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Problem description

The theory of support varieties for �nite dimensional algebras has as its inspiration
the corresponding theory for group algebras of �nite groups, introduced by Jon F.
Carlson in [11, 12]. The main construction in this theory is to associate to every
�nitely generated module over the group algebra a geometric object, an algebraic
variety. The underlying geometric object in this case is the group cohomology ring
of the group algebra, here employing the fact that every group algebra is a Hopf
algebra. An arbitrary �nite dimensional algebra does not necessarily possess a
Hopf-structure, entailing that a direct translation of support varieties to this more
general class of algebras is not possible. However, there does exist a related theory
of support varieties for �nite dimensional algebras using the Hochschild cohomol-
ogy ring of a given algebra. This was introduced in [32] and further developed in
[17], where one in [17] showed that much of the theory for group algebras can be
generalised to �nite dimensional algebras under some �nite generation conditions
called (Fg). A consequence of this condition (Fg) is that the complexity of the
algebra must be �nite and that the algebra must be Gorenstein. In [34] the the-
ory was further expanded to �nite complexes over �nite dimensional algebras that
satisfy (Fg).

Work with the thesis will involve understanding the theory for support varieties
for �nitely generated modules over group algebras of �nite groups. Following this,
one is to study the theory of support varieties for �nite dimensional algebras over
an algebraically closed �eld and write a presentation of it.

As previously mentioned, a consequence of the condition (Fg) is that an al-
gebra satisfying it must be of �nite complexity. Complexity is a measure of the
polynomial growth of the projective modules in each degree of the minimal projec-
tive resolution of the simple modules of the algebra. The complexity of an algebra
can be estimated by way of calculations, whereas directly verifying the condition
(Fg) is quite complicated. Hence, the complexity of an algebra is the �rst invari-
ant one checks to see if an algebra satis�es (Fg). A trivial extension T (Λ) of an
algebra Λ is always a symmetric algebra, and, in particular, a Gorenstein algebra,
implying hence that this is an interesting class to examine with regards to (Fg).
Here, M. Purin in [29] studied this beginning with some hereditary algebra H and
forming the trivial extension T (H). She has shown the following:

Theorem 0.0.1. Let H be a hereditary algebra over a �eld. Then the following
holds.

(a) If H is of �nite representation type, the complexity of T (H) is 1.

(b) If H is of tame representation type, the complexity of T (H) is 2.

(c) If H is of wild representation type, then the complexity of T (H) is in�nite.
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One wishes to examine whether this result can be generalised. To do this
one will calculate examples as well as make theoretical observations. One will
especially study whether being of �nite representation type is the vital assumption
in statement (a).
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Problembeskrivelse

Teorien for støttevarieteter for endeligdimensjonale algebraer har som en inspi-
rasjonskilde den tilsvarende teorien for gruppealgebraer av endelige grupper in-
trodusert av Jon F. Carlson i [11, 12]. Hovedkonstruksjonen i denne teorien er
å assosiere til enhver endeliggenerert modul over gruppealgebraen et geometrisk
objekt, en algebraisk varietet. Det underliggende geometriske objektet i dette
tilfellet er gruppekohomologiringen til gruppealgebraen, der en bruker at enhver
gruppealgebra er en Hopf algebra. En vilkårlig endeligdimensjonal algebra innehar
ikke en Hopf-struktur, slik at en direkte oversettelse av støttevarieteter til denne
mer generelle klassen av algebraer er ikke mulig. Men det �nnes en tilsvarende
teori av støttevarieteter for endeligdimensjonale algebraer ved å bruke Hochschild
kohomologiringen til algebraen. Dette ble introdusert i [32] og videreført i [17],
hvor en i [17] viste at mye av teorien for gruppealgebraer lar seg generalisere til en-
deligdimensjonale algebraer under noen endliggenererthets-betingelser kalt (Fg).
En konsekvens av denne betingelsen (Fg) er at kompleksiteten til algebraen må
være endelig og at algebraen må være Gorenstein. I [34] ble teorien videre utvidet
til endelige komplekser over endeligdimensjonale algebraer som tilfredsstiller (Fg).

Oppgaven går ut på å sette seg inn i teorien for støttevarieteter for endeliggener-
erte moduler over gruppealgebraer av endelige grupper. Deretter skal en studere
teorien for støttevarieteter for endeligdimensjonale algebraer over en algebraisk
lukket kropp og skrive en presentasjon av dette.

Som tidligere nevnt er en konsekvens av betingelsen (Fg), at algebraen har
endelig kompleksitet. Kompleksitet er et mål for den polynomielle veksten til de
projektive modulene i hver grad av den minimale projektive oppløsningen av de
simple modulene over algebraen. Kompleksiteten til en algebra er det mulig å
�nne et estimat for ved beregninger, mens direkte å veri�sere betingelsen (Fg) er
svært komplisert. Derfor er kompleksiten til en algebra den første invarianten en
sjekker for å se om en algebra tilfredsstiller (Fg). Det er et åpent problem hvilke
algebraer som tilfredsstiller (Fg). En triviell ekstensjon T (Λ) av en algebra Λ er
alltid en symmetrisk algebra og spesielt en Gorenstein algebra, slik at dette er
en interessant klasse å undersøke med hensyn til (Fg). Her har M. Purin i [29]
undersøkt dette når en starter med en hereditær algebra H og danner den trivielle
ekstensjonen T (H). Hun har vist følgende:

Theorem 0.0.2. La H være en hereditær algebra over en kropp. Da holder føl-
gende.

(a) Hvis H er av endelig representasjonstype, da er kompleksiteten til T (H) lik 1.

(b) Hvis H er av tam representasjonstype, da er kompleksiteten til T (H) lik 2.

(c) Hvis H er av vill representasjonstype, da er kompleksiteten til T (H) uendelig.
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En vil undersøke om dette resultatet lar seg generalisere ved å beregne eksem-
pler og samtidig gjøre teoretiske betraktninger. Spesielt vil en studere om det er
det å være av endelig representasjonstype som er den vitale antakelsen ved utsagn
(a).
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Summary

We give a presentation of the theory of support varieties for �nite dimensional
algebras Λ using the Hochschild cohomology ring. Our presentation is especially
focused on the �nite generation hypotheses an algebra must satisfy to have an ad-
equate theory of support varieties, as well as the consequences of these hypotheses
for the complexity of the modules of such an algebra. To demonstrate that certain
aspects of the corresponding theory for group algebras can be recovered, we show
that by assuming the �nite generation hypotheses we can prove that every closed
homogeneous variety is the variety of some module. Following this, we investigate
whether a result of Purin in [29] concerning the complexity of trivial extensions of
hereditary algebras can be generalized: Firstly, using a result of Benson and some
well-known results concerning radical square zero algebras, we give an example
that shows that an algebra Λ can be of �nite representation type while its trivial
extension T (Λ) has in�nite complexity, hence showing that a straightforward gen-
eralization of Purin's result is not available. After this, we derive a weak bound on
the length of the terms of the minimal T (Λ)-projective resolution of a Λ-module
considered as a T (Λ)-module. Following this, we utilize the proof of a result of
Guo et al. in [22] in giving a description of the syzygies and the minimal T (Λ)-
projective resolution of a Λ-module considered as a T (Λ)-module. Using this and
a result by Dichi and Sangare in [15], we are able to show that if a sel�njective
algebra Λ satis�es the �nite generation hypotheses (Fg) then the complexity of
T (Λ) is exactly one greater than that of Λ.
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Oppsummering

Vi presenterer et utvalg av teorien om støttevarieter for endeligdimensjonelle alge-
braer Λ som benytter Hochschild kohomologiringen. Vår presentasjon omhandler
spesielt endeliggenereringshets-betingelsene (Fg) en algebra må tilfredsstille for å
ha en adekvat teori av støttevarieteter, samt konsekvensene av disse betingelsene
for kompleksitetene til modulene over en slik algebra. For å demonstrere at enkelte
aspekter av den korresponderende teorien for gruppealgebraer også gjelder for
denne mer generelle teorien, viser vi at, såfremt man antar disse (Fg)-betingelsene,
kan man bevise at enhver lukket homogen variete er varieteten til en modul. Etter
dette studerer vi hvorvidt man kan generalisere et resultat av Purin i [29] som
gjelder kompleksiteten av trivielle ekstensjoner av hereditære algebraer: Ved hjelp
av et resultat av Benson og noen velkjente resultater som omhandler algebraer
hvis radikaler kvadrert er null, gir vi et eksempel som demonsterer at en algebra
Λ kan være av endelig representasjonstype samtidig som dens trivielle ekstensjon
T (Λ) har uendelig kompleksitet. Som følge av dette, ser vi at en direkte og ret-
tfram generalisering av Purins resultat er ikke tilgjengelig. Etter dette, utleder vi
en svak øvre skranke over lengdene av leddene av den minimale T (Λ)-projektive
oppløsningen av en Λ-modul ansett som en T (Λ)-modul. Etter dette, benytter vi
beviset av et resultat av Guo et al. i [22] til å gi en beskrivelse av syzygiene og den
minimale T (Λ)-projektive resolusjonen av en Λ-modul ansett som en T (Λ)-modul.
Ved å anvende denne beskrivelsen og et resultat av Dichi og Sangare i [15], er vi i
stand til å vise at hvis en selvinjektiv algebra Λ tilfredsstiller endeliggenereringshy-
potesene (Fg), så er kompleksiteten til T (Λ) nøyaktig én større enn kompleksiteten
til Λ.
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Preface

This master's thesis constitutes most of the work of my �nal year as a mas-
ter's student in Mathematical Sciences (Master's Programme) at Norges tekniske-
naturvitenskapelige universitet, NTNU. Work on this text was done part time in
the autumn of 2015, and semi-fulltime in the spring and summer of 2016. That this
came to be so was due to me beginning my master's studies in the spring semester
of 2015 while also choosing to include a couple of courses I had taken before that
semester, hence resulting in the necessity of having to take a few additional courses
in the spring semester of 2016, as well as the strange turn-in date of this work.
However, nearly every major course of study I have undertaken was begun in a
spring semester, and so these peculiar ways of doing things have, somehow, become
something of a tradition for me.

We note that we assume the reader is familiar with material covered in courses
such as MA3201 - Ringer og moduler, MA3202 - Galoisteori, MA3203 - Ringteori,
and MA3204 - Homologisk algebra. While the second of these is really only used
in one section contained in the second chapter, and is hence of not too great
importance, the material from the others is used essentially throughout the text.
1 Additionally, in the third chapter of this thesis, we also assume some familiarity
with a�ne algebraic varieties and some results concerning them, as well as some
commutative algebra. Moreover, we note that in our work on this thesis, we have
especially relied upon the following as references: [6] for material related to artin
algebras; [3] for material on �nite dimensional algebra over �elds, quivers with
relations, and related material; and [4] for material on commutative algebra.

We now brie�y summarize the structure of the text:
Chapter 1 provides some necessary preliminaries. Among other things, we re-

view some well-known material on di�erent interpretations on the Ext-functor, but
also show that the Hochschild cohomology ring of an algebra Λ over a commutative
ring k is graded commutative if Λ is k-projective.

Chapter 2 develops the foundations of the theory of support varieties using
the Hochschild cohomology ring. This chapter is based on [32].

1To put this another way, we assume the reader is familiar with, among other things, the terms
and results in the following list, which, while perhaps long, is not meant to be exhaustive: rings,
ideals, maximal ideals, prime ideals, modules, submodules, maximal submodules, simple modules,
semisimple rings, semisimple modules, the First Isomorphism Theorem, the Correspondence
Theorem, Noetherian, Artinian, the Wedderburn-Artin Theorem, algebraically closed �elds, �eld
extensions, separable �eld extensions, quivers, admissible relations, path algebras, quotients of
path algebras, �nite dimensional algebras over �elds, artin algebras, the Jacobson radical of an
algebra, projective modules, injective modules, projective covers, minimal projective resolutions,
minimal injective resolutions, categories, functors, derived functors, pullbacks, pushouts, direct
limits and colimits, Schanuel's Lemma, the Comparison Theorem, the Horseshoe Lemma, the
Snake Lemma, and so on.
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Chapter 3 investigates the consequences of the (Fg)-hypotheses, certain cri-
teria an algebra must ful�l to have a useful theory of support varieties. With an
eye to our goal, we especially concentrate on the e�ect assuming these hyotheses
has for the complexity of the modules of an algebra. Additionally, to show how
aspects of the theory of support varieties for group algebras can be recovered, we
show that assuming an algebra satis�es the (Fg)-hypotheses allows one to show
that every closed homogeneous variety is the variety of some module over that al-
gebra. This chapter is based on [17], although some material from [7] is presented
as well.

Chapter 4 attempts to investigate whether a result of Purin in [29] concerning
the complexity of trivial extensions of hereditary algebras can be generalized. We
begin the chapter by presenting some preliminary material analyzing the structure
of T (Λ)-modules, and the relation between the projectives of Λ and those of T (Λ).
Following this, we give an example that shows that an algebra Λ can be of �nite
representation type while its trivial extension T (Λ) has in�nite complexity. To do
this, we employ a result of Benson and some well-known results concerning radical
square zero algebras. As a consequence, we see that Purin's result in [29] cannot
be generalized in a straightforward fashion.

We continue by deriving a weak bound on the length of the terms of the minimal
T (Λ)-projective resolution of a Λ-module considered as a T (Λ)-module. Inspired
by this, we utilize the proof of a result of Guo et al. in [22] in giving a description of
the syzygies and the minimal T (Λ)-projective resolution of a Λ-module considered
as a T (Λ)-module. Finally, using this and a result by Dichi and Sangare in [15],
we are able to show that if a sel�njective algebra Λ satis�es the �nite generation
hypotheses (Fg) then the complexity of T (Λ) is exactly one greater than that of
Λ.
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Chapter 1

Preliminaries

This �rst chapter begins by brie�y presenting some necessary preliminary results
on di�erent interpretations of certain derived functors: we show that for a ring Λ,
the nth derived functors of HomΛ(M,N) forM andN Λ-modules, i.e. ExtnΛ(M,N),
can be interpreted as sets of exact sequences with n + 2 consecutive non-zero
terms for n > 0 under an equivalence relation and endowed with a certain group
operation, the Baer sum. We further show that this interpretation readily yields
a product structure on the direct product over N0 of these derived functors for
N = M , i.e.

⊕
n∈N0

ExtnΛ(M,M). The presentation here will be based mainly on
that of [25]. Of course, while this material is well-known, it is nevertheless not
covered in some of the more popular tracts on homological algebra, such as [31],
and hence we have chosen to include it here.

In the second section of this chapter, we give the proof of a result which is
foundational for the theory of support varieties we concern ourselves with in this
text. As a consequence of this result, one can deduce that the Hochschild coho-
mology ring of an algebra Λ over a commutative ring k, i.e. HH∗(Λ), is a graded
commutative ring provided Λ is k-projective.

1.1 Extensions

In this section we will lay the groundwork for the theory of support varieties that
is to be presented in this text. Let Λ be a ring. To begin with, we will be reviewing
some of the properties of

Ext∗Λ(M,M) =
⊕
n∈N0

ExtnΛ(M,M),

especially its representation as formal sums of equivalence classes of n-fold exact
sequences, and its graded ring structure.

1



2 CHAPTER 1. PRELIMINARIES

De�nition 1.1.1. Let M and N be left Λ-modules. An n-fold exact sequence
starting with N and ending with M is an exact sequence of left Λ-modules

0 N Mn−1 · · · M0 M 0

beginning with N and ending with M , and with n terms in between.

We will need the following construction for short exact sequences to de�ne the
appropriate equivalence relation for n-fold exact sequences.

Construction. Let M , M ′, N and N ′ be left Λ-modules. Then, given some Λ-
homomorphisms f : N → N ′ and g : M ′ →M , and η a short exact sequence from
N to M , de�ne f · η to be the lower row of

η : 0 N E M 0

f · η : 0 N ′ E ′ M 0,

f

where the leftmost square is given by a pushout, and the lower right horizontal
map is a cokernel; and η · g the upper row of

η · g : 0 N E ′ M ′ 0

η : 0 N E M 0,

g

where the rightmost square is given by a pullback, and the upper left horizontal
map is a kernel.

Now, note that an m-fold exact sequence µ beginning in M and ending in L
can be broken down into m 1-fold exact sequences, i.e. short exact sequences, as
indicated in the following diagram:

µ : 0 M Mm−1 Mm−2 Mm−3 · · ·

Km−1 Km−2

0 0 0

The short exact sequences involved in such a decomposition are unique up to
isomorphism. We represent such decompositions as µ = Mn ·Mn−1 · · · · ·M1, where
Mn is the short exact sequence that begins in M , and M1 is the one which ends
in L.
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De�nition 1.1.2. Two n-fold exact sequences η and η′ are equivalent, η ∼= η′,
if, when they are represented as products of short exact sequences, one can be
obtained from the other in a �nite number steps, wherein one in each step is
permitted

1. to exchange a short exact sequence by one isomorphic to it;

2. to replace two adjacent short exact sequence of the form (E · f) · E ′ with
E · (f · E ′);

3. or to replace two adjacent short exact sequence of the form E · (f ·E ′) with
(E · f) · E ′.

Now, although it is well-known that the collection of all equivalence classes
of n-fold exact sequences beginning in N and ending in M is in bijection with
ExtnΛ(M,N) under the appropriate assumptions, we shall, until we have shown this
fact, let this collection be denoted by extnΛ(M,N), for n ≥ 1, and set ext0

Λ(M,N) =
HomΛ(M,N). We also let the equivalence class of η be denoted by η.

At this point, it should be remarked that there are some set theoretical di�-
culties with the presentation given here, namely that there is no guarantee that
extnΛ(M,N) is a set at all. These will be ignored. The reason for this is that,
in practice, there will be placed su�cient restrictions on Λ ensuring that these
troubles do not arise. To be more precise, the restrictions will be such that the
category of �nitely generated modules over Λ, i.e. mod Λ, has enough projectives.
Hence, it for instance su�ces to assume that Λ is an artin algebra.

With this out of the way, we can de�ne analogues of f · − and − · g for n-fold
exact sequences: If η = En ·En−1 · · ·E2 ·E1, then f · η = (f ·En) ·En−1 · · ·E2 ·E1;
and similarly, η · g = En · En−1 · · ·E2 · (E1 · g). It is clear from the de�nition just
given that f · (η · g) = (f · η) · g holds.

We now look at what will form the multiplicative structure of Ext∗Λ(M,M).

De�nition 1.1.3. Let M , M ′ and N be left Λ-modules. If µ ∈ extmΛ (L,M),
ν ∈ extn∗ (M

′, N) are represented by extensions

µ : 0 M Mm−1 · · · M0 L 0

and

ν : 0 N Nn−1 · · · N0 M ′ 0,

and provided M = M ′, the Yoneda splice ν · µ ∈ extm+n
Λ (L,N) is de�ned and is
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given by the equivalence class of the following:

0 N Nn−1 · · · N0 Mm−1 · · · M0 L 0

M

0 0

A more compact way to formulate this would be to say that the Yoneda splice
of µ and ν, provided it is de�ned, is Nn ·Nn−1 · · · · ·N1 ·Mm ·Mm−1 · · · · ·M1, if
µ = Mm ·Mm−1 · · · · ·M1 and ν = Nn−1 · · · · · N1 are representatives of µ and ν,
respectively, and where the Mi and Nj for 1 ≤ i ≤ m and 1 ≤ j ≤ n correspond
to the short exact sequences µ and ν are composed of, respectively.

From this point of view, it is rather immediate that this operation is well-
de�ned: Let µ and µ′ be extensions that begin with M and end in L, and ν and
ν ′ be extensions that begin with N and end with M . Observe that if µ ∼= µ′ and
ν ∼= ν ′, then by (1.1.2), µ′ can be obtained from µ in, say, k steps, and ν ′ can be
obtained from ν in, say, k′ steps. To obtain the splice of µ′ and ν ′ from that of the
splice of µ and ν, simply perform on it the k steps to obtain µ′ from µ, and then
perform the k′ steps to obtain ν ′ from ν.

We now de�ne what will induce the additive structure of Ext∗Λ(M,M):

De�nition 1.1.4. Let M , M ′, N and N ′ be left Λ-modules. If η ∈ extn∗ (M,N),
ν ∈ extn∗ (M

′, N ′) are represented by the n-fold exact sequence

η : 0 N En−1 · · · E0 M 0

and

ν : 0 N ′ Nn−1 · · · N0 M ′ 0,

their coproduct η ⊕ ν ∈ extn∗ (M ⊕M ′, N ⊕N ′) is given by the class of

η ⊕ ν :

0 C ⊕ C En−1 ⊕Nn−1 · · ·

· · · E0 ⊕N0 A⊕ A 0.

For η, ν ∈ extn∗ (M,N), we then have the Baer sum

η + ν = ∇N · (η ⊕ ν) ·∆M ,

where ∇N =
(
1 1

)
: N ⊕N → N and ∆M =

(
1
1

)
: M →M ⊕M .
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We will not show here that these operations are well-de�ned, as we instead
refer to the following proposition for this.

Proposition 1.1.5. Let L, M , and N be left Λ-modules. Let ν, ν ′ ∈ extnΛ(M,N),
µ, µ′ ∈ extmΛ (L,M), and λ ∈ extl(K,L). We have then that ν + ν ′ and µ · ν are
both well-de�ned, and that the distributive properties

µ(ν + ν ′) = µ · ν + µ · ν ′

and

(µ+ µ′)ν = µ · ν + µ′ · ν ′

both hold.

In addition, one has the the associative property

λ · (µ · ν) = (λ · µ) · ν.

Moreover, the Baer sum operation makes extnΛ(M,N) into an abelian group.

Proof. See [25, Theorem 5.3, Chapter 3].

Given the statement of the following corollary, it might be pertinent to recall
the de�nition of a graded ring and some related notions: Following [4, Chapter
10], we de�ne a graded ring to be a ring A together with a family (An)n≥0 of
subgroups of the additive group of A satisfying A =

⊕
n∈N0

An and AmAn ⊆ Am+n

for all m,n ≥ 0. If x is an element of An for some n ≥ 0, then we say that x
is homogeneous and of degree n. One can immediately observe some notable
consequences, namely that A0 becomes a subring of A and that each An is an
A0-module.

Corollary 1.1.6. Let M be a left Λ-module. ext∗Λ(M,M) =
⊕

n∈N0
extnΛ(M,M)

is then a graded ring.

Proof. This is almost immediate by the preceding proposition: The additive struc-
ture is given by the direct sum structure of

⊕
n∈N0

extnΛ(M,M). As each n-fold
exact sequence begins and ends with M , the Yoneda splice of two extensions is
always de�ned, and can be extended as an operation linearly over formal sums of
extensions of di�erent length. Finally, we have that the identity element is

1M ∈ ext0
Λ(M,M) = HomΛ(M,M),

as, if µ ∈ ext∗Λ(M,M), 1M · µ = µ and µ · 1M = µ.
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We have need of the following notion in the next result: by a morphism
between n-fold exact sequences η and η′, Γ: η → η′, we mean a collection of
morphisms (f, . . . , g) forming a commutative diagram of the following form:

η : 0 M Mn−1 Mn−2 · · · M1 M0 L 0

η′ : 0 M Nn−1 Nn−2 · · · N1 N0 L 0

f g

Proposition 1.1.7. Let L andM be in mod Λ, and let P ∗ → L be a projective res-
olution of L. Then there exists mutually inverse isomorphisms Φ: extnΛ(L,M)→
ExtnΛ(L,M) and Ψ: ExtnΛ(L,M)→ extnΛ(L,M).

