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In this thesis, a two regime Markov switching (MS) model is implemented to examine the
relationship between crude oil, both brent oil and WTI, and stock markets. In particular,
the model is applied to stock markets in both oil importing and exporting countries which
include Canada, China, Japan, Germany, Netherlands, Norway, the United Kingdom and
the United States. This paper first evaluates the significance of oil parameters in the
detected regimes, where the two regimes respond to low mean and high variance (bear
state), as well as high mean and low variance (bull state) respectively. We find evidence
of stronger significance of oil returns in high volatility regimes. Overall, crude oil plays
a significant role in determining stock returns. There is a stronger and more consistent
relationship between oil and stock market in oil importing nations, regardless of regimes.
The paper also presents an estimation of the correlation between oil and national indices
for both regimes. The results provide further evidence of consistently higher correlation
in high volatility regimes. The correlation ratio between the regimes are higher for oil
importing nations, indicating that such nations are more strongly affected by volatility
regimes.
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1. Introduction

1.1 Background of the Study

Crude oil (CO) is currently, and have been since the development of automation, the
most important source of fuel in the world, and the worlds most traded commodity. Any
news related to oil price are likely to affect the global economy. It is well documented
that volatility shocks in crude oil have significant effects on several economic activities.
Studies such as Hamilton [1996] have found empirical evidence on the affect of oil price
changes on real economic activity, including inflation rates and Gross Domestic Product
(GDP). And further Aloui and Jammazi [2009] and Jones and Kaul [1996] argue that
stock price movements can be accounted for by the impact of crude oil shocks. As oil price
shocks affect the expected net profitability of stock markets, it should be accounted for
quickly into the stock markets. These conclusions are supported by many other papers
such as Nandha and Faff [2008], Park and Ratti [2008]and Sadorsky [1999] amongst
some. The main conclusion is that energy prices and oil prices in particular are likely to
have affects on the stock price behaviour.

In more recent years, empirical studies have been focusing on structural breaks and shifts
in stock market returns. History reveals that stock markets have experienced periods in
which their behaviour change dramatically. Oil price increase in 1973-1974, stock market
crash in 1984, the Asian economic crisis in 1997, the dot-com bubble in early 2000�s,
9/11 terrorist attacks, the Iraqi war in 2003 and the financial crises in 2007-2008 can be
given as examples. All these events cause change in the dynamic process of financial time
series and motivate the use of regime switching models. During the unstable economic
time periods stock prices have followed with negative return and high volatility. Larger
risk in stocks and changes in monetary polices during unstable periods would reduce the
market efficiency, and is likely to affect the consistency in macro economic relationships.
Accordingly the affect of oil price changes on stock market returns are likely to vary
during time periods of recession or economic growth. The proposed time period from
Jan-1996 to June-2016 has experienced several structure changes, and is therefore well
suited for models account for structural changes. A Markov switching (MS) model
is proposed to capture the regime shifts behaviour. It seeks to identify two distinct
economic regimes within the markets. By incorporating such a model one are hopefully

1



2 Chapter 1. Introduction

able to observe a relationship between oil price and market indices dependent on the
economic regime. This regime dependent relationship between market indices and oil is
evaluated in both oil-importing and oil-exporting countries.

A Markov switching model was first proposed by Hamilton [1989] and later further
developed by Hamilton and Susmel [1994] as MS-ARCH1 in connection to stock markets
behaviour. In more recent time Bauwens et al. [2006], Henry [2009] and Aloui and
Jammazi [2009] have all tried to model the behaviour of equity markets with MS-models,
and their behavior towards other activa. However, regarding the effects of oil price on
stock markets dynamics, the MS models applied to stock markets are very limited, with
only a few papers such as Aloui and Jammazi [2009] and Hammoudeh and Choi [2007].
They both reveal that oil markets play an important role in explaining the stock market
returns during changes in the time series. In summary it can be stated that the regime
shifts are observed in stock market behaviour. This motivates us to check whether these
shifts exist in some developed stock markets and to see if they are associated with price
shocks and movements of the stock markets.

In this study we investigate the effects of CO on the regime shifts behaviour on nine
developed markets: U.S. with NASDAQ and S&P 500, Japan, Germany, Netherlands,
U.K., Canada and Shanghai over the sample period of January 1996 to May 2016. This
time period consists of regime shifting time periods and should be well suited to establish
how the CO affects the markets in high volatile periods, and also establish how the
correlation between national indices and CO are depending on their regime. The next
section will cover the research questions related to this thesis.

The main objective of this thesis is to investigate how the impact of crude oil returns
affect and relate to the stock market returns in volatile time periods. Further along the
way there are some sub-questions that need to be answered to make sure our models and
estimations are reasonable.

1) Are Markov Switching models an appropriate way estimating financial
time series? What strength and weaknesses do these models have?

Subjects related to the implementation and how the time series behave in a MS environ-
ment. Evaluation regarding the regime shifting and the distinction between the regimes
will be considered.

2) What advantages does the t-distribution have compared to the normal
distribution in a regime shifting framework?

The initial distributions will be implemented with both normal and t-distributed in-
novations, and an evaluation regarding these two distributions to our time series will
follow.

1Auto regression conditional hetroskedasticity
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3) How is the relationship between oil price returns and stock markets re-
turns? Does this relationship vary depending on export/import in the two
different regimes?

How does the relationship between markets and crude oil returns vary across regimes.
An evaluation of parameter significance and correlation will be made based on the
regimes.

The calculations and estimations have been done in MATLAB and R. The code used
for the estimations has been based on Perlin [2015] and Visser et al. [2010], with some
extended customization.



2. Theory

2.1 Financial Time Series

The analysis of financial time series has attracted the attention of both academics and
practitioners for decades. The motivation and interest to describe the movement of
financial time series do though vary. Researchers have studied the financial markets and
later tried to replicate their movement with different stochastic models. Over the years
the financial industry has approached the theoretical models to gain better understanding
of the market, in hope of generate profit by forecasting movements. Financial modeling
has thus become an important part of financial strategies, most commonly in hedge funds.
Making modeling of financial time series a very relevant and interesting field of study.
However, due to the complexity of the financial markets, modeling these time series is
a very complicated problem. The challenges are mainly due to the statistical empirical
findings, often referred to as stylized facts. A stylized fact is often a broad generalization
that summarizes some complicated statistical calculations. These empirical findings are
often difficult to replicate artificially with the use of stochastic models. Let�s consider
a financial asset with price p

t

at time t. The return can be calculated as the raw
return

r
t

=
p
t+1 � p

t

p
t

. (2.1)

Or the more commonly used log-return, which shall be used in this thesis. The use
of log returns are for simplicity in calculations. With discrete returns less than 10%,
the log return is a good approximation to discrete return, as it is the first order Taylor
approximation1.

r
t

= log(
p
t+1

p
t

). (2.2)

1
rt = log

Pt
Pt�1

= log(1 +Rt) = log(1) +Rt � R2
t

2! +
R3

t
3! ⇡ Rt.

4



Chapter 2. Theory 5

The price and the return are closely related since the return determines the price and
vice versa, but the two time series are very different both visually and with respect to
their mathematical properties.

Figure 2.1: Value of OSEBX

Figure 2.2: Daily return of OSEBX

Figure 2.1 and 2.2 display the daily index value and the return for the Norwegian stock
market index, OSEBX, from January 1996 to June 2016. The index value draws re-
semblance to a random walk, on the other hand the returns could be related to a more
stationary process with finite variance. The fluctuations in the the return series vary
over time, and periods on the time series where there are large fluctuations observed
is called clustering. The most obvious clustering is due to the financial crisis in 2008.
The returns, regardless of the magnitude of the fluctuations, seem to be concentrated
around zero. In one of the classic articles regarding financial data, Mandelbrot [1997] it
is stated ". . . large changes tend to be followed by large changes - of either sign - and
small changes tend to be followed by small changes". This statement certainly seems to
fit well with the returns of OSEBX. In fact this statement will fit well with all of the
time series introduced in this thesis. During this time period, different events will affect
the time series with different magnitude. But in general the Asian financial crisis in the
late 1990�s, dot-com bubble in the beginning of the millennium and the financial crisis
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in 2008 are all events that create fluctuations globally. The clustering of the time se-
ries makes the assumption of volatility dependency natural. By considering the squared
returns and hence only looking at the magnitude of the fluctuations, a measure of the
return volatility is the outcome

Figure 2.3: Daily squared return of OSEBX

Figure 2.4: Weekly squared return of OSEBX

Figure 2.3 displays the squared returns of OSEBX. It is clear that periods with higher
volatility reoccur during the time period, however, there is no system in the sudden
change of variance. Note that in this thesis time series will be evaluated under weekly
returns, and the main reason for this is that high frequency data often reflects a noise
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problem as stated in Ramchand and Susmel [1998]. This will be elaborated more in the
next chapters. For comparison between the frequencies, figure 2.4 shows squared returns
of OSEBX, and comparison to figure 2.3 reveals that the weekly plot has removed some
of the "lone" spikes and the clustering periods are more distinct. On the other hand, low
frequency data such as monthly or quarterly do not offer enough observation and would
make analysis during crisis periods worthless as crises tend to live relativity short.

So far the assumption of volatility clustering seems reasonable for time series, and thus in-
compatible with marginal distribution with constant variance, or known as homoskedas-
tic marginal distributions. A more realistic assumption is that the time series have time
varying conditional variance, or known as hetroskedastic marginal distributions. Some
of the popular hetroskedasticity models are more commonly known as ARCH (Auto Re-
gressive Conditional Hetroskedasticity) or GARCH (Generalized Auto Regressive Con-
ditional Hetroskedasticity). However, in this thesis we consider a model in between -
a model with regime shifting parameters, but constant within its regime. We propose
using a Markov Switching (MS) model to capture and predict asset returns, which will
switch between a constant mean and variance depending on its regime, that is a high or
low volatile period.

Examination of the auto correlation of both the returns and the squared returns will
be made for all the time series in the preliminary analysis chapter, and a brief intro-
duction on how they should be interpreted in financial time series will be explained.
The expression "volatility clustering" indicates that there is serial dependence in the
variance structure. Thus a process which displays volatility clustering should have sig-
nificant auto correlation in the squared returns. Figure 2.5 and 2.6 display the auto
correlation for OSEBX in both the returns and the squared returns. The returns series
itself show no obvious sign of auto correlation, and makes it comparable to a white noise
process. On the other hand, the squared returns auto correlation function shows very
significant auto correlation in the data. As seen in the preliminary analysis chapter, this
behaviour is common for all our time series. So, when looking past the direction of the
return, and hence only on the magnitude of the returns, a serial dependence occur. This
means that when choosing a model to replicate the return data, it must have a flexible
variance structure, which makes it capable of capturing the dependence in the return
variance.

Arguable the most common distribution in financial modeling is the normal distribution.
Its popularity goes back to the beginning of modern financial modeling, and has been
used in classic papers such as Fama [1965]. However, studies such as Haas and Pigorsch
[2009] have also argued that the financial returns have a distribution with fatter tails and
more peaked than the normal distribution. If a distribution inhabit these characteristics,
it is called leptokurtic. A distribution is said to be leptokurtic if it has a kurtosis larger
than three, which is what the normal distribution has. Figure 2.7 displays OSEBX
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standardized weekly returns along the density curves of a normal distribution and t-
distribution with degrees of freedom ⌫ = 5. The plot illustrates that fatter tails of
the t-distribution capture more extreme values compared to the normal distribution.
However the fit is arguable, supporting the assumption of the observation to not come
from the same distribution over the whole time period.

Figure 2.5: Auto correlation function of weekly returns of OSEBX

Figure 2.6: Auto correlation function of weekly squared returns of OS-
EBX
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Figure 2.7: Distribution histogram of OSEBX returns from Jan-1996
to June-2016 together with a normal distribution (red line) and t-

distribution with 5 degrees of freedom (blue line).

The variance structure and the distribution are two stylized facts about time series that
make them very hard to replicate. A model aimed to capture the movement of financial
time series must have these aspects in mind. The next chapter will cover the methodology
on how to estimate the MS models, but first an introduction to some of the statistical
tests done in this thesis.

2.2 Tests and Evaluation

This thesis uses a variation of statistical tests, and this section will go through some
of the more classical statistical tests used. Some more specific tests applied will be
explained in detail in the results section.

2.2.1 Jarque-Bera: Test for normality

In statistics, the Jarque-Bera test is a goodnes-of-fit 2 test of whether a data sample
has the skewness and kurtosis matching a normal distribution. The test statistic JB is
defined as

JB =
n� k + 1

6
(S2 +

1

4
(C � 3)2). (2.3)

2It describes how well a set of observations fits a model
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Where n is the number of observations, S is the sample skewness, C is the sample kurto-
sis, and k is the number of regressors. If the data comes from a normal distribution, the
JB statistic has chi-squared distribution with two degrees of freedom. The null hypoth-
esis is joint hypothesis of skewness being zero and excess kurtosis being zero, as in the
normal distribution. Thus rejection of H0 is rejection of the normality assumption.

2.2.2 Ljung-Box test: Testing auto correlation effects

The Ljung-Box test is a statistical test of whether any group of autocorrelations of time
series are different from zero. Instead of testing randomness at each distinct lag, it tests
the overall randomness based on a number of lags, and is therefore a portmanteau test
3. The hypothesis is defined as: H0 : "The data are independently distributed" and H1 :

"Not independently distributed". The test statistic is defined as the following

Q = n(n+ 1)
hX

k=1

⇢̂2
k

n� k
. (2.4)

Where n is the sample size, ⇢̂2
k

is the sample autocorrelation at lag k and h is the number
of lags being tested. Under the H0 the statistic Q follows a chi-squared distribution with
h degrees of freedom. Note that it is applied to the standardized residuals of a fitted
model, as in the MS models proposed.

2.2.3 Log-Likelihood ratio test: Comparison of two models

A likelihood ratio test is used to compare the goodness of fit of to models, one of which
the null model is a special case of the alternative model. Each of the competing models
is separately fitted to the data and log-likelihood recorded. The LLR statistic is defined
as follows

D = 2⇥ [ln(Likelihood alternative model) � ln(Likelihood null model)].

