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Problem statement
Braess’ Paradox is a well known phenomenon in traffic flow. It occurs when ex-
tention of a road network by one road, leads to a redistribution of the traffic in
such a way that the travel times are increased for everyone.

Selfish routing is another contribution to increased travel time in traffic net-
works. Comparing travel times at Nash equilibrium and system optimal flow
demonstrate how selfish routing may result in increased travel time for some or all
travelers.

This study should investigate the occurence of Braess’ paradox in traffic flow
and how selfish routing affects travel times. In particular,

• on traffic networks of different sizes,

• with suitable/linear cost functions,

• solving the minimization problem for the traffic assignment problems with a
suitable method,

• compare different results from the literature.
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Sammendrag
Formålet med denne masteroppgaven var å undersøke Braess paradoks i trafikkflyt,
og se p̊a innvirkningen “selfish routing” har p̊a reisetiden til brukerene i forhold til
optimal fordeling av reisende over rutene i et trafikknettverk.

Braess’ paradoks er et godt kjent fenomen i trafikknettverk. Fenomenet inn-
treffer n̊ar en utvidelse av et veinettverk ved tilføring av en link, fører til en redis-
tribusjon av trafikkflyten slik at brukerenes kjøretid øker.

“Selfish routing” handler om at reisende velger reiseruten sin egoistisk basert
p̊a hva som er den korteste tilgjengelige ruten. Sammenlignet med reisetid ved
systemoptimal flytdistribusjon kan den egoistiske reiseplanleggingen føre til lengre
reisetid for alle reisende.

Optimal flytfordeling over rutene i et nettverk ble funnet basert p̊a et ikke-
lineært program, hvor Nash likevekt (brukeroptimal flyt) og systemoptimal flyt
oppn̊as med ulike objektfunksjoner. Siden funksjonene for reisetiden er lineære
løses det ikke-lineære programmet med kvadratisk programmering. For å løse
programmet ble “interior point” metoden brukt, som er basert p̊a en “predictor-
corrector” metode. Resultatene for n̊ar Braess paradoks inntreffer ble sammen-
lignet med resultatene fra en matematisk karakterisering av paradokset fra litter-
aturen.

Fire ulike trafikknettverk ble undersøkt. Det første nettverket var nettverk-
skmodellen opprinnelig brukt av Braess med ett startpunkt og én destinasjon.
Videre, er et nettverk med ett startpunkt og to destinasjoner brukt. Ved at retnin-
gen p̊a to av veiene ble snudd, bidro nettverket til to ulike trafikknettverk. Et annet
nettverk som ble brukt har to startpunkt og én destinasjon, og bidrar tilsvarende
til to ulike nettverk. Det siste nettverket som ble brukt er tre ganger symmetrisk
med tre startpunkt-destinasjons par. Hvert av nettverkene ble undersøkt for til-
feller av Braess paradoks og innvirkningen fra egoistiske reisevalg. Analysene ble
gjennomført ved å variere parameterene i de lineære reisetidsfunksjonene og et-
terspørselen.

I arbeidet ble det vist at Braess paradoks inntreffer n̊ar etterspørselen er innen-
for begrensede intervaller, avhengig av parameterene i reisetidsfunksjonene. Det
ser ut til å eksistere en øvre grense for den ekstra reisetiden som inntreffer n̊ar en
vei blir lagt til i trafikknettverket. Braess paradoks inntreffer n̊ar rutene med den
tilførte linken blir brukt samtidig med en eller flere andre ruter. “Selfish routing”
har innvirkning p̊a reisetid n̊ar etterspørselekn er innenfor et begrenset interval.
Reisetiden ved systemoptimal flytdistribusjon er i noen intervallre svært uforde-
laktig for noen reisende, sammenlignet med reisetiden ved brukeroptimal flyt.
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Abstract
The aim of this master thesis was to investigate Braess’ Paradox in traffic flow
and to look at the effect of selfish routing in optimization of flow distribution on
traffic networks.

Braess’ Paradox is a well known phenomenon in traffic flow. It occurs when
extention of a road network by one road leads to increased travel times for all
travelers due to a redistribution of the traffic.

Selfish routing is about how travelers choose their travel route selfishly. Com-
pared to flow distribution at system optimal flow, selfish routing may result in
increased travl time for some or all travelers.

The optimal flow distribution was found by a non-linear program, and Nash
equilibrium and system optimal flow are achieved with different objective func-
tions. The non-linear program was solved as quadratic programming, since the
travel time functions are linear. The method used to solve the program was an
interior-point method based on a predictor-corrector method. The results of oc-
curences of Braess’ paradox are compared to the results from a mathematical
characterization of the paradox from the litterature.

Four different traffic networks was investigated. The first network was the
network model originally used by Braess with one origin and one destination.
Furthermore, a network of one origin and two destinations was used, which con-
tributed to two different networks when the direction of two roads were changed.
Another network is of two origins and one destination, which also contributed
to two networks. Lastly, a three times symmetric network was used, with three
origin-destination pairs. Each of the networks were investigated to find occurences
of Braess’ paradox, and to investigate the effect of selfish routing. In the analyses
the values of function parameters and demand between origin and destination was
changed.

In the work it was showed that Braess’ paradox occurs at some limited intervals
of demand, which is dependent on the parameters in the travel time functions. It
seems to exist an upper limit for the increase in travel time caused by the added
road. The paradox occurs when the path with the additional road is utilized
together with and at the same time as one or several other paths. Selfish routing
affects the travel time when demand is within a limited interval. The travel times
at system optimal flow distribution is in some intervals most unfavorable for some
of the travelers, compared to the travel time at user optimal flow.
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Chapter 1

Introduction

The aim of this master thesis was to investigate occurences of Braess’ paradox in
traffic flow and how selfish routing affects travel time.

The Braess Paradox is a well known phenomenon in traffic flow on road net-
works. However, the paradox has also been observed in other non-traffic systems,
such as mechanical systems [5], economic systems and electrical circuits [5, 16].

In traffic flow, when the travel time for crossing a link is independent of the
amount of travelers wanting to traverse the road, adding a road to the network
cannot increase the travel time. However, this is not true when travel time is
dependent on number of travelers, as Braess’ paradox shows [3]. The paradox
occurs when extention of a road network by one link, leads to a redistribution of
the traffic in such a way that travel times are increased.

The paradox was suggested by Dietrich Braess in 1968 [3] (English translation
in 2005 [4]). The paradox was followed up by Murchland in 1970 [11], and has
since been refered to as Braess’ Paradox.

Braess demonstrated occurence of the paradox in the simple road network
shown in Figure 1.1. Link u5 is the additional road in the network. The time it
takes to travel across a link is given by a cost function. The link cost may be either
dependent or independent of the number of vehicles wanting to cross the link per
time unit. In most studies the cost functions have been linear (e.g.[4, 7, 9, 11, 19]),
but also quadratic [7] and other non-linear functions have been studied [19, 21].
The linear cost functions used by Braess were f1(x) = f4(x) = 10x, f2(x) =
f3(x) = x+ 50 and f5(x) = x+ 10. The functions are symmetric over the network,
in such a way that link u1 and u4 has equal function parameters, and similar for
link u2 and u3.

Murchland modified Braess’ example by changing the linear cost functions
slightly. The costs were changed to be either constant of the form f(x) = B or
functions on the form f(x) = Ax. In addition, travel time on link u5 was set to
zero, which also has been studied later by others (e.g. [16]). The increase in travel

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Braess’ original network model.

time after adding link u5 to the network was then larger than in Braess’ original
example.

Braess’ paradox has been described by mathematical characterizations given
linear cost functions on the network links [7]. It has been shown that Braess’
Paradox only occurs when total demand is within certain intervals [7, 14]. The
size and the location of the intervals would depend on the parameters in the travel
time functions.

It has been shown that Braess’ Paradox is as likely to occur as not to occur
[21]. This was shown on a general transportation network. Under reasonable
assumptions, there has been given some necessary and sufficient conditions for the
paradox to occur.

Braess’ paradox has also been shown to exist in a simple queueing network
[6]. The network in question contained two types of servers, either first-come-first-
served or infinite-server queue. The users were assumed to enter the network as
Poisson flows. In the first-come-first-served queue, waiting time would be depen-
dent on the number of individuals in the line, whilst in the infinite-server queue
average waiting time would not depend on this number. When a link was added
to the network, the resulting waiting time increased, as in the Braess Paradox.

The interpretation of the travel time functions is essential to understand the
connection between theory and real road network. Linear functions contain two
terms, ax and b. In traffic flow, parameter a is refered to as a congesting parameter
as the term is dependent on flow x. Parameter b is the noncongesting parameter.
A large value of the congesting parameter suggests that the road is narrow [16],
since the travel time then increases rapidly when the number of travelers increases.
A small value of the congesting parameter suggests that the road is wider, since
the road can take more travelers without increasing the travel time excessively. A
large value of the noncongesting parameter suggests that the road is long, since
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it results in a large travel time independent on the number of travelers. A small
value of the noncongesting parameter is therefore understood as a shorter road.

There have been suggested different measures to prevent Braess’ paradox from
occuring [14, 16]. Such measures could for instance be to charge users with either
a fixed toll, or with the marginal cost or variable toll to ensure the system optimal
flow.

Other paradoxes in traffic flow have also been shown. One of these is based
on a modified definition of Braess’ Paradox [9]. The modification would include
multiple origins and destinations, multiple traveler types, and general cost func-
tions and networks. The definition still includes Braess’ original example and all
other examples of the paradox in the literature. As a consequence of the modifi-
cation, the flow distributions and occurences of the paradox differ slightely from
the original Braess paradox.

Selfish routing and how it affected the users travel times was investigated by
Rouhghgarden and Tardos in 2002 [19]. They found relations between the total
travel cost at Nash equilibrium and at system optimal flow. When the costs were
linear functions, there would be an upper limit for this ratio. When the costs were
only assumed to be non-decreasing, continuous functions, they showed that this
ratio may be unbounded.

In this thesis we investigated occurences of Braess’ paradox in traffic flow and
the influence of selfish routing on travel times. The analyses were executed on four
different traffic networks and included analyses on depenency of origin-destination
demands and function parameters. The optimal flow distributions were found
solving a non-linear minimization program with quadratic programming.

Chapter 2 presents the notations used throughout the paper, some general
theory on the traffic assignment problem and theory concerning Braess’ paradox.

In Chapter 3 the methods used in this thesis is described. The methods inlcude
the mathematical characterization to find flow distributions on Braess’ network
model, and the quadratic programming used to solve the non-linear program on
general traffic networks with linear travel functions.

Chapter 4 presents the results obtained in the analyses on four different traffic
networks with one, two and three origin-destination pairs.

The results are discussed in Chapter 5.
The conclusion is given in Chapter 6.
In Chapter 7 some thoughts concerning further work is given.



Chapter 2

Theory

In 1968 Braess described a paradoxical occurence in traffic planning [3, 4], com-
monly referred to as Braess’ Paradox. Braess showed that the extention of a road
network by adding one road, may redistribute the traffic in a way that results in
increased travel times. This was demonstrated using a simple road network.

This chapter gives an introduction to some notations and concepts in road
traffic that will be used throughout the paper. The well known concepts Nash
equilibrium and Wardrop’s principles will be described, along with the theory of
Braess’ paradox, the consept of selfish routing and a mechanical network example.

2.1 Notations

This section gives an overview of the notations used throughout the paper. The
general network notations are given in Table 2.1, and some of the terms are further
described below.

A road network is commonly described by directed graphs, where roads are
represented by oriented links and street intersections are represented by nodes.
The amount of travelers wanting to travel through the road network is called
traffic flow, with number of vehicles per time as denomination. All flow variables
are non-negative.

The flow φα on a link uα is dependent on how many routes Uβ the link is a
part of, and the total flow Φβ on these routes. The relation may be described with
the arcpath incidence matrix D, whose coefficients are defined as,

dαβ =
1 if link uα is contained in path Uβ

0 otherwise.
(2.1)

4



2.1. NOTATIONS 5

It follows that flow φα on a link uα will be

φα =
∑
β

dαβΦβ, (2.2)

or in vector form,
φ = DΦ. (2.3)

The total flow traversing the network between origin-destination pair {oν , dν}
is defined by

|Φν | =
∑
β∈Bν

Φβ, (2.4)

where Bν represent the index sets containing all paths between the origin and
destination of ν.

Demand κν is understood as the amount of traffic flow, or in other words num-
ber of users per time, wanting to travel between each origin-destination (OD) pair
ν. Total flow is the same as demand for each OD pair when the flow distribution
meets the demand. As we assume total flow always meets the demand, the no-
tations |Φν | and κν is understood as the same throughout the paper. Depending
on the circumstances, demand may be either elastic or fixed [15]. In the literature
considered and the calculations made in this thesis, the demand has been fixed.

Travel cost on a route may depend on several factors, such as length of road,
travel time, road width, intersections, traffic lights, etc. There are two possible
types of link cost functions f in a road network. The first type gives an uncon-
gesting network, where the travel costs do not vary with the traffic flow φ using
the links [11, 16], that is f(φ) = B = constant. The opposite case gives a congest-
ing network, when the travel costs depend on the traffic flow using the links, i.e.
f = f(φ). Most often, travel cost is identified by travel time as a function of flow.
The link-travel time tα(φ) is the time it would take to cross a link uα carrying the
flow φ = φα. The vector of components tα is denoted t.

Path-travel time Tβ for getting from oν to dν on path Uβ is dependent on the
amount of traffic on each link in the path, and may therefore be expressed by the
arcpath incidence matrix D defined in equation (2.1). Travel time on a path will
then be,

Tβ(Φ) =
∑
α

dαβtα(φα), (2.5)

where the functional relationship φα = φα(Φ) is given by equation (2.2). Let T
denote the vector of components Tβ for all paths Uβ.

The most unfavorable travel time for traveling between the origin-destination
(OD) pair of ν on the paths {Uβ, β ∈ Bν}, describes how well the traffic flows are
distributed on a road network. This travel time is given by

|T ν(Φ)| = max{T νβ (Φ); β ∈ Bν ,Φβ 6= 0}. (2.6)
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Let C(Φ) denote the system cost, i.e. the total travel cost summed over all
travelers. Then C(Φ) can be written as,

C(Φ) =
∑
β

ΦβTβ(Φ) = Φ>T (Φ). (2.7)

The system cost may also be obtained by summing over the links,

C(φ) =
∑
α

φαtα(φ) = φ>t(φ). (2.8)

This is readily checked by equations (2.2) and (2.5) in the following way,

C(φ) =
∑
α

φαtα(φ)

=
∑
α

∑
β

dα,βΦβ

 tα(φ)

=
∑
β

Φβ

∑
α

dα,βtα(φ)

=
∑
β

ΦβTβ(Φ) = C(Φ).

2.1.1 Additional notations
The following notations were given by Frank [7], and will only be used in Section
3.2. The travel time functions here are defined as tα(φ) = Aαφα+Bα with Aα > 0
and Bα ≥ 0 for each link uα and flow φα, α = 1, 2, 3, 4, 5, in the 5-link traffic
network (see Figure 2.1).

Σ = A1 + A2 + A3 + A4 (2.9a)
T (u, v, w) = f3(u)− f1(v)− f5(w) (2.9b)

T (0) = B3 −B1 −B5 (2.9c)
T (0)∗ = B2 −B4 −B5 (2.9d)

T = T (0)(A1 + A5)−1 (2.9e)
S = A4T (0) + A3T (0)∗ (2.9f)
S∗ = A1T (0)∗ + A2T (0) (2.9g)
∆ = A1A4 − A2A3 = ∆∗ (2.9h)
θ = (A1 + A5)T (0)∗ − (A4 + A5)T (0) = −θ∗ (2.9i)
Λ = (A1 + A3)(A2 + A4) + A5Σ = Λ∗ > 0 (2.9j)
G = A3(A4 + A5) + A4(A1 + A5) > 0. (2.9k)
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Table 2.1: Network notations
ai, i = 1, 2, ... nodes in the network
N set of nodes ai in the network
uα oriented links in the network
A set of oriented links in the network
{oν , dν} origin-destination (OD) pair in the network
ν = 1, 2, ... OD index
Bν index sets containing all paths between OD pair j
φα flow on link uα
φ = {φα} vector of φα
Uβ routes containing links once or less
U = {Uβ} vector of Uβ
Φβ flow along the path Uβ
Φ = {Φβ} vector of Φβ

D = {dα,β} arcpath/link-path incidence matrix
κν , |Φν | demand and total flow traversing the network between OD pair ν
tα(φ) link-travel time
Tβ(Φ) path-travel time
C(Φ), C(φ) system cost

2.2 Nash equilibrium

The Nash equilibrium is a principle from game theory, but it has been connected to
other areas as well, such as economics and traffic flow. The theory was presented
by John Nash in 1951 [12], and shows that a non-cooperative game with a finite
number of players, where each player acts independently without communication
or cooperation with each other, will at least have one equilibrium point. The
equilibrium point may or may not be unique, and is such that the strategy of each
player is optimal against those of the others.

If we put this in the context of road traffic, each player is a traveler on the net-
work, and none of the travelers communicate with each other. The best strategy
in the sense of road traffic would be to use the path of shortest travel time. There
is of course a finite number of travelers, and we assume every traveler have perfect
information about travel costs. Then there will be at least one Nash equilibrium,
such that every traveler use the path with the shortest possible travel time com-
pared to the path choices of the others. That is, no traveler can find a path with
less travel time.
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Figure 2.1: Traffic network of five links.

2.3 Wardrop’s principles
In 1952, Wardop wrote about mathematical and statistical aspects concerning re-
search on road traffic [23]. One of these aspects concerned the process of evaluating
some future improvement on a road system, by adding new roads. Such an exten-
tion of the network will lead to a redistribution of traffic from some of the already
existing roads to new roads. In the evaluation process it is necessary to estimate
the distribution of traffic on the affected roads, both new and existing ones. The
problem will be to find out how one may expect the traffic to distribute itself over
alternative routes, and if the expected distribution is the most efficient one.