Proof. Let µ ∈ extnΛ(L,M). If µ is a representative of µ, and P ∗ → L is a projective
resolution of L, then we derive an element of Ext∗Λ(L,M) in the following fashion.
Note that by our assumptions, we have a diagram of the form

· · · P n+1 P n P n−1 P n−2 · · · P 1 P 0 L 0

0 M Mn−1 Mn−2 · · · M1 M0 L 0,

where the lower row is µ. By the comparison theorem, this can be �lled out to
give

· · · P n+1 P n P n−1 P n−2 · · · P 1 P 0 L 0

0 M Mn−1 Mn−2 · · · M1 M0 L 0,

ιn ιn−1 ιn−2 ι1 ι0

i.e. we get ι, a lifting of 1L.
As the leftmost square commutes, we have that ιn is a cocycle, and hence its

class lies in ExtnΛ(L,M). De�ne Φ: ext∗Λ(L,M) → Ext∗Λ(L,M) by letting Φ(µ)
be the ιn just obtained. This must be shown to be well-de�ned. Observe thus
that if we had chosen some other lifting of 1L, say ι

′, and had gotten some other
ι′n : P n →M , then by the Comparison Theorem, these two liftings would be chain
homotopic, implying that ιn− ι′n = ∂µsn + sn−1∂P ∗ would hold for si : P

i →M i+1.
But Mn+1 = 0, so that sn is the zero-morphism. Hence, ιn − ι′n = sn−1∂P ∗ holds,
i.e. ι and ι′ are mapped to the same cocycle.

Let now µ and µ′ be such that there exists some morphism of n-fold exact
sequences between them, say f : µ→ µ′, where this morphism is given by

f = (1M , f
n−1, . . . , f 1, f 0, 1L),
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which is to say that f is some morphism of n-fold exact sequences that begins
witht 1M and ends in 1L. It can then be seen that fι is a lifting of 1M over µ′,
so that the argument of the previous paragraph implies that µ and µ′ map to the
same element of ExtnΛ(L,M). As this is the case, it can be seen that the same holds
for equivalent n-fold exact sequences. Indeed, this follows by two results of [25],
the �rst of which is [25, Proposition 5.1, Chapter 3], which states the following: if
there exists a morphism of extensions Γ: η → η′ beginning with f : M → M ′ and
ending with g : L → L′, then f · η ∼= η′ · g holds. The second is [25, Proposition
5.2, Chapter 3], which states: two n-fold exact extensions η and η′ beginning at
M and ending in L are equivalent if and only if there is an integer k such that
there are 2k morphisms of n-fold exact sequences of the form

η = η0 η1 η2 · · · η2k−2 η2k−1 η2k = η′,

running alternately to the left and to the right, all of which begin with 1M and end
with 1L. In other words, it su�ces to repeat the argument just given 2k times to
deduce our claim, namely that Φ maps equivalent n-fold exact extensions to the
same cocycle in ExtnΛ(L,M).

We now show that Φ has an inverse Ψ: ExtnΛ(L,M) → extnΛ(L,M). Observe
that any cocycle σ : P n → M vanishes on ∂P ∗P

n+1. Hence, it can be factored
uniquely as a product through ∂∗PP

n, as in the following commutative diagram:

P n+1 P n

0 ∂∗PP
n P n−1 · · · P 1 P 0 L 0

M

∂′
∂P∗

σ′

j

If we let the middle row here be denoted by σ(P ∗,M), we can de�ne our Ψ by
setting Ψ(σ′∂′) = (σ′ · σ(P ∗, L). By the distributive laws proven in (1.1.5), the
right hand side is additive in σ′, so that to show well-de�nedness of Ψ, it su�ces
to show that it vanishes whenever σ′∂′ is a coboundary γ∂P ∗ , for γ : P n−1 → M .
But then one has that γ∂P ∗ = γj∂′. By associativity of the Yoneda splice, i.e.
(1.1.5), we have that if we can show that j · σ(P ∗, L) ∼= 0, then we would be done.

Examine thus the following diagram, in which the lower row is the leftmost
short exact sequence of j · σ(P ∗,M):
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0 ∂∗PP
n P n−1 ∂∗PP

n−1 0

0 P n−1 U Cok k 0

j

j

k′

k

It is known that any U , k and k′ that satisfy such a diagram must be the pushout
of j : ∂∗PP

n → P n−1 with itself. However, U = P n−1⊕∂∗PP n−1 with morphisms the
inclusion of P n−1 and the projection onto ∂∗PP

n−1 satis�es the diagram, entailing
that any other solution must also be split. By the proof of [25, Theorem 5.3,
Chapter 3], the additive identity element of ext1

Λ(M,M) is the equivalence class of
the split short exact sequences. This, of course, implies what we wished to show.

It remains to show that Ψ and Φ are each other's inverse, and that they are
homomorphisms. With respect to the former, this follows by comparing the two
diagrams we have produced. We see that Ψ ◦Φ = 1 follows by a simple computa-
tion, followed by an application of the Comparison Theorem. For a statement of
this result, see for instance [25, Theorem 6.1, Chapter 3]. To see that Φ ◦ Ψ = 1,
examine the diagram below, where the lower row is the chosen representative of µ
and the upper row is the representative µ that Φ ◦Ψ outputs.

0 M E · · · P 1 P 0 L 0

0 ∂∗PP
n P n−1 · · · P 1 P 0 L 0

0 M Mn−1 · · · M1 M0 L 0

σ′

σ′

j

The result follows by yet again applying [25, Proposition 5.1, Chapter 3].
Finally, with respect to whether they are homomorphisms, we can observe that

we have already established that Ψ is additive, which implies that Φ is as well,
and we are done.

As promised, we henceforth use only the Ext notation. To �nish out the section,
we show a small, useful corollary.

Corollary 1.1.8. If µ ∈ ExtnΛ(L,M) with n ≥ 1, then there is a representative of
µ of the form

0 M E P n−2 P n−3 · · · P 1 P 0 L 0,

in which each P i is projective.
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Proof. If the notation is as above, let σ be a representative of Φ(µ). Then σ = σ′∂′,
so that σ′ · σ(P ∗, L) is of the desired form.

1.2 Graded commutativity of HH∗(Λ)

Let Λ and Γ be algebras over a commutative ring k. We denote by Λe the enveloping
algebra Λ⊗kΛop. The goal will be to show that Ext∗Λe(Λ,Λ) is graded commutative.
For Λ k-projective, it is known that Ext∗Λe(Λ,Λ) is isomorphic to the Hochschild
cohomology ring HH∗(Λ) of Λ. See [13, Proposition 4.3, Chapter IX] or [30]. As
HH∗(Λ) is known to be graded commutative, these observations would su�ce.
However, we will be working under the weaker assumption that Λ is k-�at, and
will instead prove directly that Ext∗Λe(Λ,Λ) is graded commutative, hence also
providing a proof for HH∗(Λ) being graded commutative for Λ k-projective.

To do this, we �rst show that there is a homomorphism of graded rings

ΦM : Ext∗Λe(Λ,Λ)→ Ext∗Λ⊗kΓop(M,M),

given by ΦM(η) = η⊗ΛM , where M is some Λ-Λ-bimodule. Then, as this induces
an Ext∗Λe(Λ,Λ)-module structure on Ext∗Λ⊗kΓop(M,N) for a pair of Λ-Γ-bimodules
M and N , we prove that

ΦN(η)θ = (−1)mnθΦM(η)

holds for η in Ext∗Λe(Λ,Λ) and θ in Ext∗Λ⊗kΓop(M,N).

To begin with, we prove a minor technical result that will be needed in the
sequel:

Proposition 1.2.1. If Λ is �at over k, then Λe = Λ ⊗k Λop is �at as a left and
as a right Λ-module. Moreover, any projective Λe-module is �at as a left and as a
right Λ-module.

Proof. To see that the �rst statement must hold, let M be a right Λ-module. It
follows then that

M ⊗Λ Λe = M ⊗Λ (Λ⊗k Λop) ∼= (M ⊗Λ Λ)⊗k Λop ∼= M ⊗k Λop.

In other words, Λ-tensoring with Λe on the right is equivalent to k-tensoring with
Λop, which is k-�at since Λ is k-�at and Λ ∼=k Λop. The case for left Λ-modules is
similar. Since any summand of a �at module is itself �at, the second statement
follows.
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For this next proposition, we need to recall the following notion: we call a short
exact sequence of left Λ-modules 0 → A → B → C → 0 pure exact if we have
exactness of

0→M ⊗Λ A→M ⊗Λ B →M ⊗Λ C → 0

for arbitrary right Λ-modulesM . The de�nition for a short exact sequence of right
Λ-modules is entirely analogous.

Proposition 1.2.2. For a Λ-Γ-bimodule M , φM(η) = η⊗Λ M yields a homomor-
phism of graded rings φM : Ext∗Λe(Λ,Λ)→ Ext∗Λ⊗Γop(M,M).

Proof. First of all, it must be shown that φM(η) ∈ Ext∗Λ⊗Γop(M,M) holds. Note
that η ⊗Λ M is given by the n-fold exact sequence

0 M E ⊗M P n−2 ⊗M · · ·

· · · P 0 ⊗M M 0

if η is given by

0 Λ E P n−2 · · · P 0 Λ 0,

where each of the P i for i ≥ 0 are Λe-projective. That we can choose such a
representative of η follows by (1.1.8).

Observe that η ⊗Λ M is exact, since each of the short exact sequences η is
composed of are themselves pure exact. Indeed, the rightmost sequence is pure
exact by [31, Proposition 3.67, Chapter 3] since Λ is Λ-�at as it is clearly Λ-
projective. Furthermore, since by (1.2.1), P i for all i are Λ-�at, and �at modules
are closed under kernels of epimorphisms (between �at modules), this argument
can clearly be repeated for the next short exact sequence and so on.

What remains is to show that the homomorphism properties hold for φM . Note
that if η, ν ∈ ExtnΛe(Λ,Λ), then φM(η + ν) = φM(η) + φM(ν) holds if

φM(η + ν) = φM(∇Λ · (η ⊕ ν) ·∆Λ)

= ∇M · φM(η ⊕ ν) ·∆M

= ∇M · (φM(η)⊕ φM(ν)) ·∆M .

As it is clear that φM(η ⊕ ν) = φM(η) ⊕ φM(ν), what remains is to show that
∇Λ ·− and −·∆Λ commute with φM . Since φM(−) = −⊗ΛM is left adjoint, f ·−
is de�ned by way of a pushout, and left adjoint functors commute with colimits,
one has that φM(f · −) = f ⊗M · φM(−).
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Let now A,B,C and D be Λ-Λ-bimodules, let M be a Λ-Γ-bimodule, and
assume that C and D are Λ-�at. Examine the following diagram:

(µ · g)⊗Λ M : 0 A⊗M B′ ⊗M D ⊗M 0

µ⊗Λ M : 0 A⊗M B ⊗M C ⊗M 0

(µ⊗Λ M) · (g ⊗Λ M) : 0 A⊗M B′′ D ⊗M 0

g⊗ΛM

g⊗ΛM

Here the upper sequence remains short exact after applying −⊗Λ M , since D �at
entails that µ · g is pure exact by [31, Proposition 3.67, Chapter 3]. As the upper
leftmost vertical morphism is an isomorphism, this implies that the upper right
square is a pulllback. Since pullbacks are unique up to isomorphism, it follows
that (µ · g)⊗Λ M = µ⊗Λ M · (g ⊗Λ M). Hence, we have shown that the additive
homomorphism property holds. As the multiplicative homomorphism property
obviously holds, and since φM(1Λ) = 1M follows from −⊗Λ M being a functor, we
are done.

We are now �nally in a position to prove the results which form the base upon
which the theory of support varieties based on Hochschild cohomology is built.

Proposition 1.2.3. Let Λ and Γ be two algebras over a commutative ring k.
Assume that Λ is �at as a module over k. Let η be an element in HHn(Λ), and let
θ be an element in ExtmΛ⊗kΓop(M,N) for two Λ-Γ-bimodules M and N . Then

ΦN(η)θ = (−1)mnθΦM(η).

Proof. Assume M and N to be Λ-Γ-bimodules, and let

· · · P n P n−1 · · · P 1 P 0 Λ 0

be a Λe-projective resolution of Λ. As Λ is assumed to be k-�at, we have by
(1.1.8) that any Λe-projective module is �at both as a left and as a right Λ-
module. Moreover, since �at left and right Λ-modules are closed under kernels of
epimorphisms, a syzygy of Λ as a Λe-module must be �at as both a left and as a
right Λ-module. Let now η be given by

0 Λ E P n−2 · · · P 1 P 0 Λ 0.
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First we consider the case when θ ∈ HomΛ⊗kΓop(M,N) holds. It can be seen
that HH0(Λ) = HomΛe(Λ,Λ) = Z(Λ) holds, where Z(Λ) is the centre of Λ. Indeed,
if f ∈ HomΛe(Λ,Λ), then we have

f(λ) = f((λ⊗k 1) · 1) = f((1⊗k λ) · 1).

But then we have that

f((λ⊗k 1) · 1) = (λ⊗k 1) · f(1) = λ · f(1)

and

f((1⊗k λ) · 1) = (1⊗k λ) · f(1) = f(1) · λ.

Hence, it follows that λ·f(1) = f(1)·λ holds for all λ ∈ Λ and all f ∈ HomΛe(Λ,Λ),
which, as every f ∈ HomΛe(Λ,Λ) is determined by its value at 1, is precisely
equivalent to HomΛe(Λ,Λ) = Z(Λ). Clearly then the claim holds for η ∈ HH0(Λ).

If we suppose that η ∈ HH1(Λ), then it follows that there is a commutative
diagram with exact rows

0 Λ⊗Λ M E ⊗Λ M Λ⊗Λ M 0

0 Λ⊗Λ N X Λ⊗Λ M 0

0 Λ⊗Λ N E ⊗Λ N Λ⊗Λ N 0

Λ⊗θ

Λ⊗θ

where the composition of the middle two horizontal morphisms is equal to E ⊗ θ.
This then shows that (η⊗ΛN)θ = θ(η⊗ΛM). Moreover, this argument can clearly
be extended to any homogeneous element η in HH∗(Λ): to be precise, we do this
by considering a representative of η and repeatedly employing the recently derived
equation on a decomposition of that representative into short exact sequences of
Λe-modules.

Let now θ : 0 → N → X → M → 0 be an element of Ext1
Λ⊗kΓop(M,N).

Since, as mentioned above, all the syzygies of Λ as a Λe-module are �at as right
Λ-modules, we have the following exact and commutative diagram
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0 0 0

0 Ωi
Λe(Λ)⊗Λ N P i−1 ⊗Λ N Ωi−1

Λe (Λ)⊗Λ N 0

0 Ωi
Λe(Λ)⊗Λ X P i−1 ⊗Λ X Ωi−1

Λe (Λ)⊗Λ X 0

0 Ωi
Λe(Λ)⊗Λ M P i−1 ⊗Λ M Ωi−1

Λe (Λ)⊗Λ M 0

0 0 0

where Ω0
Λe(Λ) = Λ. To see this, note that while the commutativity is obvious,

all of the rows are the images of pure exact sequences of right Λ-modules under
tensoring on the right by some module, and thus remain exact. On the other hand,
each of the columns is the image of some short exact sequence under tensoring on
the left by some Λ-�at module, and are thus also exact.

Denote then the upper row of this diagram by σi, the right-most column by
θi, the left-most column by θi+1 and the lower row by σ′i. It follows then by [25,
22, Lemma 3.2, Chapter VIII] that the equality σiθi = −θi+1σ

′
i holds for all i ≥ 1.

Since

η ⊗Λ N = (0→ N → E ⊗Λ N → Ωn−1
Λe (Λ)⊗Λ N → 0)σn−1 · · ·σ2σ1

and

η ⊗Λ M = (0→M → E ⊗Λ M → Ωn−1
Λe (Λ)⊗Λ M → 0)σ′n−1 · · ·σ′2σ′1,

so that by repeatedly applying the aforementioned equality, we �nd that

(η ⊗Λ N)θ = (−1)nθ(η ⊗Λ M).

If θ ∈ ExtmΛ⊗kΛop(M,N), we can view θ as a product ofm short exact sequences.
Hence, applying our newly derived equality m-times yields

(η ⊗Λ N)θ = (−1)mnθ(η ⊗Λ M)

for η ∈ HHn(Λ) and θ ∈ ExtmΛ⊗kΛop(M,N).
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As previously mentioned, it is known that Ext∗Λe(Λ,Λ) is isomorphic to the
Hochschild cohomology ring of Λ when Λ is projective over k. As promised, we
thus have result (b) of the following corollary, which follows easily by the preceding
result by setting Γ = Λ.

Corollary 1.2.4. Let Λ be an algebra over a commutative ring k, where Λ is �at
as a module over k.

(a) The ring HH∗(Λ) = Ext∗Λe(Λ,Λ) is graded commutative.

(b) If Λ is projective as a module over k, then the Hochschild cohomology ring of
Λ is graded commutative.

Using part (a) of this corollary, we can see that any homogeneous element of
HH∗(Λ) of odd degree is nilpotent with degree of nilpotency equal to 2 whenever
the characteristic of k is di�erent from 2.

The �nal result of this section is also an immediate consequence of (1.2.3).

Corollary 1.2.5. Let Λ be an algebra over a commutative ring k, where Λ is
�at as a module over k. Then the left and the right HH∗(Λ)-module structures
induced by ΦN and ΦM on Ext∗Λ(M,N) are related as follows: if θ is an element
in ExtmΛ (M,N) and η is in HHn(Λ), then

ΦN(η)θ = (−1)mnθΦM(η).



Chapter 2

Support varieties

In the following chapter, building upon the basic results in the preceding chapter,
we develop the foundations of a theory of support varieties using the Hochschild
cohomology ring. We follow the presentation in [32]. In doing so, we gradually
and successively assume increasingly restrictive hypotheses. While beginning by
assuming more restrictive hypotheses might simplify some proofs, one would not
quite so easily see which hypotheses could be dispensed with.

We note that this presentation is only a selection of the results in [32]: for
instance, we have excluded some of the results concerning sel�njective algebras as
well as the proof of the variety of a module being an invariant of the Auslander-
Reiten component it belongs to. While these are natural and important develop-
ments, restrictions on the scope and length of this text prohibit their inclusion.
Indeed, we make no use of them in our investigation of possible generalisations of
the aforementioned results of Purin in [29].

2.1 Basic properties of support varieties

We have a few standing assumptions in this section. Namely, we assume that Λ
is an algebra over a commutative ring k, and that Λ is �at as a module over k.
Moreover, we will be working with H =

⊕
i≥0H

i, some graded subring of HH∗(Λ).
In this section, we de�ne support varieties for pairs of modules (M,N) using

the ring homomorphism

H → HH∗(Λ)→ Ext∗Λ(M,M).

Additionally, we derive some of the elementary properties of these varieties. To a
given pair of Λ-modules (M,N) we can associate the left and the right annihilators
of Ext∗Λ(M,N) as a left H-module and as a right H-module, respectively, which
we denote by AlH(M,N) and ArH(M,N), again respectively. Our �rst result of the
section shows that these are graded ideals, and that, in fact, they are equal.

15
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Lemma 2.1.1. Let M and N be Λ-modules. The ideals AlH(M,N) and ArH(M,N)
are equal and graded ideals in H. Moreover, if Ext∗Λ(M,N) is non-zero, then
AlH(M,N) = ArH(M,N) is a proper ideal.

Proof. Let x be an element of H. We have then that x =
∑N

i=0 xi for some xi in H
i

and some N ∈ N0. Assume now that xm = 0 for all m ∈ Ext∗Λ(M,N). It follows
then that xm = 0 holds for all homogeneousm, i.e.m = mj ∈ ExtjΛ(M,N). Hence,

we have that xm =
∑N

i=0 ximj = 0 if and only if ximj = 0 for i = 0, 1, . . . , N . It
follows that if xExt∗Λ(M,N) = (0), then all the homogeneous parts of x, i.e. the xi
such that x =

∑N
i=0 xi, annihilate all the homogeneous elements in Ext∗Λ(M,N) and

thus also all of the elements of Ext∗Λ(M,N). In other words, the left annihilator of
Ext∗Λ(M,N) is a graded right ideal. Since a similar argument entails that the right
annihilator is a graded left ideal, it follows that (1.2.5) implies that the left and
right annihilators of Ext∗Λ(M,N) coincide, and thus that AlH(M,N) = ArH(M,N)
is a graded ideal in H.

If Ext∗Λ(M,N) is non-zero, we have that there is some i0 ≥ 0 such that
Exti0Λ (M,N) 6= (0), implying that the identity in H is not in AlH(M,N), in which
case it must be a proper ideal.

Henceforth we let the graded ideal AlH(M,N) = ArH(M,N) be denoted by
AH(M,N).

An additional standing assumption for the remainder of the section is that H0

is a local k-algebra. Given this assumption, the maximal ideal a = 〈rad(H0), H≥1〉
will play a central role, namely by de�ning the modules with a trivial variety. For
group rings, the modules with a trivial variety are precisely the projective modules.
In our more general setting, we will later see that the class of modules which have
a trivial variety will include those of �nite injective or projective dimension, and
those with no self extensions.

Moreover, one can see that H0 is a local k-algebra if Λ is an indecomposable
artin k-algebra, k is a commutative Artinian ring and H = HH∗(Λ). In fact,
as seen before, since H = HH∗(Λ), it follows that H0 = Z(Λ), the centre of Λ.
Moreover, for such a Λ, it is the case that H0 has no non-trivial idempotents,
as if it did, Λ would have a non-trivial central idempotent and would thus not be
indecomposable. Finally, we can see that H0 is an artin k-algebra by the same ring
homomorphism that yields the k-algebra structure of Λ since it is clearly �nitely
generated as a k-module as it is a k-submodule of Λ. In sum, this thus implies
that H0 has only one indecomposable projective left module, namely itself as a
left module, and its top is thus simple. Hence, radH0 is maximal, i.e. H0 is local.

This next lemma shows that the ideal a contains the ideal AH(M,N) for any
pair of modules (M,N) if Ext∗Λ(M,N) 6= (0).

Lemma 2.1.2. Let M and N be two Λ-modules.
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(a) If Ext∗Λ(M,N) is non-zero, then the ideal AH(M,N) is contained in the ideal

a = 〈radH0, H≥1〉.

(b) If m is a non-zero maximal ideal in H, then m contains the ideal generated by
rad(H0).

Proof. (a) Let (M,N) be a pair of non-zero left Λ-modules with Ext∗Λ(M,N) non-
zero. Now, write y =

∑n
i=0 yi for y ∈ AH(M,N) and yi ∈ H i for all i. Clearly it

is su�cient to show that y0 ∈ rad(H0) holds. Note that as AH(M,N) is a graded
ideal in H, it follows that y0 ∈ AH(M,N).

We proceed by arguing reductio ad absurdum. Assume thus that y0 is not
an element of rad(H0). As, by our standing assumption, H0 is a local ring, y0

must then be an invertible element. Otherwise, it would be contained in some
maximal ideal, which would then have to be rad(H0). However, if y0 is invertible,
the product of it and any non-zero element of Ext∗Λ(M,N) must then also be non-
zero. In other words, if y0 were invertible, it could not annihilate Ext∗Λ(M,N), and
hence y0 /∈ AH(M,N) would have to hold, a contradiction. Thus the claim in (a)
follows.

(b) Assume m to be some maximal ideal in H. The ideal generated by radH0

in H must equal H radH0 = radH0H, where this last equality follows by (1.2.5)
and the elements of radH0 being homogeneous of degree 0. All ideals of H can
clearly be considered H0-submodules of H. Moreover, radH0H must be contained
in the radical of H as an H0-module. See [24, Chapter 8, Proposition 24.4]. By
the same result, it follows that radH0H is a small submodule of H, which thus
entails that m + radH0H = m, or in other words, m contains radH0H.

Let NH denote the ideal in H generated by rad(H0) and the homogeneous
nilpotent elements of H, which is then clearly a graded ideal in H. As H is graded
commutative and (2.1.2) entails that any maximal ideal in H contains radH0,
we can see that any maximal ideal contains NH . Indeed, if x is a homogeneous
nilpotent element, 〈x〉 is a nilpotent ideal since H is graded commutative. Since
it is a nilpotent ideal, and since a maximal ideal is a prime ideal, it follows that
every maximal ideal contains 〈x〉 for every homogeneous nilpotent element. Hence,
there is a 1-1 correspondence between the maximal ideals in H and the maximal
ideals in H = H/NH . For a given ideal I of H, we let I ′ denote the inverse image
of I in H. By way of these observations and (1.2.5), we can make the following
de�nition.

