
Summary

In this thesis we study ideals in Dedekind domains, which factorize uniquely into a prod-
uct of prime ideals. Since not every Dedekind domain is a unique factorization domain, a
general element in these domains does not necessarily factorize uniquely, so it is interest-
ing that ideals has this property.

Norsk sammendrag:
I denne teksten studerer vi idealer i Dedekind-områder, som faktoriseres til et unikt pro-
dukt av primidealer. I et Dedekind-område er det ikke nødvendigvis slik at et generelt
element faktoriseres unikt, så det er interessant at idealer har denne egenskapen.
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Chapter 1
Introduction

It is well known that in Z, the ring of integers, elements factorize uniquely into a product
of prime numbers. If we extend this ring with an element of the form

√
n where n ∈ Z,

we obtain a ring which does not necessarily have the property of its elements factorizing
uniquely. However, these rings will be Dedekind domains for certain values of n, and
in Dedekind domains nonzero proper ideals factorize uniquely into a product of nonzero
prime ideals. The main objective of this thesis is to prove this fact. This was first done
by the German mathematician Julius Wilhelm Richard Dedekind, in connection with his
work on algebraic number theory.

To that end, we start by looking at integral domains along with the aforementioned
ideals and prime ideals in Chapter 2. In Chapter 3 we present the notion of Noetherian
domains, which is of importance as it is part of both the definition of Dedekind domains,
and the proof of our main theorem. We move on to discuss additional types of domains in
Chapter 4, namely Euclidean domains, principal ideal domains and unique factorization
domains, before we define an algebraic number field in Chapter 5, and its associated ring
of integers. In Chapter 6 we prove that this ring is in fact a Dedekind domain, and we give
the proof of our main theorem.
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Chapter 2
Integral domains and ideals

2.1 Commutative rings
Assuming the reader to be familiar with basic algebraic concepts and group theory, we
start by defining a ring. It needs to be pointed out that all rings in this thesis will be rings
with unity, i.e. rings containing a multiplicative identity element 1.

Definition. A ring R is a nonempty set with binary operations + and ·, such that for all
elements a, b, c ∈ R we have the following:

i) (R,+) is an abelian group.

ii) Multiplication is associative: (ab)c = a(bc).

iii) The distributive laws hold: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

iv) 1 ∈ R is the multiplicative identity such that 1 · a = a · 1 = a

From here we immediately define a commutative ring.

Definition. A commutative ring R is a ring in which multiplication is commutative, that
is ab = ba for all a, b ∈ R.

Example 2.1.1. The set of integers Z is clearly a ring. As multiplication by integers is
known to be commutative, Z is also a commutative ring.

In this thesis we are only interested in commutative rings, and from this point on every
ring stated is a commutative ring. In order to simplify the method of concluding that a
given set is in fact a ring, we give the definition of a subring.

Definition. Let (R,+,·) be a ring and S a nonempty subset of R. Then S is called a
subring if (S,+,·) is itself a ring.

Example 2.1.2. Trivially, Z is a subring of Q, the ring of rational numbers.
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Theorem 2.1.3. A nonempty subset S of a ring R is a subring if and only if S contains
the multiplicative identity 1 of R, and for all a,b ∈ S we have a− b ∈ S and ab ∈ S.

Example 2.1.4. Let R be a ring and R[x] the polynomial ring over R. Let S be a set
consisting of polynomials of the form

a0 + a2x
2 + · · ·+ anx

n

where n = 0 or n ≥ 2 and ai ∈ R, i.e. polynomials over R for which the coefficient of x
is zero. Then S is a subset ofR[x], contains the multiplicative identity, and is closed under
multiplication and subtraction, making it a subring of R[x] by Theorem 2.1.3.

Next, we move on to a special class of rings which gives us a natural setting for study-
ing divisibility.

2.2 Integral domains
As every ring will be a commutative ring, every integral domain will be a commutative
integral domain, as stated in the following definition:

Definition. An integral domain D is a ring that has no divisors of zero, that is, if ab = 0
either a = 0 or b = 0.

Furthermore, if for every a ∈ D where a 6= 0, there exits b ∈ D with ab = 1, every
nonzero element in D has an inverse. In this case D is called a field. If a field is a subring
of another field, it is called a subfield.

Theorem 2.2.1. Every subring of a field that contains the identity, is an integral domain.

Proof. Let R ⊆ F be a subring of a field F . Assume that for x, y ∈ R we have xy = 0.
Now, since x, y ∈ F and R and F has the same zero element, either x = 0 or y = 0, and
so R has no divisors of zero. Since all our rings contain 1, R is an integral domain.

Note that an integral domain need not be a field, but from every integral domain we
may construct a field by inverting all the nonzero elements, obtaining the quotient field of
the integral domain.

Definition. Let D be an integral domain. The quotient field of D, denoted Quot(D) is
defined as

Quot(D) = {a · b−1 | a, b ∈ D, b 6= 0}.

Example 2.2.2. In the ring Q, elements can be written as fractions a/b where a and b 6= 0
are integers. The additive inverse of such fractions are−a/b, and the multiplicative inverse
is b/a for a 6= 0. It is clear that Q contains no divisors of zero, and so Q is a field.

In example 2.1.2 we stated that Z is subring of Q, hence, by Theorem 2.2.1, Z is an
integral domain. Also, we observe that

Quot(Z) = {a · b−1 | a, b ∈ Z, b 6= 0} = Q,

so Q is in fact the quotient field of Z.
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At this point we have already seen that Z is both a ring and an integral domain.
Throughout this thesis we will show several more properties of Z as we go along. Also,
we will see the consequences of extending Z with an element which is not part of the ring
already. We will look at elements of the form

√
n, where n ∈ Z, and obtain the set

Z[
√
n] = {a+ b

√
n | a, b ∈ Z}.

Z[
√
n] is an integral domain, as it is a subset of C, which is a field. Then, since Z[

√
n] is

closed under subtraction and multiplication, and contains 1, it is a subring of C, thus an
integral domain by Theorem 2.2.1.

In order for
√
n not to be in Z already, we consider n to be squarefree, meaning that

in the prime factorization of n, no prime number occurs more than once. As an example
of n not being squarefree, look at n = 4 = 2 · 2. Then

Z[
√
4] = Z[2] = Z,

and we have not extended Z at all. Now, there are integers n that are not squarefree for
which

√
n is not in Z, but in this case Z[

√
n] will always be a subring of a domain Z[

√
m]

where m is a squarefree integer. For example, in the case where n = 24, which is not
squarefree, we obtain

Z[
√
24] = Z[2

√
6] ⊆ Z[

√
6],

and m = 6 is squarefree. Also, note that Z[
√
n] will not be an extension of Z in the case

where n = 1, as
Z[
√
1] = Z[1] = Z.

We now turn to a special class of subsets of rings, called ideals, which have the prop-
erty of being closed under addition and multiplication by elements of the ring.

2.3 Ideals
Definition. A nonempty subset I of a ring R is called an ideal of R if

i) a, b ∈ I implies a− b ∈ I .

ii) a ∈ I and r ∈ R imply ra ∈ I .

Actually, the definition above gives only a left ideal, but recalling that all rings stated
here are commutative, all left (and right) ideals are two-sided. We state that every ring R
has at least two ideals, namely the trivial ideals R and 〈0〉.

Definition. An ideal I of a ring R is called a proper ideal of R if I 6= 〈1〉.

This means that a proper ideal of a ring R is an ideal I such that I ( R, as 〈1〉
generates the whole ring.

Proposition 2.3.1. If I is an ideal in a ring R, then I = R if and only if 1 ∈ I .
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Proof. Suppose I = R. Every ring R contains the identity element, hence 1 ∈ I .
Now assume 1 ∈ I , and let r ∈R. As I is an ideal we have 1 · r = r ∈ I , hence I = R.

Example 2.3.2. Let I 6= 〈0〉 be an ideal of a field F , and let a ∈ I . Then a ∈ F . We know
that ra ∈ F for any r ∈ F . Since F is a field, a has an inverse a−1, and so a−1a = 1 ∈ I .
With the identity element of F in I we must have that I = F , making 〈0〉 and F the only
ideals of F .

To move on, we look at some additional examples of ideals.

Example 2.3.3. Let R be a ring and r ∈ R. Then rR = (ra | a ∈ R) is the ideal of R
generated by r. We then denote 〈r〉 to be the principal ideal of R generated by r.

Definition. A principal ideal ring is a ring R in which every ideal is principal.

Example 2.3.4. We want to show that Z is a principal ideal ring. Let I be an ideal of Z.
If I = {0} then I = 〈0〉 is a principal ideal, so we assume I 6= {0}. Then we have an
element a ∈ I , where a 6= 0. Since also −a ∈ Z, we may suppose a > 0, and hence I has
at least one positive integer. Now let n denote the least positive integer in I . By dividing
a by n we can express a as

a = nq + r

for some q, r ∈ Z, where 0 ≤ r < n. Since a and n are elements of the ideal I , so is
r = a− nq. To avoid a contradiction with the fact that n is the least positive integer in I ,
we must have that r = 0, making a = nq. Hence I = 〈n〉 = nZ. This shows that every
ideal in Z is principal, making Z is a principal ideal ring.

In chapter 4 we will revisit the above example, and see that Z is an example of what
we call a principal ideal domain. The next section of this chapter, we dedicate to prime
ideals, which play a central role in this thesis.

2.4 Prime ideals
Definition. An ideal P ( R of a ring R is called a prime ideal if a, b ∈ R and ab ∈ P
implies a ∈ P or b ∈ P .

Example 2.4.1. For each prime integer p, the ideal 〈p〉 in Z is a prime ideal.

Actually, the above holds only for prime integers, and for each n ∈ Z not a prime
integer, we can show that 〈n〉 is not a prime ideal.

Example 2.4.2. For 8Z we have 2, 4 ∈ Z and 2 · 4 ∈ 8Z, but 2, 4 /∈ 8Z, so 8Z is a proper
ideal of Z, but not a prime ideal.

Going back to integral domains, it is now clear that 〈0〉 is a prime ideal in any integral
domain D. In fact, if 〈0〉 is a prime ideal in a ring D, and we let a, b ∈ D be elements
such that ab ∈ 〈0〉, then either a ∈ 〈0〉 or b ∈ 〈0〉. Now ab = 0 which implies that a = 0
or b = 0, hence D is an integral domain. We end up with the equivalence:

A ring D is an integral domain ⇐⇒ 〈0〉 is a prime ideal in D.
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Closely related to prime ideals we have maximal ideals.

Definition. A proper ideal M of a ring R is called a maximal ideal if for an ideal I of R
such that M ⊆ I ⊆ R, either I = M or I = R.

Now that we have defined both a prime ideal and a maximal ideal, we will move on
with some results regarding the two.

Theorem 2.4.3. Let I be an ideal of the ring R. Then we have that

R/I is a field ⇐⇒ I is maximal.

Proof. Suppose R/I is a field and that J is an ideal of R with

I ( J ⊆ R.

Thus there exists b ∈ J such that b /∈ I . Then b + I is a nonzero element of R/I and
therefore, as R/I is a field, there exists an element c+ I ∈ R/I such that

(b+ I)(c+ I) = bc+ I = 1 + I ,

and so

bc− 1 ∈ I ( J .

