
Scalable Self-Adaptation Control system
for simulated transport robots

Magnus Karste Oplenskedal

Master of Telematics - Communication Networks and Networked Services

Supervisor: Peter Herrmann, ITEM

Department of Telematics

Submission date: July 2016

Norwegian University of Science and Technology

Scalable Self-Adaptation Control
system for simulated transport

robot

Author:
Magnus Oplenskedal

Supervisor:
Peter Herrmann

Master Thesis

Department of Telematics
Norwegian University of Science and Technology

Spring 2016

Problem Description

The goal of this master thesis was to design control software for simulated trans-
port robots using model-based engineering. As a proof of concept there will be
developed a prototype of the control software using the OSGi framework to ac-
commodate a highly scalable, modifiable system, where parts of the system can be
installed, started, stopped, updated and uninstalled without requiring a recompi-
lation of the whole system.

The system should be designed in a way that promotes an easy porting from simula-
tion to a real robot. To assist the development of the highly modularized real-time
prototype, the following tools will be used; Eclipse plug-in Reactive Blocks (2) and
the OSGi framework(3). The robot DiddyBorg(4) will be used as a model for the
simulated robot.

Abstract

This master project aimed to explore, research, develop and evaluate the design
and creation of control software for simulated autonomous transport robots. A
proof of concept were to be created using the Reactive Blocks tool and the OSGi
framework. Through literature study and development, a highly modularized sys-
tem design was created, fit to tackle the problem domain. It allowed for the
development of a modifiable control system able to move a simulated robot from
a position to another using simulated robot components. The prototype renders a
simulated robot on the screen, where it can be observed moving to a destination
specified by the user of the system. The two technologies, Reactive Blocks and
OSGi, were merged successfully to handle the complexity of a real-time robotics
system consisting of several concurrent, independent sub-systems.

Preface

This report describes the work and research done, as well as the methodology
and results achieved for the Master Thesis "Scalable Self-Adaptation Control sys-
tem for simulated transport robot", held at Norwegian University of Science and
Technology spring semester 2016.

I would like to thank my supervisor, Peter Hermann, for his continued advice,
support and counseling throughout this project.

Contents

I Introduction and Methodology 1

1 Introduction 2
1.1 Personal motivation . 2
1.2 Readers Guide . 3

2 Method 5
2.1 Predefined requirements . 5
2.2 Research Questions . 5
2.3 Method . 6

2.3.1 Minimum Viable Product 6

II Theory 8

3 State of the Art 9
3.1 Model-based engineering of Control Software for Simulated Robots . 9

3.1.1 Usefulness . 11
3.2 Concurrent Planning and Execution for Autonomous Robots 11

3.2.1 Usefulness . 12
3.3 An Architecture for Sensor Fusion in a Mobile Robot 12

3.3.1 Usefulness . 14
3.4 Specifying Adaptations through a DSL with an Application to Mo-

bile Robot Navigation . 15
3.4.1 Usefulness . 15

3.5 A Hardware-in-the-Loop Simulator for Distributed Robotics 15
3.5.1 Usefulness . 15

3.6 Hardware in the Loop for Optical Flow Sensing in a Robotic Bee . . 16
3.6.1 Usefulness . 16

4 Robot 17
4.1 The Diddyborg . 17

4.2 Sensors . 19

5 Research Questions 20

6 Technologies 23
6.1 Reactive Blocks . 23
6.2 OSGi . 24

7 Control Software 25
7.1 The Simulated Robot . 25
7.2 Simplifications . 25
7.3 Minimum Viable Product Iterations 26

7.3.1 MVP Iteration 1: Inter-modular Communication 26
7.3.2 MVP Iteration 2: Simulated sensor Modules 30
7.3.3 MVP Iteration 3: Simulate robot movement 31
7.3.4 MVP Iteration 4: Simulate the robot moving to a destination 36
7.3.5 MVP Iteration 5: Graphical Simulation 40

III Results 42

8 System design and implementation 43
8.1 System Design . 44

8.1.1 Osgi blocks Module . 46
8.1.2 General blocks Module . 55
8.1.3 DataAccess module . 60
8.1.4 Magnetometer and Accelerometer modules 71
8.1.5 PathFinder module . 75
8.1.6 Robot module . 83
8.1.7 Simulator module . 85
8.1.8 Control Panel module . 91

8.2 Prototype implementation . 96
8.2.1 Running the prototype . 96

IV Summary 104

9 Discussion 105
9.1 Process . 106
9.2 System Design and implementation 107

9.2.1 System architecture and design 107
9.2.2 Realization of MVP 1: Inter-modular Communication 109

9.2.3 Realization of MVP 2: Simulated sensor modules 109
9.2.4 Realization of MVP 3: Simulate robot movement 110
9.2.5 Realization of MVP 4: Simulate the robot moving to a des-

tination . 110
9.2.6 Realization of MVP 5: Graphical Simulation 111

9.3 Usability and real world viability 111
9.3.1 Control Software short-comings 112

10 Conclusion 113

11 Further work 115

List of Figures

3.1 System design of the system created in my specialization project . . 10
3.2 Process Structure of NAVLAB system 13

4.1 Image of the Diddyborg, the physical robot used as model for the
simulation (21) . 17

4.2 Model of Diddyborg seen from atop, and how powering the left and
right motors is used to control the robot 18

5.1 Class diagram showing relations between classes from my speciali-
sation project (1) . 22

7.1 Early sketch of system design . 26
7.2 Updated early sketch of system design with defined communication

parameters . 27
7.3 DataAccess module included in early system design sketch 28
7.4 Inter-modular communication diagram, showing the type of com-

munication used between the modules in the system design. 29
7.5 The Simulation Loop . 30
7.6 Step 1: Sensors registering data in a buffer at the same time as Path

Finder reads data from database. Step 2: Data Access pulls data
from buffer and stores in the database 31

7.7 Cardinal to bearing relation for simulated magnetometer 32
7.8 Activity diagram showing the Path Finders control algorithm 36
7.9 Activity diagram depicting the logic the robot uses to decide if it

has reached its destination or not 37
7.10 Optimal bearing for the robot to reach its destination 38
7.11 The 4 quadrants where a destination may reside, and the logic to

find the optimal bearing for each quadrant 39
7.12 Rotation logic for the robot using ∆b 40
7.13 Early sketch of GUI, elements on the left showing status of the

simulated robot and status of the modules in the system 41

8.1 Design of the current system . 44
8.2 Illustration of the steps needed to convert the Simulation system to

a real robot . 45
8.3 The osgiblocks module . 46
8.4 The RegisterService block . 47
8.5 The External State Machine diagram for the block RegisterService . 48
8.6 The FetchService block . 49
8.7 The External State Machine diagram for the block FetchService . . 49
8.8 Code-snippet of the interface IServiceManager 50
8.9 The createListener method snippet 50
8.10 The OsgiEventSender block . 51
8.11 The External State Machine diagram for the block OsgiEventSender 52
8.12 Code-snippet from the OsgiEventSender block, showing the cre-

ateAdminEventManager method . 52
8.13 The OsgiEventListener block . 53
8.14 The External State Machine diagram for the OsgiEventListener block 54
8.15 Code-snippet from the OsgiEventSender block, showing the regis-

terEventHandler method . 54
8.16 The General blocks module . 55
8.17 Class diagram of the the General Blocks modules exported classes . 56
8.18 Code-snippet from the RobotConstants class, contained in the Gen-

eral Blocks module. 57
8.19 The SensorBlock . 58
8.20 The SensorBlock External State Machine diagram 59
8.21 The DataAccess module . 60
8.22 Class diagram showing classes exported by the DataAccess module. 61
8.23 ER-diagram of the SQlite database created by the DataAccess module 61
8.24 The DataAccess block containing the life-cycle components of the

DataAccess module, implemented in Reactive Blocks 62
8.25 Classdiagram of the DatabaseService class, showing its fields and

methods. 63
8.26 Code snippet from the DatabaseService runnable loop (Simulator

Pulse) . 64
8.27 The DatabaseHandler block . 65
8.28 The External State Machine diagram for the DatabaseHandler block 66
8.29 The DatabaseReader block . 66
8.30 The External State Machine diagram for the DatabaseReader block 67
8.31 Code-snippet of the IDataRetriever interface 67

8.32 Code-snippet from the DatabaseService selectData method, outlin-
ing how the service uses the IDataRetriever to get the select state-
ment and translating the resultSet in accordance to the IDataRetriever 68

8.33 The DatabaseCreator block . 69
8.34 The External State Machine diagram for the DatabaseCreator block 70
8.35 The SqlConverter block . 70
8.36 The Sensor modules . 71
8.37 The Accelerometer and Magnetometer blocks 72
8.38 The createTopicDictionary method used when initiating the OS-

GiEventlistener in the Magnetometer module 72
8.39 The two different versions of the eventToMeasurement method in

the Magnetometer and Accelerometer modules. 74
8.40 The PathFinder module . 75
8.41 The PathFinder block . 76
8.42 The Finder block . 77
8.43 The Finder blocks external state machine diagram 77
8.44 Code-snippet showing the method getMeasurements creating an in-

stance of the IDataRetriever interface to extract newly registered
measurements from the database 78

8.45 The PhysicalStateHandler block . 79
8.46 The CommandHandler block . 80
8.47 The PathHandler block . 81
8.48 The PathHandler blocks external state machine 82
8.49 The Robot module . 83
8.50 The Robot block . 84
8.51 The calculateEnginePwr method . 85
8.52 The Simulator module . 85
8.53 The Simulator application block . 86
8.54 The Simulator building block . 87
8.55 External state machine of the Simulator building block 88
8.56 Code-snippet showing the createSimulatedAcceleration method . . . 89
8.57 Code-snippet showing the methods used to create simulated bearing

data . 90
8.58 The Control Panel module . 91
8.59 The Control Panel implementation in Reactive Blocks 92
8.60 The Window block . 93
8.61 Screen-shot of the GUI. 93
8.62 Code-snippet showing the CustomCanvas loop calling the render

method every 17th millisecond . 94

8.63 The methods used to draw the robot and the destination on the
Canvas . 95

8.64 First screen-shot of live simulation, start position of the robot. . . . 97
8.65 Secon screenshot of live simulation, robot starts moving towards

target . 98
8.66 Third screenshot from live simulation, the robot is building speed

towards its destination, accelerating with 1 px/s2 99
8.67 Fourth screen-shot from live simulation, robot still accelerating to-

wards destination . 100
8.68 Fifth screen-shot from live simulation, the robot is breaking to ad-

just its bearing . 101
8.69 Sixth screen-shot from the live simulation, the robot has adjusted

its bearing and is moving towards the destination 102
8.70 The last screen-shot of the live simulation, the robot reached the

destination . 103

9.1 Final version of the system design and all its implemented modules 107

Part I

Introduction and Methodology

1

Chapter 1

Introduction

In safety critical domains like aviation, railroading, automotive, and robotics, one
uses autonomous cyber-physical systems that interact with each other in the same
physical space. Systems controlling robots, avoiding collisions with each other and
objects in the physical world, getting from one destination to another, with the use
of sensor input. When creating and testing control systems, simulation of the robot
can be useful to avoid physical damage to real components and potentially humans.
A fully simulated system can also be used to analyze the effects of malfunctioning
hardware, and to assist the development of safe control software.

Using a framework like OSGi promotes the development of highly modularised
software, which can be handy for the development of control software for transport
robots where individual parts of the system controls individual physical parts of
the robot. This can give developers the option to easily update, change and add
new software to the system both during compile- and run-time.

1.1 Personal motivation

Personally I am genuinely interested in software architecture and design and loved
the opportunity to hone my skills on creating an advanced system design for a
problem domain I had little to non experience in. I got my first taste of the
Robotics last semester, when I had a similar project description for my specialisa-
tion project (1). I really enjoyed working within the problem domain and with the
challenges it provided. Through a specialization course held at NTNU, I learned
about the OSGi specification and found it very intriguing to work with this inter-
esting technology throughout my master project.

2

1.2 Readers Guide

This section aims to give the reader an overview of the parts, and chapters in this
report.

Part I - Introduction and Methodology

The motivation behind the project, and how it was conducted.

Chapter 1 Introduction - Provides the motivation behind the project and the
readers guide.

Chapter 2 Method - This chapter aims describes the research questions used to
guide the literature research and the methodologies used to answer the project
description.

Part II - Theory

Part II contains the information achieved during the research and work done before
developing the control software.

Chapter 3 State of the Art - Describes articles of relevance to this master project,
and in which way they are useful.

Chapter 4 Robot - Presents the robot used as a model for the simulated robot.

Chapter 5 Research Questions - Presents the results found when answering the
research questions.

Chapter 6 Technologies - Briefly describes the two main technologies used in this
project

Chapter 7 Control Software - Presents the theory, calculations and designs found,
created and used to design the system and develop the prototype.

Part III - Results

This part describes the results discovered and achieved during this master project.

Chapter 8 System design and implementation - Presents the final system design
and implementation of the system.

3

Part IV - Summary

This part discusses the findings in this project, presents a conclusion and lists
areas of potential further work.

Chapter 9 Discussion - Discusses the process done during development, the system
design and the final implementation of the software.

Chapter 10 Conclusion - Presents an conclusion based on the discussion in Chapter
9 and the results in Part III.

Chapter 11 Further work - Lists and discusses potential areas of expansion and
future work for the system.

4

Chapter 2

Method

This chapter aims to explain and describe the methodologies, techniques and ap-
proach used to answer the master thesis.

2.1 Predefined requirements

The device used, device computer and development tool was predefined by the su-
pervising professor for the the specialization project(1) I conducted last semester.
Since the master project reside within the same problem domain as the special-
ization project, the pre-set conditions still stand. In addition to the previous
conditions, the java framework for development of modularized systems, OSGi, is
added to the list.

• Device: Diddyborg (4)

• Device computer: Raspberry PI (5)

• System development tool: Reactive Blocks (2)

• Java framework: OSGi (3)

2.2 Research Questions

Before the system design and implementation was initiated, a set of research ques-
tions were defined to narrow the research needed for the practical work. The

5

research questions were created to guide the literature research needed to answer
the master thesis.

