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1. Introduction

The inspiration for this text was an article by Bernhart, Landrock and Manz
called ”The Extended Golay Codes Considered as Ideals” (see [1]), wherein they
use fixed point free subgroups of the Mathieu groups M24 and M12 to turn the
extended Golay codes into right ideals in their ambient vector spaces. We take a
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more explicit approach to recreating their findings and build on them. Bernhart,
Landrock and Manz use known facts about the subgroups of M24 and M12, along
with more algebraic machinery than this author was able to follow, to achieve their
results. They find a way to define multiplication such that a right ideal must exist
that equals an extended Golay code, and finally they show what this ideal must be.

To arrive at the same results, but requiring less deep algebraic knowledge on the
parts of the reader and the writer, we instead start with explicit versions of the
extended binary and ternary Golay codes. We believe an additional benefit of this
explicit approach is the ease with which it can be applied to other codes, or other
cases for the same codes.

Although we have only applied this approach to one additional code, the ex-
tended Hamming(7,4) code, it seems reasonable to assume that this can be done
with many, if not all, other linear codes as well. What is required to have hopes
that this approach will yield fruit is a decently sized chunk of equi-cyclic (Definition
4.3) automorphisms of the code in question.

2. Linear codes

This and the following chapter aims to give a brief introduction to linear codes
and a subset of them, the quadratic residue codes and extended quadratic residue
codes. This whole text deals with extended quadratic residue codes. Still, very little
knowledge of coding theory is required of the reader. We include the following two
chapters mainly to highlight what kind of objects are being dealt with, giving some
context.

Linear codes are error-correcting codes that employ a generator matrix, G,
to encode messages. They are so named because any linear combination of the row
vectors of G is a valid code word.

Let G be an n×m matrix, with n < m. A message, v, is a vector of length n,
and its corresponding code word, w, is a vector of length m. The encoding of v
is

w = vG

To look at an example, let

G =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


If this matrix has entries in Z2, it describes a linear code that takes a four digit
binary number and encodes it as an eight digit number.

Error-correction is useful when information is sent over a channel that can not
be expected to deliver messages exactly as they were sent. We say these errors are
due to noise, and call the channel noisy.

Let w1, w2, w3, w4 be the rows of G. To briefly examine the error-correcting
properties of G, assume we receive the words

w′ = (1, 1, 0, 0, 1, 1, 0, 0)

w′′ = (1, 1, 1, 0, 0, 1, 1, 0)

w′′′ = (1, 1, 1, x, 1, 1, 1, 1)
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over a noisy channel. The x represents a digit that can not be determined to be
either 0 or 1. We see that

w1 + w2 = w′

and conclude that w is, probably, the encoding of (1, 1, 0, 0). However

w′′ + w1 + w2 + w3 = (0, 0, 0, 0, 0, 1, 1, 0)

which is not expressible as a linear combination of {wi}, and therefore w′′ contains
at least one error. The word w′′′ becomes valid if we set x = 1, but not if we set
x = 0.

If we partition the matrix G into

G = [I4|G′]

we can create the parity-check matrix

H = [G′T |I4] =


0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


The rows of the matrix H show which entries in a valid code word need to add up
to zero. We can test if a candidate is a valid code word because

wHT = 0

if w is a code word. Applying this to the above examples, we see

w′HT = (0, 0, 0, 0)

w′′HT = (0, 1, 1, 1)

w′′′HT = (1 + x, 1 + x, 1 + x, 0)

This shows clearly that x = 1.

The weight of a code word is the number of its entries that are non-zero and
the distance between two code words is the number of places they are not equal
in. Thus the distance between two words, w and w′, is the same as the weight of
w − w′.

The weight of a code is the smallest non-zero weight of all code words it
contains. Thus the weight of a code is also the smallest distance between two valid
code words.

The weight of the code with the above generator matrix, G, over Z2 is 4. In fact,
the smallest distance from one code word to any of the closest code words is always
4 (compare any non-zero code word to w1 + w2 + w3 + w4 = (1, 1, 1, 1, 1, 1, 1, 1)).
If we receive a word that is one position away from being valid, the second closest
word is therefore at least 3 positions off. This lets us have a good guess at what
the original message was. Of course, the more noise on the channel, the less certain
we can be of this guess.

We see that the code with generator matrix G guesses correctly with one error
and with two errors no guess is better than all others. With three errors, it detects
the error but guesses incorrectly at the original message.
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3. Extended quadratic residue codes

This text focuses on the extended binary and ternary Golay codes, with examples
in the extended Hamming(7,4)-code. All of these are extended quadratic residue
codes, which is defined below.

If G is the n × m generator matrix of a linear code, the block length of this
code is m and its dimension is n. This is the same as the lengths of an encoded
message and an original message, respectively.

A cyclic code is one that can be generated from one of its code words in the
following manner. Let w1 be this code word, and let wi+1 be the word obtained by
shifting all entries in wi one position to the right, sending the last position to the
first. Then the span of {w1, w2, ..., wm} is the whole code.

Given primes p and q, where p > q and q is a quadratic residue modulo p,
there exists a cyclic code of block length p with entries from Zq. Such a code is
called a quadratic residue code. Let ε be a primitive p’th root of unity in a
finite extension field of Zq, and let X = {1, ...} be the integers between zero and p

that are quadratic residues modulo p. It can be shown there are p−1
2 distinct such

integers. The polynomial
f(x) =

∏
i∈X

(x− εi)

is in Zq[x], and form a word that generates the quadratic residue code in the manner
of a cyclic code.

Adding a parity bit (1 if a row contains an odd number of 1’s, 0 otherwise) to a
quadratic residue code, results in an extended quadratic residue code. Apart
from the described method, there are many other ways to generate an extended
quadratic residue code. We do not bother with detailing the construction of the
codes in use here, merely present their generator matrix.

An extended quadratic residue code has block length p + 1 and dimension p+1
2 .

The ambient space, A, of a code with an n × m generator matrix with entries
in Zq is the vector space (Zq)m, of which the code, C, itself is a subspace. For
an extended quadratic residue code, the ambient space is (Zq)p+1 and the code,
or code space, is (Zq)

p+1
2 as a vector space. In the example in Section 2 of the

generator matrix G, A = (Z2)8 and C = (Z2)4.

3.1. The extended Hamming(7,4)-code. The smallest prime with a prime qua-
dratic residue is 7, where 32 = 2 mod 7. The quadratic residue code that arises
from the primes 2 and 7 is called The Hamming(7,4)-code. We use the exended
version of this code for illustrative purposes throughout this text. A generator
matrix for this code is

ham = G =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


This is the familiar example from Section 2.

