex, this property may be lost for F (x).

This makes the problem far more complex and puts limitation on the number of available

efficient optimisation techniques.

Ahmed [61] was the first to address decision-dependent probabilities according to Hellemo

et al. [11]. He presents several problems incorporating decision-dependent probabili-

ties, which are related to network design, server selection and facility location. Ahmed

[61] formulates these problems as MIPs and shows that these can be solved with linear

programming-based branch and bound methods.

Viswanath et al. [62] formulate a problem that is categorised as a decision-dependent dis-

tribution selection problem by Hellemo et al. [11] and Goel and Grossmann [63]. They

introduce a shortest path problem between a predefined origin and destination in a net-

work. The network consists of links subject to disruptive events. The links have different

probabilities of survival. To strengthen the weak elements and increase the probability of

survival, investments in the links can be made at a cost. The problem is formulated as

a two-stage stochastic problem. The first-stage decisions are whether or not to invest in

each link without any knowledge of of how the network will survive a disruptive event.

The underlying probability distributions of the random variables are dependent on these

decisions. The second-stage decisions are made after the event have occurred and consist

of finding the shortest path from origin to destination. A deterministic equivalent to the

the stochastic formulation is presented and structural results are derived. Viswanath et

al. [62] propose approximate solution procedures solving the problem, which are tested with

numerical experiments and prove to give good results for small problem instances.

Hellemo et al. [11] introduce an extended taxonomy of stochastic problems with decision-

dependent uncertainty. They present relevant models and applications, and classify papers

and formulations within decision-dependent uncertainty. Starting with an initial formula-

tion of a two-stage stochastic program with decision-dependent uncertainty and recourse,

they show how direct and indirect manipulation of the probability distributions can be

incorporated. Four different manipulations are presented, two of which are indirect manip-

ulations. In these, transformations of the probability distributions are performed, either

by linear scaling or a convex combination of the distributions. The two last formulations

include direct manipulation by changing the parameters of the distribution, either in a

Kumaraswamy or approximated normal distribution. To test and compare the different

formulations, Hellemo et al. [11] look at capacity expansions of power generation where
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an investor seeks to minimise the cost of meeting a stochastic demand. The formulations

introduce many non-linear terms and consequently non-convex programs.

Decision-dependent information structure is more widely addressed in literature than

decision-dependent probabilities. Jonsbr̊aten et al. [59] were among the first to introduce

this type of problem. They propose an enumeration algorithm for stochastic programs

with decision-dependent information structure and two decision stages. Goel and Gross-

mann [64] propose a model to facilitate decision-making in investment and operational

planning of gas field development under uncertainty. The resolution of uncertainty de-

pends on the investment decision. They formulate a stochastic mathematical model and

use a decomposition-based approximation algorithm to solve it. The same authors [65]

extend this model by introducing theoretical properties satisfied by any feasible solution

to reduce the size of the model. In addition they present a Lagrangean duality-based

branch and bound algorithm which is guaranteed to find the optimal solution and re-

duces the model size significantly. This work is further extended by Tarhan et al. [66]

where the resolution of uncertainty is gradual over time instead of immediately. More

recent improvements of the works by Goel and Grossmann [63,64] are made by Gupta and

Grossmann [67]. In this publication, they try to introduce a more compact representation

of the nonanticipativity constraints. Moreover, they propose three solution procedures

that are tested on two process network problems.

3.7 Stochastic arrival of emergency patients

In addition to uncertain surgery durations, another aspect of uncertainty is related to

the arrival of emergency patients, as pointed out in Chapter 2. A common assumption

in literature is that elective and emergency patients consume different resources and are

handled by different personnel. Among the exceptions from this assumption is the paper

by Gerchak et al. [68], including both types of patients. In their work, the number of

emergency patients is modelled as a random variable. However, they address the ASP

rather than the ALSP. The ASP is also addressed both by Lamiri et al. [69] and Lamiri et

al. [70], who use a random variable to represent the capacity used by emergency patients

with a given distribution, which can easily be estimated from historical data. In a third

paper, Lamiri et al. [71] use a column generation approach to solve the stochastic ASP

with uncertain surgery durations and uncertain demand for emergency capacity. Sickinger

and Kolisch [26] provide an interesting perspective of emergency patients as stochastic

downtime of the resources they occupy.

On a higher level of consideration, a common approach to dealing with emergency surg-

eries is to reserve operating room capacity, which is believed to increase responsiveness [72].

However, Wullink et al. [72] find that performing emergency surgeries in elective operating

rooms is more efficient than having designated operating rooms for emergency patients.

The authors do not consider how sequencing of emergency patients among elective patients
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is handled most efficiently. To the best of our knowledge, there are no literature address-

ing the combination of stochastic surgery durations and stochastic arrival of emergency

patients for the ALSP.
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Chapter 4

Problem description

This chapter formulates the two problems of this thesis, in a generic manner, and includes

elaborations on the assumptions made and the implications of these.

4.1 Problem statement

The problems consider a single day on a single operating room, and decides how to set

start times for, and thus decide the sequence of, a predetermined set of surgeries with

stochastic duration. The objective is to minimise the expected weighted sum of waiting

time, idle time, and overtime, with the implicit assumption that the quality of a schedule

can be adequately measured using only these three performance measures. Waiting time

is defined as the difference between a scheduled surgery start time and the actual start

time, idle time is defined as the time between the cleaning after one surgery until the start

of the next one, and overtime is the amount of time by which the end of the last surgery

exceeds the end of the regular working day.

The three main assumptions of the problems are listed in Table 4.1. Firstly, it is assumed

that the patients arrive exactly in time for their scheduled start time (Assumption 1).

This means that no-shows and late arrivals are not a problem and, at the same time,

it implies that a surgery can never commence before its scheduled start. Moreover, the

problems assume that surgical team and all necessary resources are available as required

(Assumption 2), so that the only thing that can prevent a surgery from starting at the

scheduled start is if the previous surgery does not finish on time. Finally, it is assumed

that all surgeries must be performed on the day when they are planned (Assumption 3),

meaning that postponing a surgery to another day is not an option.

Two separate problems are formulated to investigate two different aspects of uncertainty.

The first problem addresses the aspect of uncertainty in surgery durations being dependent
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Table 4.1: The main problem assumptions

Assumption 1 Patients arrive exactly at their scheduled time
Assumption 2 No other resources represent bottlenecks
Assumption 3 All scheduled surgeries must be performed

on the surgeries’ start time, meaning that the decision of when a surgery is scheduled affects

the uncertainty in its duration. The second problem addresses the aspect of uncertain

arrival of emergency patients. The focus is then how to schedule the elective surgeries

knowing the probabilities that given numbers of emergency patients arrive, and how to

adjust the schedule once you know how many and which emergency patients arrive.

4.2 Explanations and implications of assumptions

The assumption of no-shows and late arrivals not being a problem reflects the real situa-

tion, as explained in Section 2.2.2. As has already been stated, Assumption 1 also implies

that surgeries cannot be started before their scheduled start. In reality, if a patient is

already at the hospital, or can be asked to arrive early, it might be possible to start the

surgery before schedule, but without having information on what patients are on stand

by this cannot be modelled in a realistic way. When evaluating the solutions we get, we

therefore note that in reality the hospital possibly could have avoided some of the idle

time by starting some surgeries ahead of schedule.

With operating room and surgeon idle time being considered very expensive, the coor-

dinators are normally able to make sure that other resources are available when needed,

making Assumption 2 a realistic assumption.

Assumption 3 follows mainly from the fact that the decision of which surgeries can and

cannot be postponed is based on a subjective medical assessment that we are unqualified

to make. In reality, it sometimes happens that surgeries are postponed to another day

if they cannot be performed without overtime incurring. According to the coordinators,

performing surgeries after regular working hours is unfavourable and should be avoided

if possible. This is both with respect to the working hours of the surgical staff, because

overtime is expensive for the hospital, and because potential complications are handled

more easily if more staff are at work and available. The policy of what to do when facing

the prospect of overtime varies across the three different hospitals. Coordinators at the

Trondheim hospital tend to postpone surgeries to another day if they see that performing

them is likely to result in overtime, whereas at the Røros hospital they normally finish

all planned surgeries even though overtime incurs. In any case, penalising overtime in the

objective accounts for the inclination towards avoiding it. Also, since the inconvenience of

postponing a surgery depends on a lot of different factors, Assumption 3 lets us evaluate

the quality of the schedules we generate and appropriately compare these to the current

practice at St. Olavs.

24



Part II

Analyses and Discussions
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Chapter 5

Data analysis

This chapter will explain the analyses performed on the data set, the selection of which

instances to use when evaluating the models we propose, and the choice of scenario gen-

eration technique.

5.1 About the data

The data on which the following analyses are based was extracted from the hospital’s

”OpPlan” system and provided by the hospital’s analytics manager in February, 2016.

It contains extensive descriptive information on all surgeries performed by the hospital’s

Department of Orthopaedic Surgery from 1 January 2006 to 31 December 2015, across

Trondheim, Orkdal and Røros. For each surgery there is information about

(a) the patient, including demographics and diagnosis/diagnoses

(b) the surgical team, including surgeon(s), nurses and anaesthesia personnel

(c) the surgical procedure, including procedure type, urgency, operating room, and re-

alised times and durations related to the surgery

Surgical procedures are classified according to the NOMESCO Classification of Surgical

Procedures (NCSP), developed by the Nordic Medico-Statistical Committee in 1996 [73].

A surgery may include multiple surgical procedures and thus be given a set of surgery

procedure codes. The data has been anonymised to exclude details related to patient and

staff identity.

The data set was pre-processed to exclude surgeries whose inputs were obviously erroneous,

e.g. surgeries whose durations were below or equal to zero minutes and surgeries where

data was missing. For instance, one surgery had a reported surgery duration of roughly
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-1 000 000 minutes, heavily distorting the statistical properties of the data set. The

validation process removed 25 of the surgeries, leaving the data set with a total of 87 100

surgeries dating back to 2006.

5.2 Analysing the data

The following part will first describe the segmentation of the data and how it has been

adjusted for trends. Next, it will investigate whether the effect of the hypothesis described

in 2.3 is statistically apparent. Note that since only knife-time is considered stochastic, as

explained in Section 2.2.2, the analysis considers only this component of the total surgery

durations.

5.2.1 Pre-analysis

The overall objective of analysing the statistical properties of the data is being able to

make more accurate estimates on surgery durations, in order to diminish the negative

impacts of the underlying uncertainty. When determining the daily schedule within the

scope of this thesis, it is given which procedures are going to be performed by which

surgeons at a given operating room. In order to make as accurate estimates as possible,

the data has been segmented in order to isolate the effect of the relevant uncertainties,

while keeping the segments large enough for them to provide statistical significance. In

particular, if we want to make predictions about the duration of a specific procedure

performed by a specific surgeon, we want to base this on a sample containing data on

that specific combination only. For readability, we refer to such combinations as surgery

types. In this chapter we provide examples of statistics for seven different surgery types,

referred to using numbers 1 to 7. Table 5.1 provides a mapping of what procedure codes

these seven surgery types represent. The third column is there only to emphasise that the

surgery types are related to a specific surgeon, even though they are anonymised in this

case.

Table 5.1: Surgery types referred to in this chapter

Surgery type number Procedure code Surgeon

1 QDG20 Surgeon 1
2 NDM19 Surgeon 2
3 ACC51 Surgeon 2
4 NDM39 Surgeon 2
5 QDB10 Surgeon 3
6 ACC51 Surgeon 4
7 NGD11 Surgeon 4

For every surgery it is specified whether the patient was elective or emergent. Figure 5.1

shows an example of how the empirical durations differ based on this characteristic, for
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Figure 5.1: Durations for surgery type 1, separated by urgency

surgery type 1. The average duration for the elective surgeries of this specific surgery

type is 12.6 minutes, while the average for the emergent surgeries is 16.1 minutes. Such

differences exist for a lot of the surgeries and, for this reason, we distinguish between

elective and emergent surgeries both in the analysis and when sampling in order to generate

scenarios for use in the mathematical models.

5.2.2 Adjusting for trends

When analysing surgery durations for a given surgery over a period of ten years, one might

expect the durations to be subject to a learning effect, especially when considering one

single surgeon at a time. Technological improvements, as well as increasing tacit knowledge

and experience, would be expected to cause the durations to decrease over time and, if so,

this should be adjusted for when making predictions about surgeries in the present.

The learning effect in terms of production of a given good is often assumed to be driven

by the cumulative amount produced of the good. Krajewski [74] uses a model on the

form

dk+1 = d1k
b (3)

where the direct labour hours for the (k + 1)th unit, dk+1, depend on the direct labour

hours for the first unit, d1, the cumulative amount produced, k, and a constant b =
log(r)
log(2) ,

with r being the learning rate. The reduction in time thus follows an exponential curve,

with the learning effect being very high in the beginning and gradually diminishing with

time as the total amount of units produced increases. The equivalent of this for our case

would be to assume the learning effect to be driven by the number of times each surgeon

has performed the given procedure in the past. However, as described above, we assume

the effect to be not only due to the increased experience of that specific surgeon, but also

due to technological advances and shared experience with other surgeons. Therefore, we

introduce a time axis and let the learning effect depend on the point of time, assuming this
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Figure 5.2: Adjusting for trend due to learning effect for surgery types 2 and 3

will account for both the surgeon-specific learning effect and the learning effect experienced

by the hospital (or even the health sector) as a whole. For example, the dark blue line in

the plots shown in Figure 5.2 connects the scatter plots of the durations of surgery types

2 and 3, respectively, with time on the horizontal axis. By observation, the durations tend

to become shorter with time. We investigate this by calculating a simple moving average

of the 10 most recent durations up to surgery number k of a surgery type s, given by

SMAsk =
k−1

∑
i=k−10

ds,i+1

10
(4)

with k = [10,Ns], and Ns being the total number of empirical durations for surgery type s.

The yellow plots in Figure 5.2 show this moving average for surgery types 2 and 3. For

surgery type 2, the moving average equals 99.7 minutes at k = 10, compared to 43.2

minutes at k = N2. Evidently, the trend is quite considerable, and with this being the

case for a lot of the surgeries analysed, the trend should be accounted for when making

predictions about the duration of a surgery at a given time.

As mentioned above, learning curves tend to follow a logarithmic model with diminishing

marginal reduction in time. Since we do not know where the ten year period for which we

have data is placed in the course of learning (some procedures may have been performed

for decades while other may be new), we make a simplification by assuming the effect
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during the relevant ten year segment to be linear. The trend is thus described using a

linear regression on the form

ds(t) = asts + bs (5)

for every surgery type s. Regression coefficients as and bs are calculated using a least

squares method, meaning that the deviations from the trend are on average zero. Equa-

tion (5) provides an expectation for a surgery’s duration at any day t in the ten year

interval, with t = 1 representing 1 January 2006. For surgery type 2 displayed in the upper

plot in Figure 5.2, the regression coefficients are a2 = −0.01601 and b2 = 93.2882, with the

slope a2 indicating that on expectation the duration should decrease by 0.01601 minutes

per day. This trendline, and the corresponding trendline for the lower plot, is shown as

dotted lines in Figure 5.2. Evaluating equation (5) at t = T + 1, where T is the last day

of the ten year period such that t = T + 1 represents the present1, we get the expected

duration of surgery s if it is to be performed in the present. We define this as

Ds = as(T + 1) + bs (6)

If we based the expectation on a flat average of all empirical durations, we would expect

surgery type 2 to have a duration of 67.4 minutes. As has been commented on, the moving

average changes considerably, making a flat average a poor prediction. The expectation

from equation (6) equals 34.8 minutes, which to a larger extent concurs with the most

recent empirical durations.

In Section 5.4 we will be using the moments of the set of empirical durations to generate

scenarios for surgery durations as inputs in a stochastic model. Before calculating the

moments, the data set should be adjusted such that it is representative of the present

level of experience, knowledge and technology (which are all assumed to be components

of what we describe as the learning effect). The adjustment uses the assumption of the

process being what the literature refers to as a trend-stationary process [75,76], typically

given by

zt = µ + βt + εt (7)

where µ + βt is a deterministic mean based on a linear regression, and εt is a stationary

stochastic process with zero mean. This is transferable to our case, with the deviations

from the linear regression function (5) representing the stochastic process. We assume

that the empirical durations, when adjusted for the learning effect, are stationary.

If we detrend the data by simply adjusting all durations down by the amount that, based

1Note that since we only have data until the end of 2015, we assume the present is 1 January 2016.
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on the linear regression, is meant to come from the learning effect, the error terms, εt,

become unrealistically high in relative terms. For instance, a duration 40 minutes shorter

than the expectation might have been feasible when the expectation was 90 minutes, but

impossible if the expectation is 35 minutes. By visual inspection of historical durations,

the variance appears to decrease with a decreasing mean. This was also verified with St.

Olavs hospital staff, who argued that large absolute deviations from the expected duration

is more common when the expected duration is high. Hence, we want to adjust the data

points in a way such that the error terms relative to the mean are preserved. This is similar

to what Tsay [76] suggests for adjusting for linear trends in historical data. For a given

surgery s, the expected duration at time t is given by the linear regression in equation (5).

Letting deks represent empirical duration number k of surgery type s, performed at time

tks, the deviation of deks from the expectation is given by

εks = d
e
ks − astks + bs (8)

which, in terms relative to the expected duration is

εrel
ks =

deks−astks+bs
astks+bs

(9)

We adjust for the learning effect while preserving the relative error by taking each empirical

duration deks, finding its relative deviation εrel
ks from its expected duration, and multiplying

1+ εrel
ks by the expected duration for a surgery performed at the present, given by equation

(6). The formula for the trend-adjusted empirical duration of surgery number k of surgery

type s is thus given by

dadj
ks =Ds(1 + ε

rel
ks) (10)

The data used in the analyses2 of this thesis is adjusted according to equation (10). For

surgery 2 and 3, the adjusted data is shown by the light blue connected scatter plot in

Figure 5.2, where we can observe that the errors from the mean are scaled based on the

expectation at any time t.

5.2.3 Testing the hypothesis

According to the planners, some types of surgeries are more likely to be scheduled early

than late. If, for example, major surgeries tend to be scheduled late in the afternoon,

surgeries that start late will, on average, have a longer duration. Ignorance of this selection

2Note that only surgery types for which there is a significant number of empirical durations will be
used, so we avoid the problem of adjusting for trends that have insufficient statistical basis.
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Figure 5.3: Frequency of durations for surgeries 4 and 5, per phase

bias when analysing the data could lead to the unjustified conclusion that a given surgery

is likely to last longer if it is scheduled late in the afternoon. Therefore, in order to ensure

comparability, we analyse analyse surgery durations per surgery type and not only per

surgeon.

When testing the hypothesis we take, for a given combination of surgeon and procedure

type, all empirical durations and divide them into two separate sets based on the start

time of the surgery. The first set contains the duration of all surgeries that started before

11:30, while the other sets contain the rest. This point of time is set to coincide with the

start of the lunch break, and out of the 55 514 elective surgeries in the data set, this gives

two data sets containing 47.9% and 52.1% of the total samples, respectively. The time up

until 11:30 is referred to as phase 1, and a surgery that is started before 11:30 is said to

be performed in phase 1, even though it is not finished before the start of phase 2.

Figure 5.3 shows the distribution of durations in either phase for surgery type 4 and 5,

respectively. For type 4, we can observe that surgeries in phase 2 tend to be shorter.

Among the five joint highest durations, four were performed in phase 1, and the average

differs substantially from one set to another. For type 5, in contrast, there is no clear

tendency of durations differing between the two phases.

We want a test that can disprove, to a certain level of significance, that the durations

in each phase for a given surgery are drawn from the same distribution, thus indicating

that they may be from two different distributions. Two of the most commonly used tests
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for independence of two samples are the two-sample Kolmogorov-Smirnov (KS) test and

the Chi-square two-sample test. These have the advantage of being non-parametric and

distribution free; they require no assumption on the distribution of the data from which the

two samples have been drawn, and thus provide a non-biased test of independence.

Whereas the Chi-square test is used for categorical data, the Kolmogorov-Smirnov applies

to continuous data. Technically, surgery durations are continuous, but in the process

of being entered into the protocol by the nursing staff they are rounded to the nearest

integer. This leads to the potential occurrence of ties in the data; multiple durations may

be equal. If the number of ties is high, such that the samples are highly discrete, the data

can be considered categorical, and the chi-square test is preferred. In our case, though,

we avoid the problem of ties since the data becomes continuous when adjusted for trends

according to equation (10). The trend adjustment is irrespective of phases, so a difference

in duration between the two phases will be present also after the adjustment.

The two-sample Kolmogorov-Smirnov test [77] tests whether the underlying one-dimensional

probability distributions of two samples A and B differ. The test is based on each sample’s

empirical distribution functions, Fs, defined as

Fs(i) =
nis
Ns

s ∈ {A,B}, i ∈ [min(A,B),max(A,B)] (11)

where nis is the number of observations in sample s that are below or equal to i, and Ns

is the total number of observations in sample s. Fs(i) therefore measures the fraction of

the total number of observation that are below or equal to i, with i ranging from the joint

lowest observation to the joint highest observation in the two samples A and B.

The test statistic in the two-sample Kolmogorov-Smirnov test is defined as

Dss′ = sup∣Fs(i) − Fs′(i)∣ s, s′ ∈ {A,B}, s ≠ s′, i ∈ [min(A,B),max(A,B)] (12)

i.e. the highest absolute vertical distance between the two samples’ cumulative empirical

distribution functions. Figures 5.4 and 5.5 show the cumulative empirical distribution

functions for the two surgeries displayed in Figure 5.3, and mark the d-statistic in yellow

for each case. For surgery 4, when comparing the two distribution functions we can see

that phase 1 tend to have longer durations than phase 2. The cumulative distribution

function of phase 2 rises earlier, meaning a larger portion of the durations are short. This

difference leads to a relatively large d-statistic. On the other hand, the two distributions

for surgery 5 are quite similar, giving a lower d-statistic. When conducting the test, the

null hypothesis is that the data is from the same distribution, and it is discarded if the

p-value is below a specified alpha value.
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Figure 5.4: Cumulative distribution plots for the durations of surgery type 4

Figure 5.5: Cumulative distribution plots for the durations of surgery type 5
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P-values have been calculated using a Monte Carlo simulation, where each scenario ran-

domises the division of the duration into two separate sets, between which the d-statistic

is calculated. The p-value then equals the fraction of the total d-statistics that are equal

to or higher than the d-statistic we computed from the initial data set. It can therefore

be interpreted as the chance of the d-statistic being as extreme or more extreme than the

initial one, and a low p-value indicates that there is reason to believe that the underlying

distributions behind the two samples are not the same. The p-value in the case of surgery 4

in Figure 5.3 is 0.041, indicating that it is unlikely that the two sets of durations come

from the same underlying distribution. For surgery 5 the p-value is 0.631, meaning the

test is inconclusive and the null hypothesis of the data coming from the same distribution

remains.

