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Abstract

In this thesis we perform factor screening in a non-regular two-level design by reducing

the number of possible sets of active factors to a certain number. The 12 Run Plackett-

Burman(PB) design with four active factors is mainly concerned. Our proposed method

works through picking up the 6 effects with the highest absolute value out of 10 in each

projection model. To evaluate this method, we used the same example as was used in

Tyssedal and Shahrukh[15] where variable selection methods such as AIC, F test and 4R2-

method used on projection models. A real example is included at the end to show how our

proposed factor screening method can be done in practice.
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1 Introduction

At the early stage of an experimental search, the important goal is to identify the subspace

of active factors among many, which is known as factor screening. Two-level nonregular

designs are important for factor screening and include all orthogonal two-level designs that

does not belong to the 2k−p family, that is, regular 1/2p, p = 0, 1, . . . k − 1, fraction of 2k

factorials also known as regular designs or two-level fractional factorial designs. Fractional

factorial designs are often used for the situations where the experiment wants to investi-

gate more than k factors in 2k experiments runs. Non-regular designs are important for two

main reasons. One is their projective properties, that is,they project far better into lower

dimensions than the ones for regular designs, see [1][3] and [10]. The other is that they

apparently exist for every n as a multiple of four and n ≥ 12, and therefore provide us with

a lot more design alternatives that can be obtained from two-level fractional factorial designs.

The drawback of non-regular designs is their complicated alias pattern among main effects

and interactions. Plackett-Burman designs were proposed more than six decades ago[12] and

is the most well-known non-regular designs. For example, consider the widely used 12 Run

PB design with 11 factors. There are 55 two-factor interactions and the main effect of each

factor X is partially aliased with the 45 two-factor interactions not involving X, thereby

making it difficult to interpret the significance of interactions. Therefore, methods such as

normal and half-normal plots or more quantitative methods such as Lenth’s method, often

used for analyzing replicated two-level designs maybe of little value since these methods are

based on being able to separate active contrasts from contrasts estimating only noise.

However, there are still several methods available for analyzing replicated nonregular de-

signs and there can be mainly classified as factor-based or effect-based search procedures.

The aim of factor-based search is to identify the subspace of active factors of normally low

dimension, typically 2, 3 or 4, which is known as factor sparsity principle. These active factors

are responsible for most of the variation in the data. The performance of such a procedure

depends heavily on the projective properties of the design used. Examples of such methods
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are given in [2],[7]and[14]. The aim of effect-based search is to identify the significant effects

which are most likely active main effects and two-factor interactions. Consider a linear regres-

sion model consisting of main effects and interactions and assumed to explain the response

well. Such a model can be defined as Y = Xβ + ε where theX =
[
1 x1 x2 · · · xk

]
is

called the design matrix, Y is the response and ε is the noise and assumed to follow a normal

distribution with mean equal to 0 and variance equal to σ2. For effect based methods, the

principle of heredity is included. Some examples of such methods are the stepwise regression

procedure[6] and the Bayesian stochastic search variable selection[4].

When performing a screening, not all methods work equally well on specific examples,

and their performance when applied to a variety of models and noise has not been tested

out. In order to reducing the number of candidate sets and identifying the correct model, [15]

proposed a factor based procedure based on projection properties of the designs. Forward

selection was performed on projection models using three different criteria, the AIC, the F

test and the 4R2-method.

The purpose of this thesis is to give a different method to do the factor screening. It

reduces the number of terms in the projection models to simplify the complicated alias rela-

tionship. For instance, in a 12 Run PB design, there are 330 possible candidate sets of active

factors assuming four factors are active. For each candidate set of four factors, we assumed

a projection model consisting of a constant, four main effects and six two-factor interactions,

altogether 11 terms. Thus, 11 terms are reduced to 6 by picking out the 6 effects with highest

absolute value. We reduced 330 candidate sets to 10 with the smallest MSE which is known

as the mean square error. In order to compare the results from our method to the other

methods used in [15], we consider the same examples.

This paper begins with the introduction of regular and non-regular designs. In section 3,

we explain how some variable selection techniques like AIC, F test and 4R2-method work

and their limitations. Our suggested method and its algorithm are given in section 4 together

with the analysis of four examples taken from [15]. The results from different methods and
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the discussion are still provided in section 4 followed by an analysis of a real example in

section 5. Concluding Remarks are given in section 6.
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2 Theory

2.1 Factor screening design

At the early stage of an experimental search, it is important to identify the subspace of

active factors among many, in other words, many factors are considered and the objective is

to identify those factors that have large effects. This is known as factor screening.

In general, the dimension of the subspace will be lower than the one of tested factors, i.e.

typically 2, 3 or 4. This principle is also known as factor sparsity which actually refers to the

idea that a few factors are responsible for most of the variation in the data. All the designs

talked about in this article are factor screening design.

2.2 Regression Analysis

Regression analysis is a statistical methodology for finding a fractional relationship between

response variables and a set of explanatory variables. It can also be used for assessing the

effects of factors on responses, which is the goal in design of experiments.

Generally, the multiple linear regression model with a single response is specified to take

the form

Y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (1)

where x1, x2, . . . , xn are n explanatory variables thought to be related to the response variable

Y. β0, β1, . . . , βn are called regression coefficients, ε is called the noise.

With all observations taken into account, (1)can be written on matrix form as follows.

Y = Xβ + ε (2)

where the X =
[
1 x1 x2 · · · xk

]
is called the design matrix, then the estimators for the

coefficients is given by:

β̂ = (XTX)−1XTY. (3)
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Note that the design matrix plays an important role on how easy it is to find a good

model in the end.

2.3 Two-level factorial designs

The factorial experiments, where all combination of the levels of the factors are run, are usu-

ally referred to as a full factorial experiment. In general, a full factorial two level design with

k factors requires 2k runs for a single replicate. For instance, a two level experiment with

two factors will require 22 = 4 runs. As for the ”factors” used in the two level experiments,

some of them naturally have two levels such as ”gender”, obviously the male and female are

its two levels. And another example, if concentration is a factor that varies from 20kg/m3

to 40kg/m3, then the two levels for this factor used in the 2k designs would be 20kg/m3 and

40kg/m3.

The two levels of the factor are normally marked by 1 or -1, which makes the factor

columns orthogonal. Therefore, the coefficients can be computed in a simple way to be men-

tioned.

When doing the factorial design there are two classes of effects that we are interested in:

Main Effects and Interactions.

For two-level designs we define the main effect of a factor as: Excepted average response

when the factor is on the high level minus excepted average response when the factor is at

the low level.

The interaction between two factors is defined as: Half the main effect of a factor when the

other is on the high level minus half the main effect of a factor when the other factor is at

its low level.

Note that two-level factorial designs are normally called the regular designs.
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2.3.1 The 22 design

The simplest of the two level factorial experiments is the 22 design where two factors named

A and B are investigated at two levels. Four runs will be required for a single replicate of

this design. In this situation, there are two main effects A, B and an interaction effect AB.

Main effect of factor A means the overall difference of the excepted average response when

factor A is in high level and low level. Similarly, main effect of factor B refers to overall

difference of the excepted average response when factor B is in high level and low level. As

for the interaction of AB, it means the overall difference of half the main effect of factor A

when factor B is on the high level and on its low level.

The treatment for this design is shown in Table 1.

Table 1: The 22 Factorial Design

Run Treatment Combination I A B AB
1 1 1 -1 -1 1
2 a 1 1 -1 -1
3 b 1 -1 1 -1
4 ab 1 1 1 1

The notation for ”Treatment Combination” shown in Table 1 comes from the letter for the

main factor which is the only one marked with the high level, while (1) represents the treat-

ment combination where all main factors involved are at low level.

A linear regression model consisting of main effects and interactions is assumed to give

an adequate approximation of the response. Such a model is given in Section 2.2 equation

(2), in this situation, the design matrix becomes X=



I A B AB

+1 −1 −1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 +1 +1 +1



Section 2.2 also mentions the estimator of the coefficients which is given in the equation
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(3), in order to obtain the estimated main effects and interactions, we have to multiply the

corresponding coefficients with 2.

As noted earlier that the design matrix has orthogonal columns, which means that the

sum of the terms resulting from the dot product of any two columns of the design matrix is

zero. In fact, all 2k designs are orthogonal designs.

The 22 design can also be presented in a geometric way, using a square with the four

treatment combinations lying at the four corners.

Figure 1: 22design in a geometrical way

2.3.2 The 23 design

Similarly, suppose three factors named A,B,C are considered for a two-level design, then in

this case, there are three main effects A, B and C, four interaction effects including three

two-factor interaction effects AB, AC, BC and one three-factor interaction effect ABC.

Therefore, we would have 23 = 8 treatment combinations totally, which is shown in Table 2.

In this situation, I, A,B, . . . , ABC are called factorial effects.
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Table 2: The 23 Factorial Design

Run Treatment Combination I A B C AB AC BC ABC
1 a 1 1 -1 -1 -1 -1 1 1
2 b 1 -1 1 -1 -1 1 -1 1
3 c 1 -1 -1 1 1 -1 -1 1
4 abc 1 1 1 1 1 1 1 1
5 ab 1 1 1 -1 1 -1 -1 -1
6 ac 1 1 -1 1 -1 1 -1 -1
7 bc 1 -1 1 1 -1 -1 1 -1
8 (1) 1 -1 -1 -1 1 1 1 -1

In this case, the design matrix is X=



I A B C AB AC BC ABC

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 +1 −1 −1 +1 −1 +1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 −1 +1 −1 −1 −1

+1 +1 −1 +1 −1 +1 −1 −1

+1 −1 +1 +1 −1 −1 +1 −1

+1 −1 −1 −1 +1 +1 +1 −1


The estimated coefficients can be computed by β̂ = (XTX)−1XTY as mentioned in sec-

tion 2.2. The estimated main effects and interaction are given by 2β̂.

The 23 design can also be presented geometrically using a cube with the eight treatment

combinations lying at the eight corners.

Figure 2: 23 design in a geometrical way
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2.3.3 Special Feature

One special feature of the two-level factorial design is the term (XTX)−1, where X is the

design matrix. Let’s take the 23 design as an example. Since the design matrix of 23 design

has been shown above, we can directly get the (XTX)−1 matrix.

(XTX)−1 =



0.125 0 0 0 0 0 0 0

0 0.125 0 0 0 0 0 0

0 0 0.125 0 0 0 0 0

0 0 0 0.125 0 0 0 0

0 0 0 0 0.125 0 0 0

0 0 0 0 0 0.125 0 0

0 0 0 0 0 0 0.125 0

0 0 0 0 0 0 0 0.125



.

