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Abstract

Tree boosting has empirically proven to be a highly effective approach to predictive
modeling. It has shown remarkable results for a vast array of problems. For many
years, MART has been the tree boosting method of choice. More recently, a tree
boosting method known as XGBoost has gained popularity by winning numerous
machine learning competitions.

In this thesis, we will investigate how XGBoost differs from the more traditional
MART. We will show that XGBoost employs a boosting algorithm which we will
term Newton boosting. This boosting algorithm will further be compared with the
gradient boosting algorithm that MART employs. Moreover, we will discuss the
regularization techniques that these methods offer and the effect these have on the
models.

In addition to this, we will attempt to answer the question of why XGBoost
seems to win so many competitions. To do this, we will provide some arguments
for why tree boosting, and in particular XGBoost, seems to be such a highly ef-
fective and versatile approach to predictive modeling. The core argument is that
tree boosting can be seen to adaptively determine the local neighbourhoods of the
model. Tree boosting can thus be seen to take the bias-variance tradeoff into con-
sideration during model fitting. XGBoost further introduces some subtle improve-
ments which allows it to deal with the bias-variance tradeoff even more carefully.
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Sammendrag

“Tree boosting” har empirisk vist seg å være en svært effektiv tilnærming til predik-
tiv modellering. Denne tilnærmingen har vist meget gode resultater for en lang
rekke problemer. I mange år har MART vært den foretrukne “tree boosting”-
metoden. Mer nylig har en “tree boosting”-metode ved navn XGBoost økt i pop-
ularitet ved å vinne en rekke maskinlæringskonkurranser.

I denne oppgaven skal vi undersøke hvordan XGBoost skiller seg fra den mer
tradisjonelle MART. Vi vil vise at XGBoost benytter en “boosting”-algoritme som
vi vil kalle “Newton boosting”. Denne “boosting”-algoritmen vil ytterligere bli
sammenlignet med “gradient boosting”-algoritmen som MART benytter. Videre
vil vi diskutere teknikker for regularisering som disse metodene tilbyr og effekten
disse har p̊a modellene.

I tillegg til dette vil vi forsøke å svare p̊a spørsm̊alet om hvorfor XGBoost ser ut
til å vinne s̊a mange konkurranser. For å gjøre dette vil vi gi noen argumenter for
hvorfor “tree boosting”, og særlig XGBoost, ser ut til å være en s̊apass effektiv og
allsidig tilnærming til prediktiv modellering. Hovedargumentet er at “Tree boost-
ing” kan sees å bestemme lokale omr̊ader i modellen adaptivt. “Tree boosting”
kan dermed sees å ta hensyn til “the bias-variance tradeoff” under modelltilpas-
ningen. XGBoost introduserer ytterligere noen sm̊a forbedringer som gjør at den
kan h̊andtere “the bias-variance tradeoff” enda mer nøye.
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Chapter 1

Introduction

Gradient boosting is a powerful machine learning technique introduced by Fried-
man (2001). The technique was motivated as being a gradient descent method in
function space, capable of fitting generic nonparametric predictive models. Gradi-
ent boosting has been particularly successful when applied to tree models, in which
case it fits additive tree models. Friedman devised a special enhancement for this
case (Friedman, 2001, 2002). We will refer to this method as MART (Multiple
Additive Regression Trees), but it is also known as GBRT (Gradient Boosted Re-
gression Trees) and GBM (Gradient Boosting Machine). More recently, a new tree
boosting method has come to stage and quickly gained popularity. It goes by the
name XGBoost (Chen and Guestrin, 2016), and while it is conceptually similar to
Friedmans tree boosting method MART, it also differs in multiple ways.

Gradient boosting has empirically proven itself to be highly effective for a vast
array of classification and regression problems. One arena where this becomes
particularly apparent is the competitive machine learning scene. The foremost
example of this would be Kaggle, a platform for data science competitions and
the worlds largest community of data scientists1. Kaggle has on several occasions
interviewed top ranking members on Kaggle, i.e. members that have achieved top
scores in multiple competitions. Four members who has ranked as number one
were asked the question “what are your favorite machine learning algorithms?”
Their responses serve as a testemony to the effectiveness and versatility of gradient
boosting of trees:

“Again it depends on the problem, but if I have to pick one, then it is GBM (its
XGBoost flavor). It is amazing how well it works in many different problems. Also I
am a big fan of online SGD, factorization, neural networks, each for particular types
of problems.”

— Owen Zhang2

1http://www.kaggle.com/about
2http://blog.kaggle.com/2015/06/22/profiling-top-kagglers-owen-zhang-currently-1-in-the-

world/
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2 CHAPTER 1. INTRODUCTION

“Gradient Boosting Machines are the best! It is amazing how GBM can deal with
data at a high level of depth. And some details in an algorithm can lead to a very
good generalization. GBM is great dealing with linear and non-linear features, also it
can handle dense or sparse data. So it’s a very good algorithm to understand core
parameters and it’s always a good choice if you are not sure what algorithm to use.
Before I knew of GBM, I was a big fan of neural networks.”

— Gilberto Titericz3

“I like Gradient Boosting and Tree methods in general: [as they are] Scalable,
Non-linear and can capture deep interactions, Less prone to outliers.”

— Marios Michailidis4

“Gradient boosted trees by far! I like GBT because it gives pretty good results right
off the bat. Look at how many competitions are won using them!”

— Lucas Eustaquio Gomes da Silva5

Since its introduction in 2014, XGBoost has quickly become among the most
popular methods used on Kaggle. It has accumulated an impressive track record
of winning competitions. For example, among the 29 challenge winning solutions
posted on Kaggle during 2015, 17 used XGBoost (Chen and Guestrin, 2016). For
comparison, the second most popular method was deep neural networks, which was
used in 11 solutions. XGBoost has also demonstrated its effectiveness at the KDD
Cup, a prestigous competition held yearly. At the KDD Cup 2015, all of the top
10 solutions used XGBoost.

In this thesis, we will determine how XGBoost differs from the more traditional
MART and further attempt to understand why XGBoost wins so many competi-
tions. To understand this, we need to understand both why tree boosting is so
effective in general, but also how XGBoost differs and thus why it might be even
more effective in some cases.

We will show how the boosting algorithms employed by MART and XGBoost
are different. We will develop both boosting algorithms as numerical optimization
methods in function space. Whereas the gradient boosting algorithm employed
by MART is well known for its interpretation as a gradient descent method in
function space, we will show that the boosting algorithm employed by XGBoost
can be interpreted as a Newton method in function space. We hence name this
form of boosting Newton boosting. We will further compare the properties of the
Newton boosting algorithm of XGBoost with the gradient boosting algorithm which
is employed by MART. Following this will be a discussion on the most common
regularization techniques for additive tree models which are utilized by MART and
XGBoost, with emphasis on those found only in XGBoost. Finally, we will provide

3http://blog.kaggle.com/2015/11/09/profiling-top-kagglers-gilberto-titericz-new-1-in-the-
world/

4http://blog.kaggle.com/2016/02/10/profiling-top-kagglers-kazanova-new-1-in-the-world/
5http://blog.kaggle.com/2016/02/22/profiling-top-kagglers-leustagos-current-7-highest-1/
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some informal arguments for why tree boosting, and in particular XGBoost, seems
to be such an unreasonably effective approach to predictive modeling.

This thesis is divided into three parts. The first covers the basics of statistical
learning. We here review the core concepts necessary for understanding supervised
learning methods and in particular tree boosting methods. We further provide a
brief overview of some commonly used loss functions and supervised learning meth-
ods. The second part introduces tree boosting. Here, we will introduce boosting
and its interpretation as numerical optimization in function space. We will further
discuss tree methods and introduce the core elements of the tree boosting methods
MART and XGBoost. In the third and final part, we will compare the properties of
the tree boosting algorithms employed by MART and XGBoost, discuss the regu-
larization techniques they use and, finally, provide arguments for why tree boosting
in general and XGBoost in particular seems to be so effective and versatile.
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Part I

Statistical Learning
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Chapter 2

Supervised Learning

The term ”learning” is closely related to generalization. The goal in statistical
learning is to find patterns in data that will generalize well to new, unobserved
data. If one is able to find patterns that generalize well, one can make accurate
predictions. This is indeed the goal in supervised learning, the part of statistical
learning concerned with establishing the relationship between a response variable
Y and a set of predictor variables X. Unsupervised learning, on the other hand,
is concerned with finding patterns in data where there is no predefined response
variable Y and the goal is to find structure in the set of variables X. In this chapter
we will discuss some core concepts in supervised learning which provides the basis
needed for discussing tree boosting.

2.1 The Supervised Learning Task
Shmueli (2010) discusses the distinction between explanatory modeling and pre-
dictive modeling. In explanatory modeling we are interested in understanding the
causal relationship between X and Y , whereas in predictive modeling we are inter-
ested in predicting Y and our primary interest in the predictors X is to aid us in
this goal. In this thesis, we will concern ourself with predictive modeling.

Assume that we are interested in building a model for predicting the response
variable Y ∈ Y using a set of covariates X = (X1, ..., Xp) ∈ X . Assume further
that we have a data set at our disposal to solve the task at hand. The data set

D = {(Y1, X1), (Y2, X2), ..., (Yn, Xn)}

is assumed to be an i.i.d. sample of size n from a joint distribution PY,X .
The response Y ∈ Y is also referred to as the dependent variable or the output

variable. When Y ∈ Y can only take on a finite number of values or classes, i.e.
|Y| is finite, we are dealing with a classification task. Otherwise, we are dealing
with a regression task.

The covariates X = (X1, ..., Xp) ∈ X are also referred to as the predictors, the
explanatory variables, the features, the attributes the independent variables or the

7



8 CHAPTER 2. SUPERVISED LEARNING

input variables.
There are multiple approaches one might take towards constructing a predictive

model. One approach is to build a probabilistic model of the data generating
process, often referred to as a statistical model. Once a probabilistic model is
built, one might use this to make predictions. Another approach to the predictive
modeling task is using the framework of statistical learning theory, which provides
the theoretical basis for many modern machine learning algorithms (von Luxburg
and Schoelkopf, 2008). In this framework, the task of building predictive models is
referred to as supervised learning. The models built in this framework are simply
predictive functions designed to make accurate predictions on new, unobserved data
from PY,X . These models need not be probabilistic models of the data generating
process, but as we will see, they often end up having a probabilistic interpretation
either way.

In the statistical learning framework, predictive modeling can thus be viewed
as a problem of function estimation (Vapnik, 1999). The prediction accuracy of
the function is measured using a loss function, which measures the discrepancy
between the predictions and the actual outcomes.

2.2 Risk Minimization: Defining the Target
In this section, we will introduce the loss function. The loss function is the measure
of prediction accuracy that we define for the problem at hand. We are ultimately
interested in minimizing the expected loss, which is known as the risk. The function
which minimizes the risk is known as the target function. This is the optimal
prediction function we would like to obtain.

2.2.1 The Loss Function
Loss functions play a central role in decision theory (Young and Smith, 2005).
Statistical decision theory can be viewed as a game against nature, as opposed to
against other strategic players (Murphy, 2012). In this game, we have to choose
an action a to take from the set of allowable actions, i.e. the action space A. This
action is subsequently judged in context of the true outcome y ∈ Y, which is picked
by nature. The loss function

L : Y × A → R+ (2.1)

gives a quantitative measure of the loss incurred from choosing action a when the
true outcome ends up being y. The lower the loss incurred, the better.

Loss functions can be used for measuring the quality of a parameter estimate.
In that case, the loss measures the discrepancy between the true parameter, picked
by nature, and our parameter estimate. In predictive modeling however, we are
concerned with predictions. Hence, we will utilize loss functions to measure the
quality of a prediction. In this case, the loss measures the discrepancy between
the true outcome, picked by nature, and our prediction. The action in our case
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will therefore be to make a prediction a. This prediction is subsequently judged in
context of the true outcome of the response variable y.

Oftentimes in the literature, predictions are denoted ŷ instead of a. We will
however stick to a ∈ A as predictions need not be members of the set Y. For
example, if we have a binary classification problem with Y = {0, 1}, we could for
example use probabilistic predictions where A = [0, 1]. As such, predictions are
not directly an estimate of y, but can more generally be viewed as some action
taken which will be judged in context of y.

2.2.1.1 Examples

Common loss functions for regression include the squared error loss

L(y, a) = 1
2(y − a)2

and the absolute loss
L(y, a) = |y − a|

which measures the quadratic and absolute discrepancy between the prediction a
and the true outcome y, respectively.

For classification, a common loss function is the misclassification or 0-1 loss

L(y, a) = I(y �= a),

which assigns a loss of 1 to misclassifications and a loss of 0 to correct classifications.
More generally, one can also assign greater losses to certain misclassifications.

2.2.2 The Risk Function
The loss function measures the accuracy of a prediction after the outcome is ob-
served. At the time we make the prediction however, the true outcome is still
unknown, and the loss incurred is consequently a random variable L(Y, a). It
would therefore be useful to have a notion of an optimal action under uncertainty.

The risk of action a is defined as the expected loss

R(a) = E[L(Y, a)].

The optimal action is defined to be the risk minimizer a∗ (Murphy, 2012),

a∗ = arg min
a∈A

R(a).

2.2.3 The Model
The make predictions depending on the input X, we will use a model

f : X → A,
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mapping every input x ∈ X to a corresponding prediction a ∈ A. Thus, for a given
x, we would make the prediction

a = f(x),

and would consequently incur a loss of L(y, f(x)). The model is also referred to as
a hypothesis, a prediction function, a decision function or a decision rule.

Let AX denote the set of all functions mapping from X to A. The problem of
estimating a model f̂ can be viewed as a problem of selecting a function f̂ from
the set AX based on data. We will come back to this in Section 2.3.

2.2.4 The Target Function
In Section 2.2.2, we discussed the risk of a prediction a ∈ A. Now, we will discuss
the risk of a model or prediction function f ∈ AX .

The risk of a model f is defined as the expected loss over the joint distribution
PY,X (Tewari and Bartlett, 2014)

R(f) = E[L(Y, f(X))].

The optimal model is defined to be the risk minimizer f ∗,

f∗ = arg min
f∈AX

R(f).

This is also known as the target function and is the function we are ultimately
interested in estimating. Note that

f∗ = arg min
f∈AX

E[L(Y, f(X))]

= arg min
f∈AX

E[E[L(Y, f(X))|X]].

The target function can therefore be calculated pointwise as

f∗(x) = arg min
f(x)∈A

E[L(Y, f(x))|X = x] ∀x ∈ X .

2.2.4.1 Examples

For the squared error loss, the corresponding risk is

R(f) = E[(Y − f(x))2|X = x].

From this, it is straightforward to show that the corresponding target function is
given by the conditional mean

f∗(x) = E[Y |X = x]

while the risk of the target function is given by the conditional variance

R(f∗(x)) = Var[Y |X = x].
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For the absolute loss on the other hand, the risk is

R(f) = E[|Y − f(x)|
���X = x].

The target function is the conditional median

f∗(x) = Med[Y |X = x]

while the risk of the target function is given by the conditional mean absolute
deviation

R(f∗(x)) = MAD[Y |X = x].
Finally, for the misclassification loss, the risk is the conditional probability of

misclassification
R(f) = Prob[Y �= f(x)|X = x].

The corresponding target function is

f∗(x) = arg max
y∈Y

Prob[Y = y|X = x],

while the risk of the target function is given by

R(f∗(x)) = arg min
y∈Y

Prob[Y = y|X = x].

2.3 Empirical Risk Minimization: Defining the So-
lution

Ultimately, we want a model which generalizes as well as possible, i.e. one that has
as low true risk as possible. However, since we don’t know the true risk of a model,
we need to rely on empirical estimates of risk when inferring our model. In this
section, we will discuss the principle of empirical risk minimization which is the
main inductive principle used in statistical learning (Tewari and Bartlett, 2014).
This inductive principle relies on minimization of the empirical risk.

2.3.1 Empirical Risk
Calculating the risk of a model would require complete knowledge of the true, but
unknown, distribution PY,X . This is also known as the population distribution, from
which we assume the data was sampled. Let P̂Y,X denote the empirical distribution,
i.e. the distribution that assigns a probability mass of 1/n to each data point.
Our information about the true distribution is limited to the information in our
empirical distribution.

The empirical risk R̂(f) is simply an empirical estimate of the true risk R(f)
of a model, where the expectation of the loss is taken with respect to the empir-
ical distribution rather than the population distribution. The empirical risk of a
function f is

R̂(f) = 1
n

n�

i=1
L(yi, f(xi)).
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Note also that the empirical risk can be viewed as a random quantity, depending
on the realization of the data set D. By the strong law of large numbers we have
that

lim
n→∞

R̂(f) = R(f),

almost surely.

2.3.2 Empirical Risk Minimization
Empirical risk minimization (ERM) is an induction principle which relies on min-
imization of the empirical risk (Vapnik, 1999). The model defined by ERM is
the empirical risk minimizer f̂ , which is an empirical approximation of the target
function which was defined as the risk minimizer f ∗.

We define the empirical risk minimizer as

f̂ = arg min
f∈F

R̂(f),

where F ⊆ AX is some class of functions. ERM is a criterion to select the optimal
function f̂ from a set of functions F . The choice of F is of major importance.

2.3.2.1 The Naive Approach

The naive approach would be to let F = AX . That is, we would allow any function
in AX to be a solution. In the general case where the cardinality of X is infinite,
we would essentially attempt to estimate an infinite number of parameters using
only a finite data set. The problem is thus ill-posed (Evgeniou et al., 2000; Rako-
tomamonjy and Canu, 2005). There will be an infinite number of solutions on the
form

f̂(x) =
�

ai , if x = xi

arbitrary , else
.

where
ai = arg min

a∈A

�

{j:xj=xi}
L(yj , a).

