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Abstract

In this thesis, we study the mass-radius relation of neutron stars. This relation is com-
puted using stellar structure equations and an equation of state. We use the Tolman-
Oppenheimer-Volkoff (TOV) equation and the mass continuity equation as stellar struc-
ture equations. Using quantum field theory, we find the equation of state of an ideal gas
of fermions. Interactions between the fermions are included using the σ-ω model, where
we introduce mesons in a mean-field approximation. We also look at how the model can
be extended by including scalar self-interactions and isospin force. Leptons are also in-
cluded in order to impose electrical neutrality. We solve the equation of state for the σ-ω
model numerically, and use it to solve the TOV and mass continuity equations for a given
central pressure. Solving the equations for a range of central pressures gives us the mass-
radius relation of neutron stars. It has a maximum mass Mmax = 2.595M� for a radius
Rmax = 12.64 km. This means that there is an upper bound on the mass of a neutron star,
and beyond this limit, the neutron star is unstable and will continue to collapse into a black
hole.
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Sammendrag

I denne masteroppgaven ser vi på masse-radius-sammenhengen til nøytronstjerner. Masse-
radius-sammenhengen finner vi ved hjelp av ligninger for stjernestrukturen og en til-
standsligning. Tolman-Oppenheimer-Volkoff (TOV)-ligningen og kontinuitetsligningen
for masse brukes som ligninger for stjernestrukturen. Vi bruker kvantefeltteori til å ut-
lede en tilstandsligning for en ideell gass av fermioner. For å inkludere vekselvirkninger
mellom fermionene bruker vi σ-ω-modellen, hvor vi innfører mesoner i en middelfelttil-
nærming. Vi ser også på hvordan modellen kan bli utvidet ved å inkludere skalare selvvek-
selvirkninger og isospinnkraft. For å kunne kreve elektrisk ladningsnøytralitet innfører vi
også leptoner. Vi finner tilstandsligningen for σ-ω-modellen numerisk og bruker den til
å løse TOV-ligningen og kontinuitetsligningen for masse for et gitt sentraltrykk. Ved å
løse ligningene for et spekter av sentraltrykk, finner vi sammenhengen mellom massen
og radien til nøytronstjerner. Kurven har en maksimumsmasse Mmax = 2.595M� for en
radius på Rmax = 12.64 km. Dette betyr at det finnes en øvre grense på hvor stor masse
en nøytronstjerne kan ha. Over denne grensen er nøytronstjernen ustabil og vil kollapse
videre til et sort hull.
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Abbreviations, Notations
and Conventions

• Abbreviations The following abbreviations are used
TOV equation = Tolman-Oppenheimer-Volkoff equation
EoS = Equation of state

•Metric For Minkowski space, the metric is gµν = diag (−1, 1, 1, 1).

• Vectors Spacial 3-vectors are written as x = (x1, x2, x3). Spacetime 4-vectors are
written as x = xµ = (x0, x1, x2, x3) = (x0, xi) = (x0,x).

• Units Natural units are used, except when working with the TOV equation, for which
SI units are used.

• Constants in natural units We use the following constants in natural units
Reduced Planck’s constant ~ = 1
Speed of light c = 1
Neutron mass m = 939 MeV
Sigma meson mass mσ = 550 MeV
Omega meson mass mω = 783 MeV

• Constants in SI units we use the following constants in SI units
Reduced Planck’s constant ~ = 1.054 571 8× 10−34 m2 kg s−1

Speed of light c = 299 792 458 m s−1

Gravitational constant G = 6.674 08× 10−20 m3 kg−1 s−2

Neutron mass m = 1.674 927 471× 10−27 kg
Solar mass M� = 1.9891× 1030 kg
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Chapter 1
Introduction

A neutron star is a high-density stellar object. It is the last stage of the evolution of a
high-mass star and the remnant core that is left after the star has gone through a supernova
explosion. Neutron stars are small, but have large masses. Typical values are a mass of
one solar mass M� and radius of 10 km, corresponding to a density of order 1017 kgm−3.
This density is comparable to the density found in an atomic nucleus. Neutron stars are
the second densest objects in the universe, their densities only surpassed by black holes.
The extreme densities of neutron stars make them ideal objects for the study of extreme
condition physics, such as general relativity and the interplay with nuclear and particle
physics.

When studying neutron stars, we are interested in the relation between the mass and
the radius of the star. To find this relation, we need equations for the stellar structure and an
equation of state for nuclear matter. Assuming that the stellar object is static, spherically
symmetric and consists of a perfect fluid, we can derive the Tolman-Oppenheimer-Volkoff
(TOV) equation. This derivation was performed in the specialization project [32]. The
TOV equation together with the mass continuity equation describe a relativistic stellar
object and will be used as stellar structure equations. In the specialization project, the
equation of state was found using a fully-degenerate, ideal Fermi gas. Solving the TOV
equation with this equation of state, we found that there is an upper bound on the mass of
about Mmax = 0.77M�. This upper bound on the mass is lower than several observed
neutron star masses, which suggests that the model is too simplistic.

In the following master’s thesis, we try to improve the model by changing the equation
of state, while still using the TOV and mass continuity equations as stellar structure equa-
tions. The equation of state will be found using quantum field theory. We will treat the
neutrons as Dirac fermions and find expressions for the pressure and energy density using
a path integral formalism. Next, we will incorporate nuclear interactions in a mean-field
approximation and find a new equation of state for this model, which we will use to find
the mass-radius relationship of a neutron star.
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Chapter 2
Thermodynamics and Statistical
Mechanics

This chapter is based on references [1] and [20].

Thermodynamics describe the bulk properties of a system in equilibrium. Bulk proper-
ties are intensive and do not depend on the size of the system. Temperature, pressure and
density are bulk properties of interest when working with neutron stars. The relation be-
tween the pressure and the density is called the equation of state (EoS) and is necessary to
solve the equation for the stellar structure of the star.

2.1 Statistical ensembles
In thermodynamics, we want to describe systems consisting of very many particles. For
these kind of systems, it is impossible to find an exact description using classical or quan-
tum mechanics. Instead, we use statistical mechanics, where we look at the statistical
behaviour of a large collection of identical systems, known as an ensemble. We are inter-
ested in the macroscopic properties of the ensemble, which are described by macroscopic
variables such as temperature, entropy, pressure and energy. These variables are statistical
averages over the ensemble.

In statistical mechanics, we are concerned with three different kinds of ensembles:
the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble.
Which of these ensembles one should use, depends on the system and its restrictions. The
ensembles are also known by the names of which thermodynamical quantities that are
conserved in the system.

The microcanonical ensemble describes an isolated system, with fixed energy E and a
fixed number of particles N . The volume V of the system is also fixed. The microcanoni-
cal ensemble is therefore also known as the NV E ensemble.

The canonical ensemble describes a system in contact with a heat reservoir at temper-
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Chapter 2. Thermodynamics and Statistical Mechanics

ature T . The system can exchange energy with its surroundings, so the energy is no longer
conserved. The number of particles and the volume is still fixed. The canonical ensemble
is also called the NV T ensemble. The Lagrange multiplier of the system is β = T−1.
Lagrange multipliers are used to fix the averages of quantities, and will for the canonical
ensemble fix the mean energy.

Lastly, the grand canonical ensemble describes a system in contact with a heat reser-
voir at temperature T and a particle reservoir. The system can freely exchange energy and
particles with the reservoirs, so neither the energy nor the number of particles are fixed.
The energy E and number of particles N will therefore fluctuate when the system is in
thermal equilibrium. The system has three fixed thermodynamical quantities: the temper-
ature T , the volume V and the chemical potential µ. The grand canonical ensemble is
therefore often called a µV T ensemble. The quantities β = T−1 and µ are the Lagrange
multipliers of the system: β fixes the mean energy and µ, assuming it is the chemical
potential for the particles, fixes mean number of particles.

For the case of a neutron star, the system is best described by the grand canonical
ensemble. In stars, particles are frequently created and destroyed, meaning we must allow
for fluctuations in the number of particles. As stars emit light, it should also be possible
for energy exchange with the surroundings. The volume and temperature of a star is often
assumed to be constant, although these are simplifications to reality.

2.2 The partition function and thermodynamic
observables

The grand canonical partition function Z, hereafter referred to as the partition function, is
used to describe the grand canonical ensemble. It describes a system in thermodynamic
equilibrium and it is the most fundamental quantity of the system, as every thermody-
namical quantity can be derived from it. For a system with Hamiltonian Ĥ and a set of
conserved quantities Ni, represented by the conserved number operators N̂i, the partition
function is given by

Z = Z(V, T, µi) = Tr[e−β(Ĥ−µiN̂i)] = Tr ρ̂, (2.1)

where ρ̂ = exp [−β(Ĥ − µiN̂i)] is the statistical density matrix and µi is the chemical
potential of the conserved quantity Ni. The operators N̂i must commute with themselves
and Ĥ . The short-hand notation Ĥ ′ = Ĥ − µiN̂i is often used. The average of any
observable represented by an operator Â, can be found from

A = 〈Â〉 =
Tr Âρ̂

Tr ρ̂
. (2.2)

Using the partition function, the following expressions for some thermodynamical quanti-
ties are found; the pressure P is given by

P =
∂(T lnZ)

∂V
, (2.3)

4
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the number of particles Ni by

Ni =
∂(T lnZ)

∂µi
, (2.4)

the entropy S by

S =
∂(T lnZ)

∂T
, (2.5)

and the energy E by

E = −PV + TS + µiNi. (2.6)

The pressure is also related to Helmholtz free energy F , which is given by

F = −T lnZ, (2.7)

such that

P = −∂F
∂V

. (2.8)

We will use these expressions to find the equation of state.
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Chapter 3
Classical Mechanics, Quantum
Mechanics and Quantum Field
Theory

Before using quantum field theory to derive a new equation of state, we will look at some
connections between classical mechanics, quantum mechanics, and quantum field theory.
In particular, we will see how the quantities Lagrangian, Hamiltonian, and action are de-
fined in classical mechanics, how a path-integral formalism is defined in quantum mechan-
ics, and how these are extended to quantum field theory. In the last part of the chapter, we
will look at a useful result called Noether’s theorem and how we can work in imaginary
time when using the path integral formalism in quantum field theory.

3.1 Lagrangian, Hamiltonian, and action in
classical mechanics

This section is based on references [4] and [14].