The variance-covariance matrix of the coefficients are given by:

V ar(β̂) = (XTX)−1σ2 (4)

We notice that (XTX)−1 is diagonal due to the orthogonal design matrix X and it can

be simplified as

(XTX)−1 = 0.125 · I =
1

23
· I (5)

Where I is the identity matrix which has the same order as the design matrix X. Thus, the

(XTX)−1 matrix for any 2k design with a single replicate can be written as [8]:

(XTX)−1 =
1

2k
· I (6)

Then the variance-covariance matrix for the coefficients is:

C = σ2 · I
2k

(7)
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which shows that the estimated effect coefficients are uncorrelated and have a constant

variance σ2. In other words, the main factors and the interactions in the 2k design are inde-

pendent of each other. Note that the parameter β̂ of the equation (4) is the same as the one

of the equation (3).
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2.4 Fractional factorial designs

Fractional factorial designs consist of a subset of runs from a full factorial designs. It is used

to experiment with more than K factors while only 2k experiments are allowed to be done.

Thus, in order to find out the active effects, we should be careful with choosing the subset

of the experimental runs of a full factorial design.

For example, we consider the same full factorial design as in the last section, three factors,

8 experiments in total. Suppose the first 4 experiments which are the Run 1 to 4 are carried

out in Table 2, i.e

Run Treatment Combination I A B C AB AC BC ABC
1 a 1 1 -1 -1 -1 -1 1 1
2 b 1 -1 1 -1 -1 1 -1 1
3 c 1 -1 -1 1 1 -1 -1 1
4 abc 1 1 1 1 1 1 1 1

It is clear to see from above chose experiments that I and ABC have the same signs, as

well as the A and BC, B and AC, C and AB. Hence, we get

I=ABC
A=BC
B=AC
C=AB

For this example, the I = ABC is called the defining relation, which is an important

characteristic of fractional factorial designs. Instead, if we only carry out the Run 5 to 8 in

Table 2, the defining relation would be I = −ABC. And A = BC is called the generator for

Run Treatment Combination I A B C AB AC BC ABC
5 ab 1 1 1 -1 1 -1 -1 -1
6 ac 1 1 -1 1 -1 1 -1 -1
7 bc 1 -1 1 1 -1 -1 1 -1
8 (1) 1 -1 -1 -1 1 1 1 -1

the design. Besides, this designs are known as a half fractions of a 23 design, also called 23−1

designs, since we experiment with 3 factors in 23−1 runs. The advantage of such designs is

to save effort and costs.
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2.4.1 Fractions of 2p experiments

Half-fraction of the 2p design involves running only half of the treatments of the full factorial

design, and is denoted as a 2p−1 design.

If the situation considers a large number of factors, which means there are still a lot of ex-

periments to do even if we do the half-fraction factorial design, a quarter-fraction or smaller

fractions will be considered.

2.4.2 Generation and defining relation

The generators in a fractional factorial design determine how the fraction (or subset of runs)

is selected from the full set of runs.

Suppose we wish to construct a 1/2 fraction, 4-factor design using the design generator

D = ABC. As we know, this design would require 24−1 = 8 runs.

Firstly, construct the full 3-factor design where 1 and +1 represent the low and the high

factor levels, respectively.

A B C
-1 -1 -1
+1 -1 -1
-1 +1 -1
+1 +1 -1
-1 -1 +1
+1 -1 +1
-1 +1 +1
+1 +1 +1

Secondly, generate the runs for factor D by multiplying the settings for factors A, B, and C

together. For example, the setting for factor D for the first run is -1* -1*-1 = -1.

In this case, the design generator is D = ABC, meaning factor D is confounded with the

ABC interaction. Because effects that are confounded cannot be estimated separately from

each other, design generators should be carefully chosen.
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A B C D=ABC
-1 -1 -1 -1
+1 -1 -1 +1
-1 +1 -1 +1
+1 +1 -1 -1
-1 -1 +1 +1
+1 -1 +1 -1
-1 +1 +1 -1
+1 +1 +1 +1

As mentioned earlier, defining relation is a vital characteristic of the factorial design, to

be specific, the collection of generating relation for a factorial design is called a defining

relation. For the previous example, if we multiply the factor D on the both sides of the

design generator, we get the defining relation, I = ABCD.

D = ABC ⇐⇒ D2 = I = ABCD

2.4.3 Resolution

Resolution is another vital property of fractional design. The length of the shortest word

in the defining relation is called the resolution of the design, which describes the degree to

which estimated main effects are aliased or confounded with estimated two-factor interac-

tions, three-factor interactions, etc.

Resolution III

Main effects are aliased with two-factor interactions. The 23−1 given in section 2.4 is of

resolution III with I = ABC.

Resolution IV

Similarly, main effects are confounded with at worst three-factor interactions. Or two-factor

interactions are confounded with certain other two-factor interactions. Example 24−1, I =

ABCD.

Resolution V
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Main effects are aliased with four-factor interactions. Or two-factor interactions are aliased

with certain three-factor interactions. Example25−1, I = ABCDE.

Note: Assume that we have resolution II, then a possible generator relation would be

A = B, which makes that main-effects are fully aliased. Thus, resolution II is an undesiriable

situation. Moreover, a Resolution IV design is better than a resolution III design because we

have a less severe confounding pattern since higher order interactions are usually assumed to

be much important than low-order interactions. In general, a higher resolution design for the

same number of factors will, however, require more runs and it is worse than a lower-order

design in that sense.
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2.5 Plackett-Burman Design(nonregular two-level designs)

Plackett-Burman(PB) design[12] are the most well-known non-regular designs and was in-

troduced in 1946 by Robin L.Plackett and J.P.Burman.

For fractional factorial two-level design, the number of the experiments n are 2p, however,

for the PB design, n = 4k. If 2p = 4k, the PB designs become the fractional factorial designs.

The aim of PB designs was to find experimental designs for investigating the indepen-

dence of some measured quality on a number of factors which are independent, each taking

L levels, in such a way as to minimize the variance of the estimates of these dependencies

using a limited number of experiments.

For the case of two levels designs(L=2), Plackett and Burman used the method for gen-

erating orthogonal matrices whose arrays are all either 1 or -1, which is the same idea as

for factorial designs. As noted earlier, the number of PB designs n = 4k, but n has some

limitations which are n ≤ 100 and n 6= 92. For instance, if n = 12, we call it a 12 Run PB

design, which can be used to screen 12− 1 = 11 factors.

2.5.1 Construction of Plackett-Burman design

The 12 and 20 Run PB design are given in Table 3 and 4.
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Table 3: The 12 Run Plckett-Burman Design.
Run A B C D E F G H I J K

1 + - + - - - + + + - +
2 + + - + - - - + + + -
3 - + + - + - - - + + +
4 + - + + - + - - - + +
5 + + - + + - + - - - +
6 + + + - + + - + - - -
7 - + + + - + + - + - -
8 - - + + + - + + - + -
9 - - - + + + - + + - +
10 + - - - + + + - + + -
11 - + - - - + + + - + +
12 - - - - - - - - - - -

Table 4: The 20 Run Plckett-Burman Design.
Run A B C D E F G H I J K L M N O P Q R S

1 + - + + - - - - + - + - + + + + - - +
2 + + - + + - - - - + - + - + + + + - -
3 - + + - + + - - - - + - + - + + + + -
4 - - + + - + + - - - - + - + - + + + +
5 + - - + + - + + - - - - + - + - + + +
6 + + - - + + - + + - - - - + - + - + +
7 + + + - - + + - + + - - - - + - + - +
8 + + + + - - + + - + + - - - - + - + -
9 - + + + + - - + + - + + - - - - + - +
10 + - + + + + - - + + - + + - - - - + -
11 - + - + + + + - - + + - + + - - - - +
12 + - + - + + + + - - + + - + + - - - -
13 - + - + - + + + + - - + + - + + - - -
14 - - + - + - + + + + - - + + - + + - -
15 - - - + - + - + + + + - - + + - + + -
16 - - - - + - + - + + + + - - + + - + +
17 + - - - - + - + - + + + + - - + + - +
18 + + - - - - + - + - + + + + - - + + -
19 - + + - - - - + - + - + + + + - - + +
20 - - - - - - - - - - - - - - - - - - -
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2.5.2 Design Projectivity

Compared to regular designs, two-level nonregular designs such as PB designs have very fa-

vorable properties when projected onto a subset of factor columns. Box and Tyssedal(1996)[1]

introduced and defined the projectivity of two-level designs which is stated as follows:

A n×k design with n runs and k factors each at two levels is said to be of projectivity P if

the design contains a complete 2P factorial in every possible subset of P out of the k factors,

possibly with some points required. It is convenient to describe such design as (n, k, p) screens.

Box and Tyssedal[1] proved three propositions for orthogonal two-level arrays that can be

used for classifying PB designs and later Samset and Tyssedal[13] discovered that PB designs

with n=68, 72, 80 and 84 are also (n, n− 1, 4) screens. However, most of the nonregular de-

signs are (n, n− 1, 3) screens. A complete listing of the projectivity of PB designs are shown

in Table 5. Clearly, 12 Run PB design is a P=3 design in 11 factors and can be discribed as

Table 5: The projectivity of Plackett Burman designs
Screens Number of runs,n

P=2 4,8,16,32,40,56,64,88,96
P=3 12,20,24,28,36,44,48,52,60,76,100
P=4 68,72,80,84

(12, 11, 3) screens.

Samset and Tyssedal also discovered that all PB designs with projectivity P = 3 have the

hidden projection properties(Lin and Draper[10] and Wang and Wu[16])that all main-effects

and two-factor interactions for any four factors are estimable when the higher-order interac-

tions are negligible. This is in line with the concept of generalized projectivity introduced

by Evangelaras and Koukouvinos(2004)[5] A n× k design with n runs and k factors each at

two levels is said to be of generalized projectivity Pa, if for any selection of P columns of the

design all factorial effects including up to α-factor interactions are estimable.

For example, projecting the 12 Run PB design onto four factors, any of the
(
11
4

)
= 330



2 THEORY 18

projections allow all main effects and two-factor interactions to be estimated. All projections

onto k factors, k ≤ 4, are identical, thereby these factors have the equal chance to be identi-

fied regardless of which factors they are. Lin and Draper(1991,1992)[10] further considered

projections of 16, 20 and 24 run PB designs onto four factors, they look messier. Therefore,

the 12 Run PB design has very attractive screening properties and deserved to be explored

for such purposes.

2.5.3 Effect heredity

For a two-factor interaction to be included in a model, at least one(weak heredity) or

both(strong heredity) of the corresponding main effects need to be significant.

2.5.4 Confounding Pattern

Confounding Pattern is about the alias relationships which is linked the main-effects and the

two-factor interactions if we ignore the higher orders. According to [9], the alias relationships

for 12-run PB design is complicated. Because for this situation, 11 main effects and 45 two-

factor interactions are involved.
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3 Some variable selection techniques

Consider a multiple linear regression model which has defined in the beginning, equation (1).