To solve the function estimation problem we thus need to impose additional as-
sumptions on the solution.

2.3.3 The Model Class
To make the function estimation problem well-posed, we need to restrict F to
be a subset of the total function space, i.e. F ⊂ AX . In machine learning this
is commonly referred to as the hypothesis space. This restriction of the function
space essentially defines a class of models. We will thus refer to F as a model class.

The perhaps most popular model class is the class of linear models

F = {f : f(x) = θ0 +
p�

j=1
θjxj , ∀x ∈ X }.
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This model greatly simplifies the function estimation problem to estimation a pa-
rameter vector θ = (θ0, θ1, ..., θp)T .

We will come back with more examples of model classes in Section 2.5 where
we provide an overview of common learning methods.

2.3.4 The Learning Algorithm
The model class together with the ERM principle reduces the learning problem
to an optimization problem. The model class constitutes a set of functions which
are considered candidate solutions, while the ERM principle provides us with a
criterion to select a function from this set. This defines the statistical aspect of the
learning problem. The computational aspect of the problem is to actually solve the
the optimization problem defined by ERM. This is the job of the learning algorithm,
which is essentially just an optimization algorithm. The learning algorithm takes
a data set D as input and outputs a fitted model f̂ .

Most model classes will have some parameters θ ∈ Θ that the learning algorithm
will adjust to fit the data. In this case, it suffices to estimate the parameters θ̂ in
order to estimate the model

f̂(x) = f(x; θ̂).
Different choices of model classes and loss functions will lead to different opti-

mization problems. These optimization problems will vary in difficulty and thus
require different approaches. The simplest problems yield analytic solutions. Most
problems do however require numerical methods.

When the objective function is continuous with respect to θ we get a continuous
optimization problem. When this is not the case, we get a discrete optimization
problem. It is often desirable to have a model class and loss function which lead
to a continuous optimization problem as these are typically easier to solve than
discrete optimization problems.

One notable example of a model class which leads to a discrete optimization
problem is tree models. In fact, learning a tree model is an NP-complete problem
(Hyafil and Rivest, 1976). To learn a tree model one thus have to make approxi-
mations to reduce the search space. We will discuss this further in Chapter 5.

Most model classes does however lead to continuous optimization problems.
There are a vast set of methods for continuous optimization problems. SeeNocedal
and Wright (2006) for more details. Two prominent methods that will be important
for this thesis however, is the method of gradient descent and Newton’s method. We
will motivate gradient boosting and Newton boosting as approximate nonparamet-
ric versions of these optimization algorithms. We will come back to this in Chapter
4.

2.3.5 Connection to Maximum Likelihood Estimation
Empirical risk minimization (ERM) and maximum likelihood estimation (MLE)
are closely related. In the case of i.i.d. data, MLE can be formulated as ERM by
selecting an appropriate loss function. The predictive model resulting from ERM
can thus be interpreted as a statistical model in this case.
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2.3.5.1 Maximum Likelihood Estimation

We will here briefly review maximum likelihood estimation. Let us first consider
parametric density estimation. Assume Y comes from a parametric distribution

Y ∼ PY (y; θ)

where θ ∈ Θ are the parameters of the distribution. One approach to estimating θ
is to use maximum likelihood estimation (MLE). The maximum likelihood estimate
can be written as

θ̂ = arg max
θ∈Θ

l(θ; y1, ..., yn) = arg max
θ∈Θ

n�

i=1
log PY (yi; θ).

Let us now generalize this and let the parameter θ depend on X. That is, let
it be a function

θ : X → Θ,

and assume that
Y |X ∼ PY |X(y; θ(X)).

Then
θ̂ = arg max

θ∈ΘX

n�

i=1
log PY |X(yi; θ(xi)).

Rewriting this in the form

θ̂ = arg min
θ∈ΘX

{ 1
n

n�

i=1
− log PY |X(yi; θ(xi))},

we see that this is equivalent to the empirical risk minimizer of the loss function

L(y, θ(x)) = − log PY |X(y; θ(x)). (2.2)

We will refer to a loss function defined in this way as a likelihood-based loss function.

2.3.5.2 Link Functions

When the parameter space Θ is bounded, models are typically fit on a transformed
scale where estimation is convenient. This is the trick used by e.g. generalized linear
models (GLMs) (Nelder and Wedderburn, 1972) and generalized additive models
(GAMs) (Hastie and Tibshirani, 1986). The trick is to define a link function

g : Θ → A
and instead estimate the function

f(x) = g(θ(x)) ∈ A
on the transformed scale. Link functions are also commonly used for additive tree
models. Here, regression trees are estimated and added on the transformed scale.
The final additive tree model can make predictions on the original scale by applying
the inverse link g−1 to the predictions.
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2.4 Common Loss Functions
The loss function chosen for a particular problem should reflect some discrepancy
between the observations and the predictions that we would like to minimize. In
theory we can use any loss function as defined in Equation 2.1. In practice however,
there are a few popular loss functions which tend to be used for a wide variety of
problems.

Many of the loss functions used in practice are likelihood-based, i.e. they can
be interpretations as negative log-likelihoods. We will discuss some examples in
Section 2.4.1. For classification, minimizing the number of misclassifcations might
be the goal. We will discuss the misclassification loss in Section 2.4.2. Sometimes,
a loss function which is more convenient to optimize is used instead of the actual
loss function during estimation. We will discuss this in Section 2.4.3.

2.4.1 Likelihood-based Loss Functions
We defined the likelihood-based loss function in Equation 2.2. We will here briefly
discuss some common examples.

2.4.1.1 The Gaussian Distribution

For regression, the Gaussian distribution is popularly used. That is, we assume a
conditional Gaussian distribution

[Y |X] ∼ Normal(µ(X), σ2).

The loss function based on this likelihood is

L(y, µ(x)) = 1
2 log 2πσ2 + 1

2σ2 (y − µ(x))2. (2.3)

For the Gaussian distribution, the identity link is used. That is, the model is
estimated on the original parameter scale, f(x) = g(µ(x)) = µ(x). Assuming that
σ2 is a constant we are not interested in estimating, we can simplify the expression
in Equation 2.3. Doing this we find that this loss function is equivalent to the
squared error loss

L(y, f(x)) = (y − f(x))2.

Maximum likelihood estimation with a Gaussian error assumption is thus equiva-
lent to least-squares regression.

2.4.1.2 The Bernoulli Distribution

For binary classification, the Bernoulli/binomial distribution is useful. Letting
Y = {0, 1}, we can assume

[Y |X] ∼ Bernoulli(p(X)).
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The loss function based on this likelihood is

L(y, p(x)) = −y log(p(x)) − (1 − y) log(1 − p(x))

The target function can easily be shown to be

p∗(x) = Prob[Y = 1|X = x].

Since p(x) ∈ [0, 1] is bounded, it is common to model it on the logit scale
instead. We define

f(x) = g(p(x)) = log p(x)
1 − p(x) ,

where g is the logit link. The loss function for the model on the logit scale can be
written

L(y, f(x)) = log(1 + ef(x)) − yf(x).
Fitting linear models with this loss function gives rise to the popular logistic re-
gression (Cox, 1958).

The loss function based on the Bernoulli likelihood is also referred to as the
log-loss, the cross-entropy or the Kullback-Leibler information (Shen, 2005).

2.4.1.3 Other Distributions

Similarly, one can derive corresponding loss functions by assuming other distribu-
tions. An important class of distributions is the exponential family. This class
includes the Gaussian and Bernoulli distribution, as well as many other important
distributions. Examples include the Poisson distribution, the gamma distribution
and the multiclass generalization of the Bernoulli/binomial distribution, i.e. the
categorical/multinomial distribution. See e.g. Nielsen and Garcia (2009) for a more
comprehensive overview.

Other important distributions include the Laplace distribution and the asym-
metric Laplace distribution. The Laplace distribution can be seen to correspond
to the absolute loss function, and can thus be used for estimating the conditional
median. The asymmetric Laplace distribution can be seen to correspond to the
loss function for quantile regression (Kozumi and Kobayashi, 2011), and can thus
be used to estimate other conditional quantiles than the median (Koenker, 2005).

2.4.2 The Misclassification Loss
For classification problems, we might be interested in predicting the ”crisp” labels
of new data, rather than the probabilities of the various class labels. If we are
interested in minimizing the rate of misclassifications, we can use the misclassifica-
tion loss. This loss function is not associated with any likelihood, but can be seen
to judge the quality of some action, i.e. a crisp classification, one take based on
the data.

Even though we are interested in minimizing the misclassification rate, the
misclassification loss is rarely used for model estimation as it leads to an NP-hard
optimization problem (Nguyen and Sanner, 2013). One therefore typically employ
some surrogate loss function instead.
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2.4.3 Surrogate Loss Functions
When used for estimation, some loss functions lead to problems. Typically, you run
into computational issues in classification problems and robustness issues in regres-
sion problems (Steinwart, 2007). In those cases, it is common to use a surrogate
loss function instead of the original loss function.

2.4.3.1 Surrogate Loss Functions for Regression

Consider using the squared error loss for a regression problem. If the data set con-
tains outliers, this might severely impact the model. One might therefore consider
to use the absolute loss or the Huber loss (Huber, 1964) instead as they are more
robust to outliers.

2.4.3.2 Surrogate Loss Functions for Classification

Using the misclassification loss for estimation leads to an NP-hard optimization
problem (Nguyen and Sanner, 2013). It is therefore common to use convex surro-
gates instead (Bartlett et al., 2006).

One commonly used surrogate loss is the log-loss from Section 2.4.1.2. Classi-
fications are made by

c(x) = I(p(x) ≥ 0.5)

or equivalently
c(x) = sign{f(x)}.

Any method minimizing the log-loss can thus be used for classification.
Other methods have been developed specifically for the case of binary classifi-

cation with misclassification loss. These methods focus directly on determining the
decision boundary between the classes that would minimize the misclassification
loss.

For these methods one typically let y ∈ Y = {−1, 1} and let the model assign a
real-valued score, i.e. f(x) ∈ A = R, where f(x) = 0 defines the decision boundary
between the two classes. The 0-1 loss function can then be rewritten as

L(y, f(x)) = I(yf(x) < 0).

The quantity yf(x) is called the margin. This quantity is positive for correct
classifications.

Two prominent methods that were motivated using the margin are Support
Vector Machines (SVMs) (Cortes and Vapnik, 1995) and AdaBoost (Freund and
Schapire, 1995). These methods have however been shown to utilize the hinge loss
function (Lin, 2002)

L(y, f(x)) = max{0, 1 − yf(x)}
and the exponential loss function (Friedman et al., 2000)

L(y, f(x)) = e−yf(x),
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respectively. These are two other possible surrogate loss functions for the misclas-
sification loss. As opposed to the log-loss however, these are not likelihood-based.
Finally, note that the log-loss is sometimes also written as a function of the margin,
i.e.

L(y, f(x)) = log(1 + e−2yf(x)).

2.5 Common Learning Methods
We will here give a brief overview of some learning methods that are commonly
used. We will come back to some of them later. This section is not intended to give
comprehensive introduction to any learning method nor to give a comprehensive
overview of various learning methods. For more details see e.g. Hastie et al. (2009),
Murphy (2012) or Kuhn and Johnson (2013).

2.5.1 The Constant
Les us begin with an extreme example of a model class, the constant. This restricts
the model fitted to be a constant on the form

f(x) = θ0.

This reduces the estimation problem to estimating only one parameter θ0. This
model class assumes that Y is independent of all the predictor variables X. This
is of course not a particularly useful model, but can be considered as a sort of base
case.

2.5.2 Linear Methods
Linear methods are learning methods which employ the class of linear models. A
linear model can be written on the form

f(x) = θ0 +
p�

j=1
θjxj . (2.4)

For this model class, the estimation problem is simplified to estimating a parameter
vector θ = (θ0, θ1, ..., θp) ∈ Rp+1.

When the squared error loss is used, we get the familiar linear regression. The
parameter vector can in this case be determined analytically as

θ̂ = (XT X)−1XT y,

where X = (x1, ..., xn)T is the design matrix and y = (y1, ..., yn)T .
More generally, if the loss function used is based on an exponential family like-

lihood, Equation 2.4 defines a generalized linear model. These models are typically
fit using iteratively reweighted least squares (IRLS) (Nelder and Wedderburn, 1972),
which is essentially a Newton method for optimizing the parameter vector θ.
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If the loss function used is the hinge loss, Equation 2.4 is a support vector
classifier or linear support vector machine. The optimization problem is a quadratic
programming problem (Cortes and Vapnik, 1995). A popular learning algorithm
is sequential minimal optimization (Platt, 1998).

2.5.3 Local Regression Methods
One simple way to introduce nonlinearities is to let the fitted function be more
affected by nearby points than distant points. A kernel function is a function

κ : X × X → R.

which measures the similarity or closeness between inputs. For local regression
methods, the kernel function is used to measure closeness between points in the
input space X . Some examples include kernel regression (Nadaraya, 1964; Wat-
son, 1964), k-Nearest-Neighbours and locally weighted regression (Cleveland and
Devlin, 1988).

These methods typically require fitting a weighted average or weighted regres-
sion model at the time of prediction. The weights will generally be different for
every prediction point according to which other points are nearby. These models
thus require fitting a separate model for each prediction point. They thus also
require keeping all of the training data in memory and are thus sometimes called
memory-based methods. On the plus side however, they require no training.

Since distance measures tend to become less meaningful in higher dimensions
(Aggarwal et al., 2001), local regression methods tend to become less useful as the
dimension p grows. This phenomenon is also known as the curse of dimensionality
(Bellman and Bellman, 1961).

2.5.4 Basis Function Expansions
The linear model in Equation 2.4 can also be extended to handle nonlinearities by
using a basis function expansion. A basis function expansion can be written in the
form

f(x) = θ0 +
M�

m=1
θmφm(x). (2.5)

Instead of being linear in the p inputs, this function is linear in M (potentially)
nonlinear functions of the input vector.

Letting
θ =

�
θ0, θ1, ..., θm

�T

and
φ(x) =

�
1, φ1(x), ..., φm(x)

�T
,

we can rewrite Equation 2.5 as

f(x) = θT φ(x).
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If we use the squared error loss function, we get an analytic solution similar to
the case for linear models

θ̂ = (ΦT Φ)−1ΦT y,

where Φ = (φ(x1), ..., φ(xn))T is the design matrix and y = (y1, ..., yn)T . Other
Depending on the choice of basis functions φ1, ..., φM , this will yield different

model classes. Many commonly used methods fit models which can be written as
basis function expansions.

2.5.4.1 Explicit Nonlinear Terms

In the simplest case, the nonlinear basis functions are explicitly specified by the
user and then fit as an ordinary linear model. Examples include polynomial and
interaction terms such as x2

j and xjxk, and other nonlinear transformations, such
as log xj or 1/xj .

One drawback of this approach is that the nonlinearities have to be explicitly
specified. The main drawback however is that the basis functions are global, i.e.
they do not impose any locality. That is, all data points will have an equally strong
effect on the fitted function everywhere in the input space X . This can very quickly
lead to nonsensible fits as an outlier in area of the input space can have a strong
effect on the fit at all other points the input space. Outliers can thus have a strong
negative impact on the fit. The basis functions are global for linear models as well,
although they tend to be more stable due to their restricted nature.

2.5.4.2 Splines

One way to introduce locality in the function fitting is to use spline models. These
models define local polynomial models in prespecified regions of the input space,
where there are typically smoothness restrictions along the boundaries of these
regions. Although these models can be specified for higher dimensional input,
using e.g. thin-plate splines or tensor basis splines, they are most commonly used
for one dimensional inputs. For the one dimensional case, the boundaries are called
knots.

A spline model is defined by specifying the location of the knots, the order of
the polynomial fits between the knots and the smoothness restrictions at the knots.
Important examples include regression splines and smoothing splines (Silverman,
1984).

2.5.4.3 Kernel Methods

Kernel methods fit models which can be written as a basis function expansion
where the basis functions φ1, ..., φM are defined using the kernel function

φm(x) = κ(x, µm)

and a set of M centroids µ1, ..., µM . The centroids are usually taken to be the
input points x1, ..., xn. There are multiple examples of kernels which are popularly
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used. Among the most common is the RBF kernel (radial basis function kernel)

κ(x, x�) = exp(−�x − x��
2σ2 )

which is a special case of the Gaussian kernel.
Popular examples of kernel methods include support vector machines (SVMs)

(Cortes and Vapnik, 1995) and relevance vector machines (RVMs) (Tipping, 2001).
The main drawback of these methods are that they are strongly affected by curse
of dimensionality (Efron and Hastie, 2016).

2.5.5 Adaptive Basis Function Models
Another large class of models is adaptive basis function models (Murphy, 2012).
Models in this class differ from earlier mentioned approaches in that the basis
functions are themselves learnt using data and do not take a predetermined form.
Popular adaptive basis function models include tree models, generalized additive
models, boosting and neural networks (Murphy, 2012).