Since b ∈ J and c ∈ R we have

bc ∈ J .

Hence

1 = bc− (bc− 1) ∈ J ,

so that J = 〈1〉 = R. Thus I is a maximal ideal. Conversely, let I be a maximal ideal, and
assume R/I is not a field. Then there exists an element r + I ∈ R/I not a unit, hence
1 + I /∈ 〈r〉+ I , which implies 〈r〉 ( R. Since r + I 6= 0 + I , r /∈ I and then

I ( 〈r〉+ I ( R,

which contradicts with I being maximal. Hence R/I is a field.

For our next result we need to define prime elements. We are familiar with the fact that
a prime number can not be factorized into a product of two integers other than itself and 1.
More generally, for a prime p where p = ab, a or b must be a unit. In Z the only units are
±1, and the prime elements are exactly the prime numbers. There is a second property of
prime elements though, stating that if p|ab, then either p|a or p|b. These two properties of
a prime element are equivalent in Z, but not in general. However, the second one can be
shown to always imply the first one, and so we define prime elements as follows.

Definition. A nonzero element p ∈ R is a prime in the ring R if p is not a unit, and if p|ab
for some a, b ∈ R, then either p|a or p|b.

Theorem 2.4.4. Let R be a ring. Let p ∈ R be such that p 6= 0 and not a unit. Then

〈p〉 is a prime ideal of R ⇐⇒ p is a prime in R.
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Proof. Let 〈p〉 be a prime ideal of R, and let a, b ∈ R be such that p|ab, i.e. ab ∈ 〈p〉. As
〈p〉 is a prime ideal, a ∈ 〈p〉 or b ∈ 〈p〉, leading to p|a or p|b. Hence p is prime in R.

Conversely, assume that p is a prime in R, and let a ∈ R and b ∈ R such that ab ∈ 〈p〉.
Then there exists c ∈ R such that ab = pc, and then p|ac. Since p is a prime we have that
p|a or p|b. Suppose now p|a. Then there exists d ∈ R such that a = pd and so a ∈ 〈p〉,
hence 〈p〉 is a prime ideal. In the same way, if p|b there exists an element e ∈ R such that
b = pe, and so b ∈ 〈p〉, making 〈p〉 a prime ideal in this case as well.

Theorem 2.4.5. For a ring R and an ideal I of R we have that

R/I is an integral domain ⇐⇒ I is a prime ideal.

Proof. Assume R/I to be an integral domain. Let a, b ∈ R such that ab ∈ I . Then

(a+ I)(b+ I) = ab+ I = 0 + I

is the zero element of R/I . Since an integral domain has no zero divisors, we must have
a+ I = 0 + I or b+ I = 0 + I . This means that a ∈ I or b ∈ I , so I is a prime ideal.

Conversely, suppose that I is a prime ideal of R. As I then is a proper ideal of R, R/I
is a ring with identity 1 + I . Now let a+ I ∈ R/I and b+ I ∈ R/I such that

(a+ I)(b+ I) = 0 + I.

Then ab+I = I so that ab ∈ I . Since I is prime either a ∈ I or b ∈ I , that is, a+I = 0+I
or b+ I = 0 + I , hence R/I has no zero divisors, and so R/I is an integral domain.

Theorem 2.4.6. For a ring R a maximal ideal I is also a prime ideal.

Proof. For I a maximal ideal of R, we have by Theorem 2.4.3 that R/I is a field, which
is always an integral domain. By Theorem 2.4.5 I is then also a prime ideal of R.

Before giving two additional results, we define multiplication of ideals.

Definition. Let I and J be ideals in a ring R. Then the product of I and J , denoted IJ is
defined by

IJ = {x ∈ R | x = i1j1 + · · ·+ irjr for some r ∈ N,
some i1, ..., ir ∈ I, and some j1, ..., jr ∈ J}.

If I = 〈i〉 and J = 〈j〉 are principal ideals, then IJ = 〈ij〉. In addition, we state the
following properties for ideals I , J and K of a ring R:

1. IJ is itself an ideal of R.

2. IJ = JI .

3. (IJ)K = I(JK).

4. I〈0〉 = 〈0〉.

5. I〈1〉 = I .

8



We end this chapter with our two last results concerning prime ideals.

Theorem 2.4.7. Let P be a proper ideal of a ring R. Then we have that

P is prime ⇐⇒ for ideals A,B of R satisfying AB ⊆ P , either A ⊆ P or B ⊆ P .

Proof. Assume P to be a proper ideal of R meeting the requirement of ideals A, B of R

AB ⊆ P ⇒ A ⊆ P or B ⊆ P .

Let a, b ∈ R such that ab ∈ P . Now let A = 〈a〉 and B = 〈b〉, making AB = 〈ab〉 ⊆ P .
From here we obtain that 〈a〉 ⊆ P or 〈b〉 ⊆ P , and so a ∈ P or b ∈ P , making P a prime
ideal. For the converse, let P not meet the requirement above. Then there exist ideals A
and B of R, such that A * P , B * P and AB ⊆ P . Next, let a ∈ A, a /∈ P and b ∈ B,
b /∈ P . Then ab ∈ AB ⊆ P , but a /∈ P , b /∈ P , so P is not a prime ideal, and this
completes the proof.

Theorem 2.4.8. Let D and E be rings where D ⊆ E. Let P be a prime ideal of E. Then
P ∩D is a prime ideal of D.

Proof. First we must verify that P ∩D is in fact an ideal of D. For elements a, b ∈ P ∩D
we have a, b ∈ P and a, b ∈ D. Now, since P is an ideal, a + b ∈ P and a + b ∈ D.
Hence a + b ∈ P ∩D. Now let a ∈ P ∩D and d ∈ D. Then, since P is an ideal of E,
a ∈ P and d ∈ D, da ∈ P , and as a ∈ D and d ∈ D, da ∈ D as well, since D is closed
under multiplication. Hence da ∈ P ∩D, and P ∩D is an ideal of D.

Now it only remains to show that P ∩D is a prime ideal. Let a, b ∈ D and ab ∈ P ∩D.
Then a, b ∈ E and ab ∈ P . Since P is a prime ideal of E, a ∈ P or b ∈ P , showing that
P ∩D is a prime ideal, and thus completing the proof.
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Chapter 3
Noetherian domains

In this chapter we will define Noetherian domains, which will reappear in our definition
of a Dedekind domain in the final chapter. We start by defining modules, and see how they
give rise to Noetherian rings.

3.1 Modules
Definition. Let R be a ring, M an additive abelian group and (r,m) 7→ rm a mapping of
R×M 7→M such that

i) r(m1 +m2) = rm1 + rm2,

ii) (r1 + r2)m = r1m+ r2m,

iii) (r1r2)m = r1(r2m),

iv) 1m = m,

for all r, r1, r2 ∈ R and m,m1,m2 ∈M . Then M is called a left R-module.

Again, considering only commutative rings saves us the trouble of distinguishing be-
tween left and right, and we consider a left and right R-module to be the same thing,
simply denoting them R-modules.

Example 3.1.1. A ring R becomes itself an R-module by defining am for a,m ∈ R to be
the product of a and m as elements of the ring R.

Definition. For a ring R and an R-module M , a subgroup N of M is called a submodule
of M if rn ∈ N for all r ∈ R and n ∈ N .

Example 3.1.2. If, like in the previous example, the ring R is considered an R-module,
the submodules of R are the ideals of R.
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Before moving on to Noetherian and Artinian modules, we define a finitely generated
module.

Definition. An R-module M is finitely generated if M is generated by some finite set of
elements of M .

This means that in order to be a finitely generated R-module, M need to have finitely

many elements x1, ..., xn ∈ M such that each x ∈ M can be expressed as
n∑

i=1

rixi with

coefficients ri ∈ R.

3.2 Noetherian and Artinian rings
In order to avoid giving basically the same definition twice, we define a Noetherian and
an Artinian module simultaneously, presenting the conditions of an Artinian module in
brackets, as our main concern will be the Noetherian case.

Definition. AnR-module is called Noetherian (Artinian) if for every ascending (descend-
ing) chain of submodules of M ,

M1 ⊆M2 ⊆M3 ⊆ · · · (M1 ⊇M2 ⊇M3 ⊇ · · ·)

there exists a positive integer k such that Mk =Mk+1 =Mk+2 = · · · .

Example 3.2.1. We have shown that in the ring Z every ideal is principal, making any
ascending chain of ideals of Z of the form

〈n1〉 ⊆ 〈n2〉 ⊆ 〈n3〉 ⊆ · · ·

for n1, n2, n3, ... ∈ Z. Since 〈ni〉 ⊆ 〈ni+1〉 implies ni+1|ni, any ascending chain of ideals
in Z starting with n1 will have a finite number of distinct terms, making Z as a Z-module
Noetherian. On the other hand, the descending chain

〈n〉 ⊇ 〈n2〉 ⊇ 〈n3〉 ⊇ · · ·

is infinite, showing that Z as a Z-module is not Artinian.

Definition. A ring R is a Noetherian (Artinian) ring if R regarded as an R-module is
Noetherian (Artinian).

Now that we have defined what it means for both a module and a ring to be Noetherian
(Artinian), we will present one of the main results for Noetherian (Artinian) modules with
a proof for the Noetherian case, and then rewrite the result for Noetherian (Artinian) rings.

Theorem 3.2.2. For M an R-module, the following are equivalent:

i) M is Noetherian (Artinian).

ii) Every submodule (quotient module) of M is finitely generated (cogenerated).

iii) Every nonempty set S of submodules of M has a maximal (minimal) element.

12



Proof. (i) =⇒ (ii): Let M be a Noetherian module and N a submodule of M , where N
is assumed not to be finitely generated. For a positive integer k let n1, ..., nk ∈ N . Then
(n1, ..., nk) 6= N , and we choose nk+1 ∈ N such that nk+1 /∈ (n1, ..., nk). This gives an
infinite ascending chain of submodules of M

(n1) ( (n1, n2) ( · · · ( (n1, ..., nk) ( (n1, ..., nk+1) ( · · · ,

contradicting with M being Noetherian. Hence N is finitely generated.
(ii) =⇒ (iii): Let M be an R-module where every submodule is finitely generated,

and let S be a nonempty set of submodules of M . Then, if an element N1 ∈ S is not
maximal, it is contained in another submodule N2 ∈ S. If S has no maximal elements, we
obtain an infinite ascending chain of submodules

N1 ( N2 ( · · ·

of M . Let N = N1 ∪N2 ∪ · · · , and let x, y ∈ N and r ∈ R. Then x ∈ Ni and y ∈ Nj for
i, j ∈ {1, 2, ...} and i 6= j. Now, since either Ni ⊆ Nj or Nj ⊆ Ni, both x and y lie in Ni

or Nj , hence x− y and rx lie in the same submodule. This again implies x− y ∈ N and
rx ∈ N , making N a submodule of M . From (ii) N is finitely generated, i.e. there exist
elements a1, a2, ..., an ∈ N such that N = (a1, a2, ..., an). There exists a submodule Nk

such that all al ∈ Nk for l = 1, 2, ..., n. Since Nk ⊆ N and N is the smallest submodule
containing all al, we must have that Nk = N . Then Nk = Nk+1 = · · · , contradicting
with S not having a maximal element, hence S has a maximal element.