Again the estimator for the coefficients is given by

β̂ = (XTX)−1XTY. (8)

Since E(ε) = 0, we have E(β̂) = β. Therefore, the estimator is unbiased.

A measure of the total variance in the response is given by
∑n

i=1(yi − ȳ)2, where ȳ is the

average response. We can split up this as follows:

Firstly we write

yi − ȳ = yi − ŷi + ŷi − ȳ (9)

And then

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 + 2
n∑
i=1

(yi − ŷi)(ŷi − ȳ) +
n∑
i=1

(ŷi − ȳ)2 (10)

=
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2 (11)

Note that
n∑
i=1

(yi − ŷi)(ŷi − ȳ) =
n∑
i=1

(yi − ŷi)ŷi −
n∑
i=1

(yi − ŷi)ȳ = 0 (12)

Since both the two last expressions are zero as the normal equations have to be fulfilled.

Equation (11) above can also be written as

SST = SSE + SSR (13)

Where SST is known as the total sum of squares, SSE represents the error sum of squares,

SSR represents the regression sum of squares.

As noted in the previous section, the hidden projection property is true for 12 Run PB
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design which is considered to be the most important non-regular two-level design for exper-

imentation. Therefore, when doing the factor screening, how well a candidate set’s ability

to explain the variation in the response depends on how well a model with main factors

and all interactions included explains this variation. Such a model is known as a projection

model. Therefore, for a projectivity P = 3 design one for three factors, all candidate sets are

consisted of three main effects, three two-factor interactions and a three-factor interaction.

This method is called the full projection method.

The 12 run PB design are of projectivity P = 3 as shown in Table 5, hence when we

consider the case: identifying the 4 active main factors for the 12 Run Plackett-Burman

design, the full projection method is not a good choice. As mentioned earlier, for the 12 run

PB design, such models have too many terms. Hence, it’s almost impossible to discriminate

between the candidate sets ability to explain the variation in the data. The forward selection

is suggested to perform on each projection model in [15].

Forward selection is one of the most common variable selection methods and the specific

algorithm is presented as follows.

1.Start with only constant term,β0,in the equation(1).

2.Find maxjR(βj) = maxjSSR(βj | β0) = maxj{SSR(β0, βj)− SSR(β0)}

3.If maxj
R(βj)
SSE
n−2

= R(βm)
SSE
n−2

< fα,1,n−2 stop, no variable is entered into the model.

4.If
R(βj)
SSE
n−2

≥ fα,1,n−2, then add xm to the equation (1).

Find maxj 6=mR(βj|βm) = maxj 6=m{SSR(β0, βm, βj) − SSR(β0, βm)} and go to step 3, if

maxj 6=m
R(βj)
SSE
n−3

< fα,1,n−3 no more variables are entered into the model. Otherwise proceed in
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the same way. Note that the degrees of freedom in the partial F-test is reduced by one for

each variable that is entered into the model.

Its advantage is that there is no limitations on the number of active factors and the dis-

advantage is once a main factor is retained, it cannot be discarded, which may lead to the

nesting problem.

There are some common criteria, the AIC criterion, the F-Method and the R Square

Method, which also can be used for entering or removing terms in a forward selection proce-

dure.

3.1 The AIC criteria in forward selection

The AIC-criteria is a default criterion and given by

AIC = 2p+ n ln(
SSE

n
) (14)

Where the SSE is the residual sum of squares.

SSE =
n∑
i=1

(yi − ŷi(k))2 (15)

and ŷi
(k) is the estimated response value for a model with k regression variables and p = k+1.

If all the models have the same k, the minimum AIC comes from the minimum SSE which is

the common objective of least squares fitting. We expect the smaller AIC when adding the

terms, in other words, for each step we add the term which decreases the AIC most and the

procedure stops if the AIC increases.
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3.2 F test in forward selection

When adding one more term in the model, the F-statistic which reflects the variable’s con-

tribute to the model if it is included can be written as

F =
(R2

k+1 −R2
k)(n− k − 2)

1−R2
k+1

(16)

Where R2
k is the model with k regression variables. The decision on whether to enter a new

term or not will be based on comparing the maximized F-statistic value with fα(1, n−k−2).

To be specific, fα(1, n− k− 2) is 1− α percentile in the F-distribution with 1 and n− k− 2

degrees of freedom.

Note that there is no way of removing variable once entered when doing forward selection. It

may be difficult at the beginning for variable to be judged significant when using the F-test

since the variation in the response caused by the rest of the regression variables is included

in the error variance. Hence, the procedure may stop before all the active effects are entered.

To reduce this problem, Tyssedal and Hussain[15] introduced the 4R2-method.

3.3 R square method in forward selection

As we know, the coefficient of determination is defined asR2, whereR is the (sample)correlation

coefficient of the data and the fitted values that is of the pairs (yi,ŷi):

R :=

∑
(yi − ȳ)(ŷi − ¯̂y)√∑

(yi − ȳ)2
∑

(ŷi − ¯̂y)2
(17)

Clearly, −1 ≤ R ≤ 1, −1 ≤ R2 ≤ 1, and R2 is a measure of the goodness of fit of the fitted

values of the data, which can be written as

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(18)

=
SSR

SST
(19)

=
SST − SSE

SST
(20)

= 1− SSE

SST
(21)
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For example R2 = 0.75 implies that 75% of the variation in the data can be explained

by the model. Note that R2 = 1 if and only if SSE = 0, in other words, all the residu-

als are 0 and the fitted value are the true values. We can also see from equation (21) that

the smaller SSE, the bigger R2, which means the better fit of our regression model to the data.

The 4R2 method as introduced in[15] is

4R2(k + 1) = R2
k+1 −R2

k (22)

We can see that this is just the change in the coefficient of determination increasing the

number of regression variables from k to k + 1. For a model with k regression variables, let

SSR(k) =
n∑
n=1

(ŷi
(k) − ȳ)2 (23)

Then (20) becomes

4R2(k + 1) =
SSR(k + 1)− SSR(k)

SST
(24)

=
SSR(k + 1)− SSR(k)

σ2
· σ2

SST
(25)

SSR(k+1)−SSR(k)
σ2 follows a χ2-distribution with 1 degree of freedom under the assumption

that the model with k regression variables is the correct one. Then, according to (25),

4R2(k+1)· SST
σ2 follows a χ2(1) distribution. σ2 in this case is the variance of the observations

and normally unknown. For the correct model E( SSE
n−k−1) = σ2, we set SSE = t · SST ,

0 < t < 1, then σ2 depends on t·SST
n−k−1 , which is similar to the F-method. A new term can be

entered under the assumption that the maximum value of 4R2(k + 1) ≥ χ2
1,α · t

n−k−1 , or the

procedure stops. Note that reasonable values for α and t need to be decided.

The 4R2-method is based on using 4R2(k + 1) in forward regression.



3 SOME VARIABLE SELECTION TECHNIQUES 24

3.4 An example

We look at one of the examples used in [15] to illustrate how these criteria work.

In this example, a 12 run PB Design has been considered. The model is given by

Y = x1 + x3 + x2x3 + x3x4 + ε (26)

where ε ∼ N(0, 0.7).

The design and the response simulated from the model are given in the Table 6.

In this case, 4 active factors are involved, which are x1, x2, x3 and x4 and the active effects

Table 6: The 12 Run Plckett-Burman Design and response values used in the example one.
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y

1 + - + - - - + + + - + 0.5456
2 + + - + - - - + + + - -1.7307
3 - + + - + - - - + + + 0.4875
4 + - + + - + - - - + + 1.9211
5 + + - + + - + - - - + -2.0272
6 + + + - + + - + - - - 2.0617
7 - + + + - + + - + - - 1.4472
8 - - + + + - + + - + - 0.9961
9 - - - + + + - + + - + -1.9956
10 + - - - + + + - + + - 2.4805
11 - + - - - + + + - + + -2.5985
12 - - - - - - - - - - - -0.7527

are x1, x3, x2x3 and x3x4 correspondingly. The projection model for this situation involves

x1, x2, x3, x4 and their six two-factor interactions which are x1x2, x1x3, x1x4, x2x3, x3x4.

Table 7 shows the values of the three criteria for entering terms in this particular projection

model.
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Table 7: The values of the 4R2(k+ 1), F -statistic and the AIC-criterion for entering terms
in a projection model where Y = x1 +x3 +x2x3 +x3x4 + ε, ε ∼ N(0, 0.7). Data are obtained
from a 12 Run PB design.

Terms entered 4R2 F AIC
x3 0.458302 9.30652 7.84795
x2x3 0.101334 2.30115 7.36265
x1 0.161188 5.19634 3.89354
x3x4 0.218949 29.0834 -12.5112
x1x3 0.014117 2.14321 -13.7164
x2 0.011568 7.5466 -21.4889
x2x4 0.008648 3.67284 -26.098
x4 0.006890 5.64417 -34.6587
x1x4 0.003385 6.77945 -46.8388
x1x2 0.0002794 0.45856 -47.3159

The three methods will enter terms in the same order and we expect to find the stopping

value by looking for the maximum 4R2, maximum F statistic and the minimum AIC. How-

ever, for the 4R2 method and F test, the procedure might stop too early in this case, but it

seems more likely to happen for the F-test. It is clearly shown in Table 7 that the value of

4R2 and F decrease just after entering the term x2x3. While the value for AIC decreases

all the way until entering all the main factors and 2-factor interactions, since we look for the

minimum AIC value, the procedure stops after entering all the terms.

Tyssedal and Hussain [15] explore further for the 4R2 method and F test and try to find

the same stopping value and the best stopping value by choosing a panel of eight models

reasonably. These models take into different situations account such as the number of active

factors, the number of active effects, the number of interactions, type of interactions, the size

of the active effects and whether the model obeys the heredity principles or not could effect

the stopping value.

The eight models are as follows:

Model1:
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Y1 = x1 + 2x1x2 + 2x1x3 + ε, ε ∼ N(0, σ2)

Model2:

Y2 = x1 + 1.5x2 + 2x3 + x1x2 + 1.5x1x3 + ε, ε ∼ N(0, σ2)

Model3:

Y3 = x1 + 1.5x2 + 2x3 + 1.5x1x2x3 + ε, ε ∼ N(0, σ2)

Model4:

Y4 = 2x1 + x2x3 + ε, ε ∼ N(0, σ2)

Model5:

Y5 = x1 + x3 + x2x3 + x3x4 + ε, ε ∼ N(0, σ2)

Model6:

Y6 = 2x1 + 3x2 + 2x3 + x4 + 3x3x4 + ε, ε ∼ N(0, σ2)

Model7:

Y7 = 4x1 + x2 + x3 + x4 + 2x1x4 + ε, ε ∼ N(0, σ2)
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Model8:

Y8 = 2x1 + 4x3 + 2x2x3 + 2x3x4 + ε, ε ∼ N(0, σ2)

The conclusion in [15] is that the number of active factors and the number of experimental

factors both affect the performance of the procedures in negative way. And the type of model

is important cause it is more difficult to do forward selection for the models with many terms

of same size. However, it seems from the results of [15] that the type and size of interactions

are not that important. As for the heredity, it may have an effect. Non-heredity models tend

to have many factors which may open up for many possible explanations for the variation

in the data. Furthermore, the variance of the observations, σ2 also affect the performance of

procedures.