3.2. Automorphisms of an extended quadratic residue code. Automor-
phisms of extended quadratic residue codes are central to this text.
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Definition 3.1. An automorphism of a linear code, C, is a homomorphism of A
that maps C to itself and preserves the weight of code words.

We denote the automorphism group of C by Aut(C).
For q = 2, the automorphisms of an extended quadratic residue code are permu-

tations of the basis of the ambient space (see [2] page 229).
For q > 2, the automorphisms are instead monomial matrices (see Section 12.1),

a generalization of the case for q = 2 (see [2] page 238).
For now we look only at the case q = 2.

4. Fixed-point-free permutation groups

Fixed-point-free permutation groups are crucial in how we intend to define mul-
tiplication on the ambient space. This chapter defines such groups and lays out a
number of results about them that will be applied in the remainder of this text.

Consider any symmetric group Sn, the group of all permutations of n elements.
If a permutation, p ∈ Sn, sends x to itself, p(x) = x, we call x a fixed point of p.
A fixed-point-free permutation is one with no fixed points.

A fixed-point-free permutation group is a subgroup of Sn, for some n, where
the identity is the only permutation that contains fixed points.

From here on, {pi}, will refer to a fixed-point-free permutation group with p1 as
the identity permutation.

Theorem 4.1. When j 6= k, this implies that pj(x) 6= pk(x) for all x in {1, 2, ..., n}.

Proof. Assume j 6= k and pj(x) = pk(x) for some x. Then

pjp
−1
k (pk(x)) = pj(x) = pk(x)

Thus pk(x) is a fixed point of pjp
−1
k , which is a contradiction. �

From the next chapter and onwards, fixed-point-free permutation groups of order
n will be central to this text. The following shows that these exist, and are the
largest fixed-point-free subgroups of Sn.

Corollary 4.2. The largest possible order of a fixed-point-free subgroup of Sn is n.

Proof. For any point, x, since pj(x) 6= pk(x) whenever j 6= k, all permutations
pl ∈ {pi} must send x to different positions. There are only n positions to choose
from, showing that {pi} can be no larger than n.

To see that fixed-point-free groups of order n exist, observe the group {p, p2, ..., pn =
1}, where p is of order n. �

Definition 4.3. If a permutation is made up exclusively of cycles of the same
length, with no fixed points, we will call this an equi-cyclic permutation.

This definition gives a name to the building blocks we will make order n fixed-
point-free permutation groups out of.

Interpreting fixed points as cycles of length one means the identity is also equi-
cyclic.

The following theorem shows why being interested in fixed-point-free permuta-
tion groups leads us to be interested in equi-cyclic permutations.



6 ERLEND HOV

Theorem 4.4. The permutations in a fixed-point-free permutation group are all
equi-cyclic.

Proof. Assume a fixed-point-free permutation group contains a permutation, p, that
is not equi-cyclic. Let a and b be the lengths of two cycles in p, where a > b. Then
pb will have fixed points at every point that is in a cycle of length b in p, but the
points in a cycle of length a in p will not be fixed in pb. Thus pb has both fixed
points and non-fixed points, which is a contradiction. �

The results in this text consist largely of finding various order n groups as fixed-
point-free subgroups of Aut(C), a subgroup of Sn (for the appropriate n). It seems
prudent to first show that:

Theorem 4.5. Any group of order n can be represented by a fixed-point-free sub-
group of Sn.

Proof. Let {gi} be a group of order n, with g1 = 1. Let pi be the permutation that
acts on S = {g1, g2, ..., gn} by:

pi =
(

g1 g2 ... gn

gig1 gig2 ... gign

)
This is clearly fixed-point-free when i 6= 1. Let f be the mapping that sends gi to
pi.

Then f(1) = 1, f(gi)f(gj) = pipj = f(gigj) and if f(x) = 1, then x = g1 = 1,
thus f is a group isomorphism. �

Lemma 4.6. Any order n subgroup, {pi}, of Sn, where j 6= k implies pj(x) 6= pk(x)
for all x, is fixed-point-free.

Proof. Let pj(x) = x, where pj is not the identity. Then j 6= 1, but pj(x) = p1(x) =
1(x), since p1 is the identity. This is a contradiction. �

This lemma, combined with Theorem 4.1, gives the following characterization of
fixed-point-free subgroups of Sn

Theorem 4.7. For an order n subgroup, P , of Sn, the following are equivalent:
-The group P is fixed-point-free.
-If p, q ∈ P and p 6= q, then p(x) 6= q(x) for all x.

Proof. Theorem 4.1 and Lemma 4.6. �

Finally, we introduce a numbering of the elements of any maximal order fixed-
point-free permutation group.

Definition 4.8. Whenever we have a fixed-point-free permutation group, {pi}, of
maximal order, we will let pi refer to the permutation that sends 1 to i;

pi(1) = i

5. Multiplication in the ambient space

We now define a multiplication on the ambient space, A, of an extended quadratic
residue code, and then show how this makes the code space, C, a left ideal in the
resulting algebra.

Let {ei} be the basis of A and let {pi} be a fixed-point-free subgroup of Sn, with
order n.
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Definition 5.1. enem := epn(m).

With this definition, e1 becomes the multiplicative identity of the algebra A,
since by Definition 4.8;

e1en = ep1(n) = en = epn(1) = ene1

Let f be the canonical bijection from {ei} to {pi}, so f(ex) = px. To have more
ways of looking at the multiplication we mention:

Proposition 5.2. The following are two definitions of multiplication that are equiv-
alent to Definition 5.1:

enem = epnpm(1)

enem = f−1(pnpm)

Now we argue that this definition makes C a left ideal in A.
Let r ∈ A, w ∈ C and {wi} be the basis of C. Then

rw =
∑
i∈X

ei ∗
∑
i∈Y

wj =
∑

i∈X,j∈Y

eiwj

where X and Y are the positions of the non-zero coefficients of r and w. For
C to be a left ideal in A it is necessary and sufficient that eiwj ∈ C for all i ∈
{1, 2, ..., n}andj ∈ {1, 2, ..., n/2}.

With Definition 5.1 this becomes

eiwj = ei

∑
k∈S

ckek =
∑
k∈S

ckepi(k)

where S = {1, 2, ..., n} and ck is the k’th coefficient of wj . Thus, multiplication on
the left by ei is the same as letting the permutation pi act on S. To sum this up:

Proposition 5.3. If pi is an automorphism of C, then eiwj ∈ C for all j.

This next proposition tells us the structure of the ambient space, A, as an algebra
when using the multiplication in Definition 5.1. Since eiej = f−1(pipj):

Proposition 5.4. If P is the group {pi}, then A, with multiplication as in Defi-
nition 5.1, now has the structure of the group ring Zq[P ].