In classical mechanics, the Lagrangian L is usually given as the difference between the
kinetic energy T and the potential energy V

L = T − V, (3.1)

and is a function of the generalized coordinates q, their derivatives q̇, and the time t, such
that L = L(q, q̇, t). We have suppressed the indices, such that qi = q. The Lagrangian
satisfies the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (3.2)

7



Chapter 3. Classical Mechanics, Quantum Mechanics and Quantum Field Theory

which gives the equations of motion of the system. Sometimes, it is useful to go from
the Lagrangian formulation, which depends on (q, q̇, t), to the Hamiltonian formulation,
which depends on (q, p, t). Here, p is the conjugate momentum, given by

p =
∂L

∂q̇
. (3.3)

Changing variables in this way is called a Legendre transformation. For a system with La-
grangian L, the corresponding Hamiltonian H can be found through the Legendre trans-
formation

H = H(q, p, t) = pq̇ − L(q, q̇, t). (3.4)

The differential of the Lagrangian is

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ +

∂L

∂t
dt = ṗdq + pdq̇ +

∂L

∂t
dt, (3.5)

where we have used (3.2) and (3.3). We can write the differential of the Hamiltonian in
two ways: from the definition of a differential or by using (3.4). We then find that

dH =
∂H

dq
dq +

∂H

∂p
dp+

∂H

∂t
dt = q̇dp− ṗdq − ∂L

∂t
dt. (3.6)

Comparing the expressions of (3.6), we find the Hamiltonian equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
, (3.7)

which, as the Euler-Lagrange equations, also give the equations of motion of the system.
For a system with n degrees of freedom, the Euler-Lagrange equations give n second-order
differential equations and determines the state of the system as a point in the n-dimensional
configuration space, while the Hamiltonian equations give 2n first-order differential equa-
tions and determines the state of the system as a point in the 2n-dimensional phase space.

For a simple system, such as a particle of mass m in a velocity-independent potential,
the Hamiltonian is equal to the total energy E and can be written as

H = T + V =
p2

2m
+ V (q). (3.8)

The corresponding Lagrangian of this system is

L = T − V =
1

2
mq̇2 − V (q), (3.9)

which we see from the Legendre transformation (3.4).
In classical mechanics, the action S is defined as the time integral of the Lagrangian

S[q] =

∫ b

a

dtL(q, q̇, t), (3.10)

8
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where a and b are two points in time. The action S is a functional of q as it maps q into
real numbers. Using the variational principle on the action gives

0 = δS[q] =

∫ b

a

dt δL(q, q̇, t) =

∫ b

a

dt

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
=

∫ b

a

dt
∂L

dq
δq +

[
∂L

∂q̇
δq

]b
a

−
∫ b

a

dt
d

dt

∂L

∂q̇
δq

=

∫ b

a

dtδq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
, (3.11)

where we have used that δq̇ = d
dtδq and that the term ∂L

∂q̇ δq vanishes at the boundaries
a and b. Since δq is arbitrary, the integrand must vanish, which leaves us with the the
Euler-Lagrange equations (3.2).

3.2 Lagrangian, Hamiltonian and action in
quantum mechanics and quantum field theory

This section is based on references [15] and [19].

We will now look at the how the quantities Lagrangian, Hamiltonian, and action from
classical mechanics are extended to quantum mechanics and quantum field theory. In clas-
sical mechanics, we work both in the Lagrangian and Hamiltonian formalisms, depending
on which is best suited for our problem. Problems in classical mechanics are usually con-
cerned with finding the position as a function of time, q(t). Quantum mechanics is most
easily introduced with the Hamiltonian formalism and is usually concerned with finding
the wave functions of the system. We promote the position and momentum variables to
operators q̂ and p̂, which satisfy the canonical commutation relation [q̂, p̂] = i. The Hamil-
tonian also becomes an operator, Ĥ(q̂, p̂, t).

In Dirac notation, we represent the system with state vectors |Ψ〉, which form a com-
plex Hilbert space. The state vectors can be used to find the wave function of a state. In
the position basis, the wave function of a particle is Ψ(q, t) = 〈q|Ψ(t)〉, and its square
|Ψ(q, t)|2 gives the probability density of finding the particle in position q at time t. The
operators act on the state vectors and return the eigenvalues if the state vectors are eigen-
vectors of the operators. The Hamiltonian is an energy operator, meaning that when acting
on the state |Ψ(t)〉, its eigenvalue corresponds to the energy of the system, such that

Ĥψ = Eψ. (3.12)

The state vectors |Ψ〉 of the system satisfy the time-dependent Schrödinger equation

i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 . (3.13)

Various bases, such as the position basis |q〉 or the momentum basis |p〉, can be chosen
for the state vectors. The Schrödinger equation can be solved in terms of a unitary time

9



Chapter 3. Classical Mechanics, Quantum Mechanics and Quantum Field Theory

evolution operator Û(t, t0), defined by

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 . (3.14)

Assuming the Hamiltonian Ĥ is time-independent, the time evolution operator becomes

Û(t, t0) = e−iĤ(t−t0). (3.15)

The time evolution operator also helps us to go from the Schrödinger picture, where the
operators are constants and the time evolution is given by the change in the eigenvec-
tors |Ψ(t)〉, to the Heisenberg picture, where the operators are time-dependent while the
eigenvectors are constants in time. The operators ÔS and ÔH , in the Schrödinger and the
Heisenberg pictures respectively, are related through

ÔS = Û(t, t0)OH(t)Û†(t, t0). (3.16)

The connection between the states |ΨS(t)〉 in the Schrödinger picture and the states |ΨH(t)〉
in the Heisenberg picture is

|ΨS(t)〉 = Û(t, t0) |ΨH(t)〉 . (3.17)

When going to quantum field theory, we describe particles in terms of fields φ, instead
of their positions and momenta. We can view quantum mechanics as (1 + 0)-dimensional
quantum field theory, meaning that the position operator q̂ at some point corresponds to
the field operator φ̂. In the Heisenberg picture, which is most common to use in quantum
field theory, we have

q̂H(t)↔ φ̂H(t,0). (3.18)

This means that a particle in quantum mechanics described by the mapping t → q(t),
corresponds to a field in (1 + 0)-dimensions, described by the mapping t→ φ(t).

The Lagrangian in quantum field theory is a function of the fields φ, their time deriva-
tives φ̇ and the time t, such that L = L(φ, φ̇, t). We often write the Lagrangian and the
Hamiltonian as space integrals over their respective densities, that is

L(φ, φ̇, t) =

∫
d3xL(φ, φ̇, t), (3.19)

H(φ, φ̇, t) =

∫
d3xH(φ, φ̇, t), (3.20)

where L andH are the Lagrangian and the Hamiltonian density, respectively. The change
from position to field means that both the action (3.10) and the Euler-Lagrange equations
(3.2) can be written in terms of the fields. For the action, we find that

S[φ] =

∫ b

a

dtL(φ, φ̇, t) =

∫ b

a

dt

∫
d3xL(φ, φ̇, t). (3.21)

10



3.3 Path integral formalism in quantum mechanics and quantum field theory

The Euler-Langrange in quantum field theory is usually written in terms of the Lagrangian
density L, such that

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0. (3.22)

Similiarly to equation (3.4), we can also find the Hamiltonian density in terms of the fields
from a Legendre transformation

H = π
∂L
∂t
− L, (3.23)

where

π =
∂L

∂(∂tφ)
(3.24)

is the conjugate momentum to the field φ.

3.3 Path integral formalism in quantum mechanics and
quantum field theory

This section is based on references [19], [23], and [28].

We want to work with quantum field theory in the path integral formalism. We can develop
the formalism in quantum mechanics and extend it to quantum field theory by using the
relation (3.18). Let us start by looking at the transition amplitude F (qf , tf ; qi, ti), that is
the probability for a particle at position qi at time ti to be at position qf at time tf . Using
the position basis |q〉 and the expression for the time evolution operator Û(tf , ti) from
equation (3.15), we find that the transition amplitude F (qf , tf ; qi, ti) can be written as

F (qf , tf ; qi, ti) = 〈qf | e−iĤ(tf−ti) |qi〉 . (3.25)

We let t = tf − ti and divide t into N infinitesimal intervals of size δt, so that

F (qf , tf ; qi, ti) = 〈qf | e−iĤδt · · · e−iĤδt |qi〉 . (3.26)

Next, we insert a complete set of position eigenstates
∫∞
−∞ dqj |qj〉 〈qj | = 1 between each

exponential in (3.26), such that

F (qf , tf ; qi, ti) =

∫ N∏
j=1

dqj 〈qj+1| e−iĤδt |qj〉 , (3.27)

where the right-most and left-most states are |q1〉 = |qi〉 and 〈qN+1| = 〈qf |, and we have
suppressed the boundaries of the integrals. The exponentials of the transition amplitudes
in (3.27) can be expanded since δt is small, giving

〈qj+1| e−iĤδt |qj〉 = 〈qj+1|
[
1− iĤδt− 1

2
Ĥ2δt2 + ...

]
|qj〉

= 〈qj+1|qj〉 − iδt 〈qj+1| Ĥ |qj〉+O(δt2). (3.28)

11



Chapter 3. Classical Mechanics, Quantum Mechanics and Quantum Field Theory

To evaluate the second term of (3.28), we assume that we have a Hamiltonian of the form
Ĥ = p̂2/2m+V (q̂), as in (3.8). We insert a complete momentum basis

∫∞
−∞

dpj
2π |pj〉 〈pj | =

1 in front of the ket state and use that 〈qj |pj〉 = eipjqj , such that

−iδt 〈qj+1| Ĥ |qj〉 =− iδt 〈qj+1|
[
p̂2

2m
+ V (q̂)

] ∫
dpj
2π
|pj〉 〈pj |qj〉

=− iδt
∫
dpj
2π

[
p2
j

2m
+ V (qj+1)

]
eipj(qj+1−qj)

=− iδt
∫
dpj
2π

[
p2
j

2m
+ V (qj)

]
eipj(qj+1−qj), (3.29)

where we used the approximation V (qj+1) ≈ V (qj) in the last step. This approximation
is valid in the continuum limit N →∞. We can also rewrite the first term in (3.28) using
the momentum basis

〈qj+1|qj〉 =

∫
pj
2π
eipj(qj+1−qj). (3.30)

The transition amplitude between qj+1 and qj therefore becomes

〈qj+1| e−iĤδt |qj〉 =

∫
pj
2π
eipj(qj+1−qj)

[
1− iδtĤ(qj , pj) +O(δt2)

]
=

∫
pj
2π
eipj(qj+1−qj)e−iδtĤ(qj ,pj)