The model with the most parameters, here the alternative, will always fit at least as well
as the model with fewer parameters, here the null model. Whether the fit is significantly
better and should be preferred is determined by its significance level. The test statistic
is respectively chi-squared distributed with degrees of freedom equal to the difference of

3A test where the null hypothesis is well specified, but the alternative hypothesis is more loosely
specified.
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free parameters between the alternative and null model. The LRT has some limitations
in the comparison of models in this thesis, therefore some alternatives to LRT will
be introduced. Also the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) will be introduced as a supplement to the likelihood comparison. This
will be further explained in the relevant chapters.



3. Methodology

This section introduces how our observed data is defined and further describe the general
Markov process and the Hidden Markov Model. The papers Rabiner and Juang [1986]
and Rabiner [1989] give a thorough introduction to Markov Processes, Hidden Markov
Models and the main challenges with Markov switching models. Also how to create a
HMM with use of computation and algorithms will be explained.

This thesis examines the relation between correlation and variance in a conditional time
and state varying framework. This is done by evaluating at the correlation in low and
high-volatile times of the crude oil returns with use of Hidden Markov Models (HMM).
In comparison with a more simpler Markov Model, like a discrete Markov Chain, the
states are visible to the observer. However, in HMM the states are not directly visible,
but output, dependent on the state, is visible. In the next sections there will be an
introduction to the parameters defining a HMM and the procedures to finding them.
For simplicity there will first only be considered observations characterized as discrete,
and therefore have a discrete probability density within each state of this model. E.g.
by letting the observation to either be heads or tail of a coin. However, the data used is
assumed to be drawn form a continuous probability density, and HMM estimation with
such assumptions will also follow.

3.1 Markov Properties

The Hidden Markov Model gets its defining property from its name. First, the classifi-
cation of the state is hidden from the observer. Secondly we assume our time series to
inhabit the Markov property, that is the prediction of the next state only depends on
the current state. Meaning that the state transition probabilities do not depend on the
whole history of the past process. A Markov Process for a random discrete Variable X

is defined the following way:

P (X
t+1 = s

k

| X1, . . . , Xt

) = P (X
t+1 = s

k

| X
t

). (3.1)

12
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Because the state transition is independent of time, the model is expressed in a transition
matrix A:

a
ij

= P (X
t+1 = s

j

| X
t

= s
i

) (3.2)

Note that a
ij

is a probability and hence

a
ij

� 0,
NX

j=1

a
ij

= 1 8i, j. (3.3)

Further one also needs to know the probability to start in a state. In this case this
probability is the same as the stationary distribution which tells us the proportion of
time one spends in a certain state.

⇡
i

= P (X = s
i

). (3.4)

Where
P

N

i

⇡
i

= 1.

We will use these properties later to calculate the probability of state sequences which
is defined the following way:

P (X | A,⇡) = P (X1)P (X2 | X1)P (X3 | X1, X2) · · ·P (X
T

| X1, . . . , XT�1) (3.5)

= P (X1)P (X2 | X1)P (X3 | X2) · · ·P (X
T

| X
T�1) (3.6)

=
T�1Y

t=1

⇡1P (X
t+1 | Xt

) (3.7)

3.1.1 Hidden Markov models

The general Markov Model described in the previous section has limited power in many
applications. Therefore we extend it to a model with greater representation power; the
Hidden Markov Model. In a HMM one does not know anything about what generates
the sequence. The number of states, the transition probabilities, and from which state
an observation is generated are all unknown. Instead of combining each state with a
deterministic output, in our case high and low volatility, each state of the HMM is
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associated with a probabilistic function. At time t, and observation o
t

is generated by
function b

j

(o
t

), which is associated with state j, with the probability:

b
j

(o
t

) = P (o
t

| X
j

). (3.8)

Unlike the Markov Chain, the HMM will pick a strategy to follow also based on the
observation probability. The key to the HMM is to pick the best overall sequence of
strategies based on an observation sequence. The methods for finding the optimal chain
of states connected to the time series will be introduced later in the chapter.

3.1.2 General form of HMM

A HMM is composed of five factors (S,K,⇧, A,B).

1) I = {1, . . . , N} the set of states. The state of time t is denoted as s
t

. In our HMM
problem we have two states, thus N = 2.

2) K = k1, . . . , kM is the output alphabet and M is the number of observation choices.
In our HMM, the output is continuous, since it is represented as a return rate. And
therefore define the output alphabet as K 2 <, where it accept any observation if it is a
Real number.

3) Initial state distribution ⇧ = ⇡
i

, i 2 S is defined as

⇡
i

= P (s1 = i) (3.9)

4) State transition probability distribution A = {a
ij

}, i, j 2 S.

a
ij

= P (s
t+1 = j | s

t

= i), 1  i, j  N (3.10)

5) Observation symbol probability distribution B = b
j

(o
t

). The probabilistic function
for each state j is:

b
j

(o
t

) = P (o
t

| s
t

= j) (3.11)
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This thesis assumes the time-series to be HMM’s, generated by such a model explained
here. Thus our data of returns, Y , is our observation sequence O = {O1, O2, . . . , OT

}.
By doing this one is able to calculate the probabilities of the observation sequence, B,
and thus calculate the most probable underlying state sequence S0.

3.1.3 Observation probability distribution

In the discrete observation probability distribution there is a fixed number of possi-
ble observations o

t

. The probabilistic function b
j

(o
t

) is discrete in each state j. We
could for example partition our observations of returns, O, into discrete observations
{large drop, small drop, no change, small rise, large rise}- this partitioning is called vec-
tor quantization. The observation probability density function will be on the form

b
j

(t) = P (o
t

= k
i

| s
t

= j), 1  i  M. (3.12)

As briefly mentioned, time-series and observations are assumed to be continuous dis-
tributed, this is natural since the rate of return will not take any fixed value. In compar-
ison to a discrete case where the observations for example can be either tail or heads, the
rate of return has no fixed value. Thus in continuous observation probability HMM, the
function b

j

(o
t

) is in the form of a continuous probability density function or a mixture
of cont. pdf’s:

b
j

(o
t

) =
MX

k=1

w
jk

b
jk

(o
t

), j = 1, . . . , N (3.13)

M is the number of mixtures and w is the weight for each mixture. Recall that N is the
number of possible states. The mixture weights have the following constraints:

MX

k=1

w
jk

= 1, w
jk

� 0, j = 1, . . . , N k = 1, . . . ,M (3.14)

This paper for instance use a Gaussian and t-distributed HMM, so that our two states
are described with respect to the chosen distribution. However a generalization of the
density function could have been used.
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b
j

(o
t

) = N (o
t

;µ
j

,�
j

). (3.15)

An alternative way, and probably more common in the description of Markov Switching
models is the following parametrization:

o
t

= µ
j

+ ✏
t

(3.16)

✏
t

⇠ N (0,�2
j

). (3.17)

When use of pairwise observations in multivariate HMM, the observations are multivari-
ate Gaussian distributed:

~b
j

(o
t

) = N (o
t

; ~µ
j

,⌃
j

). (3.18)

Or alternatively

~o
t

= ~µ
j

+ ~✏
t

(3.19)

~✏
t

⇠ N (0,⌃
j

). (3.20)

Where ~µ
j

is a vector of means, and ⌃ is the covariance matrix.

3.2 Three Fundamental Problems for HMM

There are three fundamental problems related to HMM.

1) Given a HMM model � = (A,B,⇧) and a observation sequence O = (o1, . . . , oT ), how
do we efficiently compute the probability of the observation sequence given the model?
In other words, how do we find P (O | �)?

2) Given a HMM model � and the observation sequence O, what is the underlying state
sequence S0 that best "explains" the observations?

3) Given an observation sequence O, and a space of model parameters, how do we adjust
the model parameters � = (A,B,⇧) to maximize P (O | �).
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The first problem can be used to determine which of the trained models is most likely to
fit the model when the observation sequence is given. That is which model best accounts
for the movement history. The second problem is about finding out the hidden path.
And the third problem is about fitting the models with the historical data.

When going through the algorithms in the next sections, we try to keep the procedures
simplified and consider our observations to be discretely distributed. The transition to
model HMM with continuous observation will be explained later.

3.2.1 Problem 1: Finding the probability of a observation

Given the observation sequence O = (o1, . . . , oT ) and a HMM � = (A,B,⇧), we want
to find the probability of the sequence P (O | �). Since the observations are indepen-
dent of each other, the probability of a state sequence S = (s1, . . . , sT ) generating the
observation sequence can be calculated as:

p(O | S,�) =
TY

t=1

P (o
t

| s
t

, s
t+1,�) (3.21)

= b
s1(o1) · bs2(o2) · · · bsT (oT ). (3.22)

And the state transition probability,

P (S | �) = ⇡
s1 · as1s2 · as2s3 · · · asT�1sT . (3.23)

And the joint probability of O and S is given by:

P (O,S | �) = P (O | S,�)P (S | �). (3.24)

Which further imply:

P (O | �) =
X

S

P (O,S | �) =
X

S

P (O | S,�)P (S | �) (3.25)

=
X

S

⇡
s1

TY

t=1

a
sT�1sT bsT (oT ). (3.26)
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The computation is done by summing up the observation probabilities for each of the
possible state sequences. Note here that b

st(ot) is the probability to generate value o
t

given our current state s
t

. The probability to transit from state i to state j is given
by a

ij

. However, the problem with this approach is to enumerate each state sequence.
The computation grows exponentially and requires (2T � 1) ·NT+1 multiplications and
NT � 1 additions. To solve this problem one uses the forward-backward algorithm. It
is an inference algorithm which computes the posterior marginals of all hidden state
variables given a sequence of observations. The algorithm involves three steps:

1) Computing forward probabilities

2) Computing backward probabilities

3) Computing smoothed values(We will do this in problem 2).

Forward probabilities

The forward variable ↵
i

(t) is defined as:

↵
i

(t) = P (o1, o2, . . . , ot�1, st = i | �). (3.27)

Here ↵(t) describes the total probability of ending up in state i at time t given the
observation sequence o1, . . . , ot�1. The next steps of the algorithm can be solved induc-
tively:

1)Initialization:

↵
i

(1) = ⇡
i

b
i

(o1) 1  i  N (3.28)

2) Induction

↵
j

(t+ 1) =

"
NX

i=1

↵
j

(t)a
ij

#
b
j

(o
t

) 1  j  N 1  t  T � 1 (3.29)

3)Update time, set t = t+ 1, and return to step 2 if t  T

4) Termination

P (O | �) =
NX

i

↵
i

(T ). (3.30)
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The complexity of the forward algorithm is O(TN2).

Backward probabilities

The induction computation done for the forward probabilities can also be made in reverse
order. The backward procedure calculates the probabilities of the partial observations
from t+1 to the end, given the model mu and state s

t

at time t. The backward algorithm
is defined as:

�
i

(t) = P (o
t+1, ot+1, . . . , oT | s

t

= i,�) (3.31)

This algorithm moves from right to left, if we consider our observations along an x-
axis.

1)Initialization:

�
i

(1) = 1 1  i  N (3.32)

2) Induction

�
j

(t) =

"
NX

i=1

�
j

(t+ 1)a
ij

#
b
j

(o
t+1) 1  j  N t = T � 1, T � 2, . . . , 1 (3.33)

3)Update time Set t = t� 1, and return to step 2 if t  T

4) Termination

P (O | �) =
NX

i

�
i

(1). (3.34)

This result will be used to solve problem 2.

3.2.2 Problem 2: Finding the best state sequence

The second problem is to find the best state sequence given a model and the observa-
tion sequence. There are several possible ways to solve this problem. The difficulty is
that there may be several optimal criterias. One method is to choose the state that is
individually most probable at time t. For each time t, 1  t  T , we find the related
probability variable from our results from the Forward-Backward algorithm.
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�
i

(t) = P (s
t

= i | O,�) (3.35)

=
P (s

t

= i, O | �)
P (O | �) (3.36)

=
↵
i

(t)�
i

(t)
P

N

j=1 ↵j

(t)�
j

(t)
(3.37)

The normalization factor P (O | �) =
P

N

j=1 ↵j

(t)�
j

(t) makes �
i

(t) a probability measure
so that

NX

i=1

�
i

(t) = 1 (3.38)

These probabilities are known as the "smoothed" probabilities, where the forward and
backwards probabilities are combined.

Further, the individually most likely sequence S0 can be found as:

S0 = argmax
1iN

�
i

(t), 1  t  T, 1  i  N (3.39)

However this approach may generate an unlikely state sequence. This is because it
doesn’t take transition probabilities into consideration, and may result in invalid state
sequences, for example if a transition probability is equal to zero, a

ij

= 0 at some point.
Therefore, a more efficient algorithm is the Viterbi algorithm. It is based on dynamic
programming and is used to find the best state sequence.

The Viterbi algorithm

The Viterbi Algorithm is designed to find the most likely state sequence, S0 = (s1, s2, . . . , sT )

for the observation sequence O = (o1, o2 . . . , oT ):

argmax
S

0
P (S0 | O,�). (3.40)

To solve this problem one needs to define the quantity
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�
j

(t) = max
s1s2···st�1

P (s1s2 · · · st�1, o1 . . . o2, st = j | �). (3.41)

This variable stores the probability of observing o1o2 · · · ot using the most likely path
that ends in state i at time t, given model �. To retrieve the state sequence one needs
to keep track of the argument which maximized (3.41) for each t and j. For this we use
the array  

i

(t), which stores the node/state that leads to the most probable path. The
calculation is done by recursion, it is similar to the one in Forward-Backward algorithm,
except that the forward-backward algorithm uses summing over previous states, while
the Viterbi algorithm uses maximization. The recursion comes from the call in the
previous expression within our max operator, and so it goes all the way back to the
initial condition. The complete procedure for finding the best state sequence can now
be stated as follows:

Initialization:

�
i

(t) = ⇡
i

b
i

(o1), 1  i  N (3.42)

 
i

(1) = 0 (3.43)

Recursion:

�
j

(t) = max
1iN

[�
i

(t� 1)a
ij

] b
j

(o
t

), 2  t  T (3.44)

1  j  N (3.45)

 
j

(t) = argmax
1iN

[�
i

(t� 1)a
ij

] , 2  t  T (3.46)

1  j  N (3.47)

Termination:

P ⇤ = max
1iN

[�
i

(T )] (3.48)

s⇤
T

= argmax
1iN

[�
i

(T )] (3.49)
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Path backtracking:

s⇤
t

=  
t+1(st+1), t = T � 1, T � 2, . . . , 1 (3.50)

Thus our optimal sequence is S⇤ = {s⇤1, . . . , s⇤
T

}.