The following criteria have been called Wardrop’s principles, and suggests two
possible criteria to follow when one is to find the optimal distribution on the routes
between any two points in a road network. In Wardrop’s own words, they read:

(1) ”The journey times on all the routes actually used are equal, and less than
those which would be expected by a single vehicle on any unused route.”

(2) ”The average journey time is a minimum.” [23, p. 345]

By criteria (1) it is understood that the flow distribution has reached an equi-
librium situation where no user can find a route of shorter travel time. Solution of
the problem where criteria (1) is satisfied is called the descriptive solution [7], and
gives the user optimal flow distribution. In the sense of game theory, a Wardrop
equilibrium coincides with a Nash equilibrium [9].
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Criteria (2) indicates that the total travel time is minimal among all the flow
distributions. Solution of the problem where criteria (2) is satisfied is called the
normative solution [7], and gives the system optimal flow distribution.

2.4 Braess’ Paradox
In this section Braess’ Paradox is presented, as given by Braess in 1968 [3] (English
translation in 2005 [4]).

Braess identifies cost by travel time as a function of traffic flow, and the travel
time was assumed to have the following properties:

I. tα ≥ 0.

II. tα is a nondecreasing function with respect to flow.

III. tα is semicontinuous, i.e. limφ→φ0;φ<φ0tα(φ) = tα(φ0).

Assumption I and II are natural in the sense of traffic modeling, whilst assumption
III is used in Braess to simplify the mathematical treatment.

Optimal flow gives a flow distribution such that the travel time for all drivers
is as short as possible, also refered to as system optimal flow. Braess suggests
two definitions of this optimum, which may be measured by the most unfavorable
travel time, or by using the mean value of the travel time. The two definitions of
optimal flow is,

Definition 1. The flow Φ is optimal if the relation,

|T (Φ)| ≤ |T (Ψ)|, (2.10)

holds for all Ψ with |Φ| = |Ψ|.

Definition 2. The optimal flow is determined by the mean value of the travel
times, so the inequality,

1
|Φ|

∑
β

ΦβTβ(Φ) ≤ 1
|Ψ|

∑
β

ΨβTβ(Ψ), (2.11)

holds for all Ψ with |Φ| = |Ψ|.

The most unfavorable travel time |Tν(Φ)| is defined in equation (2.6), and the
total flow in given in equation (2.4).

These definitions of optimal flow are based on Wardrop’s second principle on
system optimal flow, and find the distribution of flow which gives the minimum
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(a) Initial 4-link network (b) Augmented 5-link net-
work

(c) Network with link num-
bers.

Figure 2.2: Braess’ original network model with cost functions.

travel time for all drivers. It is known that the system optimal distribution does
not need to be equal to the user optimal flow, and consequently, some paths may
have shorter travel times than others. In real life each driver is concerned with
finding the most favorable route for himself, therefore if there exists a path of
less travel time which is known to the driver, the driver will switch route and
destroy the system optimum. To find the flow distribution for user optimum,
Braess introduced critical flow defined as,

Definition 3. The flow Φ is a critical flow if for all paths Uβ

Tβ(Φ) = |T (Φ)|, if Φβ 6= 0,
Tβ(Φ) ≥ |T (Φ)|, if Φβ = 0.

In practice, critical flow means that all utilized routes have the same travel
time, while non-utilized routes have travel times equal to or greater than the other
paths. A single vehicle using a path of zero flow would experience a greater travel
time than any other user, which is equivalent to Wardrop’s first principle.

Braess demonstrates an occurence of the paradox on a simple road network.
Braess’ original network model contains directed links from origin o to destination
d, as shown in Figure 2.2. Before extending the road network with one road the
initial network contains 4 links with linear travel cost functions for each link, as
illustrated in Figure 2.2(a). After adding a road, the augmented network will be
as shown in Figure 2.2(b), with linear travel cost function for the added link.
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The nodes of the network in Figure 2.2 are {o, a, b, d}, and with the oriented
links {u1, u2, u3, u4, u5}, the routes of the network are,

Uoad = u1 − u2,

Uobd = u3 − u4,

Uoabd = u1 − u5 − u4.

The flow vector of the routes is Φ = (Φoad,Φobd,Φoabd), so total flow will be
|Φ(o,d)| = Φoad + Φabd + Φoabd. From equation (2.2) it follows that the link flows
can be written as,

φ = DΦ(o,d)
φ1
φ2
φ3
φ4
φ5

 =


1 0 1
1 0 0
0 1 0
0 1 1
0 0 1


 Φoad

Φobd

Φoabd

 .

Using equation (2.5) the path-travel times are obtained to be,

T (o,d) = D>t.

In the Braess example, the total traffic flow is |Φ| = 6, and the link travel
times given in Figure 2.2 is denoted,

t1(φ) = 10φ1, (2.12a)
t2(φ) = φ2 + 50, (2.12b)
t3(φ) = φ3 + 50, (2.12c)
t4(φ) = 10φ4, (2.12d)
t5(φ) = φ5 + 10. (2.12e)

The resulting system optimal flow distribution by optimization Definition 1, is
given by,

Φ = (3, 3, 0). (2.13)
The travel time for each route then becomes,

Toad(3, 3, 0) = t1(3) + t2(3) = 83, (2.14a)
Tobd(3, 3, 0) = t3(3) + t4(3) = 83, (2.14b)
Toabd(3, 3, 0) = t1(3) + t4(3) + t5(0) = 70. (2.14c)

The maximum travel time a vehicle can experience will then be |T (Φ)| = 83.
At the system optimal distribution the travel time on the paths with traffic load
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is 83 on both paths, while the travel time is less on the non-utilized path. Since
travelers act in a selfish manner, they will choose the route of less travel time. As
a result, travelers switch to the path Uoabd, and destroy the optimal flow.

The critical flow distribution will be 2 units on each of the three paths, so the
travel time for each path becomes,

Toad(2, 2, 2) = t1(4) + t2(2) = 92, (2.15a)
Tobd(2, 2, 2) = t3(2) + t4(4) = 92, (2.15b)
Toabd(2, 2, 2) = t1(4) + t4(4) + t5(2) = 92. (2.15c)

The result is in accordance with Wardrops user optimal principle, as used
routes have equal travel times. The maximum travel time a vehicle can experience
will then be |T (Φ)| = 92, which is greater than for the system optimal flow. We
thereby see that selfish routing by travelers may increase the travel time compared
to a system optimal distribution.

However, when removing link u5 from the network given in Figure 2.2(c), we
observe that the critical flow becomes equal to the system optimal flow. The
system optimal distribution of flow becomes Φ = (Φoad,Φobd) = (3, 3), so the path
travel times are

Toad(3, 3) = Tobd(3, 3) = 83. (2.16)

The user optimal flow distribution on the 4-link network will be 3 units on each
path, and so the travel times are the same.

The example shows that travel time gained by selfish travelers are less when
link u5 is removed from the road network. When link u5 is a part of the network,
user optimal flow distribution chosen by selfish network users leads to longer travel
times for all users.

This result reveals the paradoxical fact that expanding a road network by one
link can cause an increase in travel time for all users.

2.4.1 A modified example

Already in 1970, two years after Braess published his paper, Murchland wrote
about the Braess’ paradox [11].

Murchland modified the example by changing the link travel time functions
slightly. As a consequence the increase in travel time after adding a link to the
network is larger than in the original Braess example. In the modified example,
the linear travel times are changed to purely uncongesting or congesting, such that
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the travel time functions are,

t1(φ) = A1φ1 = (23/3)φ1, (2.17a)
t2(φ) = B2 = 46, (2.17b)
t3(φ) = B3 = 46, (2.17c)
t4(φ) = A4φ4 = (23/3)φ4, (2.17d)
t5(φ) = B5 = 0. (2.17e)

Travel time function t1 and t4 are congesting and t2 and t3 are uncongesting, while
the cost on link u5 is zero.

The traffic demand between origin and destination is as before κ = 6, so
the flow distribution is (Φoad,Φobd) = (3, 3) on the initial network of 4-links and
(Φoad,Φobd,Φoabd) = (0, 0, 6) on the augmented 5-link network. These distributions
result in the following travel times on the 4-link network,

Toad(3) = t1(3) + t2(3) = 69, (2.18a)
Tobd(3) = t3(3) + t4(3) = 69. (2.18b)

and on the 5-link network,

Toad(0) = t1(6) + t2(0) = 92, (2.19a)
Tobd(0) = t3(0) + t4(6) = 92, (2.19b)
Toabd(6) = t1(6) + t4(6) + t5(6) = 92. (2.19c)

In the 5-link network the travel times are all equal, and satisfies Wardrops first
principle, which is also true for the 4-link network. The increase in travel time
after adding one link is 92−69 = 23 units, which is 23/69 = 1/3 or about 33 %. In
comparison with the original Braess example, the same increase is 9/83 or about
11 %. The result shows that by “adding a link of zero travel time (at any flow)
will increase all travel times by a third” [11].

2.5 Mechanical network example
The paradox in traffic networks described by Braess has also been showed to occur
in mechanical networks. Such network examples were first presented by Cohen
and Horowitz in 1991 [5].

The mechanical network of strings and springs is illustrated in Figure 2.3(a).
The upper spring is attached to a fixed point, while the lower spring is attached to
a weight. The back-up (longest) strings each of length L1 = 1 m are, deliberately,
long enough to be limp when the linking string of length L2 = 3/8 m is intact.
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The strings are assumed to be massless and perfectly inelastic, while the springs
are assumed to be massless, ideally elastic and have zero unstretched length. Each
spring is assumed to have a spring constant k, such that the extension x is related
to the applied force F on the spring by F = kx. The spring constant is for
simplicity chosen to be k = 1.

When the linking string is cut, one would intuitively expect the weight to
drop slightly, since the back-up strings are hanging limply when the linking string
is intact. What really happens, is that the weight is slightly lifted, such that
the total distance X between the fixed point and the weight is shorter. This is
illustrated in Figure 2.3(b).

(a) Linking string intact, back-up
strings limp.

(b) After cutting the linking string.

Figure 2.3: Mechanical network example showing the occurence of Braess’ paradox.
When the linking string is cut, the weight is lifted slightly, instead of dropped as
would be expected.

The physical explanation is that each spring now carries half of the weight.
The result is shown by some simple calculations. The weight is assumed to exert
a force F = 1/2 N. When the system is intact, as shown in Figure 2.3(a), each
spring will cary the full weight. The extention of each spring is then,

xs = F

k
= 1

2 m.
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The total distance X between the fixed point and the weigth is found to be,

X = xs + L2 + xs = 13
8 m.

After the linking string is cut, each spring carries half of the weight, and is therefore
extended with,

x′s = 1
2
F

k
= 1

4 m.

The total distance between fixed point and the weight is now,

X = L1 + x′s = 11
4 m.

So the distance X is 1/8 m shorter after the linking string is cut and the springs
only are connected to the back-up strings.

The translation between the mechanical network and the traffic network can
be made in the following way. In the traffic network given in Figure 2.2(c), we
can choose travel functions such that link u1 and u4 has congesting travel times,
tα = tα(φ), while link u2, u3 and u5 has non-congesting travel times, tα = Bα. In
such a network, t2, t3 and t5 translates to the lengths of the inelastic strings, while
t1 and t4 translates to lengths of the elastic springs. The traffic flow translates to
the force exerted on the springs in the mechanical network.

Similar examples have shown that the paradox also occurs in electrical and
hydraulic networks [5].

2.6 A modified definition of Braess’ paradox
The viewpoint of Braess in 1968 was that more roads could make traffic flow worse.
Hagstrom and Abrams took an inversed viewpoint, to show that fewer roads (or
more restricted roads) can make traffic better [9].

The modified definition of Braess’ paradox still including Braess’ original ex-
ample and all other examples of the paradox in the literature. However, in addition
the definition allow for multiple origins and destinations, multiple traveler types,
and general cost functions and networks. The method specifically finds situations
in which the total cost of traffic congestion is reduced without adding cost to any
traveler. To obtain such situations the traffic is redirected, which in practice can
be enforced by restricting access to certain links in the network or introducing
tolls. In such situations, the flow distribution is not required to be at equilibrium,
in contrast to what is often used in other known Braess examples.

Let a flow equilibrium distribution be a distribution of flows that satisfies
Wardrop’s first principle (user optimal flow) and meets the demands on the net-
work. It is known that flow distribution at minimal system cost does not need to
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be identical to an equilibrium distribution. A total-cost distribution must make
some travelers better off than at equilibrium, while instead it usually makes some
travelers worse off. As Hagstrom and Abrams did not think this to be paradoxical,
they adjusted the requirements for finding occurences of Braess’ paradox.

The society may benefit from redistributing traffic such that the total travel
cost is minimized. But if such a distribution results in some travelers obtaining
longer travel times, some travelers would strongly object to any such solution of
travel conditions. It would therefore be beneficial to find a flow distribution where
no users are worse off than at equilibrium.

The generalization of the paradox is about improving the flow distribution in
such a way that (i) some of the travelers on some of the routes obtain lower travel
costs, and (ii) none of the travelers on any route gets a higher travel cost, compared
to the user equilibrium distribution. In some examples (e.g. [9, Ex. 1]), the total-
cost minimizing distribution will some times lead to longer travel time for some
users compared to travel time at the user equilibrium distribution. The modified
definition of Braess distribution reads,

”Given an equilibrium distribution of flows on a traffic network, a
Braess paradox occurs if there exists another feasable distribution of
flows that meet the demands and for which some travelers have a cost
of travel less than in equilibrium and no traveler has a cost higher than
in equilibrium. Any such distribution of flow that improves some trav-
elers’ costs while not increasing others’ costs will be called a Braess
distribution.”[9, p. 837]

With this generalized definition, it is not necessary to add or delete a link to
observe that the Braess’ paradox occurs.

2.7 Selfish routing
This section presentes a brief account of some of the results and methods about
selfish routing by Roughgarden and Tardos from 2002 [19].

As mentioned earlier selfish network users, which travelers often are assumed
to be, do not follow the system optimal flow distribution which would give the
shortest travel time for all users. It is therefore interesting to investigate how
this selfish routing affects the travel times at Nash equilibrium (user optimal flow)
compared to the system optimal flow distribution.

The problem of finding a system optimal flow is equivalent to several mini-
mization problems. Braess used the most unfavorable travel time of all paths to
minimize over all distributions, as given in Definition 1. Another method is to
minimize the system cost from equation (2.8) [19, 9], which is used in this thesis.
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The user optimal flow, which is equivalent to Nash equilibrium, can be obtained
from minimizing, ∑

α

∫ φα

0
tα(x)dx,

[19, 7]. The following non-linear program is the general program used to find both
the minimal system cost and the Nash equilibrium,

min
∑
uα

g(φα)

subject to: ∑
β∈Bν

Φβ = |Φν | ∀ν ∈ {1, ..., k}

φα =
∑
β

cαβΦβ ∀α

Φβ ≥ 0.

The method to solve the non-linear program and find both the Nash equilibrium
and the system optimal flow is thoroughly described in Chapter 3.

Given a directed network G, a set of total OD flows r = {|Φν |} for all OD pairs
ν and a set of link cost functions t = {tα}, we denote the optimal flow at minimal
system cost as φ∗, and the flow at Nash equilibrium as φ̃. The cost ratio between
these flows can then be defined as,

ρ = ρ(G, r, t) = C(φ̃)
C(φ∗) .

This ratio will satisfy the property,

ρ(G, r, t) ≤ γ,

if the instance (G, r, t) and the constant γ ≥ 1 satisfy,

φαtα(φ) ≤ γ
∫ φα

0
tα(x)dx,

for all links uα and all positive real numbers φα [19, Corollary 2.7].
When assuming that the link travel costs are linear functions, the maximum

limit γ for the ratio ρ between total travel time for the user optimal flow distribu-
tion and the system optimal distribution was shown to be 4/3 [19].

Another interesting result was found when the link travel times were assumed
to be non-decreasing, continuous functions. If φ̃ is a flow at Nash equilibrium for
(G, r, t) and φ∗ is an optimal flow for (G, (1 + δ)r, t), then the relation between
the total costs will be C(φ̃) ≤ 1

δ
C(φ∗). Consequently, the cost ratio may be

unbounded.



Chapter 3

Method

This chapter will present descriptions of the methods used in this paper. Sec-
tion 3.1 gives a general presentation of the non-linear program used to find both
user optimal and system optimal flow distribution. Section 3.2 presents a math-
ematical characterization of flow distributions where Braess paradox occurs for
the original Braess example network with linear travel time functions. The char-
acterization is a method to obtain the system optimal flow. Section 3.3 gives a
description of the method used to solve the non-linear program for Nash equilib-
rium on general traffic networks. The method is modified in Section 3.4 to find
the system optimal flow distribution.

Throughout the paper we will consider linear travel cost functions of the form,
tα(φ) = Aαφα +Bα. (3.1)

3.1 Non-linear program
The following non-linear program (NLP) is the general program used to find both
the minimal system cost and the Nash equilibrium [19],

min
∑
α

g(φα), (3.2a)

subject to
∑
β∈Bj

Φβ = |Φj|, ∀j ∈ {1, ..., ν}, (3.2b)

φα =
∑
β

dαβΦβ, ∀α, (3.2c)

Φβ ≥ 0. (3.2d)
The system optimal flow distribution is obtained when minimizing the system cost.
The function g will then be,

g(φα) = φαtα(φ), (3.3)

18
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and the objective function becomes,

C(φ) =
∑
α

φαtα(φ).

Nash equilibrium, also known as the user optimal flow distribution, is obtained
when,

g(φα) =
∫ φα

0
tα(x)dx, (3.4)

and the objective function becomes,

C̃(φ) =
∑
α

∫ φα

0
tα(x)dx.

The objective function for Nash equilibrium is the sum of the integrals of the
link-travel times. The function has no intuitive explanation or interpretation ei-
ther economical or behavioural, and should only be viewed as a mathematical
formulation to solve optimization/equilibrium problems.