RQ1: What kind of software architecture is available for a highly modularised
system for controlling transport robots?

Before designing the system it is important to know what kind of architectures
already exist and if they can support a highly modularised system using OSGi(3)
and Reactive Blocks(2).

RQ2: Are there any proof of concept systems, or control software systems created
for robots using the OSGi Framework?

RQ3: How much of the work conducted in my specialization project can be used
in this master thesis?

Can the research conducted during my specializations project (1) be used in the
master project? Can parts of the code be used?

2.3 Method

The project work was started by defining several Research Questions which was
later answered by doing a literature study. Based on this work a set of Minimum
Viable Product Iterations were defined to guide the design of the system and the
implementation of a prototype.

2.3.1 Minimum Viable Product

When designing the system for this project the Minimum Viable Product technique
was used(20). This technique is handy the time estimation of a project is difficult,
and the project has a hard deadline. The technique aims to create a system
containing core functionalities as early as possible, a viable product with the bare
minimum of functionalities. When this has been done the systems stakeholders
will review and analyze the system and if accepted the system will undergo a new
iteration where new functionality is added.

Before starting the development the functional requirements of the first iteration
was defined. In addition to this several future iterations of the system was planned
to make sure that the overall system design was achieved during the development.

6

By using this approach one functional iteration of the system will lead to another
functional iteration, and even though, some times, not all iterations of the system
can be implemented, one always has a functional system to fall back on.

MVP Iteration 1: Inter-modular Communication

The goal of the system was to create a highly modular system, using the Reactive
Blocks tool(2) and the OSGi framework(3). By using these technologies all mod-
ules can have their own life-cycles, where the modules can be updated, installed,
uninstalled, stopped and started. A system built on these modules require loosely
coupled inter-modular communication and is therefore the first core functionality
that should be designed and implemented.

MVP Iteration 2: Simulated sensor modules

After the inter-modular communication is in place, the next step is to add sim-
ulated sensor modules. Without sensor modules the control software for an au-
tonomous robot cannot function. The second functionality to be designed and
implemented should be the simulated sensors.

MVP Iteration 3: Simulate robot movement

Simulating the robots movement, in other words updating its simulated physical
properties based on simulated movement should be the next step in the prototype.

MVP Iteration 4: Simulate robot moving to a destination

When moving the simulated robot is possible, a control algorithm for the prototype
to an destination using its sensors, should be implemented.

MVP Iteration 5: Graphical simulation

Adding a GUI module for rendering the robots movement on the screen will help
error-checking the control algorithm and provide users of the system a better way
to observe the live simulation.

7

Part II

Theory

8

Chapter 3

State of the Art

The purpose of the master project was to design a scalable, modifiable control
system for simulated robot and implement a prototype of the design. Before the
design job was initiated it was important to research similar projects and systems,
and learn from these. This chapter contains and presents a selection of the systems
and articles and what could be learned from them.

3.1 Model-based engineering of Control Software
for Simulated Robots

My specialization project autumn 2015 (1) was done as a part of my Master of
Science degree conducted at NTNU. The goal of the project was to use model-
based engineering to create control software for simulated robots, a goal similar to
this master thesis.

The simulated robot should be able to move from position A to B using only
simulated sensors and engines.

9

Figure 3.1: System design of the system created in my specialization project

The system is divided into separate modules, the modules are however contained
in the same run-time application block and can therefore only be changed during
development time.

In figure 3.1 we can see the 3 top-layer modules of the system. CommandHandler,
StateHandler and the DeviceHandler. The CommandHandler module has the
functionality to receive commands from external devices, these commands contain
a destination for the robot. This destination is extracted from the command and
sent to the StateHandler module. This module contains a queue of destinations,
and if idle will start processing the first destination in the queue. The process
is done by sending the current destination to the DeviceHandler module. This
module controls the simulated physical parts of the robot, and can also be seen in
Figure 3.1. The DeviceHandler sends the destination to its inner Control block .

The Control module contains the control algorithm of the robot and based on
the current physical properties of the robot, the current position and the current
destination, sets the power output of the engines to steer the robot towards its
destination.

The Engine modules is just placeholder modules in this system, and sends the
engine output to the simulator module.

The Simulator module uses the current physical properties of the robot to simulate
the effect the engines power would have on real sensors, and sends this simulated
sensor output to the sensor modules Magnetometer and Accelerometer.

The Magnetometer and Accelerometer modules also act as placeholder modules
and pass the data on to the PhysicalState Handler module.

10

The PhysicalState Handler module uses the sensor output together with the robots
current physical properties to calculate the new updated physical state of the robot.

The updated physical state of the robot is in turn sent to the Control module and
used to calculate the needed engine output to travel towards the robots destination.

3.1.1 Usefulness

The idea of creating separate modules for each of the physical parts is good, to
keep the simulated robot as similar to the real robot as possible. It also makes
the job of porting the system from the simulation to a real robot easier, since the
modules are separated in a natural way.

The control algorithm contained in the Control module can be used by robots
using the magnetometer and accelerometer sensors.

The idea of placing all the simulation specific code in its own separate module is
good, this also helps porting the simulation to a real robot.

3.2 Concurrent Planning and Execution for Au-
tonomous Robots

The article written by Reid Simmons (7) describes the use of TCA (Task Control
Architecture) in a system that walks a legged robot through rugged terrain. The
walking system was originally implemented in a sense-plan-act sequential cycle,
but was modified to concurrently plan and execute steps.

The interesting part of this article was Simmons use of the Task Control Architec-
ture, because of this a short description of the architecture follows:

The Task Control Architecture provides a general framework for controlling dis-
tributed robot systems(7). In particular TCA supports distributed processing,
hierarchical task decomposition, temporal synchronization of sub tasks, execution
management, resource management and exception handling. The architecture is
built up by a number of task-specific modules and a central module, the modules
in turn communicate with each other by passing messages to the control module
which routes the message to the appropriate module.

The TCA uses several different types of messages, Query messages are used for one
module to get information from another and are blocking while awaiting a reply.

11

Non-blocking commands such as goal, command and monitor messages are used
to create hierarchical plans. To coordinate messages the TCA uses: resources,
hierarchical task trees, and temporal constraints. A resources is a set of message
handling procedures and a capacity, by default all messages handled by a module
are grouped as a resource of unit capacity. By doing this the TCA can only send
one message to a module at the time, while queueing up additional messages.
Resources can be reserved by modules, giving the module exclusive access. This
can be used to synchronize resources. TCA records the sender and receiver of
each message in a dynamically created hierarchical task tree. In these trees a
sequential-achievement constraint can be set between two nodes. In this way all
messages under the first node must be completed before the second nodes messages
are handled.

3.2.1 Usefulness

The Task Control Architectures message-routing is an interesting approach to
cooperation between modules of the system and might be useful for the design
of my system. Reid Simmons(7) explains how they used the TCA to implement
concurrency between the planning and acting phase of the robots movement. This
can be relevant in my system, but for later iterations of the design.

3.3 An Architecture for Sensor Fusion in a Mobile
Robot

The paper written by Steven A. Shafer, Anthony Stentz and Charles E. Thorpe
describes sensor fusion in the context of an autonomous mobile robot(8). They de-
scribe the software architecture of a system they are building called the NAVLAB.
The system is created for a vehicle, named the NAVLAB vehicle, a commercial
truck modified with sensors, electronic controls and on-board computers and power
generators. It is completely self-contained. The control software consists of com-
puter controlled hydraulic drive system, controlled steering wheel, and processors
to monitor and control engine functions

12

Figure 3.2: Process Structure of NAVLAB system

The system consists of several large modules, which are independently running
programs. For example "map navigation and "road-edge finding by stereo vision".
The modules are communicating together through a system Steven A. Shafer, An-
thony Stentz and Charles E. Thorpe named CODGER(COmmunications Database
with GEometric Reasoning). The program organization of the NAVLAB system
is shown in Figure 3.2 where each of the boxes represent a separately running
program. The Local Map Database is a central database all modules store and
receive information from through a set of subroutines called LMB Interface (8).

The system structure has the characteristic of a blackboard system (9). The
CODGER system of Steven A. Shafer, Anthony Stentz and Charles E. Thorpe dif-
fers from the blackboard system because their system consist of modules which are
separate, continuously running programs an architecture they named Whiteboard.
The communication between the modules consists of reading and writing data to
the central database.

In the CODGER database, data is represented as tokens consisting of attribute-
value pairs (8). Tokens can be scalars, arrays or geometric locations. Modules
stores tokens in the database by a subroutine which sends the data to the central
database. When a module needs data it creates what they call a specification. The
specification can look like this example taken from (8):

tokens with type equal to "intersection" and traffic-control equal to "stop-sign"

In this example the database would return all tokens with type and traffic-control
attributes satisfying the above constraints (8). With the use of this system the

13

NAVLAB provides asynchronous sensor fusion. An example taken from (8) ex-
plains how merging the results from module A(vision) and module B(rangefinder)
into module C can occur in the following sequence:

1. Module A receives image at time 10 and writes results at time 15.

2. Module B receives data at time 12 and writes data at time 17.

3. At time 18, module C receives the result from module A and B. C uses
vehicle coordinate system at time 12 for merging the data

4. Module C then requests module A’s result, which was stored in VEHICLE
time 10 coordinates to be transformed into VEHICLE time 12 coordinates.
If necessary the system automatically interpolates coordinate transformation
data. Module C can now merge A and B data since they are in the same
time. At time 23, C stores the data in the database, with a coordination
time of 12.

3.3.1 Usefulness

The problem domain is very similar to mine. The goal of my master project is to
create a highly modularised system where the modules have their own life-cycles
thanks to the OSGi framework. The way Steven A. Shafer, Anthony Stentz and
Charles E. Thorpe uses a central Database for inter-module communication is
very interesting, since it can effectively be done with OSGi as well. The use of a
database to store values from the sensors can also be used to implement machine
learning in later iterations of the system even though it is outside the scope of my
project.

The way they created modules for each of the sensors and other modules for
handling the data received from the sensors is also very interesting.

Their use of the Whiteboard pattern seems like a good idea, in this way the indi-
vidual sensors are not restricted by a central controlling unit synchronizing their
life-cycles. They can keep on measuring and storing data independently of the rest
of the system.

14

3.4 Specifying Adaptations through a DSL with an
Application to Mobile Robot Navigation

In (14) André C. Santos1,3, João M. P. Cardoso2, Pedro C. Diniz3 and Diogo
R. Ferreira1 propose an adoptable system design for embedded systems based
using a Domain Specific language. They aim to separate application and adaption
concerns to allow for the reuse of adaption mechanisms.

3.4.1 Usefulness

Separating the adaption concerns to allow for reusable adaption mechanisms is a
good idea, and supports the plan for my master project of creating a highly mod-
ularized system. Separating the adaption concerns into its own module will result
in the possibility to update and exchange the adaption functionalities without to
any modifications to the rest of the system. Since OSGi is a central part in my
master project, and OSGi provides the possibility to update, stop, install, uninstall
and start modules in run-time. A combination of their adaption strategy and the
OSGi framework can give the module containing the adaption concerns the power
to change the states of other modules in the system.

3.5 A Hardware-in-the-Loop Simulator for Distributed
Robotics

Ritesh Lal and Robert Fitch (15) discuss self-reconfiguring modular robots, versa-
tile robots that can adapt to their environment through changing its modules in
run-time. They describe the difficulties of observing the full state of the system
at any given time and propose an Hardware-in-the-loop simulator. They present
a custom HIL simulator for distributed robotics which include small graphical
displays to facilitate debugging.

3.5.1 Usefulness

Designing my system to have the possibility to be used in an Hardware-In-the-Loop
setup is a great idea, and should be looked more into through the development of
my system design and prototype.

15

3.6 Hardware in the Loop for Optical Flow Sensing
in a Robotic Bee

Pierre-Emile Duhamel ,Judson Porter, Benjamin Finio, Geoffrey Barrows, David
Brooks, Gu-Yeon Wei, and Robert Wood (16) describe their hardware in the loop
system for simultaneous development and testing of different individual compo-
nents and RobotBees.

3.6.1 Usefulness

Their idea of using a hardware-in-the-loop system which tests different components
at the same time to find the best fitting components for their problem domain is
a really good idea. This is something I can envision for the future of the system
design in my master project. Testing sensors in the same system, running the same
algorithms and then having the possibility to retrieve this data and compare it to
select the best fitting sensor is a great idea for the future of my system design

16

Chapter 4

Robot

Control software for a robot can be either immensely complex or rather simple, it
all depends on the robot that is controlled. A robot can be a human-like machine,
a machine with arms and legs or it can be a car. A robot can be autonomous, semi-
autonomous, or directly controlled by an external source. The goal of this chapter
is to describe the robot simulated in my project, and the physical properties of the
robot reflected in the simulation system.

4.1 The Diddyborg

Figure 4.1: Image of the Diddyborg, the physical robot used as model for the
simulation (21)

17

The robot used as a model for the simulated robot in the prototype is called a
Diddyborg(4). The Diddyborg consists of a body, containing the Raspberry Pi
and 6 motors. The motors are placed on the sides of the robot, 3 on each side.
Each motor is connected to a wheel and all motors one one are connected to the
same power output. The motors on the left, can be operated independently from
the motors on the right and vice versa. The motors can be controlled by giving
them a command with a value indicating amount of power the motor should use,
this value is set from from 0-100%, in either relative forwards or reverse direction.
To easier simulate the difference between power for the motor in the two different
direction, a power range from -100 to 100 is proposed. See Figure 4.2 for overview
over how the motor power is used to control the robot.

Figure 4.2: Model of Diddyborg seen from atop, and how powering the left and
right motors is used to control the robot

There are no axles which can be be used to change the angle of the wheels. And
as such rotating the robot can only be done by differentiation of the power output
to the motors.

18

4.2 Sensors

The following sensors are proposed for the prototype of the system; Magnetometer
and Accelerometer. This because the sensors are available for the robot Diddyborg,
on the chip XLoBorg (22). An accelerometer works by measuring the acceleration
in relative x, y and z directions. An magnetometer works like a compass and
measures the earths magnetic-fields to find the current bearing of the device.