3.2.3 Problem 3: Parameter estimation

The last and most difficult problem about HMM’s is to determine a method to adjust
the model parameters (A,B,⇧) to maximize the probability of the observation sequence
given the model. The problem can be reformulated as to find the parameters that
maximize the following probability:

argmax
�

P (O|�).

There is no known analytic method to choose to maximize P (O|�). In fact, for any
finite observation set, there is no optimal way of estimating the model parameters. The
goal is to maximize the observation probability, P (O|�), by choosing appropriate �.
This paper has evaluated two methods to estimate the parameters. First method used is
called the Baum-Welch, which is a local maximization algorithm to obtain the maximum
likelihood estimation of the observed data, without computation of the likelihood. This
is a special case of Expectation Maximisation (EM) method. It works iteratively to
improve the likelihood of P (O | �). Secondly the parameters have been estimated by
maximum likelihood. Both methods have been applied for comparison, however, only
the estimations of the maximum likelihood have been used in this paper. Nevertheless
both estimations methods are described in the following sections.

3.2.4 Baum-Welch algorithm

In order to describe the procedure for re-estimation (iterative update and improvement)
of HMM parameters, one first defines ⇠

i,j

(t), the probability of being in state i at time
t and j at time t+ 1, given the model and observation sequence.

⇠
i,j

(t) = P (s
t

= i, s
t+1 = j | O,�). (3.51)
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Figure 3.1: Illustration of the sequence of operations required for the
computation of the joint event that the system is in state i at time t abd

state j at time t+ 1

The sequence of events leading to the conditions required by (3.51) is illustrated in figure
3.1. From the definition of the forward and backward variables we write ⇠

i,j

(t) in the
form

⇠
i,j

(t) = P (s
t

= i, s
t+1 = j | O,�) (3.52)

=
P (s

t

= i, s
t+1 = j | O,�)

P (O | �) (3.53)

=
↵
i

(t)a
ij

b
j

(o
t

)�
j

(t+ 1)
P

N

i=1

P
N

j=1 ↵i

(t)a
ij

b
j

(o
t+1)�j(t+ 1)

. (3.54)

In the previous section �
i

(t) was defined as the probability of being in state i at time
t, given observation sequence and the model. And thereby can relate �

i

(t) to ⇠
ij

(t) by
summing over j, giving
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�
i

(t) =
↵
i

(t)�
i

(t)
P

N

j=1 ↵j

(t)�
j

(t)
=

NX

j=1

⇠
ij

(t) (3.55)

=

P
N

j=1 ↵i

(t)a
ij

b
j

(o
t

)�
j

(t+ 1)
P

N

i=1

P
N

j=1 ↵i

(t)a
ij

b
j

(o
t+1)�j(t+ 1)

. (3.56)

By summing �
i

(t) over the time index t, this value can be interpreted as the expected
number of times state i is visited, or alternatively, the expected number of transitions
from state i if one considers the grid from t = 1 to t = T � 1. Also, the summation of
⇠
ij

(t) from t = 1 to t = T � 1 can be interpreted as the expected number of transitions
from state i to state j. That is

T�1X

t

�
i

(t) = Expected number of transitions from state i (3.57)

T�1X

t

⇠
i

(t) = Expected number of transitions from state i to j (3.58)

Using the equations above one can create a method of re-estimation of the parameter of
the HMM. The re-estimations formulas for ⇧, A and B are

⇡0
i

= Expected number of times in state i at time t = 1 = �
i

(1) (3.59)

a0
ij

=
Expected number of transitions from state i to state j

Expected number of transitions from state i

=

P
T�1
t=1 ⇠i(t)P
T�1
t

�
i

(t)
(3.60)

b0
j

(o
t

) =
Expected number of times in state j observing o

t

= k

Expected number og times in state j

=

P
T�1
t

ot=k

�
j

(t)

P
T�1
t

�
j

(t)
(3.61)

Given the definitions above one begins with an initial model � = (A,B,⇧) and runs the
data O through the current model to estimate the expectation of each model parameter
�0 = (A0, B0,⇧0). As mentioned the Baum-Welch method is indeed an implementation of
the EM method. The equations (3.57)-(3.58) can be used to calculate the expected values
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of transition properties of the Markov Chain, the expectation step of EM-algorithm.
Further the maximum likelihood estimation of the model is computed through recursion
of equations (3.59)-(3.61), the maximum step of the EM-algorithm. By iteratively use
�0 instead of �, and repeat re-estimation, we can improve the probability of O being
observed from the model until some limiting point is reached. The final result of this
procedure is called a maximum likelihood estimate of the HMM.

3.2.5 Maximum likelihood estimation

The likelihood is of high importance, since the model is estimated on the idea of maximiz-
ing the likelihood. Both the Baum-Welch and the MLE have the intention to maximize
the likelihood function, however with two different approaches. Before one can use the
MLE method, one needs to derive the likelihood function. This section derives the like-
lihood function, and its dynamics. The method of deriving the likelihood function is
similar to the methods used by Gray [1996].

Recall the regime switching model from equation (3.17)

o
t

= µ
St + ✏

t

(3.62)

✏
St ⇠ N (0,�2

St
). (3.63)

Thus the log likelihood of this model, given the normality assumption is given by

lnL =
TX

t=1

ln
⇣ 1q

2⇡�2
St

exp
�
�o

t

� µ
St

2�2
St

�2⌘
. (3.64)

Here S
t

is the state at time t, and µ
St and �

St are the respective parameters belinging
to state S

t

. If one knew the state sequence, then one would maximize equation 3.64 as a
function of µ1.µ2,�1 and �2. However, it should be clear by now that this is not the case
for Markov switching models, where the state is in fact unknown. Thus in order estimate
regime switching models, it is necessary to change the notation of the likelihood function.
Before the construction of the log-likelihood function there are some measurements that
need to be clarified, which are the conditional mean and variance.

The conditional mean is the constant mean depending on t and the regime. The mean can
follow an Auto regression(AR) process or and Auto regression mean average (ARMA)
process as seen in Gray [1996]. The conditional mean will be extended to where it
includes oil returns and an associated coefficient, such as µ

St = a + �
Strtoil

, where a is
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the intercept value andr
toil

is the oil return at time t . Here �
St is a regime shifting

parameter which also needs to be estimated.

The next element is the important conditional variance. The variance expression can be
made a lot more complex by adding ARCH parameters for example, however in this paper
the variance expression takes a simpler form where hetroskedasticity is not accounted
for in the variance, but assumed to captured by the regime switching. The conditional
variance is thus simply �2

St
= �2

i,t

, which is the variance at time t and S
t

= i is the
responding regime at the current time. Note that the conditional mean and variance,
take a value based on the current regime. However, the estimation process do not classify
a regime, but estimates the probability of being in a regime. Thus the conditional mean
and variance plotted will be a weighted average between the regimes.

The density of the returns conditioned on all observable history, õ
t�1, is defined as

f(o
t

| õ
t�1). And since o

t

is set to switch between regimes it can be split up as

f(o
t

| õ
t�1) =

2X

i=1

f(o
t

| õ
t�1, St

= i) · Pr(S
t

= i | õ
t�1) =

2X

i=1

f(o
t

| õ
t�1, St

= i) · p
i,t

.

(3.65)

The notation p
i,t

= Pr(S
t

= i | õ
t�1) is introduced for simplicity. Equation (5.16) is

the weighted average of the two regime dependent density functions, weighted with the
probability of being in regime i at time t, which is p

i,t

. Further the equation of the
conditional distribution of the returns can can written as follows

f(o
t

| õ
t�1) =

8
<

:
f(o

t

| õ
t�1, St

= 1) w.p.p1,t
f(o

t

| õ
t�1, St

= 2) w.p.p2,t.
(3.66)

Where the normality assumption yields

f(o
t

| õ
t�1, St

= i) =
1q
2⇡�2

i,t

exp
�
�o

t

� µ
i,t

2�2
i,t

�2
. (3.67)

Due to the Markov properties, p
i,t

, is only dependent on the regime switching process
from S

t�1 to S
t

at time t� 1. Conditioning on the regime at time t� 1 gives
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p1,t = Pr(S
t

= 1 | õ
t�1) =

2X

i=1

Pr(S
t

= 1 | S
t�1 = i, õ

t�1)Pr(S
t�1 = i | tildeo

t�1).

(3.68)

The Markov structure defines switching probabilities, introduced as a
ij

in previous sec-
tions, as

Pr[S
t

= 1 | S
t�1 = 1] = p11 (3.69)

Pr[S
t

= 2 | S
t�1 = 1] = p12 = 1� p11

Pr[S
t

= 2 | S
t�1 = 2] = p22

Pr[S
t

= 1 | S
t�1 = 2] = p21 = 1� p22.

Thus the Markov property gives

Pr(S
t

= 1 | S
t�1 = i, õ

t�1) = Pr(S
t

= 1 | S
t�1 = i). (3.70)

Then by substituting equation (3.69) and (3.70) into (3.68), the following expression for
regime probabilities yield

p1,t = Pr(S
t

= 1 | õ
t�1) =

2X

i=1

Pr(S
t

= 1 | S
t�1 = i, õ

t�1)Pr(S
t�1 = i | õ

t�1)

= Pr(S
t

= 1 | S
t�1 = 1)Pr(S

t�1 = 1 | õ
t�1)

+ Pr(S
t

= 1 | S
t�1 = 2)Pr(S

t�1 = 2 | õ
t�1)

= p11Pr(S
t�1 = 1 | õ

t�1) + (1� p22)Pr(S
t�1 = 2 | õ

t�1)

= p11Pr(S
t�1 = 1 | õ

t�1) + (1� p22)Pr(S
t�1 = 2 | õ

t�1)

= p11Pr(S
t�1 = 1 | õ

t�1) + (1� p22)(1� Pr(S
t�1 = 1 | õ

t�1)).

(3.71)

Here p11 and p22 are probability parameters to be estimated, and the last equality in
(3.71) has been made due to the two state assumption made in the model. Equation
(3.71) describes the probability of being in regime 1 at time t, given all observable
information until time t� 1.
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Next step in deriving the likelihood function is the implementation of Bayes Rule and
the law of total probability which together can be written as the following

Pr(A | B) =
(Bayes)

Pr(B | A · Pr(A)

Pr(B)
=

(Tot. prob.)

Pr(B | A) · Pr(A)

Pr(B | A) · Pr(A) + Pr(B | Ā) · Pr(Ā)
.

(3.72)

The first equation states Bayes Rule, and second equation displays the law of total
probability. Here Ā is the complementary element of A, in other words, the event of
being in regime 1 or 2. With the implementation of Bayes Rule, the regime probability
Pr(S

t�1 = 1 | õ
t�1) in equation (3.71) can be reformulated to a function of Pr(S

t�1 =

1 | õ
t�2), and written as the following

p1,t = Pr(S
t

= 1 | õ
t�1) = Pr(S

t

= 1 | õ
t�1, õt�2)

=
f(õ

t�1 | St�1 = 1, õ
t�2)Pr(S

t�1 = 1 | õ
t�2P1

i=1 f(õt�1 | St�1 = i, õ
t�2)Pr(S

t�1 = i | õ
t�2)

(3.73)

Further by substituting equation (3.73) into (3.71), the probability of being in regime 1
at time t can be written as

p1,t = Pr(S
t

= 1 | õ
t�1)

= p11


f1,tp1,t�1

f1,tp1,t�1 + f2,t(1� p1,t�1)

�
+ (1� p22)


f2,t(1� p1,t�1)

f1,tp1,t�1 + f2,t(1� p1,t�1)

�

(3.74)

Where f1,t = f(o
t

| S
t

= 2) and f2,t = f(o
t

| S
t

= 2). Note that the variables need
to calculate p1,t , are previous values of p1,t�1, the constants p11 and p22 and previous
densities f1,t�1 and f2,t�1. Since the regime probability only depends on constants and
last periods regime probabilities and densities, the regime probability is called a first
order recursive process.

The specification of the conditional means and variances were clarified earlier in this
section, and can be modified based on the model specification. Thus the sample log
likelihood function can be calculated as the weighted sum of the logarithm of the two
regime specific densities:
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L =
TX

t=1

log
h
f(o

t

| S̃
t

, õ
t�1)

i
=

TX

t=1

log [p1,tf1,t + (1� p1,t)f2,t] . (3.75)

Or written out completely

lnL =
TX

t=1

ln

2

4p1,t
⇣ 1q

2⇡�21,t

exp
�
�o

t

� µ1,t

2�1,t

�2⌘
+ (1� p1,t)

⇣ 1q
2⇡�22,t

exp
�
�o

t

� µ2,t

2�2,t

�2⌘
3

5 .

(3.76)

It is important to note that this estimation is based on a two regime model. The
transition probabilities are not variation free, since they are probabilities they need to
sum up to 1. This is the case for both the transition matrix, where each row sum up to
one, but also for the p

i,t

probabilities. The estimation of several regimes k > 2 can be
made, however the estimation process will differ a bit.

Lastly, to summarize this section, a description of the likelihood dynamics is provided.
As mentioned, this likelihood estimation is a one lag recursive structure, and it has the
following form: (1) The regime dependent normal densities can be calculated from equa-
tion (3.67). (2) The regime probability P (S

t

= 1 | õ
t

) is achieved from equation (3.74),
as a function of regime dependent densities and the constant transition probabilities. (3)
The likelihood contribution is calculated as the sum of the densities, weighted with the
regime probabilities. (4) The algorithm is restated by setting t = t + 1 and repeating
the steps.

The estimation is complete when the model is obtained by finding the set of parameters
that maximize equation (3.76).