The non-linear program in (3.2) is a convex program when all travel time
functions are semi-convex. The definition of semiconvexity is as following,

A function c : R+ → R+ is semiconvex if x · c(x) is convex [18,
p.24].

Let the link travel times tα(x) be linear functions for all α with Aα > 0 and Bα ≥ 0,
and let λ ∈ [0, 1]. For all x1, x2 ∈ [0, κ], the function fα = x · tα(x) will satisfy

f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2)− Aiλ(1− λ)(x1 − x2)2 (3.5)
≤ λf(x1) + (1− λ)f(x2), (3.6)

so fi are convex functions. The non-linear program in equations (3.2a)-(3.2d) is
then a convex program, when all travel times are assumed to be linear functions.

3.2 Mathematical characterization
In this section, the mathematical characterization of Braess’ paradox, suggested
by Frank in 1981 [7], is presented.

Let the travel times be linear functions as given in (3.1), with Aα > 0 and
Bα ≥ 0. Figure 3.1 shows the Braess network model, where the right OD path is
denoted UR = Uobd, the left OD path is denoted UL = Uoad, and the path utilizing
link u5 is denoted UZ = Uoabd. The case of the 4-link network is referred to as
network problem PI, and the case of the 5-link network is referred to as network
problem PII.
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(a) 5-link network. (b) Left OD path
UL.

(c) Right OD path
UR.

(d) OD path UZ .

Figure 3.1: Braess’ network model, and the OD paths UL, UR and UZ .

3.2.1 Braess flow
Let cI denote the minimal OD cost per unit for problem PI, and let cII denote the
minimal OD cost per unit for problem PII. The minimal OD cost is understood
as the minimal path travel time over all paths connecting origin O an destination
D. A Braess flow may be defined as a total OD flow κ with the property that [7,
Definition 3.1]

cII > cI. (3.7)
The value of cI is obtained by

cI = t1(ΦL) + t2(ΦL) = t3(κ− ΦL) + t4(κ− ΦL),

resulting in the expression

cI = (A1 + A2)(A3 + A4)κ+ (A1 + A2)(B3 +B4) + (A3 + A4)(B1 +B2)
Σ , (3.8)

where Σ is defined in (2.9).
The value of cII is equal to the travel cost on the utilized paths and is less than

the travel cost on non-utilized paths. Minimum OD cost per unit for PII when
path UL is utilized is,

cII = t1(ΦL + ΦZ) + t2(ΦL). (3.9)
Minimum OD cost per unit for PII when path UR is utilized is,

cII = t4(ΦR + ΦZ) + t3(ΦR). (3.10)

When paths UZ is utilized such that ΦZ > 0, the minimal OD cost satisfy,

cII = t1(ΦL + ΦZ) + t5(ΦZ) + t4(ΦR + ΦZ). (3.11)
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If any path p is not utilized, then Φp = 0 and the minimal OD cost satisfy,

cII ≤ OD cost along p. (3.12)

Equations (3.9)-(3.12) all satisfy Wardrops user equilibrium.
We introduce the ∆SS∗-conditions for a Braess flow [7, Theorem 4.7]. The

conditions state that an interior Braess flow exists if and only if

(i) ∆ > 0, (ii) S > 0, S∗ > 0, (3.13)

where ∆, S and S∗ is given in (2.9).
Assuming the network of PI is symmetric, such that t1(x) = t4(x) = A1x+B1

and t2(x) = t3 = A2x+B2, equation (3.13) leads to,

0 < ∆ = A2
1 − A2

2 & A1, A2 > 0 ⇒ A1 > A2,

and,

0 < S = S∗

= A1(B2 −B1 −B5) + A2(B2 −B1 −B5)
= (A1 + A2)(B2 −B1 −B5),

and given that (A1 + A2) > 0 we obtain that,

0 < B5 < B2 −B1,

resulting in,

B1 < B2.

Consequently, given a symmetric network as described above, a Braess flow exists
if and only if A1 > A2. B5 < B2 −B1 and B1 < B2 [7, Corollary 4.8].

3.2.2 Optimal Nash flow on 4-link network
The initial 4-link network encompass the directed links {u1, u2, u3, u4}. The ob-
jective function is found by equations (3.2a) and (3.4),

C̃I(φ) =
∑
α

∫ φα

0
tα(x)dx

=
∫ φ1

0
t1(x)dx+

∫ φ2

0
t2(x)dx+

∫ φ3

0
t3(x)dx+

∫ φ4

0
t4(x)dx. (3.14)
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By the optimization criteria of equation (3.2c) and the arcpath incidence matrix
D, or intuitively by examining the network, it is clear that,

φ1 = φ2 = ΦL, φ3 = φ4 = ΦR. (3.15)

The total OD demand will be denoted κ, and by the optimization requirement of
equation (3.2b) it is understood that,

κ = |Φ(o,d)| = ΦL + ΦR, ΦR = κ− ΦL. (3.16)

From equations (3.14), (3.15) and (3.16), the objective function is obtained to be,

C̃I(φ) =
∫ ΦL

0
t1(x) + t2(x)dx+

∫ κ−ΦL

0
t3(x) + t4(x)dx. (3.17)

The problem of finding the optimal Nash flow on the initial 4-link network
becomes,

min C̃I(φ), (3.18)
subject to ΦL ≥ 0, (3.19)

κ− ΦL ≥ 0. (3.20)

This minimization problem has only ΦL as unknown, and may therefore be found
by a simple derivation. This is because the constraints can be relaxed and the
objective function can be solved as an unconstrained problem [20, p. 63]. If the
solution satisfies the constraints, then the solution is valid for the constrained
problem as well.

When the flow is interior so that 0 < ΦL < κ, then C ′(φ) = 0. When the flow
is on the boundary so that either ΦL = κ or ΦL = 0, then C ′(φ) ≤ 0 or C ′(φ) ≥ 0,
respectively. Below it is proven that the flow must be interior for a Braess flow to
exist. The flow therefore satisfy

0 = dC̃I(φ)
dΦL

(3.21)

= t1(ΦL) + t2(ΦL)− t3(κ− ΦL)− t4(κ− ΦL), (3.22)

which results in the optimal flow distribution

ΦL = [κ(A3 + A4)−B1 −B2 +B3 +B4]Σ−1 (3.23)
ΦR = κ− ΦL, (3.24)

where Σ is defined in equation (2.9a).
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Proof of interior flow

This section gives a proof on the statement that the optimal Nash flow on the
4-link network must be interior.

Proof. Assume right boundary flow on the path UR = Uobd on the 4-link network,
such that ΦL = 0 and ΦR = κ. The minimal OD cost per unit is then,

cI = f3(κ) + f4(κ) ≤ f1(0) + f2(0). (3.25)

The definition of Braess flow from equation (3.7) is cII > cI. We use that the flow
on path UR of the 5-link network may be either utilized or non-utilized.

First, let the path flow on UR be yR > 0 on the 5-link network and, as before,
κ = yL + yR + yZ . The minimal OD cost is then,

cII = f4(yR + yZ) + f3(yR)
= A4(κ− yL) +B4 + A3(κ− yL − yZ) +B3

= f4(κ)− A4yL + f3(κ)− A3(yL + yZ)
= cI − A4yL − A3(yL + yZ)
≤ cI,

from equation (3.10).
Second, let the path flow on UR be yR = 0, and yL > 0. The minimal OD cost

is then,

cII = f1(yL + yZ) + f2(yL)
= f1(κ) + f2(yL), (3.26)

from equation (3.9), and from equation (3.12) the minimal OD cost satisfies,

cII ≤ f4(yR + yZ) + f3(yR)
≤ f4(yZ) + f3(0). (3.27)

By comparing equations (3.26) and (3.27) the following is obtained,

f1(κ) + f2(yL) + (A4yL + A3κ) ≤ f4(yZ) + f3(0) + (A4yL + A3κ)
κ(A1 + A3) + yL(A2 + A4) +B1 +B2 ≤ A4(yZ + yL) +B4 + A3κ+B3

≤ f4(κ) + f3(κ)

Applying equation (3.25) to the right hand side it is obtained that,

κ(A1 + A3) + yL(A2 + A4) +B1 +B2 ≤ B1 +B2.
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The resulting relation,

κ(A1 + A3) + yL(A2 + A4) ≤ 0,

states that yL = 0, (when assuming Ai > 0), which is a contradiction to the
assumption that yL > 0. Consequently, if yR = 0 then yL = 0 and yZ = κ.
Assuming yR = 0 and yZ > 0, the minimal system cost from equations (3.11) and
(3.12) can be compared. The minimal OD cost then satisfy,

cII = f1(κ) + f5(κ) + f4(κ)

and,

cII ≤ f4(κ) + f3(0)
≤ f4(κ) + f3(0) + A3κ = cI

⇓
cII ≤ cI

The proof shows that when the traffic flow is on the right boundary ΦR = κ
then,

yR > 0 : cII ≤ cI < cII > cI,

yR = 0 : cII ≤ cI < cII > cI.

Consequently, a flow distribution will never result in a Braess flow. The same
result is obtained for left boundary flow [7, p. 289].

3.2.3 Optimal Nash flow on 5-link network
The directed links of the augmented 5-link network are {u1, u2, u3, u4, u5}. The
objective function is found by equations (3.2a) and (3.4),

C̃II(φ) =
∑
α

∫ φα

0
tα(x)dx

=
∫ φ1

0
t1(x)dx+

∫ φ2

0
t2(x)dx+

∫ φ3

0
t3(x)dx+

∫ φ4

0
t4(x)dx

+
∫ φ5

0
t5(x)dx.

By the optimization criteria of equation (3.2b), we have the following equalities,

κ = |Φ(o,d)| = Φoad + Φobd + Φoabd, (3.28)
Φoabd = κ− Φoad − Φobd. (3.29)
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From the optimization criteria of equation (3.2c), and the arcpath incidence ma-
trix, or inspection of the traffic network, the link flows are

φ1 = Φoab + Φoabd = κ− Φobd, (3.30a)
φ2 = Φoad, (3.30b)
φ3 = Φobd, (3.30c)
φ4 = Φobd + Φoabd = κ− Φoad, (3.30d)
φ5 = Φoabd = κ− Φoad − Φobd. (3.30e)

The objective function of the augmented 5-link network is obtained by equations
(3.28) and (3.30), and results in

C̃II(φ) =
∫ κ−Φobd

0
t1(x)dx+

∫ Φoad

0
t2(x)dx+

∫ Φobd

0
t3(x)dx

+
∫ κ−Φoad

0
t4(x)dx+

∫ κ−Φoad−Φobd

0
t5(x)dx. (3.31)

The problem of finding the optimal Nash flow on the augmented 5-link network
becomes,

min C̃II(y)
subject to yL ≥ 0

yR ≥ 0
κ− yL − yR ≥ 0.

The interior solution will then be (yL, yR) = (ΦL,ΦR) if and only if

∂C̃II

∂yL
= ∂C̃II

∂yR
= 0, (3.33)

such that ΦL > 0, ΦR > 0, κ− ΦL − ΦR = ΦZ > 0. When the solution flow is on
some boundary, one of the partial derivatives becomes ≥ 0 depending on which
boundary that has zero flow.

Partial derivatives of the objective function are

∂C̃II

∂yL
= t2(yL)∂yLyL + t4(κ− yL)∂yL(κ− yL) + t5(κ− yL − yR)∂yL(κ− yL − yR),

and

∂C̃II

∂yR
= t1(κ− yR)∂yR(κ− yR) + t3(yR)∂yRyR + t5(κ− yL − yR)∂yR(κ− yL − yR).
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Interior flow

Assuming first that the solution is interior, the interior constrains become
ΦL > 0, ΦR > 0, ΦZ > 0, (3.34)

and the equilibrium equations obtained from (3.33) are,
∂C̃II

∂yL
(ΦL,ΦR) = t2(ΦL)− t4(κ− ΦL)− t5(ΦZ) = 0, (3.35)

and,
∂C̃II

∂yR
(ΦL,ΦR) = −t1(κ− ΦR) + t3(ΦR)− t5(ΦZ) = 0, (3.36)

where,
ΦZ = κ− ΦL − ΦR. (3.37)

Inserting equation (3.1) into equations (3.35) and (3.36), and solving for ΦL gives,
0 = A2ΦL +B2 − A4(κ− ΦL)−B4 − A5(κ− ΦL − ΦR)−B5,

ΦL = κ(A4 + A5)− (B2 −B4 −B5)− A5ΦR

A2 + A4 + A5
. (3.38)

Solving for ΦR gives,
0 = −A1(κ− ΦR)−B1 + A3ΦR +B3 − A5(κ− ΦL − ΦR)−B5,

and inserting equation (3.38) results in,
0 = [ΦR(A1 + A3 + A5) + (B3 −B1 −B5)− κ(A1 + A5) + A5 × {(3.38)}]

× (A2 + A4 + A5),

ΦR = κ [A2(A1 + A5) + A1(A4 + A5)] + A5T (0)∗ − T (0)(A2 + A4 + A5)
(A1 + A3)(A2 + A4) + A5Σ ,

where T (0) and T (0)∗ are given in equation (2.9). Introducing the notations in
equation (2.9), and inserting ΦR into equation (3.38), we obtain the interior user
optimal flow distribution,

ΦL = Λ−1[Gκ− (S + θ)], (3.39)
ΦR = y∗L = Λ−1[G∗κ− (S∗ − θ)], (3.40)
ΦZ = Λ−1[−∆κ+ S + S∗]. (3.41)

Component ΦZ is obtained from the relation in equation (3.37), such that,
ΦZ = κ− ΦL − ΦR, (3.42)

= κ(Λ−G−G∗) + S + S∗

Λ , (3.43)

where Λ−G−G∗ = −∆ is readily checked.
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Boundary flow

Given interior solutions for PI, and the solution of PII is on the boundary of the
constraint set, the flow distribution is categorized [7]. The solution of PII then
becomes,

(i) left boundary flow when ΦL > 0, ΦR = 0, ΦZ > 0,

(ii) right boundary flow when ΦL = 0, ΦR > 0, ΦZ > 0,

(ii) extreme boundary flow when ΦL = 0, ΦR = 0, ΦZ > 0.

If a Braess flow exists, the solution flows of PII must utilize path UZ [7, Lemma
3.2]. It is therefore understood that all flows, left, right and extreme, have ΦZ > 0
[21].

For the case of right boundary flow, the equilibrium equations become,

∂C̃II

∂yL
(ΦL,ΦR) ≥ 0, ∂C̃II

∂yR
(ΦL,ΦR) = 0,

with constraints,

ΦL = 0, 0 < ΦR < κ, ΦZ = κ− ΦR. (3.44)

Component ΦR is obtained by equation (3.36),

0 = ∂C̃II

∂yR
(0,ΦR)

= −A1(κ− ΦR)−B1 + A3(ΦR) +B3 − A5(κ− ΦR)−B5

= ΦR(A1 + A3 + A5)− κ(A1 + A5) + (B3 −B1 −B5).

Component ΦZ is obtained by the relation in equation (3.44), and by introducing
the notations in equation (2.9). Then,

ΦR = (A1 + A5)κ− T (0)
A3 + A1 + A5

, Φr
Z = T (0) + A3κ

A3 + A1 + A5
, (3.45)

becomes the resulting user optimal distribution with right boundary flow.
For left boundary flow the equilibrium equations become,

∂C̃II

∂yL
(ΦL,ΦR) = 0, ∂C̃II

∂yR
(ΦL,ΦR) ≥ 0,

with constraints,

0 < ΦL < κ, ΦR = 0, ΦZ = κ− ΦL. (3.46)
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Component ΦL is obtained by equation (3.35),

0 = ∂C̃II

∂yL
(ΦL, 0)

= ΦL(A2 + A4 + A5) + (B2 −B4 −B5)− κ(A4 + A5).

Component ΦZ is obtained by the relation in equation (3.46). By introducing the
notations in equation (2.9) the resulting flow distribution becomes,

ΦL = (A4 + A5)κ− T (0)∗
A2 + A4 + A5

= Φ∗R, Φl
Z = T (0)∗ + A2κ

A2 + A4 + A5
= Φr∗

Z . (3.47)

which is the perturbated results of right boundary flow.
When the boundary flow is extreme, the distribution is obviously ΦL = ΦR = 0

and ΦZ = κ. The existance of an extreme Braess flow is dependent on whether
the following criterias [7, Theorem 6.8] are satisfied,

(i) T > 0 and T ∗ > 0,
(ii) ∆ > ∆0,

where,

∆0 = max
{

(A3 + A4)θ
T (0) ,−(A1 + A2)θ

T (0)∗

}
. (3.48)

3.2.4 Braess flow intervals
Let critical intervals (or Braess flow intervals) be intervals in R+ where Braess
flows exist.

The critical intervals of PI is obtained from Σ · (3.23) and Σ · (κ− (3.23)), and
solving for κ gives

κ(A3 + A4) = B1 +B2 − (B3 +B4) + Σx0,

and,

κ(A1 + A2) = −(B1 +B2) +B3 +B4 + Σ(κ− x0).