Now, to see why we demand the group {pi} be fixed-point-free, assume a case
where

pi(k) = pj(k), i 6= j

Then
eiek = epi(k) = epj(k) = ejek

and since {pi} is a group

ei = eieke−1
k = ejeke−1

k = ej

This would set two distinct basis elements of the ambient space as equal.
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6. Two examples in the extended Hamming(7,4)-code

In this section we give two explicit examples of constructions that render the
extended Hamming(7,4)-code a left ideal in its ambient space. These examples will
show up again in Section 7 and Section 9.

The following permutations can be used to define multiplication, as above, on the
extended Hamming(7,4)-code as presented earlier (we denoted its generator matrix
by ham).

aham = (1, 4, 3, 2)(5, 8, 7, 6)

bham = (1, 5)(4, 6)(3, 7)(2, 8)

These are automorphisms of ham. To verify this, let the permutations act on the
columns of the matrix ham, and see that the resulting rows can express the rows
of the original matrix under addition modulo 2;

aham(ham) =


0 0 0 1 1 1 1 0
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1


Actually, aham simply reorders the rows of ham.

bham(ham) =


0 1 1 1 1 0 0 0
1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0


The sum of any three rows of the above matrix gives a row in ham.
Observe that

ahambham = (1, 8)(2, 7)(3, 6)(4, 5) = bhama−1
ham

This relationship describes the group D4 (sometimes called D8, the symmetries of
a square).

Let ai
hambj

ham, where i ∈ {0, 1, 2, 3} and j ∈ {0, 1}, be our normal form of the
elements in this group and assume ar

hambs
ham(x) = x. If s = 0, then r = 0, which

represents the identity. If s = 1, then bham sends the points of one cycle of aham

to the other, and no choice for r can send them back. This demonstrates that the
group 〈aham, bham〉 is fixed-point-free.

For a second example, the permutations

a′ham = (1, 2, 3, 8)(4, 5, 6, 7)

b′ham = (1, 4)(2, 7)(3, 6)(5, 8)

are also both automorphisms of ham. They generate a fixed-point-free permutation
group with the structure D4 as well.
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7. A test for right ideals

We now have a multiplication that renders C a left ideal in the algebra A. In
many cases it may be desirable for C to be a double sided ideal. Although we have
not found a way to look directly for such ideals, we can at least test the left ideals
we have found.

For C to be a right ideal it is necessary and sufficient that wiej ∈ C for all
i ∈ {1, 2, ..., n/2} and j ∈ {1, 2, ..., n}. Let (c1, c2, ..., cn) be the coefficients of wi,
then

wiej = (c1e1, c2e2, ..., cnen)ej = (c1ep1(j), c2ep2(j), ..., cnepn(j))
Theorem 4.1 ensures this is a permutation of the coefficients of wi. This permu-
tation depends on the group S = {pi} and on pj specifically. We denote it by
S(pj):

S(pj) =
(

1 2 ... n
p1(j) p2(j) ... pn(j)

)
This sends cx to position px(j). For C to be a right ideal in A, the permutation
S(pj) must be an automorphism for any j ∈ {1, 2, ..., n}.

Definition 7.1. The right ideal test for a maximal order fixed-point-free sub-
group, P , of Aut(C), applied to the element pj ∈ P , passes if S(pj) ∈ Aut(C)
and fails otherwise.

The right ideal test applied to P itself passes if it passes for every element in
a generator set of P .

We now perform this test on the examples 〈aham, bham〉 and 〈a′ham, b′ham〉.
For a tidier display, we write aham and bham simply as a and b in the following:

S(a) =
(

1 2 3 4 5 6 7 8
4 a3(4) a2(4) a(4) b(4) a3b(4) a2b(4) ab(4)

)
=

(
1 2 3 4 5 6 7 8
4 1 2 3 6 7 8 5

)
= (1, 2, 3, 4)(5, 8, 7, 6)

To investigate S(a), apply it to the first row of ham to get (0,1,0,0,1,1,1,0). Add
the second row of ham to this to get (0,0,0,0,0,1,0,1), which has weight 2, and can
therefore not be part of a code of weight 4. This verifies that the permutation S(a)
is not an automorphism of C and therefore the group 〈aham, bham〉 does not induce
a right ideal.

However, the same test on 〈a′ham, b′ham〉 yields:

S ′(a′ham) = (1, 8, 3, 2)(4, 5, 6, 7)

S ′(b′ham) = (1, 4)(2, 5)(3, 6)(7, 8)
S ′(a′ham) and S ′(b′ham) are both automorphisms of ham, and therefore 〈a′ham, b′ham〉
does induce a two-sided ideal.

Remark. The ratio of automorphisms of C to the order of Sn, for the relevant n,
implies the chance for a random permutation to be an automorphism. It is the
case that this ratio is a lot higher for the extended Hamming(7,4)-code than for
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the extended binary Golay code, and the right ideal test seems to pass a lot more
frequently for ham than for bin.

8. Conjugacy classes of automorphism groups

To find various fixed-point-free subgroups of the automorphism group of a given
code we used computer searches. Particularly for the extended binary Golay code,
the size of the automorphism group (M24) and the size of S24 meant we needed
some techniques to reduce the search time. The concept of conjugacy classes was
one very helpful tool for this.

We shall see that if P and P ′ are conjugate fixed-point-free order n subgroups
of Aut(C), then using Definition 5.1 to define multiplication on A yields the same
behavior whether we base multiplication on P or P ′.

These first three definitions and one theorem should be familiar.

Definition 8.1. Let a and r be elements of some group. The conjugate of a by
r is rar−1.

Definition 8.2. Let P = {pi} be a subgroup of some group, G, and let r ∈ G.
Then the conjugate of P by r is rPr−1 = {rpir

−1}.

Theorem 8.3. Conjugation is a group isomorphism.

Proof. It is easily verified that r1r−1 = 1 and r(ab)r−1 = rar−1rbr−1. Also, if
rar−1 = 1, then a = 1. �

Definition 8.4. Let a and b be elements in some permutation group, P . Then a
and b are in the same conjugacy class of P if, and only if, there exists some r ∈ P
such that rar−1 = b.

Given that we are so concerned with permutations that are equi-cyclic and of
appropriate order, the following fact will be useful.

Theorem 8.5. Conjugation of permutations preserves cycle structure.

Proof. Let a, r ∈ Sn for some n and let x ∈ {1, 2, ..., n} be in a cycle of length l in
a. Now

(rar−1)l(r(x)) = ralr−1(r(x)) = ral(x) = r(x)

So r(x) is a fixed point for (rar−1)l and therefore r(x) is in a cycle in rar−1 with
length dividing l. Let 0 < l′ < l. Then

(rar−1)l′(r(x)) = ral′r−1(r(x)) = ral′(x) 6= r(x)

Thus r(x) is in a cycle in rar−1 with length not shorter than l, so the cycle in a
containing x and the cycle in rar−1 containing r(x) are both of length l. The same
holds for any cycle in a. �

We are out to find a way of inspecting large sets of fixed-point-free subgroups of
some group, P , by inspecting a single representative group, {pi}. The next result
tells us that the set of groups {rpir

−1} for r ∈ P is such a set.