Since the distinction between phases is used only in the Phase Model, which excludes

all emergency patients, we only apply the test to elective surgeries. Out of the 55 514

elective surgeries in the data set, we choose to test the 200 combinations of surgeon(s) and

procedure type that have the most occurences, i.e. those combinations for which we have

the best statistical basis. These have on average 54 empirical durations (in comparison,

Denton [19] has on average 21 samples per surgery type, without segmenting per surgeon),

constituting roughly 20% of the total number of elective surgeries performed in the ten-

year period.

Out of the 200 surgery types tested, the null hypothesis was discarded for 31, using a

significance level of 0.10. These 31 surgery types are likely to have significantly different

uncertainty in duration when they are performed in the two different phases, and are likely

to be those surgeries for which the Phase Model provide the most value.

5.3 Selection of instances

As has been explained, the two problems presented in this thesis consider a single operating

room on a single day. An instance is therefore a set of surgeries to be performed at a specific

operating room on a specific day, with information on which surgical team is assigned to

perform each surgery. In order to evaluate the resulting schedules, it is interesting to see

how the model performs on instances that have in fact been experienced at St. Olavs

Hospital. The data set includes surgeries from a total of 3 652 days (from 2006 to 2015)

across a set of different operating rooms, with a total of 30 804 potential instances.

The evaluation of the two models explained in Chapter 6 will be made using different types

of instances. The Phase Model will be evaluated on actual historical instances, whereas

the Emergency Model will use three realistic instances designed to display the effects of

the model. The following part explains the analysis performed in order to determine the

instances to use for both models, both for the stability analyses and for the comparisons

in the practical computational study. Note that when using real instances, the data has
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been adjusted for trends in accordance with Section 5.2.2 to reflect the experience level

on the relevant surgery date.

5.3.1 Instances for the Phase Model

Since the Phase Model excludes emergency patients, we need instances with elective pa-

tients only. Filtering out all instances that have one or more emergency patients during

the day narrows down the number of instances from 30 804 to 18 009. In addition, we

need instances where all surgeries during the day have been, historically, performed a

significant number of times by the given surgeon, in order to be able to sample from a

representative empirical sample of past surgery durations. If we require the number of

past occurrences to be equal to or higher than ten in both phases, we are left with a

sample of 1 917 instances, representing a total of 1 303 days across 18 operating rooms.

30% of these have only one surgery, 28% have two surgeries, and the remaining 42% have

more than two surgeries. The problem of scheduling surgeries is trivial when there is only

one surgery to be scheduled, and the effects of the two phases are believed to be more

significant when the number of surgeries is higher, so we filter out all instances with fewer

than three surgeries per day. The remaining 807 instances range from having one to hav-

ing six distinct surgeries during the day. Again, the effects we want to analyse, and thus

the value of the Phase Model, are expected to be higher when the surgeries have different

uncertainty and statistical properties. If all surgeries have the same statistical properties,

the order of the schedule will be of no relevance, and so we want to evaluate the model on

instances exhibiting multiple different surgeries. Only considering instances with at least

three distinct surgeries during the day leaves the data set with 413 instances. Moreover,

we want to use those instances that include surgeries likely to have a significant difference

in statistical properties between the two phases. Therefore, we make a mapping of the 31

surgeries for which we found the highest significance in Section 5.2.3, and use only those

instances that have at least two unique surgeries among these 31, i.e. instances where at

least two different surgeries are expected to have a significant difference between the two

phases. This leaves us with 26 instances. Finally, the practical analysis that will follow

in Chapter 7 evaluates the performance of St. Olavs’ plan for each of these historical

instances, on the scenario trees we generate. The necessary data on St. Olavs’ plans was

accessed through ”OpPlan’s” planning interface, where the relevant dates on the relevant

operating rooms where looked up manually in the system. Six of the 26 instances had no

data on how they were planned, resulting in a final sample of 20 instances to be used in

the Phase Model and analysed further in Chapter 7. To summarise, we use those instances

that contain

• only elective surgeries,

• only surgeries that has been performed at least ten times in each phase,
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• at least three distinct surgery types,

• at least two surgeries among the 31 types found in Section 5.2.3,

and for which there exists data on how the day was planned. The 20 resulting instances

include 37 distinct surgery types, 12 of which are among the 31 surgeries with the most

significant phase-dependent difference in duration.

5.3.2 Instances for the Emergency Model

As for the Emergency Model, the available historical data is not sufficient in order to

evaluate the model on real past instances. In particular, the data set does not contain

information on what the plan looked like before emergency patients emerged, meaning we

cannot compare our solution with what happened at the hospital on a given day. In the

case of an emergency surgery, the hospital often reschedule one of the elective surgeries to

another day to avoid overtime. Our model, on the other side, allows overtime and requires

all scheduled surgeries to be performed on that day. The hospital might have adjusted

their plan differently if cancelling were not an option, so the difference in cancel policy

makes the comparison less valid. For the Emergency Model, we have therefore created

three realistic instances of a day with four and five distinct elective surgeries, where a

maximum of two additional emergency surgeries are to be scheduled.

5.4 Scenario generation

This section will first motivate for the choice of scenario generation technique by reviewing

a few of the most relevant principles found in literature. Further, it will explain the

essence of the chosen moment-matching algorithm, and evaluate the results of the resulting

scenario generation.

Note that because knife-time is the only part of the total surgery duration that is consid-

ered stochastic, only this is used in the scenario generation. Deterministic durations of the

pre- and post-phase are then added to the knife-time from the scenario generation, before

the complete surgery durations are given as inputs to the optimisation models. This is in

accordance with the explanation in Section 2.2.2.

5.4.1 Choice of scenario generation technique

One of the central elements of any stochastic model are the scenarios used to model the

uncertainty, as described in Section 3.1. In our problems, the stochastic elements are

the surgery durations and the number of emergency patients that arrive on a given day.

The validity and practical value of the model is highly related to how realistically the

generated scenarios represent the true stochastic processes. A good scenario generation
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Figure 5.6: Distribution of empirical durations for surgery types 3, 6, 2 and 7. The vertical axes
represents the relative frequency of each duration and is left out for readability.

method is therefore key to a good stochastic model, and the literature exhibit various

different scenario generation techniques. Kaut and Wallace [78] provide an overview of

common scenario generation methods, and discuss the evaluation of these for a given

stochastic problem. In terms of sampling, one common decision is whether to sample

from empirical data or from a fitted distribution. When sampling from empirical data,

you avoid making any potentially wrongful assumptions on the nature of the distribution

from which the data originates, but you need a high number of observations to be sure

that the samples are in fact representative. Sampling from empirical data also requires

the argument that the empirical data is a good representation of the future. On the other

hand, sampling from a distribution completely relies on whether or not your assumption

about the distribution is correct. Since most real-life processes are impossible to perfectly

replicate using a known distribution, you are most likely to introduce a bias of some kind.

Bratley [79] argues that quite often scenario generation is too concerned with fitting data

to a distribution when, in fact, it would be more appropriate not to.

Figure 5.6 shows the distribution of durations for four different surgery types at St Olavs.

Three of them exhibit similarities to a lognormal plot, which is a quite common assumption

in literature. As discussed in Section 3.5, May [48] argues that a three-parameter lognormal

fit is appropriate for surgery durations, and is cited by Mancilla [80], where lognormal

surgery durations are used in a model for one surgeon on parallel operating rooms. Addis

[81] also makes the assumption of lognormal surgery durations, in the environment of an

advanced scheduling problem. However, for a lot of the surgeries in our data set, such as
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surgery type 2 in Figure 5.6, this assumption is inaccurate, indicating that sampling from

empirical data might be preferable to using a fitted distribution. In general, both sampling

from empirical data and sampling from a specified fitted distribution is complicated when

the variables are meant to be correlated. Firstly, you need to have enough data for the

marginals distributions for all variables to be computed accurately with significance. It

is also more complicated to maintain the desired marginal distributions of the resulting

scenarios. In our case, however, we have assumed zero correlation. If we sample randomly,

the correlation approaches zero as the number of scenarios increases, but we need to

generate a very high amount of scenarios to achieve a natural correlation close to zero.

Therefore, we want to be able to specify zero correlation explicitly.

Høyland et al. [82] propose a heuristic algorithm for scenario generation which ensures that

the generated data matches the moments of the empirical data, and lets the user specify

target correlations between the variables generated. While being based on empirical data,

it has the advantage of letting the user modify the desired first four input moments of

the generated variables if necessary. It uses the assumption that the distribution to be

modelled can be described by its first four moments, requiring no assumptions about its

nature. The algorithm is based on iterations between a cubic transformation solving a

set of four non-linear equations in order to match the four first moments of the data,

and a Cholesky transformation ensuring that the correlation is correct. Since the second

transformation affects the higher moments, the algorithm iterates in such a way that

the moments of the scenarios generated will match the original data after the Cholesky

transformation is completed. It is an non-exact algorithm, but for a sufficiently low number

of scenarios it is able to match both correlation and moments sufficiently. In terms of

how many scenarios are needed to both replicate the first four moments and have zero

correlation, it clearly outperforms a random scenario generation based on sampling from

empirical data using Excel. Even with 10 000 scenarios, the random scenario generation

in Excel results in correlations up to 0.1. The moment-matching algorithm, on the other

hand, is able to almost exactly match the first four moments with close to zero correlation

for a number of scenarios that is more than sufficiently low for the model to solve. This

will be discussed in further detail in Section 5.4.3.

5.4.2 About the moment-matching algorithm

We use similar notation to the one used in the original paper by Høyland et al. [82] to

briefly explain how the algorithm works. Let n represent the number of random variables

and s the number of scenarios. X̃ is then a general n-dimensional random variable, and

X is the n×s-dimensional matrix of scenario outcomes, whose rows (vectors of outcomes

for the ith variable) are referred to as Xi. P is the row vector of scenario probabilities,

specified by the user, and X̃ is the discrete n-dimensional random variable given by X and

P. E[X̃] and E[X̃ ] represent the vector of means of a random variable that is general or
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discrete, respectively. The four target moments are denoted µ∗, σ2∗, γ∗, and κ∗, with R∗

being the target correlation matrix. The goal is to generate scenarios with outcomes Z,

which together with probability vector P define the the discrete random variable Z̃ (which

is a discretisation of the theoretical random variable Z̃), with the specified target moments

and target correlation. Ỹ denotes the intermediate variable, i.e. the intermediary results

of all operations until the final transformation that results in Z̃. Note the difference in

notation between random variables as abstract objects (such as X̃ and X̃ ) as opposed to

matrices of outcomes (such as X).

The first step of the algorithm is to generate a standard normal random variable X̃ (having

zero mean and unit variance). This variable is transformed using a cubic transformation

on the form

Ỹ = a + bX̃ + cX̃2
+ dX̃3 (13)

to generate a variable Ỹ , having moments µ ≈ 0, σ2 ≈ 1, γ ≈ γ∗, and κ ≈ κ∗ 3. The cubic

transformation in equation (13) is based on a method introduced by Fleishman [83] for

generating a univariate non-normal variable with given first four moments, by solving a

system of non-linear equations. In general, moment j can be estimated by E[(Ỹ −E[Ỹ ])j].

Because of the standardisation, we have E[Ỹ ] = 0, so the expression for moment j simplifies

to

momj = E[Ỹ j
] (14)

By taking the expected value of either side of equation (13) we can express the four target

moments as a system of equations dependent on the moments of the generated random

variable X̃. Combining (13) with (14) gives the following system for the first four target

moments

E[Ỹ ] = a + bE[X̃] + cE[X̃2
] + dE[X̃3

] (15)

E[Ỹ 2
] = (a + bE[X̃] + cE[X̃2

] + dE[X̃3
])

2 (16)

E[Ỹ 3
] = (a + bE[X̃] + cE[X̃2

] + dE[X̃3
])

3 (17)

E[Ỹ 4
] = (a + bE[X̃] + cE[X̃2

] + dE[X̃3
])

4 (18)

The algebraic extension of the latter equation includes an expression with E[X̃12], which

due to relation (14) is equal to the twelfth moment of variable X̃. This, and the other

3The reason for the standardisation is that it makes the transformations far easier. It can be shown that
neither the higher moments (skewness and kurtosis) nor the correlation are distorted when the algorithm
finally transforms this back to having µ = µ∗ and σ2

= σ2∗.
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eleven moments of lower order, need to be computed for X̃. Note that the left hand sides,

E[Ỹ k], k = 1, ...,4, are taken as an input to the algorithm, but the first target moments

are set to 0 and 1, respectively, as explained above. This leaves us with a system of

four non-linear equations we can use to determine the four transformation parameters

a, b, c and d, which is done approximately using a least-squares method. When the

transformation parameters are obtained, we use (13) to transform our X̃ to Ỹ , with Ỹ

having µ ≈ 0, σ2 ≈ 1, γ ≈ γ∗, and κ ≈ κ∗.

The other main transformation in the algorithm is a Cholesky transformation to ensure

right correlation. Since changing the correlation distorts the moments of higher than

second order, the algorithm iterates between the cubic transformation and the Cholesky

transformation in order to reach both the target moments and the target correlation.

The algorithm first transforms the variable set to having approximately zero correlation4

and afterwards it transforms it again to have approximately target correlation. In order

to impose zero correlation, Y’s correlation matrix R is decomposed using a Cholesky

decomposition on the form R = LLT , where L is a lower triangular matrix. Then, a

backward transformation on the form Y = L−1Y updates Y and we end up with close to

zero correlation. This, however, changes the moments, so the algorithm performs another

cubic transformation and iterates between these steps until the correlation is sufficiently

close to zero. The next transformation also uses a Cholesky decomposition, but this time

using the target correlation matrix. With R∗ = LLT , a forward transformation Y = LY is

performed. In our case, R∗ = I, so the Cholesky decomposition gives L = I, which means

the transformation has no effect. The variables now have approximately right correlation,

and moments µ ≈ 0, σ2 ≈ 1, γ ≈ γ∗, and κ ≈ κ∗, so the final step is transforming the

variables back to the desired two first moments. A linear transformation

Z = αY + β (19)

transforms the standardised variable Ỹ to a variable Z̃ with mean equal to β and standard

deviation equal to α. This comes from the formula for standardising a random variable,

and it can be shown that this distorts neither the correlation nor the higher moments. The

β term simply shifts all variables by a constant, whereas the α term scales the deviation

by a constant factor, neither of which affect the skewness or the kurtosis. Setting β = µ∗

and α = σ2∗ we obtain a variable Z̃ having correlation close to R∗ (= I in our case) and

first four moments close to µ∗, σ2∗, γ∗, and κ∗, respectively.

4Note that although the variable is randomly generated it is likely to exhibit some correlation when the
number of scenarios is limited. For an infinite number of scenarios the correlation of the randomly drawn
variables X̃ would be zero.
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Figure 5.7: Comparison of empirical data and data generated by the moment-matching algorithm,
for surgery type 4

5.4.3 About the results of the scenario generation

For the Phase Model, the distribution of the durations of a given surgery depends on

the phase in which each surgery is started. When generating scenarios, we have split

the durations for each surgery into two separate sets, and we thus generate two different

independent variables for each surgery type. This means that for an instance with four

surgeries, we generate eight independent variables, each representing a discretisation of

the distribution of durations for each surgery in both phases. In order to evaluate the

scenario generation we want to evaluate how well the data we have generated matches our

empirical data. For instance, for surgery type 4, used in Figures 5.3-5.5, Figure 5.7 shows

the empirical durations in phase 1 together with the corresponding durations generated by

the algorithm. By observation, the data generated using the moment-matching algorithm

seems to be a good representation of the empirical data, which is true for all surgeries

in the instances we use. For each of the 37 surgeries we have compared the moments of

the generated data to the moments of the empirical data. In addition, we have checked,

for each of the 20 instances, the correlations between the variables generated, which were

meant to be zero. Figures 5.8 and 5.9 show the results of both of these analyses. In

Figure 5.9, we have computed the correlation between the variables within each instance

and displayed them as a frequency plot. The magnitude of the relative error for all

four moments are in the range 10−10 to 10−4, and the correlation is 10−3 at most. This

is considerably better than what we could achieve by generating the same amount of

scenarios manually. By using the algorithm we are able to maintain the correct statistical

properties as well as approximately zero correlation while keeping the number of scenarios

low enough for the model to solve in acceptable time.
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Figure 5.8: Relative errors of the moments of all variables generated

Figure 5.9: Correlation between all pairs of variables generated
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Chapter 6

Model formulations

This chapter will present two mathematical models designed to solve the two surgery

scheduling problems explained in Chapter 4. For each model, respectively, we will go

through design considerations and notation before presenting the formulation in its en-

tirety. Moreover, we will discuss challenges posed by the models, and propose different

ways of strengthening the formulations and guiding the solution process. The basic struc-

ture of the models is inspired by the one presented by Mancilla and Storer [17].

6.1 Phase Model

The first mathematical model we present is a two-stage stochastic model with both integer

and continuous decision variables. It incorporates stochastic surgery durations, where the

probability distribution of the duration is dependent on the choice of actual start time of

a surgery. This model only concerns elective patients.

6.1.1 Model design considerations

One of the most important parts of building a stochastic model is a description of the

information structure, which requires reflections on when decisions have to be made and

the information available at every decision. The uncertain elements in this model are

the surgery durations, which are not known before each surgery finishes. This uncertainty

affects the start of the next surgery, which needs to wait for the operating room to be ready.

Assumption 1, described in Chapter 4, states that patients always arrive in time for their

scheduled surgery start time. Since patients need to know their surgery appointment time

in advance, scheduled start times must be decided before knowing the actual durations

of the preceding surgeries on the surgery day. The first decision is therefore to decide

scheduled start times for the given set of surgeries, with information about the probability
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distribution of the duration of each surgery. Since all patients arrive in time, the first

surgery of the day will always start as scheduled. Once the first surgery is finished, with

its duration being known, the actual start time of the next surgery is decided. Note

that this decision is a trivial one: If the scheduled start time of the next surgery has

been reached, meaning that the patient has arrived, it starts immediately as there is no

reason to make him wait. If not, it starts at the planned start time, i.e. as soon as the

patient arrives. It would be less trivial if it was an option to change the sequence of the

scheduled surgeries, because it would require an evaluation of which surgery to start next.

However, changing the sequence of two surgeries would not be a relevant option since no

other patients are ready for surgery5. Hence, as each surgery finishes, the next surgery

is started as soon as possible, and once all surgeries are finished, potential overtime is

calculated. The essence of the problem, then, is how to set the scheduled start time for all

surgeries in order to minimise the expected weighted sum of waiting time, idle time and

overtime. Setting scheduled start times for all surgeries also implies setting the sequence,

and this will be used in the modelling.

The information structure explained in the above paragraph, including the decisions to be

made, is illustrated by Figure 6.1 for an example of four surgeries, with a branching factor

of two, meaning each surgery duration has two possible realisations. The internal nodes in

the tree represent the decisions, described by the black text on the right hand side of the

figure, while each new stage represents the revelation of a stochastic element, described by

the blue text. With this structure, the number of stages equals the number of surgeries plus

one. The dotted lines emphasise the nonanticipativity constraints, i.e. the decision levels

with the same amount of information. The information structure can use any branching

factor, where a higher factor gives a high increase in the number of scenarios. Given a

branching factor b that is equal for n surgeries with independent durations, the number

of possible scenarios is given by bn+1. The path from the root node to a given leaf node,

along a solid line, represents our scenarios, referred to by ω.

The information structure in Figure 6.1 is the one we consider to most closely resemble

the actual decision process. As noted above, the essence of the problem is setting the

scheduled start times. The remaining decisions of how to set actual start times is de-

termined trivially by the principle of starting each surgery as soon as possible, given the

durations of preceding surgeries. Since the only relevant information when determining

the actual start of a surgery are the durations of the preceding surgeries, it does not make

a difference whether you know the durations of the following surgeries or not. For this

reason, we can picture a simplified two-stage structure, as shown in Figure 6.2, where

the durations of all surgeries are revealed at the same time, after scheduled start times

are set. In both structures, the only information used for determining the start time of

a surgery are the durations of the preceding surgeries, meaning that the simplification of

5Actually, in the case of being so far behind schedule that more than one patient have already arrived,
it would be an option to change the sequence of these two, but this is assumed to be a special case.
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Figure 6.1: Example of complete information structure, with n + 1 stages

Figure 6.2: Simplified information structure with 2 stages

assuming the durations of the following surgeries to be known, as well, has no practical

implications. The two-stage structure can be set up to have the same scenarios as the

multi-stage structure and, from this point, when referring to the information structure of

the Phase Model, we refer to the structure shown in Figure 6.2.

The Phase Model is designed to let the distributions from which the durations are gen-

erated depend on the start time of the surgeries. Section 5.2.3 divided the day into two

phases to check if there was reason to believe the expected duration for some surgeries

would be different based on whether it is scheduled before or after lunch. The same divi-

sion of the day into two phases is used in the Phase Model. Thus, a given scenario does in

fact give two surgery duration realisations; one for the duration in phase 1 and another for

phase 2. Therefore, the scenario alone does not completely specify the surgery duration,

but must be used in conjunction with the decision about in which phase the surgery is

started. The decision-dependent uncertainty resulting from this is one of the complicating

factors of the model.
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6.1.2 Sets and indices

Let N be the set of all surgeries that should be performed, and the set of positions in

the sequence of surgeries. Surgeries are indexed by j, and positions by i. N is defined as

N = {1,2, ..., n}, where n is the number of surgeries to schedule. Further, let H be the set

of all phases throughout the day. Our formulations are, however, not completely general

in the sense that this set cannot consist of more than two phases for the formulations to

be correct. Lastly, let Ω be the set of all surgery duration scenarios. The described sets

and corresponding indices are given in Table 6.1.

Table 6.1: Sets and indices in the Phase Model

Set Description

N Positions and surgeries, indexed by i and j
H Phases of the day, indexed by h
Ω Scenarios of surgery durations, indexed by ω

6.1.3 Parameters

Let Dω
jh be the duration of surgery j if the surgery is in phase h in scenario ω. As discussed,

the scenario partly indicates where to look up the duration, which is also dependent on

the phase. n denotes the last element of the set N . d is the point in time which defines

the end of the regular working day, meaning that any surgery time after this represents

overtime.

Let cwj , csj and clj be the unit cost of waiting time, idle time and overtime, respectively,

for surgery j. These can represent either monetary values or relative weights between the

three measures. In the model formulation, these are found in the objective function.

M δ
i , M s

i , Mw
i , M l

i , and M late are used in big-M formulations and apart from the last M,

the superscripts correspond to the variable they affect. Mathematically, any sufficiently

large number will make the formulations valid. Lastly, let P split define the point in time

which separates the first phase from the second phase.