=

∫
pj
2π
eiδt[pj q̇j−Ĥ(qj ,pj)], (3.31)

where we have dropped terms of order δt2 and higher, and used that (qj+1 − qj)/δt ≈ q̇j ,
which is also valid in the continuum limit. Inserting (3.31) into (3.27), we find that the
transition amplitude is

F (qf , tf ; qi, ti) =

∫ N∏
j=1

dqj
dpj
2π

exp

iδt
N∑
j=1

[
pj q̇j − Ĥ(qj , pj)

] . (3.32)

In the limit N → ∞, δt → 0, the exponential of (3.32) becomes an integral over time
of the time-dependent functions for position q(t) and momentum p(t), and we denote the
integral measure as DqDp. The transition amplitude in the continuum limit is therefore

F (qf , tf ; qi, ti) =

∫
DqDp exp

{
i

∫ tf

ti

dt
[
p(t)q̇(t)− Ĥ(q(t), p(t))

]}
, (3.33)

with the boundary conditions q(ti) = qi and q(tf ) = qf . Comparing the term in the square
brackets of (3.33) with equations (3.4) and (3.10), we see that it is equal to the Lagrangian
L of the system and the integral itself is the action S

F (qf , tf ; qi, ti) =

∫
DqDp exp

[
i

∫ tf

ti

dtL(q, q̇, t)

]
=

∫
DqDp eiS[q]. (3.34)
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3.3 Path integral formalism in quantum mechanics and quantum field theory

t

q qi = q1 q2 q3 qN−1qN = qf

Figure 3.1: The concept of a path integral. We find the transition amplitude by integration over all
possible paths between the initial point qi and the final point qf . The figure is inspired by Figure 2.1
in [19].

This type of integral is called a path integral, and the above result (3.34) is known as the
phase-space path integral. The name path integral comes from the fact that we integrate
over all possible paths from the initial point qi to the final point qf . A discretized version
of the concept is shown in Figure 3.1.

When assuming a Hamiltonian of the form Ĥ = p̂2/2m + V (q̂), we can perform
the momentum integrals in the the transition amplitude (3.32). Then the transition ampli-
tude can be split into separate integrals over position and momentum, and the momentum
integrals are Gaussian, which gives

F (qf , tf ; qi, ti) =

∫ N∏
j=1

dqj exp

−iδt
N∑
j=1

V (qj)


×
∫ N∏

j=1

dpj
2π

exp

iδt
N∑
j=1

[
pj q̇j −

p2
j

2m

] . (3.35)

Using the formula for Gaussian integrals of this form from [19], we can calculate a mo-
mentum integral∫

dpj
2π

exp

[
iδt

(
pj q̇j −

p2
j

2m

)]
=

√
m

2πiδt
exp

(
iδtmq̇2

j

2

)
. (3.36)

We use this result in the transition amplitude (3.35) and find

F (qf , tf ; qi, ti) =
( m

2πiδt

)N/2 ∫ N∏
j=1

dqj exp

iδt
N∑
j=1

[
1

2
mq̇j

2 − V (qj)

] . (3.37)

The factor
(

m
2πiδt

)N/2
may be absorbed inDq as it does not depend on q. We recognize the

term in the square brackets as the Lagrangian of the form given by (3.9). We can therefore

13
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write the transition amplitude as

F (qf , tf ; qi, ti) =

∫
Dq exp

iδt N∑
j=1

L(qj , q̇j , t)

 . (3.38)

In the continuum limit, the transition amplitude becomes

F (qf , tf ; qi, ti) =

∫
Dq exp

[
i

∫ tf

ti

L(q, q̇, t)

]
=

∫
DqeiS[q], (3.39)

where we used that the temporal integral over the Lagrangian is equal to the action. Equa-
tion (3.39) is known as the configuration-space path integral.

Next, we see how the path integral formalism from quantum mechanics is extended
to quantum field theory. Using the relation between the position operator in quantum me-
chanics and the field operator in quantum field theory (3.18) and the definition of conjugate
momentum in quantum field theory (3.24), we can find an expression for the path integral
in (1+0)-dimensional quantum field theory, which we denote byK. Using this expression
in the quantum mechanical transition amplitude (3.33), we have

K =

∫
DπDφ eiS[φ] =

∫
DπDφ exp

[
i

∫
d4xL(φ, ∂µφ)

]
. (3.40)

Again, if the Hamiltonian density can be assumed to have a simple formH = 1
2π

2 +V(φ),
the Gaussian integral over the conjugate momenta π can be performed to give

K = N

∫
Dφ eiS[φ] = N

∫
Dφ exp

[
i

∫
d4xL(φ, ∂µφ)

]
. (3.41)

However, this step will not always be possible as many quantum fields have complicated
Lagrangian densities, and we will see when working with fermionic fields that we must
use the phase-space path integral (3.40).

3.4 Noether’s theorem
This section is based on references [13], [19], and [31].

Noether’s theorem [24] states that a conserved current is associated with each generator
of a continuous symmetry of the Lagrangian of the system. The theorem is applicable to
both classical and quantum field theory, even to the classical mechanics of a point particle.
We will look at Noether’s theorem applied to quantum fields described by a Lagrangian
density L(φ, ∂µφ). A infinitesimal change δφ in the field φ leads to a change δL in the
Lagrangian density that is equal to

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ. (3.42)
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3.4 Noether’s theorem

Using the Euler-Lagrange equation (3.22) for the first term and the substitution δ∂µ = ∂µδ
for the second term, the change δL (3.42) becomes

δL = ∂µ

(
∂L

∂(∂µφ)

)
δφ+

∂L
∂(∂µφ)

∂µδφ = ∂µ

(
∂L

∂(∂µφ)
δφ

)
. (3.43)

If the Lagrangian density is invariant under the transformation φ → φ′ = φ + δφ, such
that L′(φ′) = L(φ), we say that it has a continuous symmetry. When using δL = 0 in
equation (3.43), we see that the continuous symmetry implies the existence of a conserved
current

∂µj
µ = 0, (3.44)

where

jµ =
∂L

∂(∂µφ)
δφ. (3.45)

The current jµ is known as a Noether current. If the change δL is equal to a four divergence
∂µK

µ, the conserved current becomes

jµ =
∂L
∂∂µφ

δφ−Kµ. (3.46)

If we split the current into a temporal part j0 and a spacial part j, we recognize equation
(3.44) as the continuity equation

0 = ∂µj
µ = ∂0j

0 + ∇ · j, (3.47)

We often interpret j0 as a charge density and j as a current density.
Next, we take the space integral of the continuity equation (3.47) over the 3-volume V

of the system ∫
V

d3x ∂0j
0 = −

∫
V

d3x∇ · j = −
∫
S

j · dS, (3.48)

where we used Gauss’ divergence theorem to write the volume integral of the divergence
of the current as a surface integral over the current. Since the system is contained within
the large volume V , there will be no current crossing the boundary defined by the surface
S and hence the surface integral becomes zero. Using this in (3.48), we see that the volume
integral over the time derivative of the current j0 is zero, meaning that the volume integral
of the current itself remains constant in time. We then have a conserved quantityQ defined
by

Q =

∫
V

d3x j0. (3.49)

Since j0 is a charge density, Q represents the total conserved charge and is known as a
Noether charge. Depending on the fields and symmetries we work with, the conserved
charge Q has different physical meanings.
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3.5 Imaginary time and periodicity of fields
This section is based on references [20] and [23].

It is common to work in imaginary time when using the path integral formalism in quan-
tum field theory at finite temperature. The imaginary time variable τ is related to the real
time variable through

t→ −iτ. (3.50)

The change in time variable corresponds to a Wick rotation from Minkowski to Euclidean
space. We define the Euclidean action SE as the integral over space and imaginary time
of the Euclidean Lagrangian density LE , such that

SE =

∫
dτ

∫
d3xLE . (3.51)

We can then write the path integral in quantum field theory (3.40) in terms of the Euclidean
action SE , such that

K =

∫
DπDφ e−SE [φ] =

∫
DπDφ exp

[
−
∫
dτd3xLE(φ, ∂µφ)

]
. (3.52)

Imaginary time in the path integral formalism is useful when working with the partition
function. Using (2.2), we can find the average of the time-ordered product of two field
operators

〈T {φ(x, t)φ(y, 0)}〉 =
1

Z(β)
Tr
[
e−βĤ

′
φ(x, t)φ(y, 0)

]
=

1

Z(β)
Tr
[
φ(x, t)e−βĤ

′
eβĤ

′
φ(y, 0)e−βĤ

′
]

=
1

Z(β)
Tr
[
φ(x, t)e−βĤ

′
ei(−iβĤ

′)φ(y, 0)e−i(−iβĤ
′)
]

=
1

Z(β)
Tr
[
φ(x, t)e−βĤ

′
φ(y,−iβ)

]
=

1

Z(β)
Tr
[
e−βĤ

′
φ(y,−iβ)φ(x, t)

]
= 〈T {φ(y,−iβ)φ(x, t)}〉. (3.53)

We used the cyclic property of trace in second and fifth step. For the third step we used the
exponentials as time evolution operators acting on the field operator, as in (3.16). Going
from real to imaginary time, we see that t = −iβ becomes τ = β, such that inverse
temperature β plays the role as imaginary time variable. Equation (3.53) can then be
written as

〈T {φ(x, τ)φ(y, 0)}〉 = 〈T {φ(y, β)φ(x, τ)}〉. (3.54)
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Equation (3.54) is known as the Kubo-Martin-Scwhinger (KMS) relation. It follows di-
rectly from (3.54) that

φ(x, 0) = ±φ(x, β), (3.55)

where the sign is determined by whether the fields commute (+) or anticommute (-). Com-
muting fields are bosonic, while anticommuting fields are fermionic.

It is useful to work in Fourier space. Because of the constraints on the periodicity and
antiperiodicity of the fields given in (3.55), the Fourier transform of the field φ is a Fourier
series rather than a Fourier integral. The Fourier transform is therefore

φ(x, t) =
∑
n

φ(x, ωn)eiωnτ . (3.56)

The frequencies ωn are known as Matsubara frequencies. They are discrete and given as

ωn =
2πn

β
, n ∈ Z (3.57)

for bosonic fields, and

ωn =
2π(n+ 1)

β
, n ∈ Z (3.58)

for fermionic fields.
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Chapter 4
Thermal Field Theory

A neutron star can be modelled as an ideal Fermi gas. When the matter is assumed to be
at zero temperature, the properties of the system can be found by using quantum statistical
mechanics. This model was used in the preliminary specialization project [32]. At finite
temperature, the gas is better described when quantum statistical mechanics is extended
to finite-temperature field theory, using a path integral formalism. We will use the path
integral formalism to find the partition function, from which all other thermodynamical
quantities can be derived. The introduction of quantum field theory will also make it
possible to include other contributions to the model, such as nuclear interactions. When
taking the zero-temperature limit, we will see that in addition to our previous result for the
partition function, we will end up with a divergent vacuum contribution, which is a result
of using quantum field theory.