(iii) =⇒ (i): Assume we have an ascending chain of submodules of M

M1 ⊆M2 ⊆M3 ⊆ · · · .

By (iii) this chain has a maximal element Mk, implying Mk =Mk+1 = · · · . Hence M is
Noetherian.

Theorem 3.2.3. Let R be a ring. Then the following are equivalent:

i) R is Noetherian (Artinian).

ii) For I an ideal of R, we have that I (R/I) is finitely generated (cogenerated).

iii) Every nonempty set S of ideals of R has a maximal (minimal) element.

We see that Noetherian (Artinian) rings provides us with the useful property that every
set of ideals of the ring has a maximal (minimal) element. The same holds for Noetherian
(Artinian) modules and the set of their submodules, as we just proved. Obviously it is
desirable to be able to determine whenever a ring or a module is Noetherian (Artinian).
From [1, section 19.2] we make the following remarks.

Remark. 1. If R is an Artinian ring it is also Noetherian.

2. Every principal ideal ring is a Noetherian ring.

Theorem 3.2.4. Every submodule of a Noetherian (Artinian) module is Noetherian (Ar-
tinian).

Proof. The result follows immediately from Theorem 3.2.2.
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Example 3.2.5. Consider Q. In example 2.2.2 we saw that Q is a field, and so by example
2.3.2 the only ideals of Q are 〈0〉 and Q itself. Clearly the chain Q ⊇ 〈0〉 has a minimal
element, and so Q is Artinian. Then we know that Q is also Noetherian.

Now look at Z which is a subring of Q, as we have seen earlier. In example 3.2.1 we
saw that Z as a Z-module is Noetherian, but not Artinian. Then, from the definition of an
Artinian ring we can conclude that Z is not an Artinian ring, even though it is a subring of
an Artinian ring.

We finish this chapter by defining Noetherian domains.

Definition. A Noetherian domain D is an integral domain which is Noetherian.

Example 3.2.6. We have shown earlier that Z is an integral domain, and that it is Noethe-
rian. Hence Z is a Noetherian domain.

In the following chapter we will define three more domains, namely Euclidean do-
mains, principal ideal domains, and unique factorization domains.

14



Chapter 4
Euclidean domains, PIDs and UFDs

4.1 Norms

Leading up to defining Euclidean domains, principal ideal domains and unique factoriza-
tion domains, we start by defining the norm of elements in Z[

√
n].

Definition. The norm of an element x ∈ Z[
√
n], where n is a squarefree integer and

x = (a+ b
√
n) for some a, b ∈ Z, is the integer defined by

N (x) = |x · x| = |(a+ b
√
n)(a− b

√
n)| = |a2 − nb2|.

Notice that x represents the conjugate of x, and not the complex conjugate, as x is not
a complex number when n > 0. Also, in the case where b = 0, we have x ∈ Z, and the
norm simply becomes N (x) = a2. If both a = 0 and b = 0, that is x = 0, we obviously
obtainN (x) = 0, but since n is a squarefree integer the implication goes the other way as
well. For N (x) = 0 we have

|a2 − nb2| = 0,

implying a2 = nb2. Since n is squarefree it factorizes into k distinct primes, that is
n = p1 · · · pk, where pi 6= pj for i 6= j and i, j ∈ {1, ..., k}. We write

a2 = p1 · · · pk · b2.

Now, if b = 0 we get a = 0 and so x = 0. Therefore, assume that b 6= 0. Then we may
write

a2

b2
= p1 · · · pk,

which after taking the square root of each side yields

a

b
=
√
p1 · · · pk.
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This however, is a contradiction as a/b ∈ Q, but
√
p1 · · · pk /∈ Q. Hence the only conclu-

sion is that a = b = 0, making x = 0. This shows that

N (x) = 0 ⇐⇒ x = 0.

We will make use of the norm later, when we look at elements of Z[
√
n] being irreducible,

but first we present two results regarding the norm.

Theorem 4.1.1. For x, y ∈ Z[
√
n], where n is a squarefree integer, we have that

N (xy) = N (x) · N (y).

Proof. Let x = (a+ b
√
n) and y = (c+ d

√
n), where a, b, c, d ∈ Z. Then we obtain

xy = (a+ b
√
n)(c+ d

√
n) = (ac+ bdn) + (ad+ bc)

√
n,

so that

xy = (ac+ bdn)− (ad+ bc)
√
n.

The norm then becomes

N (xy) = |xy · xy| = |(ac+ bdn)2 − n(ad+ bc)2|
= |(ac)2 + n(2abcd) + (nbd)2 − n(ad)2 − n(2abcd)− n(bc)2|
= |(ac)2 − n(ad)2 − n(bc)2 + (nbd)2|.

Now we look at the norm of x and y, and multiply them together.

N (x) · N (y) = |a2 − nb2| · |c2 − nd2|
= |(a2 − nb2)(c2 − nd2)|
= |(ac)2 − n(ad)2 − n(bc)2 + (nbd)2|.

We see that N (xy) = N (x) · N (y).

Theorem 4.1.2. For u ∈ Z[
√
n], and n a squarefree integer, we have that

u is a unit ⇐⇒ N (u) = 1.

Proof. Let u = (a + b
√
n) ∈ Z[

√
n] and assume u is a unit. Then u has an inverse

u−1 ∈ Z[
√
n] such that uu−1 = 1. This means that N (1) = N (uu−1), and we obtain

N (uu−1) = N (u) · N (u−1) from Theorem 4.1.1. Now, since N (1) = 12 = 1, also
N (u)·N (u−1) = 1, which impliesN (u) = N (u−1) = 1, since they are both nonnegative
integers. For the converse we assume that N (u) = 1. Then

N (u) = |(a+ b
√
n)(a− b

√
n)| = 1.

This implies that (a + b
√
n)(a − b

√
n) = ±1, and so ±(a − b

√
n) is the inverse of

u = (a+ b
√
n). Hence u is a unit.

Example 4.1.3. Look at Z[
√
10] and consider the element x = (19 + 6

√
10). Then the

norm becomes N (x) = |192 − 10 · 62| = |361 − 360| = 1, and we conclude that x is a
unit in Z[

√
10].

Now we turn to our different types of domains, starting with Euclidean domains.
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4.2 Euclidean domains
Definition. An integral domain E is called a Euclidean domain if there exists a function
φ : E → Z such that:

i) for all a, b ∈ E∗ = E \ {0}, we have φ(ab) ≥ φ(a), and

ii) for each pair of elements a, b ∈ E, b 6= 0, there exist q, r ∈ E such that a = bq + r
and φ(r) < φ(q).

The function φ in the the definition of a Euclidean domain is central. As φ satisfies
the axioms in the definition, it is called the Euclidean function, but note that it is not part
of the Euclidean domain itself. Actually, a single integral domain may be a Euclidean
domain given several different Euclidean functions, but as we see, we only demand that
there exists at least one. Next we present two examples.

Example 4.2.1. Z is a Euclidean domain for φ(a) = |a|, where a ∈ Z. It is clear that
φ(ab) ≥ φ(a) when both a and b are nonzero integers. Also, for any two integers a and
b where b is different from zero, it is known that the ordinary division algorithm yields
integers q and r satisfying (ii) in the definition of a Euclidean domain.

Example 4.2.2. We want to show that Z[
√
2] is a Euclidean domain given the norm defined

in the previous section,

N (a+ b
√
2) = |a2 − 2b2|.

Let x, y ∈ Z[
√
2], where x = a1 + b1

√
2 and y = a2 + b2

√
2 6= 0. Then, y 6= 0 implies

N (y) 6= 0, and so 1 ≤ N (y). Also

N (x) ≤ N (x)N (y) = N (xy),

and so (i) is verified. Next we want to verify (ii). Note that in Q[
√
2] we have

x

y
= c1 + c2

√
2

where
c1 =

a1b1 − 2a2b2
b21 − 2b22

, c2 =
a2b1 − a1b2
b21 − 2b22

.

Now let q1 be the integer closest to c1, and q2 the integer closest to c1, i.e. |c1− q1| ≤ 1/2
and |c2 − q2| ≤ 1/2. Next, let r = q1 + q2

√
2. Certainly r ∈ Z[

√
2]. Let

s = (c1 − q1) + (c2 − q2)
√
2.

Then we have
s =

x

y
− r

so that sy = x − r. Denote sy = u, and we obtain x = ry + u, as required of (ii) in the
definition. We now need to show that N (u) < N (y). Note that by the triangle inequality
we have

N (s) = |(c1 − q1)2 − 2(c2 − q2)2| ≤ |(c1 − q1)2|+ | − 2(c2 − q2)2|.
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Thus we have that

N (s) ≤ (c1 − q1)2 + 2(c2 − q2)2 ≤ (1/2)2 + 2(1/2)2 = 3/4,

and in particular N (u) ≤ 3
4N (y), making (ii) satisfied. Hence Z[

√
2] is a Euclidean

domain with respect to the norm.

Next we look at principal ideal domains, or PIDs. We will also see the relation between
Euclidean domains and PIDs, and later also unique factorization domains.

4.3 Principal ideal domains
In section 2.4 we looked at principal ideal rings. Now, similarly we will define a principal
ideal domain, denoted PID, and present several results that the property of PIDs provides
us.

Definition. An integral domain D is called a principal ideal domain, denoted PID, if
every ideal in D is principal.

Now, recalling our definition of a Noetherian domain and how finitely generated ideals
relates to Noetherian rings provides us with the following result.

Theorem 4.3.1. Every PID is a Noetherian domain.

Proof. Let D be a PID, making every ideal of D principal. Then every ideal is finitely
generated, and so, by Theorem 3.2.3, D is Noetherian.

Note that the converse of Theorem 4.3.1 is not true, as Noetherian domains may con-
tain ideals generated by more than one element. Next, we look at an example of a PID.

Example 4.3.2. Recall that we in example 2.3.4 showed that in Z, all ideals are of the
form nZ, which are all principal, making Z a principal ideal ring. In example 2.2.2 we
concluded that Z is an integral domain. Hence Z is a PID.

We now revisit maximal and prime ideals, and state the following result.

Theorem 4.3.3. For D a PID, and a proper ideal I of D, the following holds:

I is a maximal ideal ⇐⇒ I is a prime ideal.

Proof. The right implication is Theorem 2.4.6. Now for the left implication assume I is a
prime ideal in D that is not maximal, meaning there exists an ideal J of D such that

I ( J ( D.

Since I and J are both ideals of a PID, we have that I = 〈a〉 and J = 〈b〉, for a, b ∈ D
both nonzero. Since 〈a〉 ( 〈b〉, there must exist an element r ∈ D such that rb = a ∈ I .
Now, from I being a prime ideal we must have that either r ∈ I or b ∈ I . For b ∈ I we
obtain the chain

〈b〉 = J ⊆ I ( J
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which does not hold, and we must have r ∈ I . Then r = sa for some s ∈ D, hence
a = (sa)b = a(sb), and since a 6= 0, we get sb = 1. This makes b a unit, i.e.