As x0 > 0 and κ − x0 > 0 from the interior requirement, and by introducing KI
and K∗I , it follows that,

κ >
B1 +B2 − (B3 +B4)

A3 + A4
= KI ≥ 0,

κ >
B3 +B4 − (B1 +B2)

A1 + A2
= K∗I ≥ 0,
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where the right inequality is a consequence of equation (3.1) where Bi ≥ 0. Total
flow will then satisfy

κ > max {KI, K
∗
I } ≥ 0. (3.49)

For the critical intervals of PII, let KII be a flow bound for κ, given by

KII = S + θ

G
. (3.50)

First we distinguish between three possible configurations for the components of
solution vector y [7]. These are dependent on the value of θ, and are called,

(i) left-skew when θ < 0, then KII < T ∗ < T < K∗II. (3.51)
(ii) right-skew when θ > 0, then KII > T ∗ > T > K∗II. (3.52)
(iii) non-skew when θ = 0, then KII = T ∗ = T = K∗II. (3.53)

The ∆SS∗-conditions from equation (3.13) are necessary for the existence of
any Braess flow [7, Theorem 6.5]. The conditions are also sufficient for all Braess
flows, with the exception of extreme flows when PII is skew. The conditions de-
termine the critical intervals for Braess flows, [7, Theorem 6.5 & Corollary 6.9],
which are defined as:

(i) When PII is right-skew the Braess flow is,

︸ ︷︷ ︸
right flow

KR < κ ≤
interior flow︷ ︸︸ ︷

KII < κ < Kmax . (3.54)

(ii) When PII is left-skew the Braess flow is,

︸ ︷︷ ︸
left flow

KL < κ ≤
interior flow︷ ︸︸ ︷

K∗II < κ < Kmax . (3.55)

(iii) When PII is non-skew the Braess flow is,

︸ ︷︷ ︸
extreme flow

Kmin < κ ≤
interior flow︷ ︸︸ ︷

KII < κ < Kmax . (3.56)

(iv) If PII is right-skew and extreme Braess flows exist, the critical intervals are
given by,

︸ ︷︷ ︸
extreme flow

right flow︷ ︸︸ ︷
Kmin < κ ≤ T < κ ≤ KII < κ < Kmax︸ ︷︷ ︸

interior flow

. (3.57)
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(v) If PII is left-skew and extreme Braess flows exist, the critical intervals are
given such that the Braess flow is,

︸ ︷︷ ︸
extreme flow

left flow︷ ︸︸ ︷
Kmin < κ ≤ T ∗ < κ ≤ K∗II < κ < Kmax︸ ︷︷ ︸

interior flow

. (3.58)

The variables Kmax and Kmin are given by,

KR = max(KI, K
∗
I , T,−T (0)A−1

3 , Q)), (3.59)
KL = K∗R, (3.60)

Kmax = S + S∗

∆ = K∗max, (3.61)

Kmin = min
(
KI, K

∗
I ,
AT + A∗T ∗

A+ A∗ + ∆

)
= K∗min, (3.62)

and Q and A are,

Q = (A3 + A4)(S + θ)−∆T (0)
(A3 + A4)G+ ∆A3

, (3.63)

A = (A1 + A2)(A1 + A5). (3.64)

3.3 Quadratic programming
The general expression of quadratic programming (QP) can be stated as

min
x

q(x) = 1
2x
>Gx+ x>c, (3.65a)

subject to a>i x = bi, i ∈ E , (3.65b)
a>i x ≥ bi, i ∈ I, (3.65c)

where E and I are finite sets of indeces for equality and inequality constraints,
respectively, G is a symmetric n × n matrix and c, x and {ai}, i ∈ E ∪ I, are
vectors in Rn. The quadratic program in equation (3.65) is said to be convex if
the Hessian matrix G is positive semidefinite.

In the following, the traffic problem will be stated in the same manner as
equation (3.65) and solved by the interior point method as described in Section
3.3.1. We continue with the case of one OD-pair, such that ν = (o, d), and use the
4-link and 5-link networks of the original Braess’ problem in Figure 2.2. Later the
programming problem will be expanded to operate on larger traffic networks.
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Optimization requirement (3.2c) may be written in matrix form. Let φ ∈ Rn

and Φ ∈ Rm be the vectors of link flow and path flow, respectively. For the original
Braess’ network problem in Figure 2.2 the flow vectors are given by,

φ = (φ1, φ2, φ3, φ4, φ5)>, (3.66)
Φ = (Φoad,Φobd,Φoabd)> = (Φ1,Φ2,Φ3)>. (3.67)

The relation between link flows and path flows may be expressed by the arcpath
incidence matrix D ∈ Rn×m. For the original Braess’ network, matrix D becomes,

φ1
φ2
φ3
φ4
φ5

 =


1 0 1
1 0 0
0 1 0
0 1 1
0 0 1


 Φ1

Φ2
Φ3

 , (3.68)

φ = DΦ.

Let the link travel times be linear functions written as,

tα(φα) = Aαφα +Bα, ∀α ∈ A. (3.69)

The objective function in equations (3.2a) and (3.4) for the 5-link network problem
in Figure 2.2(c) may be written as matrices, given linear travel time functions, such
that,

C̃(φ) =
∑
α

∫ φα

0
tα(x) dx

=
∑
α

1
2Aαφ

2
α +Bαφα

= 1
2


φ1
φ2
φ3
φ4
φ5



> 
A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0
0 0 0 A4 0
0 0 0 0 A5




φ1
φ2
φ3
φ4
φ5

+


φ1
φ2
φ3
φ4
φ5



> 
B1
B2
B3
B4
B5

 (3.70)

= 1
2φ
>Ãφ+ φ>b

= 1
2(DΦ)>Ã(DΦ) + (DΦ)>b

= 1
2Φ>(D>ÃD)Φ + Φ>(D>b)

= 1
2Φ>GΦ + Φ>c. (3.71)
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Matrix Ã ∈ Rn×n is a diagonal matrix of entries Aα and b ∈ Rn is a vector of
entries Bα from the linear travel time functions in equation (3.69). AndG ∈ Rm×m

is a symmetrical matrix. Equation (3.71) is obviously true for general network
problems of linear travel times.

As both matrix Ã and G are symmetric, they will be positive definite if the
real parts of all eigenvalues are positive. When matrix G is positive definite, the
objective function in equation (3.71) will give a strictly convex quadratic program.

The equality and inequality constraints in equations (3.2b) and (3.2d) can be
expressed as vectors. Given the vector of path flows Φ ∈ Rm, and assuming one
origin-destination pair, the equality constraints are written,

e>Φ = κ, where e = (1, 1, ...1)> ∈ Rm, (3.72)

and the inequality constraints are,

e>i Φ ≥ 0, ei = (0, ...0, 1, 0, ...0)> ∈ Rm, i = 1, 2, ...m, (3.73)

or

IΦ ≥ 0, I ∈ Rm×m, (3.74)

where I is the m×m identity matrix and ei, i = 1, 2, ...m are the columns of I.
Quadratic programs (QP) may be solved in several ways, E.g. the convex

combinations method, or Frank-Wolfe method [8] or other methods [15].Some ap-
proaches depend on whether the constraints are equality or inequality equations
[13]. With purely equality constraints, the QP can be solved directly by factoriza-
tion methods or iteratively by projected conjugate gradient methods etc. [13, pp.
451-463]. QPs with both equality and inequality constrains may be solved by al-
gorithms such as active-set methods and interior-point methods [13, pp. 463-490].

Active-set methods have been widely used since the 1970s and is suitable for
small to medium sized problems. The method will generally require a large num-
ber of computational steps, but each search direction is relatively inexpensive to
calculate. Interior-point methods are more recent methods for solving quadratic
programs, and have been used since the 1990s. These methods are effective on
large problems, and uses a small number of expensive computational steps. In
comparison, active-set methods are more complicated to implement. And while
the interior-point methods are most efficient of the two on very large problems,
active-set methods may converge rapidly if an estimate of the solution is available
as initial guess.

In this thesis the interior-point method was used to solve the quadratic pro-
gramming, as described in section 3.3.1. The active-set method described in Ap-
pendix C was first tried, but the results were unstable and gave negative flows.
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3.3.1 Interior-point method

The interior-point method used is based on Mehrotra’s predictor-corrector method,
which was originally developed to solve linear programming problems. The method
is a practical primal-dual method, solving the KKT-conditions to find solutions of
the unknown variable x, Lagrange multipliers λ and slack vector y.

The general problem is as before,

min
x

q(x) = 1
2x
>Gx+ x>c (3.75a)

subject to AIx ≥ b (3.75b)
AEx = κ, (3.75c)

where x ∈ Rm, b ∈ Rp, κ ∈ Rr, AI ∈ Rp×m represent the inequality constraint
matrix and AE ∈ Rr×m represent the equality matrix. The row-dimension of AE

is r = 1 in the problem of one OD pair.
With the flow φ as the unknown variable the Lagrangian function is,

L(φ,λ,ρ) = 1
2φ
>Gφ+ φ>c− λ>(AIφ− b)− ρ>(AEφ− κ).

The equality and inequality constraints are denoted AE and AI , with correspond-
ing Lagrange multipliers ρ and λ, respectively.

To deal with the inequality conditions, a slack vector y > 0 is introduced. The
solution (φ∗,y∗,λ∗,ρ∗) then satisfy the following KKT-conditions,

∇φL(φ∗,λ∗) = Gφ∗ + c−A>I λ∗ −A>Eρ∗ = 0, (3.76a)
AEφ

∗ − κ = 0, (3.76b)
AIφ

∗ − b− y∗ = 0, (3.76c)
y∗i λ

∗
i = 0, i ∈ I, (3.76d)

(y∗,λ∗) ≥ 0, (3.76e)
ρ∗>(AEφ

∗ − κ) = 0. (3.76f)

At a current iterate (φ,y,λ,ρ)k which satisfies (yk,λk) > 0, a complementarity
measure is defined as,

µ = y>λ

p
, (3.77)

where p is the number of inequality constraints.
Let Y = diag(yi) and Λ = diag(λi) for i ∈ I, and let σ be some value in the
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interval [0,1]. By considering the perturbed KKT-conditions given by,

F (φ,y,λ,ρ;σµ) =


Gφ+ c−A>I λ−A>Eρ

AEφ− κ
AIφ− b− y
YΛe− σµe

 = 0, (3.78)

a path-following, primal-dual method is derived. Solutions of equation system
(3.78) will, for all positive values of σ and µ, define the central path. As the
product σµ tends to zero, the trajectory defined by the central path will lead to
the solution of the quadratic program.

Applying Newtons method to equation system (3.78),

∇F (φ,y,λ,ρ;σµ)∆φ = −F (φ,y,λ,ρ;σµ),

while letting µ be fixed, the following linear system is obtained,
G 0 −A>I −A>E
AE 0 0 0
AI −I 0 0
0 Λ Y 0




∆φ
∆y
∆λ
∆ρ

 = −


Gφ+ c−A>I λ−A>Eρ

AEφ− κ
AIφ− b− y
YΛe− σµe

 . (3.79)

The right hand side will be denoted −r = (−r1,−r2,−r3,−r4)>. The vari-
ables/unknowns in equation (3.79) are ∆φ ∈ Rm, ∆y ∈ Rp, ∆λ ∈ Rp and
∆ρ ∈ Rr. So the linear equation system has (m + p + p + r) unknowns, and
the same number of equations.

The next iterate is obtained by setting,

(φ,y,λ,ρ)k+1 = (φ,y,λ,ρ)k + α(∆φ,∆y,∆λ,∆ρ), (3.80)

where α is chosen to satisfy (yk+1,λk+1) > 0, as will be explained further below.

Algorithm details

In the following, some of the aspects of the interior-point method used in this
paper will be introduced, while the stepwise procedure of the method is given in
Algorithm 1.

First step is to compute an affine scaling step (∆φ,∆y,∆λ,∆ρ)aff from equa-
tion system (3.79) letting σ = 0. This step is also refered to as the predictor step.
From equation (3.76d) we know that the solution must satisfy yiλi = 0 for i ∈ I.
If we take a full step with the affine step, the updated value will be yk+1

i λk+1
i =

(yki + ∆yaff
i )(λki + ∆λaff

i ) = ∆yaff
i ∆λaff

i and not 0 that would be the ideal value. To
correct for this deviation, a corrector step (∆φ,∆y,∆λ,∆ρ)cor is computed. The
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total search direction is then given by the combination of predictor and correcter
step, such that (∆φ,∆y,∆λ,∆ρ) = (∆φ,∆y,∆λ,∆ρ)aff +(∆φ,∆y,∆λ,∆ρ)cor.
This step is obtained from solving the following system,

G 0 −A>I −A>E
AE 0 0 0
AI −I 0 0
0 Λ Y 0




∆φ
∆y
∆λ
∆ρ

 =


−r1
−r2
−r3

−YΛe−∆Yaff∆Λaffe+ σµe

 . (3.81)

The centering parameter is calculcated from,

σ =
(
µaff

µ

)3

, (3.82)

where the complementarity measure µ is calculated from equation (3.77) with
current iteration values yk and λk, and µaff is calculated by the possible value at
the next iterate, such that

µaff = (y + αaff∆yaff)>(λ+ αaff∆λaff)/p, (3.83)

The step length αaff in equation (3.83) has to satisfy,

αaff = max{α ∈ (0, 1] |(y,λ) + α(∆yaff,∆λaff) ≥ 0}, (3.84)

where each value corresponds to iteration step k. The value of αaff will be chosen
to 1 if (∆yaff,∆λaff) > 0, as the inequality gives,

α ≥ − (y,λ)
(∆yaff,∆λaff)

.

This will also be a good choice if the inner product is equal to zero, as the inequality
then will hold for any choice of α. However, if (∆yaff,∆λaff) < 0 the inequality
gives,

α ≤ (y,λ)
|(∆yaff,∆λaff)|

,

and the step length is chosen by,

αaff = min
{

1, (y,λ)
|(∆yaff,∆λaff)|

}
.

To compute the next iterate we may choose to use either step length parameters
αpri and αdual or use the same value for both. In this paper we chose to use the
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same value, such that α̂ = min(αpri
τ , αdual

τ ). The primal and dual values of ατ are
here defined as,

αpri
τ = max {α ∈ (0, 1] : y + α∆y ≥ (1− τ)y} , (3.85a)
αdual
τ = max {α ∈ (0, 1] : λ+ α∆λ ≥ (1− τ)λ} , (3.85b)

where τ ∈ (0, 1). The values of αpri
τ and αdual

τ are found using the same reasoning
as for αaff. The convergence may speed up if we choose τ to approach 1 as the
iterates approaches the solution. Here we have used τ = 0.995 fixed, as this is a
representative value of τ [13, p. 567].

The next iterate is then obtained from equation (3.80) with α = α̂.
Equation system (3.79) can be solved by eliminating ∆y from the system and

rearranging the equations. The following compact form is then obtained,

 G A>I A>E
AI −Λ−1Y 0
AE 0 0


 ∆φ
−∆λ
−∆ρ

 =

 −(Gφ+ c−A>I λ−A>Eρ)
−(AIφ− b− y)− y + σµΛ−1e

−(AEφ− κ)

 , (3.86)

where the coefficient matrix on the left hand side is symmetric. Since λi ≥ 0 and
yi ≥ 0 for all i, we know that matrices Λ and Y are nonsingular. The equation
system can easily be solved by factorization methods. Equation system (3.81) is
solved in the same manner.

Algorithm 1: Interior point method for convex QP; Predictor-Correcror
Algorithm [13, p. 484].

Input: Matrix G, inequality constraint matrix AI , equality constraint
matrix AE, vectors c and b, demand κ.

Output: Solution vector φ.
Compute (φ0,y0,λ0,ρ0) with (y0,λ0) > 0
for k=0,1,2,... do

Set (φ,y,λ,ρ) = (φ,y,λ,ρ)k and solve (3.79) with σ = 0 for
(∆φ,∆y,∆λ,∆ρ)aff;

Calculate µ = y>λ/p;
Calculate α̂aff from equation (3.84);
Calculate µaff from equation (3.83);
Set centering parameter to σ = (µaff/µ)3;
Solve equation system (3.81) for (∆φ,∆y,∆λ,∆ρ);
Choose τk ∈ (0, 1) and set α̂ = min(αpri

τk
, αdual

τk
) from (3.85);

Set (φ,y,λ,ρ)k+1 = (φ,y,λ,ρ)k + α̂(∆φ,∆y,∆λ,∆ρ);
end
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3.3.2 Expanding to several OD pairs

Expanding to several OD pairs is quite straight forward. When all paths between
each OD pair is known, then matrix D is easily found. How to find all paths is
explained in the next section. The only thing to remark is that the vector of OD
demand κ now will have dimension equal to the number of OD pairs. And the
equality constraint matrix AE must be such that the sum over all paths connecting
OD pair ν is equal to κν , for all ν.

3.3.3 Programming in MATLAB

The interior-point method described above was implemented into Matlab, to solve
the quadratic programming method. Some of the techniques used to find all paths
and the D matrix will be described in this section.

In Matlab, each node was given a number, e.g. o = 1, a = 2, such that the
links could be written as u1 = [1, 2] etc. The matrix of links L would then be,

L =
[
u1 u2 u3 u4 u5 u6

]>
=
[

1 2 1 3 2
2 4 3 4 3

]>
,

for the Braess network example. Each path is written as a sequence of node
numbers in a similar manner as the links, e.g. path Uoad in the Braess network
example is written [1, 2, 4]. The matrix of paths P contains a path in each row.
The OD pairs are given as a matrix, such that each row contains an origin in
column one and a destination in column two.

To find all OD paths, a recursive function was made. The function traverses
the network by finding the consecutive nodes in the network following all directed
links out of a node. The method is described in Algorithm 2, and the MATLAB
code is given in Appendix B.2. All necessary MATLAB codes to find all OD paths
are given in Appendix B. The row and column indexes of matrix P of paths are
denoted I1 and I2. The node in which, for each call of the function, we want to
find links from is denoted aF . For each iteration, the node we are jumping to is
denoted aT . For each call of the function, we need a variable containing the part
of path I1 which has been found so far, because several paths may begin with the
same nodes. This part is denoted P part in the algorithm.

The paths should not contain cycles. To avoid this, we check that no one-way
link is repeated, or that no two-way link is used to go back and forth between the
same two nodes.
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Algorithm 2: Method to find all OD paths; NextNode().
Input: Node from aF , matrix L of links, origin-destination pair ODν , row

index I1 of matrix P , column index I2 of matrix P , matrix P of
paths, vector of path-part P part.