4.1 Fermionic oscillator

This section is based on reference [20].

Before deriving the path integral of the partition function for an ideal Fermi gas, it is use-
ful to look at some of the properties of fermions and their quantum mechanical operators.
The simplest kind of fermionic system is the fermionic oscillator, which can be seen as a
non-interacting field in (1+0) dimension. Since fermions follow the Pauli exclusion prin-
ciple, each single-particle mode can at most be occupied by one fermion. The system has
therefore only two states; the ground state |0〉 and the one-particle state |1〉. The fermion
creation operator a† and the fermion annihilation operator a satisfy the anticommutation
relations {

a, a†
}

= aa† + a†a = 1, (4.1)

{a, a} =
{
a†, a†

}
= 0. (4.2)
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The anticommutation relations are a result of fermions following Fermi-Dirac statistics,
and separates them from bosons, which follow Bose-Einstein statistics and therefore have
operators that commute. From (4.2) we see that the squares of the operators are zero

aa = a†a† = 0. (4.3)

We define the annihilation operator to act on the ground state in the following way

a |0〉 = 0, (4.4)

from which it follows that

a† |1〉 = 0, (4.5)

a† |0〉 = |1〉 , (4.6)
a |1〉 = |0〉 . (4.7)

The product of the two operators is the occupation number operator N̂

N̂ = a†a, N̂ |n〉 = n |n〉 , (4.8)

where n is the eigenvalue of N̂ and gives the number of fermions in the state. The eigen-
value n can therefore either be zero or one. The Hamiltonian Ĥ of the system can be
written in terms of the occupation number operator, such that

Ĥ = ω

(
N̂ − 1

2

)
, (4.9)

where− 1
2ω and 1

2ω are the energy of the states |0〉 and |1〉. The states form a complete set
of eigenvectors for the Hamiltonian and spans a Hilbert space.

We find an expression for the partition function of a fermionic oscillator from equation
(2.1), evaluating the trace of the complete set of eigenvectors of Ĥ such that

Z = Tr e−β(Ĥ−µN̂) =

1∑
n=0

〈n| e−β(ω−µ)N̂e
1
2βω |n〉 =

(
1 + e−β(ω−µ)

)
e

1
2βω. (4.10)

The factor e
1
2βω corresponds to the zero-point energy and is often ignored. We can then

use (2.4) to find the mean number of particles

N =
1

eβ(ω−µ) + 1
, (4.11)

which is the Fermi-Dirac distribution.
We have looked at some properties of fermions, which we want to extend to field theory

in order to describe a many-particle system of fermions. We therefore need to determine
how to implement the analogue of the anticommutation relations for operators in quantum
field theory. In order to do this, we introduce anticommuting variables called Grassmann
variables.
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4.2 Grassmann variables

4.2 Grassmann variables
This section is based on references [8] and [22].

The basic feature of Grassmann variables is that they anticommute. Therefore, they are
also known as anticommuting numbers. Grassmann variables are especially useful when
working with fermions. As seen from equation (4.9), we can find an expression for the
Hamiltonian of the fermionic oscillator. However, if we want to find the corresponding
Lagrangian, we run into problems if we try to use the usual expressions for coordinates
and momenta. The reason is that the anticommutation property of the fermions has no clas-
sical analogue, and to find the Lagrangian we need to introduce anticommuting variables,
that is, Grassmann variables.

In general, we have that the Grassmann variables ηi, i = 1, 2, ..., N , which act as gen-
erators for an N -dimensional Grassmann algebra GN , obey the anticommutation relation

{ηi, ηj} = 0. (4.12)

From this relation, we can find the properties of the Grassmann variables.
Let us first look at the properties of a complex two-dimensional Grassmann algebra,

that we will later extend toN dimensions. The algebra can be generated from the complex
Grassmann variables η and η†. The variables satisfy the anticommutation relations

{η, η} =
{
η, η†

}
=
{
η†, η†

}
= 0, (4.13)

and they must be treated as independent variables. As seen from (4.13), the square of each
of the variables must be zero

η2 =
(
η†
)2

= 0. (4.14)

The most general function f(η, η†) of the two general variables can be written using Taylor
expansions. Since the squares of the variables are zero, terms of higher order than O(η),
O(η†), and O(η†η) vanish. The function f(η, η†) is therefore

f
(
η, η†

)
= c0 + c1η + c′1η

† + c12η
†η, (4.15)

where c0, c1, c′1, and c12 are the complex coefficients of the function. Integration of the
Grassmann variables is defined as∫

dη =

∫
dη† = 0, (4.16)∫

dηη =

∫
dη†η† = 1, (4.17)

and when integrating over both variables, the ordering is chosen such that the inner integral
is performed first: ∫

dη†dη ηη† = +1. (4.18)
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Integrating the function (4.15) then gives∫
dη†dη f

(
η, η†

)
= −c12. (4.19)

The Grassmann variables anticommute with the creation and annihilation operators â and
â† by assumption. Using this fact, we define a coherent fermionic state as

|η〉 = e−ηa
†
|0〉 =

(
1− ηa†

)
|0〉 = |0〉+ η |1〉 , (4.20)

and its bra conjugate as

〈η| = 〈0| e−aη
†

= 〈0|
(
1− aη†

)
= 〈0| − 〈1| η†. (4.21)

The states obey

a |η〉 = η |0〉 = η |η〉 , (4.22)

〈η| a† = 〈0| η† = 〈η| η†. (4.23)

The inner products of the state |η〉 with the states |0〉 and |1〉 are

〈η|0〉 = 〈0|η〉 = 1, 〈1|η〉 = 〈η|1〉† = −η, (4.24)

while the inner product between two coherent fermion states is

〈η′|η〉 = exp
(
η′†η

)
= 1 + η′†η. (4.25)

The inner product between two coherent states can be seen as the transition amplitude
between the two states. Similarly to equation (4.19), integrals over exponentials of Grass-
mann variables give ∫

dη†dη e−λη
†η = λ. (4.26)

The analogue to the completeness relation can be found by considering the integral∫
dη†dη e−η

†η |η〉 〈η| =
∫
dη†dη

(
−η†η |0〉 〈0|+ η |1〉 〈1| η†

)
= |0〉 〈0|+ |1〉 〈1| = 1, (4.27)

where equations (4.16) and (4.17) were used together with a |0〉 = 0 and 〈0| a† = 0.
Another useful relation is the trace of an operator A. This can be found from the integral∫

dη†dη e−η
†η 〈−η|A |η〉 =

∫
dη†dη

(
−η†η 〈0|A |0〉 − η†η 〈1|A |1〉

)
= 〈0|A |0〉+ 〈1|A |1〉 = Tr[A], (4.28)

where we used (4.18).
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The above relations can be generalized to a set of Grassmann variables ηi, i = 1, ..N ,
and their paired sets η†i . This Grassmann algebra then satisfies the anticommutation rela-
tions

{ηi, ηj} =
{
ηi, η

†
j

}
=
{
η†i , η

†
j

}
= 0. (4.29)

A complete set of states is written as∫
dη†i dηi e

−η†i ηi |ηi〉 〈ηi| = 1, (4.30)

and the equivalent of equation (4.26) is∫ N∏
i=1

dη†i dηi exp

(
−

N∑
i=1

η†iMijηj

)
= detM, (4.31)

where M is an N ×N matrix.

4.3 Partition function for anticommuting fields
This section is based on reference [22].

Next, we use the Grassmann variables to find the path integral representation of the par-
tition function for anticommuting fields. The derivation is similar to the derivation of
the path integral formalism in quantum mechanics and quantum field theory performed in
section 3.3. Starting from the definition of the partition function (2.1), the first step is to
evaluate the trace in the partition function using equation (4.28). We split the exponent
into N small terms, such that

Z = Tr[e−βH̄
′
] =

∫
dη†dη e−η

†η 〈−η| e−εĤ′ · · · e−εĤ′ |η〉 , (4.32)

where ε = β/N . Inserting a complete set of states, given by equation (4.30), between each
of the exponents in (4.32), gives terms of the form

e−η
†
i+1ηi+1 〈ηi+1| e−εĤ

′ |ηi〉 = e−η
†
i+1ηi+1e−εĤ

′(η†i+1ηi) 〈ηi+1|ηi〉

= exp

{
−ε
[
η†i+1

(ηi+1 − ηi)
ε

+ Ĥ ′
(
η†i+1, ηi

)]}
, (4.33)

where we used (4.25) for the inner product of two coherent fermion states. We define the
right-most state as |η〉 = |η1〉. The left-most term will then take the form

e−η
†
1η1 〈−η1| eεĤ

′ |ηN 〉 = exp

{
ε

[
−η†1

(−η1 − ηN )

ε
+ Ĥ ′

(
−η†1, ηN

)]}
, (4.34)

which means that ηN+1 = −η1 and η†N+1 = −η†1. The arguments of the exponentials can
be recognized as a discrete approximation of the Euclidean action SE

SE = ε

N∑
i=1

[
η†i+1

ηi+1 − ηi
ε

+ Ĥ ′
(
η†i+1, ηi

)]
. (4.35)
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The path integral representation of the partition function can then be written as

Z =

∫ N∏
i=1

dη†i dηi exp

{
−ε

N∑
i=1

[
η†i+1

ηi+1 − ηi
ε

+ Ĥ ′
(
η†i+1, ηi

)]}

=

∫ N∏
i=1

dη†i dηi e
−SE (4.36)

with the boundary conditions ηN+1 = −η1 and η†N+1 = −η†1. In the continuum limit
we let N → ∞ and ε → 0, while β = εN remains fixed. A collection of Grassmann
variables, one at each point τ ∈ (0, β), represents a field η(τ). The variable τ represents
imaginary time. The integration measure in the path integral representation is often written
as

lim
N→∞

∫ N∏
i=1

dη†i dηi =

∫
Dη† (τ)Dη (τ) , (4.37)

with the boundary conditions

η(β) = −η(0), η†(β) = −η†(0). (4.38)

In the continuum limit, the Euclidean action SE becomes

SE =

∫ β

0

[
η† (τ) ∂τη (τ) + Ĥ ′

(
η† (τ) , η (τ)

)]
dτ. (4.39)

The path integral representation of the partition function in the continuum limit is therefore

Z =

∫
Dη† (τ)Dη (τ) exp

{
−
∫ β

0

[
η† (τ) ∂τη (τ) + Ĥ ′

(
η† (τ) , η (τ)

)]
dτ

}

=

∫
Dη† (τ)Dη (τ) e−SE , (4.40)

still with the boundary conditions given by (4.38). The Grassmann fields thereby obey
antiperiodic boundary conditions over the Euclidean time interval (0, β). To calculate
the partition function in the path integral representation, further knowledge about the
fermionic Hamiltonian is needed.