De�nition 2.1.3. Let M and N be any pair of Λ-modules. De�ne the support
variety VH(M,N) in H associated with the pair (M,N) by

VH(M,N) = {m ∈ MaxSpecH | AH(M,N) ⊆ m′}
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whenever Ext∗Λ(M,N) is non-zero. If Ext∗Λ(M,N) is zero, then let VH(M,N) = ∅.

It follows from the fact that HH∗(Λ) is graded commutative that the even part
of HH∗(Λ) is a commutative ring, and that HH∗(Λ) is a commutative ring whenever
the characteristic of k is 2. Moreover, for k of characteristic di�erent from 2, H
can identi�ed with the quotient of the even part of H over the ideal generated by
the homogeneous nilpotent elements of even degree and rad(H0). In other words,
the algebra H is always commutative with no non-zero nilpotent elements and is
an algebra over the commutative ring H0/ rad(H0).

We call a variety of a pair of modules (M,N) trivial if VH(M,N) = {mgr},
where mgr is the ideal 〈NH , H≥1〉/NH of H, which is in fact maximal. Note that
the claim in the latter clause holds since any ideal of H containing mgr would have
to correspond to an ideal of H containing 〈NH , H≥1〉. Since NH is generated in
particular by rad(H0), we have that H modulo 〈NH , H≥1〉 is isomorphic to the
top of H0, which is simple as H0 is local.

Now, since NH is the ideal generated by rad(H0) and all of the homogeneous
nilpotent elements of H, it follows that mgr is equal to 〈rad(H0), H≥1〉/NH , which
is to say that mgr = a/NH .

Having stated all this, we are ready to state and prove the next result: as it
is desirable to classify the class consisting of pairs of modules which have a trivial
variety, the following is a partial result in that direction.

Proposition 2.1.4. Suppose one of the following conditions holds:

(i) M is a Λ-module with ExtiΛ(M,M) = (0) for i� 0,

(ii) N is a Λ-module with ExtiΛ(N,N) = (0) for i� 0, or

(iii) ExtiΛ(M,N) = (0) for i� 0 with Ext∗Λ(M,N) non-zero.

Then VH(M,N) = {mgr}.

Proof. Clearly we can assume that Ext∗Λ(M,N) is non-zero and one of the following
hold:

(i) M is a Λ-module with ExtiΛ(M,M) = (0) for i ≥ n,

(ii) N is a Λ-module with ExtiΛ(N,N) = (0) for i ≥ n, or

(iii) ExtiΛ(M,N) = (0) for i ≥ n.

In each of these cases, we can see that H≥n+1 is contained in AH(M,N), since
Hn+1 · Ext∗Λ(M,N) consists of elements which are sums of homogeneous elements
of degree greater than n and is thus equal to (0). As a consequence, (H i)n+1
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is contained AH(M,N) for all i = 1, 2, . . . , n. Hence, it follows then that any
maximal ideal m′ of H satisfying (H i)n+1 ⊆ AH(M,N) ⊆ m′ must then also
contain H≥1 as any maximal ideal is also a prime ideal. On the other hand, (2.1.2)
(b) ensures that any non-zero maximal ideal in H contains the ideal generated by
rad(H0). But then it follows that any maximal ideal m ∈ VH(M,N) must contain
mgr = 〈rad(H0), H≥1〉/NH , that is, we must have m = mgr, which is equivalent to
what was to be shown.

It follows immediately from the preceding result that the variety of any pair of
modules (M,N) with Ext∗Λ(M,N) non-zero where M or N has �nite projective or
injective dimension must be trivial.

We end this section on the following three results. They describe the relation-
ship between the varieties of modules occurring in an exact sequence.

Lemma 2.1.5. Let η : 0 → X1 → X2 → X3 → 0 be an exact sequence of Λ-
modules, and let M and N be two Λ-modules. Then the following statements hold:

(a) VH(M,Xi1) ⊆ VH(M,Xi2) ∪ VH(M,Xi3) whenever {i1, i2, i3} = {1, 2, 3};

(b) VH(Xi1 , N) ⊆ VH(Xi2 , N) ∪ VH(Xi3 , N) whenever {i1, i2, i3} = {1, 2, 3}.

Proof. (a) It follows by the Long Exact Sequence of Homology that the short exact
sequence η induces an exact sequence of right H-modules

Ext∗Λ(M,X1)→ Ext∗Λ(M,X2)→ Ext∗Λ(M,X3).

Indeed, to see this, it su�ces to show that there is a commutative diagram

ExtnΛ(M,X) Extn+m
Λ (M,X)

ExtnΛ(M,Y ) Extn+m
Λ (M,Y )

−·hm

f∗ f∗

−·hm

where f∗ corresponds to a homomorphism f : X → Y acting on the left on ele-
ments, and where the horizontal maps correspond to an hm ∈ HHm(Λ) acting on
the right on elements. However, that this diagram commutes is then immediate
from the associative property of the Yoneda splice, as recorded in (1.1.5).

It follows then that AH(M,X2) ⊇ AH(M,X1)AH(M,X3). Indeed, one can see
that for x ∈ Ext∗Λ(M,X2), we have that the image of an element of x ·AH(M,X3)
in Ext∗Λ(M,X3) is zero. But then every element of x · AH(M,X3) is the image of
something in Ext∗Λ(M,X1), which then entails x ·AH(M,X1)AH(M,X3) is zero in
Ext∗Λ(M,X2).
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Suppose that AH(M,X2) ⊆ m′ for some m ∈ MaxSpecH. Since m is a prime
ideal, we have that AH(M,X3) ⊆ m′ or AH(M,X1) ⊆ m′ and thus

VH(M,X2) ⊆ VH(M,X1) ∪ VH(M,X3).

It also follows by the Long Exact Sequence of Homology that η induces the
exact sequences of right H-modules

Ext∗Λ(M,X2)→ Ext∗Λ(M,X3)→ Ext∗+1
Λ (M,X1),

Ext∗Λ(M,X3)→ Ext∗Λ(M,X1)→ Ext∗+1
Λ (M,X2),

and
0→ HomΛ(M,X1)→ HomΛ(M,X2).

By arguments entirely analogous to those just given, it follows that both

AH(M,X1) ⊇ AH(M,X2)AH(M,X3)

and
AH(M,X3) ⊇ AH(M,X1)AH(M,X2)

hold, so that
VH(M,X1) ⊆ VH(M,X2) ∪ VH(M,X3)

and
VH(M,X3) ⊆ VH(M,X1) ∪ VH(M,X2)

also both hold, and we have shown the claim in (a).
The proof of (b) is similar to that of (a), and is thus not included.

Proposition 2.1.6. Let η : 0 → X ′ → E → X → 0 be an exact sequence of
Λ-modules where VH(E,N) = VH(M,E) = {mgr} for any two Λ-modules M and
N . Then the following assertions hold:

(a) VH(M,X) ∪ {mgr} = VH(M,X ′) ∪ {mgr} for any left Λ-module M , where mgr

is in one of the varieties VH(M,X) or VH(M,X ′);

(b) VH(X,N) ∪ {mgr} = VH(X ′, N) ∪ {mgr} for any left Λ-module N , where mgr

is in one of the varieties VH(X,N) or VH(X ′, N).

Proof. (a) From (2.1.5) we can deduce that

VH(M,X) ⊆ VH(M,X ′) ∪ VH(M,E)

and
VH(M,X ′) ⊆ VH(M,X) ∪ VH(M,E),



2.2. SUPPORT VARIETIES FOR ARTIN ALGEBRAS 21

and hence surely

VH(M,X) ∪ VH(M,E) ⊆ VH(M,X ′) ∪ VH(M,E)

and
VH(M,X ′) ∪ VH(M,E) ⊆ VH(M,X) ∪ VH(M,E),

from which the �rst part of the claim in (a) easily follows as VH(M,E) = {mgr}
holds by hypothesis. Since

VH(M,E) ⊆ VH(M,X) ∪ VH(M,X ′),

also follows by (2.1.5), the second part also holds, and we have proven the claim
in (a).

As the proof of (b) is analogous to that of (a), we leave it to the reader.

This �nal result is an easy consequence of (2.1.5).

Proposition 2.1.7. Let M =
⊕r

i=1Mi and N =
⊕r

i=1 Ni. Then

VH(M,N) =

r,s⋃
i,j=1

VH(Mi,Mj).

Proof. Since we have that ExtlΛ(M,N) =
⊕r,s

i,j=1 ExtlΛ(Mi, Nj), the claim follows
from (2.1.5).

2.2 Support varieties for artin algebras

In this section, we have as our standing assumptions that Λ is an artin algebra
over a commutative Artinian ring k, and that Λ is �at as a k-module. Since k
is Artinian and hence also Noetherian and Λ is �nitely generated as a k-module,
the latter assumption is actually equivalent to requiring Λ to be projective as a
k-module. Finally, we let H be a graded subalgebra of HH∗(Λ), and we assume
throughout that H0 is a local k-algebra. At this point, it also follows immediately
that H0 is Artinian.

In the following we introduce the support variety VH(M) of a module M ∈
mod Λ as VH(M,Λ/ rad Λ) after having shown the equalities VH(M,Λ/ rad Λ) =
VH(M,M) = VH(M,Λ/ rad Λ). Assuming Λ to be an artin algebra ensures that any
�nitely generated module of Λ has a �nite �ltration in �nitely generated semisimple
modules. An implication of this is that the variety of a �nitely generated Λ-module
is contained in the variety of Λ/ rad Λ. Support varieties are de�ned for left and
right modules in analogous ways, and both are contained in MaxSpecH.

We begin by showing a result needed for deriving the equalities which motivate
the aforementioned de�nition of the variety of a module.
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Proposition 2.2.1. Let M and N be in mod Λ. The following assertions hold:

(a) VH(M,N) ⊆ VH(M,Λ/ rad Λ) ∩ VH(Λ/ rad Λ, N) ⊆ VH(Λ/ rad,Λ/ rad);

(b) if Ext∗Λ(M,N) is non-zero, then {mgr} ⊆ VH(M,N) ⊆ VH(Λ/ rad,Λ/ rad);

(c) VH(M,N) ⊆ VH(M,M) ∩ VH(N,N) ⊇ VH(N,M).

Proof. (a) By (2.1.7), it follows that we have for any simple Λ-module S that
VH(M,S) ⊆ VH(M,Λ/ rad Λ), as, since Λ is an artin algebra, any simple Λ-module
is the top of an indecomposable projective Λ-module, and is thus a summand of
Λ/ rad Λ.

Moreover, we have for all L in mod Λ short exact sequences

0→ radi+1 L→ radi L→ radi L/ radi+1 L→ 0

for all i = 0, 1, . . . , l, where l is the radical length of L, and where as a further
consequence of Λ being an artin algebra, radi L/ radi+1 L is semisimple. Hence, by
repeated applications of (2.1.5)(a), we can deduce that

VH(M,N) ⊆
l⋃

i=0

VH(M, radi Λ/ radi+1 Λ).

Furthermore, by repeated applications of (2.1.7) we infer that

VH(M, radi Λ/ radi+1 Λ) ⊆ VH(M,Λ/ rad Λ)

must hold for all i = 0, 1, . . . , l.
Repeating the argument with M and N interchanged yields that

VH(M,N) ⊆ VH(Λ/ rad Λ, N).

Moreover, using the �rst inclusion with M = Λ/ rad Λ, we �nd that

VH(Λ/ rad Λ, N) ⊆ VH(Λ/ rad Λ,Λ/ rad Λ),

and by combining all of these observations we derive the claim claim in (a).
(b) This follows by (a) and (2.1.2).
(c) Since

AH(X,X) ⊆ AH(M,N)

and
AH(X,X) ⊆ AH(N,M)

both hold for X = M or X = N , the claim follows.
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The following result is now but an easy consequence of the preceding one.

Proposition 2.2.2. The equalities

VH(M,Λ/ rad Λ) = VH(Λ/ rad Λ,M) = VH(M,M)

hold for any module M in mod Λ.

Proof. It follows from (2.2.1)(a) and (c) that we have

VH(M,Λ/ rad Λ) ⊆ VH(M,M) ⊆ VH(M,Λ/ rad Λ),

and hence VH(M,Λ/ rad Λ) = VH(M,M). Similarly, we �nd that

VH(Λ/ rad Λ,M) = VH(M,M),

and hence we are done.

As promised, we are now ready to de�ne the support variety of a module in
mod Λ.

De�nition 2.2.3. The support variety VH(M) of a module M in mod Λ with
respect to H is given by VH(M) = VH(M,Λ/ rad(Λ)).

As for the variety of a pair of modules (M,N), we say that a module M has
a trivial variety if VH(M) = {mgr}. The �nal result of this section illustrates the
continued importance of the ideal mgr in this current context.

Proposition 2.2.4. (a) We have {mgr} ⊆ VH(M) ⊆ VH(Λ/ rad Λ) for all non-
zero modules M in mod Λ.

(b) If VH(Λ/ rad Λ) = {mgr}, then VH(M) = {mgr} for all non-zero modules M in
mod Λ.

(c) If ExtiΛ(M,M) = (0) for i� 0, or the projective or the injective dimension of
M is �nite for a non-zero module M , then VH(M) = {mgr}.

(d) If 0→M1 →M2 →M3 → 0 is an exact sequence in mod Λ, then

VH(Mi1) ⊆ VH(Mi2) ∪ VH(Mi3)

whenever {i1, i2, i3} = {1, 2, 3}.

(e) If 0 → M ′ → E → M → 0 is an exact sequence with non-zero end terms in
mod Λ where VH(E) is trivial, then VH(M) = VH(M ′). In particular, for any
non-zero module M in mod Λ the equality VH(M) = VH(Ωn

Λ(M)) holds for all
integers n such that Ωn

Λ(M) 6= (0).
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(f) If M =
⊕n

i=1Mi, then VH(M) =
⋃n
i=1 VH(Mi).

Proof. (a) Note that Ext∗Λ(M,Λ/ rad Λ) is non-zero for a non-zero module M . In
fact, there is clearly some non-zero map f : M → Λ/ rad Λ that factors as

f : M → topM → Λ/ rad Λ,

since topM is semisimple. This then implies that HomΛ(M,Λ/ rad Λ) 6= (0).
Hence, the result follows from (2.2.1)(b).

(b) This follows from (a).
Parts (c), (d), (e), and (f) follow from (2.1.4), (2.1.5), (2.1.6) and (2.1.7).

2.3 Support varieties for �nite dimensional alge-

bras

Our standing assumptions for this section are that Λ is a �nite dimensional algebra
over a �eld k. As k is a �eld, all modules over k are projective, and so we need
not assume anything corresponding to our previous assumptions of Λ being k-�at.
Finally, as before, we let H be a graded subalgebra of HH∗(Λ), and we assume
throughout that H0 is a local k-algebra.

For Λ a �nite dimensional algebra over a �eld k, we show that the varieties
of M and D(M) are equal, where D denotes standard duality Homk(−, k) from
mod Λ to mod Λop.

Let P ∗ → Λ be a minimal Λe-projective resolution of Λ. That is to say, P ∗ → Λ
is of the form

· · · P n P n−1 · · · P 1 P 0 Λ 0.∂n ∂n−1 ∂1 ∂0

Given our assumptions, P ∗⊗ΛM is a projective resolution ofM for any Λ-module
M . Indeed, observe that

(Λ⊗k Λop)⊗Λ M ∼= Λ⊗k (Λop ⊗Λ M) ∼= Λ⊗k M ∼= ΛdimM ,

so that if P n is a Λe-projective, P n⊗Λ M is a summand of some number of copies
of Λ, and is hence Λ-projective.

The varieties of the modules M and D(M) are de�ned by, respectively, the
kernel of the map

H Ext∗Λ(M,M)
−⊗ΛM

and the kernel of the map

H Ext∗Λop(D(M), D(M))
D(M)⊗Λ−
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implying that both are contained in MaxSpecH, and hence they can be compared.
This next proposition does just that and shows that they are actually equal.

Proposition 2.3.1. Let Λ be a �nite-dimensional algebra over a �eld k. For any
module M in mod Λ the varieties VH(M) and VH(D(M)) are equal.

Proof. Let P ∗ → Λ of the form

· · · P n P n−1 · · · P 0 Λ 0∂n

be a minimal Λe-projective resolution of Λ. Let η be in Hn. By (1.1.7), we can
represent this element by a map η : P n → Λ. Assume now that η ∈ AH(M,M)
holds. That is to say, η ⊗Λ M : P n ⊗Λ M → Λ⊗Λ M factors through

P n ⊗Λ M P n−1 ⊗Λ M.
∂n⊗ΛM

Of course, the goal is to show that η ∈ AH(D(M), D(M)) holds.
Now, note that we have that D(M)⊗ΛX and D(HomΛ(X,M)) are isomorphic

as right Λ-modules for an arbitrary Λ-Λ-bimodule X. To see this, note that we
have that

D(D(M)⊗Λ X) = Homk(D(M)⊗Λ X, k)
∼= HomΛ(D(M), D(X))
∼= HomΛop(X,M),

where the equality holds by de�nition, the �rst left Λ-isomorphism holds by Hom-
⊗-adjunction while the second left Λ-isomorphism holds by D(−) being a duality.
The desired isomorphism of right Λ-modules then follows by applyingD(−) to both
sides and observing that D(−) is a duality and that right Λ-modules correspond
precisely to left Λop-modules.

Putting this observation to use, we �nd that the map

HomΛop(D(M)⊗Λ P
n−1, D(M)⊗Λ Λ)→ HomΛop(D(M)⊗Λ P

n, D(M)⊗Λ Λ)

is isomorphic to

HomΛop(D(HomΛ(P n−1,M)), D(HomΛ(Λ,M)))

→ HomΛop(D(HomΛ(P n,M)), D(HomΛ(Λ,M)).

Since D(−) is a duality, we �nd that this is isomorphic to

HomΛ(HomΛ(Λ,M),HomΛ(P n−1,M))→ HomΛ(HomΛ(Λ,M),HomΛ(P n,M)).
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Using Hom-⊗-adjunction once again, we �nd that this in turn is isomorphic to

HomΛ(P n−1 ⊗Λ HomΛ(Λ,M),M)→ HomΛ(P n ⊗Λ HomΛ(Λ,M),M),

which is isomorphic to

HomΛ(P n−1 ⊗Λ M,M)→ HomΛ(P n ⊗Λ M,M)

by the well-known isomorphism HomΛ(Λ, X) ∼= X for arbitrary Λ-modules X.
It can be seen that these isomorphisms bijectively map the homomorphism

D(M)⊗Λ η : D(M)⊗Λ P
n → D(M)⊗Λ Λ

to the homomorphism

η ⊗Λ M : P n ⊗Λ M → Λ⊗Λ M.

And since the latter factors through ∂n⊗ΛM : P n⊗ΛM → P n−1⊗ΛM , the former
factors through D(M) ⊗Λ ∂

n : D(M) ⊗Λ P
n → D(M) ⊗Λ P

n−1. It follows thus
that AH(M,M) is contained in AH(D(M), D(M)). Repeating the argument while
interchanging M and D(M) yields the reverse inclusion. In other words, we have
that AH(M,M) = AH(D(M), D(M)), and thus also that VH(M) = VH(D(M)).

2.4 HH∗(Λ) for Λ over an algebraically closed �eld

The goal of this section will be to investigate more closely the structure of HH∗(Λ)
for when Λ is a �nite dimensional algebra over an algebraically closed �eld. While
this assumption is not strictly necessary, as will become clear below, it is su�cient
to have a good characterisation of the elementary structure of Λe = Λ⊗k Λop. We
also assume all of the standing assumptions from the previous section.

To begin with, we work to identify the radical of Λe. With respect to that, we
need the following result, which we cite without proof:

Proposition 2.4.1. Let Λ and Γ be �nite-dimensional semisimple algebras over
a �eld k such that at least one of them has as its simple components matrix rings
over separable extensions over k. Then Λ⊗k Γ is semisimple.

Proof. See [23, Chapter 2, Corollary 2.37]. Note that our statement of the result is
obtained by including Knapp's de�nition of a separable semisimple algebra, which
can be found between Proposition 2.33 and Proposition 2.33' of [23, Chapter 2].
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Using this, it is rather immediate that Λ/ rad Λ ⊗k Λop/ rad Λop is semisim-
ple. Indeed, since Λ/ rad Λ is a semisimple algebra over a �eld, we know by the
Wedderburn-Artin Theorem that Λ/ rad Λ is a direct sum of full matrix rings over
�nite dimensional division rings over k. However, for k algebraically closed, any
�nite dimensional division ring D over k is in fact equal to k: Let x be in D.
Then since D is �nite dimensional over k, there is some n such that {1, x, . . . , xn}
is linearly dependent. Hence, x is a root of some polynomial with coe�cients in
k, and thus x ∈ k must hold since k is algebraically closed. Moreover, since the
minimal polynomial of an element of k over k itself is a linear polynomial, it has
distinct roots, implying that k is a separable extension over itself.

Employing what we have just shown, we identify the radical of Λe by a simple
diagram chase.

Proposition 2.4.2. Let Λ be a �nite dimensional algebra over an algebraically
closed �eld. Then the radical of Λe is equal to Λ⊗krad Λop+rad Λ⊗kΛop. Moreover,
the top of Λe is Λ/ rad Λ⊗k Λop/ rad Λop.

Proof. Since k-tensoring is exact, we have the following commutative diagram with
rows and columns exact:

0 0

Λ⊗k rad Λop Λ/ rad Λ⊗k rad Λop 0

0 rad Λ⊗k Λop Λ⊗k Λop Λ/ rad Λ⊗k Λop 0

0 rad Λ⊗k Λop/ rad Λop Λ⊗k Λop/ rad Λop Λ/ rad Λ⊗k Λop/ rad Λop 0

0 0 0

If an element x in Λ⊗k Λop maps to some x1 in Λ⊗k Λop/ rad Λop which then maps
to zero in Λ/ rad Λ ⊗k Λop/ rad Λop, this latter element x1 must be the image of
some x2 in rad Λ ⊗k Λop/ rad Λop. By surjectivity, this x2 is the image of some
x3 in rad Λ ⊗k Λop. Identifying x3 with its image in Λ ⊗k Λop, we �nd that the
di�erence x− x3 maps to zero in Λ⊗k Λop/ rad Λop, and is thus the image of some
x4 in Λ⊗k rad Λop.

What we have just shown is equivalent to Λ⊗k rad Λop +rad Λ⊗kΛop ⊆ rad Λe.
Since it follows by simple computations that Λ ⊗k rad Λop + rad Λ ⊗k Λop is a
nilpotent ideal of Λe, we are done.



28 CHAPTER 2. SUPPORT VARIETIES

Note that if λ is an element of Λ, we write λ′ whenever we consider it as an
element of Λop. Additionally, let Mn(k) denote the full ring of n × n matrices
over k. The next proposition yields a description of a complete set of primitive
idempotents of Λe in terms of a corresponding set for Λ. Of course, this allows us
to give a description of the indecomposable projectives of Λe as well.

Proposition 2.4.3. Let Λ be a �nite dimensional algebra over an algebraically
closed �eld. Assume that {ej}1≤j≤n is a complete set of primitive idempotents of
Λ. Then the following hold:

(i) {ei ⊗k e′j}1≤i,j≤n is a complete set of primitive idempotents of Λe.

(ii) The indecomposable projective modules of Λe are of the form Λei ⊗k ejΛ.

(iii) The simple modules of Λe are of the form S(i) ⊗k S ′(j), where S(i) is the
simple Λ-module corresponding to ei, whereas S

′(j) is the simple Λop-module
corresponding to e′j.

Proof. (i) By employing the Wedderburn-Artin Theorem, observing that the sim-
ple components of Λ/ rad Λ and Λop/ rad Λop are central simple, and employing
[23, Chapter 2, Corollary 2.36], we see that the simple components of Λ/ rad Λ⊗k
Λop/ rad Λop are of the form Ml(k)⊗kMm(k), where Ml(k) and Mm(k) are simple
components of Λ/ rad Λ and Λop/ rad Λop, respectively. Moreover, it follows that
Ml(k)⊗k Mm(k) ∼= Mlm(k) must hold.