19

Chapter 5

Research Questions

This chapter presents and describe the answers found to the research questions
defined in section 2.2. The questions were created to guide the research deemed
necessary for the design of the system, and the implementation of its prototype.

RQ1: What kind of software architectures is available for a highly mod-
ularised system for controlling transport robots?

This questions was aimed towards state of the art architectures for the problem
domain my master thesis resides in. Several architectures were researched and
documented in chapter 3.

The Task Control Architecture discussed in section 3.2 describes an architecture
using an interesting message routing system, where communication between the
modules were routed through a central module. The article was mainly focusing
on creating an architecture for concurrency in the planning and acting phase of
the robots movement cycle.

Steven A. Shafer, Anthony Stentz and Charles E. Thorpes Whiteboard System
NAVLAB discussed in section 3.3 is concerned with a problem domain very similar
to my master thesis. They are creating a system consisting of multiple indepen-
dent programs communicating through a central database. They use the same
modularisation strategy of placing sensor software and navigation software in sep-
arate modules. Sensor modules write sensor data to the database and navigation
modules read the data to be able to navigate the robot to its destination.

20

RQ2: Are there any proof of concept systems, or control software sys-
tems created for simulated mobile robots using the OSGi framework?

I could not find any other works done in the mobile robot simulation domain using
the OSGi framework and Reactive Blocks. The NAVLAB system described by
Steven A. Shafer, Anthony Stentz and Charles E. Thorpes however consists how
highly decoupled modules, which might be applicable to a system built on the
OSGi framework.

RQ3: How much of the work conducted in my specialization project
can be used in this master thesis?

The problem domain of my specialisation project (1) have a lot in common with
my master thesis, and can be seen as a stepping stone towards the problem de-
scription of my master thesis. The two projects differ in the focus of the system
design. Where the specialisation project was mainly focused on the control soft-
ware, creating software that could be used to automate a simulated robot, the
master project is focused on the system architecture and design of the control
software and the ability to build the system using the OSGi framework.

There are also similarities which can be used in the master thesis, for example
the use of the same type of robot and sensors allows the use of the same control
algorithms.

Parts of the code might be of use, for example all the POJO(Plain Old Java Object)
classes, see Figure 5.1, can be used since these are the same for both projects.

21

Figure 5.1: Class diagram showing relations between classes from my specialisation
project (1)

The research questions gave me an idea of where to start when designing the
control software, and the state of the art chapter gave me inspiration on what
kind of architecture and design I could create.

22

Chapter 6

Technologies

This chapter aims to give the reader a short summary of the two most important
technologies used in this project. The Reactive Blocks tool (2) and the OSGi
framework (3).

6.1 Reactive Blocks

Reactive Blocks (2) is an Eclipse plug-in created for the development of reactive
real-time software systems. A system in Reactive Blocks consists of building blocks
which are subsystems or functionalities, and can be composed of each other. The
blocks created in Reactive Blocks are stored in on-line libraries and can easily
be reused. This is done by dragging and dropping building blocks into projects.
Building blocks behaviours are modeled by UML activities that contain UML
call actions. The interface of a block is created by defining an External State
Machine(10). ESM are state machines defining when input and output flows are
allowed to be passed through the pins at the Blocks edges(11).

Reactive blocks can analyse functional correctness since both activities and ESM
are supplemented with formal semantics (13). Reactive Blocks projects are auto-
matically transformed into Java (12).

23

6.2 OSGi

The OSGi specification allows for the development of modular systems in the
Java programming language implementing an dynamic component model. The
modules are called Bundles, JAR’s with extra metadata allowing them to have their
own separate life-cycles. Each bundle can be remotely installed, started, stopped,
updated and uninstalled without requiring a full reboot and recompilation of the
system. During run-time,a bundle can exist in one of the six following states:

• UNINSTALLED

• INSTALLED

• RESOLVED

• STARTING

• STOPPING

• ACTIVE

A bundle in the state UNINSTALLED is uninstalled from the framework and
cannot be used. A INSTALLED bundle is installed in the framework, but not yet
resolved. A RESOLVED bundle is a bundle which is installed, and has had all its
dependencies checked such that it will not break the system in any way when it is
started. STARTING and STOPPING are temporary states that the bundle enter
when it is in the process of starting or stopping. The ACTIVE state is entered
by the bundle when it has been resolved and is finished in the STARTING state.
The bundle can now be actively used by the framework and other bundles in it.

All bundles exists and share the same Bundle context in the framework. It is
through this bundle context that a bundle can access the services provided by the
framework, other modules or use one of the following communication techniques:

The OSGi framework allows for bundles to share functionality with other bundles
with the use of a service layer. In the service-layer bundles can communicate by
using a publish-find-bind model for POJIs(Plain Old Java Interfaces) and PO-
JOs(Plain Old Java Objects). A bundle can register a service in the framework,
which other bundles can extract and use.

The framework comes with an built-in event service called the Event Admin Ser-
vice. Using this service, bundles(modules) in the system can publish events with
topics in the framework, and other bundles can subscribe to these topics to receive
the events.

24

Chapter 7

Control Software

Chapter 7 contains the research made and the necessary formulas created to de-
velop the simulated control software. The chapter is built up by first defining the
properties of the simulated robot, and its predefined simplifications. After this the
work and research done for each of the MVP iterations defined in section 2.3.1 will
presented.

7.1 The Simulated Robot

Before the design of the MVP iterations was started, the properties of the sim-
ulated robot had to be defined. This to guide the functional and non-functional
requirements of the software. The robot portrayed in chapter 4, will be the model
for the simulated robot.

The Diddyborg (4) has 3 wheels connected to individual motors on each side of
its body, these motors can however not be controlled separately. Therefore, the
simulated robot has only 1 engine on each side of its body. To keep the control
algorithm and system simple and to be able to easier focus the work on the under-
laying infrastructure, only the Magnetometer and the Accelerometer sensors are
simulated.

7.2 Simplifications

The control algorithm itself is not the most important part of this system, at least
not in the first iteration of the system. To keep the control algorithm simple a

25

number of simplifications were set for the simulated robot.

• Movement: The simulated robot has 4 movement states, Forward, Rotate
and Stopped. The robot can only do one of these at the time, and as such
the robot is standing still while rotating, and cannot change direction while
moving.

• Acceleration: The simulated robot only accelerates when moving forward or
decelerates when breaking. And as such when rotating the robot will not
change its position.

• Acceleration in x, y and z direction: The robot can only move in the xy plane,
and as such the acceleration and movement in the z-direction is disregarded.

7.3 Minimum Viable Product Iterations

Before starting the work on the first Minimum Viable Product iteration, a rough
sketch of the system design was needed. This was important since the first MVP
iteration was how to deal with inter-modular communication. In the beginning
this was just a rough division of responsibility into modules with high cohesion,
as can be seen in figure 7.1

Figure 7.1: Early sketch of system design

7.3.1 MVP Iteration 1: Inter-modular Communication

From the work done during the literature research, and technology research shown
in chapter 6 a number of possible communication technologies and ideas were
found.

The first step was to expand system design, to map what kind of data one module
needs and what it can provide for others. Figure 7.2 shows an updated version of
the early system design described in Figure 7.1.

26

Figure 7.2: Updated early sketch of system design with defined communication
parameters

In Figure 7.2 we can see an overview of the modules as well as the data sent
between the modules. This is a good starting point for the creation of the inter-
modular communication. The first data needed in the system is the sensor output,
and as such the first interface designed was the interface between the Sensor and
the Path Finder modules.

Sensor data registration

The communication between the sensor and path finder modules are one-way, from
the sensor to the path finder. The data sent was postulated to consist mainly of
floating values, for example the bearing of an device registered with a Magne-
tometer, or the three floating numbers registered by an Accelerometer. In other
words the data sent from the sensor module will be one or more floating values pr.
measurement.

The Path Finder module needs to be able to accept data from several Sensors at the
same time. And to get the newest registered value from the sensors, even though
they do not register data at the same time or register data at the same frequency.
For example Sensor A registers data at time 5, 10, 15 and so on. It registers data
at an interval of 5 seconds. Sensor B registers data at time 2.5, 5, 7.5, 10 etc, in
other words it registers data at another frequency than sensor A. The Path Finder
Module should always get the newest measurement from all sensors. The problem
is how to synchronize the data received from the sensors. At what time should
the Path Finder run a new calculation on the registered measurements? How can
the Path finder store the measurements from the different sensors while waiting
for data from other slower sensors? How can this sensors fusion be handled?

27

The DataAccess Service

The design used by Steven A. Shafer, Anthony Stentz and Charles E. Thorpe in
(8), where all their sensor modules are independently running programs registering
data in a central database came to mind as a good way to solve the sensor fusion
problem. If all of the sensors write data to a database, the Path Finder module
can extract data from the database at intervals and use this data to calculate the
path of the robot. When the data from the sensors are registered in a database,
the measurements might be also be used in machine learning, in later iterations of
the software. This is however outside the scope of this master thesis.

The next issue is deciding which module should have the responsibility of the
database. To keep high cohesion within the modules, and low coupling between
them, a new module was proposed. A module with the sole responsibility of
connecting to and communicating with the database. In Figure 7.3 a new iteration
of the system design can be seen, with the addition of the DataAccess module.

Figure 7.3: DataAccess module included in early system design sketch

When a sensor module wants to store data in the database, it has to do this through
the Data Access module, the Path Finder must use the Data Access module to
read data from the database. The Data Access module will thus work as a Service
the Path Finder and sensor modules can use to read and write to the database.

Keeping low coupling between modules and cohesion between them is important
when creating highly modular systems. The modules should have as little knowl-
edge as possible about each other, while still being able to communicate and work
together. How can this be achieved?

Publish-Subscribe Pattern

The Publish-Subscribe pattern (17) is a pattern where publishers publish events
under a Topic without having any information about potential subscribers and if
there are any subscribers at all. The subscribers subscribe to a Topic, without

28

having any knowledge of when events will arrive or where they come from, as long
as they are published under the subscribed Topic.

Figure 7.4: Inter-modular communication diagram, showing the type of commu-
nication used between the modules in the system design.

Figure 7.4 shows the different modules in the system design (green squares) and
topics they publish/subscribe to (yellow ellipses). The communication between
the modules run in a loop, depicted by the steps in the figure, where step 1 is
the simulator module publishing simulated data, step 2 is the sensor modules
subscribing to the simulated data topic. Step 3 is the Sensor modules using the
Data Access module to write data in the database. The next step 4 is for the Data
Access to store the data in the database, which the Path finder reads in step 5. In
step 6 the Path Finder module Publishes its data, and in step 7 the robot module
subscribes to this data. The Robot module publishes two topics, the Engine Power
topic in step 8 which the Motor modules subscribe to in step 10 and the Physical
Properties topic published in step 9. Both the GUI module and the Simulator
module subscribe to this topic in step 11 and 12, this is an example of how to
modules can subscribe to and use the same data in parallel, without having any
knowledge of each other and the Robot module having no knowledge of either of
its subscribers.

The Simulation Loop

The internal modular communication shown in figure 7.4 is in this project called
the simulation loop and works as a feedback loop where the data measured by the

29

sensors are used to control the simulated robots engines, which in turn is fed back
to the simulator module that simulates the data input to the sensors, Figure 7.5

Figure 7.5: The Simulation Loop

7.3.2 MVP Iteration 2: Simulated sensor Modules

With the inter-modular communication in place, the next step will be to implement
functionality for the sensor modules to register data in the database, and doing
this through the Data Access module.

SQLite Database

The Data Access module has the responsibility of connecting to, writing and read-
ing from the database. Using a SQLite database is proposed because this allows
for a self-contained database system where the Data Access module can have the
responsibility of creating the database file itself. This way the system will not have
to rely on external software for database creation and control.

"SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine." (18)

SQLite databases does not have a separate server process, but reads and writes
directly to ordinary disk files. When it comes to concurrency, SQLite databases
allow for concurrent reading but not writing. This might be an issue for the control
software where several Sensors are measuring and writing data in parallel. This
issue can however be solved by using a buffer where sensors registers data, and
then allowing the Data Access module to pull data from the buffer and store it in
the database at certain intervals. After each pull the Path Finder can be allowed
a read period where it requests the newly stored data in the database, see Figure
7.6.

30

Figure 7.6: Step 1: Sensors registering data in a buffer at the same time as Path
Finder reads data from database. Step 2: Data Access pulls data from buffer and
stores in the database

With this functionality in place the Sensor modules can register data in a buffer
concurrently, which the Data Access module pulls from the buffer and stores in
the database. The sensor modules should be simple containing the functionality
to subscribe to data sent from the Simulator module and store this data in the
database.

7.3.3 MVP Iteration 3: Simulate robot movement

To be able to simulate a moving robot, one first has to calculate the robots sim-
ulated physical properties. The physical properties that will be included in the
prototype are the following:

• Position

31

• Bearing

• Acceleration

• Velocity

Relative Position

Changing the robots position over time is what movement is actually all about.
Having positional awareness is therefore the first property that is needed. With the
sensors defined for the simulated robot, only the relative position can be found, e.g.
the position of the robot in relation to where it started. Moving the simulated robot
will work by iterating the relative position of the robot based on the calculations
using the following physical properties; bearing, acceleration and velocity.

Bearing

To be able to calculate the relative position of the simulated robot, the bearing and
linear acceleration is needed. The bearing is the direction the robot is heading and
is measured by a magnetometer. The data output by a magnetometer is usually
a value between 0 and 360 degrees. The relationship between the four cardinal
directions and the output from the simulated magnetometer for this prototype can
be seen in figure 7.7

Figure 7.7: Cardinal to bearing relation for simulated magnetometer

32

Simulating the bearing of the robot and the change of it is done by updating the
current bearing of the robot for each cycle of the Simulation Loop with a predefined
"degrees pr. time unit" when the robot is in the rotating state.

In addition to the bearing, the linear acceleration of the robot is needed to calculate
the relative position.

Acceleration

The accelerometer measures acceleration in the relative x, y and z directions,
relative in the sense that its relative to the x, y and z direction of the device.