4.4 Dirac fermions
This section is based on references [9], [16], [20], [22], and [23].

We have established the properties and the path integral representation of the partition
function of anticommuting fields. We next look at a certain type of anticommuting fields
called Dirac fields. Dirac fields describe Dirac fermions, and we can use these Dirac
fermions to model the Fermi gas of a neutron star. A Dirac fermion is a type of fermion
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4.4 Dirac fermions

which is not its own antiparticle. A fermion which is its own antiparticle, is called a Ma-
jorana fermion. All fermions in the Standard Model are Dirac fermions, except possibly
neutrinos. Particles with half-integer spin are fermions. Dirac fermions have spin 1

2 , which
is the case for neutrons.

We look at some properties of the Dirac fermions, which we will need in order to cal-
culate the partition function. In particular we want to find expressions for the Lagrangian
and Hamiltonian densities and the action of the Dirac fermions. The Lagrangian density
of a Dirac fermion is

LM = ψ̄ (iγµ∂µ −m)ψ = ψ̄
(
i/∂ −m

)
ψ, (4.41)

where ψ and ψ̄ = ψ†γ0 are the Dirac field and its adjoint, m is the mass of the Dirac
fermion and γµ are the Dirac matrices. We used the Feynman slash notation /a = γµaµ =
γµa

µ in the second step. The subscript M is used to specify that the Lagrangian density
LM is for Minkowskian space. The Dirac matrices must obey the algebra

{γµ, γν} = 2gµν , (4.42)

and are in standard representation given as

γ0 =

(
I2 0
0 −I2

)
, γ =

(
0 σ
−σ 0

)
. (4.43)

The matrices are 4 × 4, so the 0 denotes a 2 × 2 matrix of zeros, the I2 denotes a 2 × 2
unit matrix, and σ is the vector consisting of the three Pauli matrices: σ = (σ1, σ2, σ3).

Using the Lagrangian density (4.41) in the Euler-Langrange equations for fields (3.22),
we find the equations of motion for the field,

(iγµ∂µ −m)ψ = (i/∂ −m)ψ = 0, (4.44)

and its adjoint,

ψ̄(iγµ∂µ −m) = ψ̄(i/∂ −m) = 0, (4.45)

which are known as the Dirac equation and the adjoint Dirac equation, respectively [11].
The fields are four-component column vectors, called Dirac spinors. The spinor field ψ
consists of the components ψα, where α = 1, 2, 3 or 4. We treat ψ and ψ̄ as independent
variables. We can find plane wave solutions ψα = eip·xuα(p) of the Dirac equation (4.44).
The four-component bi-spinor u(p) splits into two spinors ũ(p) and ṽ(p), which represent
the positive and negative energy solutions, respectively. As required, the Dirac field and
its adjoint satisfy the anticommutation relations

{ψα(x, t), ψ†β(y, t)} = δαβδ
(3)(x− y), (4.46)

{ψα(x, t), ψβ(y, t)} = {ψ†α(x, t), ψ†β(y, t)} = 0. (4.47)

We can then write the Fourier expansion of the Dirac field as

ψ(x) =
1√
V

∑
s

∫
d3p

(2π)3

1

2Ep

[
bs(p)ũs(p)e−ip·x + d†s(p)ṽs(p)eip·x

]
, (4.48)
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Chapter 4. Thermal Field Theory

where V is the 3-volume of the system, s is the spin index,Ep =
√

p2 +m2, p·x = Ept−
p · x, and bs(p) and d†s(p) are operators in field theory that satisfy the anticommutation
relations

{bs(p), br(p
′)} = {ds(p), dr(p

′)} = 0, (4.49)

{bs(p), b†r(p)} = {ds(p), d†r(p)} = (2π)32Epδrsδ
(3)(p− p′). (4.50)

Since we know the Lagrangian density (4.41), we can find the Hamiltonian density of
the Dirac field through a Legendre transformation (3.23). Using the Lagrangian density
(4.41) in (3.24), we find that the conjugate momentum is

π =
∂LM

∂ (∂ψ/∂t)
= iψ̄γ0 = iψ†, (4.51)

where we used (γ0)2 = I4. The Hamiltonian density becomes

H = iψ†
∂ψ

∂t
− LM = iψ†

∂ψ

∂t
− iψ̄γ0 ∂ψ

∂t
− iψ̄γ ·∇ψ +mψ̄ψ

= ψ̄(−iγ ·∇ψ +m)ψ,
(4.52)

where the differentiation was split into a temporal and a spacial part; ∂µ = (∂/∂t,∇).
The Hamiltonian is found by integrating the Hamiltonian density over space, which gives

Ĥ =

∫
d3x ψ̄(−iγ ·∇ +m)ψ =

∫
d3xψ†(−iγ0γ ·∇ +mγ0)ψ. (4.53)

Next, we want to include a chemical potential µ in the Hamiltonian, such that the full
Hamiltonian is Ĥ ′ = Ĥ + µN̂ . The conserved Noether charge Q that corresponds to the
conserved quantity N̂ , can be found using Noether’s theorem from section 3.4. The La-
grangian density of the Dirac field is invariant under the global U(1) phase transformation

ψ → ψ′ = e−iαψ, ψ̄ → ψ̄′ = eiαψ̄. (4.54)

An infinitesimal transformation leads to changes δψ and δψ̄ in the fields, given by

ψ′ = (1− iα)ψ = ψ + δψ, ψ̄′ = (1 + iα)ψ̄ = ψ̄ + δψ̄. (4.55)

From equation (3.45), we find that

αjµ =
∂LM
∂(∂µψ)

δψ +
∂LM
∂(∂µψ̄)

δψ̄ = ψ̄iγµ(−iαψ) + 0 = αψ̄γµψ. (4.56)

We therefore find that the conserved Noether current of the Dirac Lagrangian is

jµ = ψ̄γµψ. (4.57)

Using the conserved current (4.57) in (3.49), we find the conserved Noether charge

Q =

∫
d3x j0 =

∫
d3x ψ̄γ0ψ =

∫
d3xψ†ψ. (4.58)
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4.5 Partition function for Dirac fermions

The full Hamiltonian Ĥ ′ is thereby

Ĥ ′ =

∫
d3xψ†

(
−iγ0γ ·∇ +mγ0 − µ

)
ψ

=

∫
d3x ψ̄

(
−iγ ·∇ +m− µγ0

)
ψ. (4.59)

Having found the full Hamiltonian (4.59) of the system, we can find an expression for
the Euclidean action SE . We insert (4.59) into (4.39) and find that the action is

SE =

∫ β

0

dτ

∫
d3x ψ̄

(
γ0∂τ − iγ ·∇ +m− µγ0

)
ψ. (4.60)

Using that the action SE is related to the Lagrangian LE and Lagrangian density LE
through

SE =

∫
dτ LE =

∫
dτ

∫
d3xLE , (4.61)

we find that the Euclidean Lagrangian density is

LE = ψ̄
(
γ0∂τ − iγ ·∇ +m− µγ0

)
ψ. (4.62)

Comparing the Euclidean Lagrangian density LE to the Minkowskian Lagrangian density
LM in (4.41), we see that LE is the Wick rotation of LM , such that LE(τ) = −LM (t→
−iτ). We note that i∂t → −∂τ . To simplify the expression of the Euclidean Lagrangian
density (4.62), we can introduce the Euclidean Dirac matrices

γ̃0 ≡ γ0, γ̃k ≡ −iγk. (4.63)

The Euclidean Dirac matrices satisfy

{γ̃µ, γ̃ν} = 2δµν . (4.64)

Also, we have that ∂t = ∂τ . The Euclidean Lagrangian density can then be written as

LE = ψ̄ (γ̃µ∂µ +m− γ̃0µ)ψ, (4.65)

where the repeated lower indices imply that we are using the Euclidean Dirac matrices.

4.5 Partition function for Dirac fermions
This section is based on references [20] and [21].

We have found the Hamiltonian density, the Lagrangian density, and the action of Dirac
fermions, and we will now use them to calculate the partition function. Inserting the Dirac
field ψ, its ajoint ψ†, and the expression for the Euclidean action SE (4.60) into the path
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Chapter 4. Thermal Field Theory

integral representation of the partition function of anticommuting fields (4.40), we find
that the partition function becomes

Z =

∫
BC

Dψ̄Dψ exp

[
−
∫ β

0

dτ

∫
d3x ψ̄

(
γ0∂τ − iγ ·∇ +m− µγ0

)
ψ

]

=

∫
BC

Dψ̄Dψ exp

[
−
∫ β

0

dτ

∫
d3x ψ̄ (γ̃µ∂µ +m− γ̃0µ)ψ

]
, (4.66)

where BC are the antiperiodic boundary conditions

ψ(x, β) = −ψ(x, 0), ψ†(x, β) = −ψ†(x, 0). (4.67)

It is more convenient to work in Fourier space (p, ωn) than in (x, τ)-space. The Fourier
transforms of the Dirac fields ψ and ψ̄ are

ψα(x, τ) =
1√
V

∑
n,p

ei(p·x+ωnτ)ψ̃α;n(p),

ψ̄α(x, τ) =
1√
V

∑
n,p

e−i(p·x+ωnτ) ˜̄ψα;n(p), (4.68)

where V is the volume of the system and ωn are the fermionic Matsubara frequencies.
From the antiperiodicity of the fields, we find that the fermionic Matsubara frequencies
must satisfy the constraint given by (3.58). Using the Fourier transforms (4.68), the Eu-
clidean action in (4.60) becomes

SE =
1

V

∫ β

0

dτ

∫
d3x

∑
n,n′

∑
p,q

ei(ωn−ωn′ )τei(p−q)·x ˜̄ψ
(
γ0∂τ − iγ ·∇ +m− µγ0

)
ψ̃

= βδn,n′δ
(3)(p− q)