Consider now subsets of {ej}1≤j≤n of the form {eji}1≤i≤l and {eji}1≤i≤m such
that images of the former under the standard projection correspond to a com-
plete set of primitive idempotents of Ml(k), and the latter such that the images of
{e′ji}1≤i≤m under the standard projection corresponds to a complete set of prim-
itive idempotents of Mm(k). Note also that since {ej}1≤j≤n is assumed to be a
complete set of idempotents of Λ, the elements are also orthogonal. It is then
easily seen that {eji ⊗k e′ji′}1≤i≤l,1≤i′≤m is a complete set of orthogonal idempo-
tents, and thus corresponds to a decomposition of Mlm(k) into a direct sum of lm
non-zero projective Mlm(k)-modules. By counting and comparing with the num-
ber of indecomposable projective modules of Mlm(k), we see that these projective
Mlm(k)-modules must be indecomposable by applying the Krull-Schmidt Theo-
rem. Hence, the elements of {eji ⊗k e′ji′}1≤i≤l,1≤i′≤m must be primitive. Repeating
this for each simple component of Λ/ rad Λ⊗kΛop/ rad Λop, we arrive at a complete
set of primitive idempotents that lifts to {ei ⊗k e′j}1≤i,j≤n, and we have shown the
claim in (i).

(ii) This follows immediately from (i).
(iii) From (2.4.2), we know that that Λei⊗k ej rad Λop + rad Λei⊗k ejΛop is the

radical of Λei ⊗k ejΛop. Examine then the following commutative diagram with
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exact rows and columns:

0 0

Λei ⊗k ej rad Λop S(i)⊗k ej rad Λop 0

0 rad Λei ⊗k ejΛop Λei ⊗k ejΛop S(i)⊗k ejΛop 0

0 rad Λei ⊗k S ′(j) Λei ⊗k S ′(j) S(i)⊗k S ′(j) 0

0 0 0

We note that this proof would over all have been somewhat easier if we assumed
we were working over a basic �nite dimensional algebra over an algebraically closed
�eld. Indeed, in that case, the simples of Λ and Λop would have dimension 1, in
which case S(i) ⊗k S ′(j) for 1 ≤ i, j ≤ n would also have dimension 1. At that
point we could immediately pass to the commutative diagram in (iii) to show that
{ei ⊗k e′j}1≤i,j≤n is a complete set of primitive idempotents, as primitive idempo-
tents correspond exactly to indecomposable projective modules which correspond
exactly to the projective covers of the simple modules. Incidentally, we note that
this argument also shows that if Λ is basic, then Λe is as well.

2.5 The annihilator of Ext∗Λ(M,M)

Given our de�nition of varieties, the annihilator of a module M , i.e. AH(M,M),
plays a central role. This annihilator is given by the kernel of the ring homomor-
phism consisting of the composition of the inclusion of H into HH∗(Λ) and the
ring homomorphism induced by the functor −⊗Λ M :

H → HH∗(Λ)→ Ext∗Λ(M,M).

Our goal in this section will simply be to investigate these structures more closely,
and to derive some technical results which we need in the sequel. To be precise,
they will see heavy use when we show that any closed variety occurs as the variety
of some module. Let thus

· · · → P n → P n−1 → · · · → P 1 → P 0 → Λ→ 0

be a minimal projective resolution of Λ as a Λe-module. Note that we keep all of
the standing assumptions from the previous section.
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De�nition 2.5.1. Given a homogeneous element η in HH∗(Λ) of degree n, rep-
resented by a map η : Ωn

Λe(Λ) → Λ, we de�ne the Λe-module Mη by the following
pushout diagram

0 Ωn
Λe(Λ) P n−1 Ωn−1

Λe (Λ) 0

0 Λ Mη Ωn−1
Λe (Λ) 0

ιn

η

αn βn

where we denote by Eη the bottom row short exact sequence.

We note that the isomorphism class of the module Mη is independent of the
representation of η as a map Ωn

Λe(Λ) → Λ. Indeed, to see this, observe that if η′

is another representative of of the same element of HHn(Λ), then by de�nition it
follows that there is some ε : P n−1 → Λ such that if ιn : Ωn

Λe(Λ) → P n−1 is the
inclusion, then η − η′ = ει. Moreover, observe also that by the de�nition of Mη,
there exists an exact sequence of the form

0 Ωn
Λe(Λ) P n−1 ⊕ Λ Mη 0

 ιn

−η

 (
γn αn

)

where γn : P n−1 → Mη is the middle vertical map in the commutative diagram
de�ning Mη. Since this also holds for Mη′ , we have the following commutative
diagram with exact rows:

0 Ωn
Λe(Λ) P n−1 ⊕ Λ Mη 0

0 Ωn
Λe(Λ) P n−1 ⊕ Λ Mη′ 0

 ιn

−η


1 0

ε 1

 ιn

−η′



Note that by elementary homological algebra, we have an induced mapMη →Mη′ .
Moreover, since the middle vertical map is clearly an isomorphism, by the Five
Lemma it follows that this induced map must be an isomorphism as well.

With this preliminary discussion out of the way, we present this section's �rst
result:

Proposition 2.5.2. Let η be a homogeneous element of degree n in HH∗(Λ), and
let M be in mod Λ. Then the following are equivalent.
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(i) η is in AHH∗(Λ)(M,M).

(ii) Eη ⊗Λ M is a split short exact sequence.

(iii) Mη ⊗Λ M ∼= M ⊕ Ωn−1
Λ (M)⊕Q for some projective Λ-module Q.

Proof. We assume the notation used in the discussion preceding this result. Our
strategy in showing these equivalences is straightforward, and we begin by showing
that (i) implies (ii). Note that after applying −⊗ΛM to the diagram de�ningMη,
we have the following commutative diagram

0 Ωn
Λe(Λ)⊗Λ M P n−1 ⊗Λ M Ωn−1

Λe (Λ)⊗Λ M 0

0 Λ⊗Λ M Mη ⊗Λ M Ωn−1
Λe (Λ)⊗Λ M 0

ιn⊗ΛM

η⊗ΛM

where the rows remain exact, as they were split exact when considered as short
exact sequences of right Λ-modules. Since η ∈ AHHn(Λ(M,M) is assumed to hold, it
follows that there is some ε : P n−1⊗ΛM → Λ⊗ΛM such that η⊗ΛM = ε(ιn⊗ΛM).
This implies the desired result.

(ii) implies (i). If Eη⊗ΛM is split exact, there is some ζ : Mη⊗ΛM → Λ⊗ΛM
satisfying ζ(αn ⊗Λ M) = 1Λ⊗ΛM . By the commutativity of the left square in the
above diagram, it follows that η ⊗Λ M factors as ζ(γn ⊗Λ M)(ιn ⊗Λ M), which
establishes the claim.

(ii) implies (iii). This follows since P ∗⊗Λ M is a Λ-projective resolution of M ,
whereupon we may apply Schanuel's Lemma to �nd Ωn

Λe(Λ)⊗Λ M ∼= Ωn
Λ(M)⊕Q

for some projective Λ-module Q.
(iii) implies (ii). To begin with, we observe that we can, without loss of gener-

ality, assume that M has no projective summands. Indeed, adding or removing a
projective summand does not alter the annihilator of a module, and hence has no
bearing on the conclusion; but also, since the syzygies of a module are insensitive
to such a summand, it has no e�ect on the hypothesis.

Now, note that we are in the situation where Eη ⊗Λ M is isomorphic to

0→M →M ⊕ Ωn−1
Λ (M)⊕Q→ Ωn−1

Λ (M)⊕Q′ → 0,

since

Mη ⊗Λ M ∼= M ⊕ Ωn−1(M)⊕Q

holds by hypothesis, while

Ωn−1
Λe (Λ)⊗Λ M ∼= Ωn−1

Λ (M)⊕Q′
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for some projective Q′ follows by Schanuel's Lemma and the fact that if P ∗ is
Λe-projective presentation of Λ then P ∗⊗ΛM is a Λ-projective presentation ofM .

Now, we note that if Q′′ is a summand of Ωn−1
Λ (M), then we can split it o� the

Ωn−1
Λ (M)-summand in both the middle and the rightmost terms. We denote the

result of removing all projective summands in this manner by Ωn−1
Λ (M)′. Hence,

we pass to the situation

0→M →M ⊕ Ωn−1
Λ (M)′ ⊕Q→ Ωn−1

Λ (M)′ ⊕Q′ → 0.

Here we see that since neither M nor Ωn−1
Λ (M)′ have projective summands, Q′

must be a summand of Q. Yet, by the additivity of dimension, Q′ ∼= Q. Hence,
we can deduce by a familiar result of elementary homological algebra that the
sequence must be split: namely, if 0→ A→ B → C → 0 is a short exact sequence
with B ∼= A⊕ C, then that sequence is split.

Let {η1, . . . , ηt} be a �nite set of homogeneous elements of HH∗(Λ). We de�ne
αη1,...,ηt to be the map

Λ⊗Λ · · · ⊗Λ Λ Mη1 ⊗Λ · · · ⊗Λ Mηt .
αη1⊗Λ···⊗Λαηt

It can be seen that this map is a monomorphism. To see this, note that

αη1 ⊗Λ αη2 ⊗Λ · · · ⊗Λ αηt =

(αη1⊗Λ1Λ⊗Λ· · ·⊗Λ1Λ)·(1Mη1
⊗Λαη2⊗Λ1Λ⊗Λ· · ·⊗Λ1Λ · · · (1η1⊗Λ1Mη2

⊗Λ· · ·⊗Λαηt)

where each factor on the right hand side is a monomorphism since each is the
result of repeatedly tensoring monomorphisms on the left or on the right by right
or left Λ-projective modules.

Hence, it induces an exact sequence

0 Λ Mη1 ⊗Λ · · · ⊗Λ Mηt Xη1,...,ηt 0
αη1,...,ηt

which we denote by Eη1,...,ηt . We now use this construction to give some su�cient
conditions for when the ideal generated by homogeneous elements {η1, . . . , ηt} is
in the annihilator AHH∗(Λ)(M,M).

Theorem 2.5.3. Let {η1, . . . , ηt} be a �nite set of homogeneous elements in
HH∗(Λ), and let M be in mod Λ.

(a) The following are equivalent.

(i) The ideal generated by {η1, . . . , ηt} is contained in AHH∗(Λ)(M,M).
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(ii) Eηi ⊗Λ M is a split short exact sequence for all i = 1, 2, . . . , t.

(iii) Eη1,...,ηt ⊗Λ M is a split short exact sequence.

(b) If a �nite set {η1, . . . , ηt} of homogeneous elements in HH∗(Λ) is in
AHH∗(Λ)(M,M), then M is a direct summand of Mη1 ⊗Λ · · · ⊗Λ Mηt ⊗Λ M .

Proof. (a) It follows by (2.5.2) that (i) and (ii) are equivalent. What remains is
thus to prove the equivalence of (ii) and (iii). We begin with showing that (iii)
implies (ii). Since αη1,...,ηt can be viewed as the composition of αη2,...,ηt and αη1 , any
splitting of αη1,...,ηt induces a splitting of αη1 . As we can similarly for all 1 ≤ i ≤ t
factor αη1,...,ηt into the map obtained by replacing αηi by 1Λ in the de�nition of
αη1,...,ηt and αηi itself, the result follows. To see that (ii) implies (iii), note that
our factorisation of αη1,...,ηt in our remarks preceding this proposition implies that
if each Eηi is a split exact monomorphism, then Eη1,...,ηt is a composition of split
exact monomorphisms and is itself thus also a split exact monomorphism. The
claim in (a) is thus shown.

(b) follows immediately from the claim in (a).

The following is a re�nement of (2.5.2) for the case of Λ sel�njective. Recall
that we denote the projectively stable category by modΛ.

Proposition 2.5.4. Let Λ be a sel�njective algebra. Let η be a homogeneous ele-
ment of HH∗(Λ) of degree n, and let M be in mod Λ. Then η is in AHH∗(Λ)(M,M)
if and only if η ⊗Λ 1M : Ωn

Λe(Λ)⊗Λ M → Λ⊗Λ M is zero in modΛ.

We �nish the section with the following result:

Lemma 2.5.5. Let η1, η2, . . . , ηt be homogeneous elements in AHH∗(Λ)(M). Then

Mη1 ⊗Λ · · · ⊗Λ Mηt ⊗Λ M

is in add{Ωi
Λ(M)}Ni=0 ∪ add Λ for some integer N .

Proof. For t = 1, this is just the claim in (2.5.2). Suppose then that t > 1, and

let M̃ = Mη1 ⊗Λ · · · ⊗Λ Mηt−1 ⊗Λ M . By (2.5.2) we have that Mηt ⊗Λ M ∼= M ⊕
Ωdeg ηt−1

Λ (M)⊕Q forQ some Λ-projective module. After tensoring this isomorphism
on the left with Mη1 ⊗Λ · · · ⊗Λ Mηt−1 we have

Mη1 ⊗Λ · · · ⊗Λ Mηt ⊗Λ M ∼= M̃ ⊕Mη1 ⊗Λ · · · ⊗Λ Mηt−1 ⊗Λ Ωdeg ηt−1
Λ (M)⊕Q′

whereQ′ is some Λ-projective module. Here the middle summand on the right hand
side can be identi�ed under an isomorphism with Ωdeg ηt−1

Λ (M̃) modulo projectives.

To see this, note that we arrive at a projective resolution of M̃ by iteratively
tensoring a projective resolution of M with Mηt−1 , . . . ,Mη1 since these modules
are all right Λ-projective, and then we need only apply Schanuel's Lemma to the
appropriate kernel. Hence, the claim follows by induction.
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Chapter 3

Finite generation hypotheses

Having laid a foundation, we now build upon it. We follow more or less the
presentation in [17] and [7]. This has, however, required some reorganization. To
be precise, we have tried to include some results of Chapter 4 of [7] that [17] calls
upon, entailing that they must be discussed prior to the results of the latter.

Moreover, we note that yet again we have made a selection of the results of
the article we base the chapter on: indeed, we have tried to keep in mind certain
restrictions on scope and length, but also more importantly to the problem which
we are to investigate. As such, we have given greater weight to thoroughly pre-
senting the proofs concerning the �nite generation hypotheses, (Fg1) and (Fg2),
and their relation to the complexity of an algebra satisfying them. To give an
indication of to what extent results similar to those in the group ring case can be
recovered, we also show that every closed homogeneous variety is the variety of
some module, provided one assumes these hypotheses.

However, as a consequence, we have for instance included none of the appli-
cations of the theory. Among other things, we have thus excluded a proof of a
variation on Webb's Theorem giving a classi�cation of the stable components of the
Auslander-Reiten quiver of a sel�njective algebra satisfying the �nite generation
hypotheses.

Finally, we mention that we henceforth assume the reader is familiar with some
standard results on a�ne algebraic varieties, equivalent to, for instance, the �rst
three or four pages of Chapter 5.4 of [7]. Among other things, we thus assume
the reader is familiar with the Weak Nullstellensatz and Hilbert's Nullstellensatz.
Although we do not make a great deal of use of these, they nevertheless inform the
development of the theory, and are another reason for assuming that our algebras
are �nite dimensional over an algebraically closed �eld.

35
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3.1 Finite generation hypotheses (Fg1) and (Fg2)

Group rings of �nite groups and �nite dimensional cocommutative Hopf algebras
are classes of algebras which have a corresponding theory of support varieties. For
both of these theories, it is a crucial property of them that Ext∗Λ(M,N) is �nitely
generated as a module over the Noetherian ring de�ning the varieties. In our case,
this is a graded subalgebra H of the Hochschild cohomology ring HH∗(Λ).

It is the immediate goal of this section to derive some particular consequences of
assuming the �nite generation of Ext∗Λ(M,N) over a commutative graded Noethe-
rian subalgebra H of HH∗(Λ). We show among other things that if these hy-
potheses hold, Λ must be a Gorenstein algebra, which is to say that the injective
dimensions of Λ as a left and as a right Λ-module are both �nite.

We introduce now the �rst of the two �nite generation hypotheses.

De�nition 3.1.1. Let Λ be a �nite dimensional algebra over a �eld k, and let
H be a �xed graded subalgebra of HH∗(Λ). We say that the pair (Λ, H) satisfy
(Fg1) if the following hold:

(i) H is a commutative Noetherian ring.

(ii) H0 = HH0(Λ) = Z(Λ).

We will be assuming for the rest of this chapter that our �nite dimensional
algebras Λ and our �xed graded subalgebra H of HH∗(Λ) satisfy this assumption
unless it is stated otherwise. It can be seen that the assumption of commutativity
in (i) is not too cumbersome, as we can simply pass to the even part of a given
H, which will then be commutative graded subalgebra of HH∗(Λ). Moreover, at
this point it might be pertinent to state the other standing assumptions for this
section, namely that an algebra Λ is assumed to be a �nite dimensional algebra
over a �eld k. Moreover, unless otherwise stated, this �eld k is assumed to be
algebraically closed. As regards this latter assumption, we note that it is made
necessary by, among other things, some subtleties relating to the structure of the
enveloping algebra Λe of Λ, as was expanded upon in a earlier section.

Recall that for a commutative ring B one calls B a �nitely generated A-
algebra provided there is a �nite set of elements {x0, . . . , xn} of B such that every
element of B is expressible as a polynomial in the elements {x0, . . . , xn} with
coe�cients in A, or, in other words, there is an A-algebra homomorphism from
a polynomial ring A[t0, . . . , tn] onto B [4, p. 30, Chapter 2]. From this latter
perspective, it follows almost immediately that B is Noetherian if A is Noetherian,
as can be seen by applying Hilbert's Basis Theorem and the fact that the image of
a Noetherian ring under a ring homorphism is Noetherian. In particular, since a
�eld k is Noetherian, a �nitely generated commutative algebra over k is Noetherian
as well.
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The following is an immediate, elementary implication of our �rst �nite gener-
ation hypothesis.

Proposition 3.1.2. Let Λ be a �nite dimensional algebra over a �eld k, and let
the pair (Λ, H) satisfy (Fg1). Then H is a �nitely generated commutative graded
algebra over k.

Proof. Indeed, by [4, Proposition 10.7, Chapter 10], it follows that for (Λ, H)
satisfying (Fg1), H0 is Noetherian and H is �nitely generated as an H0-algebra.
Since by (Fg1) we have H0 = Z(Λ), which is a �nite dimensional k-algebra since
Λ is a �nite dimensional k-algebra, we are done.

To properly begin analysing the consequences of assuming these hypotheses,
we present the de�nition of the complexity of a module and then, after that, the
de�nition of the dimension of a variety. With that goal in mind, recall that we
denote the length of a module M by l(M), and that if P ∗ →M of the form

· · · → P n → P n−1 → · · · → P 0 →M → 0,

is a minimal projective resolution of M , then the ith Betti number of a M ,
βi, is the number of indecomposable projective summands of P i. Notice that
since the tops of indecomposable projective modules are simple, we have that
βi = l(top Ωi(M)).

De�nition 3.1.3. If M is a Λ-module, and its minimal projective resolution is
given by P ∗ →M , then we de�ne the complexity of a module M over Λ to be

cxΛM = inf{n ∈ N0 | ∃α ∈ R such that βi ≤ αin−1 for all i ≥ 0}.

Moreover, the complexity of an algebra Λ, denoted by cx Λ, is de�ned to be
the maximum of the complexities of the simple modules of Λ.

There are a few well-known observations one can make with respect to the
�rst part of this de�nition: namely, one can easily see that a module having
complexity 0 is equivalent to it having �nite projective dimension, and that it
having complexity 1 is equivalent to the terms in its projective resolution being of
bounded length.

Moreover, the latter part of this de�nition is perhaps in need of some justi�ca-
tion. It can be seen that for M in mod Λ, one has that cx Λ ≥ cxΛM holds. This
follows from the fact that M in mod Λ can be �ltered in semisimple modules, and
an elementary result concerning the complexity of Λ-modules: Let L,M,N be in
mod Λ. Then given a short exact sequence 0→ L→M → N → 0, the complexity
of each term of this sequence is at most the maximum of the complexity of the
other two terms.
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Since we make no use of this result other than in justifying our de�nition,
we only sketch its proof: Firstly, we can observe almost immediately from the
de�nition of the complexity of a module that a module and its syzygies have
the same complexity. Moreover, our desired result can be seen to hold for the
middle term of the above short exact sequence by applying the Horseshoe Lemma.
However, we can apply the Snake Lemma to an appropriately formed diagram
derived from this short exact sequence to arrive at the short exact sequence

0→ Ω1
Λ(M)→ Ω1

Λ(L)⊕Q→ L→ 0,

wherein Q is some projective Λ-module. We can yet again apply the Horseshoe
Lemma. Since this can be repeated, one would be done.

Our de�nition for the dimension of a variety will depend on the notion of the
Krull dimension of a commutative Noetherian ring. Hence, recall that we say
that a commutative Noetherian ring A has Krull dimension n if there is a chain
of prime ideals of length n in A

pn ⊇ pn−1 ⊇ · · · ⊇ p0

but none of length n+ 1. If there are arbitrarily long chains of prime ideals in A,
we say that A has in�nite Krull dimension.

Although this is a standard de�nition, we note that we have an alternative
de�nition available to us since the ringsH ⊆ HH∗(Λ) are �nitely generated algebras
over k by (3.1.2). For the sake of stating this alternative de�nition, we recall the
statement of the Noether Normalization Lemma:

Lemma 3.1.4. (Noether Normalisation Lemma). Suppose that k is a �eld and
A is a �nitely generated commutative algebra over k. Then there exist elements
y1, . . . , yn ∈ A generating a polynomial subalgebra k[y1, . . . , yn] ⊆ A over which A
is �nitely generated as a module.

If A is graded then y1, . . . , yn may be chosen to be homogeneous elements.

Proof. See [7, Lemma 5.4.5, Chapter 5].

It follows by the discussion on [7, p. 166, Chapter 5] that the Krull dimension
of a commutative ring A being n is equivalent to the number of generators in the
preceding proposition being equal to n.

Having recalled all of this, we are now almost ready to give our de�nition. In
the following we use a slightly di�erent de�nition of a variety, namely we write
VH(M) = MaxSpec(H/AH(M)). This is easily seen to be equivalent to the one we
gave before.

De�nition 3.1.5. If the pair (Λ, H) satis�es (Fg1) and M is a Λ-module, we
de�ne the dimension of its associated variety VH(M) = MaxSpec(H/AH(M)) to
be the number n in the Noether Normalisation Lemma for A = H/AH(M).
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What we have done, of course, is to de�ne the dimension of the variety of M
to be the Krull dimension of the associated commutative ring H/AH(M).

Remark 3.1.6. We note that if a moduleM has a trivial variety, then by de�nition
VH(M) = MaxSpecH/AH(M,M) = {mgr + AH(M,M)}. 1 However, by Hilbert's

Nullstellensatz [7, Chapter 5.4, Theorem 5.4.2], we �nd that
√
AH(M,M) = mgr,

where we have for some ideal I of a commutative Noetherian ring R

√
I = {r ∈ R | for some j > 0, rj ∈ I}.

Moreover, by the same result, we have that VH(M) = V (mgr) = MaxSpecH/mgr.
Since H/mgr is a �eld, it is clear that dimVH(M) = 0.

Our goal at this point is to show that

(i) if Ext∗Λ(M,Λ/ rad Λ) is a �nitely generated H-module, then

dimVH(M) = cxΛ(M) <∞;

(ii) if Ext∗Λ(Λ/ rad Λ,M) is a �nitely generated H-module, then

dimVH(M) = cxΛop(D(M)) <∞.

However, before we can do this, we need to present some auxiliary results and
de�nitions. The presentation of the following is based on that of [7, Chapter 5.3],
as given the assumption of (Fg1) the proof of the analogous result in the group
ring case essentially carries over.

Hence, recall that we say that a graded vector space V over a �eld k is of �nite
type provided V =

⊕
r≥0 Vr with each Vr a �nite dimensional vector space over

k. Given this, we have that the Poincaré series of V is de�ned to be

p(V, t) =
∑
r≥0

tr dimk Vr

as a formal power series in the indeterminate t.
The following proposition, which we include albeit without proof, describes

the form of the Poincaré series of a �nitely generated module V over a �nitely
generated commutative graded ring of �nite type.