When it comes to the three different criteria, considering the three active factors, F-

Method performs well for the model1, 3 and 4, but not for model2. While 4R2 method and

AIC method seem to be very reliable. As for the four active factors, the performance of

the AIC method is very poor and worse than the F method, while 4R2 method performs

quite well. Besides, model 5 is the worst among all the four active factors models due to the

smallest capture probability. Overall, the 4R2 method is equal to or better than the AIC

and the F method.
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4 A new way for screening in a 12 run PB design with

four active factors

We continue to consider the example in the last section, which is a 12 Run PB design. And

the response is simulated from the model, Y = x1 + x3 + x2x3 + x3x4 + ε, ε ∼ N(0, 0.7).

As we can see, four active factors are involved for this case. We look at all the
(
11
4

)
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projections onto four factors by and try to do more analysis on the 12 Run PB design. The

programming is done in R and shown in Appendix A.

In the example, σ2 is given by 0.7, which seems large, we change the noise in the further

investigation and then run 1000 simulations and it was counted the number of times the

correct subset of active factors was contained in the candidate set with the 10 smallest MSE

for each simulation. The number is defined as the capture frequency in [15]. Note that there

is no need to restrict the number in the reduced set exactly to 10, but 10 is a reasonable

compromise in order to not losing the right set. As for the MSE, it is known as the mean

square error and measures the average of the squares of the error. In other words, it is the

difference between the estimator and what is estimated, which is a measure of how well a

candidate set is able to explain the variation in the response. In the regression model, the

MSE can be written as:

MSE =
SSE

n− k − 1
(27)

Where the SSE is known as the residual sum of squares.

SSE =
n∑
i=1

(yi − ŷi)2 (28)

Note that the response variable Y is a vector of n response values.



4 A NEWWAY FOR SCREENING IN A 12 RUN PB DESIGNWITH FOURACTIVE FACTORS29

4.1 Suggested variable selection in certain situation

The specific algorithm we propose for variable selection has several steps.

1.Assume na active factors among all factors we have.

2.For each subset of na factors, make a design matrix with the constant column(1’s) and

all feasible main effects and two-factor interactions. Estimate this projection model to the

response y.

3.Look at the absolute value of the coefficients, pick out the 6 ones with the highest

absolute value.

4.Fit a model with the estimated constant coefficient and the 6 terms that correspond to

the largest absolute value of the coefficients.

5.Compute the MSE, it is the difference between the estimated response in step 4 and

the response y in step 2, definition is given by equation (27).

6.Repeat the step 1 to 5 for all the possible model selections of the n active factors.

7.Rank the MSE and make a list of the 10 smallest ones.

We will analyze the models with four active factors one by one.
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Starting with the most difficult model from [15]

Model 5

Y = A+ C +BC + CD + ε (29)

where ε ∼ N(0, σ2).

Note: We use A, B, C, D instead of the x1, x2, x3, x4 in [15], analogously, E, F,..., K

represent x5, x6, ..., x11.

First, we fix the response Y by using the value from Table 6 as taken from[15] where

σ2 = 0.7.

We get 10 candidate sets with the smallest MSE by our proposed method, the values for

them are as follows:

Table 8: 10 candidate sets and their MSE values for the Model 5 with σ2 = 0.7
Combinations 1 2 3 4 5 6 7 8 9 10

B D B A A C A D A G
G G C B F G B E B H
I H J H H H C J H I
K I K I K I D K J K

10 smallest MSE 0.073 0.132 0.166 0.194 0.235 0.248 0.257 0.277 0.288 0.314

Note again our proposed method in this thesis works with the 6 terms. We can see from

Table 8 the combination A, B, C, D is among them which is compatible with the fact.

Change the value of σ2 to find the ”breakdown” value. The breakdown value means

the capture frequency for ABCD is less than 950, which means the corresponding capture

probability is less than 0.95. Because it is meaningless to analyze the data when the capture

frequency for the correct set is too low.
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Table 9: 10 candidate sets and their capture frequency for the Model 5 with σ2 = 0.1
Combinations 1 2 3 4 5 6 7 8 9 10

G C A C B D F F A A
H G B G G G G G C F
I H C I I H I H G G
K I D K K I K I I I

capture frequency 986 955 945 933 920 917 692 674 625 623

Table 10: 10 candidate sets and their capture frequency for the Model 5 with σ2 = 0.2
Combinations 1 2 3 4 5 6 7 8 9 10

G C A C B D F F A A
H G B G G G G G C F
I H C H I H H I G G
K I D I K I I K I I

capture frequency 982 942 937 936 922 919 710 692 618 611

Table 11: 10 candidate sets and their capture frequency for the Model 5 with σ2 = 0.3
Combinations 1 2 3 4 5 6 7 8 9 10

G A C C B D F F C A
H B G G G G G G F C
I C H I I H I H G G
K D I K K I K I I I

capture frequency 958 935 907 900 895 888 661 624 582 575

Table 12: 10 candidate sets and their capture frequency for the Model 5 with σ2 = 0.4
Combinations 1 2 3 4 5 6 7 8 9 10

G A C C D B F F A A
H B G G G G G G F C
I C I H H I H I G G
K D K I I K I K I I

capture frequency 854 843 770 769 749 734 506 499 463 462

From the above Table 9-12, we observe that when σ2 increases, the ratio of the success

will go down, and the breakdown value 0.2 is suggested. Although the capture frequency for

ABCD is between 935 to 945 when σ2 changes from 0.1 to 0.3. Considering that Model 5 is

the most difficult model among all the eight models in the panel. In this case, we have low-

ered the criterion a little bit. Besides, no matter how the σ2 has been changed, the value of
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capture frequency for the combination ”GHIK” is always bigger than the value for ”ABCD”,

which implies that on some level ”GHIK” explains the variation in the response better than

”ABCD”.

In order to do further analysis, firstly we have a look at the 10 combinations with smallest

MSE when the response Y is simulated from model 5 with σ2 = 0.

Table 13: 10 candidate sets and their MSE values for the Model 5 with σ2 = 0
Combinations MSE

1 C F H K 3.7717 · 10−31

2 G H I K 3.8923 · 10−31

3 A C G I 8.7514 · 10−31

4 A F G I 8.8007 · 10−31

5 F G I K 9.5280 · 10−31

6 C G I K 1.0769 · 10−30

7 C G H I 1.1070 · 10−30

8 A B C D 1.9151 · 10−30

9 F G H I 4.2907 · 10−30

10 D F I K 6.0000 · 10−1

It is obvious to see from Table 13 that the first 9 candidate sets all have a MSE which

almost equals 0, and ”GHIK” is among them as we expect. Thus, we compute the effects

and corresponding coefficients for each combination.

Table 14: The effects and the corresponding coefficients of the models which are potential
equivalent to the Model 5

Combinations Effects Corresponding Coefficients
1 C F H K F C H K CH CK 1 1 -0.5 -0.5 0.5 0.5
2 G H I K GI GK HI HK G IK 1.5 -0.5 -0.5 -0.5 0 0
3 A C G I A C AC CG CI GI -0.5 0.5 -0.5 -0.5 -0.5 1.5
4 A F G I G I AF AG AI GI 0.5 0.5 1 -0.5 -0.5 1
5 F G I K K I FI FK GI GK -0.5 -0.5 -0.5 -0.5 1 -1
6 C G I K C K CG GI GK I 0.5 -0.5 -0.5 1 -0.5 0
7 C G H I C H CI HI GI CH 0.5 -0.5 -0.5 -0.5 1 0
8 A B C D A C BC CD AB B 1 1 1 1 1 0 0
9 F G H I H G FG FH GI HI -0.5 -0.5 -0.5 -0.5 1 -1

Table 14 shows that there are some coefficients which equals 0 among the 2nd, 6th, 7th

and 8th combinations. The final significant effects for each model are given in Table 15.
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Table 15: The significant effects of the models which are potential equivalent to the Model 5
Combinations Effects

1 C F H K F C H K CH CK
2 G H I K GI GK HI HK
3 A C G I A C AC CG CI GI
4 A F G I G I AF AG AI GI
5 F G I K K I FI FK GI GK
6 C G I K C K CG GI GK
7 C G H I C H CI HI GI
8 A B C D A C BC CD
9 F G H I H G FG FH GI HI

Then the potential alternative models are suggested as follows:

Model5.1:

Y5.1 = C + F − 0.5H − 0.5K + 0.5CH + 0.5CK + ε, ε ∼ N(0, σ2)

Model5.2:

Y5.2 = 1.5GI − 0.5GK − 0.5HI − 0.5HK + ε, ε ∼ N(0, σ2)

Model5.3:

Y5.3 = −0.5A+ 0.5C − 0.5AC − 0.5CG− 0.5CI + 1.5GI + ε, ε ∼ N(0, σ2)

Model5.4:

Y5.4 = 0.5G+ 0.5I + AF − 0.5AG− 0.5AI +GI + ε, ε ∼ N(0, σ2)

Model5.5:
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Y5.5 = −0.5K − 0.5I − 0.5FI − 0.5FK +GI −GK + ε, ε ∼ N(0, σ2)

Model5.6:

Y5.6 = 0.5C − 0.5K − 0.5CG+GI − 0.5GK + ε, ε ∼ N(0, σ2)

Model5.7:

Y5.7 = 0.5C − 0.5H − 0.5CI − 0.5HI +GI + ε, ε ∼ N(0, σ2)

Model5.8:

Y5.8 = −0.5H − 0.5G− 0.5FH − 0.5FG−HI +GI + ε, ε ∼ N(0, σ2)

We can see from Table 15 that except the first combination ”CFHK”, the number of

two-factor interactions is at least the half of the significant effects for other models.

Since the breakdown noise is after 0.3, let’s have a look at the table from 9 to 11 whose

noise is between 0.1 to 0.3, the capture frequency is broken down from the 7th combination for

all of them, which seems unreasonable because there are 9 alternative models as noted earlier.

This example seems a bit complicated since we find eight equivalent models as the original

model and also some problems stated above exist. It is also reasonable because this model

is considered as the worst one in [15] when the other three criterias are performed.
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The second example is Model 6,which is given by

Y = 2A+ 3B + 2C +D + 3CD + ε (30)

where ε ∼ N(0, σ2)

Note: We use A, B, C, D instead of the x1, x2, x3, x4 in [15], analogously, E, F,..., K represent

x5, x6, ..., x11.