An overview of the parameters found in the model formulation is given in Table 6.2.

6.1.4 Variables

The only variables that do not vary with the scenarios, are the xij and ti variables. These

constitute the first stage variables and define the planned surgery schedule. xij are binary

variables that define the sequence of surgeries. They take the value 1 if surgery j is

in position i, and 0 otherwise. The ti variables are continuous variables that state the
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Table 6.2: Parameters in the Phase Model

Parameter Description

Dω
jh Duration of surgery j in phase h in scenario ω

d Point of time beyond which overtime is incurred
n Last element of the set N
cwj Waiting time penalty for surgery j

csj Idle time penalty for surgery j

clj Overtime penalty for surgery j

M δ
i ,M

s
i ,M

w
i ,M

l
i ,M

late Sufficiently large numbers

P split Point in time defining the split between phase 1 and 2

scheduled start time of the surgery that is assigned to position i. The start time for the

first surgery, t1, is always set to 0.

There are a total of seven other variable groups that are part of the second stage. The first

variables are τωih, which set the phase of a surgery. More formally, τωih take the value 1 if the

surgery is in position i in phase h, and 0 otherwise. Since the decision of start time gives

the phase, the decision-dependent uncertainty is modelled through the τωih variables, which

in combination with the Dω
jh matrix, select the appropriate surgery duration distribution

to use.

To calculate the duration of the surgery in a given position, one need to to multiply the

phase variable, the position variable and the duration matrix. To be able to keep our

model linear, we introduce the variables yωijh = xijτ
ω
ih, which can be linearised with some

additional constraints. In this definition, yωijh vary with the scenario through the phase

variables. However, the first stage decisions are conserved within the xij variables, which

are transferred to yωijh.

The three variable groups wωij , s
ω
ij , and lωij are the waiting time, idle time and overtime,

respectively. These are continuous variables, decided by the adjustments to the schedule

made according to delays or early finishes in the preceding surgeries. If a surgery j is

scheduled to position i in some scenario ω, then wωij can take a positive value for the

amount of time that surgery must wait between the scheduled start time and the actual

surgery start time. Similarly, sωij are the amount of time after surgery j in position i that

is not used for surgery, given that surgery j is in position i. Lastly, lωij can be positive

when surgery j is in position i and is the amount of time of that surgery that is after time

d.

Variables gω are continuous slack variables that measure the earliness with respect to d

in a given scenario ω. That is, they are the time between the end of the last surgery and

the end of the regular working day. These variables are not penalised, and are used in

the model formulation to balance time constraints. If there is any overtime in a given

scenario, these are equal to 0.
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The last variables are δωi . These are binary indicator variables used to correctly identify

the overtime of each surgery, and are mathematically defined as

δωi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if ∑
j∈N

wωij + ti ≥ d

0 elsewhere

(20)

δωi take the value 1 when the entire surgery in position i is in overtime, i.e., when the

actual starting point of the surgery is greater than d. This relationship will be expressed

as two linear constraints in the mathematical model. A brief summary of the variables is

given in Table 6.3.

Table 6.3: Variables in the Phase Model

Variable Description

xij 1 if surgery j is in position i
ti Scheduled start time of the surgery in position i
τωih 1 if the surgery in position i is in phases h in scenario ω
yωijh 1 if surgery j is in position i and in phase h in scenario ω

wωij Waiting time when surgery j is in position i in scenario ω

sωij Idle time after surgery j when it is in position i in scenario ω

lωij Over time when surgery j is in position i in scenario ω

δωi 1 if entire surgery in position i is in overtime in scenario ω
gω Slack variable that measures the earliness with respect to d in scenario ω

6.1.5 Phase Model formulation

This section presents the mathematical model formulation of the scheduling problem with

phase-dependent surgery durations. After the full model formulation, the objective and

all constraints will be explained in detail. The reader is referred to the preceding sections

for all notation definitions.

min∑
ω∈Ω

1

∣Ω∣
[ ∑
i∈N

∑
j∈N

(cwj w
ω
ij + c

s
js
ω
ij + c

l
jl
ω
ij)] (21)

s.t ti − ti+1 − ∑
j∈N

wωi+1,j + ∑
j∈N

sωij + ∑
j∈N

wωij = − ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh i ∈ N ∖ {∣N ∣} , ω ∈ Ω (22)

tn + ∑
j∈N

wωnj − ∑
i∈N

∑
j∈N

lωij + g
ω
= − ∑

j∈N

∑
h∈H

Dω
jhy

ω
njh + d ω ∈ Ω (23)

∑
j∈N

lωij ≥ ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh −M

δ
i (1 − δ

ω
i ) i ∈ N,ω ∈ Ω (24)

∑
j∈N

lωij ≥ ti + ∑
j∈N

wωij + ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh − d −M

δ
i δ
ω
i i ∈ N,ω ∈ Ω (25)
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M δ
i δ
ω
i ≥ ∑

j∈N

wωij + ti − d i ∈ N,ω ∈ Ω (26)

M δ
i (1 − δ

ω
i ) ≥ d − (ti + ∑

j∈N

wωij) i ∈ N,ω ∈ Ω (27)

∑
i∈N

xij = 1 j ∈ N (28)

∑
j∈N

xij = 1 i ∈ N (29)

sωij ≤M
sxij i ∈ N, j ∈ N,ω ∈ Ω (30)

wωij ≤M
w
i xij i ∈ N, j ∈ N,ω ∈ Ω (31)

lωij ≤M
l
jxij i ∈ N, j ∈ N,ω ∈ Ω (32)

yωijh ≤ xij i ∈ N, j ∈ N,h ∈H,ω ∈ Ω (33)

yωijh ≤ τ
ω
ih i ∈ N, j ∈ N,h ∈H,ω ∈ Ω (34)

yωijh ≥ xij + τ
ω
ih − 1 i ∈ N, j ∈ N,h ∈H,ω ∈ Ω (35)

ti + ∑
j∈N

wωij ≥ P
split

(1 − τωih) i ∈ N,ω ∈ Ω, h ∈ {1} (36)

ti + ∑
j∈N

wωij − P
split

≤M lateτωih i ∈ N,ω ∈ Ω, h ∈ {2} (37)

∑
h∈H

τωih = 1 i ∈ N,ω ∈ Ω (38)

xij ∈ {0,1} i ∈ N, j ∈ N (39)

τωih ∈ {0,1} i ∈ N,h ∈H,ω ∈ Ω (40)

t1 = 0, ti ≥ 0 i ∈ N (41)

δωi ≥ 0 i ∈ N,ω ∈ Ω (42)

wωij ≥ 0, sωij ≥ 0, lωij ≥ 0 i ∈ N, j ∈ N,ω ∈ Ω (43)

yωijh ≥ 0 i ∈ N, j ∈ N,h ∈H,ω ∈ Ω (44)

gω ≥ 0 ω ∈ Ω, ω ∈ Ω (45)

The model minimises the objective function (21), which is a weighted sum of all waiting

time, idle time, and overtime for elective patients. In a regular stochastic model, the

objective contains the expected second-stage cost which, for discrete stochastic scenarios,

can be calculated as a sum over all second-stage costs multiplied by the probability of that

scenario. However, when we introduce decision-dependent uncertainty, the probability of a

given scenario is not given by the regular expression pω, but rather by a function p(ω, τωih).

This probability multiplied with the weighted sum of waiting time, idle time, and overtime

is clearly non-linear. To be able to utilise linear optimisation theory, we choose to set
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p(ω, τωih) =
1
∣Ω∣ . The probability of a given scenario is therefore constant and equal for all

scenarios.

The objective function given by (21), and equations (22), (23), (28) and (29), are similar

to those proposed by Mancilla and Storer [17]. Equation (22) defines the waiting time and

idle time for every surgery and scenario, by balancing these times with the starting times

and duration of all subsequent surgeries. This may be more easily interpreted by noting

that ti + ∑
j∈N

wωij is the actual starting time of the surgery in position i. The equation then

states that the difference between the actual starting time of two subsequent surgeries,

plus any idle time between them, must equal the duration of the first of these two surg-

eries. Equation (23) gives a similar balance for the actual start of the last surgery, total

overtime, any potential slack at the end of the day, surgery duration and the defined end

of regular working hours. Equation (22) is adapted to handle the different phases. Simi-

larly, equation (23) is adapted to handle overtime given for each patient. Compared to the

formulation by Mancilla and Storer [17], the surgery specific overtime variables actually

make equation (23) redundant, because additional constraints are needed to allocate the

overtime appropriately among the surgeries. However, the model performs significantly

better with these constraints, making the constraints good valid inequalities. For com-

pleteness, the constraints are kept in the model formulation instead of placed with other

useful valid inequalities in Chapter 6.1.7.

Constraints (24) and (25) define the overtime for a given position and surgery. Each of

these constraints contains a big-M part, depending on whether the entire surgery is in

overtime or not. This means that at most one of the two inequalities can have a positive

right hand side (RHS). If the entire surgery is in overtime, the δωi variables are equal to 1

and constraints (24) state that the overtime must be at least equal to the surgery duration.

On the other hand, if δωi are zero, constraints (25) force the overtime to be greater than or

equal to the part of the surgery that is in overtime (or zero if it ends before d). Because

the objective is minimised, the overtime will be equal to the highest of the RHS of (24),

the RHS of (25), and 0. Equation (26) utilises a big-M notation to force δωi to 1 when

the entire surgery in position i is in overtime, while equation (27) makes δωi take the value

0 in the opposite case. Equation (28) ensures that each surgery is assigned to a position

and (29) makes sure every position has a surgery. Equations (30), (31) and (32) force the

idle time, waiting time and overtime, respectively, to zero, if a surgery j is not assigned to

position i. Constraints (33), (34) and (35) linearise the relationship between yωijh, xij and

τωih. Equation (33) forces yωijh to 0 when the corresponding xij is 0, while (34) forces yωijh
to 0 when the corresponding τωih is 0. Each of these constraints is redundant when xij or

τωih are 1, respectively. When both xij and τωih are 1, the constraints (35) force yωijh to take

the value 1. When either xij or τωih are 0, these constraints are redundant. Constraints

(36) and (37) set the phase of the surgery in a given position based on the actual start

time. More precisely, if the actual start time is before the split between the phases, the

constraints (36) force τωih to 1 for phase h = 1. On the other hand, if the actual start time
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is after the split between the phases, equation (37) sets τωih to 1 for phase h = 2. To make

sure exactly one phase is selected for each position, constraints (38) are needed as well.

The remaining constraints, in equations (39) - (45), are the variable domains.

The reader should note that the overtime formulations are not completely precise in all

cases. In some rare occasions, the sum of overtimes for all surgeries is not equal to the

total overtime. This anomaly appears because of the equality sign in balance constraints

(23) in combination with the possibility of idle time between two surgeries in overtime. To

balance these constraints, this idle time is also counted as overtime, but does not really

belong to any of the surgeries in overtime. However, because constraints equations (24)

and (25) are ≥ -constraints, the idle time can still be allocated to one of the surgeries.

If there are several surgeries with overtime, this idle time is thus assigned to the surgery

with the lowest cost of overtime. Because this problem rarely occurs and the amount of

idle time is small when it happens, we do not introduce extra notation to handle these

cases. In practice, this means that this special case of idle time is penalised both as any

other idle time and as overtime.

6.1.6 Strengthening the big-M formulations

The big-M used in the MIP formulation may negatively affect the performance of the model

if not appropriately set. The formulations should therefore be as tight as possible.

M s, from equation (30) is given by

M s
= max

j∈N
{ max
h∈H,ω∈Ω

{Dω
jh} − min

h∈H,ω∈Ω
{Dω

jh}} (46)

which is the largest value sωij can take. This will be the case if the surgery with the largest

difference in possible duration, is scheduled to require its maximum duration, but actually

ends up lasting its minimum duration.

From equation (31), Mw
i is set to

Mw
i =

i−1

∑
j=1

aj (47)

where aj is the jth largest value in

max
h∈H,ω∈Ω

{Dω
jh} − min

h∈H,ω∈Ω
{Dω

jh} (48)

Mw
i is therefore the largest possible value of wωij . This happens when all previous surg-

eries have been scheduled to last their minimum duration, while they actually take their
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maximum. The validity of these two big-M formulations are proved by Mancilla and

Storer [80].

M l
j from equation (32) can be set to the maximum amount of overtime a surgery can

suffer, which is equal to the longest surgery duration for that surgery. Mathematically,

this can be expressed as

M l
j = max

h=2,ω∈Ω
{Dω

jh} (49)

with h = 2, because overtime can only occur in phase two.

M δ
i in constraints (26) and (27) can be strengthened to

M δ
i = max

ω∈Ω
{ ∑
j∈N

wωij + ti − d, d − ∑
j∈N

wωij + ti} (50)

that is, the maximum of the difference between the latest possible scheduled start and

d, and the difference between the earliest possible start time and d. This is equivalent

to

M δ
i = max{

i−1

∑
j=1

bmax
j − d, d −

i−1

∑
j=1

bmin
j } (51)

where bmax
j is the jth largest possible realisation of surgery durations for all surgeries, i.e.

jth largest of maxh∈H,ω∈ΩD
ω
jh and bmin

j is the jth smallest of minh∈H,ω∈ΩD
ω
jh.

Similarly, M late in constraints (37) can be tightened to the latest possible start time less

the parameter P split. Using the same definition of bmax
j as above, this is given by

M late
=
n−1

∑
j=1

bmax
j − P split (52)

6.1.7 Valid inequalities

The model formulation in the previous section is sufficient to find optimal solution, but

the LP-relaxation includes many infeasible solutions making the formulation inefficient.

In order to to strengthen the formulation and LP relaxation of the formulation further,

we introduce several valid inequalities.

Several papers concerning valid inequalities were discussed in Chapter 3. Applegate and

Cook [32] look at several cuts for the job shop problems, which we adapt to the surgery

scheduling problem. Different from the problem we face, the jobs in the job shop problem
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need to be scheduled subsequently on several machines. It is in that case meaningful to

discuss measures, such as the earliest possible starting time on a given machine, when gen-

erating cuts. On our single machine (operating room), this will simply be 0, which makes

the cuts proposed by Applegate and Cook [32] much weaker in our formulation.

The first cut they consider is given by equation (53). In this equation, ENα denote the

earliest possible starting times of all jobs, j ∈ N , on machine α, and the equation simplifies

to equation (54), because ENα = 0 in our problem.

∑
i∈N

∑
j∈N

∑
h∈H

Dω
jhtij ≥ ENα∑

j∈J

∑
h∈H

Dω
jh + ∑

i∈N

∑
j∈N ∣j<i

∑
h∈H

Dω
jhD

ω
ih ω ∈ Ω (53)

∑
i∈N

∑
j∈N

∑
h∈H

Dω
jhtij ≥ ∑

i∈N

∑
j∈N ∣j<i

∑
h∈H

Dω
jhD

ω
ih ω ∈ Ω (54)

Specific for our problem, we have found that the following proposed inequalities improve

the formulation. Most proofs follow the same structure, and we have therefore omitted

them in the text. They can, however, be found in Appendix A.

Proposition 6.1. The precedence inequality

τωi1 ≥ τ
ω
i+1,1 (55)

is valid for all i ∈ N ∖ {∣N ∣} and ω ∈ Ω.

Proof. These constraints are easily confirmed using the definition of τωih. Assume that for

a given position i, the corresponding τωi1 = 0. Then

τωi1 = 0 Ô⇒ P split
≤ ti + ∑

j∈N

wωij

From balance equation (22) we know that

ti + ∑
j∈N

wωij ≤ ti+1 + ∑
j∈N

wωi+1,j

and thus

P split
≤ ti+1 + ∑

j∈N

wωi+1,j Ô⇒ τωi+1,1 = 0 ≤ τωi1.

If τωi1 = 1, then this cut does not restrict τωi+1,1. This cut is equivalent to τωi2 ≤ τ
ω
i+1,2.

Proposition 6.1 state that if the surgery in position i is in phase 2, then the surgery in

position i + 1 must also be in phase 2.
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Proposition 6.2. The inequalities

ti+1 ≥ ti + min
h∈H,ω∈Ω

∑
j∈N

Dω
jhxij (56)

are valid for all i ∈ N ∖ {∣N ∣} and must be satisfied in the optimal solution.

The inequalities in Proposition 6.2 cut several LP solutions by setting a minimum and

maximum spread between surgeries in subsequent positions. The inequalities state that

the surgery in position i + 1 must start at least as long after the surgery in position i as

the shortest possible duration of the surgery in that position. If the starting intervals are

closer, the surgery in position i + 1 will introduce waiting time in every scenario, which is

never optimal. In addition, they state that the surgery in position i+1 must start at least

as long after the surgery in position i as the longest duration realisation of the surgery in

that position. If the starting intervals are further apart, this will introduce idle time in

every scenario.

Proposition 6.3. The following precedence constraints

δωi ≤ δωi+1 (57)

are valid for all i ∈ N ∖ {∣N ∣} and ω ∈ Ω.

Proposition 6.3 states that if the entire surgery in position i is in overtime, then the entire

surgery in position i + 1 must be in overtime. This is a trivial result, and cuts away some

possible configurations of δωi . However, because there are, generally, few surgeries with a

positive δωi , this is not a very strong cut.

Proposition 6.4. The equality constraints

∑
h∈H

∑
i∈N

yωijh = 1 (58)

is an expansion of equation (28) and must hold for all j ∈ N and ω ∈ Ω. Similarly,

expansion of equation (29) from the model formulation

∑
h∈H

∑
j∈N

yωijh = 1 (59)

must hold for all i ∈ N and ω ∈ Ω.

The following proof will show the validity of the first equation, while the second equation

has an almost identical logic. The second part is included in Appendix A for completeness.

These relationships are often too complex to be detected by general optimisation software

within reasonable time, so we expect the explicit inclusion of these cuts to significantly

strengthen the formulation.

Proof. For binary values of yωijh, xij and τωih, Table 6.4 shows that equations (33)-(35) are
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enough to linearise the relationship yωijh = xijτ
ω
ih. The binding constraints are marked as

active for each combination of values for xij and τωih.

Table 6.4: Linearisation of yωijh

yωijh xij τωih (33) (34) (35)

0 0 0 active active inactive
0 0 1 active inactive inactive
0 1 0 inactive active inactive
1 1 1 inactive inactive active

From equation (29) in the model we know that

∑
j∈N

xij = 1 i ∈ N

and from equation (38) we have

∑
h∈H

τωih = 1 i ∈ N,ω ∈ Ω

Combining this with the linearisation, we get

yωijh = xijτ
ω
ih i ∈ N, j ∈ N,h ∈H,ω ∈ Ω Ô⇒

∑
h∈H

∑
j∈N

yωijh = ∑
h∈H

∑
j∈N

xijτ
ω
ih i ∈ N,ω ∈ Ω Ô⇒

∑
h∈H

∑
j∈N

yωijh = ∑
h∈H

τωih ∑
j∈N

xij Ô⇒ yωijh = 1 ⋅ 1 = 1 i ∈ N,ω ∈ Ω.

6.2 Emergency Model

The second mathematical model we present is a three-stage stochastic MIP. This model

incorporates stochastic arrival of emergency patients, in addition to stochastic surgery

durations.

6.2.1 Model design considerations

Similar arguments for a simplified information structure as those raised for the Phase

Model, can be made for the Emergency Model. This means we can maintain the two-stage

structure for the part of the information structure that is related to surgery durations.

In addition, we model the number of emergency patients as an individual stage, giving

a structure with three stages. In practice, elective patients are given an appointment

time days or weeks ahead of the surgery, while the number of emergency patients that are
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Figure 6.3: Stochastic information structure with three stages

transferred to the orthopaedic department is known by the start of a given day. Therefore,

before the surgery durations are revealed, the planners are made aware of which, if any,

emergency surgeries need to be performed that day. With this in mind, the planners

set the scheduled start time for the newly revealed emergency patients. In the last stage,

knowing all surgery durations, the actual start times are determined according to the same

trivial rule of performing them as soon as possible, which determines all waiting time, idle

time, and overtime.

The information structure described is shown in Figure 6.3. It has the same notation and

colour scheme as in Section 6.1.1. The branching to the second stage is denoted by the

emergency scenario index ξ, while the branching to the last stage is given by ω. Thus, a

given scenario is indexed by the combination of ω and ξ.

Due to Assumption 3, which states that all surgeries must be performed on the day they

are planned, we require that the last surgery of the day cannot be an emergency surgery.

In reality, some coordinators have a policy of deferring the last surgeries of the day if they

are likely to lead to overtime, and if the last surgery is an emergency patient this would

not be an option because of urgency considerations. Therefore, requiring the last surgery

of the day to be an elective surgery, makes sure the schedules we create can be applied to

the current practice.

6.2.2 Sets and indices

Let N be the set of all elective surgeries and the possible positions of these, as before.

Surgeries are still indexed by j, and positions by i. In this model, i will also indicate the

position of an elective surgery before which an emergency surgery can be placed. Let Qξ

be the set of all emergency surgeries q and subpositions u an emergency surgery can take

before an elective surgery, in emergency scenario ξ. That is, for a given elective surgery

position, the index u ∈ Qξ impose an order on the emergency surgeries placed before

that position. Together, the indices i and u define the possible positions for emergency

surgeries. For example, one emergency surgery can be inserted as the first surgery (u = 1)
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before the first elective surgery (i = 1), while another emergency surgery is scheduled as

the second emergency surgery (u = 2) before the same elective surgery (still i = 1). The set

Ω is the set of all scenarios of surgery durations, for both elective and emergency surgeries,

and is indexed by ω. Further, let the set Ξ be the set of emergency scenarios, indexed by

ξ.

The sets and indices described are summarised in Table 6.5.

Table 6.5: Sets and indices in the Emergency Model

Set Description

N Positions and surgeries, indexed by i and j
Ω Scenarios of surgery durations, indexed by ω
Ξ Scenarios of the number of emergency surgeries to perform, indexed by ξ
Qξ Emergency surgeries and subpositions in emergency scenario ξ,

indexed by q and u

6.2.3 Parameters

The parameters in the Emergency Model follow the same structure as in Section 6.1, but

without the phase index. The additional notation is related to the emergency surgeries,

indicated by superscript E.

Let Dω
j be the duration of elective surgery j in scenario ω, while DEω

q is the duration of

emergency surgery q in scenario ω. d is still the point in time defining the end of the regular

working day, so that any surgery time after this represents overtime. The probability of

emergency scenario ξ is given by pξ.

Let cwj , csj and clj be the unit cost of waiting time, idle time and overtime, respectively,

for surgery j. Similarly, cEwq , cEsq and cElq are the unit cost of waiting time, idle time and

overtime for emergency surgery q. The last parameters are used in big-M formulations.