2.5.5.1 Generalized Additive Models

Generalized additive models (GAMs) are a generalization of GLMs which allow
each predictor to have a nonlinear effect on the output. The model is however
restricted such that each basis function depend solely on one predictor variable.
We get the class of GAMs by letting M = p, φj(x) = φj(xj) and θ1, ..., θp = 1.
This gives us models in the form

f(x) = θ0 +
p�

j=1
φj(xj),

The basis functions φj can be of any suitable model class. Typically used are
scatterplot smoothers such as smoothing splines or locally weighted regression.
The learning algorithm used is typically backfitting, together with local scoring for
loss functions other than the squared error loss (Hastie et al., 2009). This is again
a Newton method which fits adjust the fit for one predictor at a time.

2.5.5.2 Neural Networks

A feedforward neural network with M hidden units in the last hidden layer is a
linear basis function expansion of the kind defined in Equation 2.5 where θ0 is
referred to as the bias, θ1, ..., θM are referred to as the weights. For a single-layer
network, the basis functions are given by

φm(x) = a(wm,0 +
p�

j=1
wm,jxj),
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where a is a nonlinear function called the activation function and wm,j , m =
1, ..., M ; j = 0, ..., p are the weights of the hidden layer. More generally, one can
have multilayer networks where the layers are stacked.

Neural networks are typically fit using backpropagation (Rumelhart et al., 1988)
which allows one to do gradient descent steps in the joint parameter space of all
biases and weights of the network.

2.5.5.3 Tree Models

Tree models, which we will discuss in more detail in Chapter 5, assume that the
relationship between the response and the predictors can be modeled by locally
constant fits. The input space is divided into M regions R1, ..., RM and a constant
is fit in each region. The basis functions are indicator functions φm(x) = I(x ∈ Rm).
With θ0 = 0, tree models thus take the form

f(x) =
M�

m=1
θmI(x ∈ Rm),

where θm defines the constant fit in region Rm. There are multiple learning algo-
rithms for fitting tree models. Among the most popular are CART (Breiman et al.,
1984) and C4.5 (Quinlan, 1993).

2.5.5.4 Boosting

Finally, we have boosting which fits models which can be written in the form

f(x) = θ0 +
M�

m=1
θmφm(x).

Boosting is very general in the sense that you have to specify the model class of
the basis functions Φ. A boosting algorithm can be viewed as a learning algorithm
which approximately finds the optimal linear combination of M basis functions
from this class. During fitting, the basis functions are added in a sequential manner
where each basis function is learnt using a base learner LΦ. We will come back to
boosting in Chapter 4. The most popular choice of basis functions are tree models.
In this case, boosting fits additive tree models. We will come back to tree boosting
methods in Chapter 6.



Chapter 3

Model Selection

In Section 2.5, we discussed several different learning methods. These methods em-
ploy different model classes and typically have different hyperparameters to control
the fit. Hyperparameters are parameters which are not optimized by the learning
algorithm and are also referred to as meta-parameters or tuning parameters. In this
chapter, we will discuss the issue of selecting between different learning methods
and their hyperparameters, which is known as model selection.

3.1 Model Complexity
Different model classes can be viewed as different restrictions on the function space
AX . An illustration of two different model classes F are shown in Figure 3.1.
The target function f∗ is also depicted. We regard functions that are depicted
as equidistant to f∗ as having equal risk, with risk increasing with the distance
from f∗. Note that this is only an illustration as the space AX will generally be
infinite-dimensional.

F

AX
f∗

(a) A model class.

AX
f∗

F

(b) A more restricted model class.

Figure 3.1: Examples of model classes.
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Most of the functions in AX will have wildly irregular structures which are
very unlikely to resemble the target function f ∗. The restrictions imposed on
the function space by various model classes can typically be viewed as complex-
ity restrictions of some kind (Hastie et al., 2009). Most model classes impose,
either implicitly or explicitly, some simple structure that the model should have
in small neighbourhoods of the input space X , such as locally constant, locally
linear or some other simple structure. The size of this neighbourhood and the
local structure in the neighbourhood is related to the complexity. For example,
the constant model class that we described in Section 2.5 forces the model to be
globally constant, while the linear model class defines models which are globally
linear. These model classes are thus very rigid as their neighbourhoods are global.
By making the neighbourhoods smaller, the models will be able to fit the data
more flexibly and the complexity of the model class will thus increase. Many other
methods, such as local regression, splines and tree models instead define more local
neighbourhoods. While local regression and splines explicitly define the size of the
neighbourhoods through hyperparameters, tree methods adaptively determines the
size of the neighbourhoods.

So, why should we not simply pick a complex model class which is very flexible
and thus capable of fitting almost any interesting structure in the data? This will
be discussed in the next section.

3.2 Generalization Performance
Since our goal is prediction, we would like to have a model that generalizes well,
i.e. one that performs well on new, independent data from PY,X . That is, we want
a model f̂ with as low true risk R(f̂) as possible.

In statistical learning, we typically assume we have little or no knowledge of
the target function f∗. We would thus like to estimate the model using as few
assumptions as possible. That is, we would like to use a flexible model class capable
of fitting all the interesting structure in the data. When the model class is too
flexible however, it ends up fitting structure in the data that will not generalize
well. This is called overfitting the data. If the model class is not flexible enough on
the other hand, it will end up not being flexible enough to fit interesting structure in
the data. This is called underfitting the data. There is thus a tradeoff in selecting
an appropriate model complexity. This is often referred to as the bias-variance
tradeoff, which we will come back to in Section 3.3.

Since we want to minimize the true risk of our fitted model R(f̂), we would
like to have an estimate of it. One might consider using the training error R̂(f̂)
to estimate the true risk R(f̂). However, since f̂ was obtained by minimizing the
training error, the training error will be a biased estimate for the generalization
error R(f̂). The more complex model class we use, the more we are able to reduce
the training error. However, if the model class used is too complex, we might overfit
the data, leading to poor generalization performance. We thus have that the more
complex model class we use, the more biased the training error R̂(f̂) will be as an
estimate of generalization error R(f̂). This is illustrated in Figure 3.2.
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Risk

Complexity

R(f̂)

R̂(f̂)

Figure 3.2: Generalization vs training error.

From this we can understand why hyperparameters cannot be optimized by the
learning algorithm. Since the training error would always prefer a more complex
model, we would always end up overfitting the data.

For some model classes there exist various model selection criteria which take
into account the model complexity. Examples include AIC (Akaike, 1973), BIC
(Schwarz, 1978), adjusted R2 and many more. The most common approach to
more reliably estimate the generalization error is however to use an independent
data set to measure the risk. The data set we have available is typically split into
a training set and a validation set. The model is fit by minimizing empirical risk
on the training set, while the generalization error is measured by calculating the
empirical risk on the validation set. The hyperparameter settings which gives the
best estimated generalization can subsequently be selected. More generally, one
can use cross-validation (Stone, 1974; Allen, 1974; Geisser, 1975).

When the generalization error is measured for the purpose of model assessment
rather than model selection, the independent data set is typically referred to as a
test set rather than a validation set.

3.3 The Bias-Variance Tradeoff
The ERM criterion is one example of a criterion used to select models from a model
class. In Section 3.4, we will discuss how we can alter the ERM criterion in order to
obtain models which generalize better. We will refer to the collection of the model
class F and the criterion used to select a model from it as the fitting procedure.
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Figure 3.3: The distribution of empirical risk minimizers over the function space.

The fitting procedure can be thought of as giving rise to a probability distribu-
tion of possible models over the function space AX . This distribution is induced by
the distribution of possible realizations of the training data D. The different possi-
ble realizations of the training data D gives rise to different empirical risk functions
R̂(f). The different empirical risk functions in turn gives rise to different models
f̂ ∈ F which optimize the criterion. The distribution over the function space is
illustrated in Figure 3.3, where the area enclosed by the blue shape is intended to
represent the area of highest density in the function space.

First of all, the choice of the model class defines which models are considered
solutions. Thus, any model which is not in the model class F will have a probability
of zero assigned to it. For example, when using the linear model class, any function
which is not linear will not be considered a solution. Second of all, the criterion
used to select the model will affect the distribution over the model class F . For
ERM we are minimizing the empirical risk, which is equivalent to maximizing the
likelihood when the loss function is likelihood-based.

We are interested in using a procedure which will tend to give us models f̂ that
are “close to” the target function f ∗, i.e. have low risk R(f̂). Note that since f̂

can be viewed as random, the true risk R(f̂) will also be a random quantity. The
expected risk E[R(f̂)] however, where the expectation is taken over the distribution
of possible training data sets, is not a random quantity. A procedure with low
expected risk will tend to generalize well. We thus seek to use a procedure which
will have low expected risk. The expected risk can be decomposed in various
ways. One way is the decomposition to approximation and estimation error, see
e.g. Tewari and Bartlett (2014). Another decomposition, which is specific to
the squared error loss, is the bias-variance decomposition. We will now show this
decomposition.
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3.3.1 The Bias-Variance Decomposition
The expected conditional risk at x for the squared loss can be written as

E[R(f̂(x))] = E[(Y − f̂(x))2��X = x]
= Var[Y |X = x] + (E[f̂(x)] − f∗(x))2 + Var[f̂(x)]
= R(f∗) + Bias[f̂(x)]2 + V ar[f̂(x)].

The three terms in the decomposition are referred to as noise, bias and variance,
respectively.

Note that this bias-variance decomposition is given at a particular x. When
talking about the bias and variance of a procedure, we usually implicitly refer to
the average squared bias

E[Bias[f̂(X)]2]

and average variance
E[Var[f̂(X)]].

Note also that generalizations of the bias-variance decomposition have been
proposed. One generalization for arbitrary loss functions is given by Domingos
(2000).

3.3.2 The Bias-Variance Tradeoff
Choosing a suitable procedure is crucial for predictive modeling. Using a more
complex procedure typically reduces the (average) bias, but usually comes at the
price of a larger (average) variance. Vice versa, if we use a less complex procedure,
we can reduce the (average) variance at the price of greater (average) bias. The
tradeoff in selecting a procedure with the right amount of complexity is therefore
typically called the bias-variance tradeoff. A procedure which overfits the data
typically has high variance, while a procedure which underfits the data typically
has large bias. The tradeoff is illustrated in Figure 3.4.

Note that the complexity tradeoff is typically referred to as the bias-variance
tradeoff regardless of the loss function used (Tewari and Bartlett, 2014), even
though the bias-variance decomposition is only defined for the squared error loss.

3.4 Regularization
Rosset (2003) defines regularization as any part of model building which either
implicitly or explicitly takes into account the finiteness and imperfection of the
data and the limited information in it. That is, we can think of regularization as
any technique used to control the variance of the fit. By controlling the variance
of the fit, we can control the flexibility of the procedure in order to obtain models
that generalize better.

Regularization can take many forms, see e.g.(Bickel et al., 2006). In this section,
we will discuss regularization by constraining and penalizing model complexity.
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Figure 3.4: The bias-variance tradeoff.

Note that there also exist other techniques which are referred to as regulariza-
tion techniques. One example, which we will come back to later, is introducing
randomness in training. This is a simple and useful approach which can reduce
overfitting for some procedures. Randomization is for example at the core of bag-
ging (Breiman, 1996) and Random Forests (Breiman, 2001). It is also commonly
used in boosting algorithms. We will come back to this in Section 6.2.4. The
dropout method (Srivastava et al., 2014) used for training neural networks can also
be viewed as a regularization technique based on introducing randomness during
training.

3.4.1 Complexity Measures
Since we are interested in controlling complexity, we need a measure of complexity.
Perhaps surprisingly, there is no universal way to define complexity (Bousquet
et al., 2004). Although there is no universal definition of complexity, we can define
complexity measures for specific model classes based on heuristics. That is, for a
model class F , we can define a complexity measure

Ω : F → R+.

For linear regression for example, common complexity measures are l0, l1 and l2-
norm of the coefficient vector θ (excluding the intercept), where the l0-norm is
defined to measure the number of non-zero coefficients. These norms give rise
to subset selection, LASSO regression and Ridge regression, respectively. The



3.4. REGULARIZATION 29

complexity measures can then be written

Ω(f) =





�θ�0, for subset selection
�θ�1, for LASSO regression
�θ�2, for Ridge regression

These complexity measures are also used by many model classes defined through
basis function expansions.

Complexity measures can also be defined by the size of the local neighbourhoods
or by some measure of smoothness of the model. This is typically the case for e.g.
local regression methods, splines, kernel methods as well as tree methods.

3.4.2 Complexity Constraints
Constraining our model class F to only contain models of some maximum com-
plexity is a simple way to regularize the problem. In some sense, the choice of some
model class F ⊆ AX is already a form of regularization, as we restrict our solution
to be member of some set of models which is not too complex. For a model class
F , we can however typically impose further constraints on the complexity. Con-
straining the complexity too much will result in underfitting, while constraining
it too little will result in overfitting. The strength of the constraint imposed on
the model class thus becomes a hyperparameter for the learning algorithm which
could be selecting using e.g. a validation set or cross-validation. By constraining
the complexity by an appropriate amount, we can obtain models which generalize
better to new data.

In some cases, the degree of the constraints define a nested set of model classes
F1 ⊂ F2 ⊂ ... ⊂ F .

Here F1 is less complex than F2 and so on. This is illustrated in Figure 3.5. For
linear regression for example, we can let F1 be the set of linear models where only
one coefficient is allowed to be non-zero, F2 be the set where only two are allowed
to be non-zero and so on. Selecting the model class with the right amount of
complexity is in this case referred to as subset selection.

f∗

F1

F2

F

Figure 3.5: Nested model classes as a result of complexity constraints.
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3.4.3 Complexity Penalization
Another way to control the complexity of the procedure is to penalize model com-
plexity during estimation. We can define a penalized ERM criterion

J(f) = R̂(f) + λΩ(f),

where R̂(f) is the usual empirical risk, while Ω(f) is a measure of model complexity.
The model f̂ is defined as the function f ∈ F which minimizes J(f) for some
fixed value of λ. The hyperparameter λ here controls how heavily complexity is
penalized, thus controlling the tradeoff in model complexity and fit to the data.
The training error will thus always prefer lower values of λ. An appropriate value
for λ thus have to be selected using some other criterion than the training error,
such as performance on an independent validation set or through cross-validation.

Penalization can be viewed as a more adaptive way of regularizing than simply
constraining complexity. Penalization allow the model to fit more complex struc-
ture, but only if there is enough evidence in the data to support the additional
complexity. Penalization thus simply decrease the probability of obtaining com-
plex fits, rather than defining every model with complexity above some threshold as
“off limits”. In contrast to “hard” complexity constraints which shrinks the model
class, “soft” complexity penalization can be seen to simply shift the distribution
over the model class towards simpler models. This is illustrated in Figure 3.6.

f∗

F

λ large
λ medium
λ = 0

Figure 3.6: Shifting model distribution as a result of complexity penalization.

For linear regression, penalization of the l1-norm or the l2-norm of the coef-
ficient vector leads to LASSO and Ridge regression, respectively. When the loss
function used is likelihood-based, the LASSO and Ridge regression estimates are
equivalent to MAP estimates using Laplacian and Gaussian priors for θ, respec-
tively. Regularization thus have the Bayesian interpretation of being a prior belief
that the model should be somewhat simple, as defined by the complexity measure.
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Chapter 4

Boosting

Boosting refers to a class of learning algorithms that fit models by combining many
simpler models (Schapire and Freund, 2012). These simpler models are typically
referred to as base models and are learnt using a base learner or weak learner. These
simpler models tend to have limited predictive ability, but when selected carefully
using a boosting algorithm, they form a relatively more accurate model. This is
sometimes referred to as an ensemble model as it can be viewed as an ensemble
of base models. Another way to view it is that boosting algorithms are learning
algorithms for fitting adaptive basis function models.

In this thesis we will focus on gradient boosting and what we will term Newton
boosting. Friedman (2001) developed gradient boosting and showed that it can be
interpreted as a gradient descent algorithm in function space. Newton boosting,
on the other hand, is the boosting algorithm employed by XGBoost (Chen and
Guestrin, 2016). We will show that this can be interpreted as a Newton method in
function space and therefore name it “Newton boosting”. Both of these algorithms
thus have the interpretation of being numerical optimization algorithms in function
space. These boosting algorithms are fairly general as they are applicable for a wide
range of loss functions and base learners. Earlier boosting algorithms were however
mainly focused on binary crisp classification problems. We will now briefly discuss
some of these early developments before we go on to discuss numerical optimization
in function space and develop gradient boosting and Newton boosting.

4.1 Early Developments

The early work on boosting focused on binary classification where the response is
taken to be ỹ ∈ {−1, 1} and the classification is given by c(x) ≡ sign(f(x)) where
f(x) ∈ R. The quantity ỹf(x) is called the margin and should be positive for the
classification to be correct.

33
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4.1.1 Boosting and AdaBoost
Boosting originated from the question posed by Kearns (1988) and Kearns and
Valiant (1989) of whether a set of weak classifiers could be converted to a strong
classifier. Schapire (1990) positively answered the question. Freund and Schapire
(1996) presented AdaBoost which is regarded as the first practical boosting al-
gorithm. This algorithm fits a weak classifier to weighted versions of the data
iteratively. At each iteration, the data is reweighted such that misclassified data
points receive larger weights. The resulting model can be written

f̂(x) ≡ f̂ (M)(x) =
M�

m=1
θ̂mĉm(x), (4.1)

where ĉm(x) ∈ {−1, 1} are the weak classifiers and crisp classifications are given by
ĉ(x) = sign(f̂(x)). This algorithm showed remarkable results and thereby attracted
the attention of many researchers.

4.1.2 Forward Stagewise Additive Modeling and LogitBoost
Friedman et al. (2000) developed a statistical view of the algorithm. They showed
that AdaBoost was actually minimizing the exponential loss function

L(ỹ, f(x)) = exp(−ỹf(x)).