The simulated accelerometer is placed directly on top of the simulated robot, and
as such the x direction of the accelerometer is parallel to the forwards direction
of the robot, and the y direction is perpendicular to the forwards direction. This
will result in an positive x acceleration when the robot is moving forwards and an
negative acceleration when the robot is breaking. Acceleration in z-direction will
be neglected in the prototype of the system, it will be assumed that the simulated
robot is moving in a the xy-plane only. The acceleration of the robot will, in this
iteration of the prototype be the same as the acceleration measured in x-direction
since the robot can only be moving forwards or rotating, it can not turn while
moving forwards creating acceleration in both x and y directions (see Simplifica-
tions). In later iterations of the prototype, it can however be interesting to have
the possibility to measure linear acceleration from both x and y directions. The
linear acceleration can be found by using the Pythagorean theorem, see Equation
7.1. Where the hypotenuse is the linear acceleration and the x and y accelerations
are the two other sides of the triangle.

La =
√
Xa2 + Y a2 (7.1)

Where La is the linear acceleration of the robot, and Xa and Ya are the acceleration
in x and y directions. With the linear acceleration of the device at hand, the
velocity of the device can be found.

Velocity

The delta velocity ∆v of the robot can be found by using the linear acceleration
La of the device, and time ∆t since last update, see Equation 7.5. ∆v is the speed

33

increased by accelerating with the acceleration La over the time ∆t.

Acceleration = m/s2

∆Time = s

∆V elocity = Acceleration ∗∆time = m/s2 ∗ s
∆V elocity = m/s

(7.2)

34

With the ∆v of the robot at hand, the current velocity v can be found with the
following equation:

v = v + ∆v (7.3)

And the velocity Xv in x direction and Yv in y direction can be found with the
following trigonometric functions, where b is the current bearing of the device:

Xv = v ∗ cos(b)
Y v = v ∗ sin(b)

(7.4)

Updating relative position

With access to the speed of the robot in both x and y directions, we can finally
update the relative position of the robot with the following Equation:

x = x+Xv ∗∆Time

y = y + Y v ∗∆Time
(7.5)

Here we add the current speed in x and y directions, Xv and Yv, multiplied by
the time since last update ∆Time to the current position of the robot x and y.

Movement

By using all the equations listed in this section we can update the relative position
of the robot over time, simulating movement.

35

7.3.4 MVP Iteration 4: Simulate the robot moving to a
destination

With the ability to simulate robot movement, the next step is to move it some-
where. In the prototype of the system the goal will be to move the robot to a
destination using its sensors for navigation. The algorithm controlling the move-
ment will reside in the Path Finder module, see Figure 7.4. In Figure 7.8 an
activity diagram, showing the general flow of the control algorithm is depicted,
this algorithm will be run by the Path Finder module for each iteration of the
Simulation Loop.

Figure 7.8: Activity diagram showing the Path Finders control algorithm

At Destination

In Figure 7.8 the first check the algorithm performs is to see if the robot is at its
destination, if it is it should stop and if not the algorithm moves to the next step.

36

To check whether the robot is at its destination Equation ?? can be used to find
the difference between the robots position and the destination.

∆x = |x− destX|
∆y = |y − destY |

(7.6)

Comparing ∆x and ∆y with a predefined value for how much the x and y position
of the robot is allowed to deviate from the actual destination, can be used to check
if the robot has reached its destination, see Figure 7.9.

Figure 7.9: Activity diagram depicting the logic the robot uses to decide if it has
reached its destination or not

On Course

If the robot has not reached its destination, the next step is to decide whether it
should enter the Rotate or the Forward state, see Figure 7.8. To do this it has to

37

know if it is on course or not. The direction the robot needs to drive in to reach
the destination is in this master project called the Optimal Bearing.

Figure 7.10: Optimal bearing for the robot to reach its destination

To calculate the optimal bearing the angle (α) between the robot and the desti-
nation must be found. This can be done by the following Equation:

α = |
arcTan(∆y

∆x
)

π
| (7.7)

Where ∆x and ∆y is found with Equation 7.6.

With α in hand we know the angle between the robot and the destination, however
we do not know where in relation to the robot the destination exist. If its to the
west, east, south or north of the robot. To find this we can compare the x and
y coordinates of the position with the x and y coordinates of the destination,
following the logic depicted in Figure 7.11

38

Figure 7.11: The 4 quadrants where a destination may reside, and the logic to find
the optimal bearing for each quadrant

The Optimal Bearing to a destination in the first quadrant is found by adding 0°
to α, in the second quadrant we add 90°, 180° in the third quadrant and 270° in
the fourth. To keep the value of the optimal bearing within the 4 quadrants, the
value is done modulus 360.

With the use of the Optimal Bearing, we can now find ∆b the difference between
the optimal bearing and the robots current bearing. This will in turn be used to
calculate in which direction the robot should turn to have the shortest rotation

39

distance. ∆b can be calculated with the following Equation:

∆b = currentBearing − optimalBearing (7.8)

And with ∆b the rotation logic in Figure 7.12 decides whether the robot is on
course or not, and in which direction it should rotate to have the shortest rotation
distance.

Figure 7.12: Rotation logic for the robot using ∆b

7.3.5 MVP Iteration 5: Graphical Simulation

Having a graphical simulation of the robot and its destination will greatly help the
development of the control algorithm and the cooperation between the modules in
the system. By using a graphical simulation one can see if the robot is actually
moving towards it destination, if it has reached it and if it is rotating in the correct
direction without having to check log files, console output and etc.

40

Figure 7.13: Early sketch of GUI, elements on the left showing status of the
simulated robot and status of the modules in the system

Figure 7.13 contains a sketch of the graphical user interface(GUI). The goal of
the GUI is to show the simulated physical properties and to draw the robot and
destination on a canvas. By doing this one can check if the cooperation between
the modules are working and to check if the control algorithm is working. There
is also a panel showing module status, this is to show the sate of the modules in
the system. OSGi modules (bundles) can have one of six different states, as shown
in listing 6.2.

41

Part III

Results

42

Chapter 8

System design and implementation

This chapter describes the design process of the system, the finalized system design
and the implemented prototype of a control system using the design.

When designing and developing this system, the minimum viable product technique(20)
was used. The theory and research done for each MVP iteration can be found in
section 7.3. The system was designed with high focus on modifiability ??, with
modules having high cohesion and low coupling. This was done to better accom-
modate the use of OSGi bundles in the implementation.

To describe the system, I will start with the system design as a whole and then
dive into each of the top-level modules(OSGi bundles). The system was developed
using the tool Reactive Blocks, see section 6.1. When creating systems using this
tool, one divide the system into blocks (modules). These blocks can contain other
blocks and/or java code. The result of the merging of the two technologies OSGi
and Reactive Blocks is a system consisting of modules within modules, blocks
within blocks.

43

8.1 System Design

In section 7.3 an early sketch of the system design was described and its alterations
to incorporate the inter-modular communication. This sketch was used as the
foundation and inspiration for the rest of the system design and implementation,
and the final version of the system design can be seen in Figure 8.1

Figure 8.1: Design of the current system

In Figure 8.1 we can see several squares in different colors and one red cylinder.
The squares represent independent modules registered in the OSGi framework as
a part of the system, implemented as OSGi bundles. The green and yellow squares
are modules with their own life-cycles and work as a part of the Simulation loop,
see Figure 7.5. The gray squares are not part of the simulation loop, their job is to
offer POJO classes to the other modules in the system, as well as different blocks
used by the other modules. The yellow squares are squares that can be removed,
if the Simulation is going to be converted to work on a real device, see Figure 8.2.

44

Figure 8.2: Illustration of the steps needed to convert the Simulation system to a
real robot

In Figure 8.2 we can see an example of how one can convert the control software
to work on a real device with 2 simple steps. All squares in the design represent

45

independent modules with their own life-cycles, and can be removed without any
significant modification to the other modules in the system. When converting the
system to a real device, the simulator module and the control panel module are not
necessarily needed and can be removed as shown in step 1. Since the modules use
a publish-subscribe pattern, see section 7.3.1, the modules are not aware of where
they get their data, and which modules are subscribing to their data. Because of
this we can see in step 2, there are added new modules (blue squares) containing
hardware specific software. On the left we can see sensor software, specific for
the sensors used in the device has been added and started to publish data on the
Topic of which the sensor modules are listening. The same is done on the right
side, where software specific for the engines is listening to the topic published by
the robot module.
When converting the software from Simulator to a real robot, it will most likely
require some modifications in the existing modules. However this work can be
greatly reduced if the simulated version of the system is similar to the device it
will be used on.

Figure 8.1 is a general model of the system, showing which modules exist in the
current prototype of the system and which modules are required for the simulation
loop to work. The next sections will be used to explain each of these top-level
modules in detail, how they have been implemented using reactive blocks and the
communication between them.

8.1.1 Osgi blocks Module

Figure 8.3: The osgiblocks module

The osgiblocks module is shown in Figure 8.1 as a gray block, indicating that it
does not have its own life-cycle and its only purpose is to export blocks related
to using the OSGi framework, to the other modules in the system. The module
provides the four following blocks:

• RegisterService

• FetchService

46

• OsgiEventSender

• OsgiEventListener

These four blocks are responsible for the inter-modular communication related to
the first minimum viable product iteration in section 7.3.1. The OsgiEventSender
and OsgiEventListener handle the publish-subscribe communication described in
section 7.3.1. The RegisterService and FetchService blocks are used by modules
registering a service in the framework, and by modules using the service.

RegisterService block

Figure 8.4: The RegisterService block

47

Figure 8.5: The External State Machine diagram for the block RegisterService

The RegisterService block serves as a convenient way for a top-level module (OSGi
bundle) to register a service in the OSGi framework. In Figure 8.4 we can see a
screen shot of the block implemented in the tool Reactive Blocks, in Figure 8.5
we can see the blocks External State Machine diagram. The block is started by
a sending a string on the init input pin on the left side of the block. The string
is usually the name of the context registering the service, but is of no importance
to the functionality of the block. Registering the context triggers the internal Get
BundleContext block, which retrieves the bundle context. If there is an available
bundle context, the bundle context object is output on the pin ok and the block
enters the state idle, see Figure 8.5. In the state idle the block can accept input on
the registerService pin, this is the where the actual service registration happens.
The pin requires an object of the class ServiceRegisterParam containing the name
of the service class, the service object and optional properties. These two/three
parameters are required by the OSGi framework when registering a service.

When an ServiceRegisterParam object arrives at the input pin, it is passed along
to the internal block Simple Service Register which handles the service registra-
tion in the framework. The registration can either be successful, triggering the
registrationOk output pin, or it can fail and trigger the info output pin with an
error message posted by the Simple Service Register block. In Figure 8.5 we can
see that an successful service registration triggers the active state of the block,
an unsuccessful registration keeps the block in the state idle and outputs an error
message.

48

FetchService block

Figure 8.6: The FetchService block

Figure 8.7: The External State Machine diagram for the block FetchService

When a module needs a registered service it can use the FetchService block, see
Figure 8.6 for implementation in Reactive blocks and Figure 8.7 for external state

49

machine diagram. The init pin of the block requires a implementation of the
interface IServiceManager, see code-snippet in Figure 8.8. An implementation of
this interface describes what should be done with the service when the FetchService
block finds it, and the name of the service which the block should look for.

Figure 8.8: Code-snippet of the interface IServiceManager

When the FetchService block receives an servicemanager object, the block retrieves
the bundle context from the Get BundleContext block and stores the serviceman-
ager in a local variable, see Figure 8.6. After this is done the next step is to trigger
the createListener method, see Figure 8.9.

Figure 8.9: The createListener method snippet

The GeneralListener class used in Figure 8.9 is an implementation of the SerivceLis-
tener interface provided by the OSGi specification. An implementation of this class
can be registered in the bundle context as a listener, listening for a service using
the service class-name. As can be seen in Figure 8.9, the constructor of the class
takes three parameters; A servicemanager, bundle context(bc) and the block(this)
that creates the Listener. The servicemanager is used by the listener to get the
name of the service it should listen for. The bundle context is the bundle context
the listener should register itself in and the block reference is used by the listener
to push events to the block whenever it observes changes to the service.

In Figure 8.6 the SERVICE_CHANGED eventlistener can be seen, the eventlis-
tener listens for events pushed by the servicelistener. The servicelistener pushes
events with additional data, a string containing either registered or unregistered.
If the Registered string is received, the FetchService block calls the manageService

50

method, as can be seen in Figure 8.6, this method calls the servicemanagers man-
ageService method see Figure 8.8. See Figure 8.12 for an implementation of this
functionality, what happens to the service and how it is used is up to the developer
of the ServiceManager.

OsgiEventSender block

Figure 8.10: The OsgiEventSender block

The OSGiEventSender block is used by modules to send/publish events through
the OSGi framework. The OsgiEventSender uses the FetchService block to fetch
a service called the Event Admin Service. This service is shipped with the OSGi
framework and is started when the OSGi framework starts. The event adminis-
trator provides a basic public-subscribe model, where each event consist of a topic
and a set of properties.

51

Figure 8.11: The External State Machine diagram for the block OsgiEventSender

When the input pin init is triggered from an external source, the first step is to
run the createEventAdminManager method. As described under the Fetchservice
section, the FetchService block requires an implementation of the IServiceMan-
ager(Figure 8.8) to be started. An implementation of this interface is instanti-
ated in the createEventAdminManager method and passed on to the FetchService
block, a code-snippet of the method createEventAdminManager can be seen in
Figure 8.12.

Figure 8.12: Code-snippet from the OsgiEventSender block, showing the createAd-
minEventManager method

The OSGiEventSender block enters the waitingforservice state after it is initiated
and stays here until the FetchService block finds the event admin service. When

52

this happens the block triggers the eventServiceReady pin, and the block enters
state active. In the active state the block can now accept input on the post pin,
which calls the postEvent method. This method uses the event admin service to
post an event on the OSGi framework. The OSGiEventSender will stay in the
active state, accepting events, until it is stopped through the stop input-pin or
the FetchService notifies the block that the service has become unavailable. If this
happens the block will go back to the waitingforservice state. The events posted
by the event admin service is a data and value pair wrapped in the Event class
provided by the OSGi specification (23).