Firstly, we change the value of the noise to find the breakdown value.

Table 16: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.1
Combinations 1 2 3 4 5 6 7 8 9 10

B B A B A C B A B C
C C B E C I D B E D
I E C F I J E D G I
K J D J K K J G J K

capture frequency 1000 1000 1000 730 730 713 707 534 533 517

Table 17: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.2
Combinations 1 2 3 4 5 6 7 8 9 10

B B A A B C C A B C
C C B B E E D B D I
I E C E G I I D E J
K J D J J K K J J K

capture frequency 1000 1000 1000 606 599 570 568 551 535 533

Table 18: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.3
Combinations 1 2 3 4 5 6 7 8 9 10

B B A C A B A C B B
C C B E B E B D E D
I E C I D G E I F E
K J D K G J J K J J

capture frequency 1000 1000 1000 574 566 558 554 552 455 446
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Table 19: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.4
Combinations 1 2 3 4 5 6 7 8 9 10

B B A B C A C A C B
C C B E D B E B I D
I E C G I E I D J E
K J D J K J K G K J

capture frequency 1000 1000 1000 554 540 535 524 516 403 399

Table 20: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.5
Combinations 1 2 3 4 5 6 7 8 9 10

B B A A C A B C B C
C C B B E B E D D I
E I C E I D G I E J
J K D J K G J K J K

capture frequency 1000 998 998 520 507 504 493 487 362 350

Table 21: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.6
Combinations 1 2 3 4 5 6 7 8 9 10

B A B A C B A C C B
C B C B E E B D I D
E C I E I G D I J E
J D K J K J G K K J

capture frequency 988 986 984 474 468 444 444 432 337 304

Table 22: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.7
Combinations 1 2 3 4 5 6 7 8 9 10

B A B A C A C B C B
C B C B E B D E I D
E C I E I D I G J E
J D K J K G K J K J

capture frequency 955 951 946 460 450 442 441 418 316 305

Table 23: 10 candidate sets and their capture frequency for the Model 6 with σ2=0.8
Combinations 1 2 3 4 5 6 7 8 9 10

B B A C A A B C C B
C C B E B B E D I D
E I C I E D G I J E
J K D K J G J K K J

capture frequency 889 887 862 412 400 398 385 372 312 278
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Table 22 shows that capture frequency for ”ABCD” is 951 which is still high when the

σ2 = 0.7, it is reduced to 862 when σ2 comes to 0.8 in Table 23. Therefore, in this case the

breakdown value is 0.8. And we also notice the combination ”BCEJ”and ”BCIK” both have

the high capture frequency whenever the value of σ2 changes from 0 to 0.7.

Similarly, we computer the 10 combinations with the smallest MSE when the response Y is

simulated from the model 6 with σ2 = 0.

Table 24: 10 candidate sets and their MSE values for the Model 6 with σ2 = 0
Combinations MSE

1 A B C D 6.2862 · 10−30

2 B C E J 6.7743 · 10−30

3 B C I K 8.5370 · 10−30

4 B D E J 1.0000 · 10+00

5 C I J K 1.0000 · 10+00

6 C E I K 1.0000 · 10+00

7 B E F J 1.0000 · 10+00

8 C E F J 1.1000 · 10+00

9 B E G J 1.1000 · 10+00

10 C D I K 1.1000 · 10+00

Table 24 shows the values of MSE for first three models are close to 0. The effects and

corresponding Coefficients are computed as follows:

Table 25: The effects and the corresponding coefficients of the models which are potential
equivalent to the Model 6

Combinations Effects Corresponding Coefficients
1 A B C D A B C D CD AB 2 3 2 1 3 0
2 B C E J B C E J BJ CJ 2 1 2 1 3 0
3 B C I K B C I K IK BC 1 3 1 1 3 0

Ignoring the insignificant effects, the significant effects for each combination are shown below:

Table 26: The significant effects of the models which are potential equivalent to the Model 6
Combinations Effects

1 A B C D A B C D CD
2 B C E J B C E J BJ
3 B C I K B C I K IK

Therefore, the equivalent models as the Model 6 are given by
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Model6.1:

Y6.1 = 2B + C + 2E + J + 3BJ + ε, ε ∼ N(0, σ2)

Model6.2:

Y6.2 = B + 3C + I +K + 3IK + ε, ε ∼ N(0, σ2)

The result for this situation is much clearer than the previous example, no other combina-

tions come up, only the combination ”BCEJ” and ”BCIK” among all the 330 candidate sets

can also explain the variation in the response simulated from the Model 6. We also observe

that Model 6.1 and Model 6.2 look quite similar as Model 6 in terms of the number and type

of the active factors and interactions. In other words, four main effects and an interaction

are involved in all these models.
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The third example is Model 7 from [15], which is

Y = 4A+B + C +D + 2AD + ε (31)

where ε ∼ N(0, σ2).

Note: We use A, B, C, D instead of the x1, x2, x3, x4 in [15], analogously, E, F,..., K represent

x5, x6, ..., x11.

Similarly, change the value of noise to find the breakdown value.

Table 27: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.1
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
H D D B B E D D C E
I I E I C I J E D H
K K J K D J K I E K

capture frequency 1000 1000 1000 1000 1000 997 612 516 279 269

Table 28: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.2
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
B D B D H E D D E B
C I I E I I E J H D
D K K J K J I K K E

capture frequency 1000 997 997 994 979 874 447 416 250 236

Table 29: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.3
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
B D D B H E D D C C
C I E I I I J E D D
D K J K K J K I J K

capture frequency 1000 966 958 936 886 723 395 389 289 276
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Table 30: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.4
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
B D B D H E D B C B
C I I E I I E D D D
D K K J K J I I K E

capture frequency 999 891 873 827 783 544 395 309 308 305

Table 31: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.5
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
B D B H D E D C C B
C I I I E I E D D D
D K K K J J I J K E

capture frequency 993 826 804 700 685 431 373 313 298 298

Table 32: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.6
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A D A A A A
B D B D H E D C B C
C I I E I I E D D D
D K K J K J I K I J

capture frequency 979 740 722 636 624 383 363 338 338 291

Table 33: 10 candidate sets and their capture frequency for the Model 7 with σ2 = 0.7
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A A A D A A
B D B H D D C E C B
C I I I E E D I D D
D K K K J I K J J I

capture frequency 904 684 662 571 496 344 336 311 295 289
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The breakdown value 0.7 for ABCD is suggested. We observe the candidate sets ADIK,

ABIK and ADEJ have the high capture frequency when σ2 ranges from 0.1 to 0.3, while

their capture frequencies go down quickly after σ2 = 0.4.

We compute 10 combinations with the smallest MSEs for this situation to see if these three

combinations are able to be the equivalent models as Model 7. Note the response Y are

simulated from the model 7 with σ2 = 0.

Table 34: 10 candidate sets and their MSE values for the Model 7 with σ2 = 0
Combinations MSE

1 A B C D 6.3922 · 10−30

2 A B I K 6.0000 · 10−01

3 A D I K 6.0000 · 10−01

4 D E I J 6.0000 · 10−01

5 A D E J 6.0000 · 10−01

6 A H I K 6.0000 · 10−01

7 A D J K 9.0000 · 10−01

8 A B D K 1.0000 · 10+00

9 A E H K 1.0000 · 10+00

10 A B D J 1.0000 · 10+00

We observe from Table 34 that there is no model equivalent to the original model since

the closest MSE value is 0.6. Thus, this example is quite simple.
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The last example is Model 8, which is

Y = 2A+ 4C + 2BC + 2CD + ε (32)

where ε ∼ N(0, σ2).

Note: We use A, B, C, D instead of the x1, x2, x3, x4 in [15], analogously, E, F,..., K represent

x5, x6, ..., x11.

Firstly, change the noise to see the breakdown value.

Table 35: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.1
Combinations 1 2 3 4 5 6 7 8 9 10

C C C C A A C B C B
G G F F C B D C D C
I H H G G C E H F G
K I K I I D K J K H

capture frequency 1000 1000 1000 1000 1000 1000 269 251 242 239

Table 36: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.2
Combinations 1 2 3 4 5 6 7 8 9 10

C C C C A A C B C B
G G F F C B D C D C
I H H G G C E H F G
K I K I I D K J K H

capture frequency 1000 1000 1000 1000 1000 1000 269 251 242 239

Table 37: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.3
Combinations 1 2 3 4 5 6 7 8 9 10

C C C C A A B C B C
G G F F C B C D C D
I H H G G C H E F F
K I K I I D J K H K

capture frequency 1000 1000 1000 1000 1000 1000 265 258 243 240
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Table 38: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.4
Combinations 1 2 3 4 5 6 7 8 9 10

C C C C A A C C B C
G G F F B C D D C D
I H H G C G E F H E
K I K I D I K K J H

capture frequency 1000 1000 1000 1000 1000 998 283 256 249 235

Table 39: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.5
Combinations 1 2 3 4 5 6 7 8 9 10

C C A A C C C B B C
G G B C F F D C C D
I H C G H G E H F F
K I D I K I K J H K

capture frequency 1000 1000 1000 996 992 992 256 255 246 235

Table 40: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.6
Combinations 1 2 3 4 5 6 7 8 9 10

A C C C C A B C C B
B G G F F C C D D C
C H I G H G H E F F
D I K I K I J K K H

capture frequency 997 994 989 970 960 959 249 235 221 217

Table 41: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.7
Combinations 1 2 3 4 5 6 7 8 9 10

A C C A C C C B B C
B G G C F F D C C D
C I H G G H E H G I
D K I I I K K J H K

capture frequency 988 970 968 904 893 891 247 246 239 223
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Table 42: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.8
Combinations 1 2 3 4 5 6 7 8 9 10

A C C C C A C B C C
B G G F F C D C D D
C I H G H G E H I E
D K I I K I K J K H

capture frequency 955 920 912 795 791 788 259 241 241 214

Table 43: 10 candidate sets and their capture frequency for the Model 8 with σ2=0.9
Combinations 1 2 3 4 5 6 7 8 9 10

A C C A C C B C C B
B G G C F F C D D C
C I H G G H H F E G
D K I I I K J K K H

capture frequency 915 859 844 698 684 665 236 228 221 220

Table 35-43 above suggest that the breakdown value for the noise is 0.9 since the cap-

ture frequency for ”ABCD” goes down to 915 from 955 when the noise changes from 0.9 to 0.8.