In their terminology, AdaBoost fits an additive model of the form in Equation 4.1.
Letting the weak classifiers be parameterized as ĉm(x) = c(x; γ̂m), the optimization
problem given by ERM is

{θ̂m, γ̂m}M
m=1 = arg min

{θm,γm}M
m=1

n�

i=1
L(yi,

M�

m=1
θmc(xi; γm)).

They showed that AdaBoost uses a greedy approach called forward stagewise ad-
ditive modeling (FSAM) which iteratively fits

{θ̂m, γ̂m} = arg min
{θm,γm}

n�

i=1
L(yi, f̂ (m−1)(xi) + θmc(xi; γm))

at each iteration m. In addition to providing a statistical view of the AdaBoost
procedure, they proposed several new boosting algorithms. Most notably, they
proposed LogitBoost which instead of the exponential loss minimizes a second-order
approximation of the log-loss at each iteration using FSAM. In fact, the LogitBoost
algorithm can be viewed as a Newton boosting algorithm for the log-loss.

Breiman (1997a,b, 1998) first developed the view of boosting algorithms as
numerical optimization techniques in function space. Based on this view, more
general boosting algorithms that allowed for optimization of any differentiable loss
function was developed simultaneously by Mason et al. (1999) and Friedman (2001).
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This generalized boosting to be applicable to general regression problems and not
only classification.

The algorithm presented by Friedman (2001) was gradient boosting, which has
remained popular in practice. This algorithm was motivated as a gradient descent
method in function space. We will now discuss numerical optimization in function
space which will in turn be used for developing gradient boosting and Newton
boosting in Section 4.3.

4.2 Numerical Optimization in Function Space
In this section, we will develop methods for numerical optimization in function
space. More specifically, we will develop nonparametric versions of gradient descent
and Newtons method which perform optimization in function space. We will in this
section assume that the true risk of a model R(f) is known to us. The methods
developed in this chapter can thus be understood as iterative risk minimization
procedures in function space.

In Section 4.3 we will transfer the methodology developed here to the practical
case where the true risk R(f) is unknown and we have to rely on the empirical
risk R̂(f). By doing this we will develop gradient boosting and Newton boosting.
These methods can thus be understood as iterative empirical risk minimization
procedures in function space.

Before we discuss numerical optimization in function space, we will review nu-
merical optimization in parameter space.

4.2.1 Numerical Optimization in Parameter Space
Assume in this section that we are trying to fit a model f(x) = f(x; θ) parameter-
ized by θ. We can rewrite the risk of the model R(f) as the risk of the parameter
configuration, i.e.

R(θ) = E[L(Y, f(X; θ)].
Given that R(θ) is differentiable with respect to θ, we can estimate θ using a
numerical optimization algorithm such as gradient descent or Newton’s method.
For Newton’s method, R(θ) needs to be twice differentiable.

At iteration m, the estimate of θ is updated from θ(m−1) to θ(m) according to

θ(m) = θ(m−1) + θm, (4.2)

where θm is the step taken at iteration m. This is the case both for gradient descent
and Newton’s method. The two algorithms differ in the step θm they take.

The resulting estimate of θ after M iterations can be written as a sum

θ ≡ θ(M) =
M�

m=0
θm, (4.3)

where θ0 is an initial guess and θ1, ..., θM are the successive steps taken by the
optimization algorithm.
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4.2.1.1 Gradient Descent

Before the update at iteration m, the current estimate of θ is given by θ(m−1).
At this current estimate, the direction of steepest descent of the risk is given

by the negative gradient

−gm = −∇θR(θ)
��
θ=θ(m−1) .

Taking a step along this direction is guaranteed to reduce risk, given that the length
of the step taken is not too long. A popular way to determine the step length ρm

to take in the steepest descent direction is to use line search

ρm = arg min
ρ

R
�
θ(m−1) − ρgm

�
.

The step taken at iteration m can thus be written

θm = −ρmgm,

Performing updates iteratively according to this yields the gradient descent algo-
rithm.

4.2.1.2 Newton’s Method

At a current estimate of θ given by θ(m−1), Newton’s method determines both
the step direction and step length at the same time. Newton’s method can be
motivated as a way to approximately solve

∇θm
R(θ(m−1) + θm) = 0 (4.4)

at each iteration to obtain θm. By doing a second-order Taylor expansion of
R(θ(m−1) + θm) around θ(m−1) we get

R(θ(m−1) + θm) ≈ R(θ(m−1)) + gT
mθm + 1

2θT
mHmθm,

where Hm is the Hessian matrix at the current estimate

Hm = ∇2
θR(θ)

��
θ=θ(m−1) .

Plugging this into Equation 4.4 we get

∇θm
R(θ(m−1) + θm) ≈ gm + Hmθm = 0.

The solution to this is given by

θm = −H−1
m gm.

This is the Newton step. Unlike for gradient descent, the Newton step has a
“natural” step length of 1 associated with it (Nocedal and Wright, 2006). Line
search steps are thus typically not used for Newton methods. From the discussion
above, we can see that Newton’s method is a second-order method, while gradient
descent is a first-order method.
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4.2.2 Numerical Optimization in Function Space
We will now discuss numerical optimization in function space. In this section we
perform risk minimization of the true risk R(f) where we let f ∈ AX . We will for
notational simplicity focus on the case of scalar-valued functions. For most loss
functions this is all that is needed. One exception is the multinomial-based loss,
for which vector-valued functions are needed. Note that minimizing

R(f) = E[L(Y, f(X))]

is equivalent to minimizing

R(f(x)) = E[L(Y, f(x))|X = x]

for each x ∈ X .
At a current estimate f (m−1), the “step” fm is taken in function space to obtain

f (m). Analogously to parameter optimization update in Equation 4.2 we can write
the update at iteration m as

f (m)(x) = f (m−1)(x) + fm(x),

for each x ∈ X .
Analogously to the resulting parameter optimization update in Equation 4.3,

the resulting estimate of f after M iterations can be written as a sum

f(x) ≡ f (M)(x) =
M�

m=0
fm(x) (4.5)

for each x ∈ X , where f0 is an initial guess and f1, ..., fM are the successive ”steps”
taken in function space.

We will now develop gradient descent and Newton’s method in function space.
The development of gradient descent in function space is largely based on Fried-
man (2001), while the corresponding development for Newton’s method is a simple
modification of this.

4.2.2.1 Gradient Descent

Before the update at iteration m is made, the estimate of f is given by f (m−1). At
this current estimate f (m−1), the direction of steepest descent of the risk is given
by the negative gradient

−gm(x) = −
�

∂R(f(x))
∂f(x)

�

f(x)=f(m−1)(x)

= −
�

∂E[L(Y, f(x))|X = x]
∂f(x)

�

f(x)=f(m−1)(x)

= −E
�

∂L(Y, f(x))
∂f(x)

���X = x

�

f(x)=f(m−1)(x)

(4.6)
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for each x ∈ X . We here assumed sufficient regularity for differentiation and
integration to be interchanged. The step length ρm to take in the steepest descent
direction can be determined using line search

ρm = arg min
ρ

E[L(Y, f (m−1)(X) − ρgm(X)].

The ”step” taken at each iteration m is then given by

fm(x) = −ρmgm(x).

Performing updates iteratively according to this yields the gradient descent algo-
rithm in function space.

4.2.2.2 Newton’s Method

At a current estimate of f given by f (m−1), we seek to determine the the optimal
step fm to minimize R(f (m−1) + fm). That is, at step m we are trying to solve

∂

∂fm(x)E[L(Y, f (m−1)(x) + fm(x))|X = x] = 0 (4.7)

for each x ∈ X . By doing a second-order Taylor expansion of E[L(Y, f (m−1)(x) +
fm(x))|X = x] around f (m−1)(x) we get

E[L(Y, f (m−1)(x) + fm(x))|X = x] ≈E[L(Y, f (m−1)(x))|X = x]+

gm(x)fm(x) + 1
2hm(x)fm(x)2,

where hm(x) is the Hessian at the current estimate

hm(x) =
�

∂2R(f(x))
∂f(x)2

�

f(x)=f(m−1)(x)

=
�

∂2E[L(Y, f(x))|X = x]
∂f(x)2

�

f(x)=f(m−1)(x)

= E
�

∂2L(Y, f(x))
∂f(x)2

���X = x

�

f(x)=f(m−1)(x)

where we again assume sufficient regularity conditions for differentiation and inte-
gration to be interchanged. Plugging this into Equation 4.7 we get

∂

∂fm(x)E[L(Y, f (m−1)(x) + fm(x))|X = x] ≈ gm(x) + hm(x)fm(x) = 0.

The solution to this is given by

fm(x) = − gm(x)
hm(x) ,

which determines the Newton “step” in function space.
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4.3 Boosting Algorithms
As seen from the previous sections, boosting fits ensemble models of the kind

f(x) =
M�

m=0
fm(x).

These can be rewritten as adaptive basis function models

f(x) = θ0 +
M�

m=1
θmφm(x),

where f0(x) = θ0 and fm(x) = θmφm(x) for m = 1, ...M .
Boosting works by using a base learner LΦ to sequentially add basis functions,

sometimes called base models, φ1, ..., φM ∈ Φ that improves the fit of the current
model.

Most boosting algorithms can be seen to solve

{θ̂m, φ̂m} = arg min
{θm,φm}

n�

i=1
L(yi, f̂ (m−1)(xi) + θmφm(xi)) (4.8)

either exactly or approximately at each iteration. AdaBoost solves Equation 4.8
exactly for the exponential loss function under the constraint that φm are classifiers
with A = {−1, 1}. Gradient boosting and Newton boosting on the other hand can
be viewed as general algorithms that solve Equation 4.8 approximately for any suit-
able loss function. We will now show how gradient boosting and Newton boosting
can be viewed as empirical versions of the numerical optimization algorithms we
developed in Section 4.2.2.

4.3.1 Gradient Boosting
We will here develop gradient boosting. The development is based on gradient
descent in function space that we derived in Section 4.2.2.1. Here, the empirical
risk will take the place of the true risk used in Section 4.2.2.1. Thus, contrary to
the gradient descent in function space, this procedure will be of practical use as it
can learn from data.

The empirical version of the negative gradient in Equation 4.6 is given by

−ĝm(xi) = −
�

∂R̂(f(xi))
∂f(xi)

�

f(x)=f̂(m−1)(x)

= −
�

∂L(yi, f(xi))
∂f(xi)

�

f(x)=f̂(m−1)(x)

Note that this empirical gradient is only defined at the data points {xi}n
i=1. Thus,

to generalize to other points in X and prevent overfitting, we need to learn an
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approximate negative gradient using a restricted set of possible functions. We thus
constrain the set of possible solutions to a set of basis functions Φ. At iteration
m, the basis function φm ∈ Φ is learnt from the data. The basis function we
seek should produce output {φm(xi)}n

i=1 which is most highly correlated with the
negative gradient {−ĝm(xi)}n

i=1. This is obtained by

φ̂m = arg min
φ∈Φ,β

n�

i=1

��
− ĝm(xi)

�
− βφ(xi)

�2

The basis function φm is learnt using a base learner where the squared error loss
is used as a surrogate loss.

This procedure can be viewed as learning a constrained step direction for gra-
dient descent, where the direction is constrained to be member of a set of basis
functions Φ. The step length ρm to take in this step direction can subsequently be
determined using line search

ρ̂m = arg min
ρ

n�

i=1
L(yi, f̂ (m−1)(xi) + ρφ̂m(xi)).

Friedman (2001) also introduced shrinkage, where the step length at each iteration
is multiplied by some factor 0 < η ≤ 1. This can be viewed as a regularization
technique, as the components of the model are shrunk towards zero. The factor η
is sometimes referred to as the learning rate as lowering it can slow down learning.

Combining all this, the “step” taken at each iteration m is given by

f̂m(x) = ηρ̂mφ̂m(x),

where 0 < η ≤ 1 is the learning rate. Doing this iteratively yields the gradient
boosting procedure, which is outlined in Algorithm 1.

The resulting model can be written as

f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x).

This can be seen as an adaptive basis function model with f̂m(x) = θ̂mφ̂m(x) where
θ̂m = ηρ̂m for m = 1, ..., M . The procedure is typically initialized using a constant,
i.e. f0(x) = θ0, where

θ̂0 = arg min
θ

n�

i=1
L(yi, θ).

4.3.2 Newton Boosting
We will now develop what we term Newton boosting. The development is based on
Newton’s method in function space that we derived in Section 4.2.2.2, but the risk
will now be exchanged with the empirical risk.
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Algorithm 1: Gradient boosting
Input : Data set D.

A loss function L.
A base learner LΦ.
The number of iterations M .
The learning rate η.

1 Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = arg min
θ

n�
i=1

L(yi, θ);

2 for m = 1,2,..,M do
3 ĝm(xi) =

�
∂L(yi,f(xi))

∂f(xi)

�
f(x)=f̂(m−1)(x)

;

4 φ̂m = arg min
φ∈Φ,β

n�
i=1

��
− ĝm(xi)

�
− βφ(xi)

�2
;

5 ρ̂m = arg min
ρ

n�
i=1

L(yi, f̂ (m−1)(xi) + ρφ̂m(xi));

6 f̂m(x) = ηρ̂mφ̂m(x);

7 f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x);

8 end

Output: f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x)
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Similar to the case for gradient boosting, we have that the empirical gradient is
defined solely at the data points. For Newton’s method we also need the Hessian.
The empirical Hessian

ĥm(xi) =
�

∂2R̂(f(xi))
∂f(xi)2

�

f(x)=f̂(m−1)(x)

=
�

∂2L(yi, f(xi))
∂f(xi)2

�

f(x)=f̂(m−1)(x)
.

is also defined solely at the data points. We thus also need a base learner here
to select a basis function from a restricted set of functions. The Newton “step” is
found by solving

φ̂m = arg min
φ∈Φ

n�

i=1

�
ĝm(xi)φ(xi) + 1

2 ĥm(xi)φ(xi)2
�
.

By completing the square, this can be rewritten as

φ̂m = arg min
φ∈Φ

n�

i=1

1
2 ĥm(xi)

��
− ĝm(xi)

ĥm(xi)
�

− φ(xi)
�2

.

Newton boosting thus amounts to a weighted least-squares regression problem at
each iteration, which is solved using the base learner.

The “step” taken at each iteration m is given by

f̂m(x) = ηφ̂m(x),

where 0 < η ≤ 1 is the learning rate. Repeating this iteratively yields the Newton
boosting procedure, which is outlined in Algorithm 2.

The resulting model can be written as

f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x).

This can be seen as an adaptive basis function model with f̂m(x) = θ̂mφ̂m(x) where
θ̂m = η for m = 1, ..., M . The procedure can be initialized using a constant, i.e.
f0(x) = θ0, where

θ̂0 = arg min
θ

n�

i=1
L(yi, θ).

Note that the boosting algorithm developed here is the one used by XGBoost
(Chen and Guestrin, 2016). This is also the same boosting algorithm which is at
the core LogitBoost (Friedman et al., 2000). We choose to term this boosting algo-
rithm “Newton boosting” since it can be viewed as a Newton method in function
space. Other names we could have used include “second-order gradient boosting”
or perhaps “Hessian boosting”.
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Algorithm 2: Newton boosting
Input : Data set D.

A loss function L.
A base learner LΦ.
The number of iterations M .
The learning rate η.

1 Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = arg min
θ

n�
i=1

L(yi, θ);

2 for m = 1,2,..,M do
3 ĝm(xi) =

�
∂L(yi,f(xi))

∂f(xi)

�
f(x)=f̂(m−1)(x)

;

4 ĥm(xi) =
�

∂2L(yi,f(xi))
∂f(xi)2

�
f(x)=f̂(m−1)(x)

;

5 φ̂m = arg minφ∈Φ
�n

i=1
1
2 ĥm(xi)

��
− ĝm(xi)

ĥm(xi)

�
− φ(xi)

�2
;

6 f̂m(x) = ηφ̂m(x);

7 f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x);

8 end

Output: f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x)
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4.4 Base Learners
Both gradient and Newton boosting requires a base learner to learn a basis function
φ ∈ Φ at each iteration. This base learner should be a regression procedure as will
be used to minimize (weighted) mean squared error. Apart from that, there are few
requirements imposed on the base learner. The base learner is however typically
chosen to be simple, i.e. have high bias, but low variance.

Bühlmann and Hothorn (2007) describes using componentwise linear models to
fit linear models and componentwise smoothing splines to fit additive models. This
allows one to fit potentially sparse linear or additive models where regularization is
achieved through early stopping rather than penalization. While these are powerful
ways to fit linear or additive models, the resulting model will still be linear or
additive and thus have limited representational ability.

The most common choice of base learner for gradient and Newton boosting is
a regression tree algorithm such as CART, which we will describe in Chapter 5.
Friedman (2001) proposed a special enhancement to the gradient boosting pro-
cedure when the base learner is CART. We will continue the discussion of tree
boosting methods in Chapter 6.

4.5 Hyperparameters
As seen from the previous sections, the two main hyperparameters of both gradient
and Newton boosting are the number of iterations or basis functions M and the
learning rate or shrinkage parameter η. These parameters are not independent
and have to be selected jointly. We will first assume η is held fixed and discuss the
effect of the number of iterations.

4.5.1 The Number of Iterations M

As the number of iterations M is increased, the complexity of the model will tend
to increase. This is not very surprising as the basis function expansion will tend to
have greater representational ability when the number of basis functions increases.
Therefore, at some point, increasing the number of iterations further will lead to
overfitting. Consequently, regularization can be achieved through early stopping
(Zhang and Yu, 2005). A suitable number of iterations M is commonly determined
by monitoring prediction accuracy on a validation set or through cross-validation.