All parameters used in the Emergency Model can be found in Table 6.6.

6.2.4 Variables

The Emergency Model has, in most problem instances, fewer binary variables than the

Phase Model because the phases are not included. It has, however, more continuous

variables, but is still a MIP model. The first-stage variables are exactly the same as in the

Phase Model, and define the scheduled sequence and start times of all elective surgeries.

In the second stage, the number of emergency patients has been revealed and need to be

scheduled. To keep track of the scheduled emergency surgeries, let zξiqu take the value 1 if

emergency surgery q is inserted as surgery number u before the elective surgery in position

i, in emergency scenario ξ. These variables are dependent on the emergency scenario to
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Table 6.6: Parameters in the Emergency Model

Parameter Description

Dω
j Duration of surgery j in scenario ω

DEω
q Duration of emergency surgery q in

scenario ω
d Point of time beyond which overtime is

incurred
pξ Probability of emergency scenario ξ
cwj Waiting time penalty for surgery j

csj Idle time penalty for surgery j

clj Overtime penalty for surgery j

cEwq Waiting time penalty for emergency
surgery q

cEsq Idle time penalty for emergency surgery q

cElq Overtime penalty for emergency surgery q

M δ,MEδ,M s
i ,M

w
i ,M

l
i ,M

Es
i ,MEw

i ,MEl
i Sufficiently large numbers

determine the number of patients. If emergency surgery q neither is inserted as number u

before the elective surgery in position i nor is defined for emergency scenario ξ, then zξiqu
take the value 0. φξiu are defined as the scheduled start time for the emergency surgery

inserted as number u before the elective surgery in position i, in emergency scenario ξ.

An important difference from the variables for elective patients, is that the number of

possible positions for emergency surgeries exceeds the number of emergency surgeries.

That is, given v emergency surgeries and n elective surgeries, then there are v ⋅ n possible

positions for each emergency surgery. The consequence of this is that φξiu will be defined

for some positions with no emergency surgery assigned to them.

The remaining variables belong to the third stage and are, as before, the adjustments to

the schedule based on the actual surgery durations. As in Section 6.1, the three variable

groups wωξij , sωξij and lωξij are the waiting time, idle time and overtime, respectively, for the

elective surgery j in position i in scenario ω and ξ. Similarly defined, wEωξiqu , sEωξiqu and lEωξiqu

are the waiting time, idle time and overtime for emergency surgery q inserted as number u

before the elective surgery in position i in scenario ω and ξ. The last continuous variables

are the balance slack gωξ, which measure the earliness with respect to d in scenario ω and

ξ.

The only binary variables in the third stage are the indicator variables δωξi and δEωξru for

elective and emergency surgeries, respectively, indicating whether the entire corresponding

surgery is in overtime.

All variables used in the Emergency Model are shown in Table 6.7.
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Table 6.7: Variables in the Emergency Model

Variable Description

xij 1 if surgery j is in position i

zξiqu 1 if emergency surgery q is inserted as number u before elective surgery in
position i in emergency scenario xi

ti Scheduled start time of the surgery in position i

φξiu Scheduled start time of the emergency surgery inserted as number u
before elective surgery in position i in emergency scenario ξ

wωξij Waiting time when surgery j is in position i in scenario ω and ξ

sωξij Idle time after surgery j when it is in position i in scenario ω and ξ

lωξij Overtime when surgery j is in position i in scenario ω and ξ

wEωξiqu Waiting time when emergency surgery q is inserted as number u before
elective surgery in position i in scenario ω and ξ

sEωξiqu Idle time after emergency surgery q when it is inserted as number u before
elective surgery in position i in scenario ω and ξ

lEωξiqu Overtime when emergency surgery q is inserted as number u before
elective surgery in position i in scenario ω and ξ

gωξ Slack variable measuring the earliness with respect to d in scenario ω and ξ

δωξi 1 if the entire surgery in position i is in overtime in scenario ω and ξ

δEωξiu 1 if the entire emergency surgery inserted as number u before elective
position i is in overtime in scenario ω and ξ

6.2.5 Emergency Model formulation

In this section, the mathematical formulation of the Emergency Model is presented. All

the notation used is defined in the previous sections, with accompanying tables for quick

reference. We first state the mathematical model and then explain the logical structure of

the objective, constraints and discuss some mathematical caveats of the model.

min∑
ξ∈Ξ

∑
ω∈Ω

pξ

∣Ω∣
[ ∑
i∈N

∑
j∈N

(cwj w
ωξ
ij + csjs

ωξ
ij + c

l
jl
ωξ
ij )

+ ∑
i∈N

∑
q∈Qξ

∑
u∈Qξ

(cEwq wEωξiqu + cEsq sEωξiqu + cElq l
Eωξ
iqu )] (60)

s.t ti − ti+1 − ∑
j∈N

wωξi+1,j + ∑
j∈N

wωξij + ∑
j∈N

sωξij + ∑
q∈Qξ

∑
u∈Qξ

sEωξi+1,q,u

= − ∑
j∈N

Dω
j xij − ∑

q∈Qξ

∑
u∈Qξ

DEω
q zξi+1,q,u i ∈ N ∖ {∣N ∣} , ω ∈ Ω, ξ ∈ Ξ (61)

tn + ∑
j∈N

wωξnj − ∑
i∈N

∑
j∈N

lωξij − ∑
i∈N

∑
q∈Qξ

∑
u∈Qξ

lEωξiqu + gωξ = − ∑
j∈N

Dω
j xnj + d ω ∈ Ω, ξ ∈ Ξ (62)
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φξiu + ∑
q∈Qξ

wEωξiqu + ∑
q∈Qξ

sEωξiqu + ∑
q∈Qξ

DEω
q zEξiqu ≤ ti + ∑

j∈N

wij i ∈ N,ω ∈ Ω, ξ ∈ Ξ, u ∈ Qξ (63)

φξiu + ∑
q∈Qξ

wEωξiqu + ∑
q∈Qξ

sEωξiqu + ∑
q∈Qξ

DEω
q zEξiqu ≤ φ

ξ
i,u+1 + ∑

q∈Qξ

wEωξiq,u+1 +M
Ez
i (1 − ∑

q∈Qξ

ziq,u+1)

i ∈ N,ω ∈ Ω, ξ ∈ Ξ, u ∈ Qξ (64)

ti + ∑
j∈N

wξωij + ∑
j∈N

sξωij + ∑
j∈N

Dω
j xij ≤ φ

ξ
i+1,u + ∑

q∈Qξ

wEωξi+1,qu +M
Ez
i (1 − ∑

q∈Qξ

ziq,u+1)

i ∈ N ∖ ∣N ∣ , ω ∈ Ω, ξ ∈ Ξ, u ∈ Qξ (65)

∑
j∈N

lωξij ≥ ∑
j∈N

Dω
j xij −M

δ
i (1 − δ

ωξ
i ) i ∈ N,ω ∈ Ω, ξ ∈ Ξ (66)

∑
j∈N

lωξij ≥ ti + ∑
j∈N

wωξij + ∑
j∈N

Dω
j xij − d −M

δ
i δ
ωξ
i i ∈ N,ω ∈ Ω, ξ ∈ Ξ (67)

M δ
i δ
ωξ
i ≥ ∑

j∈N

wωξij + ti − d i ∈ N,ω ∈ Ω, ξ ∈ Ξ (68)

M δ
i (1 − δ

ωξ
i ) ≥ d − (ti + ∑

j∈N

wωξij ) i ∈ N,ω ∈ Ω, ξ ∈ Ξ (69)

∑
q∈Qξ

lEωξiqu ≥ ∑
q∈Qξ

DEω
q zξiqu −M

Eδ
i (1 − δEωξiu ) i ∈ N,u ∈ Qξ, ω ∈ Ω, ξ ∈ Ξ (70)

∑
q∈Qξ

lEωξiqu ≥ φξiu + ∑
q∈Qξ

wEωξiqu + ∑
q∈Qξ

DEω
q zξiqu − d −M

Eδ
i δEωξiu i ∈ N,u ∈ Qξ, ω ∈ Ω, ξ ∈ Ξ (71)

MEδ
i δEωξiu ≥ ∑

q∈Qξ

wEωξiqu + φξiu − d i ∈ N,u ∈ Qξ, ω ∈ Ω, ξ ∈ Ξ (72)

MEδ
i (1 − δEωξiu ) ≥ d − (φξiu + ∑

q∈Qξ

wEωξiqu ) i ∈ N,u ∈ Qξ, ω ∈ Ω, ξ ∈ Ξ (73)

∑
i∈N

xij = 1 j ∈ N (74)

∑
j∈N

xij = 1 i ∈ N (75)

∑
i∈N

∑
u∈Qξ

zξiqu = 1 ξ ∈ Ξ, q ∈ Qξ (76)

∑
q∈Qξ

zξiqu ≤ 1 i ∈ N,u ∈ Qξ, ξ ∈ Ξ (77)

sωξij ≤M sxij i ∈ N, j ∈ N,ω ∈ Ω, ξ ∈ Ξ (78)

wωξij ≤Mw
i xij i ∈ N, j ∈ N,ω ∈ Ω, ξ ∈ Ξ (79)

lωξij ≤M l
ixij i ∈ N, j ∈ N,ω ∈ Ω, ξ ∈ Ξ (80)
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sEωξiqu ≤MEszξiqu ξ ∈ Ξ, i ∈ N, q ∈ Qξ, u ∈ Qξ, ω ∈ Ω (81)

wEωξiqu ≤MEw
i zξiqu ξ ∈ Ξ, i ∈ N,q ∈ Qξ, u ∈ Qξ, ω ∈ Ω (82)

lEωξiqu ≤MEl
i zξiqu ξ ∈ Ξ, i ∈ N, q ∈ Qξ, u ∈ Qξ, ω ∈ Ω (83)

xij ∈ {0,1} i ∈ N, j ∈ N (84)

ti ≥ 0, t1 ≤M
Ez
1 i ∈ N (85)

δωξi ∈ {0,1} i ∈ N,ω ∈ Ω, ξ ∈ Ξ (86)

wωξij ≥ 0, sωξij ≥ 0, lωξij ≥ 0 i ∈ N, j ∈ N,ω ∈ Ω, ξ ∈ Ξ (87)

gωξ ≥ 0, ω ∈ Ω, ξ ∈ Ξ (88)

zξiqu ∈ {0,1} i ∈ N, ξ ∈ Ξ, q ∈ Qξ, u ∈ Qξ (89)

δEωξiu ∈ {0,1} i ∈ N,u ∈ Qξ, ω ∈ Ω, ξ ∈ Ξ (90)

wEωξiqu ≥ 0, sEωξiqu ≥ 0, lEωξiqu ≥ 0 i ∈ N, ξ ∈ Ξ, q ∈ Qξ, u ∈ Qξ, ω ∈ Ω (91)

φξiu ≥ 0, φξiu ≤M
Ez
i i ∈ N, ξ ∈ Ξ, u ∈ Qξ (92)

Except for extra notation, and some more complicating constraints, the basic structure of

the Emergency Model is similar to the Phase Model.

In this model the objective function is given by equation (60). The objective is, as before,

to find the optimal balance of waiting time, idle time and overtime. However, we also have

to include these measures for the emergency surgeries. The objective is summed over all

scenarios ω and ξ, and the probability function is assumed to be constant in ω. However, in

contrast to the Phase Model, the objective function would be linear even if the probability

was dependent on the full scenario ω and ξ. There is no reason to give the surgery duration

scenarios, ω, different probabilities from the way we generate the scenarios, but it makes

sense to allow different emergency scenarios to have different probability as the differences

between the emergency scenario are much more significant. For example, zero emergency

surgeries are more likely than one or two. Note that the durations of all surgeries are

unaffected by the number of emergency patients.

Equations (61) - (65) constitute the balance constraints for both elective and emergency

surgeries. Firstly, equation (61) defines the waiting time and idle time for every subsequent

elective surgery. However, there may be scheduled emergency surgeries between elective

surgeries, which must be included in the sum. This gives two extra terms compared to

equation (22) in the elective model. It is worth noticing that only idle time and duration

of potential emergency surgeries are included. This might not seem correct at first glance,

but the waiting time of surgeries in the middle of a sequence of surgeries are already

accounted for by the duration of the preceding surgery. By including the duration and

idle time, the equation will sum from the actual start (ti + ∑
j∈N

wωξij ) of an elective surgery
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to the actual start of the next elective surgery. Constraints (62) balance the actual start

of the last surgery with overtime, duration of the last surgery, slack and the end of regular

working hours. Because the emergency position variable, zξiqu is 1 if emergency surgery q

is inserted before elective surgery i, we know that the last surgery on a given day must

be elective. Therefore, equation (62) is correct in this model, but must include potential

overtime in emergency surgeries that occurs before the last elective surgery. None of the

two preceding constraints set the scheduled start time of the emergency surgeries because

they start from an elective surgery and sum over the emergency surgeries.

Constraints (63) force the finish time of an emergency surgery to be equal or less to the

actual start time of the next elective patient. Equation (64) forces the finish time of the

emergency patient in one subposition to be less then actual start of the potential emergency

patient in the proceeding position. Constraints (65) ensure that the actual start time of the

first emergency is after the previous elective has finished. The two last equations require

big-M formulations. This results from the fact that some possible positions for emergency

patients are unoccupied. The big-M formulations make sure that the constraints only

are binding if there is an emergency patient in the current position. Together, these

three constraints balance the start time, waiting time, idle time and overtime of all the

emergency patients.

Constraints (66) and (67) set the overtime of elective surgeries, equivalently to the Phase

Model formulation, except that there is an additional scenario index. Equations (68) and

(69) force the indicator variables δωξi to 1 or 0 depending on whether the entire surgery

in position i is in overtime or not. Equations (70) - (73) are equivalent to Equations

(66)-(69), but for the emergency surgeries. Equations (74) and (75) are also found in

the Phase Model, and make sure each elective surgery is assigned to a position and that

each position is assigned a surgery. Constraints (76) force every emergency surgery of

an emergency scenario to be assigned to a position, while constraints (77) ensure each

emergency position gets at most one emergency surgery. Because the number of possible

positions for emergency surgeries exceeds the number of actual emergency surgeries, these

cannot be equality constraints. The succeeding six constraints (78) - (83) force the idle

time, waiting time and overtime for both elective and emergency surgeries, respectively,

to 0 if there are no surgery scheduled for the corresponding position. If there is a surgery

scheduled to that position, the big-M notation will make the constraints redundant. The

remaining constraints (84) - (92) are the definitions of the variable domains.

6.2.6 Strengthening the big-M formulations

The big-M formulations in the constraints in the Emergency Model are similar to those

of the Phase Model, but are stated here for completeness. To ease the equations, the

following are defined
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dj = max
ω∈Ω

{Dω
j } −min

ω∈Ω
{Dω

j } (93)

dEq = max
ω∈Ω

{DEω
q } −min

ω∈Ω
{DEω

q } (94)

In addition, we define Qmax as the set of emergency patients in the scenario ξ that has

the largest number of emergency arrivals.

M s is given by

M s
= max

j∈N
{dj} + ∑

q∈Qmax

max
ω∈Ω

{Dω
q } (95)

This follows from the corresponding explanation in the Phase Model, and takes into ac-

count that the number and positions of emergency patients are uncertain. Thus, it may

be optimal to allocate more idle time in order to be able to handle a maximum num-

ber and duration of emergency surgeries. This information is revealed at the same time

for all emergency surgeries. The maximum possible idle time for emergency patients is,

equivalently as for the Phase Model, given by

MEsξ
= max{max

j∈N
{dj} ,max

q∈Qξ
{dEq }} (96)

Conversely, the worst schedule for the elective patients in this scenario is when no idle

time is allocated, which would cause waiting time equal to

Mw
i =

i−1

∑
j=1

aj + ∑
q∈Qmax

max
ω∈Ω

{DEω
q } (97)

where aj is the jth largest value of dj . The same holds for MEw
i , but in addition, infor-

mation of the emergency arrival is revealed.

MEwξ
i =

i−1

∑
j=1

aj +
∣Qξ ∣−1

∑
q=1

bq (98)

where bq is the qth largest value in dEq .

M l
j will remain the same the big-M for overtime in the Phase Model, and MEl

q will,

equivalently, be given by

MEl
q = max

ω∈Ω
{DEω

q } (99)
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M δ
i is set to

M δ
i = max

⎧⎪⎪
⎨
⎪⎪⎩

i−1

∑
j=1

bmax
j + ∑

q∈Qmax

max
ω∈Ω

{DEω
q } − d, d −

i−1

∑
j=1

bmin
j

⎫⎪⎪
⎬
⎪⎪⎭

(100)

where bmax
j is the jth longest possible surgery durations for all surgeries, i.e. jth largest of

maxω∈ΩD
ω
j and bmin

j is the jth smallest of minω∈ΩD
ω
j . MEδ

i is, equivalently, given by

MEδξ
i = max

⎧⎪⎪
⎨
⎪⎪⎩

i−1

∑
j=1

bj +
∣Qξ ∣−1

∑
q=1

max
ω∈Ω

{DEω
q } − d, d −

i−1

∑
j=1

bmin
j

⎫⎪⎪
⎬
⎪⎪⎭

(101)

that is, the maximum difference between the latest or earliest possible start time and the

parameter d.

MEz
i is the latest start of any surgery, given by

MEz
i =

i−1

∑
j=1

max
ω∈Ω

{Dω
j } + ∑

q∈Qmax

max
ω∈Ω

{DEω
q } (102)

6.2.7 Valid inequalities

Propositions 6.2 and 6.3 from the Phase Model hold in this formulation and may be

further extended to include emergency patients. The structure of the propositions remain

the same, and the full formulations are listed in Appendix A.

Proposition 6.5. The inequalities

∑
q∈Qξ

zξiqu ≥ ∑
q∈Qξ

zξiq,u+1 (103)

are valid for all i ∈ N , ξ ∈ Ξ and u ∈ Qξ ∖ {∣Qξ ∣} and must be satisfied in the optimal

solution.

The inequalities in Proposition 6.5 state that there must be an emergency surgery inserted

as number u before elective surgery i, before there can be a surgery inserted as number

u + 1 before the same elective surgery i. This is a logical cut, because it does not make

sense to define an emergency surgery as inserted as number two (u = 2) before a given

elective surgery i, if there is none inserted as number one (u = 1). Thus, this is added to

remove symmetric solutions.
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6.3 Challenges

The Phase Model and Emergency Model pose new challenges to the scheduling problem

solved by Denton et al. [19] and Mancilla and Storer [80]. More variables and constraints

complicate the structure and result in computationally harder problems. The main chal-

lenge is that there are continuous and integer variables in all stages. In the Phase Model,

this is a result of our way of handling decision-dependent probability. In order to be able

to use a general optimisation solver, the linearisation with binary variables (τωih) is nec-

essary. The Emergency Model introduces similar difficulties through the zEξiqu variables in

the second stage, resulting from how we define the timing of the revelation of information

about emergency arrivals. Further, both models have binary overtime indicator variables

that determine if the surgery starts after regular working hours. This could have been

omitted and simplified in the same way as was done by Mancilla and Storer [80]. But, to

make it possible to assign different costs to different surgeries, we think our formulation

is a more appropriate reflection of the practice at St. Olavs Hospital.

There are few general properties for stochastic MIPs. Birge and Louveaux [84] state that

the expected recourse function of an integer program is in general lower semi-continous,

non-convex and discontinous. This implies that the usual form of duality is lost and the

wide variety of decomposition methods that have been developed for stochastic linear

problem in literature, break down when integer variables are introduced [85]. Therefore,

we cannot use the same solution methods as Denton et al. [19] or Mancilla and Storer [80].

The development of stochastic MIP solution methods has attracted little attention in

research and there are consequently few general efficient solution procedures [84].

Birge and Louveaux [84] state that solution methods for stochastic MIPs usually start

with the use of the L-shaped method where the integrality constraints in the second-stage

variables are relaxed. This is another challenge as the LP-relaxation in our formulations

prove to be weak for the complete model. Weak LP-relaxations lead to excessive branching

and long computation times [86]. Even if the solver quickly finds a good solution and thus

a good upper bound, the lower bound will be far off. Consequently, it takes time to prove

that a good solution has been found.

Further, a third challenge is the balance constraints that include many variables. These

constraints couple many of the variables and may provide the solver with logical rela-

tionships between them. Decomposing our problem will deteriorate the structure and

connections in our model. Birge and Louveaux [84] suggest methods which decompose

the problem by stages or into one part with continuous variables and a second part with

only integer variables. These were tested, but did not result in improvements in execution

time.

Decomposition methods used on similar, but simpler, problems have been unsuccessful

in achieving a significant speedup. The maximum number of surgeries to schedule at
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St. Olavs Hospital is quite low and a formulation with some improving cuts is therefore

enough to find the optimal solution within a reasonable time. The scalability is, at this

point, quite low. To increase the solution time further on the cost of losing an optimality

guarantee, we will evaluate and suggest several heuristics. These also mitigate some of

the scalability problems. For bigger problem instances, more complex solution methods

can be evaluated. Laporte and Louveax [31] introduced the integer L-shaped method

for problems with binary variables in the first stage. These could be evaluated in future

study.

6.4 Heuristics

This section describes the heuristics that will be evaluated in the computational study

in Chapter 7. First we give the heuristic types a theoretical introduction, then we de-

scribe our use and implementation. The heuristics we look at are the Bailey-Welch rule,

sorting surgeries in order of increasing mean and variance, local search, and simulated

annealing.

In optimisation theory, heuristics are often categorised into groups, such as construction vs.

local search heuristics, diversifying vs. intensifying, randomised vs. systematic, etc. [87].

We choose divide the heuristics we consider into two categories, based on the amount of

optimisation performed by the heuristic; decision rules and heuristic searches. This does,

to some extent, reflect the complexity of the heuristic and what decisions are optimised.

The decision rules that will be discussed typically uniquely define a sequence of surgeries,

but allow the start times to be optimised, or they fix the start times, allowing the sequence

to be optimised. Some set both the start time and sequence based on surgery character-

istics. The more complex heuristics we consider include local searches that explore the

sequence of surgeries and then optimise the start times.

6.4.1 Bailey-Welch rule

The Bailey-Welch rule was briefly discussed in Chapter 3 and is often referred to in liter-

ature. Despite its simplicity, much literature reports good results using the rule. On the

other hand Bosch and Dietz [27] claim sequencing rules based on patient characteristics

do not give good performance. Therefore, we want to see how this decision rule performs

on our problem.

The rule schedules k surgeries to start at time 0, while the rest of the surgeries start

at fixed intervals equal to the average surgery duration. The value of k reflects the best

trade-off between patient waiting time and idle time, and is thus dependent on the weights

cwj , csj and clj . Welch and Bailey [22] found that k = 2 gave the best trade-off. We will

try with both k = 1 and k = 2. Because start times are defined for each position, this rule
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is easily implemented by imposing restrictions on ti. That is, for i ∈ {1, ..., k}, set ti = 0.