1Note that we are abusing notation a bit here, as in this case mgr is used to denote the ideal
a de�ned in the preceding chapter. This abuse, however, is in line with the notation used in [17],
which, as mentioned, this chapter is based on.
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Proposition 3.1.7. Suppose that A is a commutative graded ring of �nite type
over k, �nitely generated over A0 by homogeneous elements x1, . . . , xs in degrees
k1, . . . , ks. Suppose V is a �nitely generated graded A-module (i.e. we have Ai·Aj ⊆
Ai+j and Ai · Vj ⊆ Vi+j). Then the Poincaré series p(V, t) is of the form

f(t)∏s
j=1(1− tkj)

where f(t) is a polynomial in t with integer coe�cients.

Proof. See [7, Proposition 5.3.1, Chapter 5].

The next result shows that the complexity of the graded components of a graded
module is determined by the order of the pole of its Poincaré series at t = 1.

Proposition 3.1.8. Suppose

p(t) =
f(t)∏s

j=1(1− tkj)
=
∑
r∈N0

art
r

where f(t) is a polynomial with integer coe�cients and the ar are non-negative
integers. Let b be the order of the pole of p(t) at t = 1. Then

(i) there exists a constant α > 0 such that ai ≤ α · ib−1 for i > 0, but

(ii) there does not exist a constant α > 0 such that ai ≤ α · ib−2 for i > 0.

Proof. The hypotheses and the conclusion of the proposition remain unchanged if
we replace p(t) by p′(t) = p(t) · (1+ t+ · · ·+ tkj−1). Indeed, the order of the pole of
p(t) remains the same. Moreover, the points (i) and (ii) are una�ected. We show
this for (i). To see that this claim holds for (i), note that if p′(t) =

∑
r∈N0

a′rt
r,

then a′r =
∑kj−1

i=0 ar−i, if we agree that as = 0 for s < 0. Thus, if a′i ≤ α′ib−1 holds
for i > 0, then ai ≤ a′i ≤ α′ib−1 holds for i > 0. Hence, without loss of generality,
we may assume that p(t) = f(t)/(1− t)b with f(1) 6= 0.

Assume now that f(t) = φmt
m + · · ·+ φ0. Recall that

1

1− t
= 1 + t+ t2 · · ·

which upon taking the derivative b times and dividing by (b− 1)! yields

1

(1− t)b
=
∑
i∈N0

(
b+ i− 1

b− 1

)
ti.
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Hence, it follows that

p(t) = f(t) ·
∑
i∈N0

(
b+ i− 1

b− 1

)
ti,

and thus

ai = φ0

(
b+ i− 1

b− 1

)
+ φ1

(
b+ i− 2

b− 1

)
+ · · ·+ φm

(
b+ i−m− 1

b− 1

)
holds for all i ≥ m, (where m depends on f(t)).

Since f(1) 6= 0, we have that φ0 + φ1 + · · ·+ φm 6= 0 holds, implying that ai is
a polynomial in i of degree b. In fact, this can be seen by collecting the terms on
the right side of this equation to yield

ai =
f(1)

(b− 1)!
ib−1 + · · · ,

where we display only the highest degree term.

We immediately note the following corollary of the proof of this proposition.

Corollary 3.1.9. Suppose

p(t) =
f(t)

(1− t)s
=
∑
r∈N0

art
r

where f(t) is a polynomial with integer coe�cients and the ar are non-negative
integers. Let b be the order of the pole of p(t) at t = 1. Assume f(t) =

∑N
i=0 φit

i.
Then ar for r ≥ N is given by a polynomial in r of degree b − 1 with rational
coe�cients.

Proof. Repeat the part of the proof of the preceding proposition that follows the
�rst paragraph.

We note that by (3.1.7), the hypotheses of this corollary are satis�ed if p(t) is
the Poincaré series of a �nitely generated graded module V of �nite type over some
ring A which is �nitely generated over A0 by elements x0, . . . , xs of A of degree 1.

For a graded vector space V with a Poincaré series p(V, T ) of the form detailed
in the hypothesis of the preceding proposition, we write γ(V ) for the order of
the pole of p(V, t) at t = 1. By the same proposition, γ(V ) is a measure of the
polynomial growth rate of the graded components Vr of V =

⊕
r∈N0

Vr. Clearly,
for a minimal projective resolution P ∗ → M of M such that p(

⊕
r∈N0

P r, t) is of
the given form, it follows that cxΛM = γ(

⊕
r∈N0

P r).
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Note that if 0 → V ′′ → V ′ → V → 0 is a short exact sequence of �nitely
generated graded modules over a commutative graded ring A which is �nitely
generated and of �nite type over k, then (3.1.7) entails that γ(V ′′), γ(V ′) and γ(V )
are all de�ned. In this case, it can be seen that γ(V ′) is equal to the maximum of
γ(V ′′) and γ(V ). Indeed, this follows from the additivity of dimension over short
exact sequences and V ′′,V ′ and V being of �nite type.

This additive property of γ(−) can be seen to imply that γ(V ) ≤ γ(A) holds
for all �nitely generated graded modules V over A: in fact, this follows easily
by noting that every �nitely generated graded module over A is the quotient of⊕n

i=0A for some n and by some graded ideal I of A, that γ(
⊕n

i=0A) = γ(A), and
that either γ(A) = γ(V ), or γ(A) = γ(I), in which case γ(A) > γ(V ).

We need the following remark in the coming proposition:

Remark 3.1.10. In the same vein as in the preceding paragraph we can note
that if A is a �nitely generated graded algebra over k of �nite type, then by the
Noether Normalisation Theorem we have a polynomial subalgebra k[y1, . . . , yn] for
homogeneous elements y1, . . . , yn in A of positive degree such that

γ(A) = γ(k[y1, . . . , yn]) = n.

Lemma 3.1.11. Let Λ be a basic �nite dimensional algebra over a �eld. Assume
P ∗ →M of the form

· · · → P n → P n−1 → · · · → P 0 →M → 0,

to be a minimal projective resolution of M in mod Λ. Then the following hold.

(i) The multiplicity of the indecomposable projective P (i) corresponding to a
simple S(i) as a summand of P r is equal to

dimk HomΛ(P r, S(i)).

(ii)

dimk P
r =

∑
i

dimk P (i) · dimk ExtrΛ(M,S(i)).

Proof. Indeed, this follows by the well-known k-linear isomorphism

HomΛ(P (j), S(i)) ∼= HomΛ(Λej, S(i)) ∼= ejS(i),

where ej is the primitive idempotent corresponding to P (j), and the fact that
ejS(i) � (0) if and only if i = j. This takes care of the claim in (i).
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Since P ∗ → M is a minimal projective resolution, it follows that every homo-
morphism η : P r → S(i) is a cocycle. Indeed, this follows from the fact that

Im ∂r+1 ⊆ radP r ⊆ Ker η,

where the �rst inclusion follows by the de�nition of a minimal projective resolution
and the second by the properties simple modules and Jacobson radicals: Namely,
since η has a simple module as its codomain, it is either the zero map or an
epimorphism. If it is the zero map, then radP r ⊆ Ker η = P r obviously holds. On
the other hand, if η is an epimorphism, then since its image is simple, its kernel
Ker η must be maximal. Hence, in this case, by the de�nition of the radical of a
module, one must also have radP r ⊆ Ker η.

One can also note that Im ∂r+1 ⊆ Ker η for η : P r → S(i) a homomorphism
also implies that there are no non-zero coboundaries, so that all of this in sum
implies that

HomΛ(P r, S(i)) ∼= ExtrΛ(M,S(i)).

As a consequence of this, we have that

dimk P
r =

∑
i

dimk P (i) · dimk ExtrΛ(M,S(i)).

If Ext∗Λ(M,S) is �nitely generated as an H-module, we have by (3.1.7) that
the Poincaré series

p(Ext∗Λ(M,S), t)

is of the form f(t)∏s
j=1(1−tkj )

, in which f(t) is a polynomial with integer coe�cients

and the kj are the degrees of the generators of H. Given this, it is easily seen that
the graded vector space

⊕
r∈N0

P r has a Poincaré series of such a form as well.
We are nearly ready to prove the desired result, and only need to present a

few elementary observations before we begin: note that if N is another �nitely
generated Λ-module, then we have that ExtrΛ(M,N) is a quotient of a submodule
of HomΛ(P r, N), which is itself a subspace of Homk(P

r, N). Hence it follows that

dimk ExtrΛ(M,N) ≤ Homk(P
r, N) ≤ dimk P

r · dimkN,

where the last inequality follows by basic linear algebra. In other words, we have
that

γ(Ext∗Λ(M,N)) ≤ γ(
⊕
r≥0

P r) = cxΛM.

Thus, having �nished our preparations, we give the promised result:
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Proposition 3.1.12. Let M be in mod Λ.

(i) If Ext∗Λ(M,Λ/ rad Λ) is a �nitely generated H-module, then

dimVH(M) = cxΛ(M) <∞.

(ii) If Ext∗Λ(Λ/ rad Λ,M) is a �nitely generated H-module, then

dimVH(M) = cxΛop(D(M)) <∞.

Proof. (i) Assume that Ext∗Λ(M,Λ/ rad Λ) is �nitely generated as an H-module.
If N is of Loewy length 0, then it follows by the assumption and the additivity of
ExtnΛ(M,−) for n ∈ N0 that Ext∗Λ(M,N) is �nitely generated as an H-module.

Suppose then that Ext∗Λ(M,N) is �nitely generated as an H-module for N in
mod Λ of Loewy length less than or equal to n. Let then N ′ be of Loewy length
n+ 1. Observe that we have

0 radN ′ N ′ topN ′ 0,i p

and hence we also have an exact sequence of H-modules

Ext∗Λ(M, radN ′)→ Ext∗Λ(M,N ′)→ Ext∗Λ(M, topN ′),

of which we can note that its end terms are �nitely generated over H by the
induction hypothesis. Moreover, we can see that the middle term must be �nitely
generated over H as we can canonically factor both the leftmost map and the
rightmost map onto their respective images to arrive at an exact sequence

0→ Im i∗ → Ext∗Λ(M,N ′)→ Im p∗ → 0.

The leftmost term of this sequence is a �nitely generated H-module since it is
the image of a �nitely generated H-module; whereas the rightmost is an an H-
submodule of Ext∗Λ(M, topN ′). This latter H-module is then itself �nitely gener-
ated since Ext∗Λ(M, topN ′) is �nitely generated and Noetherian. In other words,
the inductions step follows, and we have that if Ext∗Λ(M,Λ/ rad Λ) is a �nitely
generated H-module, then Ext∗Λ(M,N) is as well for all N in mod Λ.

As such, it can be seen that our observations preceding this proposition imply
that we have

max
i
γ(Ext∗Λ(M,S(i))) ≤ γ(Ext∗Λ(M,M)) ≤ γ(

⊕
r∈N0

P r) = cxΛ(M)

≤ max
i
γ(Ext∗Λ(M,S(i))).
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In other words, if this holds, it follows that

γ(Ext∗Λ(M,M)) = γ(H/AH(M,M)) = cxΛ(M).

Hence, dimVH(M) = cxΛM . Moreover, since (Λ, H) is assumed to satisfy (Fg1),
we could see by (3.1.10) that dimVH(M) = n for some n and we would be done.

Note that the �rst inequality follows from the fact that the H-module structure
of Ext∗Λ(M,S(i)) factors through Ext∗Λ(M,M), thus entailing that Ext∗Λ(M,S(i))
is a �nitely generated Ext∗Λ(M,M)-module. Hence, there is some H-epimorphism
of the form

n⊕
i=0

Ext∗Λ(M,M)→ Ext∗Λ(M,S(i))

with kernel a �nitely generated graded Ext∗Λ(M,M)-module and hence also a
�nitely generated graded H-module, where the �nite generation of the kernel fol-
lows from Ext∗Λ(M,M) being Noetherian, which itself follows from Ext∗Λ(M,M)
being a �nitely generated H-module and (Fg1) entailing that H is Noetherian.
Thus, by the previously noted additive property of γ(−), it follows that

γ(Ext∗Λ(M,S(i)) ≤ γ(Ext∗Λ(M,M))

since γ(
⊕n

i=0 Ext∗Λ(M,M)) = γ(Ext∗Λ(M,M)) clearly holds.
The �nal inequality follows by the formula for dimk P

r that we established
earlier, namely

dimk P
r =

∑
i

dimk P (i) · dimk ExtrΛ(M,S(i)).

(ii) Since (2.3.1) shows that VH(M) = VH(D(M)), the claim follows from
(i).

The corresponding theories of support varieties of group rings and complete
intersections depend crucially on the �nite generation of the extension groups
Ext∗(M,N) as modules over the relevant ring of cohomological operators for mod-
ules M and N . We, however, begin by analysing �nite generation of Ext∗Λ(M,N)
as H-modules for certain particular pairs in mod Λ.

Proposition 3.1.13. Let M be in mod Λ.

(a) Suppose that Ext∗Λ(M,Λ/ rad Λ) is �nitely generated as an H-module. If the
variety of M is trivial, then the projective dimension of M is �nite.

(b) Suppose that Ext∗Λ(Λ/ rad Λ,M) is �nitely generated as an H-module. If the
variety of M is trivial, then the injective dimension of M is �nite.
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(c) Suppose that Ext∗Λ(D(Λop),Λ/ rad Λ) and Ext∗Λ(Λ/ rad Λ,Λ) are �nitely gener-
ated as H-modules. Then Λ is a Gorenstein algebra.

Proof. (a) By the remark (3.1.6), a module M with trivial variety must satisfy
dimVH(M) = 0, so that by (3.1.12) it follows that cxΛ(M) = 0. By the remarks
following the de�nition of the complexity of a module, this is equivalent to the
projective dimension of M being �nite.

The claims in (b) and (c) follow from the claim in (a).

Finitely generated modules over �nite dimensional algebras can all be �nitely
�ltered by semisimple modules, as can be seen by considering the ascending or
descending Loewy series of a module. This next result uses this fact to show that
the �nite generation of Ext∗Λ(M,N) for arbitrary pairs of modules M and N of
mod Λ over a subalgebra H in HH∗(Λ) is equivalent to the �nite generation of
Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ).

Proposition 3.1.14. The following are equivalent.

(i) Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) is �nitely generated as an H-module.

(ii) Ext∗Λ(M,N) is �nitely generated as an H-module for all pairs of Λ-modules
M and N in mod Λ.

(iii) HH∗(Λ, B) is �nitely generated as an H-module for all B in mod Λe.

Proof. (iii) implies (ii): since we have that ExtnΛ(M,N) ∼= HHn
Λ(Λ,Homk(M,N))

as groups by [13, Corollary 4.4, Chapter 9], we can see that there is induced
an H-isomorphism Ext∗Λ(M,N) ∼= HH∗Λ(Λ,Homk(M,N)), and this implication is
established.

(ii) implies (i): this is obvious.
(i) implies (iii): Clearly Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) being �nitely generated as an

H-module is equivalent to the same holding for HH∗Λ(Λ,Homk(Λ/ rad Λ,Λ/ rad Λ)).
By (2.4.3) and the isomorphism M ⊗k N ∼= N ⊗k M holding for all k-modules M
and N , we know that both the left and the right simple Λe-modules are of the form
S ⊗k T for a left simple Λ-module S and a right simple Λ-module T . This implies
that a left simple Λe-module is of the form D(S ⊗k T ) for a left simple Λ-module
S and a right simple Λ-module T . By the computation

D(S ⊗k T ) = Homk(S ⊗k T, k) ∼= Homk(S,D(T )) ∼= Homk(S, T
′),

where T ′ is a simple left Λ-module satisfying T = D(T ′), it thus follows that every
left simple Λe-module is of the form Homk(S, T ) for some S and T , both left simple
Λ-modules.
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Using this, the fact that HH∗Λ(Λ,Homk(Λ/ rad Λ,Λ/ rad Λ)) is �nitely generated
as anH-module, and the fact that every Λe-module is �ltered in simple Λe-modules,
we see that HH∗Λ(Λ, B) is �nitely generated as an H-module for all B in mod Λe,
and we are thus done.

This result provides motivation for the second �nite generation assumption:

De�nition 3.1.15. Let Λ be a �nite dimensional algebra over a �eld k, and let
H be a �xed graded subalgebra of HH∗(Λ). We say that the pair (Λ, H) satisfy
(Fg2) if Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) is a �nitely generated H-module.

We note that if we assume both (Fg1) and (Fg2), then by the preceding
proposition, HH∗(Λ) is a �nitely generatedH-module, and is thus �nitely generated
as a k-algebra. By nearly the same argument, Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) is a �nitely
generated k-algebra as well.

The following theorem summarises some of the results and the observations we
have made in this section:

Theorem 3.1.16. Suppose that a pair (Λ, H) satisfy (Fg1) and (Fg2).

(a) The algebra Λ is Gorenstein.

(b) The following are equivalent for a module M in mod Λ.

(i) The variety of M is trivial.

(ii) The projective dimension of M is �nite.

(iii) The injective dimension of M is �nite.

(c) dimVH(M) = cxΛ(M) for any module M in mod Λ.

3.2 Modules with given varieties

In the following section we derive some results utilizing the �nite generation hy-
potheses discussed above. As such, we continue to hold the standing assumptions
of the preceding section while additionally assuming that the pair (Λ, H) satis�es
(Fg1) and (Fg2).

The variety of a module is generally a closed homogeneous variety. Our goal
in the following is to show that any closed homogeneous variety occurs as the
variety of some module. To do this, we pick up the thread of Section 2.5, which
concerned itself with the annihilator of a Λ-moduleM , introduced the construction
yielding the bimodules Mη, and gave several criteria relating these two notions.
As we noted also there, the modules we construct to reach our current goal are
not necessarily indecomposable.
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We begin by examining the variety of Mη ⊗Λ M for η some homogeneous
element η of positive degree in H. With respect to that, we let Lη denote the
module Mη ⊗Λ Λ/ rad Λ. The following result gives, among other things, some
relations between the varieties of Mη ⊗Λ M and Lη. We also note that this result,
as the lone exception in this section, does not make use of our �nite generation
assumptions.

Proposition 3.2.1. Let η be a homogeneous element of positive degree in H, and
let M be in mod Λ.

(a) VH(Mη ⊗M) ⊆ VH(Lη) ∩ VH(M).

(b) The element η2 is in AH(Mη ⊗Λ M,Λ/ rad Λ). In particular, VH(Lη) is con-
tained in VH(〈η〉), and consequently VH(Mη ⊗Λ M) is contained in VH(〈η〉) ∩
VH(M).

(c) Let {η1, . . . , ηt} be homogeneous elements in HH∗(Λ). Then VH(Mη ⊗Λ · · · ⊗Λ

Mηt ⊗Λ M) is contained in VH(〈η1, . . . , ηt〉) ∩ VH(M).

Proof. (a) First of all, we note that the sequence

Eη ⊗Λ M : 0 M Mη ⊗Λ M Ωn−1
Λe ⊗Λ M 0

is exact. Indeed, this follows since Eη splits as a sequence of right Λ-modules. By
(2.2.4), we have that VH(Mη ⊗Λ M) ⊆ VH(M), as Ωn−1

Λe (Λ)⊗Λ M ∼= Ωn−1
Λ (M)⊕ F

for some Λ-projective module F and since varieties are invariant under taking
syzygies. In fact, the latter statement is (2.1.4)(d), while the former follows by
recalling Schanuel's Lemma and the fact that Ωn−1

Λe (Λ) ⊗Λ M is a kernel of a
projective resolution of M .

Now, recalling that M has a �ltration in semisimple modules, one sees that
VH(Mη ⊗Λ M) is contained in VH(Lη) by repeatedly applying (2.2.4). Thus we
have shown the claim in (a).

(b) By once again observing that Ωn−1
Λe (Λ)⊗ΛM ∼= Ωn−1

Λ (M)⊕F and employing
Dimension Shift, we see that

ExtiΛ(Ωn−1
Λe (Λ)⊗Λ M,Λ/ rad Λ) ∼= Exti+n−1

Λ (M,Λ/ rad Λ)

must hold for i ≥ 1.
Hence, it follows that the short exact sequence

Eη ⊗Λ M : 0 M Mη ⊗Λ M Ωn−1
Λe ⊗Λ M 0
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yields the two exact sequences

· · · ExtiΛ(M,Λ/ rad Λ) Exti+nΛ (M,Λ/ rad Λ) Exti+1
Λ (Mη ⊗Λ M,Λ/ rad Λ)

·η

Exti+1
Λ (M,Λ/ rad Λ) Exti+n+1

Λ (M,Λ/ rad Λ) · · ··η

and

0 HomΛ(Ωn−1
Λe (Λ)⊗Λ M,Λ/ rad Λ) HomΛ(Mη ⊗Λ M,Λ/ rad Λ)

HomΛ(M,Λ/ rad Λ) ExtnΛ(M,Λ/ rad Λ).
·η

From these, we can immediately derive the following short exact sequences

0 HomΛ(Ωn−1
Λe (Λ)⊗Λ M,Λ/ rad Λ) HomΛ(Mη ⊗Λ M,Λ/ rad Λ)

ν0

Ker(·η)|HomΛ(M,Λ/ rad Λ)
0

and

0 Ext∗+n−1
Λ (M,Λ/ rad Λ)/(η Ext∗−1

Λ (M,Λ/ rad Λ))
µ∗

Ext∗Λ(Mη ⊗Λ M,Λ/ rad Λ) Ker(·η)|Ext∗
Λ

(M,Λ/ rad Λ)
0

ν∗

where the index ∗ is allowed to vary over natural numbers greater than or equal to
1. Let θ be an element of ExtiΛ(Mη ⊗Λ M,Λ/ rad Λ). Then νi+n(ηθ) = ηνi(θ) = 0,
and thus ηθ is in Ker νn+i, which equals Imµn+i. As η annihilates Imµn+i, it
follows that η2θ = 0, which implies what was to be shown.

(c) One can see that this follows rather immediately from the claim in (b).

We note that Λ is Gorenstein, and, as such, its injective dimensions as a left
and as a right over itself are �nite and, in fact, equal, for instance to n. We let
⊥Λ denote the full subcategory {X ∈ mod Λ | ExtiΛ(X,Λ) = (0) for all i > 0} of
mod Λ. As varieties are preserved under the taking of syzygies, it follows that all
the di�erent varieties of modules occur for a module in ⊥Λ.

We note that by the fact that Λ is a cotilting module, there is for a module M
in ⊥Λ a complete resolution of the form

P∗ : · · · P 2 P 1 P 0 P−1 P−2 · · ·∂2 ∂1 ∂0 ∂−1
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satisfying Im d0 ∼= M . See [5] for details. We de�ne Êxt
i

Λ(M,N) as the homology

of HomΛ(P∗, N) at stage i. In other words, Êxt
i

Λ(M,N) = ker di+1
∗ / Im di∗ for i in

Z.
We call an H-module X an mgr-torsion module provided each x in X is anni-

hilated by some power of mgr, where in the current setting we abuse our notation
a bit by letting mgr denote the ideal of H generated by NH and 〈H i≥1〉, which is
then the unique maximal graded ideal of H.

Remark 3.2.2. It can be seen that we have an exact sequence

0 P(M,N) Ext∗Λ(M,N) Êxt
∗
Λ(M,N) Êxt

−
Λ(M,N) 0

of H-modules, in which the end terms are mgr-torsion modules. Note that by
P(M,N) one means the set of all homomorphisms fromM toN that factor through

a projective module, whereas Êxt
−
Λ(M,N) ∼=

⊕
i≤−1 Êxt

i

Λ(M,N).
To show that this holds, we begin by giving the H-module structure of the

endterms: P(M,N) is an H-module under the action whereby it is annihilated by⊕
i≥1H

i and acted upon by precomposition by a homomorphism under H0 →
EndΛ(M) corresponding to the restriction of the familiar ring homomorphism
ΦM : H → Ext∗Λ(M,M). Indeed, if f ∈ P(M,N) and g ∈ ΦM(H0) ⊆ EndΛ(M),
then fg ∈ P(M,N), showing that closure holds. It is similarly rather straightfor-
ward to show that the other module axioms hold. Clearly, P(M,N) is mgr-torsion
under this action.