Output: Matrix P of paths, row index I1 of matrix P .
Find all nodes aj which are connected to node aF by a directed link from aF ;
if no aj exists AND last node in path I1 is different from destination
ODν(2) then

Remove row I1 from P ;
I1 = I1 − 1;

I2 = I2 + 1;
for j = 1, 2..., number of aj do

aT = aj;
if j > 1 then

I1 = I1 + 1;
Add P part to row I1 of P ;

if aT == ODν(2) then
Add node aT to the end of path I1, P (I1, I2);

else
if node aT do not result in any cycle at current path I1 then

Add node aT to the end of path I1, P (I1, I2);
Call NextNode with input {aT ,L, ODν , I1, I2,P ,P (I1, 1 : I2)};

else
Remove row I1 from P ;
I1 = I1 − 1;

end
end

end
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3.4 Minimal system cost
The minimal system cost is obtained solving the non-linear program in equations
(3.2) and (3.3) [19]. With linear travel time functions, objective function is equal
to,

C(φ) =
∑
α

Aαφ
2
α +Bαφα. (3.87)

The objective function, written with matrices will then become,

C(Φ) = Φ>(D>ÃD)Φ + Φ>(D>b),
= Φ>GΦ + Φ>c. (3.88)

The objective function for system cost differ only by one constant, the half in
front of matrix G, from the objective function for user cost (Nash equilibrium) in
equation (3.71). Since the objective functions are equal apart from a half, we can
use the interior-point method described in Section 3.3.1.



Chapter 4

Results

In this chapter the results are presented. The methods described in Chapter 3 is
used to find flow distributions and travel times at Nash equilibrium and system
optimal flow.

Braess’ paradox is investigated on four different networks. For each network,
the parameters in the cost functions and travel demand are stepwise changed to
see the effect on the flow distribution and the resulting path travel times.

To reveal occurences of Braess’ paradox we remove one or several of the links
from each network. In the case where travel times on used paths decrease when
the link is removed, we may conclude that Braess’ paradox occurs.

Turning the statement around, it is desirable to show that travel times on used
paths increase when a link is added. Let Φ̃ be the flow distribution on paths
after a link is removed, and Φ∗ be the flow distribution on the complete network.
Since the programming problem used for the interior point method is based on
Wardropes user equilibrium (equivalent to Nash equilibrium), then all used paths
have the same path travel time, and travel times on non-utilized paths are greater
or equal to this. Consequently, the minimum minβ Tβ(Φ) is understood to be the
travel cost on all used paths. The increase in travel cost can then be illustrated
by the ratio,

r = minβ Tβ(Φ∗)−minβ Tβ(Φ̃)
minβ Tβ(Φ̃)

. (4.1)

The Braess flow intervals presented in section 3.2 are calculated. The parame-
ters in the cost functions and travel demand are stepwise changed to see the effect
on the Braess flow intervals and distributions.

To investigate the impact of selfish routing, we compare the travel costs at
Nash equilibrium and system optimal flow. Let the flow distribution at Nash
equilibrium be denoted φN, and let the flow distribution at system optimal flow
be denoted φsyst. The ratio between system cost C(φ) at Nash equilibrium and

40
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at system optimal flow will then be denoted,

ρ = C(φN)
C(φsyst)

. (4.2)

4.1 Braess’ network model
The network model originally used by Braess is studied in the analyses in this
section. The network model is depicted in Figure 4.1. The network has five links
denoted u = {u1, u2, u3, u4, u5}, and three routes between origin o and destination
d denoted U = {Uoad, Uobd, Uoabd}. The travel times for traversing each link are
linear functions, denoted tα(φ) = Aαφα +Bα.

Figure 4.1: Braess’ network model.

In the linear cost functions tα, there are two parameters we can change. These
are the value of parameter Aα and the value of parameter Bα. Parameter Aα
decides how dependent the travel time is on traffic flow, while parameter Bα decides
the travel cost on link uα when traffic flow is zero. The values of the function
parameters used by Braess are such that the travel time functions are symmetric
over the links in the network. Consequently, the travel time functions on links u1
and u4 have equal parameters, and links u2 and u3 have equal function parameters.
The symmetry property is used in most of the analyses.

The travel time functions used by Braess are,

t1(φ) = Aφ1, (4.3a)
t2(φ) = φ2 +B, (4.3b)
t3(φ) = φ3 +B, (4.3c)
t4(φ) = Aφ4, (4.3d)
t5(φ) = φ5 +B5, (4.3e)
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with,
A = 10, B = 50, B5 = 10, (4.4)

as presented in section 2.4. The values of function parameters A, B and B5 used
in the following analyses are equal to those given in equation 4.4, if nothing else i
specified. Correspondingly, the travel demand used is κ = 6 when nothing else is
specified.

4.1.1 Braess flow intervals
The critical intervals illustrate where Braess’ paradox may occur given some travel
cost functions on Braess’ network model, as presented in section 3.2.4. The results
of such intervals are given in this section.

The traffic flow may be distributed in several ways, depending on total demand
and the cost function parameters. On the 4-link network, the traffic flow must
be interior for a Braess flow to exist, meaning both paths must be utilized, as
illustrated in Figure 4.2(a). On the 5-link network, link u5 must be utilized for
a Braess flow to exist. The possible flow distributions on this network are then
interior flow, left boundary, right boundary and extreme boundary flow, which are
all illustrated in Figure 4.2.

Below, we show examples of critical intervals for Braess flow on Braess’ network
model while changing some of the parameters. The travel cost functions are given
in equation (4.4).

In the first analysis, the value of function parameter A is changed. Figure 4.3
gives the critical intervals for three different values of function parameter A, where
A = {5, 10, 15}. The remaining function parameters are equal to the values given
in equation (4.4). The black line represents the interval of demand where the flow
distribution is extreme, and the green line is the interval for interior flow. We
observe from Figure 4.3 that the Braess flow interval decrease when the value of A
increase. The flow is distributed as extreme boundary flow (see Figure 4.2(e)) and
interior flow (see Figure 4.2(b)). These distributions are expected as the travel
functions are symmetric over the traffic network.

In the second analysis the value of function parameter B is changed. In Figure
4.4 the critical intervals with values B = {30, 50, 80, 110}. The remaining function
parameters are equal to the original Braess example, as stated in equation (4.4).
The black line is the interval of demand where flow distribution is extreme, and the
green line is where the distribution is interior flow. We observe that the intervals
of demand where Braess’ paradox occurs increases when the value of B increases.
The flow is distributed as extreme boundary flow (see Figure 4.2(e)) and interior
flow (see Figure 4.2(b)), as expected.

In the third analysis the value of function parameter B5 is changed. In Figure



4.1. BRAESS’ NETWORK MODEL 43

(a) Interior flow on 4-
link network.

(b) Interior flow on 5-
link network.

(c) Left boundary flow.

(d) Right boundary
flow.

(e) Extreme boundary
flow.

Figure 4.2: Flow distributions on the 4-link and 5-link network.

4.5 the critical intervals with values B5 = {0, 20, 40}. The remaining function
parameters are equal to the values given in equation (4.4). The black line is
the interval of demand where flow distribution is extreme, and the green line is
where the distribution is interior flow. We observe that the intervals of demand
where Braess’ paradox occurs increases when the value of B5 increases. The flow
is distributed as extreme boundary flow (see Figure 4.2(e)) and interior flow (see
Figure 4.2(b)), as expected.

For the above examples the travel costs are symmetric over the links in the
traffic network, in the sence that cost function t1 = t4 and t2 = t3. In the last
analysis the travel functions are made nonsymmetric over the traffic network, and
the results are shown in Figure 4.6.

First, travel time on link u1 and u4 are made nonsymmetric with A4 = 20 6=
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(a) Function parameter A = 5.

(b) Function parameter A = 10.

(c) Function parameter A = 15.

Figure 4.3: Extreme and interior Braess flow intervals, with various value of func-
tion parameter A.

A1 = 10. The results are given in Figure 4.6(a). The flow distribution is extreme
when demand is within the interval given by the black line, left flow when demand
is within the interval given by the blue line, and interior in the interval by the green
line. We observe from Figure 4.6(a) that the flow is distributed as left-boundary
flow in a small interval of demand, which is different from the symmetrical cases.
This is to be expected, since link u4 is more expensive to traverse compared to
link u1.

In the second case travel time on link u2 and u3 are made nonsymmetric with
B2 = 90 6= B3 = 50. The results are given in Figure 4.6(b). The distribution is
right flow when demand is within the interval given by the red line, and interior
flow when demand is on the green line. In both examples the remaining function
parameters are equal to the original Braess example, as stated in equation (4.4).
We observe from Figure 4.6(b) that in a small demand interval the flow is dis-
tributed as right boundary flow, which differ from the above cases. This is also to
be expected, since link u2 is more expensive to traverse compared to link u3.
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(a) Function parameter B = 30. (b) Function parameter B = 50.

(c) Function parameter B = 80. (d) Function parameter B = 110.

Figure 4.4: Extreme and interior Braess flow intervals, with various value of func-
tion parameter B.

(a) Function parameter B5 = 0.

(b) Function parameter B5 = 20.

(c) Function parameter B5 = 40.

Figure 4.5: Extreme and interior Braess flow intervals, with various value of func-
tion parameter B5.

(a) Function parameter A4 = 20. (b) Function parameter B2 = 90.

Figure 4.6: Brass flow intervals when the link cost functions are non-symmetric
on the traffic network.
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4.1.2 Braess’ paradox
In this section we investigate when Braess’ paradox occurs depending on function
parameters and demand. The travel functions are given in equation (4.3), and the
parameter values are equal A = 10, B = 50 and B5 = 10 as given in equation
(4.4) if nothing else is specified. Correspondingly, the travel demand used is κ = 6
when nothing else is specified.

In the first analysis the OD demand κ is changed. The resulting ratio r of
increased travel time defined in equation (4.1) is illustrated in Figure 4.7(a). Figure
4.7(b) shows the path travel cost on used paths for each of the network cases, with
and without link u5. The travel time at Nash equilibrium are on all paths equal to
the minimal travel time over all path travel times. Consequently, we look at the
minimal path travel time. The travel time on used routes on the 4-link network is
given by the red line, and travel time on the 5-link network is given by the blue
line.

Figures 4.7(c) and 4.7(d) show the path travel times on each of the networks.
The black line represents path Uoad, path Uoabd is given by the blue dotted line,
and path Uobd is given by the green dashed line. The routes of minimum travel
times gives the paths which are used at Nash equilibrium, and therefore illustrates
how the flow is distributed over the traffic network. The flow distributions on the
complete network are illustrated in Figure 4.8.

Some of the results are given in Table A.2 and A.3 in Appendix A. The tables
show the flow distributions on links and paths together with the path travel costs
at some OD demands κ.

We observe from Figure 4.7(a) that the travel time for all users increases with
at most 23 % when link u5 is available in the traffic network. From Figure 4.7(b)
we see that there is an interval κ ∈ (2.5, 9) where travel time on used routes on the
5-link network exceeds the travel time on the 4-link network. From the results in
Figures 4.7(a) and 4.7(b) we conclude that Braess’ paradox occurs in the mentioned
interval. When demand is 2.5 or less the traffic flow is distributed in route Uoabd
and the travel time is less than on the 4-link network. However, when demand
is equal or greater than 9 the path travel times and flow distributions are equal
on both networks. Consequently, for large demands travel time is independent of
whether link u5 is available or not. Note that these intervals are specific for the
used function parameters.

In the second analysis the value of function parameter A is changed. Figure
4.9(a) shows the ratio of increase in travel time depending on the value of function
parameter A. The travel costs on used paths are given in Figure 4.9(b). The blue
line represents travel time on the 5-link network, and the red line on the 4-link
network. Some of the results of flow distributions on links and paths along with
travel times are given in Table A.1 in Appendix A.
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(a) Ratio of increased travel cost. (b) Travel time on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel time on all paths, Uoad (black
line), Uoabd (blue line), Uobd (green line),
5-link network.

(d) Travel time on all paths, Uoad (black
line), Uobd (green line), 4-link network.

Figure 4.7: Illustration of increased travel time between the 4- and 5-link Braess’
network model depending on demand κ.

We observe from Figure 4.9(a) and 4.9(b) that Braess’ paradox occurs when
the value of A is in the interval (4, 15). The increase in travel time is at most
20 %. Figures 4.9(c) and 4.9(d) show the flow distributions on paths on each of
the networks. The black line represents path Uoad, path Uoabd is given by the blue
dotted line, and path Uobd is given by the green dashed line.

While still letting the ratio of increased travel cost be dependent on parameter
A, Figure 4.10 illustrates what happens when different values of demand κ is used.
The values used for demand are κ = 3 (blue line), κ = 6 (green line), κ = 9 (red
line) and κ = 12 (black line). We observe that small demands are more affected
by large values of A, and when demand is higher the interval of A where Braess’
paradox occurs is shorter.
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(a) Flow on all paths. (b) Flow on path oabd.

(c) No flow on link α5.

Figure 4.8: Flow distribution on Braess’ network example.

In the third analysis the value of function parameter B is changed. The results
are given in Figure 4.11. Figure 4.11(a) gives the ratio of increased travel time
defined in equation (4.1). The path travel costs on used paths are given in Figure
4.11(b) for the cases of the 4-link network (red line) and 5-link network (blue line).
Some of the results are also given in Table A.4.

We observe from Figure 4.11(a) that the increase in travel time when link u5
is added to the network is at most 25 %. From Figure 4.11(b) we observe that
when parameter B is within the interval B ∈ (35, 105) the travel time on the 5-link
network is greater than the on the 4-link network, and we conclude that Braess’
paradox occurs in this interval. Something to notice for this case is that the order
of flow distribution, compared to the above analysis, is reversed. When the value
is less or equal to B = 35 the flow is distributed on the outer links, equivalent to
the 4-link network. For values larger or equal to B = 105 the flow is distributed
on path Uoabd.

In the last analysis the value of function parameter B5 is changed. The results
are given in Figure 4.12. The ratio of increased travel cost defined in (4.1) is
illustrated in Figure 4.12(a). The path travel costs on used paths are shown in
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(a) Ratio of increased travel cost. (b) Travel time on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel time on all paths, Uoad (black line),
Uoabd (blue line), Uobd (green line), 5-link net-
work.

(d) Travel time on all paths, Uoad (black line),
Uobd (green line), 4-link network.

Figure 4.9: Illustration of increase in travel time between the 4- and 5-link Braess’
network depending on function parameter A, with demand κ = 6.

Figure 4.12(b), for both the 4-link network (red line) and the 5-link network (blue
line). Some of the results are also given in Table A.5.

We observe from Figure 4.12(a) that the increased travel time after adding link
u5 is at most 19.2 %. When the value is B5 < 23 (and larger than 0) we observe
from Figure 4.12(a) and 4.12(b) that Braess’ paradox occurs. From Figure 4.12(c)
we observe that the flow is distributed on all paths when B5 < 23. When the value
is greater or equal to B = 23 the flow is distributed on the outer paths on the
5-link network, equivalent to the 4-link network.

In the above analyses all travel time functions have been symmetric on the
traffic network. In the following analyses the two non-symmetric cases used in the
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Figure 4.10: Illustration of increase in travel time depending on function value A,
several demands. Each line represent the ratio of increase depending on the value
of A. Each line represents different values of total demand; κ = 3 (blue), κ = 6
(green), κ = 9 (red), κ = 12 (black).

previous section are used.
In the first case the travel functions on links u1 and u4 are made non-symmetric

with A4 = 20 6= A1 = 10 while changing demand κ. The results are given in Figure
4.13. Figure 4.13(a) gives the ratio of increased travel time. The path travel costs
on used paths are given in Figure 4.13(b) for the cases of the 4-link network (red
line) and 5-link network (blue line). We observe from Figure 4.13(c) that the flow
distributions are extreme, left boundary and interior flow, before the distribution
is equivalent to interior flow on the 4-link network.

In the second case the travel functions on links u2 and u3 are made non-
symmetric with B2 = 90 6= B3 = 50 while changing demand. The results are
given in Figure 4.14. Figure 4.14(a) gives the ratio of increased travel time. The
path travel costs on used paths are given in Figure 4.14(b) for the cases of the
4-link network (red line) and 5-link network (blue line). From Figure 4.14(c) we
observe that the flow distributions are extreme, right boundary and interior flow,
before the distribution is equivalent to interior flow on the 4-link network.

Notice in each case that Braess’ paradox occurs when the distributions are
left boundary flow, right boundary flow and interior flow. When the distribution
are extreme, when demands are small, the travel time is less than on the 4-link
network.
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(a) Ratio of increase in travel cost. (b) Travel time on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel time on all paths, Uoad (black line),
Uoabd (blue line), Uobd (green line), 5-link net-
work.

(d) Travel time on all paths, Uoad (black line),
Uobd (green line), 4-link network.

Figure 4.11: Illustration of increase in travel time between the 4- and 5-link Braess’
network depending on function parameter B with demand κ = 6.
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(a) Ratio of increased travel cost. (b) Travel cost on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel cost on all paths, Uoad (black line),
Uoabd (blue line), Uobd (green line), 5-link net-
work.

(d) Travel cost on all paths, Uoad (black line),
Uobd (green line), 4-link network.

Figure 4.12: Illustration of increase in travel time between the 4- and 5-link Braess’
network depending on function parameter B5 with demand κ = 6.
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(a) Ratio of increased travel cost. (b) Travel cost on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel cost on all paths, Uoad (black line),
Uoabd (blue line), Uobd (green line), 5-link net-
work.

(d) Travel cost on all paths, Uoad (black line),
Uobd (green line), 4-link network.

Figure 4.13: Illustration of increase in travel time between the 4- and 5-link Braess’
network depending on demand with A4 = 20 6= A1.
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(a) Ratio of increased travel cost. (b) Travel cost on used paths, on the 4-link
(red line) and 5-link network (blue line).

(c) Travel cost on all paths, Uoad (black line),
Uoabd (blue line), Uobd (green line), 5-link net-
work.

(d) Travel cost on all paths, Uoad (black line),
Uobd (green line), 4-link network.