〈b〉 = J = D,

contradicting J ( D and so the assumption of I not being maximal. We conclude that I
must be maximal.

It is also possible to determine a PID by knowing a domain is Euclidean.

Theorem 4.3.4. Every Euclidean domain is a PID.

Proof. Let E be a Euclidean domain, and let I be an ideal in E. If I = {0} then I = 〈0〉
and I is principal. Assume I 6= {0}. For all a ∈ I we have that 1|a, and so φ(a) ≥ φ(1).
Then the set S = {φ(a) | a ∈ I, a 6= 0} is a nonempty set with φ(1) as a lower bound.
Then there exists an element b ∈ I such that φ(b) is the smallest element in this set. If
a ∈ I , we have a = qb + r for q, r ∈ E and φ(r) < φ(b). But r = a − qb ∈ I and
φ(r) ≥ φ(b) by the choice of b, so we must have r = 0, so a ∈ 〈b〉, hence I = 〈b〉. Every
ideal is principal and so E is a PID.

We dedicate the next and final section of this chapter to unique factorization domains,
and we will see how these relate to our other types of domains.

4.4 Unique factorization domains
In a unique factorization domain, or UFD, elements can be factorized in a unique way.
In order to define what we mean by unique factorization precisely, we start by looking at
elements in a domain being irreducible.

Definition. For R a ring, a nonzero nonunit element r ∈ R is irreducible if for r = ab
where a, b ∈ R, either a or b is a unit.

Theorem 4.4.1. In an integral domain D, every prime element is irreducible.

Proof. Let p ∈ D be a prime element, and let p = ab, where a, b ∈ D. Now ab = p · 1,
and so p|ab. Since p is prime we must have that p|a or p|b, i.e. a/p ∈ D or b/p ∈ D.
Since 1 = (a/p)b or 1 = a(b/p), we conclude that either a or b is a unit of D, making p
an irreducible element of D.

In a general ring, an element with the property of being irreducible is the equivalent
of an integer in Z being prime. In the same way that every (nonzero nonunit) integer
has a unique prime factorization, every (nonzero nonunit) element in a UFD has a unique
factorization into irreducible elements.

Note that an element which is irreducible in one ring, may be reducible in another. It is
therefore essential to specify in which ring the factorization of an element is to be carried
out. Before giving the precise definition of a UFD, we take a closer look at irreducible
elements.

19



Example 4.4.2. Look at the integral domain Z[
√
−5], where an element r is of the form

r = {a+ b
√
−5 | a, b ∈ Z}.

The norm is defined as earlier, that is

N (r) = a2 + 5b2.

From the properties of the norm we get that the only units are r = ±1. Now consider the
element 9 ∈ Z[

√
−5], and look at the factorization

9 = (2 +
√
−5)(2−

√
−5).

We want to check that (2 +
√
−5) and (2 −

√
−5) are irreducible factors. To reach our

objective, let (2 +
√
−5) = rs. Then we obtain

N (2 +
√
−5) = N (r)N (s),

which gives 9 = N (r)N (s). Now we must have that N (r) or N (s), let us choose N (r),
is equal to 1, 3 or 9. For N (r) = 3 we get

a2 + 5b2 = 3,

which is not solvable for integers a and b. This leaves us with the two situations where
{N (r) = 1,N (s) = 9} or {N (r) = 9,N (s) = 1}. In either case (2+

√
−5) is a product

of two elements where one of them is a unit, hence (2 +
√
−5) is irreducible. Doing the

corresponding calculations for (2−
√
−5) shows that it also is an irreducible factor.

While we for an integral domain showed that every prime element is also irreducible,
we can prove the converse implication for a PID.

Theorem 4.4.3. An irreducible element in a principal ideal domain is always prime.

Proof. Let R be a PID, and consider p ∈ R to be an irreducible element with p|ab, for
a, b ∈ R. Look at 〈p〉+ 〈a〉. This is an ideal in R, so there exists an element c ∈ R with

〈p〉+ 〈a〉 = 〈c〉.

Then p ∈ 〈c〉, i.e. p = cd for some d ∈ R. Since p is irreducible, either c or d is a unit. If
c is a unit, then 〈c〉 = R, so

〈p〉+ 〈a〉 = R.

Then, for some x, y ∈ R we have that

1 = px+ ay,

and so
b = pbx+ aby.

Since p|ab, we get that p|b. Now, if d is a unit, since p = cd, we have 〈p〉 = 〈c〉, so

〈p〉+ 〈a〉 = 〈p〉.

Then a ∈ 〈p〉 and so p|a. We conclude that p is a prime element.
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Now we turn to unique factorization domains.

Definition. An integral domain R is called a unique factorization domain if the following
hold:

i) For a ∈ R \ {0} not a unit, a = p1p2 · · · pm for some irreducible elements pi ∈ R.

ii) If p1, ..., pm and q1, ..., qn are irreducible elements inR and p1p2 · · ·pm = q1q2 · · ·qn,
then m = n and for all 1 ≤ i ≤ n there exists a unit ui ∈ R with pi = uiqi.

Remark. Elements of the form pi = uiqi, as in the definition of a UFD, are called asso-
ciates. These are elements that differ by multiplication of a unit. This means that since
pi and qi are associates, denoted pi ∼ qi, we have that pi|qi and qi|pi. In a commutative
integral domain the converse is also true.

What the definition tells us is, as mentioned before, that every nonzero nonunit element
in a UFD factorizes uniquely into irreducible elements. With that in mind we revisit our
previous example.

Example 4.4.4. We have seen that the element 9 ∈ Z[
√
−5] factorizes into a product of

irreducible factors, namely

9 = (2 +
√
−5)(2−

√
−5).

But we also have that 9 = 3 · 3. As before, we now let 3 = rs, where r, s ∈ Z[
√
−5]. We

obtain
N (3) = N (r)N (s),

which gives 9 = N (r)N (s), the same as in the previous example. Then we know that 3 is
irreducible. This means that 9 can be factorized into two products of different irreducible
factors, namely

9 = 3 · 3 = (2 +
√
−5)(2−

√
−5).

Since the only units in Z[
√
−5] are 1 and−1, we deduce that the factors are not associates,

and so the factorization from before is not unique. We conclude that Z[
√
−5] is not a UFD.

Before we eventually give an example of a ring that is in fact a UFD, we give a result
connecting PIDs and UFDs.

Theorem 4.4.5. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a a PID. Then we know from Theorem 4.3.1 that R is Noetherian, and
so it does not have any infinite properly ascending chain of ideals. Now let a 6= 0 be an
element of R that is not a unit. In order for R to be a UFD, a must factorize uniquely
into a finite product of irreducible elements. Assume a is not irreducible, that is, it can be
written as a = a1b where neither a1 nor b are units. Assume now that a1 is not a product
of irreducible elements, and that a1 = a2c where we let a2 be a product of reducible
elements. Repeating this process gives an ascending chain of ideals

〈a〉 ( 〈a1〉 ( 〈a2〉 ( · · ·
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which in the case of a not being a finite product of irreducible elements will be infinite.
But with R being Noetherian we deduce that the chain must be finite, hence a is a finite
product of irreducible elements.

Next we need to show that this product is unique. Assume there exists a nonzero ele-
ment a ∈ R not a unit, that factorizes into two different products of irreducible elements.
Suppose

a = p1p2 · · · pm and a = q1q2 · · · qn
where pi for i = 1, ...,m and qj for j = 1, ..., n are all irreducible in R, and n ≥ m. Then
p1 divides the product q1 · · · qn. Since p1 is irreducible it is also prime by Theorem 4.4.3,
and so p1 divides qj for some j. Without loss of generality we may suppose p1|q1. Then,
since p1 and q1 are both irreducibles, q1 = u1p1 for some unit u1 of R. Thus

p1p2 · · · pm = u1p1q2 · · · qn

and
p2 · · · pm = u1q2 · · · qn.

By continuing this process we reach

1 = u1u2 · · ·umqm+1 · · · qn.

As qj is not a unit for any j we have m = n, and p1, ..., pm are associates of q1, ..., qn in
some order. This contradicts with the assumption that a has two different factorizations,
and we may conclude that a factorizes into a finite and unique product of irreducible
elements, making every PID a UFD, and thus the proof is complete.

Next we give the relation between prime elements and irreducible elements in a UFD,
just as we did for integral domains and PIDs.

Theorem 4.4.6. For an element p ∈ R, where R is a UFD, we have that
p is irreducible ⇐⇒ p is prime.

Proof. The left implication follows from Theorem 4.4.1. For the right implication let
p ∈ R be an irreducible element and suppose p|ab for ab ∈ R. Then there exists an
element c ∈ R such that ab = pc. Since R is a UFD, we have that

a = p1 · · · pk, b = q1 · · · qm, c = r1 · · · rn,

where p1 · · · pk, q1 · · · qm and r1 · · · rn are irreducible elements of R, not necessarily
distinct. We obtain

(p1 · · · pk)(q1 · · · qm) = p(r1 · · · rn).

Now, since R is a UFD, p must be an associate of one of the pi’s or qj’s, implying that p|a
or p|b. Hence p is prime.

For the final result of this section, we combine Theorem 4.3.4 and Theorem 4.4.5 to
obtain the following Corollary.

Corollary 4.4.7. Every Euclidean domain is a unique factorization domain.
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In light of this corollary, we summarize as follows for a ring R:

R Euclidean domain⇒ R principal ideal domain⇒ R unique factorization domain.

Or as inclusions: {
Euclidean domains

}
(
{

PIDs
}
(
{

UFDs
}

.

We note that the inclusions are proper, and look at an example.

Example 4.4.8. Let R be a polynomial ring over a field F in variables x and y, that is
R = F [x, y]. As shown in [1, Theorem 4.3, page 222-223], R is then a UFD. Consider
the ideal I = 〈x〉 + 〈y〉 of R. I can not be of the form 〈f(x, y)〉 for any polynomial
f(x, y) ∈ R since

〈x〉+ 〈y〉 = 〈f(x, y)〉 ⇒ x = cf(x, y), y = df(x, y)

for some nonzero elements c, d ∈ F . This gives

x

c
=
y

d
,

and so dx−cy = 0, which can not be the case as x and y are independent variables over F .
HenceR = F [x, y] is not a PID. This stresses the fact that a UFD need not be a PID. Also,
in [2] there are given several PIDs that are not Euclidean domains, for example Z[

√
−19].

We finish this chapter with two additional examples regarding UFDs.

Example 4.4.9. In section 4.2 we concluded that Z[
√
2] is a Euclidean domain. Then, by

Corollary 4.4.7 it follows immediately that Z[
√
2] is also a UFD. We can emphasize this

fact by taking associates into account. Look at the element (8− 3
√
2) ∈ Z[

√
2]. We may

factorize it into two products as follows:

(8− 3
√
2) = (5 +

√
2)(2−

√
2) = (11− 7

√
2)(2 +

√
2).

By the same procedure as in the previous examples in this section, we can use the norm to
show that none of these four factors are units in Z[

√
2], and that all of them are irreducible.