When it comes to Êxt
∗
Λ(M,N) and Êxt

−
Λ(M,N), things are somewhat more

involved: Let x be an element of Êxt
i

Λ(M,N) for i in Z, and also let η be an element
of HHn(Λ). We choose now some non-negative integer m satisfying i + 2m > 0.

We now consider x to be an element of Êxt
i+2m

Λ (Ω−2m
Λ (M), N), which can be seen

to equal Exti+2m
Λ (Ω−2m

Λ (M), N). Hence, we can employ the ordinary H-module

structure of extension groups to de�ne the H-module structure of Êxt
∗
Λ(M,N).

This structure can be seen to be well-de�ned.
As the H-module structure of Êxt

−
Λ(L,M) is obtained from it being a quotient

of Êxt
∗
Λ(L,M) by Ext∗Λ(L,M), it is clear that it must be mgr-torsion.

We also note that the second morphism is injective except in the 0-degree,
where kernel is of course Im d0

∗. Now, a morphism in Im d0
∗ can be described by

the following commutative diagram:

P 0 P−1

M N

d0

π0
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Since π0 is an epimorphism, an element of Im d0
∗ corresponds to an element of

P(M,N). On the other hand, an element of P(M,N) can be seen to correspond
to an element of Im d0

∗.

We use this remark in an essential fashion in the following lemma.

Lemma 3.2.3. For any maximal ideal p in MaxSpecH with p 6= mgr,

Ext∗Λ(M,N)p ∼= Êxt
∗
Λ(M,N)p

for all modules M in ⊥Λ and N in mod Λ.

Proof. Since mgr is the maximal ideal generated by NH and 〈H≤1〉, it follows that
if p 6= mgr, then (H − p) ∩ mgr 6= (0). Hence, the localization of any mgr-torsion
module at such a p vanishes. As localization of modules at a prime ideal is an
exact functor, the result thus follows by considering the exact sequence we derived
in remark (3.2.2).

We immediately put this to use in proving that VH(Mη ⊗Λ M) = VH(〈η〉) ∩
VH(M) holds for arbitrary homogeneous elements η of H of positive degree and
for all M in mod Λ.

Proposition 3.2.4. Let η be a homogeneous element of positive degree in H. Then

VH(Mη ⊗Λ M) = VH(〈η〉) ∩ VH(M).

In particular, VH(Lη) = VH(〈η〉).

Proof. By (3.2.1), it follows that if VH(〈η〉)∩VH(M) is trivial, then we have nothing
to prove. As such, we assume that VH(〈η〉) ∩ VH(M) is non-trivial. Let η be of
degree n > 0.

It is clear that for Λ a Gorenstein algebra, the syzygies Ωm
Λ (X) for X in mod Λ

are in ⊥Λ for m greater than or equal to the injective dimension of Λ. As the
varieties of Mη ⊗Λ M and Mη ⊗Λ Ωm

Λ (M) are equal, given that the latter is a
syzygy of the former, we can without loss of generality assume that M is in ⊥Λ,
in which case Mη ⊗Λ M is an element of ⊥Λ as well.

As we know, we can associate to an element η the exact sequence Eη

0 Λ Mη Ωn−1
Λe (Λ) 0

of Λe-modules. Similarly to how we did in the �rst proposition of this section,
by tensoring with M and applying HomΛ(−,Λ/ rad Λ) we can derive a long exact
sequence of the form
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· · · Êxt
i

Λ(M,Λ/ rad Λ) Êxt
i+n+1

Λ (M,Λ/ rad Λ)
·η

Êxt
i+1

Λ (Mη ⊗Λ M,Λ/ rad Λ) Êxt
i+1

Λ (M,Λ/ rad Λ)

Êxt
i+n+1

Λ (M,Λ/ rad Λ) · · ··η

which itself yields the short exact sequence

θ̂ : 0 Êxt
∗+n−1

Λ (M,Λ/ rad Λ)/(ηÊxt
∗−1

Λ (M,Λ/ rad Λ)
µ∗

Êxt
∗
Λ(Mη ⊗Λ M,Λ/ rad Λ) Ker(·η)|

Êxt
∗
Λ(M,Λ/ rad Λ)

0
ν∗

where the index ∗ is allowed to vary over natural number greater than or equal
to 1. We note here that the fact that the connecting homomorphism of this long
exact sequence is given by ·η, follows from considering [25, Theorem 9.1, Chapter

3]: This result implies that prior to identifying Êxt
i+1

Λ (Ωn−1
Λe (Λ) ⊗Λ M,Λ/ rad Λ)

with Êxt
i+n+1

Λ (M,Λ/ rad Λ), the connecting homomorphism is given by ·Eη. Under
the isomorphism given by (1.1.7), it is clear that Eη corresponds to the �rst short
exact sequence from the left that η is composed of when considered as an extension.
This thus implies that the aforementioned identi�cation maps ·Eη to ·η.

We consider now a maximal ideal p 6= mgr containing 〈η,AH(M,Λ/ rad Λ)〉.
Assume that p does not contain AH(Mη ⊗Λ M,Λ/ rad Λ). This implies of course
that Ext∗Λ(Mη⊗ΛM,Λ/ rad Λ)p = (0), so that by (3.2.3) we have that the localiza-

tion Êxt
∗
Λ(Mη⊗ΛM,Λ/ rad Λ)p = (0). By examining the exact sequence θ̂ we then

deduce that Êxt
∗
Λ(M,Λ/ rad Λ)p ∼= ηÊxt

∗
Λ(M,Λ/ rad Λ)p. Once again employing

(3.2.3), we �nd Êxt
∗
Λ(M,Λ/ rad Λ)p ∼= Ext∗Λ(M,Λ/ rad Λ)p.

Hence, since we are assuming that (Λ, H) satisfy (Fg1) and (Fg2), it follows

that Êxt
∗
Λ(M,Λ/ rad Λ)p is a �nitely generated Hp-module. By assumption, η is in

p, and hence also in pHp. Given the general properties of localization at a prime
ideal, we know that pHp is the unique maximal ideal of Hp. As a consequence,

we may employ the Nakayama Lemma to deduce Êxt
∗
Λ(M,Λ/ rad Λ)p = (0), and

hence also Ext∗Λ(M,Λ/ rad Λ)p = (0).
Now, since Ext∗Λ(M,Λ/ rad Λ) is a �nitely generated H-module, the annihilator

AH(M,Λ/ rad Λ)
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cannot be contained in p, a contradiction given our constraints on p. Thus we
must have that p does contain AH(Mη ⊗Λ M,Λ/ rad Λ). As the reverse inclusion
is proved in (3.2.1), we have shown the �rst claim.

The second claim of the proposition follows from the �rst by the fact that

V ⊆ VH(Λ/ rad Λ)

holds for arbitrary varieties V , and the de�nition of Lη.

It should be noted that this provides an alternative proof for the corresponding
result in the theory of support varieties for group rings. Indeed, the usual proof
uses rank varieties, of which no corresponding notion exists in our more general
setting, and reduction to abelian subgroups.

The result just given easily implies the stated goal of this section: namely, that
any closed homogeneous variety occurs as a variety of a module.

Theorem 3.2.5. Let a be any homogeneous ideal in H. Then there exists a module
M in mod Λ such that VH(M) = VH(a).

Proof. Suppose a is some homogeneous ideal of H: i.e. a = 〈η1, η2, . . . , ηt〉 for
some homogeneous elements {η1, η2, . . . , ηt}. By repeatedly applying (3.2.4), we
see that

VH(Mη1 ⊗Λ Mη2 ⊗Λ · · · ⊗Λ Mηt ⊗Λ Λ/ rad Λ) = VH(〈η1, η2, . . . , ηt〉),

and thus we are done.
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Chapter 4

Complexity and trivial extensions

A trivial extension T (Λ) of an algebra Λ is always a symmetric algebra, and, in
particular, a Gorenstein algebra, implying hence that this is an interesting class
to examine with regards to (Fg). M. Purin in [29] has shown using results of H.
Tachikawa that beginning with some hereditary algebra H and forming the trivial
extension T (H) one can demonstrate the following:

Theorem 4.0.1. Let H be a hereditary algebra over a �eld. Then the following
holds.

(a) If H is of �nite representation type, the complexity of T (H) is 1.

(b) If H is of tame representation type, the complexity of T (H) is 2.

(c) If H is of wild representation type, then the complexity of T (H) is in�nite.

In this chapter we wish to examine whether the result in (a) can be generalised.
To do this, we compute examples and make theoretical observations. It turns out
that a straightforward generalisation is unavailable. In particular, in a later section
we examine an example that shows that there are algebras of �nite representation
type whose trivial extensions have in�nite complexity. Having said that, we also
show that there are some weak bounds on the complexity of the trivial extension of
a general �nite dimensional algebra. Moreover, we obtain particularly good results
in the case of sel�njective �nite dimensional algebras.

4.1 Trivial extensions

We begin by studying the relationship between Λ-modules and T (Λ)-modules,
and describe the projectives of T (Λ) using those of Λ. For the following section,

55
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our standing assumptions are that, unless otherwise speci�ed, Λ is a connected 1

�nite dimensional algebra over a �eld; and likewise, unless otherwise speci�ed, all
modules are assumed to be �nitely generated left modules, regardless of whichever
ring they are modules over.

De�nition 4.1.1. Let Λ be a �nite dimensional algebra over a �eld k. We denote
then by T (Λ) the trivial extension of Λ, namely T (Λ) = Λ n D(Λ), where
D(Λ) = Homk(Λ, k). The additive structure of T (Λ) is given by the direct sum
Λ ⊕ D(Λ), i.e. as ordered pairs of elements (λ, f) with componentwise addition,
λ ∈ Λ and f ∈ D(Λ), whereas the multiplication is given by

(λ, f)(λ′, f ′) = (λλ′, λf ′ + fλ′)

for λ, λ′ ∈ Λ and f, f ′ ∈ D(Λ).

Note that we have a ring homomorphism α : Λ→ T (Λ) given by λ 7−→ (λ, 0).
This entails that every T (Λ)-module is a Λ-module. Moreover, if φ : k → Λ is the
morphism giving Λ its k-algebra structure, it can be seen that αφ gives T (Λ) a
k-algebra structure. Indeed, if a ∈ k and λ ∈ Λ, then we �nd that

(φ(a), 0)(λ, 0) = (φ(a)λ, 0) = (λφ(a), 0) = (λ, 0)(φ(a), 0).

Likewise, for f ∈ D(Λ), we �nd that (φ(a), 0)(0, f) = (0, φ(a)f), where we have
that

(φ(a)f)(λ) = f(λφ(a)) = f(φ(a)λ) = (fφ(a))(λ).

Together, this implies that Im(αφ) ⊆ Z(T (Λ)), which is what was to be shown.

Remark 4.1.2. We note that this de�nition works equally well when substituting
some general Λ-bimodule M for D(Λ). Indeed, one then has the trivial extension
of Λ with respect to M , for which one writes Λ nM . Moreover, in actual fact,
nearly all of the results in this chapter can just as easily be stated and proven for
this case, although one may need to make further assumptions with respect to the
choice of M . However, restrictions on the scope and length of this text have kept
us from employing this greater generality: we are interested in investigating when
those trivial extensions we know are Gorenstein have �nite complexity, so as to
determine cases where these algebras may satisfy the �nite generation hypotheses
(Fg1) and (Fg2).

1Note that the change in terminology from "indecomposable" to "connected" is motivated
by the fact that the latter is both more suggestive and conducive to the intuition in the case of
�nite dimensional algebras over �elds.
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We begin now to investigate under which conditions a Λ-module is a T (Λ)-
module. If we view a T (Λ)-module M as a Λ-module, we can see that β : D(Λ)→
T (Λ) given by f 7−→ (0, f) for f ∈ D(Λ), induces a Λ-biadditive map D(Λ)×M →
M of the form (f,m) 7−→ (0, f) · m, for m ∈ M . Hence, by the universal prop-
erty of tensor products, there exists for each T (Λ)-module M a Λ-homomorphism
ψ : D(Λ)⊗ΛM →M that is unique up to isomorphism, mapping f⊗m to (0, f)·m.

Observe that this homomorphism satis�es ψ◦(1D(Λ)⊗Λψ) = 0. In the following
proposition, we shall see that, in fact, there is a sense in which a converse of this
holds.

Proposition 4.1.3. Let M be a Λ-module, and let also ψ : D(Λ) ⊗Λ M → M be
a Λ-homomorphism. De�ne a map µ : T (Λ)×M →M by

(λ, f) ·m = λm+ ψ(f ⊗Λ m),

where m ∈ M , λ ∈ Λ and f ∈ D(Λ). If ψ(1D(Λ) ⊗Λ ψ) = 0, we have that µ is a
left action of T (Λ) on M , i.e. M is a left T (Λ)-module.

Proof. It is clear that the distributive relations hold. In addition, we have that
(1, 0) ·m = 1 ·m + ψ(0 ⊗m) = m + 0 = m. Thus, what remains to be shown is
that the associative relation holds. We check this by simple computation:

(λ′, f ′)((λ, f) ·m)

= (λ′, f ′)(λm+ ψ(f ⊗m))

= λ′(λm) + λ′ψ(f ⊗m) + ψ(f ′ ⊗ (λm)) + ψ(f ′ ⊗ (ψ(f ⊗m))

= λ′(λm) + λ′ψ(f ⊗m) + ψ(f ′ ⊗ (λm)) + ψ(1⊗ ψ)(f ′ ⊗ (f ⊗m))

= λ′(λm) + λ′ψ(f ⊗m) + ψ(f ′ ⊗ (λm)) + 0

= λ′(λm) + λ′ψ(f ⊗m) + ψ(f ′ ⊗ (λm))

= (λ′λ, λ′f + f ′λ) ·m
= ((λ′, f ′)(λ, f)) ·m

At this point, we want to recall some facts about the projectives of T (Λ). First
of all, by [21, Corollary 1.6, Chapter 1], we have that if P is Λ-projective, then
T (Λ) ⊗Λ P is T (Λ)-projective. Furthermore, if M is indecomposable, T (Λ) ⊗Λ

M can be shown to be indecomposable as well, and hence the indecomposable
projectives of Λ map under T (Λ)⊗Λ− to the indecomposable projectives of T (Λ).
Indeed, this follows by the properties of the functors introduced on pages 7 to
9 of [21]. In particular, we need the following three facts: Firstly, note that
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the composition of T (Λ) ⊗Λ − followed by the functor induced by −/(D(Λ) ·
−) is naturally isomorphic to the identity functor on Λ. Moreover, the functor
induced by −/(D(Λ) · −) is additive, and the only T (Λ)-module it maps to the
zero module is the zero module itself. Combining these, it is clear that if T (Λ)⊗ΛP
is decomposable, then P is as well, and we are done.

We can use this to construct the projective cover of a Λ-module as a T (Λ)-
module. First, though, we need to prove these next well-known facts about trivial
extensions.

Proposition 4.1.4. Let Λ be a �nite dimensional algebra. If T (Λ) is its trivial
extension, then the following holds.

(a) radT (Λ) = rad Λ⊕D(Λ).

(b) rad2 T (Λ) = rad2 Λ⊕ (rad Λ ·D(Λ) +D(Λ) · rad Λ)

(c) radT (Λ)/ rad2 T (Λ) and rad Λ/ rad2 Λ⊕ (D(Λ)/(rad Λ ·D(Λ)+D(Λ) · rad Λ)))
are isomorphic vector spaces.

Proof. To see that (a) holds, note that (rad Λ, D(Λ)) is a nilpotent ideal of T (Λ),
and that T (Λ)/(rad Λ, D(Λ)) ∼= Λ/ rad Λ, since Φ: Λ→ T (Λ)/(rad Λ, D(Λ)) given
by λ 7→ (λ, 0)+(rad Λ, D(Λ)) is a surjective ring homomorphism with kernel rad Λ,
and so the result follows by [3, Corollary 1.4(c), Chapter 1].

We then have that (b) follows from (a) and a quick computation, whereas (c)
follows from (a) and (b) and the First Isomorphism Theorem for vector spaces.

We are now ready to give the promised result:

Proposition 4.1.5. Let M be a Λ-module. Let πΛ : PΛ(M) → M be the Λ-
projective cover of M . We have then that the T (Λ)-projective cover of M is

πT (Λ) : T (Λ)⊗Λ PΛ(M)→M,

where πT (Λ) as a Λ-homomorphism is given for p ∈ PΛ(M), (λ, f) ∈ T (Λ) by

(λ, f)⊗Λ p 7→ πΛ(λp).

Moreover, the kernel of this morphism, Ω1
T (Λ)(M), can be identi�ed with

Ω1
Λ(M)⊕ νPΛ(M) as a Λ-module with the T (Λ)-action de�ned by

(λ, f) · (p, g ⊗Λ p
′) = (λp, f ⊗Λ p)

for (λ, f) ∈ T (Λ) and p, p′ ∈ PΛ(M).
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Proof. First of all, we note that (λ, f) ⊗Λ p 7→ πΛ(λp) can easily be seen to be
a well-de�ned Λ-homomorphism since ((λ, f), p) 7→ πΛ(λp) is a Λ-biadditive map.
As we have that

(µ, g)(λ, f)⊗Λ p = (µλ, µf + gλ)⊗Λ p 7→ πΛ(µλp) = πΛ((µ, g)λp) = (µ, g)πΛ(λp)

holds, it is also a T (Λ)-homomorphism. Since πΛ is an epimorphism, πT (Λ) is as
well.

Furthermore, we can see that T (Λ) ⊗Λ PΛ(M) ∼= PΛ(M) ⊕ νPΛ(M), since
D(Λ) ⊗Λ − and ν are functorially isomorphic. Hence, the kernel of πΛ can then
be identi�ed with the submodule Ω1

Λ(M)⊕ νPΛ(M) with the stated T (Λ)-action.
Moreover, by (4.1.4), we see that

rad(T (Λ)⊗Λ PΛ(M)) = radT (Λ)⊗Λ PΛ(M) = radPΛ(M)⊕ νPΛ(M),

and thus that
Ω1

Λ(M)⊕ νPΛ(M) ⊆ rad(T (Λ)⊗Λ PΛ(M)).

Consequently, πT (Λ) is minimal, and we are done.

We note that this entails that Ω1
T (Λ)(P ) ∼= νP when P is a projective Λ-module.

This fact will be of crucial importance in a later section.

4.2 Finite representation type and in�nite com-

plexity

In this section we examine an example demonstrating that statement (a) of Purin's
theorem cannot be fully generalised. That is to say, to even assure that the com-
plexity of the trivial extension of an algebra is �nite one needs something more
than it merely being of �nite representation type. A straightforward approach
seems di�cult: it turns out that explicitly computing the minimal projective res-
olution of a module with complexity greater than 2 is di�cult. Fortunately, there
are some theoretical results that allow us to bypass this obstacle. Thus, pursuant
to this task, we have need of a result of Benson's, namely [8, Theorem 1.1]. For
the convenience of the reader, we include an excerpt of this result below. We note
that we have suppressed some parts which are irrelevant to our current endeavour.
Note that the matrix E = E(Λ), which we call the adjacency matrix of Λ, is given
by Ei,j = dimk Ext1

Λ(S(i), S(j)).

Theorem 4.2.1. Let Λ be a weakly symmetric algebra over an algebraic closed
�eld k satisfying rad3 Λ = (0). The matrix E is symmetric, so its eigenvalues are
real. The eigenvalue λ with largest absolute value is positive, and is a simple root
of the characteristic polynomial of E.
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1. If λ > 2 then the minimal projective resolution of each �nitely generated
non-projective Λ-module has exponential growth.

2. If λ = 2 then the dimensions of the modules in the minimal projective resolu-
tion of each �nitely generated Λ-module are either bounded or grow linearly.

3. If λ < 2 then the dimensions of the module in the minimal projective resolu-
tion of each �nitely generated non-projective Λ-module are bounded.

Note that by (4.1.4), if rad2 Λ = (0) then rad3 T (Λ) = (0) ⊕ rad ΛD(Λ) rad Λ
by a simple computation. However, the Λ-Λ-bimodule structure of D(Λ) entails
that

rad ΛD(Λ) rad Λ = (0)

if rad2 Λ = (0). Our plan is to use this in combination with the above and some
results on the stable equivalence of algebras satisfying rad2 Λ = (0) with hereditary
algebras.

Recall then that if Λ is a basic and connected �nite dimensional algebra over an
algebraically closed �eld and Q = (Q0, Q1) is its ordinary quiver, we can associate
to it the separated quiver Qs: if Q0 = {1, . . . , n} then Qs

0 = {1, . . . , n, 1′, . . . , n′};
and if α : i → j ∈ Q1 then there is a corresponding α : i → j′ ∈ Q1. We now
recall the following result [6, Theorem 2.6, Chapter 10], whose statement we adapt
somewhat:

Theorem 4.2.2. Let Λ be a basic and connected �nite dimensional algebra Λ over
an algebraically closed �eld satisfying rad2 Λ = (0). Then Λ is of �nite represen-
tation type if and only if the separated quiver for Λ is a �nite disjoint union of
Dynkin quivers.

We are now ready to give the promised example:

Example 4.2.3. Let Λ be the algebra given by the quotient of the path algebra
of the quiver

1 2

over the arrow ideal squared. That is to say, Λ satis�es rad2 Λ = (0). Clearly we
can see that the separated quiver of Λ is given by

1 2

1′ 2′

which is the union of the Dynkin quivers A1 and A3. In other words, by (4.2.2),
Λ is of �nite representation type.
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By [20, Proposition 2.2], it follows that the ordinary quiver of T (Λ) has the
same number of vertices as Λ. Moreover, by (4.1.4), we have that the arrows from
vertices i to j of T (Λ) are in correspondence with a k-basis of

ei rad Λ/ rad2 Λej ⊕ ei(D(Λ)/(rad Λ ·D(Λ) +D(Λ) · rad Λ)))ej.

Since rad2 Λ = (0), the second summand corresponds to elements ofD(Λ) which do
not vanish on elements of Λ corresponding to arrows of the quiver of Λ. Moreover,
an element of

ei(D(Λ)/(rad Λ ·D(Λ) +D(Λ) · rad Λ)))ej

is of the form [λ 7→ f(ej · λ · ei)]. In sum, the arrows of the quiver of T (Λ) from i
to j correspond to arrows of the quiver of Λ from both i to j and j to i.

As a consequence, the ordinary quiver of T (Λ) is given below:

1 2

Thus E(T (Λ)) is given by (
0 1
1 2

)
,

whose characteristic polynomial is thus λ2 − 2λ − 1. One can then see that the
maximal eigenvalue of E(T (Λ)) is 1 +

√
2 > 2, and, as a consequence of (4.2.1),

the complexity of T (Λ) is in�nite.

4.3 Complexity of general trivial extensions

In this section we investigate the complexity of trivial extensions of arbitrary, gen-
eral algebras. After recalling the appropriate de�nitions, we show that there exists
an upper bound on the length of the terms of the minimal projective resolution of
a Λ-module considered as a T (Λ)-module. It turns out that, in general, this bound
seems to be of little use. However, we brie�y investigate some speci�c cases which
then lead to the subject matter of the next section, wherein we also obtain more
substantial results.

We already gave the de�nition of the complexity of a Λ-module in (3.1.3).
Nevertheless, we repeat it here for the convenience of the reader: With regard to
that, recall that we denote the length of a moduleM by l(M), and that if P ∗ →M
of the form

· · · → P n → P n−1 → · · · → P 0 →M → 0,
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is a minimal projective resolution of M , then the ith Betti number of a M , βi,
is the number of indecomposable projective summands of P i. Recall also that
since the tops of indecomposable projective modules are simple, we have that
βi = l(top Ωi(M))

Recall that if M is a Λ-module, and its minimal projective resolution is given
by P ∗ →M , then we de�ne the complexity of M over Λ to be

cxΛM = inf{n ∈ N0 | ∃α ∈ R such that βi ≤ αin−1 for all i ≥ 0}.

Moreover, the complexity of Λ, cx Λ, is de�ned to be the maximum of the com-
plexities of the simple modules of Λ.