Corollary 8.6. Let {pi} be a fixed-point-free subgroup of the automorphism group,
Aut(C), of an extended quadratic residue code. Then {rpir

−1} is a fixed-point-free
subgroup with the same structure whenever r ∈ Aut(C).
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Proof. Preservation of the group structure is guaranteed by Theorem 8.3. Theorem
8.5 ensures the elements of {rpir

−1} are all equi-cyclic, and therefore fixed-point-
free (save the identity). �

Finally we show that the right ideal test, Definition 7.1, need also only be carried
out on one representative group.

Theorem 8.7. The right ideal test gives the same result for any two order n fixed-
point-free permutation groups that are conjugate.

Proof. Let P = {pi} and P ′ = {p′i} be order n fixed-point-free subgroups of Aut(C),
where pi(1) = i and p′i = rpjr

−1, for some j such that p′i(1) = i and some r ∈
Aut(C). Let f be the permutation such that p′f(i) = rpir

−1.
We have p′f(i)(1) = f(i) = rpir

−1(1), thus r−1f(i) = pir
−1(1). Then

r−1f =
(

1 2 ... n
p1(r−1(1)) p2(r−1(1)) ... pn(r−1(1))

)
Assume that the right ideal test passes for P . Notice how r−1f is precisely the

right ideal test for P on the permutation px ∈ P , where px(1) = r−1(1). This
means f is an automorphism of C.

Now the right ideal test for P ′ on the permutation p′i ∈ P ′ is

S ′(p′i) =
(

1 2 ... n
p′1(i) p′2(i) ... p′n(i)

)
=

(
1 2 ... n

rpf−1(1)r
−1(i) rpf−1(2)r

−1(i) ... rpf−1(n)r
−1(i)

)
Because the permutation f−1 applied to the elements of P gives f−1(px) =

pf−1(x) we have S ′(p′i) = rf−1S(pr−1(i)), where

S(pr−1(i)) =
(

1 2 ... n
p1(r−1(i)) p2(r−1(i)) ... pn(r−1(i))

)
But S(pr−1(i)) is precisely the right ideal test for P applied to pr−1(i), showing

that the right ideal test for P ′ passes.
The same argument shows implication the other way.

�

9. More solutions for the extended Hamming(7,4)-code

When looking for maximal order fixed-point-free subgroups of the automorphism
group of an extended quadratic residue code, we have argued the usefulness of
observing the equi-cyclic conjugacy classes of said automorphism group. A brute
force search is good enough to find these classes for the extended Hamming(7,4)-
code, due to its small size. Below are the results of such a search, showing structure,
size and one representative element.
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structure size representative
24 7 (1,2)(3,8)(4,7)(5,6)
24 42 (1,2)(3,4)(5,6)(7,8)
42 84 (1,2,3,8)(4,5,6,7)
42 168 (1,4,3,2)(5,8,7,6)

A structure of 24 means four 2-cycles, and vice versa. Throughout this section
we fix

a = (1, 2, 3, 8)(4, 5, 6, 7)

a′ = (1, 4, 3, 2)(5, 8, 7, 6)

The group Z8 is discarded immediately, as it contains elements of order 8, for
which no conjugacy class exists.

9.1. Applying (Z4) × (Z2). We use the element a = (1, 2, 3, 8)(4, 5, 6, 7) to illus-
trate our approach.

1 a
//

OO

b

��

2 a
//

OO

b

��

3 a
//

OO

b
��

8

a

zz
OO

b
��

x
a
// a(x)

a
// a2(x) a

// a3(x)
a

ee

Here, x is an element of the cycle (4, 5, 6, 7). This diagram shows the options for
choice of b. The squares commuting captures the equality ab = ba.

If x = 4, then
b = (1, 4)(2, 5)(3, 6)(7, 8)

If instead we choose x = 5, we get

b∗ = (1, 5)(2, 6)(3, 7)(4, 8)

Both b and b∗ are automorphisms of ham, so 〈a, b〉 and 〈a, b∗〉 are both valid groups.

We point out that b and b∗ are in different conjugacy classes and that the results
for x = y and x = a2(y) generate the same group.

Similarly, building on the element a′, from the second conjugacy class of structure
42:

a′ = (1, 4, 3, 2)(5, 8, 7, 6)

If b′(1) = 5 we get
b′ = (1, 5)(2, 6)(3, 7)(4, 8) = b∗

which we already claimed is an automorphism. If we set b′′(1) = 8, the result is not
an automorphism.

The first conjugacy class of structure 42 gives a valid group for both options of
x, but for the second class only one of the options does.
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9.2. Applying D4. Although this case has been used as an example in chapter 6,
it is helpful to revisit it before tackling the cases D12 and D6 of the binary and
ternary extended Golay codes. Similar to the case (Z4) × (Z2), here is a diagram
illustrating our choices when building on the automorphism a from above.

1 a
//

OO

b

��

2 a
//

OO

b
��

3 a
//

OO

b
��

8

a

zz
OO

b

��
x

a

77a3(x)aoo a2(x)aoo a(x)aoo

Notice that the bottom cycle has switched direction, and the squares commuting
now reflects the identity ab = ba−1. Two possible options for b are described by
b(1) = 4 and b′(1) = 5. But then b = b′a. In this manner, 〈a, b〉 generates the same
group, no matter the choice of b(1). Therefore, the two cases described in chapter
6 are all possible solutions, up to conjugation.

9.3. Applying the quaternion group. We build the following diagram on

a = (1, 2, 3, 8)(4, 5, 6, 7)

The arrows for b(a3(x)) = 8 and (b(a2(x)) = 1 are omitted for a neater display.

1 a
//

b
!!C

CC
CC

CC
CC 2 a

//

b

}}{{
{{

{{
{{

3 a
//

b ##G
GGGGGGGG 8

a

zz

b

{{wwwwwwwww

a3(x) a
// x

a
//

b

>>|||||||||
a(x)

a
//

b

``BBBBBBBB

a2(x)
a

gg

Here, let ab = c, and see how
ac = b−1

ba = c−1

bc = a

ca = b

cb = a−1

a2 = b2 = c2

(a2)2 = 1
This describes the quaternion group. We have set b(1) = x, and this means c(1) =
a(x), b−1(1) = a2(x) and c−1(x) = a3(x). Any of these elements would, along with
a, generate 〈a, b〉, meaning any choice of x is as good as an other. We test

b = (1, 4, 3, 6)(2, 7, 8, 5)

which is indeed an automorphism.
For the right ideal test, see that

(p1, p2, ..., p3) =

(1, a, a2, b, ab, a2b, a3b, a3)
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S(a) =
(

1 2 3 4 5 6 7 8
2 a(2) a2(2) b(2) ab(2) a2b(2) a3b(2) a3(2)

)
= (1, 8, 3, 2)(4, 5, 6, 7),

which is an automorphism of ham, and

S(b) =
(

1 2 3 4 5 6 7 8
4 a(4) a2(4) b(4) ab(4) a2b(4) a3b(4) a3(4)

)
= (1, 4)(2, 5)(3, 6)(7, 8)

is also an automorphism.