3.3 Transformation to t-distributed MS-models

As argued earlier in the paper, a normal distribution may not be the best distribution for
financial time series, due to the heavy tails often observed in such series. More common
in modeling of financial time series is a more heavy tailed distribution assumed. An
alternative is the t-distribution, which in its most basic form only has the degree of
freedom parameter ⌫.
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However the t-distribution can be expanded to include both mean and variance pa-
rameters, which is requirement for this kind of modeling. With the expansion the t-
distribution is called the scaled t-distribution and takes the following form
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In this MS model ✏
t

follows a conditional t-distribution with degrees of freedom ⌫
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, t,
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In summary the model MS model with t-distributed innovation takes the form
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(3.80)

Under the assumption of t-distributed innovation the likelihood function looks similar
to equation (3.75), just modified with the density of the returns.



4. Data and Preliminary Evidence

This chapter introduces the time series and gives a preliminary analysis of their most
common statistical features.

4.1 Index Data

The featured Indices are selected with the purpose of seeing how leading national indices,
with varying relation to oil, are affected by oil price returns. The indices represent some
of the leading oil importing and exporting countries stock indices: Norway (OSEBX),
U.S. (SPX and NASDAQ), Japan (Nikkei 225), Germany (DAX), Netherlands (AEX),
UK (FTSE), Canada (TSX), China (SHCOMP). The time series used go back 20 years,
from the beginning of 1996 to May 2016, and are weekly values. This time period
includes several regime shifts for all time series and is thus suitable for regime switching
models. As in Ramchand and Susmel [1998] this thesis uses weekly returns as opposed
to daily, due to the noise created by higher frequency returns. On the other hand, lower
frequency returns such as monthly observations or quarterly may be misguiding with
respect to regime observations, where empirical evidence state that recessions or high
volatile periods often are not very durable. Weekly observations is therefore the preferred
middle ground for observing regimes.

4.1.1 Norway, OSEBX

The OSEBX, also known as the benchmark Index, helds a representative selection of
all stocks on Oslo Stock Exchange, and is considered the most prominent Index on the
Norwegian Market. Oslo Stock Exchange is world leading among the energy, shipping
and seafood industry. The energy sector is the largest with oil companies such as Statoil,
as the biggest company in Norway. Norway is one of the worlds leading oil exporting
countries, and thus has a strong weight in the energy sector.

31
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Figure 4.1: Development of OSEBX

Figure 4.2: The weight of the GSCI sectors in OSEBX at the end of
May 2016

4.1.2 U.S., SPX

The S&P 500 is widely regarded as the best single gauge of large-cap U.S. equities.
There are over USD 7.8 trillion benchmarked to the index, with index assets comprising
approximately USD 2.2 trillion of this total. The index includes 500 leading companies
and captures approximately 80% coverage of available market capitalization. It differs
from other U.S. stock market indices, such as Dow Jones and NASDAQ because of its
diversity and weighting methodology. It is considered to be one of the best represen-
tations of the U.S. stock market and indicator of U.S. economy. The U.S. is primarily
considered as a oil importing nation at present time, however the nation�s oil production
is still an important part of the country�s industry.

Figure 4.3: Development of SPX
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Figure 4.4: The weight of the GSCI sectors in SPX at the end of May
2016

4.1.3 U.S., NASDAQ

Nasdaq is a global electronic marketplace for buying and selling securities, as well as
the benchmark index for U.S. technology stocks. Nasdaq was created by the National
Association of Securities Dealers (NASD) to enable investors to trade securities on a
computerized, speedy and transparent system, and commenced operations on February
8, 1971. The term “Nasdaq” is also used to refer to the Nasdaq Composite, an index of
more than 3,000 stocks listed on the Nasdaq exchange that includes the world’s foremost
technology and biotech giants such as Apple, Google, Microsoft, Oracle, Amazon, Intel
and Amgen. The Nasdaq has very low weight in the energy sector, and will provide a
good indication how a non-energy index is affected by oil returns in a very oil dependent
nation.

Figure 4.5: Development of NASDAQ composite index

Figure 4.6: The weight of the GSCI sectors in NASDAQ at the end of
May 2016
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4.1.4 Japan, Nikkei 225

Nikkei is short for Japan’s Nikkei 225 Stock Average, the leading and most-respected
index of Japanese stocks. It is a price-weighted index comprised of Japan’s top 225 blue-
chip companies traded on the Tokyo Stock Exchange. The Nikkei is equivalent to the Dow
Jones Industrial Average Index in the United States.The index has been calculated since
September 1950, retroactive to May 1949. Among the best known companies included in
the Nikkei index are Canon Inc., Sony Corporation and Toyota Motor Corporation, and
it is the oldest stock index in Asia. Japan has been very dependent on importing oil to
meet the nation�s energy demand, and has been one of the worlds largest oil importers
for several decades.

Figure 4.7: Development of Nikkei 225 composite index

Figure 4.8: The weight of the GSCI sectors in Nikkei 225 at the end of
May 2016

4.1.5 Germany, DAX

DAX is a stock index that represents 30 of the largest and most liquid German companies
that trade on the Frankfurt Exchange. The DAX was created in 1988 with a base index
value of 1,000. DAX member companies represent roughly 75% of the aggregate market
cap that trades on the Frankfurt Exchange. Germany is considered amongst the world�s
largest oil importers, and import over 95% of its domestic use.
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Figure 4.9: Development of DAX index

Figure 4.10: The weight of the GSCI sectors in DAX at the end of May
2016

4.1.6 Netherlands, AEX

The AEX index, derived from Amsterdam Exchange index, is a stock market index com-
posed of Dutch companies that trade on NYSE Euronext Amsterdam, formerly known
as the Amsterdam Stock Exchange. Started in 1983, the index is composed of a max-
imum of 25 of the most actively traded securities on the exchange. It is one of the
main national indices of the stock exchange group NYSE Euronext alongside Brussels’
BEL20, Paris’s CAC 40 and Lisbon’s PSI-20. Netherlands is also considered to be one
of Europe’s greatest oil importers alongside Germany.

Figure 4.11: Development of AEX index
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Figure 4.12: The weight of the GSCI sectors in AEX at the end of May
2016

4.1.7 U.K., FTSE

This index, more colloquially known as the Footsie, is arguably the most popular and
widely used stock market index around the globe. This index is representative of ap-
proximately 80% of the market capitalization of the LSE (London Stock Exchange) in
its entirety. Larger companies comprise a greater portion of the index because it is
weighted by market capitalization. The FTSE 100 is often regarded as an indicator of
prosperity among qualifying United Kingdom companies and the economy in general.
However, one should note that many of the companies listed in FTSE 100 are based in
other countries around the world. U.K. are one of Europe’s largest oil exporters, only
second to Norway.

Figure 4.13: Development of FTSE 100 index

Figure 4.14: The weight of the GSCI sectors in FTSE 100 at the end
of May 2016
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4.1.8 Canada, S&P/TSX

The S&P/TSX composite index is the Canadian equivalent to the S&P 500 market index
in the United States. The S&P/TSX Composite Index contains stocks of the largest
companies on the Toronto Stock Exchange (TSX). The index is calculated by Standard
and Poor’s, and contains both common stocks and income trust units. Additions to
the index are generally based on quarterly reviews. The Toronto Stock Exchange is
dominated by a lot of commodity stocks, most notably crude oil, due to the concentration
of natural resources in Canada. Thus, the S&P/TSX Composite Index is more correlated
in commodity prices than its counterparts in the U.S. Canada has the third largest oil
reserves in the world and is the world’s fifth largest oil producer and fourth largest oil
exporter.

Figure 4.15: Development of S&P/TSX 100 index

Figure 4.16: The weight of the GSCI sectors in S&P/TSX 100 at the
end of May 2016

4.1.9 China, SHCOMP

The SSE Composite is a good way to gain a broad overview of the performance of
companies listed on the Shanghai exchange. More selective indexes, such as the SSE 50
Index and SSE 180 Index, show market leaders by market capitalization. Over time, it is
likely that the SSE Composite will closely resemble the overall economy of China; there
are still many large, state-run companies that have yet to go public in sectors such as
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banking, energy and health-care. China is one of the world�s largest oil importers, and
has had a steady increase in its demand for the last decades.

Figure 4.17: Development of SHCOMP 100 index

Figure 4.18: The weight of the GSCI sectors in SHCOMP at the end
of May 2016

4.1.10 Europe brent oil

Roughly two-thirds of all crude contracts around the world refere to brent blend, making
it the most widely used oil of all. These days, “Brent” actually refers to oil from four
different fields in the North Sea: Brent, Forties, Oseberg and Ekofisk. Crude from this
region is light and sweet, making them ideal for the refining of diesel fuel, gasoline
and other high-demand products. The supply is water-borne, which makes it easy to
transport to distant locations.
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Figure 4.19: Development of brent oil

4.1.11 WTI

WTI refers to oil extracted from wells in the U.S. and sent via pipeline to Cushing,
Oklahoma. The fact that supplies are land-locked is one of the drawbacks to West Texas
crude – it’s relatively expensive to ship to certain parts of the globe. The product itself
is very light and very sweet, making it ideal for gasoline refining, in particular. WTI
continues to be the main benchmark for oil consumed in the United States

Figure 4.20: Development of WTI
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4.2 Descriptive Statistics

The data used is weekly log-returns for the indices described in the previous section. The
data covers the period from January 1996 to June 2016, and consists of 1041 observations.
As a preliminary look at the data, table 4.1 reports summary statistics on index and
commodity returns. Including mean, standard deviation, skewness, excess kurtosis and
Jarque-Bera normality test statistic.

Table 4.1: Summary Statistics on weekly Market Log-Returns

Market Mean SD SK Excess  JB Q(4) Q2(4)
OSEBX 0.0017 0.0327 -0.7884 6.1935 1771.1** 17.418** 354.94**
SPX 0.0012 0.0249 -0.5647 3.7673 670.92** 8.901 119.42**
NASDAQ 0.0015 0.0345 -0.5969 3.1637 495.96** 16.046** 186.12**
NKY -0.0002 0.0314 -0.4756 3.1946 481.91** 6.805 67.167**
DAX 0.0014 0.0327 -0.6741 3.2780 544.92** 4.9466 82.828**
AEX 0.0007 0.0307 -0.6294 3.2569 528.83** 5.5447 151.56**
FTSE 0.0005 0.0243 -0.5300 2.8176 393.07** 13.85** 83.642**
TSX 0.0010 0.0243 -0.8315 4.5699 1025.8** 5.9393 127.10**
SH 0.0016 0.0395 -0.3624 4.6459 959.02** 15.59** 63.63**
Brent 0.0009 0.0534 -0.1812 2.6458 309.33** 7.766 67.29**
WTI 0.0009 0.0551 -0.1198 4.0076 699.15** 27.189** 243.1**
Gold 0.0008 0.0430 0.4905 14.1497 8726** 73.591** 117.78**

SK: Skewness coefficient.
: Excess kurtosis coefficient.
JB: Jarque-Bera Normality test. H0: Is Normal.
Q(4): Ljung-Box test statistics, testing for auto-correlation of the returns for up to
four lags. H0: No Auto-Correlation
ARCH(4): Ljung-Box test statistics, testing for auto-correlation in the variance of
the returns for up to four lags. H0: No Auto-Correlation.
*= Significance at 5% level
**= Significance at 1% level

The average weekly return is positive for all indices except NIKKEI 225, and the index
standard deviation is ranging from 0.0243 to 0.0395, and higher for the commodities with
a span from 0.0430 to 0.0551. Skewness is a measure of the distribution�s asymmetry,
and a negative skewness value indicates that crashes are more likely to happen than
booms, e.g. that the majority of the extreme values observed are negative. Further,
the excess kurtosis measures the heaviness of the tails in the time series compared to a
normal distribution. With positive excess kurtosis for all the time series, the empirical
distributions have fatter tails than a normal distribution. Skewness and Excess kurtosis
are used to evaluate the normality of observations through a Jarque-Bera test. Test is
overwhelmingly rejected for all time series. In summary the financial time series used in
this thesis confirm some widespread results on stock returns: Positive return, negative
skewness and fat tails, with the exception of Nikkei 225. The Ljung-Box Q-statistics
tests the auto-correlation between the weekly log-returns. The test shows significance at
1% for Norway, NASDAQ, UK and China.
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Figure 4.21: Value of all indices

Figure 4.22: Weekly log returns

The hetroskedasticity is considered by regressing over past squared residuals with use
of Ljung-Box test. The test is overwhelmingly rejected for all indices, indicating the
variance of the returns to have significant serial correlation. The ACF-plot for the
return are shown in figure 4.23 and 4.24. There is little to none consistency in the
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auto-correlation of the returns. As shown in figure 4.23 and 4.24 serial correlation of the
returns has little to no affect for most indices. The ACF of the squared returns are shown
in figure 4.25 and 4.26. The dashed lines make up a 95% confidence interval under the
null hypothesis of independence. The ACFs for the squared returns show significant auto-
correlation that persists for about ten lags for all indices and commodities. Except for
Nikkei 225, which has significance for up to about five lags. The long memory of squared
returns is closely related to the volatility clustering noted in the figure 4.22.

The returns shown in figure 4.22 are seen to be mean stationary for all indices and
commodities, since they fluctuate around a constant mean level close to zero. The
volatility related to the returns vary across the time line, creating clusters. Further, this
explains the high amount of hetroskedasticity in the time series, as mentioned in Chapter
2.

The correlations between the national indices and WTI and brent appear to be far from
constant. This appears from figure 4.27 and 4.28 where a one-year rolling correlation
of the indices and oil are shown. The rolling correlation seems to be moving in the
same patterns for the indices. Norway and Canada seem to have the overall highest
correlation with oil. China, with the Shanghai composite index, have the lowest overall
oil correlation.

Figure 4.23: Auto-correlations for the returns.
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Figure 4.24: Auto-correlations for the returns.