Then, as we know Z[
√
2] is a UFD, we must have that the two products differ only by a

unit, in order to satisfy the second condition of the definition of a UFD. In other words,
the factors have to be associates. Look at u = (3 + 2

√
2) ∈ Z[

√
2]. We have that

N (u) = 32 − 2 · 22 = 1,

hence u is a unit of Z[
√
2]. By using u we can verify that the factors are associates.

(2−
√
2)u = (2 +

√
2)⇒ (2−

√
2) ∼ (2 +

√
2),

(11− 7
√
2)u = (5 +

√
2)⇒ (11− 7

√
2) ∼ (5 +

√
2),

and so the conditions of a UFD are satisfied for (8− 3
√
2).
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Example 4.4.10. Consider the integral domain Z[
√
−p] = {a+ b

√
−p | a, b ∈ Z} where

p is a prime number. Using the norm we can verify that its only units are 1 and −1, and
that both elements (1 +

√
−p) and (1 −

√
−p) are irreducible in Z[

√
−p]. We can now

show that this domain is not a UFD when p is an odd prime number, that is p > 2. Look
at the element 2 ∈ Z[

√
−p]. We can show that neither (1 +

√
−p) nor (1−

√
−p) divides

2. Assume the contrary, that is (1 +
√
−p)|2, which gives

2 = (a+ b
√
−p)(1 +

√
−p).

Calculating the norm on each side of the equation yields

4 = (a2 + b2p)(1 + p).

By inspection we see that the only solutions to the last equation are {a = b = p = 1},
{a = 2, b = p = 0} and {a = 1, b = 0, p = 3}. Both p = 1 and p = 0 contradicts with p
being a prime number, and from the last solution we obtain

2 = 1 +
√
−3

which is not true. Hence (1 +
√
−p) - 2. By the same procedure we conclude that

(1 −
√
−p) - 2. Now, the element (1 + p) ∈ Z[

√
−p] can be factorized into irreducible

elements as
1 + p = (1 +

√
−p)(1−

√
−p),

and since p is an odd prime, 1 + p has to be even, i.e. 2|(p + 1). Then 2 is a factor of
(p+ 1). As (1±

√
−p) - 2 they are not associates, and so (1 + p) does not have a unique

factorization, hence Z[
√
−p] is not a UFD when p is an odd prime.
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Chapter 5
Algebraic number fields

In this chapter we will study algebraic number fields, focusing on the set of algebraic
integers contained in these fields, and their properties. More specifically, we will look at
the algebraic integers in a finite extension field of Q. If we name this extension field K,
the algebraic integers form a subring of K, which we will define as the ring of integers of
K. To that end, we start by defining the term integral over a domain.

5.1 Integral elements
Definition. Let A and B be two integral domains such that A ⊆ B. Then the element
b ∈ B is integral over A if there are ai ∈ A and n ≥ 1 such that

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0.

That is, b is a root of a monic polynomial with all its coefficients in A.

In the special case where A = Z and B = C, making b ∈ C a complex number, b
is called an algebraic integer. As a simple example of this case, let b =

√
2. As

√
2 is

a solution to the equation x2 − 2 = 0, which is monic and has both its coefficients in Z,√
2 is an algebraic integer. Leading up to the definition of algebraic number fields, we will

later look at the case where A is assumed to be a field, making b not only integral over A,
but also what we will call algebraic over A. For now, we focus on elements being integral
over a domain, and prove the following results.

Theorem 5.1.1. Let A ⊆ B ⊆ C be a tower of integral domains. If c ∈ C is integral over
A then c is integral over B.

Proof. Since c ∈ C is integral over A there exists a polynomial

cn + an−1c
n−1 + · · ·+ a1c+ a0 = 0

where ai ∈ A for i = 0, 1, ..., n − 1. Now, since A ⊆ B we have that ai ∈ B, making c
integral over B.
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Before our next theorem we note that A[b] denotes the polynomial ring in b over A,
that is, the set of polynomials of the form

anb
n + ab−1b

n−1 + · · ·+ a1b+ a0

where ai ∈ A for i = 0, ..., n.

Theorem 5.1.2. For integral domains A and B where A ⊆ B and b ∈ B, we have that

b is integral over A ⇐⇒ A[b] is a finitely generated A-module.

Proof. Assume that b is integral over A. Then we have that

bn − an−1bn−1 − · · · − a1b− a0 = 0

for ai ∈ A where i = 0, 1, ..., n− 1. From here we obtain

bn = an−1b
n−1 + an−2b

n−2 + · · ·+ a1b+ a0,

bn+1 = an−1b
n + an−2b

n−1 + · · ·+ a1b
2 + a0b.

Now,
bn ∈ Abn−1 +Abn−2 + · · ·+Ab+A

while
bn+1 ∈ Abn +Abn−1 + · · ·+Ab2 +Ab ⊆ Abn−1 + · · ·Ab+A.

From here we obtain by induction on n, that for all integers k ≥ 0 we have

bk ∈ Abn−1 + · · ·+Ab+A.

Hence A[b] is a finitely generated A-module, as it is generated by bn−1 + · · ·+ b+ 1.
For the converse, assume that A[b] is a finitely generated A-module. Then we have

A[b] = Au1 + · · ·+Aun

for ui ∈ A[b] where i = 1, 2, ..., n, which can not all be zero. We have that bui ∈ A[b],
implying that there exist aij ∈ A such that

bu1 = a11u1 + · · ·+ a1nun,

...
bun = an1u1 + · · ·+ annun.

We rewrite the equations and obtain for unknowns x1, ..., xn

(b− a11)x1 − a12x2 − · · · − a1nxn = 0,

−a21x1 + (b− a22)x2 − · · · − a2nxn = 0,

...
−an1x1 − an2x2 − · · ·+ (b− ann)xn = 0.
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Now, from linear algebra we know that this system of equations has a solution if and only
if its coefficient matrix is not invertible, meaning its determinant is equal to zero, i.e.∣∣∣∣∣∣∣∣∣

b− a11 −a12 · · · −a1n
−a21 b− a22 · · · −a2n

...
...

...
−an1 −an2 · · · b− ann

∣∣∣∣∣∣∣∣∣ = 0.

By computation of the determinant we obtain an equation

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0

for some a0, a1, ..., an−1 ∈ A, making b integral over A.

The proof of the next theorem follows the last one closely, and we abstain from show-
ing all the details.

Theorem 5.1.3. Let A and B be two integral domains such that A ⊆ B and b ∈ B. If
there exists an integral domain C such that

A[b] ⊆ C ⊆ B
and C is a finitely generated A-module, then b is integral over A and A[b] is a finitely
generated A-module.

Proof. Since C is a finitely generated A-module we have that C = Ac1 + · · · + Acn for
ci ∈ C nonzero, where i = 1, 2, ..., n. We have b ∈ A[b] and A[b] ⊆ C, which gives
b ∈ C. Since C is an integral domain we have bci ∈ C. Then, for aij ∈ A we obtain
a linear system as the one in the proof of Theorem 5.1.2. Following the same procedure,
computing the determinant of the coefficient matrix, we reach the conclusion that b is
integral over A, making A[b] a finitely generated A-module by Theorem 5.1.2.

Theorem 5.1.4. Let A ⊆ B ⊆ C be a tower of integral domains. If B is a finitely
generated A-module and C a finitely generated B-module, then C is a finitely generated
A-module.

Proof. By assumption we have that B = Ab1 + · · ·+Abm and C = Bc1 + · · ·+Bcn for
bi ∈ B and cj ∈ C where i = 1, ...,m and j = 1, ..., n. Let c ∈ C. Then we have

c =

n∑
j=1

xjcj

where xj ∈ B. For aij ∈ A we have

xj =

m∑
i=1

aijbi.

Combining the two sums yields

c =

n∑
j=1

m∑
i=1

aijbicj

making C = Ab1c1 + · · ·+Abmcn a finitely generated A-module.
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Theorem 5.1.5. Let A and B be two integral domains such that A ⊆ B, and let bi ∈ B
be integral over A for i = 1, ..., n. Then A[b1, ..., bn] is a finitely generated A−module.

Proof. We prove the statement by induction on n. First, if b1 ∈ B is integral over A then
A[b1] is a finitely generated A-module by Theorem 5.1.2, and so the theorem is true for
n = 1, completing the base case.

Next, assume that A[b1, ..., bn−1] is a finitely generated A-module, where bi ∈ B is
integral over A, and i = 1, ..., n − 1 for n ≥ 2. Also, let bn ∈ B be integral over A.
Then, by Theorem 5.1.1, bn is integral over A[b1, ..., bn−1], and so by Theorem 5.1.2,
we have that (A[b1, ..., bn−1])[bn] = A[b1, ..., bn] is a finitely generated A-module, which
completes the inductive step, thus verifying the theorem by induction.

There are not only elements that may have the property of being integral over a domain,
but also domains themselves.

Definition. LetA andB be two integral domains such thatA ⊆ B. Then, if every element
b ∈ B is integral over A, B is integral over A.

We go on by presenting a result combining both elements and domains being integral.

Theorem 5.1.6. Let A ⊆ B ⊆ C be a tower of integral domains. If B is integral over A
and c ∈ C is integral over B, then c is integral over A.

Proof. Since c ∈ C is integral over B, we have that

cn + bn−1c
n−1 + · · ·+ b1c+ b0 = 0

for bi ∈ B, where i = 0, ..., n−1, thus c is integral over A[b0, ..., bn−1]. Now, since every
bi ∈ B and B is integral over A, every bi is also integral over A, and so A[b0, ..., bn−1] is
a finitely generated A-module by Theorem 5.1.5. By Theorem 5.1.2 and the fact that c is
integral over A[b0, ..., bn−1], we deduce that (A[b0, ..., bn−1])[c] = A[b0, ..., bn−1, c] is a
finitely generated A-module. Then finally, by Theorem 5.1.3 c is integral over A.

Now we will circle back to the special case of the definition of integral elements where
we let A = Z and B = C.

Theorem 5.1.7. Let A and B be integral domains such that A ⊆ B. If b1, b2 ∈ B are
integral over A, then b1 + b2, b1 − b2 and b1b2 are also integral over A.

Proof. Since b1 is integral over A we have by Theorem 5.1.2 that A[b1] is a finitely gen-
erated A-module. We have A ⊆ A[b1] ⊆ B, and since b2 is integral over A we have by
Theorem 5.1.1 that b2 is integral overA[b1]. Then (A[b1])[b2] = A[b1, b2] is a finitely gen-
erated A[b1]-module by Theorem 5.1.2, making A[b1, b2] a finitely generated A-module
by Theorem 5.1.4. Next, let x denote any one of the elements b1+b2, b1−b2, b1b2. Hence
A ⊆ A[x] ⊆ A[b1, b2] ⊆ B where the integral domain A[b1, b2] is a finitely generated
A-module. Then, by Theorem 5.1.3, x is integral over A.

This theorem allows us to conclude that in the situation where A ⊆ B, the set of all
elements of B that are integral over A is a subdomain of B containing A. For A = Z and
B = C we are left with the fact that the set of all algebraic integers is an integral domain.
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5.2 Integral closure
As we just mentioned, in the situation A ⊆ B where A and B are integral domains, the
set of all elements in B that are integral over A is a subdomain of B containing A. We
provide notation for this domain in the next definition.