4.5.2 The Learning Rate η

Friedman (2001) empirically found that smaller values of η tended to improve
generalization performance. By decreasing η however, the number of iterations
M required is typically increased. Thus, lowering η comes at the cost of greater
computational demand.

Bühlmann and Yu (2010) suggests that the choice of η is not crucial, as long as
it is sufficiently small, such as η = 0.1. Ridgeway (2006) suggests that the learning
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rate should be as small as possible since lower values of η tend to improve gen-
eralization performance. The marginal improvements are however decreasing. As
such, one should set the learning rate η as low as you can ”afford” computationally
and then determining the optimal number of iterations for that η.

To get an idea of the effect of the number of iterations M and the learning
rate η, we used the xgboost package (Chen et al., 2016) to fit the Boston Housing
dataset (Lichman, 2013). The response variable medv was log-scaled. We used tree
models with different values for the learning rate and set the number of iterations to
M = 10000. Predictions were made for each iteration, thus giving 10000 predictions
for models of increasing complexity. To get a fairly stable estimate of the out-of-
sample performance, three repetitions of 10-fold cross-validation was used. The
folds were the same for all learning rates. The out-of-sample RMSE (root mean
squared error) was plotted against the number of iterations for the different learning
rates. The result can be seen in Figure 4.1.
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Figure 4.1: Out-of-sample RMSE for different learning rates on the Boston Housing
dataset.
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Chapter 5

Tree Methods

Tree models are simple, interpretable models. As the name suggests, the model
takes a form that can be visualized as a tree structure. One example is shown in
Figure 5.1a.

The node at the top of the tree is called the root node. This node has branches
to nodes below it. The nodes in the tree which have branches below them are called
internal nodes or splits. The nodes at the bottom of the tree are called terminal
nodes or leaves. We will focus on binary trees where each internal node only have
two branches.

Tree models do unfortunately usually have limited predictive power. When
multiple tree models are combined together as in bagged trees (Breiman, 1996),
Random Forests (Breiman, 2001) or in boosting algorithms however, they tend to
have very good predictive capabilities. We will here focus on the properties of tree
models which are important for understanding their role in tree boosting methods.

5.1 Model Class
Tree models partition the feature space X into a set of T rectangular, non-overlapping
regions R1, ..., RT and fit a simple model in each region, such as a constant. One
can also fit e.g. linear models in each region as described by Quinlan (1992). The
most common choice is however to use a constant model, which is what we will
focus on here. When a constant model is used, tree models can be written in the
form

f(x) =
T�

j=1
wjI(x ∈ Rj).

They can thus be viewed as adaptive basis function models in the form shown
in Equation 2.5 with T basis functions or terminal nodes, where θj = wj is the
constant fit in each terminal node and φj(x) = I(x ∈ Rj) is the basis function
indicating whether observation x belongs in terminal node j. Note that the tree
model is essentially just a piecewise constant function. This is shown in Figure 5.1b.
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(a) Visualization of tree.
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(b) Fitted function.

Figure 5.1: Visualization of tree model fit to the Boston Housing data.

This shows the fitted function of the tree shown in Figure 5.1a. This tree was fit to
the Boston Housing data using only the predictors lstat and rm for visualization
purposes.

5.2 Regularization
Regularization for tree models is commonly achieved by constraining or penalizing
the complexity of the tree.

5.2.1 Model Complexity

There are multiple possible ways one could define the complexity of a tree model.
The complexity can be seen to depend on the depth of the tree or the number of
terminal nodes of a tree.

Complexity also generally depends on the size of the local neighbourhoods. In
the case of trees, this is the size of the regions R1, ..., RT . That is, trees with smaller
regions can fit local structure more closely and are thus more complex.

The complexity can also be seen to be related to the relative difference of the
leaf weights w1, ..., wT . To see why this is the case, consider first a tree where all the
weights are identical. This would be a globally constant model. If the weights are
wildly different on the other hand, the tree model can be taken to be more complex.
Defining complexity in this way is not common for individual tree models, but is
used by XGBoost when fitting additive tree models.
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5.2.2 Complexity Constraints
To control the flexibility when fitting a tree model, we can constrain the complexity
of the tree. There are multiple possible ways to constrain the complexity of tree
models. The most obvious and common way to do so is to constrain the number
of terminal nodes in the tree to some maximum allowed number of terminal nodes
Tmax.

Another way one could constrain the complexity of the tree fit is to restrict
the minimum number of observations allowed in each terminal node nmin. This
will impose a limit on how small the neighbourhoods are allowed to be. This will
also directly limit the variance of the fit as more observations will be required to
estimate the leaf weights.

5.2.3 Complexity Penalization
The most common way to penalize tree complexity is to penalize the number of
terminal nodes T . Breiman et al. (1984) introduced cost-complexity pruning which
relies on this form of penalization. The objective to be minimized is given by the
cost-complexity criterion

J(f) = R̂(f) + Ω(f) = 1
n

n�

i=1
L(yi,

T�

j=1
wjI(xi ∈ Rj)) + γT, (5.1)

where γ is a hyperparameter known as the complexity parameter. We will discuss
pruning in Section 5.3.5.

Another way to penalize tree complexity is to introduce penalization of the
leaf weights w1, ..., wT . This form of penalization is used by XGBoost, but is not
commonly used for single tree models. We will therefore delay discussion of this to
Section 6.2.3.

5.3 Learning Algorithms
For simplicity, we will here consider learning a tree without penalization. The
objective will therefore simply be the empirical risk of the tree model f , which can
be written as

R̂(f) = 1
n

n�

i=1
L(yi, f(xi)) = 1

n

n�

i=1
L(yi,

T�

j=1
wjI(xi ∈ Rj)). (5.2)

Minimizing this objective function is typically computationally infeasible. Learn-
ing the optimal weights w1, ..., wT is typically easy given the regions R1, ..., RT .
Learning the optimal regions however, i.e. learning the structure of the tree, is
hard. In fact, the problem is NP-complete (Hyafil and Rivest, 1976). Conse-
quently, one has to simplify the problem by instead computing an approximate
solution.
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The are many different learning algorithms for learning tree models. Exam-
ples include CART (Classification And Regression Trees) (Breiman et al., 1984),
Conditional Inference Trees (Torsten Hothorn, 2006), C4.5 (Quinlan, 1993) and
CHAID (Kass, 1980). The tree boosting algorithm MART makes use CART, while
XGBoost uses an algorithm closely related to CART. We will therefore focus on
CART here.

CART grows the tree greedily in a top-down fashion using binary splits. The
growing begins with only the root node. Every split parallel to the coordinate axes
are considered and the split minimizing the objective is chosen. Next, every split
parallel to the coordinate axes within each of the current regions are considered.
The best split is chosen and this procedure is repeated until some stopping criterion
is applied.

We will now discuss learning of the weights given the structure and learning the
structure, followed by possible ways of dealing with missing values and categorical
predictors.

5.3.1 Learning the Weights for a Given Structure
Given a region Rj , learning the weight wj is typically straightforward. Let Ij

denote the set of indices that belongs to region Rj , i.e. xi ∈ Rj for i ∈ Ij .
The weight is estimated by

ŵj = arg min
w

�

i∈Ij

L(yi, w).

For the squared error loss for example, the estimated weight will simply be the
average of the responses in the region. For the absolute loss on the other hand, the
estimated weight will be the median of the responses.

5.3.2 Learning the Structure
For a tree model f̂ , the empirical risk is given by

R̂(f̂) =
T�

j=1

�

i∈Ij

L(yi, ŵj) ≡
T�

j=1
L̂j ,

where we let L̂j denote the aggregated loss at node j.
Consider now that we are in the process of learning a tree and that the current

tree model is denoted by f̂before. Let further f̂after denote the tree model after a
considered split at node k into a left node L and right node R is performed. We
can write the empirical risk of these models as

R̂(f̂before) =
�

j �=k

L̂j + L̂k

and
R̂(f̂after) =

�

j �=k

L̂j + L̂L + L̂R.
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The gain of the considered split is defined as

Gain = R̂(f̂before) − R̂(f̂after) = L̂k − (L̂L + L̂R). (5.3)

For each split made, the gain is calculated for every possible split at every possible
node and the split with maximal gain is taken.

Note that this is simply empirical risk minimization where the optimization
problem is discrete. To obtain the optimal tree, every possible tree would have to
be constructed and the one with minimal empirical risk selected. The optimization
problem is thus simplified by greedily selecting splits which minimize the empirical
risk or training error. For squared error loss, the split which minimizes MSE is
selected, while for the absolute loss, the split which minimizes MAE is selected.

5.3.3 Missing Values
Many learning algorithms will have problems when faced with missing values. You
are typically left with the choice of removing data points with missing values or
using some procedure to impute the missing values. See Kuhn and Johnson (2013)
for more details. For most tree algorithms however, this is not necessary as they
have the ability to deal with missing values during training.

CART handles missing values by using so-called surrogate variables. For each
predictor, we only use the observations for which that predictor is not missing when
searching for a split. Once the primary split is chosen, one forms a list of surrogate
predictors and split points. These are chosen to best mimic the split of the training
data achieved by the primary split. See Breiman et al. (1984) for more details.

The tree growing algorithm used by XGBoost treats missing values by learning
default directions. At each node there are two possible directions, left or right.
When data is missing, the default direction is taken. When there is missing data
during training, the direction which minimizes the objective is learnt from the data.
When missing data is not present, the default direction is set to some default. See
Chen and Guestrin (2016) for more details.

5.3.4 Categorical Predictors
So far, we have assumed that the predictors were either continuous or binary.
When multicategorical predictors are present however, one can treat these in two
different ways. Kuhn and Johnson (2013) refer to these as grouped categories and
independent categories.

When using grouped categories, we treat the categorical predictor as a single
entity. Thus when considering possible splits of a categorical predictor, one has
to consider every way to split the categories into two groups. For a categorical
predictor with K categories or classes, there are 2K−1 − 1 possible partitions into
two groups (Hastie et al., 2009). The number of possible partitions becomes very
large for large K and we are thus likely to find a partitioning of the data that looks
good, possibly leading to overfitting.
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When using independent categories, a categorical predictor is encoded as K
binary predictors, one for each class. This is referred to as dummy encoding or
one-hot encoding. This imposes a “one-versus-all” split of the categories.

Kuhn and Johnson (2013) find that either of the approaches sometimes works
better than the other and thus suggest trying both approaches during model build-
ing.

CART handles grouped categories, while the tree algorithm used by XGBoost
requires independent categories.

5.3.5 Pruning
Consider now growing a tree using a penalized objective such as the one in Equation
5.1. If the maximum gain achievable through an additional split is negative, one is
unable to further reduce the empirical risk through the split. One might consider
stopping the tree growing. This might however be short-sighted as the potential
splits further down in tree might have positive gains which makes up for the negative
gain further up.

To prevent this one typically grows the tree until some stopping criteria is
met and then employ pruning to remove nodes with negative gain. This is done
in a bottom-up fashion, successively collapsing internal nodes with negative gain.
When this is done according to the cost-complexity criterion in Equation 5.1, this
is referred to as cost-complexity pruning.

One possible stopping criteria is that the maximum number of terminal nodes
Tmax is reached. Another is that further splitting would leave a terminal node with
fewer number of observations than the minimum allowed nmin.

5.4 Benefits and Drawbacks
Hastie et al. (2009) describes tree methods as a good choice for an ”off-the-shelf”
method for data mining due to their many benefits. While they do have many bene-
fits making them applicable to many data sets without the need for pre-processing,
they do also have many drawbacks such as limited predictive performance. In
Chapter 6, we will discuss additive tree models where tree models are used as base
learners in boosting algorithms. These models inherit many of the benefits of tree
models, while eliminating or reducing many of the drawbacks.

5.4.1 Benefits
Some of the benefits of tree methods are that they (Hastie et al., 2009; Murphy,
2012)

• are easily interpretable.

• are relatively fast to construct.

• can naturally deal with both continuous and categorical data.
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• can naturally deal with missing data.

• are robust to outliers in the inputs.

• are invariant under monotone transformations of the inputs.

• perform implicit variable selection.

• can capture non-linear relationships in the data.

• can capture high-order interactions between inputs.

• scale well to large data sets.

5.4.2 Drawbacks
Some of the drawbacks of tree methods are that they (Hastie et al., 2009; Kuhn
and Johnson, 2013; Wei-Yin Loh, 1997; Strobl et al., 2006)

• tend to select predictors with a higher number of distinct values.

• can overfit when faced with predictors with many categories.

• are unstable and have high variance.

• lack smoothness.

• have difficulty capturing additive structure.

• tend to have limited predictive performance.
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Chapter 6

Tree Boosting Methods

Using trees as base models for boosting is a very popular choice. Seeing how
trees have many benefits that boosted trees inherit while the predictive ability is
greatly increased through boosting, this is perhaps not very surprising. The main
drawback of boosted tree models compared to single tree models is that most of
the interpretability is lost.

6.1 Model Class
Boosted tree models can be viewed as adaptive basis function models of the form in
Equation 2.5, where the basis functions are regression trees. Regression trees can
however further be viewed as adaptive basis function models. We can thus collect
the constant terms as

f(x) = θ0 +
M�

m=1
θmφm(x)

= θ0 +
M�

m=1
θm

Tm�

j=1
w̃jmI(x ∈ Rjm)

= θ0 +
M�

m=1

Tm�

j=1
wjmI(x ∈ Rjm)

= θ0 +
M�

m=1
fm(x).

(6.1)

As seen from this, boosting tree models results in a sum of multiple trees f1, ..., fM .
Boosted tree models are therefore also referred to as tree ensembles or additive tree
models. An additive tree model fit to the Boston Housing data is shown in Figure
6.1. This is fit to the same data as the tree model shown in Figure 5.1b. It is
immediately apparent that the fit is much smoother than that of a single tree
model.
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Figure 6.1: Visualization of an additive tree model fit to the Boston Housing data.

6.2 Regularization
Regularization of additive tree models can be achieved in many ways. First of all,
one can regularize the basis function expansion. Second of all, one can regular-
ize each of the basis functions, i.e. the individual tree models. Finally, one can
also introduce regularization through randomization. This was first introduced by
Friedman (2002) through subsampling. Note that this form of regularization is
not necessarily restricted only to tree boosting, but could potentially be used with
boosting in general. It is however especially useful for trees as they typically benefit
the most from it. To keep discussion simple, we thus chose to delay the discussion
of randomization to this section.

In this section, we will introduce the different regularization techniques used
for additive tree models. In Chapter 8, we will go more in depth and discuss the
effects the various regularization parameters have on the model.

6.2.1 Model Complexity
The complexity of an additive tree model can be seen to depend on many param-
eters. First of all, the number of trees is clearly related to the complexity.
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For additive tree models, we also have the complexities of each of the individual
trees. When defining the complexity of an additive tree model we can thus addi-
tionally take the complexities of the individual trees, as discussed in Section 5.2.1,
into account.

6.2.2 Complexity Constraints
Constraining the complexity of an additive tree model amounts to constraining the
complexity of the basis function expansion and each of the basis functions. That
is, we can for example constrain the number of trees. We can further constrain
the complexity of an additive tree model by restricting the maximum number of
terminal nodes of each individual tree. Another way is to limit the minimum
number of observations falling in any terminal node. This was discussed in Section
5.2.2.

For additive tree models, shallow regression trees are commonly used, i.e. re-
gression trees with few terminal nodes. Shallow trees have low variance, but high
bias compared to deeper trees. This makes sense as boosting iteratively fits new
trees to reduce errors of the previous trees. As the number of boosting iterations
increases, the variance thus tends to increase, while the bias tends to decrease.

6.2.3 Complexity Penalization
Both MART and XGBoost offers the possibility of constraining the complexity of
the individual trees. XGBoost does however additionally offer the possibility of pe-
nalizing the complexity of the trees. Before XGBoost, complexity penalization was
not commonly used for additive tree models. This is one of the core improvements
of XGBoost over MART.

The penalization terms of the objective function can be written

Ω(f) =
M�

m=1

�
γTm + 1

2λ�wm�2
2 + α�wm�1

�
. (6.2)

The penalty is the sum of the complexity penalties of the individual trees in the
additive tree model.

We see that the regularization term includes penalization of the number of
terminal nodes of each individual tree through γ. This is equivalent to the cost-
complexity criterion discussed in Section 5.2.3 for each individual tree. Addition-
ally, the objective includes l2 regularization of the leaf weights. These two penaliza-
tion terms are described by Chen and Guestrin (2016). The last term in Equation
6.2 is l1 regularization on the term weights. This is indeed also implemented in
XGBoost 1. We will discuss the effect of these regularization parameter further in
Chapter 8.

1https://github.com/dmlc/xgboost/blob/master/src/tree/param.h
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6.2.4 Randomization
Friedman (2002) proposed an extension to gradient boosting which he called stochas-
tic gradient boosting. The extension was to include (row) subsampling at each
boosting iteration. The idea was that introducing randomness in the learning pro-
cedure could improve generalization performance. This was inspired by the bagging
method of Breiman (1996).

6.2.4.1 Row Subsampling

Bagging can be used to improve generalization performance for some learning al-
gorithms. It works by drawing bootstrap samples (Efron, 1979) from the data and
fitting a model using the same learning algorithm to each one. The fitted models
are then combined by simple averaging to form an ensemble model. The models
will differ due to being fitted to slightly altered versions of the data set. The av-
eraging thus tend to result in reduced variance of the ensemble model. This has
empirically proven to be an effective way of improving performance of some model
classes such as tree models.