For all i > k, set ti − ti−1 = µ, where µ is the average surgery duration. The optimisation

implementation is then run to find the optimal sequence of surgeries.

Because the start times are fixed, the phase variables are trivial to find as well, except

for the cases where ti are close enough to P split, such that the actual start time may be

adjusted past P split. The only remaining decisions are the sequence and the calculations of

waiting time, idle time and overtime. We would expect this to simplify the optimisation,

which should be reflected in execution time. For problems with more surgeries, the number

of possible sequences increases fast, which for larger problems can be time consuming to

optimise. However, because the scheduled start times are fixed, there are a lot fewer

combination so evaluate.

6.4.2 Statistically based sequencing rules

Many statistical characteristics of patients are used in literature to guide decision rules. As

pointed out in the literature review, Weiss [24] proved in 1990 that the optimal sequence

of two surgeries is in order of increasing variance. According to Wang [16], the optimal

sequence of surgeries are in order of increasing mean surgery durations, under a set of

assumption. Denton et al. [19] also evaluated to sequence both in order of increasing mean

and increasing variance. Both of these sequencing rules will be tested for our model.

When the sequence is fixed, the optimisation software is run to find the optimal start times,

phases, waiting times, idle times and overtimes. However, there is very little flexibility for

the optimiser when the sequence is fixed, because many of the binary variables are closely

linked to the xij variables from the sequence. This makes it solve quickly.

6.4.3 Local search

In a local search heuristic, the solutions are iteratively improved. From an initial solution,

we make local modifications to find improved solutions. If no improving solution is found

in a neighbourhood, we stop in a local optimum [87]. The neighbourhood can either

be traversed systematically or randomly. There are also several ways to stop the search

through a neighbourhood. One could for example implement a first improvement or best

improvement criterion. The first approach searches the neighbourhood until it finds an

improving solution, in contrast to the latter approach that performs an exhaustive search

and selects the best solution if it is better than the current solution. Lundgren et al. [87]

provide a general description of the local search heuristic, which is restated in Algorithm

6.1. A minimisation problem is assumed in this explanation. Note that the x in this

description represent a solution to the optimisation problem at hand and do not correspond

with our xij variables.
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Algorithm 6.1 General local search

1: Start from a feasible solution x(0) with cost c(x(0)). Set k = 0.
2: Determine all points in the neighbourhood N(x(k)).
3: If c(x(k)) ≤ c(x) for all x ∈ N(x(k)) Ô⇒ stop.
4: Choose x(k+1) ∈ N(x(k)) such that c(x(k+1)) < c(x(k)).
5: Set k ∶= k + 1 and go to Step 2.

Figure 6.4: Two-swap neighbourhood of a sequence x, for three surgeries

Some definitions of neighbourhoods result in a large number of neighbours, which takes

too much time to search through. It may also be difficult to compute the objective value

of a neighbour if it, for example, requires solving a MIP.

We choose to test the performance of two different neighbourhoods. The neighbour-

hoods are also tested in an implementation of simulated annealing (SA), explained in the

next section. The solutions are selected based on best improvement, because the neigh-

bourhood sizes are manageable. However, neighbourhood sizes scale with the number of

surgeries, and a first improvement approach might be more suitable for large problem

instances.

The first neighbourhood we consider, is briefly mentioned by Bosch [28] and Denton and

Gupta [18], and is a two-swap neighbourhood. Bosch reports results close to optimal for his

problem instances. A mathematical description of this neighbourhood is given by equation

(104). The size of the two-swap neighbourhood is (
n
2
), which equals

n(n−1)
2 = O(n2).

An example of the neighbourhood is given in Figure 6.4 to visualise the neighbourhood.

This shows the neighbours of a given sequence x, where the swaps are marked in blue

boxes.

N(x) = {x′∣x′ib = x
′

aj = 1 ∧ xij = xab = 1 ∧ i ≠ a ∧ j ≠ b} (104)

A single swap neighbourhood would not work for our solutions, because if an xij = 1 is

flipped to 0, the same xij would have to be turned back to 1 to make the solution feasible

(due to constraits ∑
j
xij = ∑

i
xij = 1).

The second neighbourhood we consider is a surgery-pair swap. The surgery-pair swap

neighbourhood function chooses two pairs of subsequent surgeries in the sequence and

swaps these pairs. That is, the first surgery of the first pair, takes the position of the first
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Figure 6.5: Surgery-pair swap neighbourhood of a sequence x, for five surgeries

surgery of the second pair and vice versa. Equivalently, the second surgery of the first pair

switches position with the second surgery of the second pair. This neighbourhood is only

useful for data instances of five or more surgeries, because there is only one way to select

two surgery-pairs from four surgeries. An example of the neighbourhood is illustrated in

Figure 6.5 and shows the neighbourhood of a given solution x. Again, the blue boxes

indicate how the surgery pairs have been swapped. A mathematical description of the

surgery-pair swap neighbourhood function is found in equation (105).

N(x) = {x′∣x′ib = x
′

i+1,c = x
′

aj = x
′

a+1,h = 1 ∧ xij = xi+1,h = xab = xa+1,c = 1

∧ i ≠ a ≠ i + 1 ∧ j ≠ b ≠ j + 1} (105)

The number of unique neighbours in a given neighbourhood can be found as follows. For

a sequence of n surgeries, there are n−1 ways of selecting two subsequent surgeries. If the

two first surgeries are selected as the first pair, then there are n − 2 surgeries left, which

can be combined into n − 3 pairs. Similarly, if the second and third surgery are chosen as

the first surgery pair, there are only n − 3 surgeries left to consider in the sequence and

n−4 possible pairs. This gives a sum of (n−3)+(n−4)+⋅ ⋅ ⋅+1. Because we are looking for

unique neighbours, the pairs (a, b) and (c, d) are considered the same as (c, d) and (a, b).

Thus, to calculate the number of neighbours, one can sum over the number of possible

pairs after the first pair of surgeries in the sequence. Formalised, this gives the number

of neighbours equal to
n

∑
i=3

(n − i), which can be written as
(n−2)(n−3)

2 = O(n2). This has

the same complexity as the first neighbourhood, but is clearly a lot smaller for small n. A

comparison of the sizes for different n is shown in Table 6.8. However, there is a trade-off

between the neighbourhood size and the number of passes the algorithm makes through

the neighbourhood calculation.

6.4.4 Simulated annealing

Lundgren et al. [87] describe metaheuristics as a mean to control and manage the search

more systematically and efficiently, for example by directing the local search method to

new parts of the feasible region and scan a larger area. Simulated annealing (SA) is a

randomised metaheuristic, which can be categorised as both local and global search. It
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Table 6.8: Comparison of the size of two-swap and surgery-pair swap neighbourhoods

N Two-swap Surgery-pair swap

3 3 0
4 6 1
5 10 3
6 15 6
8 28 15
10 45 28
20 190 153

was first proposed by Kirkpatrick et al. [88]. Different from other heuristics is that the

method only examines one neighbour, and not all of them, before making a decision,

and the neighbour selection is also random. The method accepts worse solutions with a

probability proportional to the difference in objective value to the current solution. To

make it converge, we gradually lower the probability of accepting worse solutions. SA is

often used for problems where an acceptable local optimum is more important than the

global optimum.

The heuristic can be described by Algorithm 6.2, as found in Lundgren et al. [87]. When

selecting the parameters, it is important that the initial temperature, T0, has a large value

in the beginning, and that the reduction factor, r, does not reduce the search too quickly.

For small values of the temperature, SA approximates a greedy algorithm.

Algorithm 6.2 Simulated annealing

1: Start from a feasible solution x(0). Set k = 0.
2: Choose an initial temperature T , a reduction factor r(0 < r < 1) and a maximum

number of iterations L.
3: Randomly pick a neighbour x̂ ∈ N(x(k)).
4: Let ∆ = c(x̂) − c(x(k)).
5: If ∆ ≤ 0, set x(k) = x̂.

6: if ∆ > 0, set x(k) = x̂ with probability e
−∆
T .

7: Save the best solution found. Stop if k = L, otherwise set T ∶= rT , k ∶= k + 1 and go to
Step 3.
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Chapter 7

Computational study

This chapter describes the tests performed, to evaluate the model formulations and the

resulting schedules. After a brief introduction to the hardware and software used, we

will describe the problem test instances. The analyses that follow will in turn move

from technical evaluations of the performance of the implementation, to a more practical

perspective, where the potential of the stochastic considerations is evaluated.

We will begin the analyses with a discussion of the cost structure we have chosen in the

objective functions, and how other combinations affect the models. Then, we will test for

out-of-sample and in-sample stability. This gives an indication of how representative a

given scenario tree size is for the true stochastic processes, as well as the robustness of the

objective value with respect to the scenario generation. The subsequent experiments will

evaluate the strength of the cuts added to the models and consider tuning the configuration

of the optimiser. The next section will evaluate the proposed heuristics, before we finally

assess the value of using stochastic programming in our case and the practical benefits

of our model. Note that all values of waiting time, idle time and overtime are given in

minutes, while run-time is given in seconds.

7.1 Hardware and software

All numerical experiments are performed on an Intel® Core™ i7-3770 computer with a

quad-core CPU at 3,40Ghz and 16,0 GB RAM. The software used is FICO® Xpress Op-

timization Suite, with Xpress-IVE version 1.24.06, Xpress Mosel version 3.8.0 and Xpress

Optimizer version 27.01.02.

Most experiments are run through the console from scripts written in Python 2.7.11

© Python Software Foundation.

73



Table 7.1: Overview of data instances for the Phase Model

Instance Number of
surgeries

Relative
surgery cost

Date Operating
room

Instance 1 4 Variable 17.06.2013 4
Instance 2 4 Variable 24.01.2014 BRN1
Instance 3 4 Constant 30.01.2007 DK6
Instance 4 4 Constant 18.10.2010 DK6
Instance 5 4 Variable 20.12.2010 DK6
Instance 6 4 Variable 16.04.2012 DK6
Instance 7 5 Constant 13.09.2013 DK6
Instance 8 4 Variable 23.01.2014 DK6
Instance 9 5 Variable 27.10.2014 DK6
Instance 10 5 Constant 12.09.2013 Stue 1
Instance 11 5 Variable 16.09.2013 Stue 1
Instance 12 6 Constant 16.09.2014 Stue 1
Instance 13 4 Variable 13.10.2015 Stue 1
Instance 14 7 Variable 15.10.2015 Stue 1
Instance 15 6 Constant 17.03.2014 Stue 2
Instance 16 4 Constant 21.03.2014 Stue 2
Instance 17 5 Constant 06.10.2014 Stue 2
Instance 18 4 Variable 12.12.2014 Stue 2
Instance 19 5 Variable 28.04.2015 Stue 2
Instance 20 5 Variable 21.08.2015 Stue 2

Table 7.2: Overview of data instances for the Emergency Model

Instance Number of elective
surgeries

Number of emergency
surgeries

Instance 1E 5 2
Instance 2E 4 2
Instance 3E 4 2

7.2 Test instances

The process of deciding for which instances to run the models was described in Section

5.3. Table 7.1 shows the resulting 20 data instances for the Phase Model. It indicates

how many surgeries there are in each of the instances, whether the relative surgery costs

are constant or variable, along with the actual date and operating room of the instance.

The Emergency Model uses three fictive instances, where up to two additional emergency

surgeries may arrive, as was also described in Section 5.3. These are shown in Table

7.2. The probability for zero, one or two emergency patients are 68%, 23% and 9%,

respectively.
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7.3 Performance measures

This section presents the interpretation and values of the costs of waiting time, idle time

and overtime used in the computational study. In addition, an analysis of different com-

binations of costs is conducted in the end of the section to get a deeper understanding of

how changing the values impact the performance of the models and the resulting sched-

ules.

7.3.1 Choice of cost combinations

Estimating monetary values for waiting time, overtime and idle time is an ongoing project

at St. Olavs Hospital. This is a complex and comprehensive analysis and the calculations

of these values are thus considered to be out of scope of this paper. Instead, relative costs

are based on relevant literature, data analysis, and qualitative analysis in cooperation with

hospital staff. These costs may not be an exact reflection of the actual situation at the

hospital, but will give insights into on the trade-offs between waiting time, idle time and

overtime.

The costs in the two model objectives in equations (21) and (60) are defined as follows:

The waiting cost is interpreted as the disutility the patient experiences. The idle cost is

understood as the opportunity cost of the surgical staff performing surgery. The overtime

cost is the direct cost incurring when surgical staff have to work after regular opening

hours. Waiting costs do not directly affect the hospital. Even though decisions are made

from the hospital’s point of view, patient waiting time is assigned a cost in order to reflect

the considerations they need to take related to patient care.

When analysing the Phase Model, we have set the ratio between overtime and idle time

(clj/c
s
j) to 1.5, implying that the cost of the surgical staff is higher after regular working

hours. This seems to be the most used ratio in literature, as described in Section 3.4

and is supported by the required minimum overtime payment in Norway [89]. The ratio

between waiting time and idle time (cwj /c
s
j) determines how costly patients’ waiting time

is compared to surgical staff’s idle time. In consultation with St. Olavs Hospital we have

estimated patients’ waiting time to be less important for the hospital than the surgical

staff’s idle time. The waiting cost for patients has been set to 0.5 while the idle cost is

normalised to 1.

As noted in the literature review in Chapter 3, many papers assume the same cost for

all surgeries. In agreement with the hospital, we consider it beneficial to weight surgeries

differently depending on their resource consumption. The relative costs between surgeries

may be calculated based on DRG values which are used by St. Olavs Hospital to classify

surgeries into groups with similar complexity and resource consumption [90]. However,

we do not have access to the values nor the attributes from which the DRG values are

75



calculated. Instead, the number of staff members participating in the surgery, which can

be found in our data, is used as a measure of the resource usage. For most surgeries in

the instances used, two or three surgical staff members are participating. This will be

multiplied with the relative costs between waiting, idling and overtime. In other words, a

surgery with a resource consumption of two have costs equal to cwj = 1, csj = 2, and clj = 3.

For the tests with constant costs, the relative costs between surgeries are normalised to 1

resulting in cwj = 0.5, csj = 1, and clj = 1.5.

The costs in the Emergency Model are similar to those in the Phase Model. The only

difference is the costs of overtime for the emergency patients, which are set to three times

that of the idle time. This is meant to reflect the inclination to avoid scheduling emergency

patients late in the day, knowing that the planners might want to defer the last surgeries

to avoid overtime. Deferring emergency surgeries is not an option due to their urgency, so

the high overtime cost of overtime reflects this consideration.

7.3.2 Cost analysis

The evaluation of waiting time, idling time and overtime varies greatly both in literature

and between different hospitals. In addition, as the costs are set based on qualitative

judgements, it may be preferable to change these with new or better information. As

was pointed out in the preceding section, we have chosen the cost combination referred

to as Cost combination 1 in Table 7.3. To get a deeper understanding of how different

cost combinations affect our models and the resulting schedules, all cost combinations

listed in the table are tested in this section, both with variable and constant costs between

surgeries. These combinations are chosen in order to provide a representative selection of

what is used in literature.

Tests on the Emergency Model show similar results as for the Phase Model, and are

therefore not repeated.

Table 7.3: Cost combinations of waiting, idling and overtime in the Phase Model

Cost
combination

Cost of waiting Cost of idling Cost of overtime

1 0.5 1 1.5
2 1 1 1
3 1 0 1.5
4 0.1 1 1.5
5 0.01 1 1.5

The results are listed in Table 7.4. This show the average waiting time, idle time and

overtime denoted in minutes, across all instances. The average execution time is included

to accentuate how the cost structures affect the computational complexity. If an optimal

solution is not found within 1 800 seconds, the execution is stopped.
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Table 7.4: Average waiting time, idle time, and overtime resulting from solving the Phase Model
with five different cost structures, with the average execution time

Variable cost Constant cost

Cost Wait Idle Overtime Exe Wait Idle Overtime Exe

1 23.3 5.6 6.5 955.0 22.6 5.9 6.5 909.6
2 15.5 10.5 7.2 842.5 15.0 10.5 7.1 799.3
3 4.3 198.9 7.8 276.8 4.6 200.4 7.5 330.3
4 47.0 1.1 5.7 747.9 49.4 1.1 5.4 536.9
5 71.5 0.1 5.6 451.7 85.3 0.1 5.3 453.7

The results demonstrate that, when the ratio csj/c
w
j increases, the amount of waiting time

for patients increases. For example, for cost combination 5, 100 minutes of waiting is

equally expensive as 1 minute of idling. This creates a schedule where it is preferable to

schedule the start times closer together to reduce the probability of a surgery finishing

before the next is ready to start, i.e. reduce the probability of idle time. Oppositely, for

cost combination 3, where idling costs are 0, a schedule where the start times are more

widely distributed is preferable, reducing the probability of delaying the next surgery and

thus the probability of waiting time.

The amount of overtime is approximately constant on average. This is because overtime

will only be scheduled when it is difficult to avoid, i.e. when the total duration of the

surgeries is long. This is an effect of overtime being the most expensive cost in almost

all combinations. In cases with a high probability of overtime, scheduled start times are

often set closer together to reduce the expected makespan of the day and the probability

of overtime. This creates a schedule with less idle time and more waiting time. Compar-

ing the performance of instances where overtime occurs with the performance across all

instances, show that the average waiting time increases by 20% and idle time decreases

by 20% on average for cost combination 1, which supports this reasoning.

The results of these tests validate the intuition that when more trade-offs are taken into

consideration, the problem is more complex. That is, cost structures 3 and 5 effectively

only have to balance two measures, which gives shorter execution times than the other

combinations. Further, this also holds for the comparison between variable and constant

costs between surgeries. The execution time is on average lower for the latter.

Lastly, cost combination 1, which will be used for the rest of the analyses, is clearly the

most demanding to solve, giving the longest execution times. Thus, if any of the other

cost structures would be chosen instead, the model would probably run faster, and the

following discussions of execution times can therefore be considered as informal upper

bounds.
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7.4 Stability testing

This section presents theory and analyses of the stability of the Phase Model and of the

Emergency Model. All theory about stability testing is gathered from King et al. [9].

Stability testing is used to determine the likelihood that tests evaluate the optimisation

model, rather than the scenario generation procedure. In this way, stability testing tries to

answer if the discretisation of scenarios is good. The objective is to rule out the possibility

that the results of the optimisation model are just random or systematic side effects of a

poor scenario generation procedure. The main assumption is that there is an underlying

true problem we approximate, but cannot solve. Commonly used tests are in-sample and

out-of-sample stability tests, in addition to bias testing. Bias testing is usually impossible

to execute, unless you can solve the true problem, and the theory about this is therefore

excluded.

To describe the stability tests, we define T to be a two-stage scenario tree, where the

optimisation problem can be written as

min
x
f(x;T )

The x refers to the first stage variables and it is implicit that we calculate the expectation

over the second stage variables, y(T ). The true optimisation problem, which we want to

approximate, is given by

min
x
f(x; ξ)

King et al. [9] argue that stochastic programs tend to have flat objective functions, which

means that very different solutions can have approximately the same objective value. To

avoid the problem of comparing two different solutions with almost equal objective value,

stability is measured by the objective value. Thus, for both of the following stability tests,

it is the objective values that are compared for different solutions.

7.4.1 Out-of-sample stability

Out-of-sample stability means that the true objective value corresponding to solutions

from scenario trees of different size are approximately the same. Thus, we test that the

scenario generation procedure has not created an incorrect stability that is not really

there.

If the scenario generation procedure is run several times on the same data, it will produce

many different scenario trees, which we denote by Ti. For each of these, the optimisation

model is solved, producing equally many optimal solutions, denoted by x̂i. Mathematically,

this means that

f(x̂i; ξ) ≈ f(x̂j ; ξ)
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This test is easier to solve than the true optimisation problem, because we test with a

fixed x̂i and then add expectations of the second stage with respect to the true distribu-

tion. Solving f(x̂i; ξ) then turns into solving a large number of independent second stage

problems.

For out-of-sample stability, the situation is more complicated with multiperiod trees. A

solution based on one tree cannot simply be evaluated in another one, as the nodes beyond

the root do not coincide. One solution is to only implement the root node decisions and re-

run the model with an updated tree and fixed root node decisions. That is, for multistage

scenario trees T1 and T2, find the corresponding solutions x̂1 and x̂2. Then fix the root

node solutions from T2 and run them on T1 and vice versa. If the two objective values are

approximately the same, the method is out-of-sample stable.

We will use the results from the stability tests to decide the appropriate number of sce-

narios to use for later analyses. The data instances we use for the Phase Model vary in

size from four to seven surgeries on a given day. Among these, we have chosen to run

the stability tests on a set of instances with different number of surgeries, n. Thus, the

stability tests for the Phase Model are run on instances 1, 2, 7, 9, 12, 15 and 14, in order

of increasing number of surgeries. For the Emergency Model, we test stability related to

the number of surgery duration scenarios, not the emergency patient scenarios. This is

because the emergency scenarios not are a result of a scenario generation procedure, but

consist of probabilities of emergency patient arrivals, which are found based on statistical

analyses.

The out-of-sample stability tests for the Phase Model are run with 40-100 (in steps of 10),

125, 150, and 200 scenarios. For smaller scenario sizes, the scenario generation procedure

does not converge, that is, the number of scenarios is too small to match the first four

statistical moments of the data appropriately. Each combination of data instance and

scenario size are run five times with different scenario trees. For both models, the first

stage solutions, i.e. the surgery sequence and start times of elective surgeries, are recorded

together with the objective value, f(x̂i;Ti). Then we generate a large scenario tree of

10 000 duration scenarios as an approximation of the true scenario tree in the Phase

model. For each run i, we fix the first-stage solutions and run these on the large scenario

tree to find f(x̂i; ξ). Further, we calculate the average distance between the objective

value from a run on the smaller scenario trees, Ti, and the objective value from a run on

ξ.

The average over five runs of each combination of instance and scenario size for the Phase

Model is plotted in Figure 7.1. From the plots, one can see a significant improvement of the

absolute distance as the number of scenarios approaches 100. Between 100, 125, 150, and

200 scenarios, the improvements are mostly small, and certainly diminishing. For most of

the data instances, the relative distance is on average 4.0% for 100 scenarios, which we

consider acceptable. This is not shown in the figure, but can be found in Appendix B. We
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will from this point onward run experiments with 100 scenarios on the Phase Model. An

example of the data from the out-of-sample stability tests of the Phase Model is given in

Table 7.5. This shows the average over the five runs for data instance 12, for each tested

scenario size.