If we build on a′ = (1, 4, 3, 2)(5, 8, 7, 6) instead, and set b′(1) = 5, we get

b′ = (1, 5, 3, 7)(2, 8, 4, 6),

which is not an automorphism, so 〈a, b〉 is a double sided ideal.

9.4. Applying (Z2)3. We use the following diagram, building on b = (1, 2)(3, 4)(5, 6)(7, 8):

1 oo
b
//

OO

c

��

||
d

""
2OO

c

��

||
d ##
y oo

b
//

OO

c

��

b(y)
OO

c

��
x oo

b
//bb

d

<<b(x)
cc

d

;;
z oo

b
// b(z)

Not surprisingly, this diagram is a cube. We need one permutation that sends 1
to x for every x (Theorem 4.1), and from the diagram we see if 1 goes to x, then 2
goes to b(x). This forces the following permutations:

p2 = (1, 2)(3, 4)(5, 6)(7, 8)

p3 = (1, 3)(2, 4)(−,−)(−,−)

p4 = (1, 4)(2, 3)(−,−)(−,−)

p5 = (1, 5)(2, 6)(−,−)(−,−)

p6 = (1, 6)(2, 5)(−,−)(−,−)

p7 = (1, 7)(2, 8)(−,−)(−,−)

p8 = (1, 8)(2, 7)(−,−)(−,−)
Now the first blank cycle of p3 can be either (5, 7) or (5, 8). This choice forces p3

and, because p4 = p2p3, p4 in to place. The first blank cycle of p5 can be either
(3, 7) or (3, 8). This choice forces the remaining blank cycles in to place, because
p6 = p1p5 and so forth. We test the two versions of p3 and p5:

p3 = (1, 3)(2, 4)(5, 7)(6, 8)

p′3 = (1, 3)(2, 4)(5, 8)(6, 7)

p5 = (1, 5)(2, 6)(3, 7)(4, 8)

p′5 = (1, 5)(2, 6)(3, 8)(4, 7)
Verify that p3 is an automorphism of ham, while p′3 is not, and that p5 and p′5 are
both automorphisms.
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10. Guidelines on constructing permutation group diagrams

When looking for a fixed-point-free representation of some group structure to
base multiplication in A on, we use permutation group diagrams of the type seen
in the previous chapter. These diagrams are based on one suitable equi-cyclic
automorphism, a, and they highlight the options for permutations that will, along
with a, generate the desired group. This chapter lays out some guidelines we follow
to create useful diagrams of this sort, although other approaches may certainly be
viable.

Find a minimal generator set, 〈a, b, ...〉, for the desired group structure. This
minimizes the number of arrows, making the diagram easier to use. Let a be the
highest order element in the generator set. Minimal sets containing one high order
element and the rest elements of order two are preferred, since elements of order
two require only one arrow to represent their effect on two points.

Pick an a ∈ Aut(C) from some appropriate conjugacy class we wish to examine.
Draw one cycle of a explicitly, and the rest with symbols. This lets us draw arrows
of b while maintaining generality.

Keep aiming for symmetry when adding the arrows of b; we are drawing a group,
so symmetry should exist. Sometimes it will be best to finish a diagram before
starting to move the pieces around to find the neatest representation.

The first arrow for b can be sent anywhere between two cycles. Sending a point
in a cycle of a to another point in the same cycle, via b, would violate Theorem 4.1.
Having drawn the first arrow of b, use equalities in the group to find if this forces
other arrows in to place. For instance, in the diagram in Section 9.2, we first draw
the arrow for b(1). Then all other arrows of b are forced by the equality ab = ba−1.
The number of arrows needed to start forcing new arrows in place will depend on
the group in question.

For an example, we now use this approach to find a diagram for S4 fixed-point-
free inside S24.

10.1. Constructing the diagram for S4 inside S24. A minimal generator set
for S4 is

a′ = (1, 2, 3), b′ = (1, 4)

A fixed-point-free representation of S4 in S24 will contain permutations a and b that
correspond to a′ and b′. We will draw the diagram for these equi-cyclic elements of
S24 that correspond to a′ and b′.

Corresponding to a′, we choose

a = (1, 9, 10)(2, 11, 8)(3, 7, 12)(4, 5, 6)(13, 21, 22)(14, 23, 20)(15, 19, 24)(16, 17, 18)

This means b, corresponding to b′, will have the cycle structure 212. We start by
representing a in a fashion that will help us see symmetries, and maintain generality
whenever possible:



16 ERLEND HOV

1 a
// 9 a

// 10

a

~~

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII
a(u)

a
zzuuu

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>a(v)aoo v
aoo
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Now we draw b(1). Clearly, this must point to some other cycle than (1, 9, 10),
otherwise we would be violating Theorem 4.1. Because we are using (s, t, u, v, x, y, z)
to identify the remaining cycles, we can say b(1) = v without loss of generality:

1 a
//

SS

b

��'
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''

9 a
// 10

a

~~

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII
a(u)

a
zzuuu

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>a(v)aoo v
aoo
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The following results about a′ and b′ will help us place b(9) and b(10):

a′b′a′ = (1, 3, 4, 2)

a′2b′a′ = (3, 4)

a′b′a′2 = (2, 4)

a′2b′a′2 = (1, 2, 4, 3)

Notice that none of these are equal to b′. If b(1) = aba(1), then b = aba, by
Theorem 4.1. Therefore aba(1) 6= b(1), and similar for the three other cases.

This tells us neither b(9) or b(10) are equal to a(v) or a2(v).
A similar argument also says b must send 9 and 10 to different cycles of a.