Friedman (2002) proposed using subsampling at each boosting iteration to fit
a random subsample of the data at each iteration. This was found to yield perfor-
mance improvements for many data sets. Note that subsampling draws a random
sample of the data without replacement, while bootstrapping draws a random sam-
ple of the data with replacement.

Following Chen and Guestrin (2016), we will refer to this as row subsampling.
The row subsampling fraction 0 < ωr ≤ 1 thus becomes a hyperparameter for the
boosting procedure. Setting ωr = 1 results in the original procedure without row
subsampling.

6.2.4.2 Column Subsampling

Another way to introduce randomness in a learning procedure is by randomly
sampling the predictors. This is sometimes called the Random Subspace Method
(Ho, 1998). Breiman (2001) combined this idea with tree bagging and thereby
introduced Random Forests. Specifically, Random Forests combines bagging with
a randomized tree learning algorithm that only considers a random subset of the
predictors each time a split is considered. This decorrelates the fitted tree models
such that the variance is further reduced through averaging. The simplicity of
Random Forests together with their usually good performance has made them
very popular in practice.

Following Chen and Guestrin (2016), we will refer to this as column subsampling.
The column subsampling fraction 0 < ωc ≤ 1 thus becomes a hyperparameter for
the boosting procedure. Setting ωc = 1 results in the original procedure without
column subsampling.

MART includes row subsampling, while XGBoost includes both row and column
subsampling (Chen and Guestrin, 2016).
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6.3 Learning Algorithms
MART and XGBoost employ two different boosting algorithms for fitting additive
tree models. We will refer to these as gradient tree boosting (GTB) and Newton tree
boosting (NTB), respectively. In this section, we will develop these tree boosting
algorithms. For simplicity, we will assume the objective is the empirical risk without
any penalization. In Chapter 8, we will extend the discussion to the case where
penalization is included.

At each iteration m, both these algorithms seek to minimize the FSAM criterion

Jm(φm) =
n�

i=1
L(yi, f̂ (m−1)(xi) + φm(xi)). (6.3)

For the tree boosting algorithms, the basis functions are trees

φm(x) =
T�

j=1
wjmI(x ∈ Rjm).

While Newton tree boosting is simply Newton boosting with trees as basis func-
tions, gradient tree boosting is a modification of regular gradient boosting to the
case where the basis functions are trees. In Chapter 7, we will compare these tree
boosting algorithms and discuss the properties in more detail.

We will in this section show how Newton tree boosting and gradient tree boost-
ing learns the tree structure and leaf weights at each iteration. We will do this in
three stages. First, we will determine the leaf weights w̃jm for a proposed (fixed)
tree structure. In the next stage, different tree structures are proposed with weights
determined from the previous stage. In this stage, the tree structure and thus the
regions R̂jm, j = 1, ..., T are determined. Finally, once a tree structure is settled
upon, the final leaf weights ŵjm, j = 1, ..., T in each terminal node are determined.

6.3.1 Newton Tree Boosting
The Newton tree boosting algorithm is simply the Newton boosting shown in Al-
gorithm 2 where the basis functions are tree models. As discussed in Section 4.3.2,
Newton boosting approximates the criterion in Equation 6.3 by

J̃m(φm) =
n�

i=1

�
ĝm(xi)φm(xi) + 1

2 ĥm(xi)φm(xi)2
�
, (6.4)

which is the second-order approximation. We will here show how to learn the
structure and leaf weights of the tree according to the criterion in Equation 6.4.

6.3.1.1 Learning the Weights for a Given Structure

We first rewrite the criterion in Equation 6.4 with trees as basis functions,

J̃m(φm) =
n�

i=1

�
ĝm(xi)

T�

j=1
wjmI(xi ∈ Rjm) + 1

2 ĥm(xi)
� T�

j=1
wjmI(xi ∈ Rjm)

�2
�
.



60 CHAPTER 6. TREE BOOSTING METHODS

Due to the disjoint nature of the regions of the terminal nodes, we can rewrite this
criterion as

J̃m(φm) =
n�

i=1

�
ĝm(xi)

T�

j=1
wjmI(xi ∈ Rjm) + 1

2 ĥm(xi)
T�

j=1
w2

jmI(xi ∈ Rjm)
�

=
T�

j=1

�

i∈Ijm

�
ĝm(xi)wjm + 1

2 ĥm(xi)w2
jm

�
,

where Ijm denote the set of indices of the xi falling in region Rjm. Letting Gjm =�
i∈Ijm

ĝm(xi) and Hjm =
�

i∈Ijm
ĥm(xi), we can rewrite this as

J̃m(φm) =
T�

j=1

�
Gjmwjm + 1

2Hjmw2
jm

�
. (6.5)

For a proposed, fixed structure, the weights are thus given by

w̃jm = − Gjm

Hjm
, j = 1, ..., T. (6.6)

6.3.1.2 Learning the Structure

As discussed in Section 5.3, learning the structure of a tree amounts to searching for
splits. For each split, a series of candidate splits are proposed, and the one which
minimizes empirical risk is chosen. Equivalently, we seek the split which maximizes
the gain, which is empirical risk reduction of a proposed split. For Newton tree
boosting, we seek the split which minimizes the criterion in Equation 6.4.

Plugging the weights from Equation 6.6 into the empirical risk in Equation 6.5,
we find the criterion for a fixed structure to be

J̃m(φ̃m) = −1
2

T�

j=1

G2
jm

Hjm
.

When searching for the optimal split, this is the criterion we seek to minimize.
That is, the splits are determined by maximizing the gain given by

Gain = 1
2

� G2
L

HL
+ G2

R

HR
−

G2
jm

Hjm

�
. (6.7)

6.3.1.3 Learning the Final Weights

For Newton tree boosting, the final weights are already found when searching for
the structure. That is, the final weights are simply given by

ŵjm = − Gjm

Hjm
, j = 1, ..., T, (6.8)

for the learnt structure.
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6.3.1.4 The Algorithm

Summing up these steps, we get the Newton tree boosting algorithm, which is
outlined in Algorithm 3.

Algorithm 3: Newton tree boosting
Input : Data set D.

A loss function L.
The number of iterations M .
The learning rate η.
The number of terminal nodes T

1 Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = arg min
θ

n�
i=1

L(yi, θ);

2 for m = 1,2,..,M do

3 ĝm(xi) =
�

∂L(yi,f(xi))
∂f(xi)

�
f(x)=f̂(m−1)(x)

;

4 ĥm(xi) =
�

∂2L(yi,f(xi))
∂f(xi)2

�
f(x)=f̂(m−1)(x)

;

5 Determine the structure {R̂jm}T
j=1 by selecting splits which maximize

Gain = 1
2

�
G2

L

HL
+ G2

R

HR
− G2

jm

Hjm

�
;

6 Determine the leaf weights {ŵjm}T
j=1 for the learnt structure by

ŵjm = − Gjm

Hjm
;

7 f̂m(x) = η
T�

j=1
ŵjmI(x ∈ R̂jm);

8 f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x);

9 end

Output: f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x)

6.3.2 Gradient Tree Boosting
The gradient tree boosting algorithm is closely related to the gradient boosting
algorithm shown in Algorithm 1. In line 4, a tree is learnt using the criterion

J̃m(φm) =
n�

i=1

��
− ĝm(xi)

�
− βφ(xi)

�2
, (6.9)

which is an approximation to the criterion in Equation 6.3. Next, in line 5, a line
search step is performed. Friedman (2001) did however suggest an enhancement to
this step in the case where the base models are trees. The gradient tree boosting
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algorithm is thus not just a special case of gradient boosting where the base models
are trees, but a slightly different algorithm which is based on the general gradient
boosting algorithm.

We will here develop the gradient tree boosting algorithm in a similar fashion
we did for the Newton tree boosting algorithm in the previous section. That is, we
will show how the structure and leaf weights of the tree is learnt in three stages.
Apart from the final stage, the development is very similar, and will hence be
shortened here.

6.3.2.1 Learning the Weights for a Given Structure

Doing a development similar to the one for Newton tree boosting, we can rewrite
the criterion in Equation 6.9 as

J̃m(φm) =
T�

j=1

�
Gjmwjm + 1

2njmw2
jm

�
, (6.10)

where njm denote the number of points xi falling in region Rjm. For a proposed,
fixed structure, the weights are thus given by

w̃jm = −Gjm

njm
, j = 1, ..., T. (6.11)

6.3.2.2 Learning the Structure

Plugging the weights from Equation 6.11 into the empirical risk in Equation 6.10,
we find the criterion for a fixed structure to be

J̃m(φ̃m) = −1
2

T�

j=1

G2
jm

njm
.

The gain used to determine the splits are thus given by

Gain = 1
2

�G2
L

nL
+ G2

R

nR
−

G2
jm

njm

�
. (6.12)

6.3.2.3 Learning the Final Weights

In the general gradient boosting in Algorithm 1, a line search step is performed to
determine the “step” length to take in function space. For gradient tree boosting
however, Friedman (2001) presented a special enhancement. He noted that an
additive tree model can be considered a basis function expansion where the basis
functions are themselves basis function expansions. He further took the view that
at each iteration, the algorithm was fitting T separate basis functions, one for each
region of the tree. He therefore proposed to do T line search steps, one for each
region R1, ..., RT , instead of one for the whole tree.
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The optimization problem to be solved in the line search step is thus

{ŵjm}T
j=1 = arg min

{wj}T
j=1

n�

i=1
L(yi, f̂ (m−1)(xi) + wjI(xi ∈ R̂jm)).

Note however that this can be rewritten as T disjoint optimization problems

ŵjm = arg min
wj

�

i∈Îjm

L(yi, f̂ (m−1)(xi) + wj), j = 1, ..., T. (6.13)

The final leaf weights are thus determined using T separate line search steps. This
greatly simplifies the line search step, which will often be difficult otherwise.

For e.g. the squared error loss, the final leaf weight in a region will be the
average of the negative gradients in that region. For the absolute loss, the final
leaf weight will be the median of the negative gradients. In some cases, the op-
timization problem in Equation 6.13 does not have a closed form solution. One
example is the log-loss. Calculating the final leaf weights would thus require nu-
merical optimization. Instead of doing full numerical optimization for each leaf at
each iteration, which will typically be computationally expensive, Friedman (2001)
suggested to simply perform a single iteration of Newton’s method.

6.3.2.4 The Algorithm

Summing up these steps, we get the gradient tree boosting algorithm, which is
outlined in Algorithm 4.
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Algorithm 4: Gradient tree boosting
Input : Data set D.

A loss function L.
The number of iterations M .
The learning rate η.
The number of terminal nodes T

1 Initialize f̂ (0)(x) = f̂0(x) = θ̂0 = arg min
θ

n�
i=1

L(yi, θ);

2 for m = 1,2,..,M do

3 ĝm(xi) =
�

∂L(yi,f(xi))
∂f(xi)

�
f(x)=f̂(m−1)(x)

;

4 Determine the structure {R̂jm}T
j=1 by selecting splits which maximize

Gain = 1
2

�
G2

L

nL
+ G2

R

nR
− G2

jm

njm

�
;

5 Determine the leaf weights {ŵjm}T
j=1 for the learnt structure by

ŵjm = arg minwj

�
i∈Îjm

L(yi, f̂ (m−1)(xi) + wj);

6 f̂m(x) = η
T�

j=1
ŵjmI(xi ∈ R̂jm);

7 f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x);

8 end

Output: f̂(x) ≡ f̂ (M)(x) =
M�

m=0
f̂m(x)
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Chapter 7

Comparison of Tree Boosting
Algorithms

The two tree boosting methods MART and XGBoost differ in multiple ways. They
both fit additive tree models. They do however differ in regularization techniques
they offer and the boosting algorithm they employ to learn the additive tree model.
While MART uses gradient tree boosting (GTB) as shown in Algorithm 4, XGBoost
uses Newton tree boosting (NTB) as shown in Algorithm 3. In this chapter, we
will compare these tree boosting algorithms. We will show under which conditions
they are equivalent and which loss functions they are applicable for.

7.1 The Commonalities
Both gradient tree boosting and Newton tree boosting fits additive tree models as
defined in Equation 6.1. They are thus learning algorithms for solving the same
empirical risk minimization problem

{{ŵjm, R̂jm}Tm
j=1}M

m=1 = arg min
{{wjm,Rjm}Tm

j=1}M
m=1

n�

i=1
L(yi,

M�

m=1

Tm�

j=1
wjmI(xi ∈ Rjm)).

(7.1)
This a formidable optimization problem involving joint optimization of M trees.
This optimization problem is thus simplified by instead doing forward stagewise
additive modeling (FSAM). This simplies the problem by instead performing a
greedy search, adding one tree at a time. At iteration m, a new tree is thus learnt
using

{ŵjm, R̂jm}Tm
j=1 = arg min

{wjm,Rjm}Tm
j=1

n�

i=1
L(yi, f̂ (m−1)(xi) +

Tm�

j=1
wjmI(xi ∈ Rjm)). (7.2)

This is repeated for m = 1, ...M to yield an approximation to the solution to
Equation 7.1.
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This is a great simplification to the original optimization problem. For many
loss functions, this is however still a difficult optimization problem. Gradient tree
boosting and Newton tree boosting differ in how they further simplify the opti-
mization problem in Equation 7.2.

7.2 The Differences
At each iteration, both gradient tree boosting and Newton tree boosting approx-
imate the optimization problem in Equation 7.2. First, they differ in the tree
structures they learn. Next, they differ in how they learn the leaf weights to assign
in the terminal nodes of the learnt tree structure.

7.2.1 Learning the Structure
Gradient tree boosting and Newton tree boosting optimize different criteria when
learning the structure of the tree at each iteration. Gradient tree boosting learns
the tree which is most highly correlated with the negative gradient of the current
empirical risk. That is, gradient tree boosting learns the structure by fitting a tree
model according to

{w̃jm, R̂jm}T
j=1 = arg min

{wj ,Rj}T
j=1

n�

i=1

1
2

�
− ĝm(xi) −

T�

j=1
wjI(xi ∈ Rj)

�2
. (7.3)

That is, at each iteration, a tree model is fit to the negative gradient {−ĝm(xi)}n
i=1

using least-squares regression.
Newton tree boosting, on the other hand, learns the tree which best fits the

second-order Taylor expansion of the loss function. By completing the square, this
criterion can be written in the form

{w̃jm, R̂jm}T
j=1 = arg min

{wj ,Rj}T
j=1

n�

i=1

1
2 ĥm(xi)

�
− ĝm(xi)

ĥm(xi)
−

T�

j=1
wjI(xi ∈ Rj)

�2
. (7.4)

That is, at each iteration, a tree model is fit to the negative gradient, scaled by the
Hessian, {− ĝm(xi)

ĥm(xi) }n
i=1 using weighted least-squares regression, where the weights

are given by the Hessian {ĥm(xi)}n
i=1.

Comparing these, we see that the Hessian plays the role of observation weights
for Newton boosting. Learning the structure amounts to searching for splits which
maximize the gain. For gradient tree boosting, this gain is given by

Gain = 1
2

�G2
L

nL
+ G2

R

nR
−

G2
jm

njm

�
,

while for Newton tree boosting, the gain is given by

Gain = 1
2

� G2
L

HL
+ G2

R

HR
−

G2
jm

Hjm

�
.
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Newton tree boosting learns the tree structure using a higher-order approximation
of the FSAM criterion. We would thus expect it to learn better tree structures
than gradient tree boosting. The leaf weights learnt during the search for structure
are given by

w̃jm = −Gjm

njm

for gradient tree boosting and by

w̃jm = − Gjm

Hjm

for Newton tree boosting. For gradient tree boosting these leaf weights are however
subsequently readjusted.

7.2.2 Learning the Leaf Weights
After a tree structure is learnt, the leaf weights need to be determined. For Newton
tree boosting, this is straightforward as the final leaf weights are determined using
the same criterion that was used to determine the tree structure, i.e. the second-
order approximation of the empirical risk function. Newton tree boosting can thus
be seen to jointly optimize tree structure and leaf weights. That is, the final leaf
weights are the same as the leaf weights learnt when searching for the tree structure,
i.e.

ŵjm = − Gjm

Hjm
.

Gradient tree boosting, on the other hand, uses a different criterion to learn
the leaf weights. The final leaf weights are determined by separate line searches in
each terminal node

ŵjm = arg min
wj

�

i∈Îjm

L(yi, f̂ (m−1)(xi) + wj), j = 1, ..., T.

Considering this, gradient tree boosting can be seen to generally use a more
accurate criterion to learn the leaf weights than Newton tree boosting. These more
accurate leaf weights are however determined for a less accurate tree structure.

7.3 Consequences for Applicable Loss Functions
As we will now discuss, gradient tree boosting is applicable to more loss functions
than Newton tree boosting. In fact, this is not only valid for tree boosting, but
generally for gradient boosting and Newton boosting.

Gradient boosting only require the loss function to be differentiable. It is further
beneficial if the loss function used is also convex as this yields a convex empirical
risk function and thus unique solutions. This is however not strictly required.

Newton boosting however, require the loss function to be twice differentiable.
Furthermore, as seen from Equation 6.4, the Hessian cannot be zero. Thus, for
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Newton boosting, we additionally require the loss function used to be strictly con-
vex.