Figure 7.1: Average absolute distance to 10 000 scenario run, over five runs, for each data instance
in the Phase Model

Table 7.5: Out-of-sample results for instance 12. Distance to the objective value when run on the
true scenario tree, ξ, is given as an average over five run.

Number of scenarios Average distance Average relative
distance %

40 4.3 8.6
50 4.5 10.3
60 4.0 9.0
70 3.9 8.8
80 3.2 7.2
90 2.8 6.2
100 2.1 4.7
125 1.6 3.1
150 2.0 4.4
200 2.0 4.3

Figure 7.2 shows the out-of-sample results for the Emergency Model. Again, the plot

displays the average absolute distance between the objective value from an instance run

and the objective value in an approximation of the true scenario tree where the first-stage

solutions are fixed. The values are average values over five runs for each data point. In

contrast to the Phase Model, we had to use a smaller scenario tree in the out-of-sample

test for this model, due to long execution times. For a 10 000 scenario tree, even after

an hour of execution time, we experienced large optimality gaps. However, with a limit

of 1 800 seconds on the execution time, we could run the 2 000 scenario tree with resulting

gaps in a 1-2% range. The out-of-sample stability tests on the Emergency Model are run

with 40 to 200 (in steps of 10) scenarios. The axes in the plot are scaled equally as in the

plot for the Phase Model, to compare the stability. The relative distance to the objective
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value ranges from 1.5% for 40 scenarios to 0.1% for 200 scenarios. Based on the relative

distances, and the number of scenarios required for the plot to seemingly converge, we

conclude that 60 scenarios is stable enough for our further tests, with an average relative

distance of 0.7% across the three emergency instances.

Figure 7.2: Average absolute distance to 2 000 scenario run, over five runs, for each data instance
in the Emergency Model

7.4.2 In-sample stability

In-sample stability represents a test of a model’s internal consistency. That is, if we have

in-sample stability, it does not matter which scenario tree, Ti, we use. Mathematically,

this means that we have an in-sample stable model if

f(x̂i;Ti) ≈ f(x̂j ;Tj)

This ensures that running the scenario generation procedure and then the optimisation

procedure yields the same objective value if we repeat it with the same data and a newly

generated scenario tree. An in-sample unstable model cannot be properly tested, as the

results it produces are random.

To test for in-sample stability, we have run each data instance five times with different

scenario trees. The objective value from each run, f(x̂i) is recorded and compared across

the five runs, for each data instance. Specifically, the CV is calculated over the five

runs as a measure of the dispersion of the relative variance of the five runs, to evaluate

if f(x̂i;Ti) ≈ f(x̂j ;Tj). The results of the tests are shown in Table 7.6 for the Phase Model.

The first column shows the data instance and the second column shows the coefficient of

variance, given in percentage. The last column shows the average of all the reported data

instances.

The largest CV for the Phase Model is 2.97% for data instance 14. If this would have

come from a normal distribution, it would mean there is approximately 68%6 chance of

6From a table of the Standard Normal Cumulative Distribution Function, Φ(1) −Φ(−1).
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Table 7.6: In-sample results for the Phase Model. CV is calculated over five runs with different
scenario trees.

Problem instance Coefficient of variance, %

Instance 1 2.83
Instance 2 1.48
Instance 7 1.50
Instance 9 0.93
Instance 12 1.01
Instance 14 2.97
Instance 15 1.80

Average 1.79

getting an objective value within the interval µ ± 2.97%. We deem this as a sufficiently

small CV and stable for our analysis purposes.

Table 7.7: In-sample results for the Emergency Model. CV is calculated over five runs with different
scenario trees.

Problem instance Coefficient of variance, %

Instance 1E 0.21
Instance 2E 0.35
Instance 3E 0.58

The CV for the Emergency Model is only 0.21%, 0.35%, and 0.58% for emergency instances

1E, 2E and 3E, respectively, for 60 scenarios. Because the CV is the standard deviation

divided by the mean, a higher mean in the Emergency Model implies a lower CV, given

a constant standard deviation. Nevertheless, the difference between the max and min

objective value across the five runs is very low, which indicates that the the Emergency

Model is in-sample stable.

7.5 Improved implementation

In this section we will perform an evaluation, in terms of improved execution times and

lower gaps, of the cuts we proposed in the model formulation Chapter 6. In addition, we

will discuss how adjustments of the optimiser branching strategies will affect the solution

time.

7.5.1 Strength of valid inequalities

All valid inequalities introduced for the Phase Model in Section 6.1.7 and the Emergency

Model in Section 6.2.7 are tested here. To evaluate the strength of these additional con-

straints, we will test each valid inequality in turn and report the optimality gap and

82



execution time. The instances are also tested with all five valid inequalities, to evaluate

their collective improvement of the model.

The tests of the valid inequalities in the Phase Model are run on all data instances. We

report the maximum and average relative optimality gap improvement when the model

reaches maximum execution time of 1 800 seconds. If the model is solved to optimality

within the time limit, the maximum and average relative execution time improvement are

reported. The improvements are calculated relative to runs with no valid inequalities.

We have chosen to report the maximum relative improvements instead of an exhaustive

list of improvements for all combinations of instance and cut, because we are interested

in valid inequalities that give a speedup for some instances and not necessarily for all.

However, it is important that the cuts do not severely degrade the performance of other

instances. The average improvements have thus been included to quantify the general

improvement.

Table 7.8: Strength of valid inequalities in the Phase Model. The results get the maximum and
average relative improvements across all instances, given in percent.

Valid Equation Max Avg Max Avg
inequality time time gap gap

Overtime balance (23) 70.2 8.3 21.6 5.6
Expanded x sum (58),(59) 92.0 48.0 79.1 16.7
Phase (τ) precedence (55) 67.1 18.5 74.1 12.6
Minimum start spread (56) 84.8 30.0 88.5 30.2
Overtime (δ) precedence (57) 11.6 1.3 2.3 0.7
All N/A 89.5 39.4 90.0 41.7

The test results for the Phase Model are given in Table 7.8. The results show significant

speedups for several of the cuts. For the smaller data sets, the model solves to optimality

within the time limit. The execution time improvements are therefore only based on the

results from these tests.

The expanded x sum provides the best improvements, and gives up to 92% shorter exe-

cution times when the solution is found optimal in less than 1 800 seconds. It is easy to

see that this cut is correct from equations (28) and (29) in the Phase Model. However, as

stated in Chapter 6.3 about formulation challenges, these relationships between xij and

yωijh can be hard for a general MIP optimiser to detect. By including the constraints ex-

plicitly, the model gets much tighter relationships between these variables, which results

in the observed speedup. The overtime precedence inequalities give only minor execution

time improvements for the tested data sets, on average. With all inequalities included,

we experience 39% shorter execution times on average. This is lower than with only the

expanded x sum inequality. A possible explanation for this may be that the combination

of inequalities changes how the optimisation software searches for solutions, which may

affect search times.

83



The improvements of the optimality gaps are calculated over all runs that reach maximum

execution time. This is the case for all the larger problem instances with six and seven

surgeries. First of all, one can see that the overtime precedence inequality improves the

optimality gap a bit. Second, as mentioned in the problem formulation chapter, the

overtime balance constraints provide a tighter formulation and improves the optimality

gap with 6% on average. Similar, the expanded x sum inequalities lower the optimality gap

by 17%. These improvements are observed because the constraints bind several variables

together, revealing important logical relationships between the variables to the optimiser.

The best gap improvements, both in maximum and average terms, come from the minimum

start time spread inequalities, with 89% and 30% improvements, respectively.

In contrast to the execution time improvements, the combination of all the inequalities

gives a significantly tighter formulation than any single inequality does, when considering

the optimality gap. With all inequalities included, we achieve 42% relative lower optimality

gaps when the model has run for 1 800 second without finding the optimal solution. All

cuts are therefore included in the preceding analysis of the Phase Model.

The tests of the valid inequalities in the Emergency Model are run on all emergency data

instances. The tested valid inequalities include the one discussed in Chapter 6.2.7 and

those that are transferable from the Phase Model and adapted to the emergency setting

in Appendix A. The results shown are the relative improvements for each emergency data

instance, relative to runs with none of the cuts included.

Table 7.9: Strength of valid inequalities in the Emergency Model. The results are the relative
improvements for instances 1E and 2E, given in percent.

Valid inequality Equation Run time 1E Run time 2E

Start time spread (112) - (113) -34.7 26.1
Subposition precedence (103) -18.9 -31.7
Overtime (δ) precedence (114) - (116) -123.0 4.4
All N/A 3.8 -14.5

Table 7.9 provides a report of the valid inequalities for the Emergency Model. These

tests are allowed only 900 seconds of execution time, because the Emergency Model, in

general, runs faster than the Phase Model. Data instance 3E, however, reached maximum

computation time and achieved very low gaps for all cuts. That is, for long run times,

the cuts did not provide any significant improvement of the optimality gap and this data

instance is therefore excluded in the table. For data instances 1E and 2E, execution time

improvements are stated for each cut. Both data instances are solved to optimality within

2 seconds of each other and the relative improvements are therefore comparable.

Interestingly, the cuts behave differently for the two data instances. For instance 1E

every cut makes the solution time increase rather than decrease, but all together they still

improve solution time. The least damaging cut is the subposition precedence inequality.

On the other hand, for instance 2E, the total effect of the cuts is negative, even though
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two of three cuts improve the solution time. Because of the inconsistency in the results, we

would have to perform more extensive testing of the cuts, on a lot more data instances to

determine their average effect. Therefore, none of the three valid inequalities are included

in the continuation of the computational study.

7.5.2 Branching

To speed up the solution process we look at some implementation finesses and settings in

the optimiser. In a branch-and-bound search, the optimiser uses certain rules to determine

both the next variable and the value to branch on. The choice of branching order and

strategy can sometimes be derived more readily with intuition and comprehension of the

model, than with general mathematics and rules. However, the exact effect of different

configurations may not be as expected, and a trial-and-error approach is often used.

In the Phase Model, we believe the branching order should start with the xij variables.

This is because these are the most determinant variables and restrict the rest of the prob-

lem. Thus, by branching on these, we make the most significant decisions first. Because

we have i ⋅j number of xij variables and exactly i of them are equal to 1 in the optimal so-

lution, a branching strategy that tries to branch up to 1 first will be the most restrictive.

This is the first branching strategy we test. The second strategy consists of branching

on all the first-stage variables, i.e. xij and ti, where xij is given a higher priority than

ti.

To test the effect of the branching rules, we run all data sets that can be solved to optimal-

ity within 1 800 seconds. By letting the optimiser use the default branching strategy, the

average execution time of the data instances is 204 seconds. By using the first branching

strategy, we are able to decrease the average over the same data instances to 103 seconds.

The second strategy performed almost identical. Several other branching rules are tested,

with varying degrees of speedup. However, none of these were able to match the perfor-

mance improvements from the first mentioned branching rules, and the exact numbers are

therefore omitted. The strategy of branching on xij is used in the succeeding analysis of

the Phase Model.

Similar branching combinations are tested for the Emergency Model. We first try branch-

ing on the xij and then on both xij and ti. The decision of where to place the emergency

surgeries may heavily affect the performance, which can make it beneficial to branch on

this early in the search. Thus, we also try to branch on the second-stage variables zξiuq
and φξiu. As for the Phase Model, the sequencing variables, i.e. xij and zξiuq, are given a

higher priority than ti and φξiu. The binary variables are branched up to 1, as this is more

restrictive.

Different combinations of branching strategies are tested on all emergency instances, all

of which solve to optimality. Solving the model with default branching settings uses 120
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seconds on average, while branching on both xij and zξiuq reduces the execution time to

78 seconds on average. None of the other combinations of branching show any promising

results. For example, branching on xij and ti results in an increase in execution time to

219 seconds on average. The strategy of branching on both xij and zξiuq is used in the

succeeding analysis.

7.6 Heuristics

In this section, we will compare the optimal solutions of the model with the solutions we

get by using the decision rules and heuristics described in Chapter 6.4. The motivation

for testing heuristics is twofold. Firstly, we want to evaluate the effect of heuristics and

decision rules found in literature and at St. Olavs Hospital. We want to investigate

whether simple decision rules are enough to provide decent schedules, or if more complex

optimisation-based heuristics are needed. Secondly, we want to evaluate the trade-offs

between optimal solutions and shorter execution times.

The heuristics will only be tested for the Phase Model. The decision rules are developed

based on the characteristics of uncertain duration and not of uncertain arrival of patients,

so these are not considered appropriate for the Emergency Model. The Emergency model

already has low execution times for all the data instances, and preliminary tests reveal

that both local search and simulated annealing give higher objective values and higher

execution times than solving the stochastic program to optimality for this model.

There are several parameters in the heuristics that can be adjusted. Before we compare

the heuristic solutions with the optimal solution, we will run some tests to tune these

parameters. For the Bailey-Welch rule, this means determining the parameter k, which

is the number of surgeries with scheduled start time 0. For the two search heuristics, we

will experiment with the initial sequence and the neighbourhood function. Specifically for

simulated annealing, we must decide the parameters T and r. An initial configuration of

these is suggested and will be tested against some variations in the same value range.

7.6.1 Optimal parameter for the Bailey-Welch decision rule

The average objective values found when using the Bailey-Welch decision rule, for all data

instances, with k = 1 and k = 2, are 78 and 239, respectively. The optimal value depends

on the ratio between the costs of waiting and idling. A relatively higher waiting than idle

cost, will give results in favour of k = 1, as k = 2 implies more waiting. For the chosen cost

combinations, the results show a clear benefit of using k = 1. The Bailey-Welch rule with

k = 2 shows an interesting trend; when there are no overtime, the surgeries are scheduled

in order of increasing mean. This may be explained by the core definition of this decision

rule, scheduling surgeries at even intervals with length equal to the overall mean surgery
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duration. Thus, by scheduling the surgeries with lowest mean first, the added flexibility

of having a patient waiting can be utilised, and the total waiting time decreases. On

the other hand, if surgeries with duration higher than the mean are scheduled first, there

would be even more waiting time imposed for all succeeding surgeries. These trade-offs

are, however, not as straight forward when overtime is present. For the Bailey-Welch rule

with k = 1, the sequence of surgeries do not follow this pattern, because there is not the

same amount of waiting accumulated from the start of the day. Equivalently, this is also

the main driver for the objective value for k = 1.

When we report the performance of the Bailey-Welch decision rule in the following sections,

we will be using k = 1, based on this test.

7.6.2 Performance of neighbourhood functions

The performance of the two neighbourhood functions, two-swap and surgery-pair swap, are

compared in Table 7.10 for all instances in the Phase Model for both the local search and

simulated annealing. Two-swap performs better in terms of objective value for 96% of the

instances in both heuristics. The execution time, however, is better for the surgery-pair

swap across all instances and heuristics. This follows from the size of the neighbourhoods,

which was discussed in Chapter 6.4. Two-swap has a larger neighbourhood and thus

evaluates a higher number of sequences than surgery-pair swap. Consequently, there is a

trade-off between the chance of finding better solutions and the increase in execution time.

As will be discussed later, the two-swap gives a significant speedup compared to solving

the model to optimality, and is thus useful. However, if a further decrease of the execution

time is crucial, the surgery-pair swap neighbourhood function should be applied.

Table 7.10: Comparison of the neighbourhood performance for the search heuristics, tested for all
data instances. N1 denotes the two-swap neighbourhood, while N2 denotes the surgery-pair swap.

Objective value Execution time

Local search SA Local search SA
Size N1 N2 N1 N2 N1 N2 N1 N2

4 38.9 38.9 38.9 38.9 38.9 38.9 38.9 38.9
5 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7
6 241.2 241.2 241.2 241.2 241.2 241.2 241.2 241.2
7 47.2 47.2 47.2 47.2 47.2 47.2 47.2 47.2

Average 58.8 69.3 58.8 65.5 164.3 32.2 177.4 54.7

Because the searches can converge to a local optimum, we also test the sensitivity to the

initial sequence. For the two-swap neighbourhood, every possible sequence can be reached

in n − 1 iterations, when n is the number of surgeries. Every data instance, with five

random neighbourhoods that are n − 2 iterations away from each other, is tested. That

is, each initial sequence we test, is the maximum distance away from the other initial
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sequences. We test each of these initial sequences for both the local search method and

simulated annealing, and compare the objective values found.

For both algorithms, there are only a few instances that do not give the same optimal

solution, and in these cases, there are only small standard deviations across the objective

values. This might be explained by the flat objective function often found in stochastic

programs, and does not necessarily imply insensitivity. However, the low number of runs

that differs from each other for a given data instance, is a strong implication of insensitivity

towards the initial sequence. Because the heuristics are not sensitive to the choice of start

point, we simply start the heuristics with a random start sequence to reduce the solution

time compared to using a construction heuristic to find a good starting sequence.

7.6.3 Tuning of simulated annealing

In the simulated annealing algorithm, one needs to decide several parameters: the initial

temperature, the reduction factor and the number of iterations. A too high number of

iterations, will simply make the algorithm greedy because the temperature becomes too

low to accept worse solutions. If one in addition hashes all previous solutions, repeatedly

solving the same problem in a local optimum will go extremely fast. Thus, we only need a

number of iterations that is high enough. A few test runs show that 100 iterations comply

with these criteria.

To test different combinations of initial temperature and reduction factor, we approximate

a range of appropriate values. The initial temperature should be in a range such that the

algorithm has a diversified behaviour in the early iterations. That is, the expression e−
∆
T

should give a high probability of accepting solutions with objective values that are slightly

worse than the incumbent solution. As a starting point this probability was set to 90%.

Experiments on our problem instances show that solutions found early in the optimisation

process usually have values in the range [100, 120]. Thus, given that the incumbent

solution has an objective value of 100, a candidate solution of 120 has 90% chance of

being accepted in the first iterations. This gives e
−(120−100)

T0 = 0.90, and further the initial

temperature, T0 ≈ 190. The idea of the algorithm, is that it should turn into an intensifying

search after some iterations. To find a suitable value for r, we therefore test with an almost

greedy search after 50 iterations. This means the probability of accepting a worse solution,

say with a value 1 higher than the current best solution, should be low, for example 1%.

By using the expression for acceptance probability, this gives e
−1
T = 0.01 Ô⇒ T50 ≈ 0.2.

Thus, an initial r could be chosen such that T0 ∗ r
50 = 0.2 Ô⇒ r = 0.2

190

1
50 ≈ 0.87. This is

close to r = 0.85 found by, for example, Park and Kim [91].

To find the best parameters for our problem, we test several combinations of parameters.

Specifically, we test all initial temperatures, T0 in the set {100,150,190,200,250} together

with all reduction factors, r, in the set {0.8,0.85,0.87,0.9,0.95}. Table 7.11 shows the
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average and standard deviation of the objective values found for each data instance across

all 25 different combinations of T0 and r. To compress the size of the table, all instances

with standard deviation equal to zero are omitted. All instances with zero standard de-

viation of the objectives are insensitive to the choice of T0 and r. Thus, to evaluate the

parameters, we must look at how they affect the remaining instances. Many of these in-

stances have very small standard deviations. The deviations from the best objective value

found come from a few runs, that have found slightly worse solutions. If we, for all of

Table 7.11: Tuning of simulated annealing parameters

Data instance Average objective
value

Standard deviation

11 39.17 0.12
15 41.74 0.25
16 53.95 0.17
17 102.77 4.51
19 48.74 1.79
21 382.61 0.85
23 32.40 0.14
25 27.11 0.32
26 28.97 1.86

these parameter combinations, look at the average relative deviation of the objective value

found to the best objective for that data instance, the combinations (T0 = 150, r = 0.8),

(T0 = 100, r = 0.85) and (T0 = 190, r = 0.85) have 0%, 0% and 0.8% average relative devia-

tion, respectively. The rest of the combinations have a deviation larger than 3%. Among

the three combinations with the lowest relative deviations, we will use the parameters that

provide the most diversified search. This is achieved by the last combination. From this

point tests of simulated annealing will be using initial temperature of 190 and a reduction

factor of 0.85.

7.6.4 Analysis of heuristics

The results for the decision rules and heuristics are shown in Tables 7.12 and 7.13, which

list the objective value and the execution time for each instance. Bailey-Welch, sort by

variance, sort by mean, local search and simulated annealing are presented as BW, vari-

ance, mean, local and SA, respectively, in these tables. Every heuristic and decision rule,

with the chosen parameters, are run for all instances. These results are compared to

the objective values of the optimal solution, solved using branch-and-bound. All solu-

tion methods are run with the same scenarios trees for each instance, and the maximum

execution time is set to 1 800 seconds.

From Table 7.12, it is evident that the sort by variance decision rule performs best on

average in terms of objective value with values close to the optimal solution. This method

89



Table 7.12: Objective values for the branch-and-bound method, heuristic and decision rules

Size Instance Optimal BW Variance Mean Local SA

4 Instance 1 25.6 31.9 25.6 25.6 25.6 25.6
Instance 2 28.5 109.0 28.9 31.6 28.5 28.5
Instance 3 38.9 50.8 39.3 38.9 141.9 141.9
Instance 4 22.1 24.9 22.1 45.1 22.1 22.1
Instance 5 37.5 46.4 37.8 61.7 37.5 37.5
Instance 6 39.2 45.5 41.5 56.2 39.2 39.2
Instance 8 24.5 40.3 24.5 52.0 24.5 24.5
Instance 13 17.4 46.3 17.4 26.7 17.4 17.4
Instance 16 26.7 28.3 27.6 36.7 26.7 26.7
Instance 18 26.2 30.9 26.2 30.7 26.2 26.2

5 Instance 7 31.8 69.5 38.3 59.5 31.8 31.8
Instance 9 45.7 46.7 47.2 47.6 45.7 45.7
Instance 10 41.7 107.6 41.7 47.9 41.7 41.7
Instance 11 53.9 84.1 58.0 63.9 53.9 53.9
Instance 17 31.8 52.9 32.5 39.7 31.8 31.8
Instance 19 26.5 91.4 27.7 39.9 26.5 26.5
Instance 20 25.3 40.4 25.3 32.7 25.3 25.3

6 Instance 12 69.9 148.9 81.5 104.3 100.4 100.2
Instance 15 381.9 480.0 418.1 431.5 381.9 382.6

7 Instance 14 48.4 84.8 55.2 66.2 48.4 48.4

Average 52.2 83.0 55.8 66.9 58.8 58.9

found the best solution of all heuristics and decision rules in 40% of the instances. It is

the only solution method that for no instances has the largest deviation from the optimal

objective value, and thus proves to be quite robust for our data. The performance supports

the intuition that if a surgery duration is hard to predict, meaning it has a large variation,

setting it later in day reduces the risk of impacting a large number of subsequent surgeries.

However, this may not be desirable when there is a risk of overtime, as this has a high cost.