Similarly, the 10 combinations with the smallest MSEs are computed in Table 44 for this

situation where the response Y is simulated from the Model 8 with σ2 = 0

Table 44: 10 candidate sets and their MSE values for the Model 8 with σ2 = 0
Combinations MSE

1 C G H I 8.2436 · 10−30

2 A B C D 9.8805 · 10−30

3 C G I K 1.0788 · 10−29

4 C F H K 1.0886 · 10−29

5 C F G I 1.5432 · 10−29

6 A C G I 1.6043 · 10−29

7 C F G H 2.4000 · 10+00

8 B C G H 2.4000 · 10+00

9 B C F H 2.4000 · 10+00

10 C D F K 2.4000 · 10+00

Considering the first 6 models whose values of MSE are close to 0. The effects and

corresponding coefficients are shown in below table.
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Table 45: The effects and the corresponding coefficients of the models which are potential
equivalent to the Model 8

Combinations Effects Corresponding Coefficients
1 C G H I C H CI GI HI CH 3 1 1 2 1 0
2 A B C D A C BC CD D BD 2 4 2 2 0 0
3 C G I K C K CG GI GK CI 3 1 1 2 1 0
4 C F H K C F H K CH CK 4 2 1 1 1 1
5 C F G I C CG CI FG FI GI 4 1 1 1 1 2
6 A C G I A C AC CG CI GI 1 3 1 1 1 3

Ignoring the insignificant effects whose coefficients are quite small and very close to 0.

Table 46: The significant effects of the models which are potential equivalent to the Model 8
Combinations Effects

1 C G H I C H CI GI HI
2 A B C D A C BC CD
3 C G I K C K CG GI GK
4 C F H K C F H K CH CK
5 C F G I C CG CI FG FI GI
6 A C G I A C AC CG CI GI

Thus, the equivalent models as the Model 8 are as follows:

Model8.1:

Y8.1 = 3C +H + CI + 2GI +HI + ε, ε ∼ N(0, σ2)

Model8.2:

Y8.2 = 3C +K + CG+ 2GI +GK + ε, ε ∼ N(0, σ2)

Model8.3:

Y8.3 = 4C + 2F +H +K + CH + CK + ε, ε ∼ N(0, σ2)
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Model8.4:

Y8.4 = 4C + CG+ CI + FG+ FI + 2GI + ε, ε ∼ N(0, σ2)

Model8.5:

Y8.5 = A+ 3C + AC + CG+ CI + 3GI + ε, ε ∼ N(0, σ2)

We notice the capture frequency for the first 6 combinations in Table 35 to 40 has a big

difference to the last 4 ones and these 6 selections are perfectly consistent with the first 6

ones Table 44 without considering the order.

Also, we find that the capture frequency of combination ”ABCD” is going down slowly

as the noise increases. After the noise value larger than 0.6, its capture frequency becomes

the highest. However, ”C F G I”, ”C F H K” and ”A C G I”, the capture frequency of

them started to go down after the noise value is 0.4. We compute the variance-covariance

matrix between the ”Effects” of each model which is defined as (XTX)−1 to see if they are

less efficient. For experimental designs, efficiency is a measure of quality of a estimator.

Model 8.1:combination ”C G H I”

Table 47: variance-covariance matrix for ”CGHI”
1 C GI H HI CI CH

1 0.083333 0.00000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000
C 0.000000 0.11209239 -0.04891304 -0.01834239 0.037364130 -0.0061141 0.0163043
GI 0.000000 -0.04891304 0.13043478 0.04891304 -0.016304348 0.0163043 -0.0434783
H 0.000000 -0.01834239 0.04891304 0.11209239 -0.006114130 0.0373641 -0.0163043
HI 0.000000 0.03736413 -0.01630435 -0.00611413 0.095788043 -0.0020380 0.0054348
CI 0.000000 -0.00611413 0.01630435 0.03736413 -0.002038043 0.0957880 -0.0054348
CH 0.000000 0.01630435 -0.04347826 -0.01630435 0.005434783 -0.0054348 0.0978261

Model 8.2:combination ”A B C D”
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Table 48: variance-covariance matrix for ”ABCD”
1 C A BC CD D BD

1 0.083333 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000
C 0.000000 0.095788043 -0.01630435 -0.00611413 -0.0054348 -0.0020380 0.0373641
A 0.000000 -0.016304348 0.13043478 0.04891304 0.0434783 0.0163043 -0.0489130

BC 0.000000 -0.006114130 0.04891304 0.11209239 0.0163043 0.0373641 -0.0183424
CD 0.000000 -0.005434783 0.04347826 0.01630435 0.0978261 0.0054348 -0.0163044
D 0.000000 -0.002038043 0.01630435 0.03736413 0.0054348 0.0957880 -0.0061141

BD 0.000000 0.037364130 -0.04891304 -0.01834239 -0.0163043 -0.0061141 0.1120924

Model 8.3:combination ”C G I K”

Table 49: variance-covariance matrix for ”CGIK”
1 C GI GK CG K CI

1 0.08333333 0.00000000 0.000000 0.00000000 0.00000000 0.00000000 0.000000
C 0.00000000 0.11015625 -0.040625 0.03984375 -0.00390625 -0.01171875 -0.009375
GI 0.00000000 -0.04062500 0.112500 -0.00937500 0.01562500 0.04687500 -0.012500
GK 0.00000000 0.03984375 -0.009375 0.11015625 0.00390625 0.01171875 -0.040625
CG 0.00000000 -0.00390625 0.015625 0.00390625 0.09765625 0.04296875 -0.015625
K 0.00000000 -0.01171875 0.046875 0.01171875 0.04296875 0.12890625 -0.046875
CI 0.00000000 -0.00937500 -0.012500 -0.04062500 -0.01562500 -0.04687500 0.112500

Model 8.4:combination ”C F H K”

Table 50: variance-covariance matrix for ”CFHK”
1 C F H CH CK K

1 0.08333333 0.00000000 0.00000000 0.000000000 0.000000000 0.0000000 0.0000000
C 0.00000000 0.08333333 0.00000000 0.000000000 0.000000000 0.0000000 0.0000000
F 0.00000000 0.00000000 0.11111111 0.013888889 0.041666667 0.0416667 0.0138889
H 0.00000000 0.00000000 0.01388889 0.095486111 0.005208333 0.0364583 0.0017361

CH 0.00000000 0.00000000 0.04166667 0.005208333 0.109375000 0.0156250 0.0364583
CK 0.00000000 0.00000000 0.04166667 0.036458333 0.015625000 0.1093750 0.0052083
K 0.00000000 0.00000000 0.01388889 0.001736111 0.036458333 0.0052083 0.0954861



4 A NEWWAY FOR SCREENING IN A 12 RUN PB DESIGNWITH FOURACTIVE FACTORS48

Model 8.5:combination ”C F G I”

Table 51: variance-covariance matrix for ”CFGI”
1 C GI FI CG FG CI

1 0.083333 0.00000000 0.000000000 0.00000000 0.0000000 0.0000000 0.0000000
C 0.000000 0.13043478 -0.043478261 0.04891304 -0.0163043 0.0489130 -0.0163043
GI 0.000000 -0.04347826 0.097826087 -0.01630435 0.0054348 -0.0163044 0.0054348
FI 0.000000 0.04891304 -0.016304348 0.11209239 -0.0373641 0.0183424 -0.0061141
CG 0.000000 -0.01630435 0.005434783 -0.03736413 0.0957880 -0.0061141 0.0020380
FG 0.000000 0.04891304 -0.016304348 0.01834239 -0.0061141 0.1120924 -0.0373641
CI 0.000000 -0.01630435 0.005434783 -0.00611413 0.0020380 -0.0373641 0.0957880

Model8.6:combination ”A C G I”

Table 52: variance-covariance matrix for ”ACGI”
1 GI C AC CG CI A

1 0.08333333 0.00000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000
GI 0.00000000 0.13125 -0.04375000 -0.04375000 -0.01875000 -0.01875000 -0.05625
C 0.00000000 -0.04375 0.09791667 0.01458333 0.00625000 0.00625000 0.01875

AC 0.00000000 -0.04375 0.01458333 0.09791667 0.00625000 0.00625000 0.01875
CG 0.00000000 -0.01875 0.00625000 0.00625000 0.09791667 0.01458333 0.04375
CI 0.00000000 -0.01875 0.00625000 0.00625000 0.01458333 0.09791667 0.04375
A 0.00000000 -0.05625 0.01875000 0.01875000 0.04375000 0.04375000 0.13125

It’s hard to explain from the above tables why the last three models which are ”C F H

K”,”C F G I” and ”A C G I” are less efficiency than the first three ones.
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Since the capture frequencies for all models we got above is random, there will be slightly

difference every time we repeat it.

Let’s have a look at the variance of capture probability p which is the corresponding

proportion of the capture frequency. In general, for an indicator function I,we have

I =

0 with probability 1-p

1 with probability p

σp̂ =
√
V ar(p̂) =

√
p(1− p)

n
(33)

A capture probability in the range 0.8-0.99 gives a standard deviation in the range 1.26%-

0.31%. The largest standard deviation corresponds to a capture probability equal to 1/2 and

is 1.58%.
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We have a look at the D criteria which is one of popular efficiency criteria to be used to

check the design goodness. In this case, the parameter-estimator β is a vector and its variance

is a matrix. The inverse matrix of the variance-matrix (XTX)−1 is called the information

matrix. D-optimality seeks to minimize (XTX)−1, or equivalently maximize the determinant

of the information matrix of the design. Thus, it can be defined as

D = |XTX| (34)

We compute the D value for each model.

Model1(CGHI):D=18087936

Model2(ABCD):D=18087936

Model3(CGIK):D=15728640

Model4(CFHK):D=21233664

Model5(CFGI):D=18087936

Model6(ACGI):D=17694720

It is obvious to show that Model 4, combination CFHK has the maximum D value,

which suggests it has the highest efficiency. While this combination is one of the three whose

capture frequency started to go down quickly after the noise value 0.4, which seems less

efficient. Thus, the D criteria cannot explain this situation well.
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We continue to look at A criteria which seeks to minimize the trace of the inverse of the

information matrix. This criterion results in minimizing the average variance of the estimates

of the regression coefficients. It is defined as

A = tr(XTX)−1 (35)

Model1(CGHI):A=0.7273551

Model2(ABCD):A=0.7273551

Model3(CGIK):A=0.7552083

Model4(CFHK):A=0.6875

Model5(CFGI):A=0.7273551

Model6(ACGI):A=0.7375

Still, Model 4, the combination CFHK has the minimum A value, which suggests it has

the highest efficiency.

Therefore, in this paper, we cannot find the obvious characteristic for those equivalent

models as the Model 8, perhaps it happens just because of the randomness. After all, there
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are totally
(
11
4

)
= 330 projections onto four dimensions for the 12 run PB design. We reduced

it to five models in this case. Of course the correct set ABCD is among them and it always

has the equal or higher capture probability than the other nine candidate sets no matter how

the noise varies between 0.1 and 1.0.

4.2 Comparing the results

Although we still don’t get very high capture probability for Model 5 with our suggested

method, Table 53 shows the capture frequency for Model 5 is between 935 to 945 when σ2

varies from 0.1 to 0.3, which is still a satisfied result.