Figure 4.25: Auto-correlations for squared returns.
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Figure 4.26: Auto-correlations for the squared returns

Figure 4.27: Running correlation for national indices and Euro brent
oil
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Figure 4.28: Running correlation for national indices and WTI oil

Figure 4.29: Running variance for all indices and commodities

This thesis investigates the relation between variance and correlation, and the rolling
variance for the indices are shown in figure 4.29. The variance movement between all
indices are more correlated at the times of high market volatility, where the volatility
movement are more alike during turbulent periods. However, by comparing the running
correlation of the oil prices against the running variance, an increase in correlation cannot
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be systematically related to an increase in variance in our data sample. This can be
illustrated by the high correlation in the none volatile periods after the financial crisis
in 2008. On the other hand, the oil drop in mid 2014 did not cause markets shocks, and
the oil-stock market correlation dropped. Which might be an indicator that the cause of
the volatility shocks, with respect to both the indices and the oil, have different affects
on the correlation.

The plots and discussion so far only partially confirm the relationship between correlation
and stock-market turbulence. The same goes for by evaluating the correlation matrices of
the stock indices against the oil prices over various sub-periods. The observed correlations
responding to each sub periods are seen i tables 4.2, 4.3 and 4.4. A formal test for
constant unconditional correlation can be performed using Jennrich [1970] test of equality
of two correlations matrices computed over independent sub-samples. Tables 4.5 and 4.5
report the results of the Jennerich test over a set of sub-periods, for the correlations
between the national indices and crude oil. For a (n⇥n)-dimensional correlation matrix,
the statistic is distributed as �2 with (n(n � 1)/2 degrees of freedom. The correlation
matrices are between the oil prices and the stock indices. The sub-periods are from 1996-
2002,2003-2009 and 2010-present (June 2016).The null hypothesis is equal correlation
matrices. Considering brent oil and table 4.5, OSEBX, SPX, FTSE have low p-values
between both transitions between the time periods, indicating a change, and in fact,
increasing correlation over a long time period. Further TSX has a significant increase in
correlation between the first and second time period, which remains at high level for the
next period. NASDAQ, DAX, AEX have a significant increase in correlation between
the second and third time period. Both the Shanghai and Nikkei 225 index have no
significance in the change in correlation between the time periods. However, mutual for
all indices is a consistent increase in correlation over the time periods. This coincide
with the evaluation of the running correlation in figure 4.27, where the correlation for
all indices is at a top during the third period.

Further the evaluation of WTI against the national indices coincide with the brent oil
in most areas. By evaluating table 4.6, OSEBX, SPX, FTSE and TSX have significant
increase with p-values below 5% between both time periods. NASDAQ, DAX, AEX have
significant increase between the second and third time period and lastly Shanghai and
Nikkei 225 have no significance between the time periods. However, there is a consistent
increase in correlation between the time periods. The running correlation in figure 4.28
shows an increasing correlation in the third period.

By evaluating the running variance and correlation in figures 4.27, 4.28 and 4.29 there
tend to be clear evidence of the indices moving closer together, and indicating a growing
integration, not only towards the oil price but amongst the indices themselves as well.
Also by dividing the indices into oil exporting and importing countries the exporting
countries like Norway (OSEBX), Canada (TSX) and UK (FTSE) have a more signif-
icant increase in correlation than the remaining oil importing countries over the sub
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periods.

Several papers including Loretan and English [2000] and Boyer et al. [1997], have argued
that testing of unconditional correlation consistency for sub-periods may be misleading.
This is because the unconditional correlation estimate is biased in case of variance shifts.
Therefore, even though one might be aware of volatility shocks, unconditional correla-
tions estimates have to be corrected before any testing. As stated by Boyer, when a
period cannot be related to a clear regime (low or high volatility), changes in correlation
over time or across regimes cannot be detected reliably by splitting the sample according
to the realized value of the data. This is a consequence of the selection bias that occurs
when sub-samples are chosen a priori, according to the data. To evaluate correlation it
is therefore necessary to do the following:

1) Use a data generating process allowing for the possibility for structural changes.

2) Estimate the models parameters.

3) Evaluate correlation with respect to regimes.

These issues are covered in the next chapter. We test the null hypothesis of constant
conditional correlation, where the regimes are determined endogenously.
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Table 4.2: Correlation and Variance in the period 1996-2002

Correlation
Brent WTI Variance

OSEBX 0.250 0.208 9.48
SPX 0.064 0.021 7.99
NASDAQ 0.109 0.063 19.96
NKY 0.123 0.057 9.55
DAX 0.080 0.040 12.98
AEX 0.084 0.057 10.14
FTSE 0.091 0.068 6.54
TSX 0.115 0.084 7.31
SH 0.020 0.020 17.28

Variance is scaled with 104.

Table 4.3: Correlation and Variance in the period 2003-2009

Correlation
Brent WTI Variance

OSEBX 0.412 0.388 15.45
SPX 0.244 0.194 6.65
NASDAQ 0.181 0.130 9.15
NKY 0.167 0.152 10.38
DAX 0.120 0.140 10.31
AEX 0.150 0.164 10.96
FTSE 0.233 0.232 6.14
TSX 0.469 0.406 6.36
SH 0.108 0.074 17.41

Variance is scaled with 104.

Table 4.4: Correlation and Variance in the period 2003-present.

Correlation
Brent WTI Variance

OSEBX 0.525 0.524 6.83
SPX 0.424 0.448 4.83
NASDAQ 0.393 0.405 6.34
NKY 0.267 0.267 9.49
DAX 0.338 0.338 8.77
AEX 0.402 0.402 7.08
FTSE 0.420 0.450 5.05
TSX 0.505 0.553 3.94
SH 0.151 0.170 11.97

Variance is scaled with 104.
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Table 4.5: Jennrich Test of Equality of Correlation Matrices for Brent
Vs. National Indices over various Subperiods

height Degrees of Freedom 1996-2002 vs. 2003-2010 2003-2010 vs.,2011-2015
Statistics p-value Statistics p-value

Brent-OSEBX 1 5.391 0.0202 3.173 0.0749
Brent-SPX 1 5.865 0.0154 6.711 0.00958
Brent-NASDAQ 1 0.932 0.3341 8.805 0.0030
Brent-NKY 1 0.353 0.5521 1.892 0.1689
Brent-DAX 1 0.2936 0.5879 7.641 0.0057
Brent-AEX 1 0.7651 0.3817 11.464 0.000709
Brent-FTSE 1 3.723 0.0536 7.069 0.007839
Brent-TSX 1 24.830 0.0000 0.325 0.5685
Brent-SH 1 0.874 0.3499 0.331 0.5652

Table 4.6: Jennrich Test of Equality of Correlation Matrices for WTI
Vs. National Indices over various Subperiods

height Degrees of Freedom 1996-2002 vs. 2003-2010 2003-2010 vs.,2011-2015
Statistics p-value Statistics p-value

WTI-OSEBX 1 6.351 0.0117 4.554 0.0328
WTI-SPX 1 5.381 0.0203 13.109 0.0003
WTI-NASDAQ 1 0.781 0.3769 14.655 0.0001
WTI-NKY 1 1.607 0.2049 2.495 0.1142
WTI-DAX 1 1.805 0.1790 7.408 0.00086
WTI-AEX 1 2.056 0.1515 11.104 0.00086
WTI-FTSE 1 4.911 0.0266 9.804 0.00174
WTI-TSX 1 19.666 0.0000 5.589 0.0181
WTI-SH 1 0.527 0.4675 1.668 0.1965



5. Effects of Oil Returns on Markets

This chapter includes the presentation of the estimation results. It provides argumenta-
tion of the model choice with its advantages and downfalls. An analysis of the results and
their statistical significance is evaluated with respect to the research questions proposed
earlier in the thesis.

5.1 Model Selection

This thesis wants to evaluate national indices against oil price in a regime shifting en-
vironment. The regime shifting is intended to capture the different volatility regimes.
However, while working with Markov switching models, it is important to discuss which
parameters one should let be regime depending. Let�s first consider a standard ARCH(q)
model.
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As seen from a simple ARCH(q) model, there are no limitations to how many parameters
one can wish to add. Let�s assume a MS model that switches between two ARCH(q)
models, and all the parameters shifts. One of the problems that may occur is while one
might want to identify regimes as "high volatility" and "low volatility", if everything is
changing, it could turn out that it fits better with "high mean" vs. "low mean", or that it
even shifts on one of a�s, the autoregression coefficients, or the b�s, the hetroskedasticity
coefficients. This means that by letting more parameters be allowed shifts, one is more
likely to produce a model estimating something else than what was intentional. However,
this issue can be sorted out either by constraining some of the parameters or by removing
them. Both result in less "moving parts" that might ease the possible confusion in the

50
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model. In regard to MS models, often more complex models need more restriction than
the simpler models.

As seen from the descriptive statistics chapter, there is a fairly high amount of het-
roskedasticity in the time series. So if one was to model the time series in a single regime
model, then variants of ARCH or GARCH would probably be a natural choice. However,
this thesis wants to classify volatility regimes in time series, and thus the application
Markov switching models. How to choose an appropriate MS model is not given, and
further investigation motivate us to evaluate the ARCH effects in regime shifting mod-
els. Let�s consider a univariate MS-ARCH(k=2,q=1) model, with two regimes and one
autoregressive coefficient in the mean and variance equation1. Here k indicates number
of regimes and q the number of lags. As done in Ramchand and Susmel [1998] and due
to the argumentation of restricting the shifting parameters, this model only allows for
changes in the variance equation. The suggested model will look like the following
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g1 = 1. (5.5)

The g�s are a scale parameters that capture the change in variance. One of the g�s
are unidentified and hence g1 is set equal to 1. The g�s are the only regime shifting
parameter, and allow us to capture the possible high and low volatile regimes. More
details about this model can be seen in Hamilton and Susmel [1994]. By evaluating
all the time series under this model, there is little significance in the ARCH estimated
coefficient b1, in any of the estimated time series except for Shanghai and Nikkei 225.
However, for both Shanghai and Nikkei 225, the transition matrix P , reveals that there
was very little persistence of staying in a regime. Low probability of staying in a regime
is often result of the model not fitting well with the time series. These results coincide
with Ramchand and Susmel [1998] and Chesnay and Jondeau [2001], whom also were
unable to find significant ARCH effect in national indices. Thus the hetroskedasticity,
seen in the ACF plot of the residuals in figure 4.25 and 4.26, is assumed to be captured
by the switching nature of the model. Any further hetroskedasticity within each regime
is assumed negligible. This leads to the fact that the constant mean and variance model
is the most appropriate MS model, especially for classifying persistent regimes. The
preferred model used in this thesis is the following MS model as seen in Chapter 2

1Other variants of MS-ARCH have been tried with no qualitative change in result
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o
t

= µ
St + ✏

t

(5.6)

✏
St ⇠ N (0,�2

St
). (5.7)

Variants of single regime ARCH and GARCH are in way regime switching in the way the
variance adapts through the time series. Modeling proves that MS models with ARCH
effects are not well suited for the objective of this thesis where the more complex switch-
ing models provide higher transition probabilities between regimes, thus low persistence.
The µ

St will further be extended to include oil returns as well, µ
St = a+ �

Strtoil

.

MS modeling so far has been done with the assumption of residuals being normally
distributed. As seen from descriptive statistics, the normal distribution assumption
is rejected for all indices. Nevertheless, with the assumption of regimes, where each
regime has its own mean and variance, the observations are assumed to belong to a
mixture distribution. Thus testing for normality one needs to take into consideration
the parameters belonging to each regime. Before the analysis of oil returns with respect
to national indices, there are some assumptions that need to be clarified. First, what
is the significance of regime shifting, is this an appropriate model to capture volatility
periods? Secondly, justifying the assumption of letting our observations to either be
normal or t-distributed in their respective regime.

5.2 The Significance of Regime shifting

This thesis discusses the option of time series having two states, first and foremost
depending on the variance. An important feature is to test the significance of two
regimes against single regimes. Under the same argumentation as above, more regimes
lead to more parameters shifting. Thus the number of regimes added should be well
argued and constrained to the point that there is a clear distinction between the regimes.
As mentioned before, this paper emphasizes on the regimes classifying and distinction
between high and low volatility regimes.

Note that a regular Likelihood Ratio (LR) test is an informal test of regime shifting. This
is because parameters of the second regime are not identified under the hypothesis of no
regime shifting. Therefore the regularity conditions justifying the �2 approximation to
LR test do not hold. Nevertheless, a regular LR test gives a good indication of how well
a model perform next to the other. Hansen et al. [1996] proposed a LR test procedure to
overcome this problem, but even for simple models it is very computational demanding.
Therefore the preferred test is proposed by Ang and Bekaert [1999], which is based on
Monte Carlo simulation to obtain the small sample distribution of the LR test statistic.
Let�s consider a baseline MS model, in which both variance and mean are assumed to
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be regime dependent. Preliminary testing suggests that both mean and variance are
regime dependent, and will provide the alternative hypothesis of regime shifting against
the null hypothesis of no regime shifting.The mean and variance are all constant over
time in their respective regime. The small-sample distribution of the associated LR test
statistics is obtained as followed:

1) Estimate a model assuming one regime.

2) Create N samples, using the one regime model parameters of length T , where T = 1041

is the length of our data samples.

3)Estimate a two regime model for each sample, and compute the Likelihood ratio of the
estimated sample, one regime vs. two regime model.

4) Sample distribution of LR is computed for the N samples.

By comparing the LR from from our time series, one regime vs. two regime, against the
simulated small sample LR distribution the significance of the regime shifting can be
evaluated. The results can be seen in table 5.1.