∑
n,n′

∑
p,q

˜̄ψ
(
iγ0ωn + γ · p +m− µγ0

)
ψ̃

=
∑
n,p

˜̄ψ
[
β
(
iγ0ωn + γ · p +m− µγ0

)]
ψ̃. (4.69)

In the second step, we used that the integral over the imaginary time variable τ gives a δ-
function over the Matsubara indices n and n′ and a factor β, while the integral over space
gives a δ-function over the momenta p and q and a factor V , which cancels the factor 1

V .
Using (4.69), the partition function becomes

Z =

∫ ∏
n,p

D ˜̄ψDψ̃ exp

{
−
∑
n,p

˜̄ψ
[
β
(
iγ0ωn + γ · p +m− µγ0

)]
ψ̃

}
. (4.70)

According to equation (4.31), this is equal to the determinant of the argument of the expo-
nential,

Z = det
[
β
(
iγ0ωn + γ · p +m− µγ0

)]
= detD, (4.71)
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4.5 Partition function for Dirac fermions

where the determinant operation should be carried out over both the Dirac indices and
Fourier space. The determinant over the Dirac indices is the determinant of a 4×4 matrix.
Using the standard representation (4.43) for the gamma matrices, we can writeD in matrix
form

D = β

[(
iωn 0
0 −iωn

)
+

(
0 σ · p

−σ · p 0

)
+

(
m 0
0 m

)
−
(
µ 0
0 −µ

)]
= β

(
iωn +m− µ σ · p
−σ · p −iωn +m+ µ

)
, (4.72)

where each element represents a 2 × 2 diagonal matrix. The scalar product of the vector
of the three Pauli matrices and the momentum vector is

σ · p = σ1p1 + σ2p2 + σ3p3 =

(
p3 p1 − ip2

p1 + ip2 −p3

)
. (4.73)

Writing the matrix D out fully as a 4× 4 matrix, we get

D = β


iωn +m− µ 0 p3 p1 − ip2

0 iωn +m− µ p1 + ip2 −p3

−p3 − (p1 − ip2) −iωn +m+ µ 0
− (p1 + ip2) p3 0 −iωn +m+ µ

 . (4.74)

To find the determinant of the matrix D, let us use a simpler notation by setting a =
iωn +m− µ, b = p3, c = p1 − ip2, d = p1 + ip2, and e = −iωn +m+ µ. The matrix
D is then

D = β


a 0 b c
0 a d −b
−b −c e 0
−d b 0 e

 . (4.75)

The determinant can then be found the usual way, starting from 3 × 3 determinants and
splitting into 2× 2 determinants which can be calculated. We find that the determinant is

detD = β4

a
∣∣∣∣∣∣
a d −b
−c e 0
b 0 e

∣∣∣∣∣∣+ b

∣∣∣∣∣∣
0 a −b
−b −c 0
−d b e

∣∣∣∣∣∣− c
∣∣∣∣∣∣

0 a d
−b −c e
−d b 0

∣∣∣∣∣∣


= β4

[
a2

∣∣∣∣e 0
0 e

∣∣∣∣− ad ∣∣∣∣−c 0
b e

∣∣∣∣− ab ∣∣∣∣−c e
b 0

∣∣∣∣− ab ∣∣∣∣−b 0
−d e

∣∣∣∣
− b2

∣∣∣∣−b −c
−d b

∣∣∣∣+ ac

∣∣∣∣−b e
−d 0

∣∣∣∣− cd ∣∣∣∣−b −c
−d b

∣∣∣∣
]

= β4
(
a2e2 + 2aeb2 + 2aecd+ 2b2cd+ c2d2 + b4

)
= β4

(
ae+ cd+ b2

)2
. (4.76)
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Reinserting the expressions for a, b, c, d, and e into equation (4.76), the determinant
becomes

detD = β4
[
(iωn +m− µ) (−iωn +m+ µ) + (p1 − ip2) (p1 + ip2) + p2

3

]2
= β4

[
m2 − (iωn − µ)

2
+ p2

]2
= β4

[
(iωn − µ)

2 − ω2
]2
, (4.77)

where we used ω2 = p2 + m2 and pulled out a −1 from the square brackets in the last
step. For the determinant over Fourier space, we use the property that the logarithm of the
determinant is equal to the trace of the logarithm [36]

ln detD = Tr lnD, (4.78)

and evaluate the trace over the (p, ωn)-space. Using equations (4.77) and (4.78), we find
that the logarithm of the partition function is

lnZ =
∑
n,p

ln

{
β4
[
(iωn − µ)

2 − ω2
]2}

= 2
∑
n,p

ln
{
β2
[
(iωn − µ)

2 − ω2
]}

, (4.79)

where we pulled out a factor 2 from the logarithm in the second step.
Next, we want to manipulate equation (4.79) so that the sum over the Matsubara fre-

quencies ωn can be performed. First, we split the logarithm into two terms, such that

lnZ =
∑
n,p

{
2 ln

[
β (iωn − µ+ ω)

]
+ 2 ln

[
β (iωn − µ− ω)

]}
. (4.80)

Splitting each of these terms again in two and using that the summation is over both nega-
tive and positive frequencies, meaning

∑
n ωn =

∑
n(−ωn), we get

lnZ =
∑
n,p

{
ln
[
β (iωn − µ+ ω)

]
+ ln

[
β (−iωn − µ+ ω)

]
+ ln

[
β (iωn − µ− ω)

]
+ ln

[
β (−iωn − µ− ω)

]}
. (4.81)

Combining the first term with the second, and the third with the fourth, we find that the
logarithm of the partition function is

lnZ =
∑
n,p

{
ln
[
β2
(
ω2
n + (ω − µ)2

)]
+ ln

[
β2
(
ω2
n + (ω + µ)2

)]}
. (4.82)

The sum over the Matsubara frequencies ωn of the type

σ =

∞∑
n=−∞

ln
[
β2
(
ω2
n + (ω ± µ)2

)]
, (4.83)

is known as a Matsubara sum. This sum can be calculated using the residue theorem and
contour integrals. We start by setting a = ω ± µ and differentiate the Matsubara sum
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(4.83) with respect to a2, such that

∂σ

∂a2
=

∞∑
n=−∞

∂

∂a2
ln
[
β2
(
ω2
n + a2

)]
=

∞∑
n=−∞

1

ω2
n + a2

= −
∞∑

n=−∞

1

(iωn)2 − a2
, (4.84)

where we used ω2
n = −(iωn)2 in the last step. We recall Cauchy’s residue theorem, which

states that for a function f(z) that is analytic inside and on a simple closed path C, except
for finitely many singular points z1, z2, ...zk inside C, the integral of f(z) over C is equal
to 2πi times the sum of the residues of f(z) at the poles z1, z2, ..., zk, that is

∮
C

f(z)dz = 2πi

k∑
j=1

Res
z=zj

f(z). (4.85)

A simple closed path is also called a contour, and the left-hand side of (4.85) is called a
contour integral. The contour encircles the poles counterclockwise. For a simple pole z0,
the residue of the function f(z) at the pole is defined as

Res
z=z0

f(z) = lim
z→z0

(z − z0) f(z). (4.86)

Consider the following function in the complex plane

f(z) =
g(z)

z2 − a2
. (4.87)

If we can find a function g(z) that has poles in z = iωn inside the contour C and residue
one at these poles, the sum in equation (4.84) is equal to the sum of the residues of the
function f(z), so

∞∑
n=−∞

1

(iωn)2 − a2
=
∑

Res
z=iωn

g(z)

z2 − a2
. (4.88)

One function that satisfies these requirements is g(z) = β
2 tanh βz

2 . Using the residue
theorem (4.85), we can write the sum (4.84) as a contour integral

∞∑
n=−∞

1

(iωn)2 − a2
=
β

2

∑
Res
z=iωn

tanh βz
2

z2 − a2
=

1

2πi

β

2

∮
C

tanh βz
2

z2 − a2
dz. (4.89)

The function g(z) has infinitely many poles along the imaginary axis and is bounded ev-
erywhere else. The contour in (4.89) encircles each of these poles, which is equal to a
contour enclosing the imaginary axis. Since there are infinitely many poles, it will be
impossible to calculate this integral. Instead, we can replace the contour enclosing the
imaginary axis with two half-circle contours not enclosing the imaginary axis. We thereby
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ImIm Im

Re ReRe −a a−a a −a a

C C C+C−

Figure 4.1: To calculate the contour integral (4.89), the contour C around the infinitely many poles
z = iωn along the imaginary axis, is replaced with the contours C+ and C− enclosing the poles
z = ±a on the real axis.

go from a contour C encircling the poles z = iωn to the contours C+ and C− enclos-
ing the poles z = ±a. These are the poles of the denominator z2 − a2 in the integral in
equation (4.89). This manipulation of the contour is shown in Figure 4.1. We then have

β

2

∮
C

tanh βz
2

z2 − a2
dz = −β

2

∮
C−

tanh βz
2

z2 − a2
− β

2

∮
C+

tanh βz
2

z2 − a2
dz, (4.90)

where the minus signs are due to the directions of the contours C− and C+ being clock-
wise, not counterclockwise. We can now reapply the residue theorem on right-hand side
contour integrals in (4.90). We then find that the sum in equation (4.89) is equal to the
residues of f(z) = g(z)/(z2 − a2) at the poles z = ±a

∞∑
n=−∞

1

(iωn)2 − a2
=

1

2πi

(
−β

2

∮
C−

tanh βz
2

z2 − a2
− β

2

∮
C+

tanh βz
2

z2 − a2
dz

)

= − β

2

∑
Res
z=±a

tanh βz
2

z2 − a2
, (4.91)

where the residues can be calculated using the definition (4.86). The residues are

∑
Res
z=±a

tanh βz
2

z2 − a2
= lim

z→a
(z − a)

tanh βz
2

z2 − a2
+ lim
z→−a

(z − (−a))
tanh βz

2

z2 − a2

=
1

2a
tanh

βa

2
+

1

−2a
tanh

β (−a)

2
=

1

a
tanh

βa

2
. (4.92)

Inserting this result into (4.84), we find that the derivative of the Matsubara sum with
respect to a2 is

∂σ

∂a2
=

β

2a
tanh

βa

2
. (4.93)

32



4.6 Free energy and pressure of an ideal Fermi gas

Finally, we find the Matsubara sum by integrating (4.93), such that

σ =

∫
β

2a
tanh

βa

2
da2 =

∫
2

u
du = 2 ln

[
cosh

βa

2

]
+ C

= βa+ 2 ln
[
1 + e−βa

]
+ C ′, (4.94)

where we used the substitution u = cosh βa
2 in the second step. The constants C and

C ′ do not depend on β and can in further calculations be omitted. We can now reinsert
a = ω ± µ and use the result for the Matsubara sum (4.94) to find the logarithm of the
partition function, which becomes

lnZ = 2
∑
p

{
βω + ln

[
1 + e−β(ω−µ)

]
+ ln

[
1 + e−β(ω+µ)

]}
. (4.95)

Finally, we can take the continuum limit
∑

p = V
∫

d3p
(2π)3 , which gives us our final ex-

pression for the logarithm of the partition function of Dirac fermions

lnZ = 2V

∫
d3p

(2π)3

{
βω + ln

[
1 + e−β(ω−µ)

]
+ ln

[
1 + e−β(ω+µ)

]}
. (4.96)

The three terms in equation (4.96) represent the contributions from the vacuum, particles
and antiparticles, respectively. The contributions for the particles and antiparticles to the
logarithm of the partition function are the same that we find using a fully-degenerate ideal
Fermi gas in quantum statistical mechanics. The vacuum contribution is however a result
of using field theory. It appears even when there are no particles or antiparticles, and turns
out to be divergent.