OsgiEventListener block

Figure 8.13: The OsgiEventListener block

53

Figure 8.14: The External State Machine diagram for the OsgiEventListener block

The OSGiEventListener block is used by modules in the system to listen for
events published under a topic. Listening to events in the OSGi framework re-
quires the use of a sub-class of the abstract class EventHandler (24). This class
is shipped with the OSGi framework and contains 1 abstract method, the han-
dleEvent method. Inside this method developers must specify what the even-
thandler should do in-case it receives an event on the specified topic, see Figure
8.15 for code-snippet. The eventhandler is then registered as a service in the OSGi
framework.

Figure 8.15: Code-snippet from the OsgiEventSender block, showing the regis-
terEventHandler method

In Figure 8.13 we can see the implementation of the block in Reactive Blocks.
The block is initiated by the init pin, which requires a Dictionary instance. The
dictionary should contain the topics the event handler should listen for. After re-
ceiving a dictionary, the block starts the inner-block RegisterService and enter the
state idle. The block stays in this state until it is triggered by the startEventLis-
tener input-pin. This pin triggers the registerEventHandler method and sends

54

the created event handler to the RegisterService block. When the event handler
has been registered in the framework the RegisterService block pushes a token
onto the eventListenerRegistrationOk pin, see Figure 8.13. When the eventlis-
tener is registered, it can start pushing events it find in the framework out to the
OsgiEventListener block. As can be seen in Figure 8.15 the event listener sends
events it finds in addition to the keyword EVENT_RECEIVED to the block. This
gets picked up by the event listener EVENT_RECEIVED shown in Figure 8.13
and pushed out on the output-pin event.

Osgi blocks Module Summarized

Throughout this section the four OSGi specific blocks exported by the Osgiblocks
module have been explained in detail. The RegisterService and FetchService blocks
can be used to register and fetch services from the OSGi framework as a way for
modules in the system to share their functionality. The OsgiEventSender and
OsgiEventListener blocks were described as blocks with the possibility to publish
and subscribe to events using the OSGi framework. These blocks provide a conve-
nient way to achieve inter-modular communication with a small amount of binding
between the modules.

The next section will describe the other "gray" module of the system, the General
Blocks module.

8.1.2 General blocks Module

Figure 8.16: The General blocks module

The General blocks module is shown in Figure 8.1 as a gray block, the same as the
Osgi blocks described in the last section. It is gray because it does not have a life-
cycle, only exporting blocks, classes and system wide constants to other modules
in the system. The module export one block (sub-module), the SensorBlock which

55

will be explained in detail later in this chapter. It also exports a package with
model-classes used by the other modules in the system. The package contains the
classes shown in Figure 8.17

Figure 8.17: Class diagram of the the General Blocks modules exported classes

The classes exported by the General Blocks module contain 5 classes. The Physi-
calState class, which contains all the physical properties of the robot. The Position
and Acceleration classes are used to store information about the position and accel-
eration of the robot, the MovementState enum is used to describe which movement
state the robot is in and The last class EnginePower is used to store the current
engine power of the robots engines.

56

Figure 8.18: Code-snippet from the RobotConstants class, contained in the Gen-
eral Blocks module.

In addition to export classes, the module contains the Systems various constant
variables. In Figure 8.18 a code snippet from this constant class can be seen.
The constants seen in the code-snippet are the constants used as topic for the
communication between the simulator and the two implemented sensors, as well
as constants limiting the speed, rotation speed, acceleration and deceleration of
the simulated robot.

SensorBlock

The only block exported by the General Blocks module is the SensorBlock. When
creating a sensor module, there were some operations and blocks that always had
to be set up in the same manner, the work was time-consuming and complex. To
battle this work and to stay true to the DRY(Don’t Repeat Yourself) principle,
the SensorBlock was created. The block provide the following functionalities to a
sensor module:

• Registering the sensor in the database

• Registering measurements in the database

• Selecting data from the database

57

Figure 8.19: The SensorBlock

When the SensorBlock is initiated, it triggers four operations in parallel. The
first is to create an serviceManager object, used by the FetchService to find
a databaseService, see the createServiceManager method in Figure 8.19. The
databaseService is created and published by the DataAccess module to access
the database. The serviceManager is sent to the FetchService module and starts
listening for a databaseService in the OSGi framework. In addition to this the
block DatabaseHandler and DatabaseReader is initiated and the event listener
SERVICE_FOUND is started. When all these steps have been concluded, the
SensorBlock enters the state waitingForService, see Figure 8.20

58

Figure 8.20: The SensorBlock External State Machine diagram

When the FetchService block finds the databaseService it pushes a notification
on its serviceRegistered output-pin and triggers the operation serviceFoundEvent.
The serviceFoundEvent publishes an event to the block with the keyword SER-
VICE_FOUND, and triggers the operation getDatabaseService which gets the
databaseService found by the FetchService block and sends it to the DatbaseHan-
dler and the DatabaseReader blocks. When this is done the SensorBlock enters
the idle state, the block accepts input on the registermeasurement, registerSensor
and selectStatement pins. Input on the selectStatement pin will trigger the state
reading, in which the block will wait for data read from the database. When the
databaseService enters the reading step, see step 1 in Figure 7.6, the output-pin
selectResult is triggered with the results from the select statement and the block
re-enters the idle state. The functioanlities of the three database-specific blocks
used by the SensorBlock in Figure 8.19 will be explained in detail later in this
chapter.

59

General Blocks module Summarized

The general blocks export a package of classes used by the system to store the
robots physical properties about the , Figure 8.17. It provides the static class
RobotConstants, containing constants used by the other modules in the system,
Figure 8.18. The module also export one block, the SensorBlock, Figure 8.19. This
block provides a convenient and reusable way for sensor modules to get access to
the database.

In the next section the DataAccess module will be described, a module with its
own life-cycle the first module that is a part of the simulation Loop.

8.1.3 DataAccess module

Figure 8.21: The DataAccess module

The DataAccess module was created to place the responsibility of the database
communication in its own module. The module has its own life-cycle in the OSGi-
framework, this means that it is a running process with the ability to exist in one
of the life-cycle states listed in listing 6.2. The module has the responsibility of
creating the SQLite database, providing a service for the other modules in the
system to communicate with the database and exporting blocks that can be used
to "wrap" the database service easing the use of the service itself.

In addition to the databaseService and the database specific blocks, the module
exports a package containing classes specifically designed to fit the data-model
used by the database. In Figure 8.22 a class diagram of these classes can be seen.

60

Figure 8.22: Class diagram showing classes exported by the DataAccess module.

The classes shown in Figure 8.22 are used by the modules to store data related to
sensor measurements. The classes were created to correspond with the tables in
the database ER-diagram, see Figure 8.23

Figure 8.23: ER-diagram of the SQlite database created by the DataAccess module

The database was made as simple as possible, but yet flexible enough to accept
most types of floating value sensor measurements. An measurement can consist of
several dataloads and each of these dataloads can contain a value and a description.

61

DataAccess block

The DataAccess application block is the block containing the life-cycle of the
DataAccess module, and is the part of the module that is Run by the OSGi
framework. The Reactive Block implementation can be seen in Figure 8.24

Figure 8.24: The DataAccess block containing the life-cycle components of the
DataAccess module, implemented in Reactive Blocks

As can be seen from Figure 8.24, the DataAccess block itself is not advanced. The
block has three initiation pins (small blue circles) which starts in paralell when
the block is initiated. The block is started with initiating the DatabaseCreator
and the RegisterService block. The last initiation pin starts a timer (100ms) to let
the DatabaseCreator get fully started, before it triggers the input-pin createTables.
This pin triggers the creation of the database’s tables, and after it is done it notifies
the querySuccessful pin. This in turn triggers the getDatabaseService pin which
results in output on the outgoing databaseService pin. The output from this pin
is the newly created DatabaseService, explained in detail in the next paragraph
under The DatabaseService class . This newly created DatabaseService object is
then wrapped in a ServiceRegisterParam object by the createService method and
sent to the RegisterService block for registration in the OSGi framework.

62

The DatabaseService class

The DatabaseService class is an important part of the system, and is created in
the DatabaseCreator block. The service is then registered in the OSGi framework
and used by all Simulator modules and the PathFinder module to communicate
with the database. The DatabaseService class contains the core purpose of the
DataAccess module and can in some way be viewed as the Pulse of the system,
this because it is this service which controls the 2 step read/write functionality
described in Figure 7.6. The DatabaseService implements the interface Runnable
and runs on its own thread. The thread runs the two step read/write pulse,
from now on called the simulation Pulse. In Figure 8.25 a classdiagram of the
DatabaseService can be seen, with all its fields and methods.

Figure 8.25: Classdiagram of the DatabaseService class, showing its fields and
methods.

When a module/block wants to use the databaseservice, it has to do the following
operations; If the module is using the to write data, it registers its query in the
queries field(this field works as the buffer described in Figure 7.6), and registers
itself in the writerBlocks field. If a module is using the service to read data, it
registers itself in the readerBlocks field. The simulation Pulse can be seen in the

63

code-snippet in Figure 8.26

Figure 8.26: Code snippet from the DatabaseService runnable loop (Simulator
Pulse)

The first step of the simulation pulse is to create an query string, this is done by
combining all the insert statements registered in the buffer (queries list). The pulse
then checks if there actually were any queries, and if there were, stores them in the
database. The success of the query, either true or false, is stored in the succ variable
and sent to all the writer blocks by using the notifyWriterBlocks method. The next
step is to notify all the reader blocks with the method notifyReaderBlocks, that the
database connection now can be used to read data. This 2 step pulse is made this
way because the SQlite database only accepts concurrent reading, not concurrent
writing. When writing data to the database, the database is locked. The time
between each write step is decided by the amount of milliseconds registered in
the variable PULSE_TIMEOUT, the thread is put to sleep to allow the reading
blocks some time to read and the writer blocks some time to register queries in
the buffer.

64

With basic understanding of how the DatabaseService class works, we can now
move on to the blocks that implement its functionality. There are two blocks
doing this, the DatabaseHandler for writing data, and the DatabaseReader for
reading data.

DatabaseHandler block

Figure 8.27: The DatabaseHandler block

The DatabaseHandler block provides an interface on-top of the databaseService
for modules writing data to the database. The block is initiated by triggering the
init pin, and sets the block in the waitingForDatabaseService state. The block
exist in this state until it gets an instance of the DatabaseService class on the
registerDatabaseService pin, this triggers the transition into the active state, see
Figure 8.28 for external state machine diagram.

65

Figure 8.28: The External State Machine diagram for the DatabaseHandler block

It is in the active state that the block can be used to register data in the query
buffer, see Figure 7.6. The registerQuery method stores the query in the buffer,
and registers the block in the DatbaseService writerBlocks list. The token then
rests in the QUERY_FINISHED event listener, waiting for the DatabaseService
to notify the block that the query is finished, using the method notifyWriterBlocks
shown in Figure 8.26

DatabaseReader block

Figure 8.29: The DatabaseReader block

66

The DatabaseReader block provides an interface on-top of the DatbaseService class
for reading data from the database. It is initiated by triggering the init pin, which
moves the block to the waitingforDatabaseservice state. In the same way as the
DatabaseHandler, the DatabaseReader block stays in the this state until it receives
an DatabaseService object on the registerDatabaseService input-pin.

Figure 8.30: The External State Machine diagram for the DatabaseReader block

Receiving a DatabaseService object triggers the transition to the idle state. The
block will stay in this state until the selectStatement input-pin is triggered, con-
taining an implementation of the IDataRetriever interface. This action will change
the blocks state to reading, call the method registerBlockAsReader and start the
READ_READY event listener. The block will stay in the reading state until it
receives an READ_READY event from the DatbaseService. Upon receiving this
event the block calls the readData method, outputs the data it receives from the
database and changes state back to idle.

To keep the DatabaseReader general the IDataRetriever interface was created.
The interface decouples the select statement from the DatabaseReader and moves
the responsibility to the block using the DatabaseReader.

Figure 8.31: Code-snippet of the IDataRetriever interface

In Figure 8.31 the IDataRetriever interface can be seen, and Figure 8.32 shows how
the DatabaseService use the IDataRetriever when running an select statement.

67

Figure 8.32: Code-snippet from the DatabaseService selectData method, outlining
how the service uses the IDataRetriever to get the select statement and translating
the resultSet in accordance to the IDataRetriever

DatabaseHandler and DatabaseReader summarized

In the two previous sections we have seen the details of how the DatabaseHandler
block can be used to write data , and how the DatabaseReader is used to read
data from the database. These blocks are exported by the Dataaccess Module
and can be used by other modules in the system. The DatabaseCreator block
however is only used by the DataAccess module to create the database and the
DatabaseService.

68

DatabaseCreator block

Figure 8.33: The DatabaseCreator block

The DatabaseCreator block was created to gather all the parts concerned with
creating the SQLite database and the DatabaseService in one place. The block
is initiated with triggering the init pin, which in turn calls the method create-
DatabaseService. The method creates an instance of the DatabaseService class
and serves it to the DatabaseHandler. When all this is done the DatabaseHandler
exists in the idle state awaiting input on the createTables pin.

69

Figure 8.34: The External State Machine diagram for the DatabaseCreator block

Input on the createTables pin calls the createTables method, which generates the
SQL query needed to create all the tables and their relations in the database.
During the insertion of the SQL query, the block will exist in the active state,
and stay here until the DatabaseHandler is finished running the query. When it is
finished the outgoing querySuccessful pin is triggered and the block switches back
to the idle state. It is now possible for external triggers on the getDatabaseService
pin, to get the DatabaseService. This is done in the DataAccess block shown in
Figure 8.24.

SqlConverter block

Figure 8.35: The SqlConverter block

The SqlConverter block is a convenience block created to stay true to the DRY
principle. The block accepts all objects created from sub-classes of the abstract
class Basemodel, shown in the class diagram in Figure 8.22. It accepts individual
objects, hierarchical object structures and lists of objects and converts these into

70

SQL insert statements, which are output as one String on the outputSqlInsertString
pin.