Table 5.1: Test for Regime Shifting of National Indices

OSEBX SPX NASDAQ NKY DAX AEX FTSE TSX SH
Sample LR statistic 316.318 223.095 290.50 90.306 210.577 230.316 218.27 282.511 254.906
Monte Carlo sample distribution

Number of samples 200 200 200 200 200 200 200 200 200
Mean 2.702 2.878 2.878 2.844 2.929 2.831 2.233 2.722 3.029
Standard Deviation 3.024 3.457 3.458 3.311 3.273 3.126 2.571 3.196 3.355
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q3 4.838 3.996 4.452 4.452 4.384 4.270 4.350 4.350 4.326
Max 11.180 11.790 17.970 20.400 21.230 16.56 15.710 15.71 16.82

Table 5.2: Test for Regime Shifting of brent and WTI

Brent WTI
Sample LR statistic 142.763 155.635
Monte Carlo sample distribution

Number of samples 200 200
Mean 3.017 3.196
Standard Deviation 3.304 3.5437
Min 0.000 0.000
Q1 0.106 0.000
Q3 4.7350 5.234
Max 16.780 16.560

Table 5.1 and 5.2 report descriptive statistics for the small sample distribution of LR test
statistic for the national indices and the oil. The null hypothesis of no regime switching
is overwhelmingly rejected for all time series, since all LR test statistics obtained with
simulated samples are smaller than the sample LR test statistic from our time series.
Not any of the maximum values of the small sample distribution is even close to the
sample LR statistics. This strongly enhance our assumption for MS models.
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5.3 Significance of Parameters

It is of high importance to test whether the estimated parameters are statistically signif-
icant. A student t-test is applied to test this, and the null hypothesis and the alternative
hypothesis is the following

H0 : ✓̂ = 0 H1 : ✓̂ 6= 0 (5.8)

Where ✓̂ is the vector of all parameter estimates. Under H0 the student t-test is t-
distributed with n � k degrees of freedom, where n is number of observations and k

is estimated parameters. Due to the high degree of freedom this test is closely related
to Wald�s test where the statistic is approximately N(0, 1). The test statistic has the
following form

T =
✓̂ � ✓0

SD(✓̂
. (5.9)

Where ✓0 is the value of the true parameter, which when testing H0 is 0. The test
evaluates if the estimated parameter can be assumed to be zero and therefore redundant
in the model. The significance is chosen at a 5% and 1% level.

5.4 Model Estimates

This section will include the results of MS model with constant mean and variance in
their regime for both normal and t-distributed innovations. Also will the estimations be
divided into estimations including oil variables in the mean expression.

5.4.1 MS-Model without oil variables

With this model, both the mean and the variance are assumed to be constant for the
whole estimation period within a single regime. The model used is the same proposed
earlier in the thesis

o
t

= µ
St + ✏

t

(5.10)

✏
St ⇠ N (0,�2

St
). (5.11)
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Previous results and testing imply strongly that a one-regime model not accounting
for hetroskedasticity is a poor model and that our time series is very likely to consist
of regimes. As emphasised earlier, this paper wants to establish two clearly distinct
volatility regimes, and therefore do not apply more sophisticated models, as switching
ARCH and GARCH models, because this is more likely to create regimes less depending
on the volatility and create higher transition probabilities. This model assumes that any
conditional hetroskedasticity is to be controlled by the switching between regimes. It
will also be shown later that the hetroskedasticity is significantly reduced by the effect of
regime switching itself. Also recall that weekly data is used, opposed to monthly data.
This gives enough observations to be able to estimate the different states, but without
the noise of daily data.

The regimes are not observable, but have been identified through the estimation process
described in the methodology chapter. From the results in table 5.3 and 5.4 two regimes
have been identified with clear economic interpretation. First, two regimes are identified:
One captures the behaviour of the stock market in a recession state with low expected
return and high variance. The other regime (regime 1) captures the market in an expan-
sion state with high expected return and low variance. This identification is consistent
for all the national indices and the oil time series as well, except for the Shanghai index.
This is the case for both the normally and t-distributed estimations.

The standard deviation parameter � is significant for the two regimes in all time series,
for both normal and t-distributed innovations. For the normally distributed innovation
model the mean or the intercept parameter, µ, in regime 1 is significant at a 5% or
1% level for all indices except the Shanghai index. The same go for the ones with t-
distributed innovations. It reveals that the Shanghai index has experienced high volatile
periods in both "bull" and "bear" markets, opposite to the other national indices where
high volatile periods are consistently related to "bear" markets. This can also be seen
from figure 4.17 where the Shanghai index has steeper positive spikes than the other
indices. In contradiction to regime 2 with high variance and low mean, the µ value is not
significant for most indices in regime 1, expect for OSEBX, DAX and AEX which have
a significance at a 5% level. For the t-distributed models only OSEBX and Shanghai
have significant mean parameters in regime 1.

As expected, the main driver for regime classification is the variance for both models.
The ratios between the standard deviation in the two regimes is approximately two for all
the time series. The oil indices are clearly to be the most volatile ones with low volatile
regime standard deviation, �1, close to 0.040 for WTI and brent, and high volatile regime
standard deviation, �2, at 0.075 and 0.079 for the normally distributed innovations. For
the t-distributed models, the standard deviation is consistently lower than its equivalent
parameters in the normal distribution. This is because of the t-distributions larger tails
compared to the normal distribution, thus more of the observation falls under the t-
distribution model with smaller standard deviation. The national indices have �1 from
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0.0146 to 0.0252 with respectively FTSE 100 and Nikkei 225, and �2 span from 0.0342
to 0.0584 with FTSE 100 and SH, from the normal distributed model. From the t-
distributed models the �1 span from 0.0128 to 0.0223 from with TSX and SH, and
�2 span from 0.0299 to 0.0503 with TSX and DAX. The consistency of the volatility
ratio within the indices being around two indicates that the relative volatility, between
high and low, is the same for the national indices. Regardless of some indices being more
volatile than others. This observation is consistent for both the normal and t-distributed
models.

In order to identify the persistence of the regimes one needs to evaluate the probability
estimates p11 and p22. Considering a Markov chain, they are the probabilities for staying
in current state. The transition probability estimations are crucial in the evaluation of
Markov switching models. Models with low transition probability and therefore strong
persistence, indicating that there is a significant difference between the two regimes. Low
probability values often indicate that the estimation process has been having difficulties
sorting out the difference between the regimes, and keep jumping between the regimes
quickly, thus low persistence. If this is the case, comparisons of the two regimes are
often of little value. However, as seen in tables 5.3 and 5.4 all the probabilities are
high and significant. The probability plots with smoothed probabilities can be seen in
Appendix A. The probability of staying in regime 1, low volatile market, is higher for
all the time series, thus having higher persistence. The expected duration of being in
an expansion phase or in the "bull"-market is longer than in recession phase, which
implies that only an extreme event can switch the market from "bull" to "bear". On
the other hand, recession periods often do occur over a long time span, thus it is natural
to have a lower probability of staying in its regime. In general are the probabilities p11

and p22 consistently higher in the t-distributed models than their normally distributed
equivalents. One reason for this might be the t-distributions larger tails that require
even more extreme observations to make the jump from one regime to the other. The
degrees of freedom, ⌫, for the t-distributed models have been set to be non-switching
parameter, and the degrees of freedom are significant for all time series except DAX,
AEX and FTSE.

Considering table 5.3 and 5.4, the initial expectation of persistent regimes is confirmed
with constant probabilities p11 and p22 all over 0.9 for both models and all time series.
Some of the upcoming analysis in this paper are based on how each observation is classi-
fied to its respective regime. There are several ways to find the state sequence by using
the smoothed probabilities. Ramchand and Susmel [1998] have chosen to classify the
state sequence S0 by letting the highest probability of one observed state be the classi-
fied state. In other words, the smoothed probability for each observation is evaluated
individually as seen in equation (5.12).
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S0 = argmax
1iN

�
i

(t), 1  t  T, 1  i  N (5.12)

This paper propose the use of the Viterbi algorithm, which allows to classify the most
probable state sequence considering the transition probabilities as well, and evaluate
the expression in equation (5.13). In other words would the first method classify each
observation individually, but the Viterbi algorithm allow us to classify the observations
considering the whole time series. Thus, by the use of the Viterbi algorithm, some
observations would be classified to a regime contradicting its value. The algorithm can
be revised in chapter 2. The plot of regime classification and smoothed probabilities with
conditional standard deviation for all models and time series can be seen in appendix
A.

argmax
S

0
P (S0 | O,�). (5.13)

Mandelbrot‘s quote about financial markets 2 in the introduction, gave the initial expec-
tation of estimated regimes to be persistent. Evaluating the plots of regime classification
and smoothed probabilities in Appendix A, and the probability values calculated in table
5.3 and 5.4, the persistence of the regimes is strongly argued for. As mentioned in the
preliminary analysis the time period from 1996 to present consists of several economic
crises and thus economic shocks, allowing MS modeling to be well suited. The most
consistent high volatile periods seen from the probability plots in Appendix A are the
dot.com bubble in early 2000’s and later the financial crisis in 2008. Regarding our oil
indices the Asian economic crises in 1997 and the 9/11 terror attacks seem to provide
a longer streak of high volatile period for the brent oil, and the WTI is switching a bit
more rapidly between the regimes. Later the movement for brent oil and WTI seems to
be more correlated, and both switch regimes in the 2008 financial crises and the oil drop
in 2014.

The reason for choosing Markov Switching models was its ability to capture structural
changes unbiased, and by doing so also capture the hetroskedasticity, the serial depen-
dence of the squared returns. It is important to have in mind that the structural breaks in
our model have no middle ground, it is either in high or low volatile regimes. However, we
may evaluate the probability of being in either of the states. When regime classification
is applied to the observations it may be considered a little too binary. In contradiction
one has GARCH models which capture the serial dependence of the squared returns
based on the variance and residuals of previous observation, and thus perhaps a more

2"...large changes tend to be followed by large changes - of either sign - and small changes tend to
be followed by small changes
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accurate way of modeling these time series would be a MS-GARCH model combining
these properties. Nevertheless, this paper wants to classify volatility regimes, which our
models so far have been doing satisfactory. Further, more complex MS models require
more parameter estimations, thus a further evaluation of which parameters to allow
shifting or not. As argued earlier in this chapter; allowing more parameters to shifts also
changes the "reason" of the shift. Even though the MS model with constant mean and
variance do not inhabit any ARCH parameter in the variance expression, this model was
assumed to capture most of the hetroskedasticity in our time series. To see if the MS
models have been able to capture this effect, the standardized squared model residuals
are defined as

✏̂2
t

=

✓
r
t

� µ̂
t

�̂
t

◆2

. (5.14)

Where �̂
t

and �̂
t

are defined from the state sequence defined by the Viterbi algorithm.
An alternative method to calculate the standardized squared model residuals would be to
use the conditional standard deviation and mean, which captures the nuance between the
regimes based on the probability of being in a state, and thus have stronger capability
to capture the ARCH effects. However, by classifying each observation based on the
Viterbi, there is a stronger assumption of distinct regimes. In the preliminary analysis
a Ljung-Box test of the squared residuals in the time series were performed, and the
hypothesis of homoskedasticity and no auto-correlation of the squared residuals were
overwhelmingly rejected. From the results in table 5.3 and 5.4 the Q(4)2 statistics are
drastically reduced, and in some cases even insignificant. If the models have been able to
capture all the systematic volatility found in the time series, the estimated standardized
squared residuals would be random uncorrelated volatility. From the ACF plot for the
standardized squared residuals in Appendix A, the systematic volatility is clearly reduced
compared to the ACF plot in the preliminary analysis. The t-distributed models have
overall more struggle capturing the systematic volatility due to its higher Q2(4) value.
However due to the t-distribution models low probability of leaving its state and the
use of the Viterbi algorithm, lead us to believe that some of the observations will be
"miss classified" in the sense that the observation do not fit with its state. Consequently
the estimate squared residuals being affected of ARCH effects. As a result the ARCH
effect is not fully captured for either models with respect to their regimes. Therefore
volatility is shown to have two sources: Volatility captured by regime shifting, which is
modeled with MS model, and volatility clustering within regime, a feature not captured
in the proposed model. Figure 5.1 displays the standardized residuals estimated from
the MS model with normal innovations, and acquired from the Viterbi algorithm. It can
be viewed as opposed to histogram plot of OSEBX in the Theory chapter, and the effect
of the regime shifting is obvious. The use of histograms is good for visuals, however a
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QQ-plot is preferred with the use of confidence bands, which allow for a more thorough
analysis and will be covered in the next paragraph.

Figure 5.1: Histogram of residuals calculated from MS model with nor-
mally distributed innovations and Viterbi algorithm for OSEBX

.

One other feature discussed in Chapter 2 was the the distribution of the returns. Fama
[1965] stated that the tails of the returns were fatter than what a normal distribution
with kurtosis of 3 was able to capture. Thus a more leptokurtic distribution might be
able to match the actual distribution better. Recall that excess kurtosis is defined as
kurtosis minus 3, and from the preliminary analysis leading to the t-distribution to be
a good alternative. Assuming that the conditional distribution and the Markov switch-
ing is a good fit for the time series, then the estimated standardized residuals will be
distributed as the conditional distribution proposed. To evaluate the fit of the normal
and t-distribution qq-plots have been estimated based on the standardized residuals pro-
vided from parameter estimation and Viterbi. The qq-plots can be seen for all time series
and for both estimation models in Appendix A. Given that the conditional distribution
of the innovations and the estimated distribution of the standardized residuals are the
same, the estimated residuals will imitate a straight line in qq-plot. The tail sensitive
confidence bands are provided by simulation, a method proposed by Aldor-Noiman et al.
[2013]. The tail-sensitive bands reject the conditional normal distribution for the resid-
uals at a 5% level of significance in a great proportion of the observations for OSEBX,
SPX, NASDAQ, DAX, AEX and TSX. However, the conditional t-distribution for the
residuals is only rejected for a few of the observations in SPX, NASDAQ, TSX and WTI.
Overall the conditional t-distribution seems to be a better match, especially in the lower
end of the tail. Have in mind that the use of Viterbi might "miss-classify" some observa-
tions and create outliers. Thus the use of conditional means and standard deviation in
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calculation of both residuals and squared residuals are more likely to lead to a better fit
for the conditional distribution or less hetroskedasticity. Nevertheless, the approach of
using the state sequence as reference to the standardized residuals, allow us to confirm
two things: First that t-distribution is more likely to fit persistent regimes, and secondly
that there are volatility clustering within classified regimes.