This tendency is shown in our results. As the number of surgeries increase, i.e. as the

expected duration of the day increases, the relative deviation from the optimal solution

increases from 2% to 14% as the number of surgeries increases from four to seven. In

other words, sorting by variance performs well for a small number of surgeries, but the

performance degrades with an increasing number of surgeries. The sort by variance solves

to optimality almost instantly for all instances, shown in Table 7.13. This is a result of

the sequencing variables already being fixed, which reduces the size and complexity of the

optimisation problem. The combination of short execution time and low objective values

may explain the popularity of this scheduling strategy.

Sort by mean provides similar results as the sort by variance decision rule. However, it

only gives the best solution in 4% of the instances and has on average 31% deviation from

the optimal solution. These results indicate that the variance does not necessarily increase
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Table 7.13: Execution time for the branch-and-bound method, heuristics and decision rules

Size Instance Optimal BW Variance Mean Local SA

4 Instance 1 34.5 18.1 0.2 0.1 6.8 8.1
Instance 2 19.5 16.6 0.4 0.4 6.9 10.0
Instance 3 427.5 23.1 1.2 0.9 159.5 134.4
Instance 4 36.1 14.2 0.4 0.3 4.6 12.5
Instance 5 142.7 25.0 0.5 2.3 18.4 22.5
Instance 6 1800.5 21.5 18.6 0.4 144.3 161.2
Instance 8 39.1 12.3 0.5 0.5 5.9 7.8
Instance 13 21.9 15.6 0.1 0.2 950.1 1097.7
Instance 16 17.9 27.5 0.2 0.2 104.5 222.1
Instance 18 16.7 22.7 0.3 0.4 130.5 129.8

5 Instance 7 94.6 71.5 1.8 2.0 12.0 18.1
Instance 9 583.3 35.6 2.2 2.7 8.0 7.5
Instance 10 1799.6 45.1 5.5 3.2 6.6 7.9
Instance 11 1800.1 72.5 5.3 15.5 76.6 166.8
Instance 17 339.7 54.1 2.4 2.5 60.9 196.0
Instance 19 1800.1 39.9 3.8 1.3 739.4 478.2
Instance 20 689.8 56.4 2.6 3.0 351.3 257.2

6 Instance 12 1799.4 147.6 5.2 5.2 99.7 111.1
Instance 15 1799.3 247.1 4.5 3.8 51.9 223.6

7 Instance 14 1799.6 1799.3 9.8 8.1 347.7 274.8

Average 753.1 138.3 3.3 2.6 164.3 177.4

with the duration of the surgery. If a long surgery has a low variance, setting this in the

beginning of the day may be preferable as its duration is easier to predict. In terms of

execution time, the decision rule performs well. This follows from the same explanation

as given for the sort by variance. The results of these two decision rules are in accordance

with the results of Denton et al. [19] mentioned in the literature review in Chapter 3.

Simulated annealing and local search perform similarly for all instances. They also provide

the best solution in 90% of the runs. However, for certain instances, their performance

degrades severely compared to sort by variance and thus do not prove to be equally stable

for our instances. As opposed to sort by variance, simulated annealing and local search

experience a diminishing deviation from the optimal value as the number of surgeries

increases. It deviates by 36% on average for instances with four surgeries, but gives the

optimal solution for the instance with seven surgeries. As we only have one instance with

seven surgeries, it may be a coincidence that it finds the optimal solution, but the trend

holds for instances with both five and six surgeries as well. This may indicate that a

good sequence cannot easily be calculated based on statistical measures for more complex

instances. Both heuristics have higher execution time than the decision rules. It is worth

noting that this is still an improvement from the branch-and-bound method, with an

average reduction of 77% of the execution time.
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Local search and simulated annealing perform similarly for all instances. This may be

because they use the same neighbourhood. Even though simulated annealing incorporates

randomisation, this proves to have little effect for these instances. As they also have

similar execution times, this may be an indication that they investigate a similar amount

of possible sequences.

Obvious from the results of the objective values, Bailey-Welch has the worst performance

of all heuristics and decision rules tested. It does not show any consistency in the results

as the number of surgeries increase. It performs slightly better than local search and

simulated annealing in terms of execution time, which may be explained by the fact that

the start times are fixed, reducing the level of optimisation compared to the other two.

Both high computational times and objective values invalidates this as an appropriate

solution method for the cost structure we consider.

The most considerable speedup is expected for the instances that reach the maximum

execution time of 1 800 second, and would work longer if allowed. By eliminating these

from the calculations, the solution methods still prove to outperform the branch-and-

bound method. While the optimal solution is found after 230 seconds on average, the

Baily-Welch, sort by variance, sort by mean, local search and simulated annealing finish

after 39, 1, 1, 142 and 164 seconds, respectively.

7.7 Value of information

A commonly used criterion for determining the importance of uncertainties in mathe-

matical programs is the expected value of perfect information (EV PI) [92]. The EV PI

reveals the potential worth of more accurate duration forecasts. However, in situations

exhibiting external uncertainty, it may not be possible to gather more information about

the future, and it may be more relevant for decision makers to know the expected value of

planning with uncertainty compared to the expected value case [92]. The measure called

the value of the stochastic solution (V SS) quantifies this. Further, we want to quantify

both the effect of planning with phases and emergency patients. We call the first measure

the expected value of planning with phases (EV PP ) and the second the expected value of

planning with emergency patients (EV PEi). This section will provide definitions of the

defined measures. Further, an analyses of these are conducted for both the Phase Model

and the Emergency Model.

7.7.1 The expected value of perfect information and the value of

stochastic solution

We let SP denote the objective value of the stochastic program and WS the objective

value of the wait-and-see problem, i.e. the expected value when all scenarios are solved
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individually as deterministic problems. Then, the expected value of perfect information

for a minimisation problem is given by

EV PI = SP −WS (106)

as stated by Birge and Louveaux [92]. This determines how much one is willing to pay

to obtain perfect information of the future [93]. Further, we let the EEV denote the

expectation of the expected value solution, i.e. the objective value of the problem where all

stochastic parameters are replaced with their expected values and the first-stage solution

from this is evaluated in the stochastic model. The V SS denotes the value of solving a

stochastic model compared to a deterministic one [92] and is given by

V SS = EEV − SP (107)

Also for multi-stage programs with t = 1, ..., T stages, the V SS can be obtained with

Equation (107), by solving the expected value case and fixing variables in all stages except

the last. A more appropriate interpretation of the information structure may be obtained

by the V SSD by fixing variables at each stage dynamically [93]. With this approach,

values are updated when more information is revealed. We define Gt as the set of scenario

groups at stage t; two scenarios belong to the same group in a given stage provided that

they have the same realisations of the uncertain parameters up to that stage. In other

words, all child nodes for a certain node at stage t belongs to the same scenario group.

The EVg is the problem for scenario group g where all random parameters in subsequent

stages are estimated by their expected values, while all variables in previous stages are

fixed to their optimal values obtained in the chain of EVg for g ∈ Gτ , τ = 1, ..., t − 1. Let

ZgEV be the optimal value for EVg and pg be the probability of scenario group g. Then the

expected result in t of using the dynamic solution of the average scenario, the EDEVt, is

given by

EDEVt = ∑
g∈Gt

pgZgEV t = 1, ..., T (108)

The value of the dynamic stochastic solution is given by

V SSD = EDEVT − SP (109)
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7.7.2 The expected value of planning with phases and expected value of plan-

ning with emergency patients

The EV PI and the V SS compare the stochastic model to the extremities of solving the

problem with perfect information and solving the problem simply without considering the

uncertainty. To evaluate how the Phase Model and the Emergency Model perform, we

propose one additional measure for each model. We will use these to quantify the value

that the additional information of phases and emergency patients provides.

We let the SPNP denote the expected objective value of a stochastic program without

phases. The SPP is the objective value of the stochastic program with phases7. Similar

to the expression for the V SS, we define

EV PP = SPNP − SPP (110)

This is the expected objective value when planning without phases less the expected

objective value from planning with phases.

Similarly, we want to analyse how the Emergency Model performs compared to scheduling

either exactly zero, one or two emergency patients. We let the SPEPi denote the expected

objective value of a stochastic program scheduling i emergency patients, while SPE is the

objective value of the stochastic program with emergency patients. The expected value

of the stochastic solution compared to planning with exactly i emergency patients, is

then

EV PEi = SPEPi − SP
E (111)

7.7.3 Value of the Phase Model

The EV PI, the V SS, and the EV PP are calculated for all problem instances for the

Phase Model. All tests are run to optimality and the results are stated in Table 7.14. This

shows the average values for each size of problem instances. To use the appropriate amount

of information when calculating the SPNP , we find the average statistical moments for a

full day, without differentiating between phases, for the same instances as listed in Table

7.1. This means that the scenario generation procedure must be run separately to generate

the input data to find the SPNP and SP . Therefore, in-sample instabilities can affect

the results slightly and variations of up to 2.9%8 between the two cannot be considered

significant.

7The SPP and the SPE are only noted here to accentuate the difference between the stochastic solution
from the Phase Model and the Emergency Model, respectively. When there is no risk of confusion, SP
will be used.

8From in-sample stability tests for the Phase Model
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Table 7.14: Average EV PI, V SS and EV PP for all problem instance sizes for the Phase Model

No. of SP WS EEV SPNP EVPI VSS EVPP
surgeries

4 28.2 0.0 135.8 37.8 28.2 107.6 9.6
5 37.9 0.0 168.4 44.0 37.9 130.6 6.1
6 107.0 74.5 361.2 259.2 32.5 254.2 152.2
7 36.7 0.0 243.0 73.1 36.7 206.3 36.4

The WS is close to zero for most instances, except for a few of the larger sets. This

happens because in a deterministic environment with perfect information, all surgeries

will be scheduled back-to-back, starting from time t1 = 0, with no risk of suffering from

waiting time or idle time. In these cases, there are no costs and the objective value is zero.

However, in some scenarios, it is impossible to avoid overtime because the sum of realised

surgery durations exceeds the duration of the regular working hours. This is shown in the

average of the WS for instances with six surgeries.

In the cases where the WS is larger than zero, the SP experience a proportional increase.

This means that the EV PI is similar for all instances and the value of perfect information

compared to the stochastic model is approximately constant when the number of surgeries

increases. With an average cost of 1 per minute of waiting and 2 per minute of idling,

perfect information will on average reduce the waiting time by 34 minutes or idle time by

17 minutes.

The V SS varies a lot more than the EV PI, ranging from 106 to 254. Using a stochastic

instead of a deterministic model may result in a reduction of 254 minutes waiting time

or 127 minutes idle time. On average, our stochastic model reduces the cost by 77%

compared to the expected value model. Because we only have a few data instances with

six and seven surgeries, it is hard to tell whether the average values in Table 7.14 are

representative for all data instances of this size, but the table still shows a trend. A

higher number of surgeries lead to a higher V SS. This result is strengthened with the

following reasoning. On a day with two surgeries, allocating a smaller amount of time than

the realised duration of the first surgery may cause a delay for maximum one succeeding

surgery. When the number of surgeries increases, a delay in the first surgery may delay

several succeeding surgeries. This indicates that for our instances, the stochastic solution

is more valuable for a higher number of surgeries.

The EV PP is displayed in the last column of Table 7.14. As for the value of the stochastic

solution, we expect the value of planning with phases, which gives a more detailed descrip-

tion of the underlying uncertainty, to be more valuable for a higher number of surgeries.

This is, to some extent, supported by the results shown in the table. The highest average

EV PP is observed for data instances with six surgeries. Considering all data instances,

the average EV PP is 17, which relative to the average SPNP is an improvement of 30%.

However, the range between the instances is broad. For the instances with six surgeries,
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planning with phases may reduce the total waiting time by 152 minutes on average, or the

total idle time by 76 minutes, while for four surgeries, the total waiting time will only be

reduced by 10 minutes. We conclude that the inclusion of phases will, for some instances,

provide valuable information that can improve the schedule. For other instances on the

other hand, it provides little additional value.

7.7.4 Value of the Emergency Model

Average values of the EV PI and the V SS for each size of problem instances in the

Emergency Model are stated in Table 7.15. The model is run to optimality for all test

instances. Since the surgery durations do not depend on emergency arrivals, the same test

instances are used for the calculation of the EV PEi, where the uncertainty in emergency

arrivals has been removed. The first-stage solution from these tests are then used on the

complete scenario tree to obtain the objective value of the SPEPi.

In contrast to the tests of the Phase Model, all instances will suffer from overtime as the

sum of durations in the majority of the scenarios are higher than d. For the instances

with five elective surgeries, all scenarios suffer from overtime, and this is the case for some

of the instances with four elective patients. The increased cost as a result of overtime is

obvious from the values of the WS, which are larger than zero.

Table 7.15: Average EV PI and V SS for the all problem instances in the Emergency Model

Instance SP WS EDEVT EVPI VSSD

Instance 1E 558.1 329.8 870.8 228.3 312.7
Instance 2E 211.9 64.3 258.1 147.5 46.3
Instance 3E 241.9 124.3 398.2 117.5 156.4

Both the EV PI and the V SS increase when the amount of expected overtime increases

in our test instances. As we only test instances with four and five elective surgeries,

it is difficult to determine whether this is valid in general. It does, however, comply

with the reasoning for the Phase Model, that the value of information increases with

the number of surgeries. The Emergency Model reduces the cost of the expected value

solution by 38% on average. The average values of the EV PI and the V SS are 164 and

153, respectively. Stated in terms of operational time, solving the problem stochastically

may reduce the average total waiting time by 153 minutes or the idle time by 76 minutes

from a deterministic schedule.

Table 7.16 shows the results of the SPEPi and the EV PEi. The SPEPi can be interpreted

as the value of a deterministic strategy which schedules i emergency patients and n elective

patients, as if there were n + i elective patients. Deterministic in this context refers to

a deterministic number of patients. The deviation between the SP and the EV PE0

is 0.6% on average. This shows that the current strategy at St. Olavs Hospital, that

assumes a deterministic arrival of zero emergency patients, will give approximately the
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same results as planning for the uncertainty in patient arrival. The other two strategies,

which deterministically schedule n+ 1 and n+ 2 patients, perform significantly worse than

the first strategy, in this stochastic environment. This shows that with the probabilities

of patient arrival used in our model, the current scheduling strategy used at St. Olavs

Hospital, which does not consider potential emergency patients, may be appropriate.

Table 7.16: SPEPi and EV PEi for all emergency instances

Instance SP SPEP0 SPEP1 SPEP2 EVPE0 EVPE1 EVPE2

Instance 1E 558.1 565.4 788.3 995.8 7.3 230.2 437.7
Instance 2E 211.9 212.5 284.0 505.0 0.6 72.2 293.1
Instance 3E 241.9 244.0 493.2 799.0 2.1 251.3 557.1

The probability of emergency patient arrivals is estimated over a long period of time. This

may change during certain seasons and holidays, as mentioned in Chapter2. To investigate

the impact on the scheduling strategy when the probability of emergency arrival changes,

we run the same tests with varying probabilities. These are run on instances with the same

elective patients, but with uncertain arrival of one emergency patient with probability

ranging from 10% to 90%. The results are displayed in Figure 7.3. The figure shows that

when the probability is below 62%, our stochastic model performs similarly to the strategy

that schedules zero emergency patients. However, when the probability of a emergency

patient arrival exceeds 62%, the optimal strategy changes. For these cases, our model

performs similarly to a strategy that schedules n + 1 elective patients. In other words,

the model makes schedules close to the extreme cases of exactly zero or one emergency

patients. With knowledge of this percentage, it may not be necessary to incorporate the

uncertain emergency arrival in a stochastic model.

The conclusion is that the choice of optimal scheduling strategy, i.e. the number of pa-

tients to schedule, is not trivial. This depends both on the probabilities of arrival and on

the characteristics of the surgery durations. This is complicated further as the number of

possible emergency patients increases. The stochastic model and information about emer-

gency arrivals are still necessary to determine which of the possible deterministic strategies

is the best. Even if the probabilities of emergency patients are unchanged, we have shown

that a slightly better solution can be found by using the Emergency Model.

7.8 Practical analysis

In this section, we will evaluate the potential effects of using optimisation techniques for

St. Olavs Hospital. We will discuss the trade-offs made by the optimisation program and

how it can improve the scheduling strategy at St. Olavs Hospital. For the Phase Model we

will compare our solutions with actual schedules, and we will try to extract a decision rule

that can be implemented on the basis of statistical data analysis. Comparisons with actual

schedules are difficult to make for the Emergency Model, and will be based on realistic,
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Figure 7.3: SP , SPEP0 and SPEP1 for different probabilities of the arrival one emergency arrival

but constructed schedules.

7.8.1 Phase Model

To evaluate the potential gain of new scheduling strategies at St. Olavs Hospital, we com-

pare the performance of the schedules made by St. Olavs Hospital for our data instances,

with the performance of the schedules made by our optimisation program. This means

that the surgery sequence and start time of the schedule from St. Olavs Hospital has been

evaluated in our scenario tree, which is assumed to be a good representation of reality.

Because we do not have data to justify a start time different from zero for the first surgery,

all surgery start times are adjusted back so that the first surgery starts at time zero for

the scheduled made by St. Olavs Hospital. The planners at St. Olavs Hospital also take

many practical aspects into consideration when determining the order of surgeries. To

incorporate some of these, we also evaluate the performance of an optimised schedule that

use the same order of surgeries as planned by St. Olavs Hospital, but can change the start

times as long as the plan comply with this order. The results of these tests are shown in

Table 7.17. The table shows the decomposition of the objective value into waiting time,

idle time and overtime for every data instance. The three columns for each performance

measure indicates the performance of the plan made by St. Olavs Hospital, by fixing only

the sequence and a fully optimised schedule, respectively.
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Table 7.17: Performance of schedule planned by St. Olavs Hospital compared to the performance
of the optimised start times, and fully optimised schedules

Instance Total wait time Total idle time Total overtime
number StOlav Half Full StOlav Half Full StOlav Half Full

1 110 19 17 49 6 4 1 0 0
2 74 13 12 19 3 4 0 0 0
3 212 15 18 0 10 6 0 0 0
4 124 20 20 7 3 3 0 0 0
5 170 34 25 0 9 6 0 0 0
6 153 21 21 0 10 9 1 0 0
7 323 22 17 0 10 7 0 0 0
8 62 42 18 20 10 3 0 0 0
9 38 37 30 21 7 8 0 0 0
10 465 50 23 0 12 6 0 0 0
11 499 29 24 0 22 15 0 0 0
12 55 48 32 130 6 7 181 18 7
13 80 14 12 28 3 3 0 0 0
14 21 39 25 113 8 6 116 4 4
15 800 108 73 0 15 4 107 121 98
16 195 20 19 0 5 4 0 0 0
17 98 23 18 67 5 5 29 0 0
18 57 35 16 58 5 5 0 0 0
19 95 34 15 6 11 6 2 0 0
20 23 23 16 35 7 5 0 0 0

Avg. 182.7 32.3 22.6 27.7 8.4 5.8 21.9 7.2 5.5

From the results, the first observation that can be made, is the major improvement of

the average amount of waiting time, idle time and overtime. This is true for all the

three measures of schedule quality. The improvement can be decomposed into two steps:

improvements from optimising the start times given a fixed sequence of surgeries, and

improvements from optimising the start times and sequence. The first of these two is, by

far, the most significant. That is, St. Olavs Hospital has a huge improvement potential even

by only optimising the intervals of surgeries. This means that considerations regarding the

position of a given surgery (see Other considerations in Section 2.2.3), which have so far

been excluded, can be adhered to because the positions remain as they were in the actual

schedules. If there are no such considerations, meaning there are no strong arguments for

keeping the sequence, the gains from optimising the sequence can be realised as well.

The weight combination we have used for the cost of waiting time, idle time and overtime

does not necessarily reflect St. Olavs Hospital’s considerations completely. However, in

11 of 20 data instances, the solution from the optimisation program is strictly better than

the schedule made by St. Olavs Hospital, in the sense that all three performance measures

are equal or better. This means that, regardless of the preferred weight combination,

the optimised schedule will perform better. The improvements of the remaining 9 data

instances, where there is one measure that is worse off in the optimised solution, are
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Table 7.18: Difference in performance between the schedule made by St. Olavs Hospital and the
optimised schedule

Instance Waiting time Idle time Overtime Trade off

Instance 3 194 -6 0 32 wait/idle
Instance 5 145 -6 0 24 wait/idle
Instance 6 132 -9 1 15 wait/idle
Instance 7 306 -7 0 44 wait/idle
Instance 10 442 -6 0 74 wait/idle
Instance 11 475 -15 0 32 wait/idle
Instance 14 -4 107 112 27 idle/wait,

28 over/wait
Instance 15 727 -4 9 182 wait/idle
Instance 16 176 -4 0 44 wait/idle

more debatable. The difference in each measure is shown in Table 7.18 for each of these

instances. The last column shows the ratio between the improving measure and the

worsening measure. Even though the trade-offs depend on the weights of each measure,

one can argue that reducing the amount of waiting time by 132 minutes at the expense

of 9 minutes of idle time is a reasonable trade-off. This is even the trade-off with the

lowest ratio. The best trade-off reduces total waiting time by 727 minutes at a cost of

4 minutes of idle time, meaning a reduction of 182 minutes of waiting time per extra

minute of idle time. Most of the improvements come from reductions in waiting time.

This may indicate that St. Olavs Hospital associates a lower cost with waiting time than

our cost combination. However, in instance 14, there is clearly scheduled too much idle

time, which results in excessive overtime. This can be almost completely avoided by

careful scheduling, as shown in Table 7.18 for the row of instance 14. Based on the large

improvements relative to the the measures that are worsened, we argue that the optimised

schedule performs significantly better than the plan made at St. Olavs Hosptial for all

problem instances evaluated.

For instances 1, 7, and 8, Figure 7.4 visualises the results of the three different scheduling

strategies discussed. The first is the schedule made by St. Olavs Hospital, the second is

the result from only optimising start times, given the sequence from the first, and the third

one is the result from the full optimisation. Each colour indicates a different surgery, to

show how they are rearranged. The darker part of each bar indicates the 90% confidence

interval of the duration of the surgery. The start of the dark part shows the lowest possible

duration in the confidence interval, while its end shows the highest possible. The average

surgery duration will therefore be located somewhere in the dark shade.

An interesting observation that can be made is that, for several of the schedules made by

St. Olavs Hospital, two surgeries are scheduled to start at time zero. This is to ensure

that either of the surgeries start at the beginning of the day to not waste time. After a

couple of surgeries, there is scheduled a large slack to absorb some of the delays this leads
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Figure 7.4: Comparison of the schedule made by St. Olavs Hospital, the schedule with optimised
start times, and the schedule from the full optimisation
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to. Obviously, this kind of scheduling strategy will impose a lot of waiting in the schedule,

as shown in Table 7.18. This scheduling strategy is similar to the Bailey-Welch decision

rule we evaluated in Section 7.6, which in general gave rather poor performance. Thus,

the main improvement in these cases comes from reducing waiting time.