We turn now to deriving the promised upper bound. To provide a satisfactory
setting, we begin by de�ning some auxiliary notions. Our upper bound will be
given by the sum of the "lengths" of the terms of iterates of an endomorphism
of the free abelian group generated by the isomorphism classes of indecomposable
modules of Λ. By analogy with the Grothendieck group of Λ, i.e. K0(Λ), we denote
this group by L0(Λ). It is clear that we can construct L0(Λ) in the following
manner: Let F be the free abelian group generated by all �nitely generated Λ-
modules, and let F ′ be the subgroup of F generated by all expressions [M ⊕N ]−
[M ]− [N ], where [M⊕N ], [M ] and [N ] are the isomorphism classes of respectively
M ⊕N , M , and N in mod Λ. We see then that L0(Λ) ∼= F/F ′.

To see that this is well de�ned, we must show that the collection of all in-
decomposable modules is indeed a set. Hence, we note that an indecomposable
Λ-module is, like every other �nitely generated Λ-module, the quotient of

⊕n
i=0 Λ

for some n ∈ N0 and by some submodule. Hence, we can identify the class of
all indecomposable modules with some subset of the in�nite Cartesian product∏

n∈N0
(
⊕n

i=0 Λ×P(
⊕n

i=0 Λ)), where P(
⊕n

i=0 Λ) is the power set of
⊕n

i=0 Λ. Thus
we are done.

The endomorphism we wish to investigate is the following: Let [M ] ∈ L0(Λ)
be the isomorphism class of M in mod Λ. We let S : L0(Λ) → L0(Λ) be given by
[M ] 7→ [ΩΛ(M)]+[νP (M)]. That this is an endomorphism follows by the fact that
the projective cover of a direct sum is the direct sum of the projective covers of
the summands. See for instance [6, Proposition 4.3, Chapter 1].

We are now almost ready to give the upper bound. We note that the length
of a module l(−) induces an homomorphism from L0(M) to the positive integers.
Moreover, we agree to let Sn for n ∈ N0 denote the nth iterate of our endomorphism
S, where S0 is just the identity endomorphism [M ] 7→ [M ].

Finally, we note that, as previously remarked, any T (Λ)-module can be re-
garded as a Λ-module by way of the ring homomorphism mapping Λ injectively
into T (Λ). We denote that we are regarding a T (Λ)-module N as a Λ-module by
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writing ΛN . One can now observe that if N is some T (Λ)-module, then

lT (Λ)(N) ≤ lΛ(ΛN),

as any composition series of N over T (Λ) can be regarded as a chain of submodules
over Λ, and thus also completed to a composition series over Λ. To avoid some of
the clutter of having too many subscripts, we henceforth let lΛ(−) = l(−).

Proposition 4.3.1. Let M be a Λ-module. Then lT (Λ)(Ω
n
T (Λ)(M)) ≤ l(Sn([M ]))

holds for all n ∈ N0.

Proof. We prove this by induction. Since

lT (Λ)(Ω
0
T (Λ)(M)) = lT (Λ)(M) ≤ l(M) = l(S0([M ]))

holds by our remarks immediately preceding this proposition, the base step follows.
Assume that the result holds for n = k − 1. We observe now that we have a

short split exact sequence of Λ-modules

0 νP (M) Ω1
Λ(M)⊕ νP (M) Ω1

Λ(M) 0,i p

where the maps are just the canonical inclusion and projection.
It can be seen that this is in fact a short exact sequence of T (Λ)-modules.

Indeed, we endow the end terms with the trivial D(Λ)-action and the middle term
with the T (Λ)-structure detailed in (4.1.5). The middle term can then be identi�ed
with Ω1

T (Λ)(M).
By the Horseshoe Lemma, we see that

lT (Λ)(Ω
k
T (Λ)(M)) = lT (Λ)(Ω

k−1
T (Λ)(Ω

1
T (Λ)(M)))

≤ lT (Λ)(Ω
k−1
T (Λ)(νP (M)) + lT (Λ)(Ω

k−1
T (Λ)(Ω

1
Λ(M)).

Hence, applying our induction hypothesis twice, we �nd

lT (Λ)(Ω
k−1
T (Λ)(νP (M)) + lT (Λ)(Ω

k−1
T (Λ)(Ω

1
Λ(M))

≤ l(Sk−1([νP (M)])) + l(Sk−1([Ω1
Λ(M)]) = l(Sk([M ])),

where the equality follows by the de�nition of S. Hence, the induction step follows
and we are done.

Remark 4.3.2. We note that if we were working over a basic algebra Λ over an
algebraically closed �eld k, we could have replaced the notion of length in this
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proposition with that of the dimension vector of a module: namely, recall that if n
is the number of non-isomorphic simple modules of Λ, then the dimension vector
of a Λ-module M is de�ned to be the vector in Zs given by

dimM =

dimk e1M
...

dimk enM

 ,
where {ei}ni=1 is the complete set of primitive idempotents corresponding to the
vertices Q0 of the ordinary quiver of Λ. See [3, Chapter 3.3] for details.

Although we only sketch the argument, we can see that, given such assump-
tions, the dimension vector of a Λ-module would coincide with that of it as a
T (Λ)-module. Indeed, this follows by the fact that the set of vertices of Λ and
T (Λ) are the same, and that any representation of a Λ-module can be regarded as
a representation of a T (Λ)-module by setting the k-linear maps corresponding to
arrows induced by D(Λ) equal to the zero map. See for instance [20] for details
on how to construct the ordinary quiver of T (Λ) based on the bound quiver of
Λ. Moreover, the given proof would almost carry over with only the indicated
substitutions, as the crucial property of length that we utilise is its additivity as
a function, a property which dim− also has. In a similar fashion, we can also see
that dim− induces a homomorphism from L0(Λ) to Zn.

Example 4.3.3. We take another look at the algebra from Example 4.2.3. That
is to say, let Λ be the algebra given by the quotient of the path algebra of the
quiver

1 2

over the arrow ideal squared.
We wish to examine our recently derived inequality for the simple modules in

the the case n = 2. Upon computing, we �nd that

dimΩ2
T (Λ)(S(1)) =

[
0
3

]
.

On the other hand, we see that

dimS2([S(1)]) = dimΩ2
Λ(S(1)) + dimΩ1

Λ(νP (S(1)))

+ dim νP (Ω1
Λ(S(1))) + dim νP (νP (S(1)))

=

[
0
1

]
+

[
0
1

]
+

[
1
2

]
+

[
1
0

]
=

[
2
4

]
.

Likewise, we �nd
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dimΩ2
T (Λ)(S(2)) =

[
3
6

]
,

whereas

dimS2([S(2)]) = dimΩ2
Λ(S(2)) + dimΩ1

Λ(νP (S(2)))

+ dim νP (Ω1
Λ(S(2))) + dim νP (νP (S(2)))

=

[
0
1

]
+

[
0
1

]
+

[
1
2

]
+

[
2
2

]
=

[
3
6

]
.

Hence, it would seem as if this inequality is also in some sense the best one possible
in the general case: i.e. we should expect that no improvements can be made
without adding further assumptions on our algebra Λ or restricting our choice of
modules further.

What we have derived is of course not directly a bound on the T (Λ)-complexity
of a Λ-module. However, if βi is the ith Betti number of a module M and P i is
the ith term of a minimal projective resolution of the same module, then it is easy
to see that

βi ≤ l(P i) = l(Ωi+1(M)) + l(Ωi(M)).

Let us now recall that the complexity of a sequence of natural numbers {sn}n∈N0 ,
which we denote by the symbol cx{sn}n∈N0 , is given, if it exists, by the least b ∈ N0

such that there is some α ∈ R so that

si ≤ α · ib−1

holds for all i � 0. If there is no such b, we say that the complexity is in�nite
and we write {sn}n∈N0 = ∞. Given this and the preceding remarks, we see that
we have the following corollary

Corollary 4.3.4. Let M be a Λ-module. Then

cxT (Λ)(M) ≤ cx{l(Sn+1([M ])) + l(Sn([M ]))}n∈N0 .

Generally, if there are no restriction on Λ, then there is no guarantee that any
of the terms of Sn([M ]) vanish. Hence, as there are 2n+1 + 2n terms, in the worst
case

cx{l(Sn+1([M ])) + l(Sn([M ]))}n∈N0 =∞.

Having said that, we can perhaps allow ourselves to speculate a bit: We see
that if S(i) is the ith simple module of Λ, the growth of the numbers of terms
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of Sn([S(i)]) depends on whether or not various syzygies vanish. This follows
since the projective cover of a module always exists and is a non-zero module
provided the module itself is non-zero. As such, since none of the simple modules
are the zero module, we can see that the best case occurs when S(i) is projective
and all the terms of the form νP (· · · ) are projective as well. Clearly, given such
assumptions, Sn([S(i)]) consists of only one term for n ≥ 1. Of course, this occurs
for Λ semisimple.

However, this is too restrictive. If we are willing to drop the assumption that
S(i) is projective, we see that we nevertheless are left with a possibly nice bound:
Let P j be the ith term of the minimal projective resolution of S(i). Then

Sn([S(i)]) = [Ωn(S(i))] + [νP n−1] + [ν2P n−2] + · · ·+ [νnP 0].

Of course, this state of a�airs is obtained if Λ is assumed to be sel�njective. In
the next section, we show that we in fact have that

Ωn
T (Λ)(S(i)) = Ωn(S(i))⊕ νP n−1 ⊕ ν2P n−2 ⊕ · · · ⊕ νnP 0

for Λ sel�njective.
If we cast our net even more widely, then we can see from the form of the bound

that we are interested in algebras Λ such that all of its injective modules have
�nite projective dimension. Since a Gorenstein algebra has �nite right injective
dimension, it is clear that its minimal injective cogenerator has �nite left projective
dimension. By (3.1.13), an algebra which satis�es the �nite generation conditions
(Fg1) and (Fg2) must be Gorenstein. As such, we may expect that whether or
not an algebra is Gorenstein or satis�es the �nite generation conditions is somehow
connected to whether or not its trivial extension has �nite complexity. We will
return to this point in a later section wherein we will see that there is some evidence
for there being such a connection for certain classes of algebras, namely Nakayama
algebras and truncated path algebras.

4.4 Trivial extensions of sel�njective algebras

In this section we will be restricting our investigation to trivial extensions of sel�n-
jective algebras. To begin with, restricting to this case is sensible since M. Purin's
results in [29], also cover iterated tilted algebras Λ from hereditary algebras H.
This follows from her having shown that complexity is preserved under stable
equivalence of sel�njective algebras. As such, since iterated tilted algebras have
�nite global dimension, our present case is disjoint from that of Purin's.

In fact, assuming Λ to be sel�njective allows us to compute explicitly the
minimal T (Λ)-projective resolution of a T (Λ)-module M with trivial D(Λ)-action,
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i.e. D(Λ) ·M = (0), which is to say, a Λ-module. We will see that the relevant
terms, syzygies and T (Λ)-homomorphisms will be constructed out of those in the
minimal Λ-projective resolution. A more general version of the result we give is
to be found in Lemma 3.2 of Guo et al. in [22]. While the hypotheses assume
that the algebra in question must be Koszul, that assumption is not utilized in the
relevant parts of that result.

This allows us, among other things, to show that the complexity of a simple
Λ-module considered as a T (Λ)-module is at most 1 greater than its complexity
as a Λ-module, and hence, that the complexity of T (Λ) is also at most 1 greater
than Λ, provided that Λ has �nite complexity. Moreover, in the following section,
we show that in certain circumstances, the complexity of the trivial extension of
a sel�njective algebra Λ is exactly one greater than that of Λ itself.

The proof of our main result will be rather straightforward and elementary.
Before we can begin the proof proper, we need to recall some relevant facts, and
give some preliminary de�nitions and results.

Firstly, as Λ is sel�njective, T (Λ) will be a Λ-projective module, and hence,
T (Λ)⊗Λ− will be an exact functor. Moreover, the Nakayama functor ν(−), usually
de�ned as DHomΛ(−,Λ), and which in general is functorially isomorphic with
D(Λ) ⊗Λ −, becomes an exact autoequivalence of mod Λ, and preserves length,
minimal projective resolutions, and projective covers. In addition, it commutes
with syzygies. In case an algebra is symmetric, then we have by de�nition that Λ
is isomorphic to D(Λ) as a bimodule, and hence ν− is functorially isomorphic to
the identity functor.

The following is the de�nition of a structure that will turn out to be the T (Λ)-
syzygies of Λ-modules. We �rst give their Λ-structure, and then prove that they
also have a well-de�ned T (Λ)-structure. As a matter of convention, we identify ν−
with D(Λ)⊗Λ −, as this makes our formulas and expressions a great deal cleaner.
Moreover, as we at no point make use of the standard de�nition of ν−, there is
little chance of confusion arising.

De�nition 4.4.1. Assume Λ to be a �nite dimensional algebra over a �eld. Let
M be a Λ module, and let π∗Λ : P ∗ → M be its minimal Λ-projective resolution.
We de�ne for n ≥ 1 the nth induced module In(M) to be given as a Λ module
by the direct sum

Ωn
Λ(M)⊕ νP n−1 ⊕ ν2P n−2 ⊕ ν3P n−3 ⊕ · · · ⊕ νnP 0.

Proposition 4.4.2. Assume Λ to be a �nite dimensional algebra. The nth induced
module In(M) is a T (Λ) module under the T (Λ) action de�ned by the underlying
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Λ-action and the D(Λ)-action de�ned for p = (pn, pn−1, pn−2, . . . , p0) ∈ In(M) by

f · (pn, pn−1, pn−2, . . . , p0) =

(0, f ⊗Λ ι
n−1
Λ (pn), (−1)1f ⊗Λ ν(πn−1)(pn−1), . . . , (−1)n−1f ⊗Λ ν

n−1(π1)(p1)),

where ιn−1
Λ : Ωn

Λ(M)→ P n−1 is the inclusion of the nth Λ-syzygy into the (n− 1)th
term in the minimal projective resolution of M as a Λ-module.

Proof. It su�ces to show that g · (f · p) = 0 for f and g in D(Λ) and p in In(M).
Indeed, if this holds, then it is easy to show that induced modules satisfy the
associative T (Λ)-module axiom, whereas the other axioms are in this case trivial
to verify to begin with.

By the proposed de�nition, this is

(0, 0, (−1)1g ⊗Λ ν
1(πn−1)(f ⊗Λ ι

n−1
Λ (pn)),

(−1)2g ⊗Λ ν
2(πn−2)((−1)1f ⊗Λ ν

1(πn−1)(pn−1)), . . . ),

which is equal to

(0, 0, (−1)1g ⊗Λ 0, (−1)2g ⊗Λ ν
2(πn−2)((−1)1(ν2(πn−1))(f ⊗Λ pn−1)), . . . ),

which, by the the fact that πi−1πi = 0, is equal to

(0, 0, 0, (−1)2g ⊗Λ 0, . . . ),

or simply (0, 0, 0, ...), and hence we are done.

Observe that this construction is also valid in the non-sel�njective case. For the
sake of completeness, we also note that there is a more general construction that
encompasses the one just given. Namely, for any bounded complex of Λ-modules,
it is clear that we can, up to choices of sign, construct a module in this manner.
Moreover, there is a dual construction involving the quasi-inverse of the Nakayama
functor, wherein the Λ-module structure is given as

ν−nM0 ⊕ ν−(n−1)M1 ⊕ · · · ⊕ ν−1M1 ⊕M0

for a bounded complex of Λ-modulesM∗, and where the D(Λ)-action is induced by
evaluating an element of ν−iMn−i at the given element of D(Λ) and then mapping
under an appropriate homomorphism into ν−(i−1)Mn−(i−1). This also lends some
legitimacy to identifying ν− with D(Λ) ⊗Λ − in the present case, as it is in this
form that ν− also gives rise to T (Λ)-modules. Finally, it can be seen that these
constructions generalise the functors T and H of [21] in the case of the trivial
extension of a ring.

Having that said, we are now ready to give the proof proper.
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Proposition 4.4.3. Assume Λ to be a �nite dimensional sel�njective algebra over
a �eld. Let M be a Λ-module, and let π∗Λ : P ∗ → M be its Λ-minimal projective
resolution. Then the projective cover of the nth induced module of M is given as
a T (Λ)-module

T (Λ)⊗Λ P
n ⊕ T (Λ)⊗Λ νP

n−1 ⊕ · · ·T (Λ)⊗Λ ν
nP 0,

which as a Λ-module is isomorphic to

P n ⊕ νP n ⊕ νP n−1 ⊕ ν2P n−1 ⊕ · · · ⊕ νnP 0 ⊕ νn+1P 0

The T (Λ)-epimorphism onto the nth induced module of M has the following
form as a Λ-homomorphism for (pi, p

′
i) ∈ T (Λ) ⊗Λ ν

n−iP i ∼= νn−iP i ⊕ νn+1−iP i,
0 ≤ i ≤ n:

πnT (Λ) : ((pn, p
′
n), (pn−1, p

′
n−1), (pn−2, p

′
n−2), . . . , (p1, p

′
1), (p0, p

′
0))

7→

(πnΛ(pn), ν(πnΛ)(p′n) + pn−1, (−1)1ν2(πn−1
Λ )(p′n−1) + pn−2,

. . . , (−1)(n−1)νn(π1
Λ(p′1)) + p0).

Moreover, if ιnΛ : Ωn+1
Λ (M) → P n is the inclusion of the (n + 1)th Λ-syzygy

into the nth term in the minimal projective resolution of M as a Λ-module, the
kernel of the projective cover of the nth induced module is the (n + 1)th induced
module of M , and the kernel monomorphism is given as a Λ-homomorphism for
(pn+1, pn, pn−1, . . . , p0) ∈ In+1(M) by

ιnT (Λ) : (pn+1, pn, pn−1, pn−2, . . . , p1, p0) ∈ In+1(M)

7→

((ιnΛ(pn+1), pn), ((−1)1ν(πnΛ)(pn), pn−1),

((−1)2ν2(πn−1
Λ )(pn−1), pn−2), . . . , ((−1)nνn(π1

Λ)(p1), p0)).

Proof. By examining the coordinates, it is clear that πnT (Λ) is an epimorphism and
that ιnT (Λ) is a monomorphism. Furthermore, again from examining the coordi-
nates, it is also clear that ιnT (Λ) is the kernel of π

n
T (Λ). Indeed, this is obvious for

both the leftmost and the rightmost coordinates, while for the other coordinates
we have for 0 ≤ i ≤ n− 1 that (−1)iνi(πn−iΛ )(p′n−i) + pn−(i+1) = 0 holds if and only
if pn−(i+1) = (−1)i+1νi(πn−iΛ )(p′n−i) holds.



70 CHAPTER 4. COMPLEXITY AND TRIVIAL EXTENSIONS

Hence, what remains is to show that these two Λ-homomorphisms are also
T (Λ)-homomorphisms, and that πnT (Λ) is essential. If we begin with the latter, we
can see that

radT (Λ) · (T (Λ)⊗Λ P
n ⊕ T (Λ)⊗Λ νP

n−1 ⊕ · · ·T (Λ)⊗Λ ν
nP 0)

is really

radT (Λ)⊗Λ P
n ⊕ radT (Λ)⊗Λ νP

n−1 ⊕ · · · radT (Λ)⊗Λ ν
nP 0,

or

(radP n ⊕ νP n)⊕ (rad ν2P n−1 ⊕ ν3P n−1)⊕ · · · ⊕ (rad νnP 0 ⊕ νn+1P 0).

At this point, we can observe that the component morphisms of ιnT (Λ) either

identify a Λ-summand νiP n−i with the corresponding one in the codomain, in
which case it is the rightmost one of a pair, or maps it into the leftmost element
of a pair via (−1)i+1νi(πn−iΛ ), in which case its image is contained in rad νiP n−i

since πn−i is epimorphic onto Ωn−i
Λ (M) by construction and ν preserves minimal

projective resolutions. It follows that πnT (Λ) is essential.
Only one point remains now, namely to show that πnT (Λ) and ι

n
T (Λ) are homo-

morphisms also over T (Λ). Towards this, it su�ces to show that they commute
with the action of D(Λ). As such, we compute:

f · ((pn, p′n), (pn−1, p
′
n−1), (pn−2, p

′
n−2), . . . , (p1, p

′
1), (p0, p

′
0))

= ((0, f ⊗Λ pn), (0, f ⊗Λ pn−1), (0, f ⊗Λ pn−2), . . . , (0, f ⊗Λ p1), (0, f ⊗Λ p0))

7→

(0, ν(πnΛ)(f ⊗Λ pn) + 0, (−1)1ν2(πn−1
Λ )(f ⊗Λ pn−1) + 0,

. . . , (−1)(n−1)νn(π1
Λ)(f ⊗Λ p1) + 0)

= (0, f ⊗Λ π
n
Λ(pn), (−1)1(f ⊗Λ ν(πn−1

Λ )(pn−1)),

. . . , (−1)(n−1)(f ⊗Λ ν
n−1(π1

Λ)(p1)))

= f · (πnΛ(pn), νπnΛ(p′n) + pn−1, (−1)1ν2πn−1
Λ (p′n−1) + pn−2,

. . . , (−1)(n−1)νnπ1
Λ(p′1) + p0).
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Hence, the stated result holds for πnT (Λ). Finally, we compute just once more to

show that ιnT (Λ) also commutes with the D(Λ)-action.

f · (pn+1, pn, pn−1, . . . , p1, p0)

= (0, f ⊗Λ ι
n
Λ(pn+1), (−1)1f ⊗Λ ν(πnΛ)(pn), (−1)2f ⊗Λ ν

2(πn−1
Λ )(pn−1),

. . . , (−1)nf ⊗Λ ν
n(π1

Λ)(p1))

7→

((0, f ⊗Λ ι
n
Λ(pn+1)), ((−1)1ν(πnΛ)(f ⊗Λ ι

n
Λ(pn+1)), (−1)1f ⊗Λ ν(πnΛ)(pn)),

. . . , (. . . , (−1)nf ⊗Λ ν
n(π1

Λ)(p1)))

= ((0, f ⊗Λ ι
n
Λ(pn+1)), ((−1)1f ⊗Λ π

n
Λ(ιnΛ(pn+1)), (−1)1f ⊗Λ ν(πnΛ)(pn)),

. . . , (. . . , (−1)nf ⊗Λ ν
n(π1

Λ)(p1)))

= ((0, f ⊗Λ ι
n
Λ(pn+1)), (0, (−1)1f ⊗Λ ν(πnΛ)(pn)),

. . . , (. . . , (−1)nf ⊗Λ ν
n(π1

Λ)(p1)))

= f · ((ιnΛ(pn+1), pn), ((−1)1ν(πnΛ)(pn), pn−1), ((−1)2ν2(πn−1
Λ )(pn−1), pn−2),

. . . , (. . . , ((−1)nνn(π1
Λ)(p1), p0))

This immediately yields the following result.

Corollary 4.4.4. Assume Λ to be a �nite dimensional sel�njective algebra over
a �eld. Let M be a Λ-module. Then we have that the nth T (Λ)-syzygy of M ,
Ωn
T (Λ)(M), is isomorphic to the nth induced module of M , In(M).

Proof. This follows by induction. By (4.1.5), the �rst T (Λ)-syzygy ofM is isomor-
phic to the �rst induced module of M , and so the base step holds. The previous
result shows that the induction step also holds, and we are done.

Remark 4.4.5. Although we do not discuss this in depth, we note that this and
the preceding result can probably easily be generalised to sel�njective artin al-
gebras. Indeed, if Λ is instead assumed to be a sel�njective artin algebra over
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a commutative Artinian ring R, we believe the proofs should go through verba-
tim with the understanding that the duality D(−) is interpreted everywhere as
HomR(−, J), where J is the injective envelope of R/ radR, i.e. it is the minimal
injective cogenerator of R. See [6] for an introduction to the representation theory
of artin algebras, and speci�cally Chapter 4 of that work for details on sel�njective
artin algebras.