As for Model 6, Model7 and Model 8, Table 54, 55 suggest our suggested method performs

better than4R2-method, F mrethod and AIC method since higher values of σ2 are obtained.

Note that the result about 4R2-method, F method and AIC method are taken from[15].

Table 53: The capture frequencies for Model 5-8 with different values of σ2

σ2
Models

Model5 Model6 Model7 Model8

0.1 945 1000 1000 1000
0.2 937 1000 1000 1000
0.3 935 1000 1000 1000
0.4 843 1000 999 1000
0.5 674 998 993 1000
0.6 530 986 979 989
0.7 354 951 904 988
0.8 273 862 834 955
0.9 188 789 716 915
1.0 138 677 627 850



4 A NEWWAY FOR SCREENING IN A 12 RUN PB DESIGNWITH FOURACTIVE FACTORS53

Table 54: Values of σ2 for the 4R2-Method, F -Method, AIC-Method and our new method
for which we have capture probability of 1, first line, and ≥ 0.95, second line, for Model 5
and 6.

Model5 Model6

Capture
Probabilies

Methods
New Method 4R2 F AIC New Method 4R2 F AIC

1 - - - - 0.4 0.3 - -
≥ 0.95 0.1 - - - 0.7 0.6 0.2 -

Table 55: Values of σ2 for the 4R2-Method, F -Method, AIC-Method and our new method
for which we have capture probability of 1, first line, and ≥ 0.95, second line, for Model 7
and 8.

Model7 Model8

Capture
Probabilies

Methods
New Method 4R2 F AIC New Method 4R2 F AIC

1 0.3 0.3 0.3 - 0.5 - - -
≥ 0.95 0.6 0.5 0.5 - 0.8 0.2 0.2 -
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5 A real example

Xu, Phoa and Wong [11] reanalysed data from three chemical experiments and their pur-

pose was to demonstrate the shortcomings of the traditional analysis for 12 run PB design

where the interactions are ignored. In each experiment, they have discovered important but

missed interactions in the traditional analysis and the result shows all the new models they

suggested have improved fit to the data. We will now use the method suggested in this paper

to analyse the third of these examples where a two-step analytical methodology was devel-

oped to allow the chemical characterization of white grapes by simultaneously determining

their most important phenolic compound and organic acids. In this experiment, a 12 Run PB

design was used to select 8 factors. Factors and levels are given in Table 56 as taken from [11].

Table 56: Factors and levels for the Compound extraction experiment
Symbol Factor Unit Low(-) high(+)

A Extraction solvent Acid Water MeOH
B Extraction volume mL 50 250
C Extraction time min 5 20
D Temperature ◦C 40 50
E Extraction type Ultrasonic Stirring
F Sorbent type EC NEC
G Elution solvent EtOH MeOH
H Elution volume mL 20 150

We notice the design matrix and responses in their example are allocated to columns

in the same way as the one we use in this paper given in Table 3. Design matrix and the

corresponding response value are given in Table 57 as taken from [11].
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Table 57: Design matrix and response for the Compound extraction experiment
Run A B C D E F G H Y

1 + - + - - - + + 6.98
2 + + - + - - - + 5.31
3 - + + - + - - - 9.67
4 + - + + - + - - 6.45
5 + + - + + - + - 5.23
6 + + + - + + - + 5.34
7 - + + + - + + - 4.03
8 - - + + + - + + 3.76
9 - - - + + + - + 2.10
10 + - - - + + + - 2.65
11 - + - - - + + + 7.40
12 - - - - - - - - 7.14

Assuming 4 active factors among 8 factors, then there are totally
(
8
4

)
= 70 projections

onto four dimensions. Table 58 shows 10 candidate sets with the smallest MSE obtained by

our suggested method. Clearly, first set ACDF has a much smaller MSE comparing with

others. We will explore it further.

Besides, we observe from Table 58 that factor A,C,D are contained in five of the candi-

date sets with the smallest MSE and will be considered for further exploration.

We compute their corresponding models with 6 terms separately shown in Table 59.

Table 58: 10 candidate sets and their MSE values for the Compound extraction experiment
with the response given in Table 57

Combinations MSE
1 A C D F 0.0721
2 A B G H 0.1738
3 A C D G 0.2117
4 D E G H 0.2217
5 A C D E 0.2681
6 B E G H 0.3452
7 A C D H 0.3873
8 A B C D 0.3955
9 A C F G 0.5030
10 A D E H 0.6231
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Table 59: The effects and the corresponding coefficients of 10 candidate sets for compound
extraction experiment

Combinations Effects Corresponding Coefficients
1 A C D F AD C D AF F A 1.69 1.22 -1.11 -0.42 -0.28 -0.17
2 A C D G AD C D CD G CG 2.01 1.24 -1.09 -0.47 0.37 0.33
3 A C D E AD C D CD E DE 1.65 1.17 -1.14 -0.47 -0.39 0.31
4 A C D H AD C D A CD DH 1.77 1.01 -0.97 -0.36 -0.29 -0.20
5 A B C D AD C D A CD BD 1.63 1.15 -1.04 -0.58 -0.50 0.35

We obtain the following models with 6 effects with the highest absolute value by our

proposed method. Note that the intercept equals 5.505 ≈ 5.51.

Model CE 1(A C D F):

ŶCE1 = 5.51 + 1.22C − 1.11D + 1.69AD − 0.28F − 0.42AF − 0.17A

Model CE 2(A C D G):

ŶCE2 = 5.51 + 1.24C − 1.09D + 2.01AD − 0.47CD + 0.37G+ 0.33CG

Model CE 3(A C D E):

ŶCE3 = 5.51 + 1.17C − 1.14D + 1.65AD − 0.47CD − 0.39E + 0.31DE

Model CE 4(A C D H):

ŶCE4 = 5.51 + 1.01C − 0.97D + 1.77AD − 0.36A− 0.29CD − 0.20DH

Model CE 5(A B C D):
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ŶCE5 = 5.51 + 1.15C − 1.04D + 1.63AD − 0.58A− 0.50CD + 0.35BD

We perform ordinary regression on all the models. For Model CE 1, R2 = 0.995, the

residual standard error σ̂ = 0.234, the effect C,D,AD,AF are significant at a 1% level and

we observe AD and AF in this model do not obey the heredity principle. In the four other

models, we notice that effects C,D,AD are the only significant effects at a 1% level and R2 is

between 0.970 to 0.993 as given in Table 66. Therefore, we arrive at the same active effects,

C(Extraction time), D(Temperature) and interaction AD as in [11], but allowing four to be

active. We also found that AF was significant at a 1% level.

We observe from Table 58 that there are some candidate sets such as ABGH, DEGH

that can explain the variation well for this response.

This example was to demonstrate how 70 possible candidate sets could efficiently be re-

duced to five by our proposed mehod and then find the active factors by doing the ordinary

regression on them.

Let us now change the observed response to Y +1.5F , where Y is the response from Table

57 and F is an artificial main effect.

Table 60: 10 candidate sets and their MSE values for the Compound extraction experiment
with the response simulated from Y + 1.5F ,Y is given by Table 57.

Combinations MSE
1 A C D F 0.0721
2 C E G H 0.2397
3 C D G H 0.2877
4 A C G H 0.2913
5 A C E G 0.3157
6 B D E H 0.4882
7 A C D H 0.5017
8 A C F G 0.5030
9 A B C F 0.5058
10 C D E G 0.5251

We observe from Table 60 that the combination ”ACDF” is still the one with the smallest
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MSE,the corresponding model with 6 terms is given by Model NEW:

ŶNEW = 5.51 + 1.69AD + 1.22F + 1.22C − 1.11D − 0.42AF − 0.17A

Since the new response is the old response plus 1.5F, the only difference between Model

CE 1 and Model NEW is the coefficient of the effect ”F”. Doing ordinary regression with

the Model NEW, this model has R2 = 0.994 and the residual standard error σ̂ = 0.234. All

effects except ”A” in the Model NEW are significant at a 1% level. Thus, when the response

in this experiment has an added 1.5F where F is one of the factors, the significant effects

become C, D, AD, F and AF .

Hence, our algorithm was able to detect a model with four active factors and five active

effects in this situation.
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6 Concluding Remarks

In this paper, we have tested the ability of a projection based methods on factor screening.

We have only considered the situation where the number of candidate sets of active factors

is 11. The testing has been performed on the 12 run PB designs using four different models

with four active factors taken from [15]. The procedure is based on using projection models

with main effects and two-factor interactions included. Thus, every projection model has 11

terms including the constant. The number of terms in the projection models is reduced to

6 by picking up the 6 highest absolute value of coefficients. The aim of reducing the terms

is to simplify the alias relationship due to the complexity of confounding pattern of 12 Run

PB design.

Measured in capture frequency and corresponding capture probability, it turns out our

suggested method have capture probabilities equal to one or close to one for quite noisy data.

In other words, the breakdown value of the noise is quite high except for model 5, see Table

65 in Appendix B. Higher values of σ2 are observed by the suggested method than the values

obtained by 4R2-method, F-method and AIC method for model 6, 7 and 8 when the capture

is 1 or ≥ 0.95. As for the model 5, although no values of σ2 is obtained to reach the value

of at least 0.95 for capture probability by all the methods mentioned above, our suggested

method got it between 0.935 and 0.945 when σ2 varies from 0.1 to 0.3, which are quite close

to 0.95. Overall, the suggested method performs better than those three criteria for screening

four active factors for 12 Run PB design.

Furthermore, we found some equivalent models for each tested model among 330 projec-

tion ones especially the model 5 and model 8 which have 8 and 5 equivalent models separately.