By inspecting the mean surgery durations (not shown in the figure), we also observe that

many of the intervals from one surgery start time to the next coincide with the mean

surgery duration of the surgery. This is interesting when trying extract a decision rule,

and a closer analysis supports this finding. For all the data instances, we calculated the av-

erage absolute difference between the scheduled start time intervals and the mean surgery

duration in each interval. These distances range from a low of 0.5 to 5.7, with an average

value of 2.6 minutes. Further, when the full problem is optimised, the visualisations of

the schedules show a tendency of setting the surgeries with the higher variance (larger

confidence intervals) later in the day. This also complies with the good performance we

saw with the decision rule that sorts the surgeries in order of increasing variance in Section

7.6. The order does not follow this rule strictly, but a linear regression of the variances

of the surgery durations reveals a clear positive slope for all the regression lines, further

supporting the observation. Based on these discoveries, we suggest a final decision rule,

where the surgeries are scheduled in order of increasing variance, with start time intervals

equal to the mean duration of each surgery.

The final results we present for the Phase Model, are the performance of the proposed

variance sort-mean interval decision rule, referred to as the var-mean rule. An advantage

of this decision rule is that it determines both the sequence and start times. Thus, it

can be used without any interaction with a complete optimisation program. Because the

decision rule base the surgery order on the variance, we have included the sort by variance

decision rule for comparison in addition to the optimal stochastic solution. These are

shown in Table 7.19. Note that the values of the optimal stochastic program objective

and the sort by variance objective are repeated from Table 7.12.

The results show that the sort by variance decision rule is better the var-mean decision

rule for every instance. This is obvious and will always be the case, because both fix the

sequence the same way, bu only the former has the flexibility of optimising the start times.

Compared to the optimal solution, the performance of the var-mean rule varies from a 1%

to 30% optimality gap.

Similar to the sort by variance decision rule, the var-mean rule gives a good performance in

most cases. Therefore, it might function well as an easy rule of thumb. However, as with

the optimisation program, its performance relies on an extensive data analysis. In addition,

this decision rule was derived by studying the resulting schedules from the optimisation

program. It is therefore sensitive to the cost combination we use. For example in the case

where the cost of waiting time is evaluated to close to zero, the optimal solution would be

to schedule all patients to arrive at time zero, such that there is always a patient ready
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Table 7.19: The objective values of the var-mean decision rule, the stochastic program, and the
sort by variance decision rule

Instance Stochastic program Sort by variance Var-mean

Instance 1 25.58 25.58 25.95
Instance 2 28.52 28.89 30.63
Instance 3 38.88 39.32 44.68
Instance 4 22.12 22.12 24.53
Instance 5 37.48 37.80 39.53
Instance 6 39.15 41.45 43.71
Instance 7 31.76 38.29 41.28
Instance 8 24.54 24.54 27.99
Instance 9 45.69 47.21 49.79
Instance 10 41.69 41.72 42.10
Instance 11 53.91 58.01 59.71
Instance 12 69.89 81.54 87.06
Instance 13 17.42 17.42 17.81
Instance 14 48.37 55.20 55.91
Instance 15 381.92 418.08 443.07
Instance 16 26.68 27.61 28.23
Instance 17 31.85 32.49 33.44
Instance 18 26.17 26.17 26.40
Instance 19 26.48 27.71 30.06
Instance 20 25.26 25.26 25.51

Average 52.17 55.82 58.87
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when a surgery finishes.

A first step to taking advantage of the potential scheduling improvements can be to imple-

ment the suggested var-mean decision rule. However, this will neither capture the benefit

of planning with phases nor from fully taking the uncertainty into account. To realise the

full potential, one can use the optimisation techniques discussed in this paper.

7.8.2 Emergency Model

Similar analyses are conducted for the Emergency Model. Since the planners often defer

elective surgeries when emergency patients arrive, information about the planned schedule

before patient deferrals proved difficult to retrieve. We are therefore not able to compare

these results with actual schedules at the hospital. As the patient coordinators claim to use

the same scheduling strategy, independently of the potential emergency arrival, we have

used the same elective patients as for the Phase Model to be to perform a comparison.

These instances are regenerated with 60 scenarios, no phases and the appropriate moments.

The emergency patients, their respective arrival probabilities and the uncertain surgery

durations remain the same as for the emergency instances used in previous analysis.

To conduct this analysis, the elective start times from the planned schedules have been

fixed in the Emergency Model, to find the position for the emergency patients. This has

the advantage of optimising the positions of the potential emergency patients and may

thus be a better solution than what would have been scheduled at St. Olavs Hospital.

This schedule is compared to the optimal schedule from the Emergency Model. Lastly,

we have included the described strategy that schedules n+0 elective patients (Strategy 0)

and then handles the emergency cases on demand.

Figure 7.5 shows the four described schedules for one of the constructed test instances.

The visual representation follows the same structure as for the Phase Model. Specific to

this figure, is the emergency surgery, indicated by the orange colour. The first schedule in

the figure shows the original plan made by St. Olavs Hospital, while the second includes

the optimal positioning of the emergency patient in this schedule. The third schedule is

the solution from the Emergency Model. The last is, as described, the resulting schedule

for using the two-stage Strategy 0. Because all instances provided similar results, only the

results from this instance is displayed.

The trade-offs that are made between waiting, idling and overtime in the Emergency Model

are similar to those of the Phase Model, and will not be restated. However, we will discuss

how the emergency arrival affect the schedules. The Emergency Model improves the

planned schedule by reducing waiting time and idle time by 75 and 40 minutes, respectively,

increasing overtime by 6 minutes for this instance on average. This is the difference

between schedules 2 and 3 in Figure 7.5. The most important insight, however, comes

from the comparison between schedules 3 and 4. The objective values for these two are
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Figure 7.5: Comparison of the schedule planned by St. Olavs Hospital, the schedule with optimised
start times, the schedule from full optimisation, and the schedule from using Strategy 0

about the same, as discussed in Section 7.7.4 regarding the value of the Emergency Model.

The exact numbers are not shown in the figure, but one can see that the spread and the

potential overtime are very similar. This means most of the potential gain can be realised

by using Strategy 0, which is close to the current scheduling strategy at St. Olavs Hospital.

Note, however, that this is only regarding the number of patients, and there is still much

to gain by using stochastic planning for the surgery durations. The small differences in the

schedules, such as the minor displacement of the last elective surgery and the reordering

of the sequence will still provide further improvements, which can be harvested by using

the complete Emergency Model.

The arrival of additional patients seems to be a larger disruption than can be adjusted

for by rescheduling the elective surgeries. The consequence is that it is sufficient to plan

for an exact number of arrivals, instead of allocating flexibility to absorb it. We claim

this indicates that the emergency surgeries should be handled at an earlier decision level,

for example in the advance scheduling problem. However, given that this is not taken

into account, the Emergency Model can give the exact number of arrivals one should

anticipate.

7.9 Further discussion and future research

In this section we will discuss the impact of the main assumptions explained in Chapter 4,

and possible sources of error. Many of these are interesting to consider in future work,

which will be discussed in the end of this section.

The assumption of all patients arriving exactly in time for their scheduled surgery start

can be expected to have two different effects on our plan. First of all, disregarding the

aspect of no-shows and late arrivals implies that, in reality, our planning strategy is likely

to lead to more idle time than what our results suggest. However, since the assumption

also removes the possibility of patients arriving early and the option of calling patients to
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make them do so, some idle time could most likely be eliminated by the hospital in a real

situation. The overall effect of these two arguments is therefore ambiguous.

The assumption of all other resources being available, on the other hand, removes poten-

tial bottlenecks that, in reality, could have led to waiting time, idle time and overtime.

This simplification will therefore pull in the direction of our results giving an optimistic

estimate.

Further, the assumption requiring all surgeries to be performed on the day they are sched-

uled, is a restriction because it deprives the planners of the option of postponing surgeries

to another day when this is considered desirable. The effect of this assumption on the

objective value will therefore be conservative.

Lastly, there is an implicit assumption that the scenarios we generate are a good represen-

tation of the reality. This is a central assumption in all stochastic models, and a potential

source of error. If this is not true, the comparisons between the schedules from the op-

timisation program and the schedules made by St. Olavs Hospital are not meaningful.

This is because the optimised schedules are both created and evaluated based on scenario

trees of the same structure (though not the same scenario trees), while the schedules from

St. Olavs Hospital are only evaluated on these scenarios. If the scenarios are completely

unrealistic, the optimised schedules can seem to perform well, and wrongfully indicate

large improvements from the schedules made by St. Olavs Hospital, even though this will

not be the case in reality.

A potential source of errors is the low number of test instances we use. This arise mainly

due to the vast number of possible combinations of surgeries and the strict statistical

criteria we demand of the data. The implication of this is that the average improve-

ments we report may not be scalable. Also, there is no guarantee that the results for

the Emergency Model is completely transferable to reality. Some seemingly inconsistent

results might have shown more consistency if we had more instances to test. The data

instances selected for testing the Phase Model include surgeries that are expected to have

a significant difference in the probability distribution for the two phases. Therefore, the

potential benefit of planning with phases presented, should be considered optimistic. The

conclusion is, nevertheless, that for certain surgeries and surgeon combinations, there are

clear advantages to differentiating between the two phases.

The two models we propose manage to solve most of the data instances to optimality in

reasonable time. However, a few of the largest data sets for the Phase Model experience

some optimality gap when allowed to run for 3 600 seconds. The number of surgeries on a

given day has a practical limitation at St. Olavs Hospital and the solution time is not an

issue. If the model formulations should be generalised to be suitable for larger problem

instances, or problems with similar structure in other contexts, exact solution methods

are important challenges to explore for future research. If more extensions of the models

need larger scenario trees to ensure stability, decomposition approaches for these integer
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stochastic programs may also be relevant for future work. Lastly, we make assumptions

regarding the decision dependent uncertainty that appears in the Phase Model. To the

best of our knowledge, no literature exists that solves similarly structured problems with a

continuous transition of probability distributions, i.e. using uncertainty with a continuous

relationship with some of the decision variables. This will remove some of the mathematical

oddities that occur because there is a discrete change of probability distribution at the

point that separates the phases, but will at the same time require even more complex data

analyses to model the uncertainty. This is the last major research area we want to point

future work towards.
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Chapter 8

Conclusion

Surgery scheduling is a complex and often manual process which, for the case hospital, is

largely determined by rules of thumb and tacit knowledge held by individual coordinators.

The uncertain environment of hospitals makes surgery schedules prone to disruptions, and

with surgeries representing an important part of a hospital’s activities, disruptions are

costly and can lead to major dissatisfaction among patients and staff.

The objective of this thesis has thus been to provide insights to how uncertainty should

be accounted for when scheduling surgeries, to minimise the consequence of waiting time,

idle time and overtime. The main problem considered has been how to schedule a set

of surgeries with uncertain duration at a given operating room on a given day. We have

applied operations research and formulated two separate stochastic mathematical models

that solve two variations of this problem, where the uncertainty is represented by sce-

narios generated through moment-matching. The problem addressed by the first model

was motivated by a hypothesis that the uncertainty of a surgery’s duration may depend

on its start time, which complicates the mathematical formulation by introducing the as-

pect of decision-dependent uncertainty. The second model solves a multi-stage stochastic

mathematical problem, incorporating uncertain arrival of emergency patients in addition

to the uncertain surgery durations, a combination that is yet to receive much attention in

literature.

We have argued that the duration of a surgical procedure may depend on the surgeon

performing it, and generated scenarios using the moments of the empirical durations for

specific combinations of procedure and surgeon. In addition, the data has been adjusted

for the trend of surgeon efficiency to increase with experience. This has enabled us to make

more accurate estimates of surgery durations, meaning that the value of the solutions we

have presented is not only due to solving the problem stochastically but may be, partly,

due to improved estimates.
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Various attempted decompositions proved unsuccessful due to the aspect of decision-

dependent uncertainty and because our formulations require integer variables in all stages.

We have, however, strengthened the formulations by adding several valid inequalities, and

guided the solution process through branching and different heuristics, significantly en-

hancing the computational performance. The valid inequalities were very effective for the

first model we proposed. For the largest problem instances, that reached a maximum

execution time of 1 800 seconds, the average gap was reduced by 42% after adding all

five valid inequalities. For the instances that reached optimality, we showed that the

most effective cut proved to be one strengthening the link between two of the sequencing

variables, reducing the average run-time by 39% across all instances.

Through a practical computational study, we have combined common approaches from

the literature with conclusions drawn from the results of our optimisation programs. This

has enabled us to extract a simple but effective decision rule that can be implemented

in elective surgery scheduling without use of optimisation. The rule implies sequencing

the surgeries by ascending variance, and setting start times with intervals equal to each

surgery’s mean duration. Attaining the full potential we have identified requires the

application of stochastic programming, but most of it can be captured using the suggested

decision rule. For the Emergency Model, results indicate that the optimal scheduling

strategy, when considering potential emergency patients, depends both on the probabilities

of arrival and on the characteristics of the surgery durations. The model makes schedules

that resemble schedules resulting from deterministically planning for an integer number of

emergency patients. Since this, essentially, equals planning for additional elective patients,

the suggested decision rule applies to this problem as well.

Moreover, we have shown that, for some surgery types, the aspect of surgery durations

depending on their start time can in fact be worth accounting for. This was shown for the

surgery types whose statistical properties were, according to a two-sample Kolmogorov-

Smirnov test of independence, most likely to differ based on the time of day. Hence, the

effects will in general not be prevalent for all surgeries. As for all decision support, the

potential gain from using the proposed Phase Model should therefore be traded off versus

the cost of implementing the consideration.

The overall results from our stochastic models suggest that for the test instances, St. Olavs Hos-

pital could have reduced the average total waiting time, idle time and overtime by 160, 22,

and 16 minutes per day, respectively. Note that since all results are based on a relatively

limited sample of instances, extrapolating the potential results to a larger scale should be

done with care. Even so, the practical conclusion of this thesis is that there are significant

potential gains from applying operations research to handle the uncertainty in surgery

scheduling.
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Appendix A

Propositions and proofs

The following are the proofs of the validity of the valid inequalities stated in the Phase

Model.

Proof of Proposition 6.2. From the model formulation, we have balance equation (22) stat-

ing

ti − ti+1 − ∑
j∈N

wωi+1,j + ∑
j∈N

sωij + ∑
j∈N

wωij = − ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh i ∈ N ∖ {∣N ∣} , ω ∈ Ω

if we solve for ti+1, we get that

ti+1 + ∑
j∈N

wωi+1,j = ti + ∑
j∈N

sωij + ∑
j∈N

wωij + ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh i ∈ N ∖ {∣N ∣} , ω ∈ Ω

From the variable domain definitions we have sωij ,w
ω
ij ≥ 0. Thus, removing these terms

must leave the RHS less than or equal to the actual start time of surgery in position i+ 1:

ti+1 + ∑
j∈N

wωi+1,j ≥ ti + ∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh i ∈ N ∖ {∣N ∣} , ω ∈ Ω

In the shortest possible duration realisation of the surgery in position i, there will not be

any waiting for the surgery in position i + 1 in the optimal solution because one always

can achieve less waiting in this case by setting a higher ti+1 without risking any more idle

time. The shortest possible duration is found across all scenarios and phases, which makes

it possible to substitute the yωijh with xij . That is, when

∑
j∈N

∑
h∈H

Dω
jhy

ω
ijh = min

h∈H,ω∈Ω
∑
j

Dω
jhxij

we get

∑
j∈N

wωi+1,j = 0

Thus,

ti+1 ≥ ti + min
h∈H,ω∈Ω

∑
j

Dω
jhxij i ∈ N ∖ {∣N ∣}
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Proof of Proposition 6.3. Assume that for a given position i, the corresponding δωi = 1.

Then from equation (27) we get

δωi = 1 Ô⇒ d ≤ ti + ∑
j∈N

wωij

From balance equation (22) we know that

ti + ∑
j∈N

wωij ≤ ti+1 + ∑
j∈N

wωi+1,j

and therefore

d ≤ ti+1 + ∑
j∈N

wωi+1,j Ô⇒ δωi+1 = 1.

If, on the other hand, δωi = 0, then the following is always true

0 ≤ δωi+1

Thus,

δωi ≤ δωi+1

is a valid inequality for all i ∈ N ∖ {∣N ∣} , ω ∈ Ω.

Proof of Proposition 6.4, part 2. The linearisation of

yωijh = xijτ
ω
ih i ∈ N, j ∈ N,h ∈H,ω ∈ Ω

was shown in Chapter 6.1.7. From equation (28) we know that

∑
i∈N

xij = 1 j ∈ N

and from equation (38) we have

∑
h∈H

τωih = 1 i ∈ N,ω ∈ Ω

Combining this with the linearisation, we get

yωijh = xijτ
ω
ih i ∈ N, j ∈ N,h ∈H,ω ∈ Ω Ô⇒

∑
h∈H

∑
i∈N

yωijh = ∑
h∈H

∑
i∈N

xijτ
ω
ih j ∈ N,ω ∈ Ω Ô⇒

∑
h∈H

∑
i∈N

yωijh = ∑
h∈H

τωih∑
i∈N

xij Ô⇒ yωijh = 1 ⋅ 1 = 1 j ∈ N,ω ∈ Ω
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The following are the valid inequalities used in the Emergency Model. The structure of

these are similar to the Phase Model, but is adapted to the Emergency Model notation

and definitions.

Proposition A.1. The following inequalities restrict the intervals between surgery start

times

φξiu +min
ω∈Ω
∑
q∈Qξ

DEω
q zξiqu ≤ φ

ξ
i,u+1 +M

Ez
i (1 − ∑

q∈Qξ
zξωiq,u+1) (112)

ti +min
ω∈Ω
∑
j∈N

Dω
j xij ≤ φ

ξ
i+1,u +M

Ez
i (1 − ∑

q∈Qξ
zξωi+1,qu) (113)

are valid for all i ∈ N,u ∈ Qmax, ξ ∈ Ξ and must be satisfied in the optimal solution.

Proposition A.2.

δξωiu ≤ δEξωi,u+1 + (1 − ∑
q∈Qξ

zξωiq,u+1) (114)

δξωi ≤ δEξωi+1,u + (1 − ∑
q∈Qξ

zξωi+1,qu) (115)

δEξωiu ≤ δξωi (116)

are valid for all i ∈ N,u ∈ Qmax, ω ∈ Ω, ξ ∈ Ξ, q ∈ Qξ and must be satisfied in the optimal

solution.
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Appendix B

Out-of-sample stability results

The following tables show the out-of-sample results for both models. The average values

are across five runs on different scenario trees of different size. The Phase Model results

are shown first, while the three last tables are from the Emergency Model.

Out-of-sample results for instance 1

# of scenarios Avg. distance Avg. relative distance
%

40 2.785 11.5%
50 2.532 10.6%
60 2.467 10.0%
70 1.144 4.4%
80 1.448 5.7%
90 1.401 5.4%
100 1.124 4.4%
125 0.946 3.6%
150 1.032 4.0%
200 1.020 4.0%

Out-of-sample results for instance 2

# of scenarios Avg. distance Avg. relative distance
%

40 1.238 4.4%
50 1.645 5.8%
60 1.409 5.0%
70 1.885 6.9%
80 1.254 4.4%
90 1.144 4.1%
100 0.870 3.0%
125 0.640 2.2%
150 1.011 3.5%
200 0.800 2.8%
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Out-of-sample results for instance 7

# of scenarios Avg. distance Avg. relative distance
%

40 1.811 5.0%
50 1.359 3.7%
60 1.213 3.3%
70 1.520 4.2%
80 1.128 3.1%
90 0.576 1.5%
100 0.569 1.5%
125 0.670 1.8%
150 0.357 1.0%
200 0.325 0.9%

Out-of-sample results for instance 9

# of scenarios Avg. distance Avg. relative distance
%

40 2.838 5.8%
50 3.291 6.9%
60 3.968 8.5%
70 2.910 6.0%
80 2.485 5.1%
90 2.317 4.8%
100 1.770 3.6%
125 1.713 3.5%
150 1.168 2.4%
200 0.895 1.8%

Out-of-sample results for instance 12

# of scenarios Avg. distance Avg. relative distance
%

40 4.343 8.6%
50 4.518 10.3%
60 4.000 9.0%
70 3.920 8.8%
80 3.242 7.2%
90 2.780 6.2%
100 2.149 4.7%
125 1.601 3.1%
150 2.014 4.4%
200 2.001 4.3%
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Out-of-sample results for instance 14

# of scenarios Avg. distance Avg. relative distance
%

40 3.210 9.2%
50 4.707 15.4%
60 3.386 10.6%
70 3.519 11.3%
80 3.061 9.6%
90 3.435 10.6%
100 2.598 8.1%
125 1.829 4.8%
150 1.075 3.2%
200 1.010 3.0%

Out-of-sample results for instance 15

# of scenarios Avg. distance Avg. relative distance
%

40 5.980 4.8%
50 7.264 5.8%
60 9.025 7.3%
70 8.500 6.9%
80 5.705 4.6%
90 4.567 3.5%
100 3.107 2.5%
125 3.465 2.5%
150 2.653 2.1%
200 2.500 1.9%
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Out-of-sample results for emergency instance 1E

# of scenarios Avg. distance Avg. relative distance
%

40 2.869 1.0
50 1.999 0.7
60 1.186 0.4
70 1.268 0.5
80 1.088 0.4
90 0.832 0.3
100 0.841 0.3
110 0.546 0.2
120 1.046 0.4
130 0.992 0.4
140 0.317 0.1
150 0.468 0.2
160 0.574 0.2
170 0.507 0.2
180 0.523 0.2
190 0.537 0.2
200 0.371 0.1

Out-of-sample results for emergency instance 2E

# of scenarios Avg. distance Avg. relative distance
%

40 3.187 1.5
50 2.445 1.2
60 1.123 0.6
70 1.140 0.5
80 1.172 0.6
90 1.009 0.5
100 0.909 0.4
110 0.973 0.5
120 0.989 0.5
130 0.929 0.5
140 0.898 0.4
150 0.439 0.2
160 0.790 0.4
170 0.666 0.3
180 0.617 0.3
190 0.620 0.3
200 0.502 0.3

126



Out-of-sample results for emergency instance 3E

# of scenarios Avg. distance Avg. relative distance
%

40 4.353 1.5
50 3.520 1.2
60 2.950 1.0
70 3.192 1.1
80 3.169 1.1
90 2.965 1.1
100 2.766 1.0
110 2.934 1.0
120 2.714 0.9
130 2.946 1.0
140 2.364 0.8
150 2.304 0.8
160 2.378 0.8
170 2.218 0.8
180 2.211 0.8
190 2.272 0.8
200 2.158 0.7
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