4.6 Free energy and pressure of an ideal Fermi gas
We have found the partition function (4.96) of an ideal Fermi gas consisting of Dirac
fermions using a path integral formalism for anticommuting fields. Using the partition
function, we can find expressions for the free energy and the pressure, which we need for
the equation of state. Inserting the partition function (4.96) in equation (2.7), we find that
the free energy is

F = −2V

β

∫
d3p

(2π)3

[
βω + ln

(
1 + e−β(ω−µ)

)
+ ln

(
1 + e−β(ω+µ)

)]
. (4.97)

The free energy density F is found by differentiating with respect to the volume, giving

F =
∂F

∂V
= − 2

β

∫
d3p

(2π)3

[
βω + ln

(
1 + e−β(ω−µ)

)
+ ln

(
1 + e−β(ω+µ)

)]
. (4.98)

Comparing this to equation (2.8), we find that the pressure is minus the free energy density,
such that

P = −F =
2

β

∫
d3p

(2π)3

[
βω + ln

(
1 + e−β(ω−µ)

)
+ ln

(
1 + e−β(ω+µ)

)]
. (4.99)
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As the partition function, the pressure also contain three terms, which represent contribu-
tions from the vacuum, particles and antiparticles.

Let us look at the pressure P in the zero-temperature limit. When T → 0, β → ∞.
The logarithmic terms in (4.99) become

lim
β→∞

1

β
ln
(

1 + e−β(ω±µ)
)

=

{
0, ω ± µ > 0

−(ω ± µ), ω ± µ < 0
. (4.100)

We assume that µ > 0, such that for antiparticles ω + µ > 0. Then, the antiparticle con-
tribution, which is the third term of equation (4.99), must vanish in the zero-temperature
limit. The particle contribution is only non-zero when ω − µ < 0, which means we can
write it in terms of a Heaviside step function θ(ω, µ). The pressure in the zero-temperature
limit is therefore

P = 2

∫
d3p

(2π)3
[ω + θ (µ− ω) (µ− ω)] . (4.101)

We see that the step function is zero when the energy ω is larger than the chemical potential
µ. The energy that is equal to the chemical potential represents the highest occupied state,
and we define it as the Fermi energy ωF = µ. We can find the corresponding Fermi
momentum pF through

pF =
√
ω2
F −m2 =

√
µ2 −m2, (4.102)

wherem is the mass of the Dirac fermion. Due to the step function, the integration over all
momenta p is replaced with integration over momenta from zero up to the Fermi momen-
tum pF . Using the spherical symmetry of the integrand, we find that pressure becomes

P =
1

π2

∫ pF

0

dp p2 (µ− ω) + 2

∫
d3p

(2π)
3ω = I1 + I2, (4.103)

where we use I1 and I2 to denote each of the integrals. We can calculate the first integral
I1 by inserting µ =

√
p2
F +m2 and ω =

√
m2 + p2. We then get

I1 =
1

π2

∫ pF

0

dp p2 (µ− ω) =
1

π2

∫ pF

0

dp p2

[√
p2
F +m2 −

√
p2 +m2

]
. (4.104)

Using the substitution x = p/m, we find that

I1 =
m4

π2

∫ xF

0

dxx2

(√
x2
F + 1−

√
x2 + 1

)
=

m4

24π2

[(
2x3

F − 3xF
)√

1 + x2
F + 3 sinh−1 (xF )

]
, (4.105)

where xF = pF /m. We recognize that the expression for the particle contribution of
the pressure is equal to the expression for the pressure found in the specialization project
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4.6 Free energy and pressure of an ideal Fermi gas

[32]. When using field theory, we get an additional term due to the vacuum. The vacuum
contribution, equal to the second integral I2, is divergent, as seen from

I2 = 2

∫
d3p

(2π)
3

√
p2 +m2. (4.106)

To regulate it, one can use e.g. dimensional regularisation or UV-cutoff. In this thesis
we will not focus on the vacuum contribution and will therefore omit this term from our
calculations. A note on its effect can be found in the outlook section.

35



Chapter 4. Thermal Field Theory

36



Chapter 5
Nuclear Field Theory

Next, we want to incorporate nuclear interactions between the Dirac fermions in the Fermi
gas that we use to model our neutron star. The fermions in the Fermi gas will interact,
and this interaction can be modelled by introducing mesons. The first model we look at
is the σ-ω model, which is also known as the Walecka model [34]. Here, scalar mesons
and vector mesons are introduced. The model can be used for both pure neutron matter
and nuclear matter consisting of equal amounts of neutrons and protons, depending on
the choice of how many baryons each momentum state can accommodate. We extend the
model further by introducing scalar self-interactions and isospin force. The isospin force,
which is introduced through a triplet of charged vector mesons, distinguishes neutrons and
protons. This allows us to take into account that neutron stars will contain small amounts
of protons in addition to neutrons, due to weak decay of the neutrons. Weak decay also
produces electrons, which we together with muons add to our model so that we can impose
that the system as a whole should be electrically neutral. We find the expressions for the
pressure and energy density of the model and its extensions, which gives us a new equation
of state.

5.1 The σ - ω model

This section is based on references [5], [13], and [27].

In the σ-ω model, nuclear interactions are introduced by using the fields of a scalar meson
and a vector meson in addition to the Dirac field for nucleons. We will derive the σ-ω
model for pure neutron matter. In section 4.4, we found the Lagrangian density of a free
nucleon field

Lnucleon = ψ̄ (iγµ∂
µ −m)ψ. (5.1)
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Chapter 5. Nuclear Field Theory

The scalar meson is represented by a scalar field σ. Its free Lagrangian density is

Lσ =
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
, (5.2)

where mσ is the meson mass. A vector field ωµ represents the vector meson of mass mµ.
The free Lagrangian of the vector meson is

Lω = −1

4
ωµνω

µν +
1

2
m2
ωωµω

µ, (5.3)

where we have defined

ωµν = ∂µων − ∂νωµ, (5.4)

as in electromagnetic theory. In addition to these free fields, we want to include interac-
tions between the nucleons and the meson fields. Since the Lagrangian density must be a
Lorentz scalar, the scalar meson should be coupled to the scalar density ψ̄ψ, while the vec-
tor meson should be coupled to the nucleon four-current ψ̄γµψ. We write the interaction
terms of the Lagrangian density as

Lint = gσσψ̄ψ − gωωµψ̄γµψ, (5.5)

where gσ and gω are the coupling constants between the meson fields and the nucleon
fields. Finally, the total Lagrangian density is the sum of Lagrangian density of the free
fields (5.1), (5.2), and (5.3), and their interactions (5.5)

L = Lnucleon + Lσ + Lω + Lint

= ψ̄ [iγµ (∂µ + igωω
µ)− (m− gσσ)]ψ

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ. (5.6)

Using the Lagrangian density (5.6) in the Euler-Lagrange equations (3.22) we find the
equations of motion of the system. Inserting each of the fields σ, ω, and ψ̄, we find the
equations of motion (

� +m2
σ

)
σ(x) = gσψ̄(x)ψ(x), (5.7)(

� +m2
ω

)
ωµ(x)− ∂µ∂νων(x) = gωψ̄(x)γµψ(x), (5.8){

γµ
[
i∂µ − gωωµ(x)

]
−
[
m− gσσ(x)

]}
ψ(x) = 0, (5.9)

where � = ∂µ∂
µ is the d’Alembert operator and we have written the x-dependence ex-

plicitly. We recognize the similarity between the last equation (5.9) and the Dirac equation
(4.44).

Our system consists of static, uniform matter in its ground state. We can therefore use
a relativistic mean-field approximation to solve the equations of motions (5.7), (5.8), and
(5.9). We replace the meson fields by their expectation values in this state. This removes
the quantum fluctuations and the meson fields can therefore be treated as classical fields,
instead of quantized. We write the replacements of the meson fields with their expectation
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5.1 The σ - ω model

values as σ(x)→ 〈σ〉 for the scalar meson and ωµ(x)→ 〈ωµ〉 for the vector meson. Also,
since matter is static and uniform, the source currents ψ̄ψ and ψ̄γµψ are independent of x,
and they can be replaced by their ground-state expectation values 〈ψ̄ψ〉 and 〈ψ̄γµψ〉. This
means that also the expectation values of the meson fields are independent of x and all the
derivatives in (5.7) and (5.8) vanish. The equation of motion for the expectation value of
the σ meson field becomes

m2
σ 〈σ〉 = gσ 〈ψ̄ψ〉 . (5.10)

We can split the equation of motion (5.8) for the expectation value of the ω meson field
into a temporal and spacial part, such that

m2
ω 〈ω0〉 = gω 〈ψ̄γ0ψ〉 = gω 〈ψ†ψ〉 , (5.11)

m2
ω 〈ωi〉 = gω 〈ψ̄γiψ〉 . (5.12)

Inserting the expectation values of the meson fields in equation (5.9), we find[
γµ
(
i∂µ − gω 〈ωµ〉

)
−
(
m− gσ 〈σ〉

)]
ψ(x) = 0. (5.13)