DataAccess module summarized

The Dataaccess module creates the SQLite database and the DatabaseService used
by the other modules in the system. It registers the databaseService in the OSGi
framework and it exports blocks such as the DatabaseReader and DatabaseHandler
which can be used to access the functionality of the service. The module also export
a package containing Basemodel classes which are used to store sensor information
and sensor measurements. These classes directly reflect the table structure of the
database, and can be used to contain data to and from the database. Objects of
these classes can be translated to insert statements using the convenience block
SqlConverter which translates POJO’s(Plain Old Java Objects) to SQL insert
statements.

In the next section the two implemented Sensor modules will be discussed. The
two implemented sensors are, as mentioned earlier, the Magnetometer and the
Accelerometer.

8.1.4 Magnetometer and Accelerometer modules

Figure 8.36: The Sensor modules

The implemented sensor modules in the system are not as complex as some of
the other modules. Their job is to receive data from the Simulator module and
store this in the database using the databaseService provided by the DataAccess
module. The modules have their own life-cycles, and as such are implemented as
application blocks in the tool Reactive Blocks. They do not export any blocks or
packages and does not register any services in the OSGi framework.

71

The next section will explain how the modules are implemented in Reactive Blocks,
and the differences between the two sensor blocks.

Magnetometer and Accelerometer blocks

Figure 8.37: The Accelerometer and Magnetometer blocks

The sensor blocks are just a combination of the OsgiEventListener block from the
OsgiBlocks module, see section 8.1.1 and the SensorBlock from the GeneralBlocks
module, see section 8.1.2. The application block for both modules can be seen in
Figure 8.37.

The module is started by initiation of the OSGiEventListener and the SensorBlock.
The OSGiEventListener block requires a TopicDictionary to be started, which it
gets from the createTopicDictionary method.

Figure 8.38: The createTopicDictionary method used when initiating the
OSGiEventlistener in the Magnetometer module

72

In the code-snippet we can see the value used as topic is stored in the static class
RobotConstants, exported by the General Blocks module, see Figure 8.18. After
receiving the topic-dictionary, the OSGiEventlistener starts listening for events
published under the topic, and publishes these events on the event output pin.
When an event is found, it is stored in the global variable event before the is-
SensorRegistered method is run. This method checks if the sensor has been reg-
istered in the database. If it has not, the event is deleted. If the sensor has been
registered the data found in the event object is translated to a measurement object
and then sent to the SensorBlock on its registerMeasurement input pin.

In parallel to starting the OSGiEventListener, the SensorBlock is also started.
This block requires no initial input, but after it has gotten access to the Databas-
eService it triggers the serviceFoundEvent output pin, which in turn triggers the
registerSensor method. This method creates an object of the Sensor class, see class
diagram in Figure 8.17. The Sensor object created in the registerSensor method
is then sent to the SensorBlock and stored in the database. When the sensor has
been stored it triggers the insertionSuccessful output pin which in turn calls the
isSensorRegistered method.

This method is created to solve two problems:

• When registering a sensor for the first time, the sensorID in the database is
unknown. This because the ID field in the Sensor Table is auto incremented.
This means that when the sensor is registered the first time, we have to query
the database to get the sensorID value. This is needed to be able to store
measurements in the database

• When registering measurements in the database, after we have registered the
sensor we no longer need to get the sensorID from the database. We only
need to query for the ID one time.

The problem arises because both the registerSensor and the registerMeasurements
work the same way internally in the SensorBlock and both trigger the insertion-
Successful output pin. To battle this issue, the isSensorRegistered method will
only return false when the Sensor has been registered in the database for the very
first time. When returning false, the getSensorID method is called, which asks the
database for the last registered sensor id. This results in the selectResult output
pin being triggered containing the ID of the newly registered sensor, and by using
the setSensorID storing the ID in the global field sensorID.

73

Difference between the Sensor modules

The only difference between the Magnetometer and Accelerometer modules are in
the topic name used in the createTopicDictionary method, the name of the sensor
registerSensor method and lastly in the way the Measurement object is created
from the event in the eventToMeasurement method. See Figure 8.39 for code-
snippets from the eventToMeasurement method in both the Magnetometer and
Accelerometer modules.

Figure 8.39: The two different versions of the eventToMeasurement method in the
Magnetometer and Accelerometer modules.

Magnetometer and Accelerometer modules summarized

The two implemented Sensor Modules in the system, the Magnetometer and Ac-
celerometer works by employing the OSGiEventListener block from the Osgiblocks
module and the SensorBlock from the General Blocks module. The module listens
for events published by the Simulator module under a Topic, translates events to
measurements and stores them in the database.

In the next section the PathFinder module will be described. This module uses the
output from the Sensors to calculate the movements the robot needs to complete,
to reach its destination.

74

8.1.5 PathFinder module

Figure 8.40: The PathFinder module

The PathFinder module was created to separate the control algorithm into a sep-
arate module. The module has its own life-cycle in the OSGi-framework, and as
such has its own application block. The modules main responsibility is to extract
sensor data from the database, use commands (destinations) received from an ex-
ternal source and combine this to calculate the MovementState the robot needs
to be able to reach its destination. The combination of all MovementStates the
robot enters from a position to a destination will in the end be the path the robot
travels to reach its goal. The module contains the four following private blocks,
used by the module to fulfil its purpose.

• Finder

• CommandHandler

• PathHandler

• PhysicalStateHandler

All blocks will be described in detail, the first block to be explained is the appli-
cation block combining all the other blocks

75

PathFinder block

Figure 8.41: The PathFinder block

The Pathfinder block controls the life-cycle of the PathFinder and incorporates
all of its private blocks. As can be seen in Figure 8.41, on the highest level the
block uses the FetchService block to get access to the DatabaseService, it uses
the OSGiEventSender to publish events through the OSGi framework and it uses
the Finder block to calculate the needed movementstate to reach its destination.
The databaseService found by the FetchService block is sent to the Finder block
and used to extract sensor data from the database. The Finder module uses this
data to calculate the movementstate and updated physical properties of the robot
and sends this to the OSGiEventSender which in turn wraps it as an event and
publishes it on the framework.

76

Finder block

Figure 8.42: The Finder block

The Finder block was created to gather all the blocks directly involved in the
control algorithm. The block is initiated by triggering the init input pin and
enters the waitingForDatabaseService state. During initiation its inner blocks are
started as well. These include the DatabaseReader, the PhysicalStateHandler and
the CommandHandler.

Figure 8.43: The Finder blocks external state machine diagram

77

The block changes state to waitingForDestination when it receives an Databas-
eService object on the registerDatabaseService input pin. It stays in this state
until the CommandHandler block receives a command containing a destination,
this will trigger the transition into the state active. The block can now be used to
retrieve data from the database by triggering the input pin calculatePath. A trig-
ger on this pin calls the getMeasurements method which creates an object of the
IDataRetriever object, sends this to the DatabaseReader which uses it to retrieve
the most resent measurements from the database.

Figure 8.44: Code-snippet showing the method getMeasurements creating an in-
stance of the IDataRetriever interface to extract newly registered measurements
from the database

Triggering the calculatePath method will transition the Finder block to the read-

78

ing state where it will wait for the result from the DatabaseReader. When the
DatabaseReader gets the result from the database it outputs the result on the
selectResult output pin, the result is sent through the extractData method and
into the PhysicalStateHandler block where the measurements are used to update
the physical state of the robot, in the next section, the PhysicalStateHandler will
be described in detail. The updated physical state is then sent out on updated-
PhysicalState pin and received by the PathHandler block. This block uses the
physical state of the robot and the current destination to calculate the appropri-
ate movement state needed to reach the destination, wraps the movement state in
the Physical state object and sends it out on the movementState pin. When this
is done the Finder block changes state back to the active state, awaiting a new
trigger on the calculatePath input pin.

PhysicalStateHandler block

Figure 8.45: The PhysicalStateHandler block

The PhysicalStateHandler block has the responsibility of taking in the newly regis-
tered data from the sensors on the measurements input pin and use this to update
the physical properties of the robot using the calculations and theory in section
7.3.3 MVP Iteration 3: Simulate robot movement .

79

CommandHandler block

Figure 8.46: The CommandHandler block

To be able to calculate the path of the Robot, the PathFinder module needed a way
to get the destination coordinates. The CommandHandler module was created to
solve this issue. It uses the OSGiEventlistener block to listen for events published
under the Command topic. These events contain an object of the Position class,
see class diagram in Figure 8.17. When the OSGiEventListener gets an Command
event on the event output pin it calls the extractCommandEvent method and send
the contained destination out of the CommandHandler on the endDestination pin.

80

PathHandler block

Figure 8.47: The PathHandler block

The PathHandler block contains the actual control algorithm created to satisfy
Minimum Viable Product iteration 4: Simulate the robot moving to a destination.
It has two input pins, endDestination and currentPhysicalState getting input from
the CommandHandler and PhysicalStateHandler modules. The block is started
by receiving a destination on the endDestination pin. When receiving an Physical-
State object, the control algorithm is started by traversing the methods shown in
the block in Figure 8.47. The methods are the realisation of the activity diagrams
in Figure 7.8 and Figure 7.9.

Based on the traversal of the PathHandlers methods, the block will run one of
the following methods startBreaking, adjustBearing, forward or stop. These meth-
ods outputs MovementState instances that are sent to the setNewMovementState
method which wraps the MovementState in the PhysicalState object and outputs
the result on the movementState pin.

81

Figure 8.48: The PathHandler blocks external state machine

PathFinder module summarized

The PathFinder uses Sensor data registered by the sensors in the database com-
bined with a destination and the current state of the robot to calculate which
movement state the robot should enter to reach the destination. The main bulk
of its work is done by the Finder block which in turn uses the DatabaseReader to
retrieve data from the database, the PhysicalStateHandler to calculate the robots
current physical properties, the CommandHandler to listen for destination com-
mands and the PathHandler to calculate the next MovementState of the robot.

The PathFinder is the implementation of the equations and theory created to
calculate the physical properties described in section 7.3.3 MVP Iteration 3: Sim-
ulate Robot Movement , and the control algorithm described in section 7.3.4 MVP
Iteration 4: Simulate the robot moving to a destination

In the next section the Robot module will be described. The Robot module uses
the output from the PathHandler to control the simulated engines.

82

8.1.6 Robot module

Figure 8.49: The Robot module

The Robot module was created to separate the path finding functionality from
the functionality controlling the robots engines and thus making the system more
modifiable.The Module is pretty simple, only containing one application block.
The Robot module uses the MovementState created by the PathFinder to set the
engines power output.

83

Robot block

Figure 8.50: The Robot block

The robot block shown in Figure 8.50 is initiated by starting its two inner blocks;
OsgiEventListener and OsgiEventSender. The OsgiEventListener starts listening
for events published by the PathFinder containing the MovementState the robot
needs to reach its destination. When an event is received on the event output pin, it
is sent to the method extractPhyiscalState which extracts the PhysicalState object
wrapped in the event. The MovementState stored in the PhysicalState object is
then used by the calculateEnginePwr method to set the engine power to move the
robot in accordance to the movement state, see Figure 8.51 for code-snippet.

84

Figure 8.51: The calculateEnginePwr method

The EnginePower object is wrapped in an Event object in the createEngineP-
wrEvent and sent to the OsgiEventSender block which publishes the event on the
OSGi framework.

In the next section the Simulator module will be described. This module listens
for both the EnginePower object published by the Robot module and the Physi-
calState object published by the PathFinder module.

8.1.7 Simulator module

Figure 8.52: The Simulator module

The Simulator module, the last piece of the Simulation loop was created to confine
all the code and functionality related to the simulation into one module. The
Simulator module exports no classes nor any blocks, and only contain one private
block, the Simulator block.

85

Simulator application block

Figure 8.53: The Simulator application block

The Simulator application block consists of three inner blocks, the Simulator build-
ing block and two OsgiEventListener blocks. The two OsgiEventListeners are
started with the creation of topic dictionaries, there the top most one in Figure
8.53 listens for events published under the EnginePower topic and the other listens
for events published under the PhysicalState topic.

When receiving events, the Simulator application block extracts the data from
the events and store the data in the public fields physicalState and enginePower.
The next step is to check whether the Simulator building block has been started,
if it has not the events are discarded, if it has been started the data from the
enginePower and physicalState fields are sent to the Simulator building block.

All the logic and functionality related to creating the simulated data from the
physical properties and the engine power was placed in its own block, the Simulator

86

building block.

The next section will describe the functionality of the Simulator building block
seen on the right side of Figure 8.53

Simulator building block

Figure 8.54: The Simulator building block

The Simulator block is started by triggering the init input pin, calling the method
createPhysicalState and then initiating the two OsgiEventSender blocks. The cre-
atePhysicalState method is used to create a placeholder object used until the first
PhysicalState object is received on the updatePhysicalState input pin. During ini-
tiation the block enters the waitingForEventSenders state and stays here until the
OsgiEventSenders has completed their start-up process. The OsgiEventSenders
are dependent on getting access to the Event Admin service, and will trigger the
outgoing eventServiceReady pin when completed. When both blocks are ready, the
Simulators readyToPostEvents output is triggered and the block enters the active
state, see exteram state machine in Figure 8.55.

87

Figure 8.55: External state machine of the Simulator building block

While the block exist in the active state it will accept input on the two input pins
updatePhysicalState and enginePwr. The input will be sent to the updateFields
method, updating the global fields with new data and then calling the two methods
createSimulatedAcceleration and createSimulatedBearingData in parallel.

The createSimulatedAcceleration sets the acceleration in accordance to the Move-
mentState of the robot. In the case of the current control algorithm limited by
the simplifications listed in section 7.2, the acceleration for x direction is set to
maximum in the forward movement state until it reaches maximum speed, or max-
imum deceleration in x-direction if the robot is breaking until it has stopped. In
rotation state it sets the acceleration to zero, see Figure 8.56 for code-snippet from
the implementation.

88

Figure 8.56: Code-snippet showing the createSimulatedAcceleration method

To create simulated bearing data the methods shown in Figure 8.57 is used. The
createSimulatedBearingData method starts by calling the calculateDeltaBearing
method to calculate the amount of rotation that should be added to the current
bearing based on the time since the last time it was calculated and stores this value
in the deltaBearing variable. After this has been done the method checks whether
the robot is rotating to the relative left or right and either adds to or subtracts
the deltaBearing value from the current bearing.