Moreover, these results should, as previously mentioned, also generalise to triv-
ial extensions of Λ with respect to bimodules M where M is projective both as a
left and as a right Λ-module. That is to say, in the de�nition we gave of the trivial
extension of an algebra Λ, we replaceD(Λ) by a Λe-moduleM . In point of fact, the
crucial property of the sel�njective case that we exploit is that ν(−) ∼= D(Λ)⊗Λ−
maps projective modules to projective modules. By familiar arguments using the
Hom-⊗-adjunction, we see that if M is a bimodule Λ-projective on both sides,
then M ⊗Λ − maps projective Λ-modules to projective Λ-modules. Additionally,
as already mentioned, the results in the �rst and the third section of this chapter
should hold for trivial extensions with respect to bimodules.

For the sake of clarity, it may have been preferable to have written the pre-
sentation to take account of this. However, as stated before, keeping in mind the
restrictions on the scope of the text, we have chosen not to. Additionally, the
problem description calls for investigating the case of trivial extensions of alge-
bras Λ with respect to the minimal injective cogenerator of those Λ. This is not
unjusti�ed, as it is immediately clear that trivial extensions are Gorenstein, and
our stated goal of investigating whether or not they have �nite complexity is to be
a �rst step in investigating whether or not they can satisfy the �nite generation
hypotheses.

We turn now to demonstrating the general upper bound promised in the intro-
duction of this section.

Corollary 4.4.6. Assume Λ to be a �nite dimensional sel�njective algebra over
a �eld. If Λ has �nite complexity, then cx Λ ≤ cxT (Λ) ≤ cx Λ + 1 holds. If
cx Λ =∞, then cxT (Λ) =∞ as well.

Proof. Let T = Λ/ rad Λ. Note that T is both the top of Λ and T (Λ), as can
be seen to follow by (4.1.4). Let now βiΛ and βiT (Λ) be the ith Betti numbers of

T over Λ and T (Λ) respectively. Then by the form of the minimal projective
resolution of T we see that βiΛ ≤ βiT (Λ) =

∑i
r=0 β

r
Λ holds for all i ≥ 1. Hence, if

Λ has in�nite complexity, T (Λ) has as well: indeed, observe that for all b in N0

and all α in R there is some j ≥ 1 such that αjb < βjΛ ≤ βjT (Λ). Moreover, if Λ
has �nite complexity we know that for all α in R there is some j ≥ 1 such that
αjcxΛ T−2 < βjΛ ≤ βjT (Λ), and so both our second claim and the �rst half of our �rst
claim have been established.



4.5. (Fg) AND COMPLEXITY REVISITED 73

For the second half of our �rst claim, we recall Faulhaber's formula:

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(−1)j
(
p+ 1

j

)
Bjn

p+1−j

Here, Bj is the jth Bernoulli number. If α ∈ R is such that βiΛ ≤ αicxΛ T−1 for all
i ≥ N for some su�ciently large N , then we can see that also for all i ≥ N

βiT (Λ) =
i∑

r=0

βrΛ ≤
N∑
r=0

βrΛ +
α

p+ 1

cxΛ T−1∑
j=0

(−1)j
(

cxΛ T

j

)
Bji

cxΛ T−j.

Now, upon choosing

α′ =
N∑
r=0

βrΛ +
α

p+ 1

cxΛ T−1∑
j=0

(
cxΛ T

j

)
|Bj|,

we see that βiT (Λ) ≤ α′icxΛT holds for all i ≥ N . Hence, the other half of our claim
follows.

4.5 (Fg) and complexity revisited

Although it might seem a priori reasonable to expect the complexity of the trivial
extension of a sel�njective algebra Λ to be precisely 1 greater than that of Λ itself,
demonstrating this has proven di�cult. Moreover, it has likewise proven di�cult
to �nd a counterexample. We note here some possible explanations for this, as
well as motivating the particular approach we take in this section: Firstly, we can
observe that by the formula in (4.4.3), if a Λ-module has complexity 1 over Λ, it
must have complexity 2 over T (Λ). Though this might seem innocuous, it has the
e�ect of excluding the case for which this might otherwise have been a tractable
problem. Indeed, computing enough of a minimal projective resolution to �nd a
pattern so that one can deduce a general formula for it or otherwise deduce its
complexity seems to be di�cult in the case of complexity 2 or higher.

Moreover, we recall that, as previously mentioned, something more can be said
given further assumptions: In fact, using their Corollary 3.2, Guo et al. in [22]
have shown that the complexity of a sel�njective Koszul algebra increases by one
when taking its trivial extension. Additionally, our desired result seems to hold if
the lengths of the terms of the minimal projective resolutions of modules are given
by polynomials.

Of course, a state of a�airs such as in the latter is something we have already
seen suggestions of in our earlier results. Namely, by combining (3.1.10), (3.1.11)
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and (3.1.9), we see that the following holds: Let (Λ, H) satisfy (Fg1) and (Fg2),
and P ∗ → M be the minimal projective resolution of some M in mod Λ. Then
for i� 0 one has dimP i = p(i) where p(x) ∈ Q[x], provided the generators of H
all have degree 1. Upon observing this, it is clear that we can employ Faulhaber's
formula to deduce that by taking the trivial extension the complexity for such an
algebra Λ increases by exactly 1.

However, such assumptions on the generators of H are unfortunately too re-
strictive. Indeed, it is known by a result of A. Dugas in [16] that the sel�njective
�nite dimensional algebras over algebraically closed �elds of �nite representation
type satisfy our �nite generation hypotheses. Yet experimenting with representa-
tives of the derived equivalence classes of these shows that not all of them have
resolutions described by polynomials. See the appendix of [2] for quivers with
relations for representatives of each of these derived equivalence classes. Further-
more, this is perhaps not surprising: clearly, the dimensions of the terms in the
resolution of a periodic module cannot be described by a polynomial.

Moreover, it might be instructive to examine the case of the sel�njective
Nakayama algebras. Indeed, the dimensions of the terms in the resolutions of
modules over these can be seen to be described by polynomials. Nevertheless, by
examining the structure of the Hochschild cohomology rings of this class of alge-
bras as they are detailed in [18], one can see that this does not necessarily follow
by the argument we have outlined. As it so happens, it is not clear whether or not
there is some subalgebra H generated by its degree 1 part so that (Λ, H) satis�es
our hypotheses. In fact, over �elds of characteristic di�erent from 2, then it is clear
that no such subalgebra can exist, as in that case odd degree elements square to
zero.

We note also that certain special biserial algebras whose Hochschild cohomology
is described in Snashall and Taillefer's [33] also seem to exhibit this behaviour: i.e.
by this we mean to say that while the dimensions of the terms of the minimal
projective resolutions of these algebras are described by polynomials, it is not
clear whether there is some H generated by degree 1 elements. See the end of
that paper for a delineation of which of these algebras satisfy the �nite generation
hypotheses.

Fortunately, it turns out that by modifying our approach somewhat, more can
still be said. In the following, we show that the complexity increases by one when
taking the trivial extension for pairs (Λ, H) satisfying (Fg1) and (Fg2) and for
which Λ is sel�njective. To do this, we must introduce the notion of a quasi-
polynomial function:

De�nition 4.5.1. Let k and d in Z satisfy k ≥ 1 and d ≥ −1. A function
φ : Z → Z is called a quasi-polynomial function of period k and degree d if
there exists a necessarily unique sequence F = (F0, F1, . . . , Fk−1) of polynomials



4.5. (Fg) AND COMPLEXITY REVISITED 75

Fj ∈ Q[x] such that j = 0, 1, . . . , k − 1,

(i) φ(n) = Fj(n) for all n� 0 with n ≡ j mod k and

(ii) max0≤j≤k−1 degFj = d.

Moreover, we say that F is the quasi-polynomial associated with φ and that d
is the degree of F . In case all the polynomials Fj have the same leading coe�cient,
we call that the leading coe�cient of F .

We remark that what we have referred to as the Poincaré series of a graded
vector space V of �nite type is also commonly called its Hilbert series. Now, for the
sake of balance and our current purposes, we will henceforth use the latter term.
Moreover, from this alternate nomenclature there is derived another term which
we now �nd ourselves in need of: Namely, for n in N0 and M a �nitely generated
module over a commutative Noetherian graded ring A =

⊕
n∈N0

An where A0 is
Artinian, let H(M,n) be such that

p(M, t) =
∑
n∈N0

H(M,n)tn.

Then H(M,n) is called the Hilbert function of M . Building on this, we let the
cumulative Hilbert function of M be given by

H∗(M,n) =
n∑
j=0

H(M, j).

We can now give the statement of the following result of Dichi and Sangare
from [15], although we do not give its proof. Note that its formulation has only
been amended in a few, trivial ways to align it more with the terminology we have
used earlier in the text.

Theorem 4.5.2. Let A =
⊕

n∈N0
An be a graded Noetherian ring of �nite Krull

dimension. Assume that A = A0[x1, . . . , xr], where each xi is homogeneous of
degree ki ≥ 1 and that A0 is an Artinian ring. Let M =

⊕
n∈N0

Mn be a �nitely
generated graded A-module and let d = dimM . If l = lcm(k1, k2, . . . , kr) then:

(1) The Hilbert function H(M,−) of M is a quasi-polynomial function of period l
and degree d−1. More precisely, there exists a sequence F = (F0, F1, . . . , Fl−1)
of polynomials Fj ∈ Q[x] such that

(i) H(M,n) = Fj(n) for all n� 0 with n ≡ j mod l;

(ii) max0≤j≤l−1 degFj = d− 1 = degF0.
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(2) The cumulative Hilbert function H∗(M,−) of M is a quasi-polynomial func-
tion of period l and degree d. More precisely there exists a sequence G =
(G0, G1, . . . , Gl−1) of polynomials Gj ∈ Q[x] such that

(i) H∗(M,n) = Gj(n) for all n� 0 with n ≡ j mod l.

(ii) All the polynomials Gj have the same degree equal to d and the same
leading coe�cients.

From this it is immediately clear that the Hilbert function describing the Betti
numbers, the lengths, or the dimensions of the terms of the minimal projective
resolution of a module over an algebra Λ satisfying the �nite generation hypotheses
is in fact a quasi-polynomial function. In relation to this, we note that Bergh has
in [9, Theorem 3.1] shown a stronger and far more general result implying also
this, formulated in and making use of the setting of the bounded derived category
of a ring or an algebra Λ, i.e. Db(Λ). In fact, if we were to use a generalization of
Faulhaber's formula such as [9, Lemma 2.3], we could give a closed form formula
for the cumulative Hilbert function showing that it too was a quasi-polynomial
function, essentially replicating the second part of Dichi and Sangare's result.
Hence, we could make do with Bergh's result. However, the result we cite above
is simply too on the nose for our purposes to not use it.

We now state and prove the following result:

Theorem 4.5.3. Assume Λ to be a sel�njective �nite dimensional algebra. Let
(Λ, H) be a pair satisfying (Fg1) and (Fg2). Then cxT (Λ) = cx Λ + 1.

Proof. Recall that for a pair (Λ, H) satisfying our �nite generation hypotheses, we
have by (3.1.14) and (3.1.11) that we can associate to the minimal Λ-projective
resolution P ∗ →M of an M in mod Λ a Hilbert series

p(
⊕
n∈N0

P n, t) =
∑
n∈N0

l(P n)tn

=
∑
n∈N0

H(
⊕
m∈N0

Pm, n)tn

=
∑
n∈N0

∑
i

l(P (i)) ·H(Ext∗Λ(M,S(i)), n)tn,

where Ext∗Λ(M,S(i)) is �nitely generated as an H-module for all M in mod Λ and
all i in I, an indexing set of the simple modules of Λ. By (4.4.3), if Q∗ → M is
the minimal T (Λ)-projective resolution of M , then we can see that

l(Qn) = 2 ·H∗(
⊕
m∈N0

Pm, n).
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Hence, for n� 0, we can conclude by the aforementioned result that l(Qn) is given
by a quasi-polynomial of some degree d, where d − 1 is the degree of the quasi-
polynomial H(

⊕
m∈N0

Pm, n). Namely, we can use the result since by assuming
(Fg1) we know that H is commutative Noetherian, and H0 is Artinian. Moreover,
note that H must have �nite Krull dimension: To see this, note that this is implicit
in our discussion surrounding our de�nition of the dimension of a variety and the
discussion in [7, Chapter 5.4]. Alternatively, by (3.1.2), we can employ the Noether
Normalisation Lemma and [10, Corollary A.8, Appendix] to deduce that H must
be of �nite Krull dimension.

We now show that if M is T = Λ/ rad Λ, then d = cx Λ and that this entails
that cxT (Λ) = cx Λ+1. Observe that if P ∗ →M is a minimal projective resolution
of M a Λ-module, then cx{l(P n)}n∈N0 = cxΛM holds for arbitrary artin algebras
Λ by elementary considerations: i.e. we see that βi ≤ l(P i) ≤ l(Λ)βi. Thus to
establish d = cx Λ, it su�ces to show that

cx{l(P n)}n∈N0 = cx{H(
⊕
m∈N0

Pm, n)}n∈N0 = d.

Let 1 ≤ j ≤ l for l the period ofH(
⊕

m∈N0
Pm, n) and Fj(x) ∈ Q[x] be such that

H(
⊕

m∈N0
Pm, n) = Fj(n) for n ≡ j mod l and degFj(x) = d − 1. Now, clearly

cx Λ = cx{H(
⊕

m∈N0
Pm, n)}n∈N0 ≥ d holds. Indeed, if we assume otherwise, then

given some α ∈ R, there is some i� 0 satisfying i ≡ j mod l such that

αicx Λ−1 < H(
⊕
m∈N0

Pm, i) = Fj(i).

To be speci�c, we can take i = |da−1
j,d−1e|(α + γ +

∑d−1
r=0 |daj,re|) where aj,r for

1 ≤ r ≤ d − 1 are the coe�cients of Fj and γ ∈ N0 is chosen so that i is both
su�ciently large and so that i ≡ j mod l. In this case, provided d > cx Λ, the
highest degree term of Fj clearly dominates both αicx Λ−1 and the other terms of
Fj, and we have a contradiction.

On the other hand, we can show directly that there is some choice of α ∈ R such
that αid−1 ≥ H(

⊕
m∈N0

Pm, i) for i� 0. In fact, we take α =
∑d−1

r=0 |max0≤j≤l aj,r|,
and hence d ≥ cx Λ, and thus d = cx Λ.

Since

cxT (Λ) = cxT (Λ) T

= cx{l(Qn)}n∈N0

= cx{H∗(
⊕
m∈N0

Pm, n)}n∈N0 ,
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and we can repeat the arguments we gave just now almost verbatim to show that

cx{H∗(
⊕
m∈N0

Pm, n)}n∈N0 = d+ 1 = cx Λ + 1,

we are in fact done.

4.6 Periodicity of modules and trivial extensions

In this section we de�ne what it means for a module to be periodic, and brie�y
investigate what passing to the trivial extension entails for the periodic modules
of a sel�njective algebra Λ. Moreover, we derive some additional results related to
periodicity following from those of the previous section. We note that our standing
assumptions still hold.

We begin by giving the appropriate de�nition for periodicity in the sel�njective
setting.

De�nition 4.6.1. Let M be a Λ-module. We say that M is ΩΛ-periodic if there
is some m ≥ 1 such that Ωm

Λ (M) ∼= M .

As long as context prevents confusion from arising, we will henceforth simply
be calling such modules periodic, or periodic over some given algebra.

The following result shows that the periodic modules of Λ embed under T (Λ)⊗Λ

− as periodic modules of T (Λ).

Proposition 4.6.2. Let M be a Λ-module, and let P ∗ → M be a minimal pro-
jective resolution of M over Λ. Then T (Λ) ⊗Λ P

∗ → T (Λ) ⊗Λ M is a minimal
projective resolution of T (Λ)⊗Λ M over T (Λ).

Proof. To begin with, note that since Λ is sel�njective, D(Λ) is Λ-projective, and
hence also T (Λ) is Λ-projective, thus entailing that T (Λ)⊗Λ− is exact. It follows
that T (Λ)⊗ΛP

∗ → T (Λ)⊗ΛM is a projective resolution. To see that it is minimal,
note that it is composed of short exact sequence of the form

0 Ωn+1
Λ (M)⊕ νΩn+1

Λ (M) P n ⊕ νP n Ωn
Λ(M)⊕ νΩn

Λ(M) 0,
T (Λ)⊗Λi

n

where as before we are interpreting ν− as D(Λ)⊗Λ −. Now, note that

radT (Λ)(P
n ⊕ νP n) = radΛ P

n ⊕ νP n

holds by (4.1.4) and a quick computation. Since ν− preserves minimal projective
resolutions, and since T (Λ)⊗Λ i

n can be seen to simply be an inclusion, the desired
result follows.
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Corollary 4.6.3. If M is a periodic Λ-module, T (Λ) ⊗Λ M is a periodic T (Λ)-
module.

Proof. This follows immediately from the preceding proposition.

Hence, the trivial extension T (Λ) has at least as many periodic modules as
Λ itself. Moreover, certain Λ-modules become periodic when considered as T (Λ)-
modules, as we show in the next result:

Proposition 4.6.4. Let P be a projective Λ-module. Then P is a periodic T (Λ)-
module.

Proof. This follows from an earlier observation, namely that the �rst T (Λ)-syzygy
of a Λ-projective P is νP , which itself is a projective Λ-module. Since ν− for
sel�njective algebras is an autoequivalence of P(Λ), it follows that the ν− order
of P is �nite, i.e. that there is some i such that νiP ∼= P . Of course, this entails
that its T (Λ)-minimal projective resolution is periodic.

Finally, we note that by the results of the previous section, it is clear that none
of the simple modules of the trivial extension of a non-semisimple sel�njective
�nite dimensional algebra are periodic.

4.7 An open question

In the case of sel�njective algebras Λ, we have seen that there are restrictions
on the complexity of their trivial extensions T (Λ). Moreover, as we have stated
several times before, by Purin's results in [29], we know that there are also strong
restrictions on the complexities of the trivial extensions of hereditary algebras and
also iterated tilted algebras. On the one hand, one may then ask whether one
can say something for either more general classes of algebras, or, alternatively,
other disjoint classes of algebras; on the other hand, as we also have remarked
before, we are interested in when the trivial extensions of algebras Λ may possibly
satisfy the �nite generation hypotheses necessary for the theory of support varieties
presented in [32] and [17]. As regards the latter, the scope of this text prohibits
even an elementary discussion, and we thus content ourselves with discussing only
the former. Finally, we make note of the fact that in this section we allow ourselves
to be a bit more sloppy than we have been elsewhere in this text: we assume
the reader is familiar with certain common terminology, and only sketch certain
arguments.

With this in mind, we note with respect to the �rst of these questions that it
may seem as if there is a connection between whether or not a non-sel�njective
algebra Λ satis�es the �nite generation hypotheses (Fg1) and (Fg2) and whether
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its trivial extension T (Λ) has in�nite complexity: First of all, the example we
gave in Section 4.2 is in fact indicative of a more general pattern. That is to say,
basic and connected radical square zero algebras that are not an oriented cycle,
which is to say they are not Nakayama algebras, seem to have in�nite complexity
if their ordinary quivers contain an oriented cycle. In working with this thesis,
using among other things the strategy in Section 4.2, this has been veri�es for tens
of examples, albeit all with less than ten simple modules.

Now, by Cibil's work in [14], we know that a radical square zero algebra that
is not a Nakayama algebra satis�es the �nite generation conditions if and only if
its quiver does not contain an oriented cycle. In particular, [14, Corollary 3.2]
states that if a quiver Q is not itself an oriented cycle, then, if I is the arrow
ideal of kQ, kQ/I2 has �nite dimensional Hochschild cohomology if and only if Q
contains no oriented cycle. Moreover, [14, Lemma 4.1] states that if a Q is not
an oriented cycle, then the product of positive degree elements of the Hochschild
cohomology of kQ/I2 is zero. Hence, we see that it is clear that if Q properly
contains an oriented cycle, HH∗(kQ/I2) cannot be a �nitely generated algebra
over the zeroth degree part of that algebra, and thus, by recalling [4, Proposition
10.7], we deduce that HH∗(kQ/I2) cannot be Noetherian. Yet, it is known by
[34, Proposition 5.7] that HH∗(Λ) must be Noetherian if Λ is to satisfy the �nite
generation conditions, thus entailing that one of the claimed implications hold. The
other follows by observing that if Q contains no oriented cycle, Λ = kQ/I2 must
have �nite global dimension and so Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) is �nite dimensional
and thus also �nitely generated over any ring it is a module over. Thus, since
by [34, Proposition 5.7] it is su�cient that HH∗(Λ) be Noetherian and to �nitely
generate Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) for Λ to satisfy the �nite generation hypotheses,
we can see that the other implication must hold.

In other settings one does not have Benson's result in [8] to rely on, and so,
as previously remarked, it is di�cult to determine what the complexity of a given
module is, and thus also what the complexity of an algebra is, at least in situations
of interest, where the complexity is greater than zero. However, employing the
useful Quivers and Path Algebras package for GAP [35], we have found some
indications that this pattern also occurs in more general situations.

We note, though, that there is an important caveat: While we have both
used the program's function to estimate complexities and its function to compute
minimal projective resolutions, our evidence consists of observing that the former
either returns high estimates or fails to �nish computing (possibly in a reasonable
amount of time) for far, far lower values of n ∈ N0 than it usually does, whereas the
latter indicates that the relevant resolutions grow exceedingly quickly. Of course,
while the dimensions of the terms in the minimal projective resolutions seem to
grow exponentially fast, it is not inconceivable that they may halt or slow in their



4.7. AN OPEN QUESTION 81

growth eventually, and hence all of this is not inconsistent with the complexities
simply being very large or otherwise di�cult to compute.

Having stated this, we enumerate some cases we have investigated with QPA
and where we know whether or not an algebra satis�es (Fg1) and (Fg2): By the
results of Nagase in [26], we know that a Nakayama algebra satis�es the �nite
generation conditions if and only if it is Gorenstein. Yet, in this case, going by
our investigations in QPA of these algebras (over Q), we have that whether or not
a Nakayama algebra is Gorenstein seemingly correlates with whether or not that
algebra's trivial extension has �nite or in�nite complexity.

Moreover, we have investigated the case of truncated quiver algebras. That is
to say, for a path algebra kQ of a quiver Q, if I is its radical, i.e. its arrow ideal,
then a truncated quiver algebra over Q is a bound quiver algebra of the form
kQ/In for n ≥ 2. Of course, for n = 2 we recognize these as being radical square
zero algebras. Now, using the main results of [36] and [1], one can mimic the
argument we gave above for radical square zero algebras to show that truncated
quiver algebras kQ/In for n ≥ 3 behave in a somewhat similar fashion with respect
to the �nite generation criteria: to be more precise, while the main result of [36]
states that HH∗(kQ/In) for n ≥ 2 is �nite dimensional if and only if Q contains no
oriented cycle, the central results in [1] state that the product in

⊕
i≥1 HHi(kQ/In)

is zero in the case when either Q contains no oriented cycle [1, Theorem 8.1], or
when it contains no sinks or sources but is not an oriented cycle [1, Theorem 8.6].
Yet again, it seems as if our computations in QPA suggest that in the case where
the algebras do not satisfy the relevant hypotheses, one �nds that their trivial
extensions have in�nite complexity.

Finally, we mention that in [27] and [28], Obara has investigated the Hochschild
cohomology rings of certain quiver algebras de�ned by two oriented cycles meeting
in a point and being bound by a "quantum-like" relation. Essentially, these can
be viewed as generalizations of the much studied quantum complete intersections.
However, according to Obara, unlike quantum complete intersection, these are not
in general sel�njective. Furthermore, Obara has shown in [28, Theorem 4.3] that
these algebras satisfy the �nite generation criteria if and only if the parameter
in the quantum-like relation is a root of unity. See [19, Proposition 9.1] for the
corresponding result for a restricted case of quantum complete intersections. In
this case we have made only limited computations in the most simple cases, as
made necessary by the size of these algebras, given that they invariably are of
double digit or greater dimension. Nevertheless we have found that the pattern
continues to hold.

Given all of this, we thus ask: if an algebra Λ does not satisfy (Fg1) and
(Fg2), must its trivial extension T (Λ) have in�nite complexity? A stronger for-
mulation still consistent with the cases we have discussed would be the following:
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if an algebra Λ is not Gorenstein, must its trivial extension T (Λ) have in�nite
complexity?
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