Definition. Let A and B be two integral domains such that A ⊆ B. Then the integral
closure of A in B, denoted AB is the subdomain of B consisting of all elements of B that
are integral over A.

Theorem 5.2.1. For R a UFD let F be its field of quotients, that is F = Quot(R). Then
for an element f ∈ F we have that

f is integral over R ⇐⇒ f ∈ R.

Proof. In the case where f ∈ R, f satisfies the equation x − f = 0 and so f is integral
over R, proving the left implication.

For the converse, assume that f ∈ F is integral over R, hence satisfying an equation

fn + an−1f
n−1 + · · ·+ a1f + a0 = 0

for ai ∈ R where i = 0, ..., n − 1. Since f ∈ F we write f = rs−1 for s 6= 0 where
r, s ∈ R and gcd(r, s) = 1. We insert the new expression for f in the equation above and
obtain

rns−n + an−1r
n−1s1−n + · · ·+ a1rs

−1 + a0 = 0.

Multiplying by sn on both sides yields

rn + an−1r
n−1s+ · · ·+ a1rs

n−1 + a0s
n = 0.

We need to show that s is a unit in R. To that end, assume that s is not a unit. Then there
exists an irreducible element p ∈ R such that p|s. We have that

rn = −an−1rn−1s− · · · − a1rsn−1 − a0sn

where s is a factor in every term, and so we deduce that p|rn. Since p is prime (by
Theorem 4.4.6) p|r. This contradicts with the fact that gcd(r, s) = 1, hence s is a unit in
R and f = rs−1 ∈ R.

In light of this theorem, we look at the situation where R = Z. We know that Z is in
fact a UFD, as we showed in example 4.2.1 that it is a Euclidean domain. In example 2.2.2
we concluded that Quot(Z) = Q. Now, for the integral domains Z and C, we get that
ZC denotes the set of all algebraic integers. Then Q ∩ ZC denotes all rational algebraic
integers. By our last theorem, an element a is in Q ∩ ZC, i.e. a is integral over Z, if and
only if a ∈ Z, making Q ∩ ZC = Z. In other words: a rational algebraic integer must be
an ordinary integer.

To move on we look at the situation where the integral closure of an integral domain
R, makes R integrally closed.
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Definition. Let R be an integral domain. Then R is said to be integrally closed if for all
elements a ∈ Quot(R) that are integral over R, we have a ∈ R.

We observe the connection between our last definition and Theorem 5.2.1, and con-
clude that every UFD is integrally closed.

Example 5.2.2. Consider the ring Z. We have seen that Z is a UFD, hence Z is integrally
closed.

As we know every PID is also a UFD we get the following corollary.

Corollary 5.2.3. Every PID is integrally closed.

Up till now we have defined what it means for an element in an integral domain to be
integral over a domain, and to be an algebraic integer. In the upcoming section we will
start by looking at elements being algebraic over a domain and algebraic numbers, leading
up to the definition of an algebraic number field and its ring of integers.

5.3 The ring of integers
We have earlier considered integral domains A and B where A ⊆ B. Now, we will look
at the case where A is not only an integral domain, but also a field.

Definition. Let A and B be two integral domains such that A ⊆ B. If A is a field and an
element b ∈ B is integral over A, then b is algebraic over A.

Just as we in the previous section obtained algebraic integers by looking at Z and C,
we know look at the situation where, in our definition, A = Q and B = C. Then we name
an element b ∈ C that is integral over the field Q, an algebraic number. As Z ⊆ Q, an
element c ∈ C that is integral over Z, will also be integral over Q by Theorem 5.1.1. In
other words: every algebraic integer is an algebraic number.

Theorem 5.3.1. Every algebraic number b is of the form r/s where r ∈ C is an algebraic
integer and s 6= 0 is an integer.

Proof. Let b be an algebraic number. Then for ai ∈ Q where i = 0, ..., n− 1 we have

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0.

Let s be the least common multiple of the denominators ai. Then 0 6= s ∈ Z and sai ∈ Z.
Now, multiplying the above equation by sn yields

(sb)n + (san−1)(sb)
n−1 + · · ·+ (sn−1a1)(sb) + (sna0) = 0,

which is a monic polynomial with coefficients in Z and sb as a root. Hence sb is an
algebraic integer which we denote r. Then b = r/s where r is an algebraic integer and s
is a nonzero integer.

As we now know what it means for an element to be an algebraic number, we define
an algebraic number field. Afterwards, we will look at what we call the ring of integers of
an algebraic number field, and study it further.
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Definition. An algebraic number field K is a subfield of C of the form Q(α1, ..., αn),
where αi for i = 1, ..., n, are algebraic numbers.

Example 5.3.2. K = Q(
√
2) is an algebraic number field, as we have shown that

√
2 is

an algebraic integer, hence an algebraic number.

We may also express an algebraic number field by saying that K = Q(α1, ..., αn) is
the smallest subfield of C containing the whole of Q and all the elements α1, ..., αn. Now,
in the case where K = Q(α) and α ∈ C is a root of an irreducible quadratic polynomial
x2 + ax+ b ∈ Q[x], we name Q(α) a quadratic field, or a quadratic field extension of Q.
We want to be able to determine these fields in a unique way.

Theorem 5.3.3. If K is a quadratic field, then there exists a unique squarefree integer d
such that K = Q(

√
d).

Proof. LetK = Q(α) where α is a root of the irreducible polynomial x2+ax+b ∈ Q[x].
Thus

α =
−a±

√
a2 − 4b

2
.

We may write, without loss of generality that

α =
−a+

√
a2 − 4b

2

and so

K = Q(α) = Q
(
−a+

√
a2 − 4b

2

)
= Q(

√
c)

where c = a2 − 4b ∈ Q. Since x2 + ax+ b is irreducible in Q[x], c is not the square of a
rational number. Let c = p/q where p, q ∈ Z are such that q > 0 and gcd(p, q) = 1. Now
for pq let m2 be the biggest square such that m2|pq. Then we have that pq = m2d for a
squarefree integer d 6= 1. Furthermore

K = Q(
√
c) = Q

(√
p

q

)
= Q(

√
pq) = Q(

√
m2d) = Q(m

√
d) = Q(

√
d).

Let n be another squarefree integer such that K = Q(
√
n). Then Q(

√
d) = Q(

√
n), and

so √
d = x+ y

√
n

for some x, y ∈ Q. After squaring we obtain

d = x2 + ny2 + 2xy
√
n.

Assume xy 6= 0. Then
√
n =

d− x2 − ny2

2xy

which contradicts with
√
n /∈ Q since n is chosen to be a squarefree integer. Hence

xy = 0. For y = 0 we have
√
d = x, but as d is squarefree this contradicts with

√
d /∈ Q,

and so we must have x = 0, making
√
d = y

√
n and finally

d = y2n.
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This implies y2 = 1, as d is squarefree, and so d = n. This proves that d is uniquely
determined by K.

For any algebraic number field we may obtain the subset containing all its algebraic in-
tegers. We will define this subset for a general algebraic number field, and then determine
it for the quadratic extensions of Q.

Definition. For K an algebraic number field, the subset of all algebraic integers in K,
denoted OK , is called the ring of integers of the algebraic number field K.

Note that since every element of OK is an algebraic integer, OK is integral over Z.
Also, in the case where K = Q, we have that OK = Z. Before giving several properties
of the ring of integers for a general algebraic number field K, we look at the special case
where K is a quadratic field.

Theorem 5.3.4. Let K = Q(
√
d) where d is a squarefree integer. Then OK is given by

OK =

{
Z[
√
d] if d 6≡ 1 (mod 4),

Z
[
1
2 +

√
d
2

]
if d ≡ 1 (mod 4).

Proof. Let α be an element of Q(
√
d), which we then express as α = r + s

√
d, where

r, s ∈ Q. Then we can write

α =
a+ b

√
d

c

where a, b, c ∈ Z, c > 0 and a, b, c have no common prime factor. Then α ∈ OK if and
only if the coefficients of the minimal polynomial(

x− a+ b
√
d

c

)(
x− a− b

√
d

c

)
= x2 − xa− xb

√
d

c
− xa+ xb

√
d

c
+
a2 − b2d

c2

= x2 − xa− xb
√
d+ xa+ xb

√
d

c
+
a2 − b2d

c2

= x2 − 2a

c
x+

a2 − b2d
c2

are integers, that is
a2 − b2d

c2
,
2a

c
∈ Z.

Now, if a and c have a common prime factor p, then (a2 − b2d)/c2 ∈ Z implies that
p divides b, as d is squarefree. This contradicts with the assumption that a, b, c have no
common prime factor. Hence, since 2a/c ∈ Z, we must have c = 1 or c = 2. For c = 1,
α ∈ OK independent of d. Consider c = 2. Then we must have (a2 − b2d)/4 ∈ Z, that is

a2 − b2d ≡ 0 (mod 4).

Also, in order for a, b, c to have no common prime factor, a and b must be odd, i.e. of the
form 2n+ 1. As a, b are both squared, they are of the form

(2n+ 1)2 = 4n2 + 4n+ 1 ≡ 1 (mod 4),
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and so a2 ≡ 1 (mod 4) and b2 ≡ 1 (mod 4), leading to the conclusion that d ≡ 1 (mod 4).
Conversely, let d ≡ 1 (mod 4). Then for odd a, b we have (a2 − b2d)/c2 ∈ Z and
(2a)/c ∈ Z by the same argument, and so α ∈ OK .

To sum up: if d 6≡ 1 (mod 4), then c = 1 and so OK = Z[
√
d]. If d ≡ 1 (mod 4) we

can also have c = 2 and a, b odd, and so OK = Z
[
1
2 +

√
d
2

]
.

Example 5.3.5. Consider the quadratic fields K1 = Q(
√
13) and K2 = Q(

√
−1). We

want to determine their ring of integers by using Theorem 5.3.4. Since 13 ≡ 1 (mod 4) we
have

OK1
= Z

[
1
2 +

√
13
2

]
.

As −1 6≡ 1 (mod 4) we have

OK2
= Z[

√
−1].

Actually, OK2 and the ring of integers of Q(
√
d) where d = −2,−3,−7,−11, are all

Euclidean domains with respect to the norm, as proven in [3, Theorem 4.17].

For the remainder of this chapter, we will prove the properties of OK that we will use
in our next chapter, considering Dedekind domains.

Theorem 5.3.6. For K an algebraic number field, OK is an integral domain.

Proof. As K is a field, and OK ⊆ K, we conclude that OK is an integral domain.

Theorem 5.3.7. For K an algebraic number field we have that Quot(OK) = K.

Proof. For F = Quot(OK) and α ∈ F we have α = b/c where b, c ∈ OK and c 6= 0.
Since OK ⊆ K we also have b, c ∈ K, and then α ∈ K as K is a field. Hence F ⊆ K.
Next, let β ∈ K. By Theorem 5.3.1 we can write β = r/s where r is an algebraic integer
and s is a nonzero integer. Then r = βs ∈ K and since r is an algebraic integer in K we
have r ∈ OK . Hence β = r/s ∈ F and so K ⊆ F . As we have also shown F ⊆ K we
conclude that F = K.