Figure 4.14: Illustration of increase in travel time between the 4- and 5-link Braess’
network depending on demand with B2 = 90 6= B3.
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4.1.3 Selfish routing
In this section, we compare the Nash equilibrium and the system optimal flow to see
how the distributions affect the travel costs. The comparisons include the ratio
between system cost at Nash equilibrium and system optimal flow distribution,
and show whether the ratio satisfy the upper limit of γ = 4/3 [19]. System cost
is defined in equation 2.7. The path travel costs on used paths at these flow
distributions are also shown.

In the first analysis the value of function parameter A is changed, the results
are given in Figure 4.15. The ratio ρ between system cost at Nash equilibrium and
system optimal flow is given by the blue line in Figure 4.15(a), while the black
line is the upper limit γ = 4/3. Figure 4.15(b) illustrates the differences in path
travel cost on used paths when flow is distributed at Nash equilibrium (the blue
line) versus at system optimal flow (the red lines). At Nash equilibrium, all used
paths have the same path travel time. At system optimal flow, the path travel
times are not necessarily equal on all paths. The minimum path travel time of all
used routes at system optimal flow, is therefore given by the solid red line, while
the maximum value is given by the dashed red line.

(a) Ratio ρ (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equi-
librium (blue line) and min. (red solid line)
and max. (dashed line) at system optimal
flow.

Figure 4.15: Comparison between user and system optimal flow distribution,
changing value A with κ = 6 and B = 50.

We observe from Figure 4.15(a) that system cost at Nash equilibrium C(φN) is
at the most 1.21 times as large as the system cost at system optimal flow C(φsyst).
The peak is below the upper limit γ = 4/3, and occurs when A = 6. The C(φN) at
Nash equilibrium only exceeds C(φsyst) at system optimal flow in a limited value
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interval for A. These values are when A is within the interval A ∈ (2, 15). In
Figure 4.15(b) we observe that the minimum and maximum path travel time on
used paths at system optimal flow are different in the interval A ∈ (2, 8), while
equal for any other value of A. The travel time on used paths at Nash equilibrium
exceeds the minimum travel time at system flow in the interval A ∈ (2, 15). Before
and after this interval the travel times at each distribution seems to coincide.
It is understood that outside the interval A ∈ (2, 15) the flow distributions are
equivalent.

In the second analysis the value of function parameter B is changed. The
results are given in Figure 4.16. The ratio ρ is given by the blue line in Figure
4.16(a), with the limit γ = 4/3 (black line). Figure 4.16(b) illustrates the path
travel cost at each of the flow distributions. The blue line is path travel cost at
Nash equilibrium, and the red lines are minimum and maximum path travel cost
at system optimal flow.

(a) Ratio ρ (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equi-
librium (blue line) and min. (red solid line)
and max. (dashed line) at system optimal
flow.

Figure 4.16: Comparison between user and system optimal flow distribution,
changing value B with κ = 6 and A = 10.

From Figure 4.16(a) we observe that the system cost at Nash equilibrium C(φN)
exceeds the system cost at system optimal flow C(φsyst) when the value of B is
within the interval B ∈ (35, 140). The peak value is when B = 76 such that
C(φN) = 1.26C(φsyst). We observe from Figure 4.16(b) that distributions and
travel times on used paths are equivalent when the value is in B ∈ [20, 35] or
B > 145. When the path travel time at Nash equilibrium is kept unchanged it is
clear that the paths using link u2 and u3, which are affected by the value of B, is
stops beeing utilized. This happens when B = 76. At this point only path Uoabd
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is utilized. This is as expected.
The peculiar shape in Figure 4.16(b) for the system optimal flow is explained

by changes in the flow distribution. The sharp jag at B = 65 is a result of link
u5 starting to be utilized, before this point the flow is only distributed equally
over path Uoad and Uobd. The sharp jag at B = 145 is a result of change in flow
distribution from using all paths to only using path Uoabd. The reason is that at
system optimal flow there may exist nonutilized paths of less travel time. However,
this is not possible at Nash equilibrium, because of the definition that nonutilized
paths should have travel time greater or equal to the utilized paths.

In the third analysis the value of function parameter B5 is changed. The results
are given in Figure 4.17. Figure 4.17(a) shows the ratio ρ (blue line), with the limit
γ = 4/3 (black line). The path travel times at each flow distribution are illustrated
in Figure 4.17(b), where the blue line is path travel time at Nash equilibrium, and
the red lines are minimum and maximum path travel time at system optimal flow.

(a) Ratio rho (blue line) between system cost
at user and system optimal flow, and limit
4/3 (black line).

(b) Travel time on used paths at Nash equi-
librium (blue line) and min. (red solid line)
and max. (dashed line) at system optimal
flow.

Figure 4.17: Comparison between user and system optimal flow distribution,
changing value B5 with κ = 6, A = 10 and B = 50.

We observe from Figure 4.17(a) that the system cost at Nahs equilibrium C(φN)
exceeds C(φsyst) at system optimal flow when the value of B5 is below 25 (and
above 0). At the most the ratio ρ is 1.19. From Figure 4.17(b) we observe that
the path travel times and distribution coincides when the value of B is equal to or
exceeds 25. From Figure 4.17(b) we observe that the flow distribution and path
travel times does change with various values of B5. If we combine this observation
with previous discussion on the jagged line, it is clear that the flow at system
optimal flow initially is distributed over paths Uoad and Uobd. When the value of
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B5 increases, it becomes less favourable to use link u5. Consequently, the flow
distribution at system flow is unchanged.

In the last analysis the value of demand κ is changed. The results are given in
Figure 4.18. In this case we used the function values A = 9, B = 70 and B5 = 0,
which are different from the previous cases. The ratio ρ is given by the blue line in
Figure 4.18(a), with the limit γ = 4/3. Figure 4.18(b) illustrates the differences in
path travel times at each flow distribution, where the blue line is path travel time
at Nash equilibrium, and the red lines are minimum (solid line) and maximum
(dashed line) path travel time at system optimal flow.

(a) Ratio ρ (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equilib-
rium (blue line) and min. (red solid line) and
max. (dashed line) at system optimal flow.

Figure 4.18: Comparison between user and system optimal flow distribution,
changing demand κ with A = 9, B = 70 and B5 = 0.

We observe from Figure 4.18(a) that the system cost C(φN) at Nash equilibrium
is at most 1.28 times the value of C(φsyst) at system optimal flow. Path travel times
and distribution coincides when demand is outside the interval (3, 18).
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4.2 Network of one origin and two destinatons
In the following example, two Braess’ network models are connected in such a way
that they have the same origin but different destinations. In the traffic network
illustrated in Figure 4.19(a), the networks have one link in common. The collective
link is u2, which results in 3 paths between each OD pair and 6 paths in total. In
Figure 4.19(b) the middle links have opposite directions. Consequently, the paths
between OD pairs (o, d1) and (o, d2) has in all five links in common. The collective
links are u1, u2, u3 u8 and u9, which results in 4 paths between each OD pair
and in total 8 paths. In the following sections, the results for each of these traffic
networks are presented.

(a) Network of 6 paths, 1 link in common. (b) Network of 8 paths, 5 links in common.

Figure 4.19: Traffic networks of one origin o and two destinations d1 and d2.

4.2.1 Braess’ paradox on 6-path network
The traffic network in Figure 4.19(a) has the following paths between the origin
an each of the destinations,

Uoad1 = u1 − u4, Uobd2 = u2 − u6,

Uobd1 = u2 − u5, Uobcd2 = u2 − u8 − u7,

Uobad1 = u1 − u9 − u4, Uocd2 = u3 − u7.

To get the example as similar to the Braess example as possible, we choose the
following link cost relations,

tα = Aφα, α = 2, 4, 7, (4.5a)
tα = φα +B, α = 1, 5, 3, 6, (4.5b)
tα = φα +B∗, α = 8, 9. (4.5c)
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Let the travel time functions be given by equation (4.5), and let the function
parameters be equal to A = 10, B = 50 and B∗ = 10. With total demand between
OD pair o − d1 equal to κ1 = 6 and zero demand to destiantion d2, the resulting
distribution is equal to the results in the Braess example. This is the expected
result, and verifies that the method works on the network model. The result is
not shown here as it is not relevant for the analyses.

In the following analysis the function parameters used are A = 10, B = 50
and B∗ = 10, and we let OD demands be κ1 = κ2 = κ = 6 when nothing else is
specified.

In the first analysis the value of OD demand κ is changed. The results are given
in Figure 4.20, comparing the travel times between the case when the network
contains all links (case 1), and the case when both link u8 and u9 are removed
(case 2).

Figure 4.20(a) illustrates the ratio of increased travel cost defined in equation
(4.1) between the two network cases. With the chosen network, travel time func-
tions and demands, it can be seen that the network example is symmetric. Con-
sequently, the flow distribution between the origin and destination d1 is equal to
the distribution between the origin and destination d2. Therefore, Figures 4.20(b),
4.20(c) and 4.20(d) only illustrates the travel times between one of the OD pairs.
The travel time on used routes, which is equivalent to the minimum travel time, is
illustrated in Figure 4.20(b) for each of the cases. The minimal travel time on the
complete network is given by the solid line, and the dashed line gives the minimal
travel time after removing links u8 and u9.

Figure 4.20(c) shows the path travel times on all routes (between one OD pair)
when the network contains all links. Path Uoad1 is given by the black line, path
Uobd1 is given by the green dashed line, and path Uobad1 is given by the blue dotted
line. Figure 4.20(d) shows the path travel times on all routes (between one OD
pair) when links u8 and u9 are removed from the network. Path Uoad1 is still given
by the black line and path Uobd1 is given by the green dashed line.

Some of the results from changing the OD demand between each OD-pair, with
κ1 = κ2, are given in Table A.6.

From Figure 4.20(a) we observe that travel time increases with at most 15 %
when links u8 and u9 are available in the traffic network. This increase is less than
for the Braess network model, which was at most 23 %. This is probably because
of the collective link u2 between OD pair (o, d1) and (o, d2). Since paths between
both OD pairs utilize link u2 the travel time will consequently be higher than if
only one OD pair used the link. We observe from Figure 4.20(b) that Braess’
paradox occurs when demand κ is within the interval (1.5, 7). It is evident that
this interval is shorter than the interval for the Braess network model. From Figure
4.20(c) we notice that the flow distribution is not only the symmetric distributions
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(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on complete net-
work, Uoad1 (black line), Uobd1 (green
line) and Uobad1 (blue line).

(d) Path travel time, without link u8
and u9.

Figure 4.20: Results on network of one origin and two destinations with 6 paths,
changing demand κ, and removing both links u8 and u9.

as for the Braess network model. When demand is small, and in the short interval
(2, 4), the flow is distributed over the paths Uobad1 and Uoad1 . The distribution is
similar to the right-boundary flow illustrated in Figure 4.2(d).

The different flow distributions are shown in Figure 4.21.
In the second analysis the value of function parameters A on links u2, u4 and

u7 is changed, and keeping demand fixed at κ1 = κ2 = 6. The results are given
in Figure 4.22. The ratio of increased travel time is illustrated in Figure 4.22(a).
Figure 4.22(b) shows the minimum travel time on the full network (solid line) and
after removing links u8 and u9 (dashed line). The travel times on all paths in the
full network are given in Figure 4.22(c). Path Uoad1 is given by the black line, path
Uobd1 is given by the green dashed line, and path Uobad1 is given by the blue dotted
line. The path travel times on the network in case 2 are given in Figure 4.22(d).
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(a) All links used. (b) Links u5 and u6 unused.

(c) Links u8 and u9 unused. (d) Links u1, u3, u65 and u6 unused.

Figure 4.21: Flow distribution on traffic network of one origin o and two destina-
tions d1 and d2.

As before, path Uoad1 is given by the black line and path Uobd1 is given by the green
dashed line.

We observe from Figure 4.22(a) that travel time increases with at most 15 %
when the traffic network is complete, compared to removing links u8 and u9. From
Figure 4.22(b) we observe that when A ∈ [3, 11) travel time on used routes in the
complete network exceeds the time from when links u8 and u9 are removed. We
notice from Figure 4.22(c) that traffic flow is distributed in four different manners.

In the last analysis, for the network of one origin and two destinations with 6
paths, the value of function parameter B on links u1, u3, u5 and u6 is changed.
The results are given in Figure 4.23, with demand κ1 = κ2 = 6. The ration of
increased travel time between case 1 and case 2 is illustrated in Figure 4.23(a).
Path travel times on used paths in the full network (solid line) and after links u8
and u9 are removed (dashed line) are given Figure 4.23(b). Travel times on all
paths in the full network is given in Figure 4.23(c). The black line illustrates path
Uoad1 , path Uobd1 is given by the green dashed line, and path Uobad1 is given by
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(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on the com-
plete network, Uoad1 (black line), Uobd1

(green line) and Uobad1 (blue line).

(d) Path travel times, without link u8
and u9.

Figure 4.22: Results on network of one origin and two destinations with 6 paths,
changing function parameter A with demand κ1 = κ2 = 6, and removing both
links u8 and u9.

the blue dotted line. The path travel times on the network in case 2 are given in
Figure 4.23(d). As before, path Uoad1 is given by the black line and path Uobd1 is
given by the green dashed line.

We observe from Figure 4.23(a) that the increase in travel time is at most
16.7 %. Braess’ paradox occurs when B ∈ (40, 150]. The flow is first distributed
on the paths Uoad1 and Uobd1 , then the flow is distributed on all paths, for larger
values of B the distribution is right-boundary flow for each OD pair, and for even
larger values only paths Uobad1 and Uobcd2 are used. We notice that Braess’ paradox
occurs when the flow is distributed on either all paths or as right boundary flow.
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(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on the com-
plete network, Uoad1 (black line), Uobd1

(green line) and Uobad1 (blue line).

(d) Path travel times, without link u8
and u9.

Figure 4.23: Results on network of one origin and two destinations with 6 paths,
changing function parameter B, and removing both links u8 and u9.
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4.2.2 Braess’ paradox on 8-path network
The traffic network in Figure 4.19(b) has the following OD paths from origin to
each of the destinations,

Uoad1 = u1 − u4, Uoabd2 = u1 − u9 − u6,

Uoabd1 = u1 − u9 − u5, Uobd2 = u2 − u6,

Uobd1 = u1 − u5, Uocd2 = u3 − u7,

Uocbd1 = u3 − u8 − u5, Uocbd2 = u3 − u8 − u6.

To get the example as similar to the Braess example as possible, we choose the
following link cost relations,

tα = Aφα α = 1, 5, 3, 6 (4.6a)
tα = φα +B α = 2, 4, 7 (4.6b)
tα = φα +B∗ α = 8, 9. (4.6c)

Notice that the link cost functions in equation (4.6) are different from those in
equation (4.5).

Let the function parameters in equation (4.6) be equal to A = 10, B = 50
and B∗ = 10. With these cost functions we change the value of demand with
κ1 = κ2 = κ. The results are given in Figure 4.24. The ratio of increased travel
time is given in Figure 4.24(a). Figure 4.24(b) shows the path travel times on used
paths on the complete network (solid line) and the network after removing links u8
and u9 (dashed line). The travel times on all paths on the complete network are
given in Figure 4.24(c). The black line illustrates path Uoad1 , path Uoabd1 is given
by the blue line, path Uobd1 is given by the green dash-dotted line, and path Uocbd1

is given by the red dotted line. The path travel times on the network in case 2 is
given in Figure 4.24(d). As before, path Uoad1 is given by the black line and path
Uobd1 is given by the green dash-dotted line.

After reversing the direction of links u8 and u9 the increase in travel time is
at most 20 %, and the paradox occurs when demand in within [3, 10). The flow
is distributed on paths Uoabd1 and Uocbd1 at small demands. For the interval of
Braess’ paradox the flow is distributed on all paths. For larger demands the flow
distribution is equal to the network without links u8 and u9. The flow distributions
are illustrated in Figure 4.25.
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(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on the com-
plete network, Uoad1 (black line), Uobd1

(green line), Uobad1 (blue line), Uocbd1

(red line).

(d) Path travel time, without link u8
and u9, Uoad1 (black line), Uobd1 (green
line).

Figure 4.24: Results on network of one origin and two destinations with 8 paths,
changing demand κ, and removing both links u8 and u9.
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(a) All links used. (b) Links u4 and u7 unused.

(c) Links u8 and u9 unused.

Figure 4.25: Flow distribution on traffic network of one origin o and two destina-
tions d1 and d2.
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4.2.3 Selfish routing on 6-path network
In this section we investigate selfish routing on the network of one origin and two
destinations with 6 paths, and show how the distributions affect the travel costs.
The comparisons include the ratio between system cost at Nash equilibrium and
system optimal flow distribution, and show whether the ratio satisfy the upper
limit of γ = 4/3 [19]. System cost is defined in equation 2.7. The path travel costs
on used paths at these flow distributions are also shown.

In the first analysis the OD demands are changed, with κ1 = κ2. The results
are given in Figure 4.26. The ratio ρ between system cost at Nash equilibrium and
system optimal flow is given by the blue line in Figure 4.26(a), while the black
line is the upper limit γ = 4/3. Figure 4.26(b) illustrates the differences in path
travel cost on used paths when flow is distributed at Nash equilibrium (the blue
line) versus at system optimal flow (the red lines). At Nash equilibrium, all used
paths have the same path travel time. At system optimal flow, the path travel
times are not necessarily equal on all used paths. The minimum path travel time
of all used routes at system optimal flow, is therefore given by the solid red line,
while the maximum value is given by the dashed red line.

(a) Ratio (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equilib-
rium (blue line) and min. (red solid line) and
max. (dashed line) at system optimal flow.

Figure 4.26: Comparison between user and system optimal flow distribution,
changing demand κ.

We observe from Figure 4.26(a) that system cost at Nash equilibrium exceeds
the system cost at system optimal flow when demand κ is within the interval [1, 7).
The ratio is at most C(φN) = 1.15C(φsyst) at κ = 2 and κ = 3.5.