The use of t-distribution and Viterbi algorithm have been proven useful to classify per-
sistent volatility regimes, but both the qq-plots and Q(4)4 statistics argue that volatility
clustering within regimes still are present. To consider which of the MS models fit the
time series best, based on the conditional distribution, evaluation of the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) have been performed.
Values of the estimations are in table 5.5. Note that the preference of the model is here
turned into a maximization problem and not a minimization, which is most common.
Kass and Raftery [1995] and Burnham and Anderson [2004] explain that if a difference
in AIC being greater than 4, then a model is substantially less preferred. Thus in cases
for DAX and FTSE, where the AIC in the normal model is larger than the AIC in the
t-distributed model, the difference is insignificant. Thus the models with t-distributed
innovations are overall preferred from the AIC, and the normal distribution is strongly
rejected for all cases except DAX, AEX, FTSE and brent. The BIC is closely related
to the AIC, however the penalty term is larger in BIC than in AIC. If the difference
in the BIC’s are greater than 6, there is a strong preference in one of the models. The
result from the BIC values indicate DAX, AEX, FTSE and brent would prefer a normal-
distributed model, however the difference in value is not significant in any case. On
the other hand t-distribution is strongly preferred over normal distribution for the other
indices. In general the conditional t-distribution is preferred for modeling financial time
series from these results, which coincide with previous studies.
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Table 5.5: Estimation of Likelihood, AIC, BIC for the normal and t-
distributed models

Normal T-distribution
Log-liklihood(L) AIC BIC Log-liklihood AIC BIC

OSEBX 2238.937 4465.874 4436.186 2247.267 4480.534 4445.899
SPX 2477.729 4943.457 4913.770 2482.746 4951.491 4916.856
NASDAQ 2169.778 4327.557 4297.869 2175.960 4337.920 4303.285
NKY 2169.937 4327.874 4298.187 2176.867 4339.735 4305.099
DAX 2184.985 4357.970 4328.282 2185.890 4357.780 4323.145
AEX 2260.2260 4509.304 4479.616 2262.460 4510.920 4476.284
FTSE 2498.168 4985.336 4954.648 2498.988 4983.975 4949.340
TSX 2530.649 5049.229 5019.612 2537.820 5061.639 5027.003
SH 2011.132 4010.264 3980.576 2021.800 4029.598 3994.963
Brent 1643.447 3274.889 3245.202 1645.920 3277.839 3243.204
WTI 1617.661 3223.323 3193.635 1621.882 3229.764 3195.128

AIC: The AIC are computed as 2L � 2k, where k are the number of parameters
estimated, which is 6 for normal and 7 for t-distribution.
BIC: The BIC are computed as 2L�kln(n) where n = 1041 are the number of weekly
observations.
The bold results are the largest of the criterion and the preferred model for the given
time series.

To summarize the results presented in this section; two distinct regimes have been ob-
served with low mean/high variance and high mean/low variance, and the variance was
observed as the main driver for the regime shifting with strong significance. There are
also evidence that under the assumption of t-distributed innovations there is a stronger
persistence in its regime, which is due to the fatter tails. Further, low volatile periods
have a stronger regime persistence. Regime classification done by the Viterbi algorithm
provides evidence that most of the hetroskedasticity is captured by regime shifting, how-
ever there is still serial correlation within regimes. In general the t-distributed models are
preferred over the normally distributed models form the AIC and BIC criterion.

5.4.2 MS model with oil variables

This section evaluates the MS models in the previous section with extension adding the
oil price return of brent and WTI to the model. The proposed Markov switching model
is the following

o
t

= µ
St + ✏

t

(5.15)

✏
St ⇠ N (0,�2

St
) µ

St = a+ �
Strtoil

(5.16)
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Obviously this section is only for the national indices with oil parameters. The modeling
of the oil returns in the previous section is a preliminary analysis of further evaluation
of correlation with respect to oil regimes. Papers such as Aloui and Jammazi [2009] add
the oil variables to the variance term, and evaluate how oil price affects the volatility.
This paper, on the other hand, adds the oil returns in mean expression,µ

St , to evaluate
how the oil price affects the overall return of the national indices. The results in table
5.6 and 5.7 indicate that the distribution properties observed in the previous section
are consistent with the extended model. The regimes are associated with low mean
and high variance, "bear" market, or high mean and low variance, "bull" market. Also
the t-distributed models have consistent higher probabilities of staying in a regime. As
the previous section focused on a thorough analysis of the assumptions related to the
models, and an analysis of estimation parameters, this section will focus on how the oil
parameter,�

St , relates to the national indices. To see whether the oil price is statistically
linked to real indices returns and whether they can explain behaviour shifts in stock
market. Recall that regime 1 is associated with high mean/low variance and regime 2
with low mean/high variance, respectively "bear" and "bull" market.

Methodologically, in order to find out whether oil price is significantly correlated to real
stock returns, comparison of the log-likelihood with and without the oil variables are
made. The LR statistic is approximately �2-distributed with two degrees of freedom.
This test reveals that all indices with either brent or WTI incorporated in the model
have larger log-likelihood, and H0 without oil returns are overwhelmingly rejected at
1% significance level for all indices. These findings provide evidence that oil price are
statistically correlated to the national indices. This result coincides with Maghyereh et al.
[2007] and Park and Ratti [2008], along with previous mentioned Aloui and Jammazi
[2009].

Table 5.6, with normally distributed innovations, reports that the coefficients relative
to the brent and WTI, �1 and �2, are statistically significant different from zero, thus
statistically significant on their impact on the returns. The normal distributed model
has significant �2 at 1% level for all indices except Shanghai, indicating that shocks
in national indices are strongly correlated with oil returns. Also regime 1 is strongly
correlated with oil prices, only DAX has insignificant coefficient with respect to WTI.
However, some of the indices like SPX, NKY, and AEX have some of the coefficients
"only" significant to a 5% level. Overall the oil impacts the indices more strongly in
high volatile periods. Moreover the relative ratio between �1 and �2 lays between ap-
proximately 2 to 5, indicating stronger affect on the return in high volatile periods for
significant coefficients.

Table 5.7, with t-distributed innovations, reports much of the same as the normal dis-
tributed model. The parameter estimation, and overall behaviour, for the two regimes
are consistent with the results without oil variables. In regime 2, only Shanghai has
insignificant coefficient, �2. For the other indices �2 is significant a 1% level. As well as
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with the results in table 5.4, regime 1 and bull period have strong correlation with oil
returns for most indices. However, there are some different results between the models:
The brent coefficient proves to be insignificant with respect to SPX, NKY and AEX,
and the WTI coefficient insignificant with respect to NKY, DAX and AEX. Likewise as
with normal innovations, the ratio between �1 and �2 approximately lays between 2 to
4.

Overall oil exporting nations such as Norway, Canada and U.K., and their corresponding
indices, have larger dependence of oil price in both high an low volatile regimes. Also
the LR statistic is notably larger for these indices.
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6. Correlation across Oil and Stock Markets

This section provides analysis of how the volatility structure of oil affects the national
market indices. As the previous section stated that there is a strong correlation between
oil and national indices in volatile periods, and this section estimates the actual corre-
lation across regimes. The time series is modeled in state varying framework with two
regimes for high volatile and low volatile periods. This allows to examine the relation
between correlation and variance in a conditional time and state varying framework.
Correlation will be evaluated under a univariate Markov Switching model, which de-
scribes the regime shifting and parameters of a single time series. High and low volatile
observations of the oil series will be linked pairwise with the national indices.

6.1 Univariate Correlation

The previous chapter incorporated oil variables in the MS model of national indices.
The results stated that the oil returns were strongly correlated with the national indices,
especially in the high volatile periods. This section evaluates the correlation of the
national indices and oil returns with respect to regime classification. The estimations
will consider the regime classification provided by both the national indices and the
oil returns for the correlation estimations. This allow us to evaluate how the volatility
shocks of markets and oil price affect each other. The time series deciding the regime
classification is called the home reference.

6.1.1 Correlation when national indices are home reference

A main concern of this paper is how national indices respond to regime classification,
and their relation to oil returns during these periods. This first section evaluates the
correlation between national indices and oil returns, based on the regime classification
of the national indices 1. This will be interpreted as to how strongly oil and national
indices correlate depending on the movements of the national indices. The next section
will cover how the correlation depends on the movement of the oil returns.

1Classified by Viterbi algorithm.
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The results are shown in table 6.1 and 6.2, where regimes are classified with respect to
either normal or t-distribution. The state sequence plots can be seen in Appendix A.
The overall increase in correlation lays between 50 � 300%, only with exception with
WTI-DAX, where it is 7 times larger in the t-distribution. In general is the ratio for
the correlation observed in the regimes lower for the t-distribution. This is probably
because of the strong persistence in the regimes, which allows for the miss classification
explained earlier. The inclusion of these miss classified observations in each regime leave
the observations in each observation sequence to be less distinct, thus a correlation more
close to each other. The normal distributed MS model is more sensitive to regime shifts,
enabling shifts due to smaller corrections in the market, thus less likely to achieve miss
classification, on the cost of regime persistence.

The oil exporting countries, OSEBX, FTSE and TSX, have consistently smaller correla-
tion ratios than the oil importing nations for brent oil, and OSEBX, SPX, NASDAQ and
TSX with the lowest ratio with respect to WTI. Leaving us to believe that the correlation
relatively variates less than oil importing countries, or in other words: The correlation
is higher in low volatile regimes for oil exporting countries. Nevertheless, except for
Shanghai, the high volatile regimes have consistently higher correlations than in the low
volatile regimes, for all indices and oil returns. The findings state that price shocks have
the same affect on oil returns, regardless if it is exporting or importing oil. These results
coincide with Filis et al. [2011] and Ramchand and Susmel [1998], where national indices
and oil markets tend to move closer together during high volatile periods.

Table 6.1: Correlation between oil returns and national indices in their
regime estimated from the normal distribution and the Viterbi algorithm,

with national indices as reference

Brent WTI
Indices High Low Ratio Hedging High Low Ratio Hedging %
OSEBX 0.48 0.29 1.66 19.82% 0.44 0.29 1.52 21.66%
SPX 0.30 0.10 3.00 23.75% 0.24 0.13 1.85 24.69%
NASDAQ 0.25 0.11 2.27 23.13% 0.19 0.12 1.58 23.75%
NKY 0.28 0.11 2.55 25.31% 0.23 0.09 2.56 25.94%
DAX 0.23 0.08 2.88 18.75% 0.28 0.04 7.00 17.50%
AEX 0.26 0.09 2.89 18.12% 0.27 0.08 3.38 16.25%
FTSE 0.26 0.15 1.73 20.25% 0.27 0.15 1.93 19.25%
TSX 0.38 0.25 1.52 18.93% 0.35 0.26 1.35 20.50%
SH 0.06 0.11 0.55 19.43% 0.09 0.12 0.75 19.43%

The hedging percentage indicates how often brent and WTI return a positive return
when the home index (the national indices) hedge a negative return in the high volatile
period. The hedging value seems to be relatively constant for all the markets against
brent and WTI; around 25%. Leaving us with none obvious hedging opportunities.
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Table 6.2: Correlation between oil returns and national indices in their
regime estimated from the t-distribution and the Viterbi algorithm, with

national indices as reference

Brent WTI
Indices High Low Ratio Hedging High Low Ratio Hedging %
OSEBX 0.44 0.32 1.38 20.15% 0.41 0.31 1.32 21.27%
SPX 0.27 0.11 2.45 22.67% 0.22 0.16 1.37 23.63%
NASDAQ 0.24 0.12 2.00 23.10% 0.18 0.13 1.38 24.42%
NKY 0.23 0.07 3.29 23.72% 0.18 0.10 1.80 23.72%
DAX 0.22 0.09 2.44 20.60% 0.28 0.04 7.00 20.00%
AEX 0.25 0.10 2.50 18.22% 0.26 0.09 2.88 18.62%
FTSE 0.25 0.17 1.47 17.81% 0.26 0.17 1.53 17.00%
TSX 0.37 0.25 1.48 18.88% 0.36 0.24 1.50 19.94%
SH 0.10 0.09 1.11 26.05% 0.05 0.12 0.42 29.81%

6.1.2 Correlation when oil is home reference

In contradiction to the previous section, this section uses the regime shifting of the
oil returns to evaluate how correlation changes between the regimes. The results are
shown in table 6.3 and 6.4. The regime classification for the oil returns reveal some
different observations than national indices. First, let�s evaluate the results in table 6.3,
where the state sequence is based on the normal distributed MS model of brent and
WTI. Similar to the results for correlation based on index regime shifting, high volatile
regimes for oil returns provide higher correlation for most indices. However, with regime
shifts with respect to brent oil DAX, AEX and FTSE have lower correlation in the
high volatile regime. The ratio is close to 1, implying that oil shocks have little affect
on correlation based on this model. Further, regime shifting with respect to WTI also
provides results where the correlation is lower in the high volatile regime, in this case for
OSEBX and NKY. Overall the normal distributed MS model of the oil returns provides
a state sequence where the correlation ratio is low compared to the results form the
national indices. Implying that oil shocks have smaller affect on the correlation than
the fluctuations caused by global business cycles, as seen in the previous section. The
correlation ratio from the brent lays between 0.94 to 1.56, and the WTI ratio between
0.88 to 1.5. Recall that the normal distributed MS model allows to capture smaller and
less significant shocks than the t-distributed model, and soon to be seen, this will have
great affect on the results.

The state sequence provided from the t-distributed model have some different results
than the normally distributed. First, the high volatile regime for both WTI and brent
provide consistently higher correlations between the national indices than the normally
distributed state sequence. Consequently, the low volatile regime achieved from the t-
distributed model consistently produces lower correlation than the corresponding normal
distributed state sequence. Thus the correlation ratio is higher for the state sequence
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gained from the t-distribution. Nevertheless, in general the correlation ratio is lower than
for the state sequences provided by the national indices, laying approximately between
1.5 to 3 for brent oil, and 1 to 2 for WTI.