Theorem 5.3.8. For K an algebraic number field, OK is integrally closed.

Proof. Let K be an algebraic number field. By Theorem 5.3.7 we have Quot(OK) = K.
An element α ∈ K that is integral overOK , will also be integral over Z by Theorem 5.1.6,
as OK is integral over Z. Then α is an algebraic integer in K, and so α ∈ OK , making
OK integrally closed.

Theorem 5.3.9. For K an algebraic number field, OK is a Noetherian domain.

Proof. Let I be an ideal of OK . For I = {0} we have that I = 〈0〉 is finitely generated.
For I 6= {0} we have that I is finitely generated by [4, Theorem 6.5.2]. Thus every ideal
of OK is finitely generated, and so, by Theorem 3.2.3, OK is a Noetherian domain.

Theorem 5.3.10. LetK be an algebraic number field and P a nonzero prime ideal ofOK .
Then P is a maximal ideal of OK .
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Proof. We will prove this theorem by assuming the contrary of what it states, and find that
the assumption does not hold. To that end, let K be an algebraic number field, and assume
there exists a prime ideal P1 of OK that is not maximal. Define the set

S = {I proper ideal of OK |P1 ( I}

which is not empty as P1 is not a maximal ideal. By Theorem 5.3.9 OK is a Noetherian
domain. Then, by Theorem 3.2.3, S contains a maximal element. This means that there
exists a maximal ideal P2 such that

P1 ( P2 ( OK .

By Theorem 2.4.6 P2 is then also a prime ideal. As by [4, Theorem 6.1.7] every nonzero
ideal in OK contains a rational integer, we must have P1 ∩ Z 6= {0}, and so P1 ∩ Z is a
prime ideal of Z by Theorem 2.4.8. But we saw in example 4.3.2 that Z is a PID, meaning
P1∩Z = 〈p〉 for some p ∈ Z. This element p is prime by Theorem 2.4.4, and so we obtain

〈p〉 = P1 ∩ Z ⊆ P2 ∩ Z ⊆ Z.

P2 is a proper ideal of OK , and so 1 /∈ P2, making P2 ∩ Z 6= Z. Also, 〈p〉 is a maximal
ideal by Theorem 4.3.3, thus

〈p〉 = P1 ∩ Z = P2 ∩ Z.

Now, P1 ( P2, so there exists an element b ∈ P2 that is not in P1. Since b ∈ OK , b is an
algebraic integer, and then integral over Z. Thus we have that

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0

for ai ∈ Z where i = 0, ..., n− 1, and so, since 0 ∈ P1

bn + an−1b
n−1 + · · ·+ a1b+ a0 ∈ P1.

Let k be the least positive integer for which there exist ci ∈ Z where i = 0, ..., k− 1, such
that

bk + ck−1b
k−1 + · · ·+ c1b+ c0 ∈ P1.

Since b ∈ P2 we have that

bk + ck−1b
k−1 + · · ·+ c1b = b(bk−1 + ck−1b

k−2 + · · ·+ c1) ∈ P2.

Now, as P1 ( P2 and P2 is an ideal of OK

c0 = (bk + · · ·+ c1b+ c0)− (bk + · · ·+ c1b) ∈ P2,

but c0 ∈ Z, and so c0 ∈ P2 ∩ Z = P1 ∩ Z, making c0 an element of P1. Then

bk + ck−1b
k−1 + · · ·+ c1b = (bk + ck−1b

k−1 + · · ·+ c1b+ c0)− c0 ∈ P1.

In the case where k = 1 we will have b ∈ P1, clearly contradicting with b /∈ P1, so k ≥ 2
and

b(bk−1 + · · ·+ c1) ∈ P1.
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Finally, since P1 is a prime ideal and b /∈ P1, we must have

bk−1 + · · ·+ c1 ∈ P1

which contradicts with k being the least positive integer, as (k−1) is positive when k ≥ 2.
Hence the assumption of P1 not being maximal does not hold, and we conclude that every
prime ideal of OK is maximal.
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Chapter 6
Ideal factorization in Dedekind
domains

We have arrived at the final chapter of this thesis. Here we will define a Dedekind domain,
and at the end we will prove our main theorem.

6.1 Dedekind domains
Definition. An integral domain D is called a Dedekind domain if it satisfies the following
conditions:

i) D is a Noetherian domain.

ii) D is integrally closed.

iii) Every nonzero prime ideal in D is a maximal ideal.

Throughout this thesis we have shown several properties of the domain Z. It will also
be our first example of a Dedekind domain.

Example 6.1.1. Consider the integral domain Z. We check for the properties of a Dedekind
domain.

i) Z is Noetherian by example 3.2.6.

ii) Z is integrally closed by example 5.2.2.

iii) Z is a PID by example 4.3.2, and so every nonzero prime ideal in Z is a maximal ideal
by Theorem 4.3.3.

Hence Z is a Dedekind domain.

We now know that Z is both a principal ideal domain and a Dedekind domain. In fact,
this is an example of a general rule.
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Theorem 6.1.2. Every PID is a Dedekind domain.

Proof. Assume D to be a PID. Then by Theorem 4.3.1 D is Noetherian. D is integrally
closed by Corollary 5.2.3, and finally, by Theorem 4.3.3 every nonzero prime ideal in D
is a maximal ideal. Hence D is a Dedekind domain.

We now turn to the ring of integers of an algebraic number field. As mentioned in the
previous chapter, we will make use of the properties of OK that we have already proven.

Theorem 6.1.3. For K an algebraic number field, OK is a Dedekind domain.

Proof. Let K be an algebraic number field and OK its ring of integers. Then we know
that OK is Noetherian by Theorem 5.3.9, integrally closed by Theorem 5.3.8 and that
every nonzero prime ideal of OK is a maximal ideal by Theorem 5.3.10. Hence OK is a
Dedekind domain.

We have seen that the quadratic domain Z[
√
n] where n is a squarefree integer, is the

ring of integers of the algebraic number field K = Q(
√
n) when n 6≡ 1 (mod 4). Then,

by our last theorem, we conclude that Z[
√
n] is a Dedekind domain when n 6≡ 1 (mod 4).

For n ≡ 1 (mod 4) however, we know that OK 6= Z[
√
n], so we can not as easily jump to

any conclusions. Actually, in this case, Z[
√
n] is not a Dedekind domain.

Proposition 6.1.4. If n is a squarefree integer such that n ≡ 1 (mod 4), then Z[
√
n] is not

a Dedekind domain.

Proof. We want to show that Z[
√
n] is not integrally closed when n is a squarefree integer

such that n ≡ 1 (mod 4). For such values we may express n as n = 4k+1 for k ∈ Z. Let

α =

(
1

2
+

√
n

2

)
∈ Quot(Z[

√
n]).

Then α /∈ Z[
√
n]. Look at the polynomial

x2 − x− k

which has all its coefficients in Z[
√
n]. For x = α we obtain

α2 − α− k =

(
1

2
+

√
n

2

)(
1

2
+

√
n

2

)
−
(
1

2
+

√
n

2

)
− k

=
1

4
+

√
n

2
+
n

4
− 1

2
−
√
n

2
− k

=
n− 1

4
− k.

And so, replacing n yields

(4k + 1)− 1

4
− k =

4k

4
− k = k − k = 0.

This makes α integral over Z[
√
n], and so we have an integral element in the quotient field

of Z[
√
n], not in Z[

√
n]. Hence, when n ≡ 1 (mod 4), Z[

√
n] is not integrally closed, thus

not a Dedekind domain. Since every UFD is integrally closed, it is not a UFD either.

In order to provide the proof of our main theorem, we must first consider ideals in
Dedekind domains, and look at how they contain a product of prime ideals.
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6.2 Ideals in Dedekind domains
We start with a theorem concerning Noetherian domains. As every Dedekind domain is
also a Noetherian domain by definition, it follows immediately that the result also holds
for Dedekind domains.

Theorem 6.2.1. For a Noetherian domain D, every nonzero ideal I ∈ D contains a
product of one or more nonzero prime ideals.

Proof. LetD be a Noetherian domain. Assume that there exists a nonzero ideal I ∈ D that
does not contain a product of one or more nonzero prime ideals. Denote the set containing
all such ideals by S. Then S is nonempty, and sinceD is Noetherian S contains a maximal
element by Theorem 3.2.3, say J . Now J is not a prime ideal, and so by Theorem 2.4.7
there exist ideals A and B such that

AB ⊆ J, A 6⊆ J, B 6⊆ J.

Next we define two ideals A1 and B1 as

A1 = J +A, B1 = J +B,

and so J ( A1 and J ( B1. Then A1 /∈ S and B1 /∈ S, hence there exist nonzero prime
ideals P1, ..., Pn such that

P1 · · ·Pi ⊆ A1, Pi+1 · · ·Pn ⊆ B1.

Then finally, as

A1B1 = (J +A)(J +B) = JJ + JB +AJ +AB ⊆ J

we have that
(P1 · · ·Pi)(Pi+1 · · ·Pn) = P1 · · ·Pn ⊆ A1B1 ⊆ J,

contradicting with J ∈ S. This leads to the conclusion that every nonzero ideal in D
contains a product of one or more nonzero prime ideals.

As mentioned, this result provides us with the following corollary.

Corollary 6.2.2. For a Dedekind domainD, every nonzero ideal I ∈ D contains a product
of one or more nonzero prime ideals.

To move on, we define a fractional ideal, which we will use in our upcoming theorems.

Definition. Let D be an integral domain. A nonempty subset I of its quotient field
Quot(D), is called a fractional ideal of D if it has the following properties:

i) α ∈ I , β ∈ I ⇒ α+ β ∈ I .

ii) α ∈ I , r ∈ D ⇒ rα ∈ I .

iii) There exists a nonzero γ ∈ D such that γI ⊆ D.
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Note that a fractional ideal ofD that is a subset ofD is an ideal just as we have defined
it earlier. Also, any ideal of D is a fractional ideal.

Example 6.2.3. Consider Z and its quotient field Quot(Z) = Q. Define the subset I of
Q as

I =
{ n
15
| n ∈ Z

}
.

Clearly I has property (i) and (ii) of a fractional ideal. Also, we see that 15I = Z, and so
(iii) holds. We conclude that I is a fractional ideal of Z.

Definition. Let D be an integral domain, and K = Quot(D). For a prime ideal P in D
the set P̃ is defined as P̃ = {α ∈ K | αP ⊆ D}.

Theorem 6.2.4. For a prime ideal P of an integral domain D, the set P̃ is a fractional
ideal of D.

Proof. For α ∈ P̃ and β ∈ P̃ we have αP ⊆ D and βP ⊆ D. Thus

(α+ β)P ⊆ αP + βP ⊆ D,

and so α+ β ∈ P̃ . For another element r ∈ D we have that αP ⊆ D, making rαP ⊆ D,
and so rα ∈ P̃ . Finally let γ ∈ P be nonzero. Then αγ ∈ D, hence γP̃ ⊆ D. Thus P̃ is
a fractional ideal of D.

The following theorem will be used in the proof of our main theorem, in the upcoming
and final section of this thesis.

Theorem 6.2.5. For a nonzero prime ideal P in a Dedekind domain D, we have that
PP̃ = D.