89

Figure 8.57: Code-snippet showing the methods used to create simulated bearing
data

After the simulated data has been created the Simulator block wraps the data
in Event objects under simulation data topics, one for each sensor, and uses the
OsgiEventSenders to publish the data on the OSGi framework. These are the
events subscribed to by the two sensors modules Accelerometer and Magnetometer,
described in section 8.1.4.

Simulator module summarized

The Simulator module subscribes to data topics delivered by the PathFinder and
the Robot module. It subscribes to the Pathfinders physical state topic to get the
current physical properties of the robot and to the Robot modules engine power
topic to get the current engine power output. The module uses the data from

90

these modules to simulate the change to the current acceleration and bearing of
the data, and publishes the newly updated values as events on the framework. The
Magnetometer and Acceleration modules get their data from subscribing to these
events.

In the next section the last module in the system, the Control Panel module will
be described. The module uses the physical properties published by the Pathfinder
to draw a graphical simulation of the robot moving towards the destination.

8.1.8 Control Panel module

Figure 8.58: The Control Panel module

The Control Panel is the only module with a life-cycle in the OSGi framework
that is not a part of the Simulation Loop. The control panel module was created
to satisfy the fifth minimum viable product iteration, Graphical Simulation. The
module is also used as a way for the user of the simulation software to input a
destination for the robot, this way the destination can be changed run-time. The
module does not export any classes or blocks to other modules in the system and
does not register any services in the OSGi framework.

The next section will describe the implementation of the module in Reactive
Blocks.

91

Control Panel block

Figure 8.59: The Control Panel implementation in Reactive Blocks

The Control Panel application block controls the life-cycle of the Control Panel
module and consists of the blocks shown in Figure 8.59. The block use an Os-
giEventListener block to listen for PhysicalState objects published by the PathFinder
module, an OsgiEventSender to publish destination events used by the PathFinder
module, theGet BundleContext block to get access to the bundleContext and lastly
its private block Window to draw the Graphical User Interface.

Most of the Control Panel’s core functionalities reside in the Window block which
receives the PhysicalState object every time the PathFinder module publishes a
new update of the robots Physical Properties. How it uses this data and the bundle
context will be explained in the next section.

92

Window block

Figure 8.60: The Window block

The Window block is initiated by triggering the init input pin. This will call
the method initWindow which draws the Graphical User Interface, and start the
DESTINATION_SET event listener. The GUI is created by a class called Con-
trolWindow containing and controlling all the GUI components, see Figure 8.60
for screen shot of the GUI.

Figure 8.61: Screen-shot of the GUI.

93

Entering a destination in the input fields shown on the top-left in the GUI, and
pressing the button Travel triggers the DESTINATION_EVENT, containing the
destination, to be sent to the Window block. The Position object containing the
destination is sent out of the block on the outgoing destination pin.

Every time the Window block receives an PhysicalState object on the physical-
State input pin, it updates the fields seen on the top-left of the GUI screen-shot
in Figure 8.60. The canvas used to draw the simulated robot (red car) and the
destination(green square) is run on an own Thread by using the class Custom-
Canvas. The CustomCanvas implements the Runnable interface and extends the
Canvas class. In Figure 8.63 the CustomCanvas loop can be seen calling the render
method every 17th millisecond to achieve 60 frames per second.

Figure 8.62: Code-snippet showing the CustomCanvas loop calling the render
method every 17th millisecond

The render method renders the canvas every 17th millisecond, and can be seen in
Figure 8.63. It uses a buffer strategy to double buffer the canvas reducing lag and
calls the draw method to draw the robot and the destination onto the canvas. The
draw methods can be seen in figure 8.63

94

Figure 8.63: The methods used to draw the robot and the destination on the
Canvas

The Window block can continuously receive input on the bundleList input pin,
the list is then rendered on the GUI, see the lower left panel in Figure 8.61. The
list contains all bundles related to the system registered in the OSGi framework,
as well as their status.

95

Control Panel module summarized

The Control Panel subscribes to the PhysicalState topic published by the PathFinder
to get the robots current physical properties. The module uses the Window block
to draw a simulated graphical robot on the screen and to list all the physical prop-
erties of the robot. The GUI created by the Window gives the user the option to
enter a destination for the robot, which is published under the command topic.
The CommandHandler block in the PathFinder module subscribes to this topic
and uses the destination to set the current movement state of the robot, see section
8.1.5 PathFinder module. The module also lists all modules related to the system
in the GUI, including their current status.

8.2 Prototype implementation

During the development and implementation of the 5 minimum viable product
iterations the system gradually evolved into the prototype system described in
section 8.1, System Design. The prototype completes the following five minimum
viable product iterations:

• Inter-modular Communication

• Simulated sensor modules

• Simulate robot movement

• Simulate robot moving to a destination

• Graphical simulation

8.2.1 Running the prototype

Through Figures 8.64 to 8.70 screen-shots taken from a live simulation of the robot
can be seen. The robots initial position was set to the coordinates 100, 100 and
its destination was set to 250, 300, see Figure 8.64. The destination error margin
is set to 10 pixels, e.g. the robot will accept a destination with an error margin of
10 pixels in both x and y directions. The bearing error margin is set to 5 degrees,
this means that the robot accepts an bearing deviating 5 degrees from the optimal
bearing when moving towards the target.

96

Figure 8.64: First screen-shot of live simulation, start position of the robot.

The robot starts in its initial position 100, 100 and with a bearing of 90 degrees.
The Destination has just been set to 250, 350 and the robot has entered the
ROTATE_LEFT state to adjust its bearing towards the destination.

97

Figure 8.65: Secon screenshot of live simulation, robot starts moving towards
target

The robot is finished adjusting its bearing, which is now at 61.06 degrees and has
changed state to FORWARD ready to move towards the destination.

98

Figure 8.66: Third screenshot from live simulation, the robot is building speed
towards its destination, accelerating with 1 px/s2

The robot has been moving forwards a while, with an 1 px/s2 acceleration in the
x-direction and has built a velocity of 3.54 px/s. The position of the robot is now
115.41, 127.87.

99

Figure 8.67: Fourth screen-shot from live simulation, robot still accelerating to-
wards destination

The robot is still accelerating towards the destination, now with an velocity of 7.29
px/s and has now reached the position 163.48, 214.8.

100

Figure 8.68: Fifth screen-shot from live simulation, the robot is breaking to adjust
its bearing

The closer the robot comes to its destination, the higher the initial bearing error
becomes. In Figure 9.1 the robots bearing deviates more than 5 degrees from the
optimal bearing, and is breaking to be able to enter the ROTATE_LEFT state.
The velocity is almost at 0 px/s, which is required for the robot to start rotating.

101

Figure 8.69: Sixth screen-shot from the live simulation, the robot has adjusted its
bearing and is moving towards the destination

The robot is now finished rotating, has a current Bearing of 51.22 degrees and is
accelerating towards the destination.

102

Figure 8.70: The last screen-shot of the live simulation, the robot reached the
destination

The robot has reached its destination, and entered the STOPPED state.

103

Part IV

Summary

104

Chapter 9

Discussion

Before the system design and implementation was initiated, the following research
questions were defined:

• What kind of software architecture is available for a highly modularised
system for controlling transport robots?

• Are there any proof of concept systems, or control software systems created
for robots using the OSGi framework?

• How much of the work conducted in my specialization project can be used
in this master thesis?

Based of the research done to answer these questions the following Minimum Viable
Product Iteration were created:

• MVP Iteration 1: Inter-modular Communication

• MVP Iteration 2: Simulated sensor modules

• MVP Iteration 3: Simulate robot movement

• MVP Iteration 4: Simulate robot moving to a destination

• MVP Iteration 5: Graphical simulation

The relevance of the research questions will be discussed in section 9.1 and the
realization, implementation and usefulness of the MVP iterations will be discussed
in section 9.2.

105

9.1 Process

The description for this master thesis is Scalable Self-Adaption Control system for
simulated transport robots. The goal was to design a highly modularized system
to control simulated transport robots. In addition to the design, the tool Reactive
Blocks (2) and the OSGi framework was going to be used to create a prototype of
the system.

In the start of the project a set of research questions were created to narrow
the literature research and preparations needed before creating the system design,
see section 2.2. The creation of the questions was of great help by filtering out
unnecessary research and focus my mind on the correct path. Most articles I read,
were selected to answer the research questions and most were of relevance to the
project.

Based on the work done during the literature research, five Minimum Viable Prod-
uct iterations were defined, see section 2.3.1. The theory and technology needed
for each minimum viable product iteration was researched and documented, see
section 7.3. Using the Minimum Viable Product technique described in section
2.3.1 helped channeling the work into the most important aspects of the system
at all times. The technique helps focusing the mind by limiting the amount of
functionalities being developed at the time. During the development of one it-
eration, the focus could solely be on getting the functionalities in that iteration
to work. Since the development of the system included several unknown factors
with a lot of uncertainties e.g. combining OSGi and Reactive Blocks, developing
robotics system using OSGi, combining all this with an SQLite database, getting
the inter-modular communication to work properly and so on, the use of the MVP
technique provided the shortest way to a functional system and made sure that
there always was a system to fall back on, with at least some of the systems core
functionalities in place.

106

9.2 System Design and implementation

Figure 9.1: Final version of the system design and all its implemented modules

The goal of the project was to design a highly modularized control system for
simulated transport robots. The system needed modules with high cohesion and
low coupling to support the modules with separate life-cycles, able to be indepen-
dently installed, uninstalled, updated and stopped. The final system design and
the design of the implemented prototype was described in section 8.1, and it will
now be discussed if the system design achieved its goals and if the implementation
of the modules achieved the goals of the minimum viable product iterations.

9.2.1 System architecture and design

To achieve a highly modularized system there were two key factors that had to
be achieved in the design and the implementation of the prototype, high cohesion
and low coupling.

107

High Cohesion

High cohesion is the collection of similar elements of the system into separate
modules. The contents of a module should reflect the name and the responsibility
of the module, and should not contain anything else. It is also important that no
elements related to the modules responsibility is placed anywhere else.

This was the foundation of the current systems design, and the implemented mod-
ules reflect this work. The current design and implementation achieves this, in my
opinion. All modules in the system have a high responsibility density, and little
to none "bleeding" of their responsibility domain into other modules.

Low Coupling

Its not enough to have high cohesion if the modules are highly dependent and
closely coupled to others. The modules should be able to communicate, but with
as little as possible connection and knowledge of the other modules. The cur-
rent implementation of a database and publish-subscribe pattern achieves, in my
opinion, just that. They only share the knowledge of topics to publish under and
subscribe to, but not from where it originated. It is also flexible in the way that
it is possible to add subscribers to a topic without having to change the current
system or notify any of the existing modules.

Modifiability in practice

Other than implementing the current system modules and working through the
minimum viable product iterations, there was little to none testing done on how
easy it was to add/remove modules of the system. The only real test of the
systems flexibility and ease of modifiability was done when adding the Control
Panel module to the already functional simulation system. This was in my opinion
done very fast, and with little to none changes necessary to the rest of the system.
The work on the module was pretty much only related to the modules use-case
and not to changing the current system to incorporate the new module.

The next few sections will discuss how the minimum viable product iterations were
achieved when creating the system modules.

108

9.2.2 Realization of MVP 1: Inter-modular Communication

When creating a highly modularized system with independent modules, the com-
munication and cooperation between the modules become an issue. To solve this a
database for the communication between the Sensor and Pathfinder modules were
used, and an implementation of the publish-subscribe pattern as communication
between the rest, see section 7.3.1. The goal was also to create these commu-
nication facilities in a way that hides its complexity and provide an easy-to-use
interface for the modules. The publish-subscribe pattern was realized with the Os-
giEventSender and OsgiEventListener blocks exported by the Osgiblocks module.
These blocks can be used by the modules in the system to communicate, provid-
ing a means of subscribing to and publishing events through the OSGi framework.
The DataAccess module with its DatabaseService was created to give modules the
ability to read and write data to and from the database, by using the databas-
eService registered in the OSGi framework. To access and register services in the
OSGi framework the RegisterService and FetchService blocks were added to the
osgiblocks module.

The design and implementation of the inter-modular communication was imper-
ative to the control software. Without a loosely coupled way for the modules to
communicate together, there was no way to reach the goal of a highly modularized
system.

9.2.3 Realization of MVP 2: Simulated sensor modules

Another corner stone of automated control software is the sensors. Without sen-
sors there is no way for a real or simulated robot to navigate. In the simulation
software the functionality of the sensor modules are limited, their responsibility
is to receive data from some unknown source, in the simulation software that un-
known source is the Simulator module, and store this data in the database. The
database technology selected for the simulation software was a SQLite database
such that the DataAccess module could have full control over the creation, main-
tenance, communication and life of the database. The problem with the SQLite
database was that it does not support concurrent writing, in the control system
the Sensor modules will register data concurrently. This was solved by creating a
read/write Thread for the DatabaseService, see section 8.1.3. The sensors registers
their measurements in a buffer, which the databaseService pulls at given intervals
and writes to the database.

In practice the DataAccess and Sensor modules worked pretty well and the use of
an SQLite database was a good decision. One can argue that using a database

109

with the option of concurrent writing might have been a better solution, and that
it would increase the rate of with sensors could write to the database. With
concurrent writing one could allow for different write speeds for different sensors
based of how important their input was. The prototype of the simulation system
was set to write the buffer to the database every 200 milliseconds, this may have
been to slow for certain sensors, for example laser sensors for measuring distance
to potential collisions with other fast moving objects. The alternative to using
another database technology might have been to create a direct publish-subscribe
path for these kind of sensors from the Sensor Module to the PathFinder module,
circumnavigating the DataAccess module.

9.2.4 Realization of MVP 3: Simulate robot movement

Simulating the movement of the robot was the first real proof of concept for the
already implemented minimum viable product iterations. The early stages of robot
movement was achieved by connecting the Simulator module, the Sensor modules
and an early version of the PathFinder module, where the only block implemented
was the PhysicalStateHandler, see section 7.3.3 for the calculations done by the
block and Figure 8.45 for the implementation. The simulator module provided the
Sensor modules with data which they stored in the database, the PathFinder read
the data from the database and sent the updated physical properties directly to
the Simulator module. The simulator module used this information to send new
data to the Sensor modules and so on. The Physical properties were printed to
the console for each iteration.