Without loss of generality we can draw:

1 a
//

SS

b

��'
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''

9 a
//==

b

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

z 10

a

~~

b

��5
55

55
55

55
55

55
55

55
55

55
55

55
55

55
55

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII
a(u)

a
zzuuu

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>a(v)aoo v
aoo
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Our plans of symmetry have not panned out, due to a poor choice for b(1).
Without loss of generality we redraw what we have so far, hoping now to connect
opposite cycles at the middle:

1 a
//99

b
yyrrrr 9 a

//
OO

b

��

10

a

~~
cc
b ##HH
HHH

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII
a(u)

a
zzuuu

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>a(v)aoo v
aoo
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Now lets look at where b can send v.
If b(v) = a(s), then (a2b)(a2b)(a2b) = 1. To see this, start at the point 9 and

apply a2b thrice to end up back at 9. Since a′2b′ = (1, 4, 3, 2), this is not possible.
Similarly, if b(v) = a2(s), then (a2b)(ab)(a2b) = 1. But (a′2b′)(a′b′)(a′2b′) =

(2, 3), excluding this possibility.
If b(v) = z, then (ab)(a2b)(a2b) = 1. But (a′b′)(a′2b′)(a′2b′) = (1, 3).
Finally, if b(v) = a(z), then (ab)(ab)(a2b) = 1. But (a′b′)(a′b′)(a′2b′) = (3, 4).
This means b(v) must be one of the unconnected cycles, and by a similar agru-

ment, so must b(a2(v)). Also, we saw earlier that the three b-arrows emanating
from one cycle must all go to different cycles:

1 a
//99

b
yyrrrr 9 a

//
OO

b

��

10

a

~~
cc
b ##HH
HHH

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII
a(u)

a
zzuuu

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>
$$

b
ddJJJJJ

a(v)aoo v
aoo || b

<<yyyy
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Since a′b′ = (1, 4, 2, 3), we know (ab)4 = 1. Starting at a2(z), we now require
b(a(x)) = a(z) to complete the lap in the diagram that is described by (ab)4. A
similar argument says b(a(u)) = a(s).

1 a
//99

b
yyrrrr 9 a

//
OO

b

��

10

a

~~
cc
b ##HH
HHH

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII ��

b

OO

a(u)
a
zzuuu

��

b

OO

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>
$$

b
ddJJJJJ

a(v)aoo v
aoo || b

<<yyyy
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For the cycle containing y, there are now two structurally distinct choices for
target of b; the cycle containing t, and any other point with no b-connection. At
most one arrow can go from the y-cycle to the t-cycle, so without loss of generality
we say b(a2(y)) = z. Recall that a2b is of odrder 4, thus (a2b)4 = 1. Starting at
a2(y), we apply (a2b)3, landing at a2(s). To complete the lap described by (a2b)4,
we require b(y) = a2(s).

1 a
//99

b
yyrrrr 9 a

//
OO

b

��

10

a

~~
cc
b ##HH
HHH

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a

::uuuuu
a2(s)

a
nn

a2(y)

a

��

�� b
OO

t
a ��

a(y)
a
OO

a(t)
a ��

y
a
OO

ss

b

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh a2(t)

a

__

a2(x)

a ..

u
a
zzuuuu

a(x)

addIII ��

b

OO

a(u)
a
zzuuu

��

b

OO

x

addIIIII
a2(u)

a

NN

a2(v)

a

>>
$$

b
ddJJJJJ

a(v)aoo v
aoo || b

<<yyyy
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The cycle containing t now only has three possible places left to link to. The
symmetrical choice for b(t) is b(t) = a2(x).

1 a
//99

b
yyrrrr 9 a

//
OO

b

��

10

a

~~
cc
b ##HH
HHH

a2(z)
a

��

s

a $$I
III

I

a(z)
a

::uuu
a(s)

a $$
III

z
a
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a2(s)

a
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a2(y)

a
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�� b
OO

t
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33

b
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oo
b
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a ��

y
a
OO
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b
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a

__

OO
b ��

a2(x)
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u
a
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a(x)
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b

OO

a(u)
a
zzuuu
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b

OO

x

addIIIII
a2(u)

a
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a2(v)

a
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b
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a(v)aoo v
aoo || b
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To highlight the symmetry more, we keep manipulating this diagram. First, lets
mirror the bottom portion, and the y-cycle, in order to connect opposite cycles at
the middle while maintaining symmetry.

1 a
//<<

b
||xxx 9 a

//
OO

b

��
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At this point we abandon the plan of having b connect the middles of opposite
cycles. We instead aim connect the ”sides” of each cycle to its nearest neighbor,
resulting in a more presentable diagram.

10.2. The diagram for S4 inside S24. Finally we have:

1 a
//99

b
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b
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11. Solutions for the extended binary Golay code

In this section we examine some of the groups of order 24 to see if they can
define a multiplication that renders the extended binary Golay code an ideal in its
ambient space. Unfortunately, we did not get around to testing all such groups,
but how this would have been approached should be clear.

We also see that Z24, as well as any group containing an element of order 8, can
be immediately discarded.

This is the generator matrix we work with for the extended binary Golay code
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bin =



1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1


The additional lines higlight that the 10 × 10 block consist of the same string,

shifted right for each row. The 2 × 10 and 10 × 2 blocks have a zig-zag pattern of
1’s (and 0’s) and are transposes of each other, as is the whole second 12× 12 block.

11.1. Equi-cyclic conjugacy classes of bin. The automorphism group of the
extended binary Golay code is the Mathieu group M24 (see [3] page 640). The
conjugacy classes of M24 are known, we simply state the relevant parts here.

For the cycle structures 83 (three 8-cycles) and 24, no conjugacy classes exist,
meaning no automorphism of bin has one of these cycle structures.

For the remaining equi-cyclic structures, 212, 38, 46, 64 and 122, there is precisely
one conjugacy class of each.

The permutation

abin = (1, 7, 5, 8, 9, 12, 6, 2, 10, 3, 4, 11)(13, 14, 17, 15, 21, 23, 18, 19, 22, 20, 16, 24)

is an automorphism of bin. Raising abin to the relevant powers also gives represen-
tative elements for the remaining equi-cyclic structures.

11.2. Applying D12. As in Section 9.2, this whole case can be fully examined by
one permutation b. Let a be the above automorphism and b(1) = 13, say, then

b = (1, 13)(2, 23)(3, 15)(4, 17)(5, 16)(6, 18)(7, 24)(8, 20)(9, 22)(10, 21)(11, 14)(12, 19)

To verify that b is indeed an automorphism of bin, apply b to the columns of
bin, then add rows together until the first half of the matrix is back to the pattern
of the 12 × 12 identity matrix and observe that the latter half is now identical to
the latter half of bin.

There exists a canonical group isomorphism between the permutations of n ele-
ments and the n×n permutation matrices. Let π be this automorphism, such that
π(p) is the permutation matrix corresponding to the permutation p. Then, with
matrix multiplication, the previous verification is the same as saying

bin × (π(p))T = (π(p) × (binT ))T

is row-equivalent to bin.