Proof. The first step to proving this theorem is to show that PP̃ = D or PP̃ = P . To
that end, we start by observing that P and P̃ are both fractional ideals of D, making PP̃
a fractional ideal of D. Obviously PP̃ ⊆ D, and so it is also an ideal of D in the ordinary
sense. As P is a nonzero prime ideal and D is a Dedekind domain, P is a maximal ideal
by definition. Now, since 1 ∈ P̃ we have P ⊆ PP̃ , hence PP̃ = D or PP̃ = P .

The next step is to show that D ( P̃ . For an element α ∈ D we have αP ⊆ D, hence
α ∈ P̃ , and so D ⊆ P̃ . In order to prove that D ( P̃ we must have that P̃ contains an
element γ of Quot(D) that is not inD. Let β ∈ P be a nonzero element, and 〈β〉 the ideal
generated by 〈β〉. Then by Corollary 6.2.2 we have that

P1 · · ·Pn ⊆ 〈β〉

for nonzero prime ideals P1, ..., Pn where n ≥ 1. Let n be the least positive integer for
which this inclusion holds. Then, since

P1 · · ·Pn ⊆ 〈β〉 ⊆ P

and P is a prime ideal we have Pi ⊆ P for some i = 1, ..., n. We may now assume that
P1 ⊆ P , but as D is a Dedekind domain we obtain P1 = P , since P1 is a maximal ideal.
Next, assume that n = 1. Then

P = P1 = 〈β〉.
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The element β is defined to be nonzero, so we can define γ = 1/β ∈ Quot(D). Assume
γ ∈ D, making β a unit in D and

P = 〈β〉 = D,

contradicting with P being a prime ideal. Thus γ /∈ D. Furthermore,

γP =
1

β
〈β〉 = 〈1〉 = D,

so γ ∈ P̃ , that is γ ∈ P̃ \D for n = 1. Suppose next that n ≥ 2. By the minimality of n
we have that

P2 · · ·Pn 6⊆ 〈β〉.

Thus there exists δ ∈ P2 · · ·Pn such that δ /∈ 〈β〉. We may now express γ as γ = δ/β
which lies in Quot(D), but γ /∈ D as δ /∈ 〈β〉. However, γ ∈ P̃ since

P 〈δ〉 = P1〈δ〉 ⊆ P1 · · ·Pn ⊆ 〈β〉

and so
Pγ = Pδ/β ⊆ D.

Then γ ∈ P̃ \D for n ≥ 2 as well. Hence D ( P̃ .
The final step is to show that PP̃ = D. As we have already shown that PP̃ = P or

PP̃ = D, we assume the contrary, that PP̃ = P . For α, β ∈ P̃ we have

αP ⊆ PP̃ = P

and
βP ⊆ PP̃ = P

and
αβP ⊆ αP ⊆ P,

thus αβ ∈ P̃ . This shows that P̃ is closed under multiplication, and so P̃ is an integral
domain strictly containing D. Now, D is a Noetherian domain, hence all its ideals are
finitely generated by Theorem 3.2.3. This makes P̃ a finitely generated fractional ideal of
D, thus P̃ is a finitely generated D-module. Then, by Theorem 5.1.3, in the case where
B = C, P̃ is integral over D. But as D is a Dedekind domain, it is integrally closed in
its quotient field, and so we must have P̃ = D. This contradicts with D ( P̃ , hence
PP̃ 6= P , and we are left with the conclusion that PP̃ = D.
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6.3 Unique factorization into prime ideals
Finally we are ready to prove our main theorem.

Theorem 6.3.1. For a Dedekind domain D every proper nonzero ideal I is a product of
nonzero prime ideals, and this factorization is unique in the sense that if

P1P2 · · ·Pn = Q1Q2 · · ·Qm,

where Pi andQj are nonzero prime ideals, then n = m, and after relabeling (if necessary)

Pi = Qi, i = 1, 2, ..., n.

Proof. Let S denote the set of proper nonzero ideals of a Dedekind domain D that are not
products of nonzero prime ideals. Assume that there exists a proper nonzero ideal I ∈ D
that is not a product of nonzero prime ideals. Then as I ∈ S, we have that S is nonempty
by assumption. Since D is a Dedekind domain, it is also Noetherian, and so by Theorem
3.2.3 S has a maximal element, say I . By Corollary 6.2.2 I contains a product of one or
more nonzero prime ideals, that is

P1 · · ·Pn ⊆ I

for nonzero prime ideals P1, ..., Pn ∈ D. Let n be the smallest positive integer for which
such a product exists, and assume first that n = 1. Then

P1 ⊆ I ⊆ D.

Since D is a Dedekind domain and P1 is a nonzero prime ideal, P1 will also be a maximal
ideal of D, and so P1 = I . This contradicts with I not being a product of nonzero prime
ideals, and so n 6= 1. Then we must have n ≥ 2. By Theorem 6.2.5 we have P̃1P1 = D,
and so

P̃1P1P2 · · ·Pn = DP2 · · ·Pn.

Then
P̃1I ⊇ P̃1P1 · · ·Pn = P2 · · ·Pn.

Now, as shown in the proof of Theorem 6.2.5, we have D ( P̃1, and then I ⊆ P̃1I .
Suppose that I = P̃1I . Then

P2 · · ·Pn ⊆ I,

contradicting with n being the smallest positive integer, since n − 1 ≥ 1, and we are left
with the conclusion that I ( P̃1I . Since P̃1I is an ideal of D, by the fact that I is the
maximal element in S, we have that for nonzero prime ideals Q2, ..., Qm,

P̃1I = Q2 · · ·Qm.

Hence
I = ID = IP̃1P1 = P1Q2 · · ·Qm

is a product of nonzero prime ideals, contradicting with the fact that I ∈ S by assumption.
Thus every proper nonzero ideal of D is a product of nonzero prime ideals.
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Next, as we have proven that a factorization into a product of nonzero prime ideals
always exists for a proper nonzero ideal in D, we want to show that this factorization is
unique. To reach this objective, assume the contrary, that the factorization is not always
unique. Let S∗ denote the set of all proper nonzero ideals of D that has at least two
distinct factorizations into products of nonzero prime ideals. Assume that there exists a
proper nonzero ideal J ∈ D with two distinct factorizations into nonzero prime ideals,
that is

J = P1 · · ·Pn = Q1 · · ·Qm

for nonzero prime ideals Pi and Qj , where i = 1, ..., n, j = 1, ...,m, and n is the small-
est positive integer for which such a factorization exists. Then J ∈ S∗, and so S∗ is
nonempty. Since D is Noetherian, S∗ has a maximal element by Theorem 3.2.3, say J .
Now, as Q1 is an ideal of D we have that Q1D = Q1, and as Q2 · · ·Qm ⊆ D, we obtain
Q1(Q2 · · ·Qm) ⊆ Q1. We deduce that

P1 · · ·Pn ⊆ Q1.

Then, since Q1 is a prime ideal, we apply Theorem 2.4.7 and obtain Pi ⊆ Q1, which after
relabeling allows us to suppose that P1 ⊆ Q1. P1 is prime and nonzero, and as D is a
Dedekind domain, P1 is a maximal ideal, hence P1 = Q1. From here we obtain

JP̃1 = P̃1P1P2 · · ·Pn = P2 · · ·Pn

and
JP̃1 = JQ̃1 = Q̃1Q1 · · ·Qm = Q2 · · ·Qm.

That is
P2 · · ·Pn = Q2 · · ·Qm.

In the case where JP̃1 = J we have JP̃1P1 = JP1, and so J = JP1. Next we define the
fractional ideal J̃ of J as

J̃ = P̃1 · · · P̃n,

and so
JJ̃ = P1 · · ·PnP̃1 · · · P̃n = P1P̃1 · · ·PnP̃n = D,

from where we deduce that
D = JP̃1J̃ = P1.

But P1 is a prime ideal, and so P1 6= D, hence JP̃1 6= J . Then, since D ( P̃1, we have
J ( JP̃1. As JP̃1 is an ideal of D strictly containing J , and J is the maximal element of
S∗, we have that JP̃1 has exactly one factorization into a product of nonzero prime ideals.
Then, since P2 · · ·Pn = Q2 · · ·Qm, we must have n = m, and after relabeling Pi = Qi

for i = 2, ..., n. In other words the two factorizations of J are the same, contradicting with
our assumption. We conclude that the factorization of an ideal into nonzero prime ideals
is always unique, which completes the proof.

Now as our main theorem has been proved, we end this thesis with an example.
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Example 6.3.2. Consider the algebraic number field K = Q(
√
−5). Since

−5 6≡ 1 (mod 4),

we have by Theorem 5.3.4 that its ring of integers is OK = Z[
√
−5]. Then we have by

Theorem 6.1.3 that Z[
√
−5] is a Dedekind domain, and so every proper nonzero ideal in

Z[
√
−5] has a unique factorization into a product of nonzero prime ideals. However, in

example 4.4.4 we showed that Z[
√
−5] is not a UFD, from the fact that

9 = 3 · 3 = (2 +
√
−5)(2−

√
−5),

where 3, (2 +
√
−5) and (2 −

√
−5) are all irreducibles and nonassociates in Z[

√
−5].

Now we want to restore unique factorization by using prime ideals. Let

P1 = 〈3, 2 +
√
−5〉,

P2 = 〈3, 2−
√
−5〉.

By the notion of the norm of an ideal and [4, Theorem 7.1.5 and Theorem 10.1.6], it can
be shown that these two are distinct prime ideals in Z[

√
−5]. We calculate the following

products for these two ideals:

P 2
1 = 〈3, 2 +

√
−5〉2 = 〈3, 2 +

√
−5〉〈3, 2 +

√
−5〉

= 〈9, 3(2 +
√
−5), 3(2 +

√
−5), (2 +

√
−5)2〉

= 〈2 +
√
−5〉〈2−

√
−5, 3, 3, 2 +

√
−5〉

= 〈2 +
√
−5〉〈1〉 = 〈2 +

√
−5〉,

P 2
2 = 〈3, 2−

√
−5〉2 = 〈3, 2−

√
−5〉〈3, 2−

√
−5〉

= 〈9, 3(2−
√
−5), 3(2−

√
−5), (2−

√
−5)2〉

= 〈2−
√
−5〉〈2 +

√
−5, 3, 3, 2−

√
−5〉

= 〈2−
√
−5〉〈1〉 = 〈2−

√
−5〉,

P1P2 = 〈3, 2 +
√
−5〉〈3, 2−

√
−5〉

= 〈9, 3(2−
√
−5), 3(2 +

√
−5), 9〉

= 〈3〉〈3, 2−
√
5, 2 +

√
−5, 3〉

= 〈3〉〈1〉 = 〈3〉.

Thus the factorization 9 = 3 · 3 = (2 +
√
−5)(2−

√
−5) becomes, in terms of ideals,

〈9〉 = 〈3〉 · 〈3〉 = P1P2 · P1P2 = P 2
1P

2
2 ,

〈9〉 = 〈2 +
√
−5〉〈2−

√
−5〉 = P 2

1P
2
2 .

By Theorem 6.3.1 we have that the factorization 〈9〉 = P 2
1P

2
2 is unique.
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