Consider for example the absolute loss. The negative gradient for this loss
function is given by

−ĝm(xi) = sign(yi − f̂ (m−1(xi)).
This is not differentiable at x = 0. This can however circumvented by defining the
gradient to be e.g. 0 at x = 0. Gradient boosting can thereby handle the absolute
loss function. For Newton boosting however, we run into problems as the Hessian
is zero everywhere (except at x = 0).

We could try to bypass this by simply defining the Hessian to be some constant,
such as one. Newton boosting would in this case simply fit basis functions using the
same criterion as gradient boosting at each iteration, but without the subsequent
line search step. The convergence would however likely be much slower as the no
step length is calculated. Gradient boosting thus seems to have the upper hand
when it comes to loss function which are not stricly convex. In addition to the
absolute loss, other loss functions which are not strictly convex include the Huber
loss and the quantile regression loss.

7.4 When are They Equivalent?
For the squared error loss, the Hessian ĥm(xi) = 1 everywhere. Consequently, the
the NTB criterion in 7.4 collapses to the GTB criterion in 7.3. In this case, they
both fit the negative gradient. For the squared error loss, the negative gradient is
simply the current residuals

−ĝm(xi) = yi − f̂ (m−1)(xi).

Plugging this into either the GTB or the NTB criteria, we see that they both solve
the FSAM problem in Equation 7.2 exactly for the squared error loss. For GTB,
the line search step can also be skipped, as the leaf weights learnt are already
optimal.

Gradient tree boosting and Newton tree boosting are thus equivalent for the
squared error loss. For other loss functions however, they will differ.

7.5 Which is Better?
If we use any other loss function than the squared error loss, GTB and NTB are
not equivalent. A natural question to ask is, which is better?

Since NTB can be seen to use a second order approximation to the loss function,
while GTB only use a first order approximation, we would expect NTB to learn
better tree structures. NTB does however not readjust the leaf weights after the
structure is learnt. In summary, we would thus expect GTB to learn a more
approximate tree structure than NTB, but subsequently learn more accurate leaf
weights for this approximate structure. They are thus not directly comparable,
and likely to outperform each other for different problems.
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7.5.1 Empirical Comparison
To get an idea of how they compare in practice, we will test their performance on
two standard datasets, the Sonar and the Ionosphere datasets (Lichman, 2013).
The log-loss was used to measure prediction accuracy.

The comparison was performed using the R programming language (R Core
Team, 2016). The gbm package (Ridgeway, 2015) was used for the gradient tree
boosting, while the xgboost package (Chen et al., 2016) was used for Newton tree
boosting.

Due to implementation details of the packages, we will use only tree stumps
(trees with two terminal nodes) and no other form regularization of the individual
trees. Moreover, the data sets chosen have no categorical features and no missing
values. The data sets were deliberately chosen this way, since categorical features
and missing values are treated differently by the tree learning algorithms in the
two packages.

The learning rate was set to η = 0.1 and the number of trees was set to M =
10000. Predictions were made at each iteration. To get a fairly stable estimate
of out-of-sample perfomance, three repetitions of 10-fold cross-validation was used.
The folds were the same for both GTB and NTB.

Initially, a sanity check was performed to confirm that the two implementations
gave identical results for the squared error loss. The check was performed using
the Boston housing dataset (Lichman, 2013). As expected, the results were indeed
identical for both methods. Next, the two methods were compared for the Sonar
dataset and for the Ionosphere dataset. To study the effect of line search for
gradient tree boosting, one fit were also done using gradient boosting with line
search. This was achieved by defining a custom objective function for the xgboost
package. The results are shown in Figure 7.1.
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(a) Sonar dataset.
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(b) Ionosphere dataset.

Figure 7.1: Newton tree boosting and Gradient tree boosting with and without
(plain) line search.

From Figure 7.1a, we observe that NTB seems to outperform GTB slighly for
the Sonar dataset. From Figure 7.1b, we can see that NTB converges slightly faster,
but GTB outperforms NTB when run for enough iterations for the Ionosphere
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dataset. They do however seem to have very similar performance for both problems.
Newton tree boosting uses a higher-order approximation of the FSAM and should
thus learn more accurate tree structures than gradient tree boosting. For the log-
loss, the criterion used to learn the final leaf weights is actually the same for both.
This is due to the line search step being approximated by a single Newton step for
gradient tree boosting. Given this, we would apriori expect Newton tree boosting
to outperform gradient tree boosting for the log-loss. Of course, due to randomness,
any algorithm might perform best in practice for any particular data set.

From both Figure 7.1a and Figure 7.1b, we see that line search clearly improves
the rate of convergence. In both cases, line search also seems to improve the lowest
log-loss achieved. Line search thus seems to be very beneficial for gradient tree
boosting.



Chapter 8

Discussion of Regularization
Parameters

MART and XGBoost provides various regularization techniques for additive tree
models. In this chapter, we will discuss the effect of the various regularization
parameters.

We will group the regularization parameters into three categories. The first is
the boosting parameters, which is the number of trees M and the learning rate η.
The second is the tree parameters, which include constraints and penalties imposed
on the complexities of the individual trees in the additive tree model. Finally, there
is the randomization parameters which controls row and column subsampling.

8.1 Boosting Parameters
The boosting parameters are the number of boosting iterations M and the learning
rate or shrinkage η. These parameters were discussed in Section 4.5 and are not
specific to tree boosting. We will here add to this discussion for the case of tree
boosting.

8.1.1 The Number of Trees M

The parameter M in general corresponds to the number of boosting iterations. In
the case of tree boosting, M can also be seen to correspond to the number of trees
in the additive tree model.

Let FM denote the function space of an additive tree model consisting of M
trees. Since the function space of the individual trees models are not closed under
addition, we will have that

F1 ⊂ F2 ⊂ ... ⊂ FM

Thus, increasing the number of iterations, i.e. adding more trees, will increase
the representational ability of the model. Selecting the number of trees M is thus
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crucial in order to achieve the right amount of representational ability. This can
be viewed the “main” tuning parameter of tree boosting.

8.1.2 The Learning Rate η

The learning rate or shrinkage parameter η will generally shrink the added basis
function at each iteration. For tree boosting, η can be seen to shrink the leaf
weights of each of the individual trees learnt at each iteration. If η is set too high,
the model will fit a lot of the structure in the data during the early iterations,
thereby quickly increasing variance. As we discussed in the last section however,
using a larger number of trees increases the representational ability. Thus, by
lowering the learning rate η, a larger number of trees can be added before the
additive tree model will start to overfit the data. This will allow the model to have
greater representational ability, with smoother fits, before overfitting the data.

8.2 Tree Parameters
The tree parameters are the regularization parameters which controls the complex-
ity of the individual trees. These parameters can be seen to control the number of
terminal nodes T in the tree, the size of the leaf weights w and the minimum sum
of observation weights needed in a terminal node.

The number of terminal nodes in a tree limits the order of interactions it can
capture. A stump (a tree of depth two) can only capture additive effects, while
deeper trees can capture higher-order interactions. The functional ANOVA decom-
position (Friedman, 1991) of the target function f ∗ can be written

f∗(x) =
�

j

f∗
j (xj) +

�

j,k

f∗
j,k(xj , xk) +

�

j,k,l

f∗
j,k,l(xj , xk, xl) + ...

Here, the functions f∗
1 , ..., f∗

p specify the additive relationship between the response
and the inputs. The second sum runs over the second-order interactions, while the
third sum runs over the third-order interactions and so on. The maximum order
of iterations is only limited by p. The dominant order of interaction is however
typically lower than p, meaning that the target function can be approximated well
by interaction terms only up to a certain order.

The size of the leaf weights w1, ..., wT will also be related to model complexity.
Smaller coefficients will yield models closer to the global constant, while larger
coefficients will yield more complex models.

Lastly, the minimum sum of observation weights needed in a terminal node
can directly limit the variance in the estimation of the leaf weights. For gradient
boosting, the sum of the observation weights is simply the number of observations.
For Newton boosting however, the sum of observation weights is the sum of the
Hessians in the terminal node. For brevity, we will refer to minimum sum of
observation weights needed in a terminal node as the required evidence in a terminal
node.
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8.2.1 Maximum Number of Terminal Nodes Tmax

We will denote the maximum number of terminal nodes by Tmax. The more ter-
minal nodes the tree has, the more complex functions it can represent. The more
terminal nodes it has, the higher the order of interactions the additive tree model
can capture. As the number of terminal nodes grows, there will tend to be fewer
observations in each region, giving rise to variance in estimation of the leaf weights.
If the number of terminal nodes is too low, on the other hand, the tree might not
be able to capture a sufficient order of interactions, giving rise to bias. There will
therefore naturally be a bias-variance tradeoff in selecting the number of terminal
nodes in the tree.

Friedman (2001) suggested fixing the number of terminal nodes to a con-
stant. For MART, Tmax determines the number of terminal nodes in each tree,
i.e. Tm = Tmax for m = 1, ..., M . For XGBoost, penalization might be included in
the objective. In this case, the number of terminal nodes might vary among the
trees. Tmax thus only acts as an upper bound in this case.

8.2.2 Minimum Sum of Observation Weights in Leaf hmin

We will denote the required evidence in a terminal node by hmin. For gradient tree
boosting, this is equivalent to the minimum amount of observations required in a
terminal node, and could thus be denoted nmin in this case.

Each terminal node in the tree is associated with a region in the input space.
Since we will estimate a leaf weight for each region of the input space, we would like
the region to contain as much observation weight as possible. Regions containing
more observation weight allow the leaf weight of the region to be estimated more
reliably.

Setting a lower bound on the sum of the observation weights needed in such
a region can thus limit the variance in estimation of the leaf weights. Although
increasing hmin could reduce the variance in estimation, setting it too high can
introduce significant bias. Again, there is a bias-variance tradeoff in selecting hmin.

8.2.3 Terminal Node Penalization γ

The penalization term that XGBoost includes in the objective is shown in Equation
6.2. The first term in this is the terminal node penalization. The parameter γ
controls the amount of penalization for the number of terminal nodes.

Doing a derivation similar to the one in Section 6.3.1, but now including termi-
nal node penalization in the objective, we find that the gain is now given by

Gain = 1
2

� G2
L

HL
+ G2

R

HR
−

G2
jm

Hjm

�
− γ.

Penalization of the number of terminal nodes will thus increase the probability of
obtaining splits with negative gain. After pruning, we will thus tend to get more
shallow trees. This parameter thus affects the learning of the tree structure. The
learning of the final leaf weights, on the other hand, are not directly affected.
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We have previously discussed the effects of the number of terminal nodes in the
tree. Introducing an objective which penalizes the number of terminal nodes gives
one the ability to more adaptively select the number of terminal nodes. Depending
on the complexity of the patterns found in the data set, the number of terminal
nodes will adjust to fit the data in a tradeoff with model complexity.

8.2.4 l2 Regularization on Leaf Weights λ

The second term in Equation 6.2 is the l2 regularization of the leaf weights. Here
λ controls the strength of the penalization.

l2 regularization can be seen to place a prior belief that the leaf weights should
be small. Increasing λ will thus have the effect of shrinking the values of the weights
towards zero. This resembles the effect of the learning rate η. However, whereas
the learning rate η shrinks all leaf weights by the same factor, λ will generally
shrink the leaf weights by varying amounts. The biggest difference however, is that
λ will not only affect the leaf weights, but also the structure of the tree.

Doing a derivation similar to the one in Section 6.3.1, but now including l2
regularization of the leaf weights in the objective, we find that the gain is now
given by

Gain = 1
2

� G2
L

HL + λ
+ G2

R

HR + λ
−

G2
jm

Hjm + λ

�
.

Furthermore, the final leaf weights are given by

ŵjm = − Gjm

Hjm + λ
.

From this, we see that l2 regularization does indeed shrink the leaf weights. How-
ever, it also affects tree structure. In fact, it alters the gain such that different
splits ends up being taken. We observe that this has the effect of trying to avoid
splits which lead to regions with little evidence. Estimation of leaf weights in such
regions will have high variance. However, as opposed to hmin, no constraint is im-
posed, but rather penalization. If a leaf weight still were to be estimated in a region
with little evidence, it will be shrunk more heavily. In addition, l2 regularization
increases the probability of obtaining a splits with negative gains. It can thus also
affect the number of terminal nodes. In summary, l2 regularization can be seen to
combat variance in estimation of the leaf weights. In order to do this, it does not
only alter the leaf weights, but also the structure of the tree.

8.2.5 l1 Regularization on Leaf Weights α

The third term in Equation 6.2 is the l1 regularization of the leaf weights. Here, α
controls the strength of the penalization.

l1 regularization will play a similar role to l2 regularization. The major differ-
ence is that l1 regularization has the ability to shrink the leaf weights all the way
to zero.
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Doing a derivation similar to the one in Section 6.3.1, but now including l1
regularization of the leaf weights in the objective, we find that the gain is now
given by

Gain = 1
2

�Tα(GL)2

HL
+ Tα(GR)2

HR
− Tα(Gjm)2

Hjm

�
,

while the final leaf weights are given by

ŵjm = −Tα(Gjm)
Hjm

,

where
Tα(G) = sign(G) max(0, |G| − α).

From this, we see that as for l2 regularization, l1 regularization also affects both
the structure and the leaf weights. However, instead of focusing on the Hessian in
the leaves, l1 regularization focuses on the gradient.

8.3 Randomization Parameters
The randomization parameters refer to the parameters which introduce randomness
in the learning process. This includes row subsampling as introduced by Friedman
(2002), as well as column subsampling, which is included in XGBoost (Chen and
Guestrin, 2016).

The fact that randomization can improve generalization performance might
seem counterintuitive at first. It is however not very mysterious. By introducing
randomization, the trees will indeed lose accuracy. However, they will also tend to
be less similar, i.e. more diverse. The fact that they are more diverse is beneficial
when they are combined together. The positive effect of diversity often outweighs
the negative effects of the lost accuracy of the individual trees. The tradeoff in
selecting the right amount of diversity is known as the accuracy-diversity tradeoff
in literature on ensemble methods. See e.g. (Zhou, 2012) for more details.

One way to understand the accuracy-diversity tradeoff is through the bias-
variance-covariance decomposition

Var[f̂(x)] = Var[
M�

m=1
f̂m(x)]

=
M�

m=1
Var[f̂m(x)] +

M�

m=1

�

m� �=m

Cov[f̂m(x), f̂m�(x)].

Increasing randomization will increase the variance of the individual trees, but
will tend to decrease the covariance between the trees. Oftentimes, the reduction
in covariance is greater than the increase in variance. The overall effect is thus
typically that the overall variance of the ensemble model, i.e. the additive tree
model, is reduced.
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8.3.1 Row Subsampling Fraction ωr

Friedman (2002) found that row subsampling could yield substantial performance
improvements. He found the greatest improvements for small data sets and complex
base models, thus leaving him to conclude that variance reduction was a probable
explanation.

According to Hastie et al. (2009), a typical value for the row subsampling frac-
tion is ωr = 0.5, although it can be substantially smaller for large data sets. In
addition to improving generalization performance, setting the row subsampling
fraction lower can reduce computation time by the same fraction ωr. This is espe-
cially useful for larger data sets.

8.3.2 Column Subsampling Fraction ωc

Column subsampling plays a similar role to row subsampling. They both combat
overfitting by introducing randomness in the learning procedure and both can re-
duce computation time. Chen and Guestrin (2016) states that according to user
feedback, using column subsampling prevents overfitting even more so than tradi-
tional row subsampling.



Chapter 9

Why Does XGBoost Win
“Every” Competition?

In this chapter, we will provide some informal arguments for why tree boosting,
and especially XGBoost, performs so well in practice. Of course, for any specific
data set, any method may dominate others. We will thus provide arguments as
to why tree boosting seems to be such a versatile and adaptive approach, yielding
good results for a wide array of problems, and not for why it is necessarily better
than any other method for any specific problem.

Uncovering some possible reasons for why tree boosting is so effective are in-
teresting for a number of reasons. First, it might improve understanding of the
inner workings of tree boosting methods. Second, it can possibly aid in further
development and improvement of the current tree boosting methodology. Third,
by understanding the core principles of tree boosting which makes it so versatile,
we might be able to construct whole new learning methods which incorporates the
same core principles.

9.1 Boosting With Tree Stumps in One Dimen-
sion

Consider first the very simple case of boosting in one dimension, i.e. with only one
predictor, using tree stumps, i.e. trees with only one split and two terminal nodes.
We otherwise assume the model in unconstrained and unpenalized.

Does tree boosting have any particular advantages even in this simple problem?
First of all, additive tree models have rich representational abilities. Although they
are constrained to be piecewise constant functions, they can potentially approxi-
mate any function arbitrarily close given that enough trees are included.

The perhaps greatest benefit however is that tree boosting can be seen to adap-
tively determine the local neighbourhoods. We will now consider an example to
clarify what we mean by this.

79
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9.1.1 Adaptive Neighbourhoods
Let us consider a regression task and compare additive tree models with local
linear regression and smoothing splines. All of these methods have regularization
parameters which allows one to adjust the flexibility of the fit to the data. However,
while methods such as local regression and smoothing splines can be seen to use
the same amount of flexibility in the whole input space of X , additive tree models
can be seen to adjust the amount of flexibility locally in X to the amount which
seems necessary. That is, additive tree models can be seen to adaptively determine
the size of the local neighbourhoods.

Let us consider a concrete example. To make the point clear, we will design a
problem where different amounts of flexibility is needed locally in X . Let the data
be generated according to

X ∼ Uniform(−6, 6)

[Y |X] =





sin(X) + �, X ≤ 0
�, 0 < X ≤ π

sin(4X) + �, X > π

� ∼ N(0, 1/2).