To test if this group induces a right ideal, find p′ in

S(b) = (13, p2(13), ..., p23(13), p24(13)) = p′(S)
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where pn(1) = n identifies the permutations pi. We include this calculation as an
example:

p1(13) = 1(13) = 13
p2(13) = a7(13) = 19
p3(13) = a9(13) = 20
p4(13) = a10(13) = 16
p5(13) = a2(13) = 17
p6(13) = a6(13) = 18
p7(13) = a(13) = 14
p8(13) = a3(13) = 15
p9(13) = a4(13) = 21
p10(13) = a8(13) = 22
p11(13) = a11(13) = 24
p12(13) = a5(13) = 23

p13(13) = b(13) = 1
p14(13) = ab(13) = 7
p15(13) = a3b(13) = 8
p16(13) = a10b(13) = 4
p17(13) = a2b(13) = 5
p18(13) = a6b(13) = 6
p19(13) = a7b(13) = 2
p20(13) = a9b(13) = 3
p21(13) = a4b(13) = 9
p22(13) = a8b(13) = 10
p23(13) = a5b(13) = 12
p24(13) = a11b(13) = 11

p′ = (1, 13)(2, 19)(3, 20)(4, 16)(5, 17)(6, 18)(7, 14)(8, 15)(9, 21)(10, 22)(11, 24)(12, 23)

It can be verified that p′ is not an automorphism of bin, thus 〈abin, b〉 does not

induce a right ideal.

11.3. Applying S4. We refer to the diagram in Section 10.2. There are 24 − 3
options for choice of s, then 24− 3− 3 options for choice of t, and so forth. In total
this is 377! = 11022480 different options for b, although they come in sets of three
that all generate the same group, since b′ (from Section 10.1) could have been any
one of (1, 4), (2, 4) or (3, 4).

These cases were examined with a computer algorithm.
Although we did not think to count, roughly 700 of these options result in an

automorphism, none of which passed the right ideal test.
Here is one generator set for a fixed-point-free representation of S4 inside S24

consisting entirely of automorphisms of bin:

a = (1, 9, 10)(2, 11, 8)(3, 7, 12)(4, 5, 6)(13, 21, 22)(14, 23, 20)(15, 19, 24)(16, 17, 18)

b = (1, 7)(2, 13)(3, 21)(4, 15)(5, 10)(6, 14)(8, 9)(11, 23)(12, 24)(16, 20)(17, 22)(18, 19)

12. Automorphisms of the extended ternary Golay code

So far, automorphisms of a code have taken the form of permutations. A per-
mutation, p, has a corresponding permutation matrix, π(p), that carries the same
information. Permutation notation saves space, and highlights the cycle structure
more clearly. Both p and π(p) act on the code in the same way:

p(bin) = bin × π(p)T = (π(p) × (binT ))T

To talk about automorphisms of the extended ternary Golay code we will need
to talk about monomial matrices, a generalization of permutation matrices.

Definition 12.1. A monomial matrix is a n×n matrix with precisely one nonzero
entry in each row and column.
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Recall that the ambient space of an extended quadratic residue code is of the
form (Zq)p+1. We have been dealing only with codes where q = 2. When q > 2,
the structure of the automorphisms generalize from permutations (via permutation
matrices) to monomial matrices.

Now we lay out some notation that allows us to view the same monomial matrix
in different ways. Here is a monomial matrix:

Ater = π(ater) =



0 2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0


The mapping π is now the canonical bijection between monomial permutations

(illustrated next) and monomial matrices. This is a generalization of our previous
use of π.

Here is the monomial permutation form of Ater

ater = (12, 2, 3, 42, 5, 82)(62, 72, 92, 10, 12, 11)

The subscript shows the points ater multiplies by 2 when passing them along. So,
for example

ater(e1) = 2e2

ater(e2) = e3

a2
ter(e1) = 2e3

a4
ter(e1) = e5

a6
ter(x) = 2x

and still
ater(ter) = ter × π(ater)T

Notice how
a6
ter(ei) = 2ei

for all ei. This means that ater really is of order 12:

âter = (e1, 2e2, 2e3, 2e4, e5, e8, 2e1, e2, e3, e4, 2e5, 2e8)

(e6, 2e7, e9, 2e10, 2e12, 2e11, 2e6, e7, 2e9, e10, e12, e11)
To write this more simply:

âter = (1, 2̄, 3̄, 4̄, 5, 8, 1̄, 2, 3, 4, 5̄, 8̄)(6, 7̄, 9, 1̄0, 1̄2, 1̄1, 6̄, 7, 9̄, 10, 12, 11)

We call this the unpacked monomial permutation, âter, of ater.
The underlying permutation of ater is

ǎter = (1, 2, 3, 4, 5, 8)(6, 7, 9, 10, 12, 11)



THE EXTENDED GOLAY CODES AS IDEALS 29

The automorphism group of the extended ternary Golay code is known to be a
double covering of the Mathieu group M12 (see [3] page 647). For any permutation
like ater, let its twin permutation be

āter = (1, 22, 32, 4, 52, 8)(6, 7, 9, 102, 122, 112)

where, if
p(ei) = ej

then
p̄(ei) = 2ej = ēj

for all i, j. Above we also introduce the convention that 2ei = ēi.
The twin of an automorphism is also an automorphism, and these two automor-

phisms correspond to the same underlying permutation in M12.
For a monomial permutation, a, we write A for the corresponding monomial

matrix:
π(a) = A

π(ǎ) = Ǎ

The conjugacy classes of M12 are known. We list the relevant ones:

structure size representative
112 1 ()
26 396 a3

34 2640 a2

62 7920 a = (1, 2, 3, 4, 5, 8)(6, 7, 9, 10, 12, 11)
For every element in a conjugacy class of M12 there are two automorphisms of

ter that map to it as their underlying permutation and these automorphisms are
twins. The conjugacy class of an automorphism, p, is clearly at least as large as the
conjugacy class of p̌, since for any řp̌ř−1 in M12, this is the underlying permutation
of rpr−1. Either p is in a conjugacy class twice the size of p̌, or there are two twin
conjugacy classes, one containing p and the other p̄. In either case we need only
examine one representative element.

All equi-cyclic automorphisms of ter taken to the power of the order of their
underlying permutation is 2∗I12, the monomial matrix with all 2’s on the diagonal.

In the q = 2 case, we dealt with fixed point free permutation groups permuting
the ambient basis {ei}. For q = 3 we instead have to look at permutations of
{ei, ēi}. We still name the (monomial) permutations such that pi(1) = i, where

p̄i = pī

p̄i(ei) = ēi

and multiplication in the ambient space is defined as before.
Previously, our multiplication on the ambient basis was isomorphic to a fixed

point free permutation group of order n acting on {e1, e2, ..., en}. Now it is in-
stead isomorphic to a fixed point free permutation group of order 2m acting on
{e1, e2..., em, ē1, ē2, ..., ēm}.