The completion of this minimum viable product iteration provided a proof of con-
cept for the early stages of the Simulation loop, and showed that it was possible
to use both the DatabaseService and the publish-subscribe functionalities to com-
municate between the modules.

9.2.5 Realization of MVP 4: Simulate the robot moving to
a destination

The goal for an autonomous robot is to be able to handle some kind of prede-
fined task without human interference. The goal of this specific simulated robot
was to use simulated data from an Magnetometer and Accelerometer to reach a
destination. The fourth minimum viable product(MVP) iteration was to create
and implement the necessary code to achieve this. In the third MVP iteration the
PathFinder module was created, with the functionality of changing the physical

110

properties of the robot for each iteration of the simulation loop. In this MVP
iteration the PathFinder was expanded to include the Finder block and all its
internal blocks except the CommandHandler, see section 8.1.5, which contained
the algorithm and calculations described in section 7.3.4.

An hard-coded destination was set in the PathFinder module, and with the added
Finder block, the simulated robot succeeded in reaching its destination. The out-
put from the updated simulation system proved that the system design, modules
and calculations created for the project could actually be used by the simulated
autonomous robot to move from one position to another.

9.2.6 Realization of MVP 5: Graphical Simulation

The last implemented minimum viable product iteration was created to satisfy
the need of a better way to view the simulated robots movement, and to error
check the movement algorithm. Screen-shots from a live simulation session can be
seen in Figures 8.64 to 8.70 where the simulated robot moves from a position to a
destination using all the prior minimum viable products implemented functionality.
To realize the fifth MVP the Control Panel was created and implemented, as
described in section 8.1.8.

The implemented graphical simulation serves its purpose of displaying a live sim-
ulation of the robot moving to a destination. The control panel displays all the
robots physical properties, the status of the modules in the system and provides a
convenient way of designating new destinations for the robot with the help of input
fields. The canvas where the robot was drawn however could have been better if
the cardinal directions and the coordinate system of the screen was translated to
that of the real world. E.g. bottom left of screen should have been coordinates
0,0 and an increasing Y value going upwards and an increasing x value going to
the right.

9.3 Usability and real world viability

The reason the simulation system was proposed in the first place was to create
a system where one can test control software on a simulated robot, before imple-
menting the software on a real one. With a simulation one can easily test different
iterations of the software and the algorithm to see if the robot behaves as expected,
with no risk of harming hardware or in the worst case humans. But there is no
point in simulating the control software if it has to be re-created to fit a robot,

111

and the testing has to be started anew. To battle this the system design should
be as close to the real robot as possible, and with a high modifiability such that
it requires small changes to the software to work on the real robot.

The current system design does, in my opinion, fit this description. The use of
Reactive Blocks to make modules, and sub-modules (blocks) easily accessible and
reusable in addition to using the OSGi framework to make the modules indepen-
dent and easily replaceable creates a flexible, scalable and highly modifiable system
design. It should be easy to add, remove and change parts of the system without
having to do larger changes to other parts of the system.

When it comes to the use of the implemented Prototype it does what it should
do, it is a proof of concept for the system design and architecture more than a
fully functional control system, the short-comings of the control system has been
described in the next section. One can argue that a better, more advanced control
algorithm using more sensors would have been a good idea. However spending
time on this would have been at the expense of other more important parts of the
system.

9.3.1 Control Software short-comings

The first thing to notice about the control software is the low amount of sensors
used. The control software can move a robot from A to B, but it has no sensors
in-place to handle collision detection and to measure position other than a relative
position. The robot starts at a given position and all of its calculations and
measurements are based on how far the robot has moved away from that position.
A slight error in the placement of the robot or an error percentage in the sensors
measurements would send the robot in the wrong direction, and there would be
no way for it to know or correct the error. Using distance measurement sensors
like echo-location or laser would have been a nice addition to the robots sensors,
adding the possibility to "see" the world around it. Another possibility would have
been to add guidelines with a set distance between them on the floor, where the
robot moved, which could have been used to calibrate the robots position.

The database is just used for communication between the Sensor modules and the
Pathfinder module, but the data in it could have been used in machine learning.
This could be used to map out regular errors in the measurements of the sensors
and have the robot ignore them if the other sensors are unaffected. The information
in the database could also be used to measure breaking distance, turning radius etc.
and make the control algorithm use this to assist the robots driving capabilities.

112

Chapter 10

Conclusion

The purpose of the master thesis was to use Model-based engineering to create
a system design for simulated transport robots. A highly modularized prototype
was going to be created using the OSGi framework and the Reactive blocks tool.
In this chapter I present a conclusion to the results presented in part III and the
discussion in section 9.

The system design does, in my opinion, satisfy the criteria set in the projects de-
scription. The design is flexible, scalable, with high cohesion within its modules
and low coupling between them. The inter-modular communication blocks cre-
ated in Reactive Blocks provides an easy way to add functionality, increasing the
systems modifiability. The Minimum Viable Product technique used during the
research and development periods helped guide the process in the right direction.
It helped me focus on the most important parts of the system at an early stage
in development and it provided continuous fallbacks throughout the whole project
period when moving from one MVP iteration to the next.

The prototype system was created using the Reactive blocks tool(2) and the OSGi
framework (3). Using the two technologies together to develop control software had
never, as far as I could find, been done before. The merging of the two tools gave
an easy, available way to reuse code by implementing the complexity of the OSGi
framework in the Reactive Blocks tool. A framework promoting modularization
and a tool assisting the development of highly modularized, reusable pieces of code
fit together nicely. To use these technologies in the robotics domain, where a lot
of concurrent, independent sub-systems control different parts of the hardware in
real-time, was in my opinion a great success.

The prototype system served its purpose of being a prototype. The current imple-
mentation of the control software cannot be used to control a real life robot with

113

high accuracy. The current control algorithm is way to dependent on precise sen-
sor input and a near perfect calibration of starting position, to be able to reliably
move to a destination.

The goal of the system was to create modules which could be installed, uninstalled,
started, stopped and updated during run-time. Something they should do since
all modules are implemented as independent OSGi plug-in projects. I had an idea
of implementing functionality in the GUI to control the state of the modules, I
ran out of time before fully implementing this and unfortunately had to exclude
it from the final system.

114

Chapter 11

Further work

This chapter presents areas which could and should be explored if the work on the
system was to be continued.

By building upon the current system design there are a lot of areas which could be
experimented on. One could easily add blocks into the simulation loop, subscribing
to the current topics and publishing data under new ones. Potential ideas are:

• One can add more versions of the PathFinder module in parallel, with dif-
ferent control algorithms and have several Control Panel modules running
in parallel, displaying the results of the different PathFinders at the same
time.

• One can add copies of the already implemented sensor modules and factor in
an error on the sensors output to simulate the error real sensors would have
on the control algorithm and its effect on getting to the destination.

• One can create new modules, with implemented functionality to send data
over the Internet to a real robot with the use of for example MQTT. This
could be used to remotely control the engines of a real robot from the simula-
tion system, or the other way around controlling a simulated robot with the
use of sensor output from a real robot. Using this technique would fit rather
well with the Hardware in the Loop (HiL) proposed in (27), where some
individual hardware components are tested in an environment that replaces
some parts of the complete system with software simulated components.

These are just some examples of ways to build upon the current system design
that I would want to expand on.

It would have been very interesting to create an control algorithm which used

115

several more simulated sensors, implementing it in the PathFinder module and
testing it on the Control Panel. Sensors I would have liked to implement are;
distance measuring sensors like laser and echo-location to measure the distance
between the robot and objects in its environment. It would also have been inter-
esting to implement a type of system for the robot to recalibrate its position, for
example lines drawn on the floor with a set distance between them and using this
in combination with the database and its sensors to implement machine learning.
If it has to calibrate the same amount of deviation every-time the robot drives
over a line, the robot can use this to adjust its sensor modules.

Implementing the possibility for a sensors output to control the life-cycle of mod-
ules would also have been an interesting aspect to research. If an echo-location
sensor finds that the distance to the closest object is 10 meters, then it could turn
off the Sensor module controlling the laser sensor (laser sensors typically works on
close range distance detection).

After creation of a functional more advanced control algorithm I would have tried
actually porting the software to a real robot, and testing if the system actually is
as flexible as theorized.

116

Bibliography

[1] Magnus Oplenskedal, Model-based Engineering of Control Software for simu-
lated robots

[2] Bitreactive
http://www.bitreactive.com/ - 2016

[3] OSGi
https://www.osgi.org/ - 2016

[4] PiBorg
https://www.piborg.org/diddyborg - 2016

[5] Raspberry PI
https://www.raspberrypi.org/ - 2016

[6] Raspbian
https://www.raspbian.org/ - 2016

[7] Reid Simmons, "Concurrent Planning and Execution for Autonomous Robots"

[8] Steven A. Shafer, Anthony Stentz, Charles E. Thorpe, "An Architecture for
Sensor Fusion in a Mobile Robot"

[9] Erman, L.D., Hayes-Roth F., Lesser, V.R., Reddy, D.R. "The Hearsay-II
Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty"
ACM Computing Surveys 12(2):213-253, June, 1980.

[10] F. A. Kraemer and P. Herrmann, “Automated Encapsulation of UML Activ-
ities for Incremental Development and Verification,” in Model Driven Engi-
neering Languages and Systems (MoDELS), ser. LNCS 5795. Springer-Verlag,
2009, pp. 571–585.

[11] F. A. Kraemer and P. Herrmann, “Reactive Semantics for Distributed UML
Activities,” in Joint WG6.1 International Conference (FMOODS) and WG6.1
International Conference (FORTE), ser. LNCS 6117. Springer-Verlag, 2010,
pp. 17–31.

117

[12] F. A. Kraemer, P. Herrmann, and R. Bræk, "Aligning UML 2.0 State Ma-
chines and Temporal Logic for the Efficient Execution of Services," in 8th In-
ternational Symposium on Distributed Objects and Applications (DOA06), ser.
LNCS 4276. Springer-Verlag, 2006, pp. 1614–1632.

[13] F. A. Kraemer and P. Herrmann, “Reactive Semantics for Distributed UML
Activities,” in Joint WG6.1 International Conference (FMOODS) and WG6.1
International Conference (FORTE), ser. LNCS 6117. Springer-Verlag, 2010,
pp. 17–31.

[14] A. C. Santos et al. Specifying Adaptations through a DSL with an Applica-
tion to Mobile Robot Navigation. In Proc. of the Intl. Symp. on Languages,
Applications and Technologies (SLATE’13), 2013

[15] Ritesh Lal and Robert Fitch, A Hardware-in-the-Loop Simulator
for Distributed Robotics - 20009

[16] Pierre-Emile Duhamel ,Judson Porter, Benjamin Finio, Geoffrey
Barrows, David Brooks, Gu-Yeon Wei, and Robert Wood, Hardware in
the Loop for Optical Flow Sensin in a Robotic Bee - 2016

[17] Publish-Subscribe Pattern
https://msdn.microsoft.com/en-us/library/ff649664.aspx - 2016

[18] www.sqlite.org
https://www.sqlite.org/ -2016

[19] Microsoft Application Architecture Guide, 2nd Edition, Chapter 16: Quality
attributes
https://msdn.microsoft.com/en-us/library/ee658094.aspx - 2016

[20] Minimum Viable Product Technique
https://msdn.microsoft.com/en-us/library/ee658094.aspx - 2016

[21] Image of the DiddyBorg
https://www.piborg.org/images/DiddyBorg
/PiBorg%20DiddyBorg%20Clear%20Raspberry%20Pi%20Robot%20front%201440.JPG

[22] XLoBorg
https://www.piborg.org/xloborg/buy - 2016

[23] https://osgi.org/javadoc/r4v41/org/osgi/service/event/Event.html - 2016

[24] https://osgi.org/javadoc/r4v42/org/osgi/service/event/EventHandler.html -
2016

118

[25] Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt, "Model-
based Engineering and Analysis of Space-aware Systems Communicating via
IEEE 802.11"

[26] Fenglin Han, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt, "Towards
Verifying Safety Properties of Real-Time Probabilistic Systems"

[27] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation for
the design and testing of engine-control systems,” Control Engineering Practice,
vol. 7, no. 5, pp. 643–653, 1999.

119

	I Introduction and Methodology
	Introduction
	Personal motivation
	Readers Guide

	Method
	Predefined requirements
	Research Questions
	Method
	Minimum Viable Product

	II Theory
	State of the Art
	Model-based engineering of Control Software for Simulated Robots
	Usefulness

	Concurrent Planning and Execution for Autonomous Robots
	Usefulness

	An Architecture for Sensor Fusion in a Mobile Robot
	Usefulness

	Specifying Adaptations through a DSL with an Application to Mobile Robot Navigation
	Usefulness

	A Hardware-in-the-Loop Simulator for Distributed Robotics
	Usefulness

	Hardware in the Loop for Optical Flow Sensing in a Robotic Bee
	Usefulness

	Robot
	The Diddyborg
	Sensors

	Research Questions
	Technologies
	Reactive Blocks
	OSGi

	Control Software
	The Simulated Robot
	Simplifications
	Minimum Viable Product Iterations
	MVP Iteration 1: Inter-modular Communication
	MVP Iteration 2: Simulated sensor Modules
	MVP Iteration 3: Simulate robot movement
	MVP Iteration 4: Simulate the robot moving to a destination
	MVP Iteration 5: Graphical Simulation

	III Results
	System design and implementation
	System Design
	Osgi blocks Module
	General blocks Module
	DataAccess module
	Magnetometer and Accelerometer modules
	PathFinder module
	Robot module
	Simulator module
	Control Panel module

	Prototype implementation
	Running the prototype

	IV Summary
	Discussion
	Process
	System Design and implementation
	System architecture and design
	Realization of MVP 1: Inter-modular Communication
	Realization of MVP 2: Simulated sensor modules
	Realization of MVP 3: Simulate robot movement
	Realization of MVP 4: Simulate the robot moving to a destination
	Realization of MVP 5: Graphical Simulation

	Usability and real world viability
	Control Software short-comings

	Conclusion
	Further work