In the second analysis the value of A is changed. The results are given in Figure
4.27. The ratio between system cost at Nash equilibrium and system optimal flow
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is shown in Figure 4.27(a). The travel times on used routes at Nash equilibrium
are given by the blue line in Figure 4.27(b). System cost at system optimal flow is
given by the red lines, where the solid line is minimum travel time and the dashed
line is the maximum travel time.

(a) Ratio (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equi-
librium (blue line) and min. (red solid line)
and max. (dashed line) at system optimal
flow.

Figure 4.27: Comparison between user and system optimal flow distribution,
changing A.

We observe that system cost at Nash equilibrium exceeds the value at system
optimal flow in the interval A ∈ (1, 11), and the ratio is at most ρ = 1.15.

In the last analysis the value of B is changed, and the results are given in
Figure 4.28 The ratio ρ is shown in Figure 4.28(a). Figure 4.28(b) illustrates the
travel time on used routes at Nash equilibrium (blue line) and at system optimal
flow (red lines). The minimum travel time at system optimal flow is given by the
solid line while tha maximum travel time is given by the dashed line.

We observe that the system cost C(φN) exceeds C(φsyst) in the interval B ∈
(40, 270), and the ratio is at most ρ = 1.17 at B = 73 and ρ = 1.18 at B = 135.
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(a) Ratio (blue line) between system cost at
user and system optimal flow, and limit 4/3
(black line).

(b) Travel time on used paths at Nash equilib-
rium (blue line) and min. (red solid line) and
max. (dashed line) at system optimal flow.

Figure 4.28: Comparison between user and system optimal flow distribution,
changing B.
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4.3 Network of two origins and one destination
In the following example, two Braess’ network models are connected in such a way
that they have the same destination but different origins. In the traffic network
illustrated in Figure 4.29(a), the networks have one link in common. The collective
link is u6, which results in 3 paths between each OD pair and 6 paths in total.
In Figure 4.29(b), the middle links have opposite directions, such that the paths
between OD pairs (o1, d) and (o2, d) has in all five links in common. The collective
links are u5, u6, u7 u8 and u9, which results in 4 paths between each OD pair and
in total 8 paths. In the following sections, results for each of the traffic networks
are presented. We only show the results from changing the OD demand because
the results are similar to those for the network of one origin and two destinations.

(a) Network of 6 paths, 1 link in common. (b) Network of 8 paths, 5 links in common.

Figure 4.29: Traffic network of two origin o1 and o2, and one destination d.

4.3.1 Braess’ paradox on 6-path network
The traffic network in Figure 4.29(a) has the following OD paths,

Uo1ad = u1 − u5, Uo2bd = u3 − u6,

Uo1abd = u1 − u9 − u6, Uo2cd = u4 − u7,

Uo1bd = u2 − u6, Uo2cbd = u4 − u8 − u6.

To get the example as similar to the Braess example as possible, we choose the
following link travel functions,

tα = Aφα, α = 1, 6, 4, (4.7a)
tα = φα +B, α = 2, 5, 3, 7, (4.7b)
tα = φα +B∗, α = 8, 9. (4.7c)



72 CHAPTER 4. RESULTS

Let the travel time functions be given by equation (4.5), and let the function
parameters be equal to A = 10, B = 50 and B∗ = 10. With total demand between
OD pair o1 − d equal to κ1 = 6 and zero demand from origin o2, the resulting
distribution is equal to the results in the Braess example. This is the expected
result, and verifies that the method works on the network.

Let the OD demands be equal, such that κ1 = κ2 = κ. The results for different
values of demand κ is then given in Figure 4.30, comparing the travel times between
the case when the network contains all links (case 1) and the case when both link
u8 and u9 are removed (case 2).

(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on the com-
plete network, Uo1ad (black line), Uo1bd

(green line) and Uo1abd (blue line).

(d) Path travel times, without link u8
and u9.

Figure 4.30: Results on network of two origins and one destination, changing
demand κ, and removing both links u8 and u9.

The ratio of increased travel time defined in equation (4.1) is illustrated in
Figure 4.30(a). The minimal path travel times for each of the network cases are
given in Figure 4.30(b). The solid line represents the minimum travel time when
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the network contains all links, while the dashed line is minimal travel time after
links u8 and u9 are removed. Figure 4.30(c) shows the travel times on all paths in
the complete network. The black line represents path Uo1ad, path Uo1abd is given
by the blue dotted line, and path Uo1bd is given by the green dashed line. Figure
4.30(d) shows the travel times on all routes after links u8 and u9 are removed. The
black line represents path Uo1ad and path Uo1bd is given by the green dashed line.

We observe from Figure 4.30(a) that travel time increases with at most 15
%. From Figure 4.30(b) we observe that Braess’ paradox occurs when κ ∈ [1.8, 7).
From Figure 4.30(c) we notice that the flow is distributed as extreme, left boundary
and interior flows, before it is equivalent to the distribution on the network without
links u8 and u9. Particularly we notice that the flow is distributed in a small
interval as left boundary flow.

4.3.2 Braess’ paradox on 8-path network
The traffic network in Figure 4.29(b) has the following OD paths,

Uo1ad = u1 − u5, Uo2bd = u3 − u6,

Uo1bd = u2 − u6, Uo2bcd = u3 − u8 − u7,

Uo1bcd = u2 − u8 − u7, Uo2bad = u3 − u9 − u5,

Uo1bad = u2 − u9 − u5, Uo2cd = u4 − u7.

To get the example as similar to the Braess example as possible, we choose the
following link cost relations,

tα = Aφα, α = 2, 5, 3, 7, (4.8a)
tα = φα +B, α = 1, 6, 4, (4.8b)
tα = φα +B∗, α = 8, 9. (4.8c)

Notice that the link cost functions in equation (4.8) are different from those in
equation (4.7).

Let the function parameters in equation (4.8) be equal to A = 10, B = 50
and B∗ = 10. With these cost functions we change the value of demand with
κ1 = κ2 = κ. The results are given in Figure 4.31.

The ratio of increased travel times is given in Figure 4.31(a). Figure 4.31(b)
shows the path travel times on used paths on the complete network (solid line)
and the network after removing links u8 and u9 (dashed line). The travel times
on all paths on the complete network is given in Figure 4.31(c). The black line
illustrates path Uo1ad, path Uo1bd is given by the green dashed line, path Uo1bcd is
given by the blue dashed line, and path Uo1bad is given by the red dotted line. The
path travel times on the network after removing links u8 and u9 are given in Figure
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4.31(d). As before, path Uo1ad is given by the black line and path Uo1bd is given by
the green dashed line.

We observe from Figure 4.31(a) that the increase in travel time is at most 20
% when links u8 and u9 are included in the network. Braess’ paradox occurs when
κ ∈ [3, 10) (see Figure 4.31(b)). From Figure 4.31(c) we notice that the flow is
distributed as extreme and interior flow, before it is equivalent to the network
without links u8 and u9. These distributions are the same as on Braess’ network
model.

(a) Ratio of increased travel time. (b) Path travel costs on used routes, on
complete network (solid line) and with-
out links u8 and u9 (dashed line).

(c) Path travel times on the com-
plete network, Uo1ad (black line), Uo1bd

(green line) and Uo1abd (blue line).

(d) Path travel times, without link u8
and u9.

Figure 4.31: Results on network of two origins and one destination, changing
demand κ, and removing both links u8 and u9.
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4.4 Three times symmetric Braess network model
In this section we expand the network into a three times symmetric Braess net-
work model as illustrated in Figure 4.32 [9]. The network contains three origin-
destination pairs. Each OD pair is connected with two paths, and has one link in
common with each of the other OD pairs. In all there are nine links and 6 paths.
The inner links, links u1, u4 and u7, are each used by two OD pairs and in all three
different paths.

Figure 4.32: Three times symmetric Braess network example.

The network in Figure 4.32 contains the following paths,
U1 = u6 − u7 − u1, U3 = u2 − u4, U5 = u3 − u4 − u7,

U2 = u8 − u1, U4 = u9 − u1 − u4, U6 = u5 − u7,

where paths U1 and U2 connects origin o1 and destination d1, paths U3 and U4
connects o2 and d2 and paths U5 and U6 connects o3 and d3

The following linear cost functions and function parameters are chosen,
tα(φ) = 10φα, α = 1, 4, 7, (4.9)
tα(φ) = φα + 70, α = 2, 5, 8, (4.10)
tα(φ) = 0, α = 3, 6, 9. (4.11)

Notice that the links u3, u6 and u9 have zero travel times, and is therefore inde-
pendent on the travel flow over the links. We let demand be equal for all of the
OD pairs, such that κ1 = κ2 = κ3 = κ. The results from changing demand is
then given in Figure 4.33. We notice that the network, travel time functions and
demands are symmetric, similar to the Braess network. Consequently, we only
need to look at the travel times for one of the OD pairs.



76 CHAPTER 4. RESULTS

4.4.1 Braess’ paradox
To investigate if and when Braess’ paradox occurs on the three times symmetric
network, we remove the links of zero travel times which is links u3, u6 and u9.
The ratio of increased travel time defined in equation (4.1) between the travel
time on the complete network and the travel time on the network after the three
links are removed is given in Figure 4.33(a). The minimum travel times are given
in Figure 4.33(b), where the solid line represents minimum travel time on the
complete network and the dashed line is the travel time after the three links are
removed. Figure 4.33(c) shows the travel times on all paths (between one OD
pair) on the complete network. The green line represents path U1 = u6 − u7 − u1
and path U2 = u8 − u1 is given by the red dashed line. The travel times on the
network after the links are removed are given in Figure 4.33(d). Also in this plot
path U2 = u8 − u1 is given by the red dashed line.

We observe from Figure 4.33(a) that the increase in travel time is at most 30
%. Braess’ paradox occurs when demand in within the interval [3, 9) (see Figure
4.33(b)). The flow is first distributed on path U1, then on both paths, and in the
end on only path U2. Braess’ paradox occurs when the flow is distributed on both
paths.

The different flow distribution are illustrated in Figure 4.34.
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(a) Ratio of increased travel time. (b) Path travel times on used routes, on
complete network (solid line) and with-
out links u3, u6 and u9 (dashed line).

(c) Path travel times on full network,
U1 (green line) and U2 (red dashed
line).

(d) Path travel times, without link u3,
u6 and u9, U2 (red dashed line).

Figure 4.33: Results on the three times symmetric Braess network, changing de-
mand κ, and removing all of links u3, u6 and u9.
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(a) All links used. (b) Links u2, u5 and u8 unused.

(c) Links u3, u6 and u9 unused.

Figure 4.34: Flow distribution on the three time symmetric traffic network, with
three origins o1, o2 and o3 and three destinations d1, d2 and d3.
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Discussion

By the results of the analyses of Braess’ paradox presented in Chapter 4 we observe
that Braess’ paradox occurs on limited intervals of demand. It seems to exist an
upper limit for the increase in travel time caused by the added road. The paradox
occurs when all paths are used or the path with the additional link(s) (e.g. link u5)
is used together with one or several other paths. The path(s) with the additional
link(s) is only favorable to use if demands are small, since the travel time on this
path then is the smallest possible travel time at Nash equilibrium. Consequently,
the flow is only distributed on the path with the added link at small demands.

If the value of parameter A is large (indicating narrow roads) the path with
the additional link(s) is less favorable to use when demand is high, compared to
when A is smaller. With large values of B (indicating long roads) the flow will
favour the path with the additional link(s). We also notice that Braess’ paradox
does not occure when the value of B5 (or equivalently) is large. This is reasonable
and quite expected.

Braess’ paradox can also occure if the road characteristics (values of A and
B) are nonsymmetric on the network. Although the flow is distributed differently
for some demands, we notice that the same “rule” apply; Braess’ paradox occurs
when the path(s) with the additional link(s) is used together with one or several
other paths.

The paradox occurs on all networks investigated in this thesis, and all of the
results discussed above applies on these networks.

For Braess’ network model we compare the Braess flow intervals and the anal-
yses of Braess’ paradox. When changing the value of parameter A the results at
demand κ = 6 coincides. The values of A which result in interior flow distributions
are equal. For function parameter B with demand κ = 6 the results are equivalent
as the flow is interior when B = 50 and extreme when B = 80 and higher. The
results are similarly equivalent for different values of B5. For the nonsymmetric
analyses the intervals for each flow distribution coincides.
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From the analyses of selfish routing we observe that each of the cases presented
has a peak, where the ratio ρ of system cost reaches a maximum value before the
ratio decreases. The value of ratio ρ is at all these peaks less than the limit γ = 4/3.
For each case there is a limited interval where the system cost at Nash equilibrium
exceeds the cost at system optimal flow. We observe that in some intervals the
maximum and minimum path travel times on used routes are equal at system
optimal flow, while at the same intervals the path travel time is larger at Nash
equilibrium. This may seem strange since the travel time on all utilized paths at
system optimal flow is equal, which is one of the criterias of Nash equilibrium. For
system optimal flow this can be explained by an existence of nonutilized paths with
less travel times. This is not possible at Nash equilibrium, because by definition
nonutilized paths should have travel time greater or equal to the utilized paths.
Outside the interval where ρ > 0 the path travel times on used routes and the flow
distributions coincides.

In the case of selfish routing it is clear that for some combinations of travel
functions and demands it is most unfavorable to use some of the paths, although
the system cost is minimal. Specifically, this is when roads u2 and u3 in the Braess
network model (or the roads corresponding to u2 and u3 in the other networks)
have particularly large values of B. In these cases it is natural to assume that
travelers would not utilize the unfavorable paths, and instead prefer travel time at
Nash equilibrium.

We compare the intervals of occurences of Braess’ paradox and the intervals
of the selfish routing analyses. The intervals of parameter A is equivalent at
the boundary A = 15, however the lower boundaries are slightly different. The
differences occure when the system optimal flow is distributed differently from
the 4-link network (or equivalently for the other networks). For the intervals of
parameter B it is the lower boundary which coincides, while the upper boundary
differ with 40 units. This is also due to differences in flow distributions.

In the Braess example presented in Section 2.4, flow distribution at system
optimal flow on the 5-link network coincides with the flow distribution on the
4-link network. This could suggest that these distributions will always coincide.
However, from the results presented in Chapter 4 and the discussion above it is
clear that this is not a general occurence.

We remark that all networks used in the analyses in this thesis are symmetric
in link functions, and in OD paths in the networks where there are more than one
OD pair.

The traffic model used in this thesis has some restrictions and limitations. The
traffic network is assumed to have reached an equilibrium state. This is a weakness
in the model. The assumption relies on the prediction that traffic will experiment
for a while, and then settle into an equilibrium. In a real world scenario, traffic
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demand will change with time and influence the flow distribution.
Another weakness is that the traffic model relies on the assumption of an ideal

traffic network, where all travelers are seeking to find for themselves the path of
minimal travel cost. This requires that all travelers have knowledge about all roads
and the traffic situation on all of them. This is not completely realistic, but it is
a necessary and effective assumption for finding the user optimal flow.



Chapter 6

Conclusion

In this thesis it is shown that Braess’ paradox occurs at some intervals of demand
when the traffic network is similar to the networks investigated in this thesis. It
seems to exist an upper limit for the increase in travel time caused by the added
road connection. The intervals of demand are limited and dependent on the road
characteristics, such as length and width of the roads. The paradox occurs when
the path with the additional road (e.g. link u5 in Braess’ network model) is utilized
together with and at the same time as one or several other paths.

It is shown that the paradox occurs on the networks with two and three origins
and/or destinations. The routes between different origins and destinations in these
networks have one or several collective links. The traffic networks contain long wide
roads and short narrow roads in the same pattern as Braess’ network model.

Selfish routing affects the travel time when demand is within a limited interval.
In these intervals the travel time at Nash equilibrium is higher than at system
optimal flow, while at demands outside the interval the flow distributions are equal
at each of the optimal flows. The travel times at system optimal flow distribution
is in some intervals most unfavorable for some of the travelers, compared to the
travel time at user optimal flow.
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Chapter 7

Further work

For further work it would be interesting to use suitable non-linear travel time
functions. In this work the functions only take into consideration the travel time
for traversing a road. A most relevant aspect of road networks is intersections,
which can be time consuming when several roads merge. A modification for fur-
ther work could be to inlcude travel costs at intersections. Such functions could
possibly be dependent on the number of roads and the directions of the roads in
the intersection.

One can also look into other traffic networks. In most real traffic networks there
are more than one or two origins and destinations. Consequently, some roads, e.g.
road u5, could be a good road to use between other origins and destinations.
Therefore, removing or closing a road may not in total give the best outcome.
Will Braess’ paradox occur on nonsymmetric networks? And is there any real
traffic networks which could be relevant to analyse for Braess’ paradox?

It could be relevant to look at the modified definition of Braess’ paradox [9].
With the modified definition the results would for some cases be different from the
original definition, and it could be interesting to compare the results.
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Appendix A

Tables and results

Table A.1: Varying variable A1,4 on Braess’ network example with and without
link u5, with linear travel functions and OD demand κ = 6.

Flow Distribution
Link A1,4 = 2 A1,4 = 5 A1,4 = 10 A1,4 = 15 A1,4 = 20
u1 6 3 6 3 4 3 3 3 3 3
u2 0 3 0 3 2 3 3 3 3 3
u3 6 3 0 3 2 3 3 3 3 3
u4 6 3 6 3 4 3 3 3 3 3
u5 6 - 6 - 2 - 0 - 0 -
Route Flow Distribution
Uoad 0 3 0 3 2 3 3 3 3 3
Uoabd 6 - 6 3 2 - 0 - 0 -
Uobd 0 3 0 3 2 3 3 3 3 3
Route Travel Times
Uoad 62 59 80 68 92 83 98 98 113 113
Uoabd 40 - 76 - 92 - 100 - 130 -
Uobd 62 59 80 68 92 83 98 98 113 113
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Table A.2: Varying OD demand κ on Braess’ network model with and without link u5, with original travel functions.
Flow Distribution

Link κ = 2 κ = 3 κ = 4 κ = 6 κ = 8 κ = 9 κ = 10
u1 2 1 3 1.5 3.69 2 4 3 4.31 4 4.5 4.5 5 5
u2 0 1 0 1.5 0.31 2 2 3 3.69 4 4.5 4.5 5 5
u3 0 1 0 1.5 0.31 2 2 3 3.69 4 4.5 4.5 5 5
u4 2 1 3 1.5 3.69 2 4 3 4.31 4 4.5 4.5 5 5
u5 2 - 3 - 3.39 - 2 - 0.62 - 0 - 0 -
Route Flow Distribution
Uoad 0 1 0 1.5 0.31 2 2 3 3.69 4 4.5 4.5 5 5
Uoabd 2 - 3 - 3.39 - 2 - 0.62 - 0 - 0 -
Uobd 0 1 0 1.5 0.31 2 2 3 3.69 4 4.5 4.5 5 5
Route Travel Times
Uoad 70 61 80 66.5 87.23 72 92 83 96.77 94 99.5 99.5 105 105
Uoabd 52 - 73 - 87.23 - 92 - 96.77 - 140 - 110 -
Uobd 70 61 80 66.5 87.23 72 92 83 96.77 94 99.5 99.5 105 105
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Table A.3: Varying OD demand κ on Braess’ network model with and without
link u5, with original travel functions.