Let {p̌i} be a fixed point free order 12 permutation group consisting of under-
lying permutations of automorphisms of ter. Then each of p̌i is the underlying
permutation of two automorphisms, pi and p̄i. Thus {pi, p̄i} is of order 24.
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Theorem 12.2. {pi, p̄i} is transitive.

Proof. Let
x, y ∈ {e1, e2..., em, ē1, ē2, ..., ēm}

and let
x̌, y̌ ∈ {e1, e2..., em}

where
ěi = ˇ̄ei = ei

We show the existance of some j such that pj(x) = y. Because {p̌i} is a maximal
order fixed-point-free permutation group, it is transitive. Therefore there exists
some p̌j ∈ {p̌i} such that

p̌j(x̌) = y̌

Let pj be an automorphism with p̌j as its underlying permutation. Then, either

pj(x) = y

in which case we are done, or
pj(x) = y̌

But then
p̄j(x) = y

�

Since {pi, p̄i} is a transitive order 24 permutation group consisting of permu-
tations of {e1, e2..., e12, ē1, ē2, ..., ē12}, it must be a fixed point free permutation
group.

It now remains to comment on the relationship

ep̄n(m) = ēnem = (2en)em = enem + enem = 2epn(m)

and similarly for enēm, which ensures multiplication distributes over addition.

13. Extended ternary Golay code results

Now we are ready to look for a multiplication on the ambient space of the
extended ternary Golay code.

We use the following generator matrix for the extended Ternary Golay code:

ter =


1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 2 0 1 2 2 1
0 0 1 0 0 0 2 1 0 1 2 2
0 0 0 1 0 0 2 2 1 0 1 2
0 0 0 0 1 0 2 2 2 1 0 1
0 0 0 0 0 1 2 1 2 2 1 0


However, we have seen this generator matrix used as well:

ter’ =


1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 2 2 1
0 0 1 0 0 0 1 1 0 1 2 2
0 0 0 1 0 0 1 2 1 0 1 2
0 0 0 0 1 0 1 2 2 1 0 1
0 0 0 0 0 1 1 1 2 2 1 0


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We prefer the former, since the sum of all rows is the word consisting of only
1’s. The latter has a self transpose second block, however. Automorphisms are
very similar in the two cases, simply multiply the point sent to seven, and the point
seven is sent to by 2 to change between them.

The remainder of this text uses the generator matrix ter.

13.1. Applying D6. Here is a diagram for D6, building on

a = (12, 2, 3, 42, 5, 82)(62, 72, 92, 10, 12, 11)

1 a
//

OO

b

��

2 a
//

OO

b
��

3 a
//

OO

b
��

4 a
//

OO

b
��

5 a
//

OO

b
��

8OO

b

��

a

ww

x

a

55a5(x)aoo a4(x)aoo a3(x)aoo a2(x)aoo a(x)aoo

Any choice for x will result in the same permutation group, since, if b(1) = 6
and b′(1) = 7, then

ab = b′

and so forth.
With b(1) = x = 6, we test if

b̌ = (1, 6)(2, 11)(3, 12)(4, 10)(5, 9)(7, 8)

is the underlying permutation for some automorphism of ter. Indeed

b = (12, 6)(2, 112)(3, 122)(4, 102)(5, 92)(7, 82)

and its twin are automorphisms of ter.

We use the unpacked permutations to do the right ideal test. Although ‖â‖ ∗
‖b̂‖ = 48, the equality â6 = b̂2 ensures the group 〈â, b̂〉 has order 24.

p1 = 1
p2 = â7

p3 = â8

p4 = â9

p5 = â4

p6 = â6b̂

p7 = âb̂
p8 = â5

p9 = â8b̂
p10 = â3b
p11 = â5b

p12 = â4b̂

p̄1 = â6

p̄2 = â
p̄3 = â2

p̄4 = â3

p̄5 = â10

p̄6 = b̂
p̄7 = â7b
p̄8 = â11

p̄9 = â2b
p̄10 = â9b
p̄11 = â11b
p̄12 = â10b

S(â) =
(

1 2 ... 2n
p1(2̄) p2(2̄) ... p̄n(2̄)

)
= (12, 8, 52, 4, 3, 22)(62, 72, 92, 10, 12, 11)

This is not an automorphism of ter.
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13.2. Applying (Z)6×(Z)2. The diagram for this case looks a lot like the previous
one

1 a
//

OO

b

��

2 a
//

OO

b

��

3 a
//

OO

b
��

4 a
//

OO

b
��

5 a
//

OO

b
��

8OO

b
��

a

xx

x
a
// a(x)

a
// a2(x) a

// a3(x) a
// a4(x) a

// a5(x)
a

gg

However, now we have three distinct options for x; b(1) = 6, b(1) = 7 and
b(1) = 9, where only

b̌ = (1, 9)(2, 10)(3, 12)(4, 11)(5, 6)(7, 8)

is the underlying permutation of an automorphism, namely

b = (1, 92)(22, 10)(3, 122)(42, 11)(52, 6)(7, 82)

13.3. Applying A4. We build the diagram for the case A4, the alternating group
on four elements, on the automorphism

a = (12, 32, 52)(2, 42, 8)(6, 92, 12)(7, 10, 112)

5

a

��

oo
b

// z

a

��

3

a

;;wwwwwwwwwww
bb

b

""E
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE a2(z)

a

ccGGGGGGGGG

1

a

>>~~~~~~~~~
OO

b

��

a(z)

a

ccGGGGGGGG

x

a
  @

@@
@@

@@
@ a2(y)

a

{{ww
ww

ww
ww

ww

��

b

OO

a(x)

a
""F

FFFFFFF

||

b

<<zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
y

a

||yyyyyyyyy

a2(x)

a

QQ

oo
b

// a(y)

a

KK

Here there are 9 options for x, followed by 6 for y and 3 for z. However, these
options come in sets of three, that all generate the same group.

Listing only one of each such set, the following automorphisms all generate the
desired group when combined with a, individually:

b = (1, 22)(3, 122)(42, 7)(52, 10)(6, 82)(92, 11)

c = (12, 4)(2, 122)(3, 92)(5, 102)(5, 112)(7, 82)

d = (1, 42)(22, 6)(3, 122)(52, 7)(82, 11)(92, 10)
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e = (12, 8)(2, 102)(3, 62)(42, 9)(52, 11)(7, 122)
f = (12, 2)(3, 112)(4, 92)(5, 122)(6, 102)(7, 82)
g = (12, 4)(22, 10)(32, 7)(5, 92)(62, 8)(11, 122)
h = (12, 4)(22, 11)(32, 10)(5, 62)(7, 92)(8, 122)
i = (1, 82)(2, 122)(32, 7)(42, 10)(5, 62)(9, 112)
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