We tried to find out the reason by looking at the information matrix, the results didn’t show

any valuable information. However, an assumption came out that the number of equivalent

models depends on the type of model, more two-factor interactions are more complicated

or the ratio of the number of main effects to the number of interactions in tested models

bigger, more equivalent models. Or the appearance of equivalent models is just due to the
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randomness.After all, 5 or 8 among 330 projection models is just a small number. The topic

is still open for more research.
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7 Appendix A

Codes below are to find the combination of 4 active factors among the 11 factors which has

the smallest MSE.

design.matrix <- function(){

A=c(1,1,-1,1,1,1,-1,-1,-1,1,-1,-1)

B=c(-1,1,1,-1,1,1,1,-1,-1,-1,1,-1)

C=c(1,-1,1,1,-1,1,1,1,-1,-1,-1,-1)

D=c(-1,1,-1,1,1,-1,1,1,1,-1,-1,-1)

E=c(-1,-1,1,-1,1,1,-1,1,1,1,-1,-1)

F=c(-1,-1,-1,1,-1,1,1,-1,1,1,1,-1)

G=c(1,-1,-1,-1,1,-1,1,1,-1,1,1,-1)

H=c(1,1,-1,-1,-1,1,-1,1,1,-1,1,-1)

I=c(1,1,1,-1,-1,-1,1,-1,1,1,-1,-1)

J=c(-1,1,1,1,-1,-1,-1,1,-1,1,1,-1)

K=c(1,-1,1,1,1,-1,-1,-1,1,-1,1,-1)

x= cbind(A,B,C,D,E,F,G,H,I,J,K)

return(x)

} #12 run

x

h=colnames(x)

h1=as.matrix(h)

####################################################################

a=c("A","B","C","D","E","F","G","H","I","J","K")

m=combn(a,4,FUN=NULL,simplify=TRUE)

V=as.matrix(m) #matrix(Row 4 Column 330)

####################################################################

n = dim(x)[1] # 12 Run
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T=0

numb.of.col =dim(V)[2]*dim(V)[1]# number of columns equals 330*4

header = rep(0,numb.of.col)

mat = matrix(0,n,numb.of.col) # design matrix 12*(330*4)

for (i in 1:330){

for (j in 1:4){

for(k in 1:11){

if (V[j,i]==h1[k,]){

T = T + 1

mat[,T]=x[,h1[k,]]

header[T]=h1[k,]

}}}}

colnames(mat)=header

mat #design matrix(Row 12 Column 330*4) for 330 candidate sets

#each with 4 terms(4 main factors).

####################################################################

n1 = dim(x)[1] # 12 Run

k=4 #the number of factors equals to 4

T1= 0

numb.of.col1 =330*( k+k*(k-1)/2)# number of columns equals 330*10

header1 = rep(0,numb.of.col1) # headers

ex.mat = matrix(0,n1,numb.of.col1) # extend design matrix 12*(330*10)

for (l in 0:329){

for (i in 1:k){

ex.mat[,(10*l+1):(10*l+k)] = mat[,(4*l+1):(4*l+k)] # Design matrix

header1[(10*l+1):(10*l+k)]= header[(4*l+1):(4*l+k)] # Make header

}}

colnames(ex.mat) = header1

ex.mat
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####################################################################

for (l in 0:329){

for (i in 1:k){

for (j in (i+1):k){

if (i != j & i != k){

T1 = T1 + 1

ex.mat[,4*(l+1)+T1] = mat[,4*l+i]*mat[,4*l+j]# Add 2-factor inter. columns

header1[4*(l+1)+T1] = paste(header[4*l+i],header[4*l+j],sep="")}

}}}

colnames(ex.mat) = header1

ex.mat #design matrix(Row 12 Column 330*10) for 330 candidate sets

#each with 10 terms(4 main factors and 6 two-factor interactions).

####################################################################

#general case for choosing the model

sim_10000_matrix=matrix(0,4,1000*10)

for (b in 1:1000){

#y<-A+C+B*C+C*D+rnorm(12,mean=0,sd=0.7)

#y<-G+I+H*I+I*K+rnorm(12,mean=0,sd=0)

#y<-2*A+3*B+2*C+D+3*C*D+rnorm(12,mean=0,sd=0.7)

#y<-4*A+B+C+D+2*A*D+rnorm(12,mean=0,sd=0)

y<-2*A+4*C+2*B*C+2*C*D+rnorm(12,mean=0,sd=0)

#y<-A+C+B*C+C*D+rnorm(12,mean=0,sd=0) #the response is fixed

#y<-c(0.54,-1.73,0.48,1.92,-2.02,2.06,1.44,0.99,-1.99,2.48,

#-2.59,-0.75)#the variance of the noise equals to 0.7

P= matrix(0,10,330)
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Q=matrix(0,6,330)

Effects=matrix(0,6,330)

for (l in 0:329) {

M=data.frame(ex.mat[,(10*l+1):(10*l+10)])

P[,l+1]=cbind((lm(y~1+M[,1]+M[,2]+M[,3]+M[,4]+M[,5]+M[,6]+

#M[,7]+M[,8]+M[,9]+M[,10])$coefficients)[-1])

Q[,l+1]=sort(abs(P[,l+1]),decreasing=TRUE)[1:6]

Effects[,l+1]=cbind(names(sort(abs((lm(y~1+M[,1]+M[,2]+M[,3]+M[,4]+

#M[,5]+M[,6]+M[,7]+M[,8]+M[,9]+M[,10])

#$coefficients)[-1]),decreasing=TRUE)[1:6]))}

Effects

for (l in 0:329){

for (j in 1:6){

for (i in 1:10){

if (abs(P)[i,l+1]==Q[j,l+1]){

Q[j,l+1]=P[i,l+1]

}}}}

Q #the coefficients for 6 effects which have the

#highest absolute value for all 330 candidate sets

##################################################################

for (k in 1:dim(Effects)[2]){

for (j in 1:10){

for (i in 1:6){

if (Effects[i,k]==paste("M[, ",toString(j),"]", sep="")){
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Effects[i,k]=j

}}}}

Effects #6 effects with the highest absolute value for all 330 candidate sets

##################################################################

New_design.mat1=matrix(0,12,6*dim(Effects)[2])

for (l in 0:329){

M=data.frame(ex.mat[,(10*l+1):(10*l+10)])

New_design.mat1[,(6*l+1):(6*l+6)]=cbind(M[,as.numeric(Effects[1,l+1])],

#M[,as.numeric(Effects[2,l+1])],M[,as.numeric(Effects[3,l+1])],

#M[,as.numeric(Effects[4,l+1])],M[,as.numeric(Effects[5,l+1])],

#M[,as.numeric(Effects[6,l+1])])

}

New_design.mat1 #the design matrix with 6 terms for all 330 candidate sets

##################################################################

yHat=matrix(0,12,330)

MSE=matrix(0,330,1)

intercept=(lm(y~1+M[,1]+M[,2]+M[,3]+M[,4]+M[,5]+

#M[,6]+M[,7]+M[,8]+M[,9]+M[,10])$coefficients)[1]

for (l in 0:329){

yHat[,l+1]=New_design.mat1[,(6*l+1):(6*l+6)]%*%Q[,l+1]+intercept

MSE[l+1,]=sum((y-yHat[,l+1])^2)/5 #the formula for MSE

}

MSE #the mean square error

##################################################################
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MSE=data.frame(MSE)

MSE_smallest=order(MSE)[1:10] #the column number of the 330 combinations

Eff=matrix(0,4,10)

for (i in 1:10){

Eff[,i]=V[,MSE_smallest[i]]

}

Eff #10 smallest MSE candidate sets when running the procedure once

sim_10000_matrix[,(10*b-9):(10*b)]=Eff

}

####################################################################

num<-matrix(0,1,330)

for (j in 1:330){

for (i in 1:10000){

if (paste(toString (sim_10000_matrix[, i]),sep="")==

#paste(toString (V[,j]),sep="")){

num[j]=num[j]+1

}}}

total <- t(rbind(V, num))

total<-data.frame(total)

colnames(total)[5]="num"

high_prob_rownames=order(num)[330:321]

sim_highprob_matrix=rbind(V[,high_prob_rownames],num[,high_prob_rownames])

sim_highprob_matrix #10 smallest MSE candidate sets with capture frequency

#The End
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8 Appendix B

Table 61: 10 candidate sets and their capture frequency for the Model 5 with σ2 equals to
0.5,0.6,. . . 1.0

Combinations 1 2 3 4 5 6 7 8 9 10
G A D C B C F F A C
H B G G G G G G C F
I C H H I I H I G H
K D I I K K I K I K

capture frequency 721 674 575 574 574 562 375 341 329 308
Combinations 1 2 3 4 5 6 7 8 9 10

G A C C D B A F C F
H B G G G G C G F G
I C H I H I G H H I
K D I K I K I I K K

capture frequency 549 530 451 419 402 399 259 233 229 228
Combinations 1 2 3 4 5 6 7 8 9 10

G A C C D B A A C F
H B G G G G F C F G
I C H I H I G G G H
K D I K I K I I I I

capture frequency 424 354 336 327 319 311 191 191 169 164
Combinations 1 2 3 4 5 6 7 8 9 10

G A D C C B A F A A
H B G G G G C G F F
I C H I H I G I H G
K D I K I K I K K I

capture frequency 326 273 245 243 243 228 167 152 144 143
Combinations 1 2 3 4 5 6 7 8 9 10

G C C B A D A A F A
H G G G B G F F G C
I H I I C H G H H G
K I K K D I I K I I

capture frequency 269 215 209 194 188 181 148 135 127 121
Combinations 1 2 3 4 5 6 7 8 9 10

G C C A D B A F C C
H G G B G G C G F F
I H I C H I G H G H
K I K D I K I I I K

capture frequency 214 165 162 138 136 132 131 112 111 107
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Table 62: 10 candidate sets and their capture frequency for the Model 6 with σ2 equals to
0.9 and 1.0

Combinations 1 2 3 4 5 6 7 8 9 10
B B A C A C A B C C
C C B E B D B E I G
I E C I E I D G J I
K J D K J K G J K K

capture frequency 827 799 789 432 392 377 361 332 314 306
Combinations 1 2 3 4 5 6 7 8 9 10

B B A C A C A B C C
C C B E B D B E G I
I E C I E I D G I J
K J D K J K G J K K

capture frequency 716 694 677 405 377 352 340 321 310 296

Table 63: 10 candidate sets and their capture frequency for the Model 7 with σ2 equals to
0.8,0.9 and 1.0

Combinations 1 2 3 4 5 6 7 8 9 10
A A A A A A A A A D
B D B H D C B D D E
C I I I E D D E G I
D K K K J K I I J J

capture frequency 834 616 583 489 453 315 312 310 298 293
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A A A A A A
B B D H D D D B C C
C I I I E E G D D D
D K K K J I J I K J

capture frequency 716 519 512 430 377 309 298 295 292 262
Combinations 1 2 3 4 5 6 7 8 9 10

A A A A A A A A A A
B B D H D D D B C C
C I I I E E G D D D
D K K K J I J I K J

capture frequency 627 464 440 385 330 301 297 280 274 250
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Table 64: 10 candidate sets and their capture frequency for the Model 8 with σ2=1.0
Combinations 1 2 3 4 5 6 7 8 9 10

A C C A C C C C C B
B G G C F F D D D C
C I H G H G F E E H
D K I I K I K K H J

capture frequency 850 776 763 586 582 578 245 242 238 227

Table 65: The beakdown values for each tested model
Model 5 Model 6 Model 7 Model 8

Breakdown value 0.2 0.8 0.7 0.9

Table 66: Ordinary regression analysis on the Model CE 1-5 in the Compound extraction
experiment

R2 σ̂ Significant effects at a 1% level
Model CE 1 0.995 0.234 C,D,AD,AF
Model CE 2 0.993 0.295 C,D,AD
Model CE 3 0.992 0.321 C,D,AD
Model CE 4 0.970 0.627 C,D,AD
Model CE 5 0.975 0.575 C,D,AD