Flow Distribution
Link κ = 15 κ = 20 κ = 25 κ = 40 κ = 75
u1 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
u2 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
u3 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
u4 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
u5 0 - 0 - 0 - 0 - 0 -
Route Flow Distribution
Uoad 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
Uoabd 0 - 0 - 0 - 0 - 0 -
Uobd 7.5 7.5 10 10 12.5 12.5 20 20 37.5 37.5
Route Travel Times
Uoad 132.5 132.5 160 160 187.5 187.5 270 270 462.5 462.5
Uoabd 160 - 210 - 260 - 410 - 760 -
Uobd 132.5 132.5 160 160 187.5 187.5 270 270 462.5 462.5
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Table A.4: Varying variable B2,3 on Braess’ network example with and without link u5, with linear travel functions
and OD demand κ = 6.

Flow Distribution
Link B2,3 = 10 B2,3 = 25 B2,3 = 40 B2,3 = 50 B2,3 = 75 B2,3 = 85 B2,3 = 100
u1 3 3 3 3 3.23 3 4 3 5.92 3 6 3 6 3
u2 3 3 3 3 2.77 3 2 3 0.077 3 0 3 0 3
u3 3 3 3 3 2.77 3 2 3 0.077 3 0 3 0 3
u4 3 3 3 3 3.23 3 4 3 5.92 3 6 3 6 3
u5 0 - 0 - 0.46 - 2 - 5.85 - 6 - 6 -
Route Flow Distribution
Uoad 3 3 3 3 2.77 3 2 3 0.077 3 0 3 0 3
Uoabd 0 - 0 - 0.46 - 2 - 5.85 - 6 - 6 -
Uobd 3 3 3 3 2.77 3 2 3 0.077 3 0 3 0 3
Route Travel Times
Uoad 43 43 58 58 75.08 73 92 83 134.31 108 145 118 160 133
Uoabd 70 - 70 - 75.08 - 92 - 134.31 - 136 - 136 -
Uobd 43 43 58 58 75.08 73 92 83 134.31 108 145 118 160 133
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Table A.5: Varying variable B5 on Braess’ network model with and without link
u5, with linear travel functions and OD demand κ = 6.

Flow Distribution
Link B5 = 0 B5 = 5 B5 = 10 B5 = 15 B5 = 20 B5 = 25
u1 4.77 3 4.39 3 4 3 3.62 3 3.23 3 3 3
u2 1.23 3 1.62 3 2 3 2.39 3 2.77 3 3 3
u3 1.23 3 1.62 3 2 3 2.39 3 2.77 3 3 3
u4 4.77 3 4.39 3 4 3 3.62 3 3.23 3 3 3
u5 3.54 - 2.77 - 2 - 1.23 - 0.46 - 0 -
Route Flow Distribution
Uoad 1.23 3 1.62 3 2 3 2.39 3 2.77 3 3 3
Uoabd 3.54 - 2.77 - 2 - 1.23 - 0.46 - 0 -
Uobd 1.23 3 1.62 3 2 3 2.39 3 2.77 3 3 3
Route Travel Times
Uoad 98.92 83 95.46 83 92 83 88.54 83 85.08 83 83 83
Uoabd 98.92 83 95.46 - 92 - 88.54 - 85.08 - 85 -
Uobd 98.92 83 95.46 83 92 83 88.54 83 85.08 83 83 83
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Table A.6: One origin and two destinations, with demands κ1 = κ2. With and without link u9.
Flow Distribution

Link κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 10
u1 1.05 2.86 1.99 3.48 2.91 3.78 3.83 4.09 4.59 4.59 6.56 6.56
u2 3.91 3.14 4.02 3.78 4.18 4.04 4.35 4.31 4.81 4.81 6.88 6.88
u3 1.05 0 1.99 0.78 2.91 2.17 3.93 3.6 4.59 4.59 6.56 6.56
u4 3 2.86 3.83 3.48 3.99 3.78 4.15 4.09 4.59 4.59 6.56 6.56
u5 0 0.14 0.17 0.52 1.01 1.22 1.85 1.91 2.41 2.41 3.44 3.44
u6 0 0 0.17 0.27 1.01 1.07 1.85 1.87 2.41 2.41 3.44 3.44
u7 3 3 3.83 3.73 3.99 3.93 4.15 4.13 4.59 2.49 6.56 6.56
u8 1.96 3 1.84 2.99 1.08 1.76 0.33 0.53 0 0 0 0
u9 1.96 - 1.84 - 1.08 - 0.33 - 0 - 0 -
Route Flow Distribution
Uoad1 1.05 2.86 1.99 3.48 2.91 3.78 3.83 4.09 4.59 4.59 6.56 6.56
Uobd1 0 0.14 0.17 0.52 1.01 1.22 1.85 1.91 2.41 2.41 3.44 3.44
Uobad1 1.96 - 1.84 - 1.08 - 0.33 - 0 - 0 -
Uobd2 0 0 0.17 0.27 1.01 1.07 1.85 1.87 2.41 2.41 3.44 3.44
Uobcd2 1.96 3 1.84 2.99 1.08 1.76 0.33 0.53 0 0 0 0
Uocd2 1.05 0 1.99 0.74 2.91 2.17 3.83 3.6 4.59 4.59 6.56 6.56
Route Travel Times
Uoad1 81.05 81.5 90.32 88.28 92.83 91.63 95.35 94.98 100.53 100.53 122.19 122.19
Uobd1 89.09 81.5 90.32 88.28 92.83 91.63 95.35 94.98 100.53 100.53 122.19 122.19
Uobad1 81.05 - 90.32 - 92.83 - 95.35 - 104.06 - 144.38 -
Uobd2 89.09 81.36 90.32 88.03 92.83 91.49 95.35 94.94 100.53 100.53 122.19 122.19
Uobcd2 81.05 74.36 90.32 88.03 92.83 91.49 95.35 94.94 104.06 104.06 144.38 144.38
Uocd2 81.05 80 90.32 88.03 92.83 91.49 95.35 94.94 100.53 100.53 122.19 122.19
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MATLAB codes

B.1 Finding all paths between each OD pair

function [ paths, E, P ] = Paths( Links, OD)
% Description:
% - The function finds all paths between all origins and
% destinations in a traffic network
% Input
% - Links n x 2 matrix of links between nodes [node1 node2; ...]
% - OD m x 2 matrix of origin-destination pairs [o1 d1; ...]
% Output
% - paths matrix of paths between nodes [node1 node2 node3; ...]
% - E equality constraints matrix for demand on OD-paths,
% with entries 1 if path j goes between OD pair i
% - P n x 2 matrix of indexes for which paths (row number)
% goes between each OD pair
[m, ~] = size(OD);
index1 = 1; %path
index2 = 1; %node
paths = 0; p = 1; E = 0;
for i = 1:m

nodeFrom = OD(i);
pathPart = OD(i,1);
paths(index1,1) = pathPart;
[ paths, index1 ] = NextNode( nodeFrom, Links, OD(i,:),...

index1, index2, paths, pathPart );

E(i,p:index1) = 1;
P(i,1) = p;
P(i,2) = index1;
index1 = index1 + 1;
p = index1;
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end
end

B.2 Finding the next node on a path

function [ Paths, index1 ] = NextNode( nodeFrom, Links, OD, ...
index1, index2, Paths, pathPart)

% Description:
% - The function finds the next node on a path between
% origin OD(1) and destiantion OD(2).
% Input:
% - nodeFrom: the nodenumber one wants to go from
% - Links: n x 2 matrix, all directed links in the network
% - OD: 1 x 2 matrix, origin and destination pairs
% - index1: row number (path) in matrix Paths
% - index2: column number (node) in matrix Paths
% - Paths: p x q in R, matrix of paths, p = # of paths,
% q = # of nodes (max) in Paths
% Output:
% - Paths: p x q in R, matrix of paths
% - index1: rox number (path) in matrix Paths
r = find(Links(:,1) == nodeFrom);
NodesTo = Links(r,2);
if isempty(r) == 1 && Paths(index1, index2) ~= OD(2)

index1 = index1-1;
Paths = Paths((1:index1),:);
temp= index2;
for j = 1:temp

if Paths(:,end) == 0
index2 = index2-1;
Paths = Paths(:,(1:index2));

else
return

end
end

end
index2 = index2 + 1;
for i = 1:length(r)

nodeTo = NodesTo(i);
if i > 1

index1 = index1 + 1;
Paths(index1,1:(index2-1)) = pathPart;

end
if nodeTo == OD(2)

Paths(index1,index2) = nodeTo;
else
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NoCycles = noCycles( Paths(index1,:), nodeTo, OD );
if NoCycles == 1

Paths(index1, index2) = nodeTo;
[ Paths, index1] = NextNode(nodeTo, Links, OD,...

index1, index2, Paths, Paths(index1,1:index2));
else

index1 = index1-1;
Paths = Paths((1:index1),:);

end
end

end
end

B.3 Check for cycles

function [ logical ] = noCycles( path, nextNode, od )
% Description:
% - The function check that nextNode do not give a cycle,
% either on one-way links or two-way links
% Input:
% - path 1 x n vector in R
% - nextNode integer in R, want to be added to path at n+1
% Output:
% - logical 1 = true, if nextNode may be added to the path
% 0 = false, if nextNode leads to cycle
logical = 1;
path = path(path ~= 0);
[~,n] = size(path);
temp = [path(n),nextNode];
for i = 1:(n-1)

if path(i+1) ~= od(2)
if temp(1) == path(i) && temp(2) == path(i+1)

logical = 0;
return

elseif temp(2) == path(i) && temp(1) == path(i+1)
logical = 0;
return

end
end

end
end



Appendix C

Active-set method

This chapter presents the active-set method which was tried to solve the quadratic
programming problem.

Active-set methods are a group of methods for solving quadratic programming
problems [13, pp. 467-480]. A requirement to use this method on a convex problem
is that G must be positive semidefinite.

Generally, we do not have knowledge about the active set in advance. So this
is the main challenge when wanting to solve a QP problem with inequality con-
straints. Active-set methods solve QP subproblems with only equality constraints.
The sets of equality constraints of these subproblems are called working sets, de-
noted Wk at iteration k, and will be further explained below.

There are three variations of active-set methods for QP, which are primal, dual
and primal-dual. The primal methods ‘generate iterates that remain feasible with
respect to the primal problem, while steadily decreasing the objective function
q(x)’ [13, p. 468]. In the following calculations, a primal method was used.

C.1 KKT-conditions
Let x∗ be any solution of the constrained QP problem in (3.65). Then x∗ will
satisfy the following KKT-conditions,

Gx∗ + c−
∑

i∈A(x∗)
λ∗i ai = 0, (C.1a)

a>i x
∗ = bi, ∀i ∈ A(x∗), (C.1b)

a>i x
∗ ≥ bi, ∀i ∈ I\A(x∗), (C.1c)
λ∗i ≥ 0, ∀i ∈ I ∩ A(x∗), (C.1d)

for some Lagrange multipliers λ∗i , i ∈ A(x∗), where ai and bi are the constraint
parameters. As before, E and I are finite sets of indeces for equality and inequality
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constraints, respectively. The index set A(x) is called the active set of x, and is
defined as,

The active set A(x) at any feasible point x consists of the equality
constraint indices from E together with the indices of the inequality
constraints i ∈ I for which ci(x) = 0; that is

A(x) = E ∪ {i ∈ I|ci(x) = 0},

[13, p. 308].

A point x is feasible if it satisfies the constraints of the constrained optimization
problem. In the non-linear optimization problem on a traffic network, the inequal-
ity constraints in (3.2d) is said to be active if the path flow Φβ = 0 on path β,
meaning path β carries no flow.

If x∗ satisfies the conditions (C.1) for some λ∗i , i ∈ A(x∗), and G is
positive semidefinite, then x∗ is a global solution of (3.65) [13, p 464,
Theorem 16.4].

For a QP problem of only equality constraints, the KKT-conditions may be
written as matrices. Let λ∗ be the vector of Lagrange mulitpliers which satisfies
the KKT-conditions. Let A be the matrix whose rows are the gradients a>i of
the constraints where i ∈ E (or i ∈ A(x)), and equivalently let b be the vector of
components bi, i ∈ E (or i ∈ A(x)).

Let Φ∗ be the solution vector of path flows. The KKT conditions may then be
written as [

G −A>
A 0

] [
Φ∗
λ∗

]
=
[
−c
b

]
. (C.2)

Introducing p = Φ∗ − Φ, where Φ is some estimate of the solution, and inserting
into equation (C.2), the equation system can be rearranged such that,[

G −A>
A 0

] [
−p
−λ∗

]
=
[

G −A>
A 0

] [
Φ
0

]
+
[

c
−b

]
,

which leads to [
G A>
A 0

] [
−p
λ∗

]
=
[
g
h

]
, (C.3)

where
g = GΦ + c h = AΦ− b.

The matrix of equation (C.3) is called the Karush-Kuhn-Tucker matrix, denoted
K.
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C.2 Approach
The working set Wk at iteration k is a subset of constraints, both equality and
inequality. All constraints in the working set is imposed as equality constraints
and is the assumed active constraints at iteration k. An important requirement
for the working set is that all gradients of constraints ai in the set, i ∈ Wk,
are linearly independent. The requirement is equal to the linear independence
constraint qualification (LICQ) [13, p. 320], which must be satisfied to apply
KKT-conditions to the problem.

As usual, the next iterate is given by a step direction p and a step length α,
such that Φk+1 = Φk +αkpk. In the active-set method, step p is found by solving a
QP subproblem of equality constraints from the working set Wk. To find the QP
subproblem, let p and gk be defined as,

p = Φ− Φk, gk = GΦk + c,

where Φk is the iterate at step k. Substituting Φ into the objective function (3.71)
(or (3.65a)), we obtain

C(φ) = 1
2p
>Gp+ g>k p+ 1

2Φ>kGΦk + Φ>k c.

Since the two last terms are independent of p, these may be neglected when solving
the minimization problem with respect to p. So, the QP subproblem becomes

min 1
2p
>Gp+ g>k p (C.4a)

subject to a>i p = 0, i ∈ Wk, (C.4b)

with solution pk. As the subproblem only has equality constraints, the KKT-
conditions can be written as matrices, such that[

G −A>
A 0

] [
pk
λk

]
=
[
−gk

0

]
. (C.5)

This system of equations can be solved directly or iteratively. We have used a
direct solution, which is found as following: From the first equation in (C.5) we
have that

Gpk − A>λk = −gk. (C.6)

As G is positive definite, we multiply the above equation by AG−1, such that

Apk − AG−1A>λk = −AG−1gk.
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From the second equation in (C.5), Apk = 0, so λk is found by

(AG−1A>)λk = AG−1gk. (C.7)

Inserting the solution of λk into (C.6), gives

Gpk = (A>λk − gk), (C.8)

which can be solved to obtain the solution pk of the QP subproblem (C.4).
As long as pk 6= 0, the next iteration step will be Φk+1 = Φk + αkpk, for some

step-length parameter αk. This step-length is selected as the largest value in the
range [0,1], for which all constraints are satisfied. If Φk + pk is a feasible point,
then αk = 1. If not, αk will be decided by the following equation,

α̂k = min
i/∈Wk,a

>
i pk<0

bi − a>i Φk

a>i pk
. (C.9)

And so, the step-length parameter will be

αk = min (1, α̂k) . (C.10)

The iteration is continued until a point Φ̂ is reached, which minimizes the
objective function over its working setWk. At this point we have that the solution
of the subproblem is pk = 0.

The solution pk = 0 satisfies the optimality conditions in equation (C.3) and
(C.4). The Lagrange multipliers λ̂i will then satisfy

Â>λ̂ = g, (C.11)

at iteration k with working set Ŵ =Wk, where

Â>λ̂ =
∑
i∈Ŵ

aiλ̂i, g = GΦ̂ + c. (C.12)

The value of λi must be greater or equal to zero.
With a bad initial feasible point x0, the method needs too many iterations to

find the solution. The challenge is to find a good initial guess, to ensure a smaller
number of iterations.
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The stepwise procedure is given in Algorithm 3.
Algorithm 3: Active-set method for convex QP [13, p. 468].

Input: Matrix G, c and OD demand κ.
Output: Solution flow distribution x∗ at Nash equilibrium.
for k=0,1,2,... do

Solve the QP subproblem (C.4) to find pk
if pk = 0 then

Compute Lagrange mulitipliers λi from (C.11)
if λi ≥ 0 for all i ∈ Wk ∩ I then

return with solution x∗ = xk
else

j ← arg minj∈W∩I λj;
xk+1 ← xk;
Wk+1 ←Wk\{j};

end
else

Compute αk from equations (C.10) and (C.9);
xk+1 ← xk + αkpk;
if there are blocking constraints then

Obtain Wk+1 by adding one of the blocking constraints to Wk;
else
Wk+1 ←Wk;

end
end

end
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