By comparing the results from the table 6.3 and 6.4, the differences are notable. Es-
pecially in the cases of DAX, AEX and FTSE with the brent oil home reference. The
tables are contradicting, and leading to the state sequence to create these differences. As
seen from Appendix A, the state sequence for brent oil gained from both the normal and
t-distributed MS model are quite persistent and identical, nevertheless, the correlation
estimations is quite different. Implying that the smaller oil shocks that the normally
distributed model are able to obtain, either have low or even negative correlation to the
national indices. Further investigation lead these oil shocks to be related to the Iraq war
and natural disasters, which Filis et al. [2011] have stated to have negative correlation
on national markets. The high volatile periods also consist of fewer observations, thus
just a few changes in the state sequence may leave quite numerical changes. The same
goes for the WTI state sequence seen in Appendix A, where the difference between the
sequences gained from the normal and t-distributed models only seem to be the Iraqi
war in 2003, leaving a measurable difference. In general brent seems to correlate stronger
with national indices than WTI.
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Table 6.3: Correlation Between oil returns and national indices in their
regime estimated from the normal distribution and the Viterbi algorithm,

with brent and WTI as regime reference

brent WTI
Indices High Low Ratio Hedging High Low Ratio Hedging %
OSEBX 0.38 0.36 1.06 19.84% 0.35 0.36 0.97 22.40%
SPX 0.25 0.16 1.56 24.40% 0.22 0.16 1.38 25.42%
NASDAQ 0.21 0.14 1.50 24.93% 0.18 0.12 1.50 26.76%
NKY 0.20 0.15 1.33 22.52% 0.14 0.16 0.88 25.42%
DAX 0.15 0.16 0.94 24.66% 0.16 0.14 1.14 28.43%
AEX 0.17 0.20 0.85 25.20% 0.19 0.18 1.06 28.09%
FTSE 0.22 0.23 0.96 23.32% 0.24 0.21 1.14 24.08%
TSX 0.34 0.31 1.10 22.52% 0.31 0.31 1.00 24.41%
SH 0.08 0.11 0.72 26.54% 0.06 0.10 0.60 28.76%

Table 6.4: Correlation between oil returns and national indices in their
regime estimated from the t-distributiom and the Viterbi algorithm, with

brent and WTI as regime reference

Brent WTI
Indices High Low Ratio Hedging High Low Ratio Hedging %
OSEBX 0.42 0.31 1.36 18.92% 0.36 0.35 1.03 21.71%
SPX 0.30 0.10 3.00 23.16% 0.23 0.15 1.53 24.67%
NASDAQ 0.25 0.07 3.57 24.01% 0.19 0.10 1.90 25.98%
NKY 0.22 0.13 1.69 21.75% 0.15 0.14 1.07 25.00%
DAX 0.21 0.08 2.63 22.88% 0.17 0.13 1.31 27.30%
AEX 0.24 0.11 2.18 24.01% 0.19 0.17 1.12 27.30%
FTSE 0.27 0.16 1.69 22.60% 0.25 0.20 1.25 23.02%
TSX 0.36 0.27 1.33 21.75% 0.32 0.29 1.10 24.01%
SH 0.09 0.09 1.00 26.83% 0.06 0.10 0.60 29.60%



7. Conclusion

The use of Markov Switching models (MS) is based on the assumption that intercon-
nection and dependency of economic variables can vary at different states of economic
growth. The MS models capture structural breaks and create a flexibility that enables
to capture characteristics of the data in the long run. Empirically two regimes have been
detected for the time series of the stock markets and oil returns. One regime represents
high mean and low volatility, and coincides with economic growth. The other regime
with low mean and high volatility, relates to periods of economic downfall and recessions.
Stylized facts are often very difficult to model, and serial correlation and distributions
with fat tail have been two of these properties in the time series. However, throughout
the theoretical analysis, it was shown that the MS models were capable of capturing
these characteristics. The MS models were, however, not able to capture all of the het-
roskedasticity, even though it was significantly reduced. In addition were t-distributed
innovations proposed to increase the kurtosis and the heavy tails.

MS-models with GARCH parameters were fitted in the preliminary analysis. The results
revealed that these variables had little impact in a regime shifting environment. However,
a problem with standard GARCH models is that they, just like our model, have high
and low volatility periods. This is a result of the models recursive structure, and a shift
dummy in the variance model will, even in a fixed model, create its own high and low
states. Thus, our ambitions to observe persistent and consistent regimes led to a Markov
switching model where two parameters are allowed to switch; the mean and variance
parameters.

In Chapter 5 there is an estimation of the national markets with and without oil variables.
The estimation without the oil variables was first and foremost to see how well the time
series respond to the Markov switching models. The same patterns were discovered in all
time series; two states with high mean/low variance and low mean/high variance. The
bear state has overall lower probability of staying in current regime. This coincides with
empirical events, where financial downturns often occur in shorter time spaces. Also
t-distributed innovations were proposed, since the excess kurtosis for all the time series
were positive, and thus have a larger kurtosis than the normal distribution. Consequently,
the MS models with t-distributed innovations have lower variance, and stronger regime
persistence. The heavy tailed t-distribution has a better ability to capture extreme

71
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observations than the normal distribution. This means that where the MS-normal model
would be forced to switch regime in order to capture the extreme observation, the MS
t-distributed model has the fat tails to capture an extreme observation due to its high
leptokurtic. More extreme values is needed to make the model leave its current state.
In general the MS-models with t-distributed innovations are preferred. This assumption
is supported by AIC and BIC estimations, but also from the qq-plots based on the
standardized residuals presented in appendix A.

Further in Chapter 5, the national markets were modeled with oil variables included in
the mean parameter µ. The estimates for the intercept and variance were very similar
to the estimates without oil parameters. In the bull regime, oil prices seem to have
smaller impact on the national indices, especially the oil importing nations such as Japan,
Germany, Netherlands, China and U.S. However, the U.S. do oil exporting as well, but
they are considered one of the world�s top oil importers. On the other hand, oil exporting
nations such as Norway, Canada and U.K. provide more significant oil parameters in the
"bull" period, indicating these nations to be more consistently interconnected with oil
than the importing nations. Both the models with normal and t-distributed innovations
provide much of the same evidence, but the t-distributed models provide even clearer
evidence that the oil importing nations are less correlated during low volatile periods.
WTI and brent have more or less the same relationship to the respective market, with
the exceptions of a slightly stronger correlation between WTI and U.S, and European
countries and brent. It is also worth noting that LR tests for models without oil are
strongly rejected for the alternative with oil variables in the MS models.

Correlation estimation based on the regime classification was done in Chapter 6. The
regime classification was done with use of the Viterbi algorithm, which calculates the
most probable state sequence. The correlation between oil and national indices was
estimated with respect to both oil and market regimes. With the national indices as
home reference to the regimes, the correlation ratio was overall lower for the oil exporting
countries, but with an overall higher and consistent correlation. In addition, the U.S. and
Canada have a stronger consistent correlation with WTI, and likewise with the European
indices and brent oil. The consistent higher correlation in high volatile periods suggests
that national indices and oil markets tend to be more correlated during high volatile
periods in national markets.

The volatility regimes provided from the oil returns provide very similar results as the
regimes for the markets. However, the high volatile periods for oil do not have the
same consistent high correlation between markets and oil. Also, the differences between
normal and t-distributed innovations seem to play a significant role, indicating that the
cause of the regime shifts for oil do not consistently provide the same regime shifts in the
markets. This coincides with the preliminary analysis. Overall, the oil shocks result in
higher correlation with the national markets. However, this result implies that the root
cause of the oil shocks play an important part in the ways the national markets respond.
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In general, the oil exporting nations are more affected by the oil price, regardless of high
or low volatile periods. Oil importing nations are, on the other hand, less influenced by
the oil price, especially in bull-periods.

Extension of the research could be to incorporate more complex MS models such a
multivariate and ARCH models. Further investigation on asset allocation and portfolio
management based on regime switching would be a natural step in further research.



8. Appendix A: Plots

8.1 QQ-Plot

8.1.1 Normal distribution
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Figure 8.1: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for OSEBX
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Figure 8.2: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for SPX
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Figure 8.3: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for NAS-

DAQ



76 Chapter 8. Appendix A: Plots

−3 −2 −1 0 1 2 3

−4
−2

0
2

NKY

norm quantiles

D
at

a 
qu

an
til

es

Figure 8.4: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for NKY
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Figure 8.5: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for DAX



Chapter 8. Appendix A: Plots 77

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

AEX

norm quantiles

D
at

a 
qu

an
til

es

Figure 8.6: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for AEX
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Figure 8.7: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for FTSE
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Figure 8.8: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for TSX
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Figure 8.9: qq-plot of residuals calculated from Markov switching model
with normally distributed innovations and Viterbi algorithm for SH
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Figure 8.10: qq-plot of residuals calculated from Markov switching
model with normally distributed innovations and Viterbi algorithm for

Brent
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Figure 8.11: qq-plot of residuals calculated from Markov switching
model with normally distributed innovations and Viterbi algorithm for

WTI
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8.1.2 T-distribution
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Figure 8.12: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for OSEBX
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Figure 8.13: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for SPX
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Figure 8.14: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for NASDAQ
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Figure 8.15: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for NKY
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Figure 8.16: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for DAX
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Figure 8.17: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for AEX
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Figure 8.18: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for FTSE
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Figure 8.19: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for TSX
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Figure 8.20: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for SH
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Figure 8.21: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for Brent



Chapter 8. Appendix A: Plots 85

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

WTI

norm quantiles

D
at

a 
qu

an
til

es

Figure 8.22: qq-plot of residuals calculated from Markov switching
model with t-distributed innovations and Viterbi algorithm for WTI
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8.2 ACF plot

8.2.1 Normal distribution
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Figure 8.23: ACF plot of squared residuals calculated from Markov
switching model with normal distributed innovations and Viterbi algo-

rithm
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Figure 8.24: ACF plot of squared residuals calculated from Markov
switching model with normal distributed innovations and Viterbi algo-

rithm

8.2.2 T-distribution
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Figure 8.25: ACF plot of squared residuals calculated from Markov
switching model with t-distributed innovations and Viterbi algorithm
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Figure 8.26: ACF plot of squared residuals calculated from Markov
switching model with t-distributed innovations and Viterbi algorithm
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8.3 Smoothed probabilities and conditional standard devi-
ation

8.3.1 Normal distribution
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Figure 8.27: Plot of observed time series OSEBX with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.28: Plot of observed time series SPX with conditional standard
deviation and smoothed probability modeled with normal innovations.
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Figure 8.29: Plot of observed time series NASDAQ with conditional
standard deviation and smoothed probability modeled with normal inno-

vations.
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Figure 8.30: Plot of observed time series NKY with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.31: Plot of observed time series DAX with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.32: Plot of observed time series AEX with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.



96 Chapter 8. Appendix A: Plots

0 200 400 600 800 1000 1200
-0.2

-0.1

0

0.1
Explained Variable #1

0 200 400 600 800 1000 1200
0.015

0.02

0.025

0.03

0.035
Conditional Std of Equation #1

0 200 400 600 800 1000 1200
Time

0

0.5

1

Sm
oo

th
ed

 S
ta

te
s 

Pr
ob

ab
ilit

ie
s

State 1
State 2

Figure 8.33: Plot of observed time series FTSE with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.34: Plot of observed time series TSX with conditional standard
deviation and smoothed probability modeled with normal innovations.
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Figure 8.35: Plot of observed time series SH with conditional standard
deviation and smoothed probability modeled with normal innovations.
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Figure 8.36: Plot of observed time series OSEBX with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.37: Plot of observed time series OSEBX with conditional stan-
dard deviation and smoothed probability modeled with normal innova-

tions.
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Figure 8.38: Plot of observed time series WTI with conditional standard
deviation and smoothed probability modeled with normal innovations.
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8.3.2 T-distribution
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Figure 8.39: Plot of observed time series OSEBX with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.40: Plot of observed time series SPX with conditional standard
deviation and smoothed probability modeled with t-distributed innova-

tions.



104 Chapter 8. Appendix A: Plots

0 200 400 600 800 1000 1200
-0.2

-0.1

0

0.1

0.2
Explained Variable #1

0 200 400 600 800 1000 1200
0.02

0.03

0.04

0.05
Conditional Std of Equation #1

0 200 400 600 800 1000 1200
Time

0

0.5

1

Sm
oo

th
ed

 S
ta

te
s 

Pr
ob

ab
ilit

ie
s

State 1
State 2

Figure 8.41: Plot of observed time series NASDAQ with conditional
standard deviation and smoothed probability modeled with t-distributed

innovations.
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Figure 8.42: Plot of observed time series NKY with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.43: Plot of observed time series DAX with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.44: Plot of observed time series AEX with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.45: Plot of observed time series FTSE with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.46: Plot of observed time series TSX with conditional standard
deviation and smoothed probability modeled with t-distributed innova-

tions.
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Figure 8.47: Plot of observed time series SH with conditional standard
deviation and smoothed probability modeled with t-distributed innova-

tions.
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Figure 8.48: Plot of observed time series Brent with conditional stan-
dard deviation and smoothed probability modeled with t-distributed in-

novations.
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Figure 8.49: Plot of observed time series WTI with conditional standard
deviation and smoothed probability modeled with t-distributed innova-

tions.
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8.4 Estimated state sequence from Viterbi algorithm

(a) Normal distribution

(b) T-distribution

Figure 8.50: Estimated state sequence from the Viterbi algorithm of
OSEBX
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(a) Normal distribution

(b) T-distribution

Figure 8.51: Estimated state sequence from the Viterbi algorithm of
SPX
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(a) Normal distribution

(b) T-distribution

Figure 8.52: Estimated state sequence from the Viterbi algorithm of
NASDAQ
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(a) Normal distribution

(b) T-distribution

Figure 8.53: Estimated state sequence from the Viterbi algorithm of
NKY
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(a) Normal distribution

(b) T-distribution

Figure 8.54: Estimated state sequence from the Viterbi algorithm of
DAX



118 Chapter 8. Appendix A: Plots

(a) Normal distribution

(b) T-distribution

Figure 8.55: Estimated state sequence from the Viterbi algorithm of
AEX
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(a) Normal distribution

(b) T-distribution

Figure 8.56: Estimated state sequence from the Viterbi algorithm of
FTSE
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(a) Normal distribution

(b) T-distribution

Figure 8.57: Estimated state sequence from the Viterbi algorithm of
TSX
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(a) Normal distribution

(b) T-distribution

Figure 8.58: Estimated state sequence from the Viterbi algorithm of
SH
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(a) Normal distribution

(b) T-distribution

Figure 8.59: Estimated state sequence from the Viterbi algorithm of
Brent
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(a) Normal distribution

(b) T-distribution

Figure 8.60: Estimated state sequence from the Viterbi algorithm of
WTI
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