We will draw 500 samples from this. These samples together with the target
function f∗ is shown in Figure 9.1.
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Figure 9.1: Simulated data in gray together with the target function f ∗ in black.

This data clearly requires a high degree of flexibility for higher values of x, less
flexibility for low values of x and almost no flexibility at all for medium values of
x. That is, for higher values of x, smaller neighbourhoods are needed to avoid a
large bias. Keeping the neighbourhoods too small in the flat region of the target
function, however, will unnecessarily increase variance.

Let us first fit local linear regression with two different degrees of flexibility
to the data. The resulting fits are shown in blue in Figure 9.2. In Figure 9.2a
a wider neighbourhood is used for the local regression. This seems to yield a
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satisfactory fit for lower values of x, but is not flexible enough to capture the more
complex structure for the higher values of x. Vice versa, in Figure 9.2b, a smaller
neighbourhood is used. This fit is flexible enough to capture the complex structure
for the higher values of x, but seems too flexible for lower values of x. The same
phenomenon is observed for smoothing splines. Figure 9.3 shows two smoothing
spline fits of different flexibility.
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(b) More flexible.

Figure 9.2: Local linear regression with two different degrees of flexibility fit to the
simulated data.
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(b) More flexible.

Figure 9.3: Smoothing splines with two different degrees of flexibility fit to the
simulated data.

Finally, we fit an additive tree model (with η = 0.02, M = 4000) to the data
using tree stumps. The result is displayed in Figure 9.4. We observe that in areas
with simpler structure, the additive tree model has put less effort into fitting the
data. In the region where the target function is constant, for example, the model
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Figure 9.4: Boosted tree stumps fit to the simulated data.

has put very little effort into capturing any structure. In the region with more
complex structure however, more effort has been put in to capture it. Tree boosting
can thus be seen to use adaptive neighbourhood sizes depending on what seems
necessary from the data. In areas where complex structure is apparent from the
data, smaller neighbourhoods are used, whereas in areas where complex structure
seems to be lacking, a wider neighbourhood is used.

To better understand the nature of how local neighbourhoods are determined,
we will attempt make the notion of the neighbourhood more concrete. We will do
this by considering the interpretation that many models, including additive tree
models, local regression and smoothing splines, can be seen to make predictions
using a weighted average of the training data.

9.1.2 The Weight Function Interpretation
Many models can be written in the form

f̂(x) = ŵ(x)T y,

where ŵ(x) is a weight function, ŵ : X → Rn. For each x ∈ X , the weight function
ŵ(x) specifies the vector weights to use in the weighted average of the responses in
the training data.

We can write that variance of the model as

Var[f̂(x)] = Var[
n�

i=1
ŵi(x)Yi] =

n�

i=1
ŵi(x)2Var[Yi] = σ2

n�

i=1
ŵi(x)2.

From this, we can see that in order to keep the variance low, the weights should
be spread out as evenly as possible, thus keeping the neighbourhood wide. The
globally constant model keeps ŵi(x) = 1/n, ∀x ∈ X , i ∈ {1, ..., n} and thus keeps
the variance as low as possible. If the target function is sufficiently complex how-
ever, this model will be severely biased. To decrease the bias, the weights have to
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be shifted such that points which are similar or close to x receives larger weight,
while distant and dissimilar points receive lower weights.

Consider for example linear regression. Predictions are given by

f̂(x) = xT (XT X)−1XT y.

The weight can thus be written as

ŵ(x)T = xT (XT X)−1XT .

For local linear regression, the weight function is a simple modification of this. It
can be written

ŵ(x)T = xT (XT W (x)X)−1XT W (x),
where W (x) is a diagonal matrix where diagonal element i is κ(x, xi) (Hastie et al.,
2009). The weight functions for local linear regression at three different points
for two different degrees of flexibility are shown in Figure 9.5. The two different
degrees of flexibility are the same as those used in Figure 9.2. We observe that the
weight function has a particular shape, regardless of the position in x ∈ X . Also,
as expected, the less flexible the model is, the more spread out its weights are.

Another example is smoothing splines. The weight function can in this case be
written

ŵ(x)T = φ(x)T (ΦT Φ + λΩ)−1ΦT ,

where Ωjk =
�

φ
��
j (t)φ��

k(t)dt and λ is a regularization parameter which penalizes
lack of smoothness (Hastie et al., 2009). In Figure 9.6, the weight functions for
smoothing splines at three different points and for two different flexibilities are
shown. We here observe the same phenomenon as for local linear regression, namely
that the weight function takes the same form regardless of x ∈ X .

For these models, and many others, ŵ(x) is determined using only the location
of the predictors xi in the input space X , without regard for the responses yi.
These models can thus be seen to have made up their mind about which points are
similar beforehand. Similarity is often determined by some measure of closeness of
points in the input space X . Intuitively, most models will assign larger weights to
data points which are determined to be closer to x.

For additive tree models, on the other hand, the weight function can be seen to
be determined adaptively. That is, while the other methods only take the predictors
xi in the training data into account when determining ŵ(x), additive tree models
also considers the responses in the training data. This is in fact a property of tree
models, which adaptively determines neighbourhoods and fits a constant in each
neighbourhood. Additive tree models inherit this from tree models and uses it to
adaptively shift the weight functions at each iteration. At iteration m, boosting
updates the model according to

f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x)
ŵ(m)(x)T y = ŵ(m−1)(x)T y + ŵm(x)T y.

Tree boosting can thus be seen to update the weight functions at each iteration. At
each iteration, the learning algorithm searches for splits that minimize the empirical
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(a) Point 1, low flexibility.
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(b) Point 2, low flexibility.
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(c) Point 3, low flexibility.
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(d) Point 1, high flexibility.
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(e) Point 2, high flexibility.
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(f) Point 3, high flexibility.

Figure 9.5: The weight function at 3 points for local linear regression with 2 dif-
ferent degrees of flexibility.
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(a) Point 1, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

−6 −3 0 3 6
x

w

(b) Point 2, low flexibility.
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(c) Point 3, low flexibility.
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(d) Point 1, high flexibility.
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(e) Point 2, high flexibility.
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(f) Point 3, high flexibility.

Figure 9.6: The weight function at 3 points for smoothing spline with 2 different
degrees of flexibility.
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risk. In this process, it can be seen to learn which points can be considered similar,
thus adaptively adjusting the weight functions in order to reduce empirical risk.
The additive tree model initially starts out as a global constant model with the
weights spread out evenly, and thus has low variance. At each subsequent iteration,
the weight functions are updated where it seems most necessary in order to reduce
bias.

Tree boosting can thus be seen to directly take the bias-variance tradeoff into
consideration during fitting. The neighbourhoods are kept as large as possible
in order to avoid increasing variance unnecessarily, and only made smaller when
complex structure seems apparent. Using smaller neighbourhoods in these areas
can thus dramatically reduce bias, while only introducing some variance.

We will now show how the weight functions are adjusted by tree boosting at
each iteration with the squared error loss. Consider the tree to be added at iteration
m,

f̂m(x) =
T�

j=1
θ̂jmI(x ∈ R̂jm).

The leaf weights for this tree is determined by

θ̂jm = −Gjm

njm
=

�
i∈Îjm

[yi − ŵ(m−1)(xi)T y]
njm

.

Manipulating this expression, we find that

θ̂jm =
n�

i=1
yi

� I(xi ∈ R̂jm) − �
k∈Îjm

ŵ
(m−1)
i (xk)

njm

�
.

The update of element i of the weight function at x at iteration m is thus given by

ŵ
(m)
i (x) = ŵ

(m−1)
i (x) +

T�

j=1
I(x ∈ R̂jm)

� I(xi ∈ R̂jm) − �
k∈Îjm

ŵ
(m−1)
i (xk)

njm

�
.

The weight functions for an additive tree model after 400 and 4000 iterations at
the three different points are shown in Figure 9.7. The additive tree model shown in
Figure 9.4 was for 4000 iterations. We see that the weight function is more spread
out for lower iterations. The main point to observe however, is that the weight
functions are different at different values of x. At the point in the flat region of the
target function in Figure 9.7e, the weight function is spread out over the similar
points nearby. This allows the model to calculate the prediction at this point with
low variance, without introducing much bias. At the point in the region where the
target function is most complex, shown in Figure 9.7f, the weight function is more
peaked around x. This keeps bias low, which seems appropriate in this region of
the input space. Finally, for the region where the target function is less complex,
shown in Figure 9.7d, the peakedness of the weight function is somewhere between
the two other. More interestingly however, the weight function is not centered
around x, but seems to assign more weight to points at higher values of x. This
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also seems appropriate as these points are more similar, whereas in the direction
of decreasing values of x, the target function changes more rapidly.
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(a) Point 1, iteration 400.
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(b) Point 2, iteration 400.
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(c) Point 3, iteration 400.
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(d) Point 1, iteration 4000.
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(e) Point 2, iteration 4000.
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(f) Point 3, iteration 4000.

Figure 9.7: The weight function at 3 points for boosted trees after 400 and 4000
iterations.

9.2 Boosting With Tree Stumps in Multiple Di-
mensions

In the last section, we considered tree boosting in one dimension. Some of the
greatest benefits of tree boosting are however not apparent when considering one-
dimensional problems, as tree boosting is particularly useful for high-dimensional
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problems.
When the dimensionality of the problem increases, many methods break down.

This is, as discussed earlier, due to what is known as the curse of dimensionality.
Many methods rely on some measure of similarity or closeness between data points,
either implicitly or explicitly, in order to introduce locality in the models. Since
distance measures become less useful in higher dimensions, these methods tend to
not scale well with increasing dimensionality. Techniques such as feature selection
and stronger regularization might be employed to combat this. However, good
results still depends crucially on good transformations and relative scalings of the
features and specification of appropriate amount of flexibility for each feature. For
high-dimensional problems, this can be an almost impossible task.

Tree boosting “beats” the curse of dimensionality by not relying on any dis-
tance metric. Instead, the similarity between data points are learnt from the data
through adaptive adjustment of neighbourhoods. Tree boosting initially keeps the
neighbourhood global in all directions. The neighbourhoods are subsequently ad-
justed to be smaller where it seems most necessary. It thus starts out as a globally
constant model and decreases bias by decreasing neighbourhood size. The property
of adaptive neighbourhoods might not be needed as often for one-dimensional prob-
lems that we discussed in the last section. When the dimensionality is increased
however, it is likely to beneficial. This allows the model to adaptively determine
the amount of flexibility to use for each feature. In the extreme case, the method
might use no flexibility at all for some features, i.e. keep the neighbourhood glob-
ally constant along them. The additive tree model will be unaffected by these
features and can thus be seen to perform automatic feature selection.

It is thus the same property of adaptively determined neighbourhoods that we
discussed in the previous section that makes it “immune” to the curse of dimen-
sionality. By using adaptive neighbourhoods, the model also becomes invariant
under monotone transformations of the inputs. This can thus potentially save a
lot of work spent searching for appropriate transformations. Moreover, the relative
scalings features are irrelevant for the model.

So far, we have considered tree boosting using only tree stumps. Consequently,
our additive tree model would only be able to capture additive structure in the
data, not any interactions.

9.3 Boosting With Deeper Trees
To capture interactions, we need deeper trees. The deeper the trees are allowed
to be, the higher the orders of interactions we can capture. For an additive tree
model where the maximum number of terminal nodes is Tmax, the highest order
of interaction that can be captured is max(Tmax − 1, p). There are few other
methods which are able to capture high order interactions from high-dimensional
data without breaking down. This is one of the great benefits of additive tree
models. Again, it is due to the property of adaptive neighbourhoods that it does
not break down. That is, most interactions are not modeled at all, only interactions
which seem beneficial to the model is included.
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Although deeper trees allow us to capture higher order interactions, which is
beneficial, they also give rise to some problems. With deeper trees, the number
of observations falling in each terminal node will tend to decrease. Thus, the
estimated leaf weights will tend to have higher variance. Stronger regularization
might therefore be required when boosting with deeper trees. Another related
problem is that the model may model interactions where they are not present.
Consider for simplicity a two-dimensional problem where only additive structure is
present. At early boosting iterations, a lot of the structure is still left in the data.
Thus, after the first split, the second split may be taken along the other feature,
thereby giving rise to an apparent interaction. It can thus confuse additive structure
for interactions. This will unnecessarily increase variance since the neighbourhood
is not kept as wide as it could have been. This might be an area where current
boosting methods might be improved.

9.4 What XGBoost Brings to the Table
All the discussion so far have been general to tree boosting and is therefore relevant
for both MART and XGBoost. In summary, tree boosting is so effective because it
fits additive tree models, which have rich representational ability, using adaptively
determined neighbourhoods. The property of adaptive neighbourhoods makes it
able to use variable degrees of flexibility in different regions of the input space.
Consequently, it will be able to perform automatic feature selection and capture
high-order interactions without breaking down. It can thus be seen to be robust
to the curse of dimensionality.

For MART, the number of terminal nodes is kept fixed for all trees. It is
not hard to understand why this might be suboptimal. For example, for high-
dimensional data sets, there might be some group of features which have a high
order of interaction with each other, while other features only have lower order
interactions, perhaps only additive structure. We would thus like to use deeper
trees for some features than for the others. If the number of terminal nodes is
fixed, the tree might be forced to do further splitting when there might not be a lot
of evidence for it being necessary. The variance of the additive tree model might
thus increase unnecessarily.

XGBoost uses clever penalization of the individual trees. The trees are conse-
quently allowed to have varying number of terminal nodes. Moreover, while MART
uses only shrinkage to reduce the leaf weights, XGBoost can also shrink them us-
ing penalization. The benefit of this is that the leaf weights are not all shrunk
by the same factor, but leaf weights estimated using less evidence in the data will
be shrunk more heavily. Again, we see the bias-variance tradeoff being taken into
account during model fitting. XGBoost can thus be seen to be even more adaptive
to the data than MART.

In addition to this, XGBoost employs Newton boosting rather than gradient
boosting. By doing this, XGBoost is likely to learn better tree structures. Since
the tree structure determines the neighbourhoods, XGBoost can be expected to
learn better neighbourhoods.
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Finally, XGBoost includes an extra randomization parameter. This can be
used to decorrelate the individual trees even further, possibly resulting in reduced
overall variance of the model. Ultimately, XGBoost can be seen to be able to learn
better neighbourhoods by using a higher-order approximation of the optimization
problem at each iteration than MART and by determining neighbourhoods even
more adaptively than MART does. The bias-variance tradeoff can thus be seen to
be taken into account in almost every aspect of the learning.
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Conclusion

Tree boosting methods have empirically proven to be a highly effective and versa-
tile approach to predictive modeling. For many years, MART has been a popular
tree boosting method. In more recent years, a new tree boosting method by the
name XGBoost has gained popularity by winning numerous machine learning com-
petitions. In this thesis, we compared these tree boosting methods and provided
arguments for why XGBoost seems to win so many competitions.

We first showed that XGBoost employs a different form of boosting than MART.
While MART employs a form of gradient boosting, which is well known for its in-
terpretation as a gradient descent method in function space, we showed that the
boosting algorithm employed by XGBoost can be interpreted as Newton’s method
in function space. We therefore termed it Newton boosting. Moreover, we com-
pared the properties of these boosting algorithms. We found that gradient boosting
is more generally applicable as it does not require the loss function to be strictly
convex. When applicable however, Newton boosting is a powerful alternative as
it uses a higher-order approximation to the optimization problem to be solved at
each boosting iteration. It also avoids the need of a line search step, which can
involve difficult calculations in many situations.

In addition to using different boosting algorithms, MART and XGBoost also
offers different regularization parameters. In particular, XGBoost can be seen
to offer additional parameters not found in MART. Most importantly, it offers
penalization of the individual trees in the additive tree model. These parameters
will affect both the tree structure and leaf weights in order to reduce the variance
in each tree. Additionally, XGBoost provides an extra randomization parameter
which can be used to decorrelate the individual trees, which in turn can result in
reduction of the overall variance of the additive tree model.

After determining the different boosting algorithms and regularization tech-
niques these methods utilize and exploring the effects of these, we turned to pro-
viding arguments for why XGBoost seems to win “every” competition. To provide
possible answers to this question, we first gave reasons for why tree boosting in gen-
eral can be an effective approach. We provided two main arguments for this. First
off, additive tree models can be seen to have rich representational abilities. Pro-
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vided that enough trees of sufficient depth is combined, they are capable of closely
approximating complex functional relationships, including high-order interactions.
The most important argument provided for the versatility of tree boosting however,
was that tree boosting methods are adaptive. Determining neighbourhoods adap-
tively allows tree boosting methods to use varying degrees of flexibility in different
parts of the input space. They will consequently also automatically perform feature
selection. This also makes tree boosting methods robust to the curse of dimension-
ality. Tree boosting can thus be seen actively take the bias-variance tradeoff into
account when fitting models. They start out with a low variance, high bias model
and gradually reduce bias by decreasing the size of neighbourhoods where it seems
most necessary.

Both MART and XGBoost have these properties in common. However, com-
pared to MART, XGBoost uses a higher-order approximation at each iteration, and
can thus be expected to learn “better” tree structures. Moreover, it provides clever
penalization of individual trees. As discussed earlier, this can be seen to make
the method even more adaptive. It will allow the method to adaptively determine
the appropriate number of terminal nodes, which might vary among trees. It will
further alter the learnt tree structures and leaf weights in order to reduce variance
in estimation of the individual trees. Ultimately, this makes XGBoost a highly
adaptive method which carefully takes the bias-variance tradeoff into account in
nearly every aspect of the learning process.
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