We see that the terms in the square brackets do not depend on x, which means that we have
translation invariance. We can rewrite (5.13) as an eigenvalue equation for momentum.
Then the nucleon fields are momentum eigenstates, such that ψ(x) = ψ(p)e−ip·x, where
p = pµ = (p0,p) is the four-momentum and p · x = pµx

µ. We insert this into (5.13) and
get [

γµ
(
pµ − gω 〈ωµ〉

)
−
(
m− gσ 〈σ〉

)]
ψ(p) = 0. (5.14)

We define the expressions in the parentheses as

Pµ = pµ − gω 〈ωµ〉 , (5.15)
m∗ = m− gσ 〈σ〉 , (5.16)

where m∗ is known as the Dirac effective mass. Using these definitions in (5.14) and
multiplying by (/P +m∗), leads to the eigenvalue equation

(PµP
µ −m∗2)ψ(P ) = 0, (5.17)

which gives

P0 =
√

P2 +m∗2. (5.18)

We then have

p0 = P0 + gω 〈ω0〉 . (5.19)

It is common to denote P0 = E(p) and p0 = e(p), such that the energy is

E(p) =

√
(p− gω 〈ωi〉)2

+ (m− gσ 〈σ〉)2
, (5.20)
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and the eigenvalues of the 3-momentum p for particles and antiparticles are

e(p) = E(p) + gω 〈ω0〉 , (5.21)
ē(p) = E(p)− gω 〈ω0〉 . (5.22)

Next, we want to find expressions for the source currents 〈ψ̄ψ〉 and 〈ψ̄γµψ〉. We will
use these to find the expectation values of the meson fields. The source currents can be
found from the partition function of the model, which we derive in similar way as the
partition function for Dirac fermions found in section 4.4. Since we are working with the
expectation values of the meson fields, their derivatives vanish, and we are left with the
following Lagrangian density

Lmean = ψ̄ [iγµ (∂µ + igω 〈ωµ〉)− (m− gσ 〈σ〉)]ψ

− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ωµ〉 〈ωµ〉 . (5.23)

We also include a chemical potential µ, which we from section 4.4 know should be coupled
to the vector density ψ̄γ0ψ, such that

Lmean = ψ̄ [iγµ (∂µ + igω 〈ωµ〉)− (m− gσ 〈σ〉) + γ0µ]ψ

− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ωµ〉 〈ωµ〉 . (5.24)

The above Lagrangian density (5.24) is in Minkowski space. When working with the
partition function in the imaginary time formalism, we need the Euclidean Lagrangian
density, which we find by doing the substitution LE = −LM (t→ −iτ), such that

Lmean
E =ψ̄

[
γ0∂

τ − iγi∂i + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ
]
ψ

+
1

2
m2
σ 〈σ〉

2 − 1

2
m2
ω 〈ωµ〉 〈ωµ〉 . (5.25)

Using (4.61) and the general expression for the path integral representation of the partition
function of Grassmann fields (4.40), we find the partition function of the σ-ω model in the
mean-field approximation

Z =

∫
BC

Dψ̄Dψ exp
{
−
∫ β

0

dτ

∫
d3x[

ψ̄
[
γ0∂

τ − iγi∂i + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ
]
ψ

+
1

2
m2
σ 〈σ〉

2 − 1

2
m2
ω 〈ωµ〉 〈ωµ〉

]}
, (5.26)

where BC are the antiperiodic boundary conditions. The last two terms of the exponential
are constants. We perform the integration over spacetime, which gives a factor β from
integration over imaginary time and a factor V , equal to the volume of the system, from
integration over space. The exponential can then be pulled outside the integral since the
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5.1 The σ - ω model

expectation values of the fields do not depend on ψ̄ and ψ. We therefore get

Z = exp

{
βV

[
−1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ωµ〉 〈ωµ〉

]}
×
∫

BC

Dψ̄Dψ exp
{
−
∫ β

0

dτ

∫
d3x

ψ̄
[
γ0∂

τ − iγi∂i + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ
]
ψ
}
. (5.27)

In order to perform the integral in (5.27) we go to Fourier space using the Fourier trans-
forms of the nucleon fields, given by equation (4.68). The argument of the exponential in
(5.27) then becomes

1

V

∫ β

0

dτ

∫
d3x

∑
n,n′

∑
p,q

ei(ωn−ωn′ )τei(p−q)·x

× ˜̄ψ
[
γ0∂

τ − iγi∂i + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ
]
ψ̃

=
∑
n,p

˜̄ψβ [iγ0ωn + γ · p + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ] ψ̃, (5.28)

and the integral in (5.27) becomes

∫
Dψ̄Dψ exp

{
−
∫ β

0

dτ

∫
d3x

ψ̄
[
γ0∂

τ − iγi∂i + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ
]
ψ
}

=

∫ ∏
n,p

D ˜̄ψDψ̃ exp
{
−
∑
n,p

˜̄ψβ [iγ0ωn + γ · p + gωγµ 〈ωµ〉+ (m− gσ 〈σ〉)− γ0µ] ψ̃
}
. (5.29)

The integral (5.29) now has the form of equation (4.31) and we need only find the deter-
minant of the argument of its exponential. Written out in matrix form, we see that the
argument M is equal to the matrix (4.75) with

a =iωn + gω 〈ω0〉+m− gσ 〈σ〉 − µ,
b =p3 + gω 〈ω3〉 ,
c =p1 − ip2 + gω 〈ω1〉 − igω 〈ω2〉 ,
d =p1 + ip2 + gω 〈ω1〉+ igω 〈ω2〉 ,
e =− iωn − gω 〈ω0〉+m− gσ 〈σ〉+ µ. (5.30)
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Using equation (4.76), we find the determinant over the Dirac indices

detM = β4
[

(iωn + gω 〈ω0〉+m− gσ 〈σ〉 − µ) (−iωn − gω 〈ω0〉+m− gσ 〈σ〉+ µ)

+ (p1 − ip2 + gω 〈ω1〉 − igω 〈ω2〉) (p1 + ip2 + gω 〈ω1〉+ igω 〈ω2〉)

+ (p3 + gω 〈ω3〉)2
]2

= β4
[
(m− gσ 〈σ〉)2 − (iωn + gω 〈ω0〉 − µ)2 + (p + gω 〈ωi〉)2

]2
= β4

[
(iωn + gω 〈ω0〉 − µ)2 − E(p)2

]2
, (5.31)

where we used (5.20) in the last step. We should also take the determinant over momentum
space. Using equation (4.78) to do this, we find that the logarithm of the integral (5.29) is

ln detM =
∑
n,p

ln
{
β4
[
(iωn + gω 〈ω0〉 − µ)2 − E(p)2

]2}
=
∑
n,p

{
ln
[
β2
(
ω2
n + (E(p) + gω 〈ω0〉 − µ)

2
)]

+ ln
[
β2
(
ω2
n + (E(p)− gω 〈ω0〉+ µ)

2
)]}

, (5.32)

where we repeated the steps (4.80) – (4.82) to obtain to the last expression. We recognize
it as a Matsubara sum on the form (4.83), and use the result found in equation (4.94) with
a = E(p) ± gω 〈ω0〉 ∓ µ. Again omitting the terms that do not depend on β, we are left
with

ln detM = 2
∑
p

{
βE(p) + ln

[
1 + e−β(E(p)+gω〈ω0〉−µ)

]
+ ln

[
1 + e−β(E(p)−gω〈ω0〉+µ)

]}
= 2

∑
p

{
βE(p) + ln

[
1 + e−β(e(p)−µ)

]
+ ln

[
1 + e−β(ē(p)+µ)

]}
, (5.33)

where we used (5.21) and (5.22) for the 3-momentum eigenvalues of particles and antipar-
ticles. In the continuum limit

∑
p = V

∫
d3p

(2π)3 , we find that

ln detM = 2V

∫
d3p

(2π)3

{
βE(p)

+ ln
[
1 + e−β(e(p)−µ)

]
+ ln

[
1 + e−β(ē(p)+µ)

]}
. (5.34)

Using this result, we find the logarithm of the partition function in (5.27) becomes

lnZ = 2V

∫
d3p

(2π)3

{
βE(p) + ln

[
1 + e−β(e(p)−µ)

]
+ ln

[
1 + e−β(ē(p)+µ)

]}
+ βV

[
−1

2
m2
σ 〈σ〉

2
+

1

2
mω 〈ωµ〉 〈ωµ〉

]
. (5.35)
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We are interested in the zero temperature limit of the system, i. e. β →∞. This yields

1

β
ln
[
1 + e−β(e(p)−µ)

]
=

{
0, (e(p)− µ) > 0

[µ− e(p)], (e(p)− µ) < 0
(5.36)

1

β
ln
[
1 + e−β(ē(p)+µ)

]
=

{
0, (ē(p) + µ) > 0

−[ē(p) + µ], (ē(p) + µ) < 0.
(5.37)

Again we assume µ > 0, such that ē(p) + µ is always larger than zero, the antiparticle
contribution vanishes and we are left with

1

β
lnZ = 2V

∫
d3p

(2π)3

[
E(p) + (µ− e(p)) θ (µ− e(p))

]
+ V

[
1

2
m2
σ 〈σ〉

2 − 1

2
m2
ω 〈ωµ〉 〈ωµ〉

]
. (5.38)

The first term of (5.38) involving E(p) is divergent and we will for now omit it in our
derivations. We next want to use equations (5.27), (5.29), and (5.38) in

∂

∂ζ

1

β
lnZ =

1

β

1

Z

∂Z

∂ζ
, (5.39)

where ζ is a suitable parameter. If we make the correct choices for ζ, we see that the
right-hand side of (5.39) can give us the expectation values of the source currents 〈ψ̄ψ〉
and 〈ψ̄γµψ〉. With ζ = µ, we find

1

Z

∂Z

∂µ
= βV

∑
n

∫
d3p

(2π)3
˜̄ψγ0ψ̃ = βV 〈ψ̄γ0ψ〉 = βV 〈ψ†ψ〉 , (5.40)

∂

∂µ

1

β
lnZ = 2V

∫
d3p

(2π)3
θ(µ− e(p)). (5.41)

Inserting (5.40) and (5.41) into (5.39), we find that the expectation value of the zeroth
component of the nucleon four-current 〈ψ†ψ〉, which is equal to the the nucleon density,
is

〈ψ†ψ〉 = 2

∫
d3p

(2π)3
θ(µ− e(p)) =

1

π2

∫ pF

0

p2dp =
p3
F

3π2
. (5.42)

Next with ζ = pi, we get

1

Z

∂Z

∂pi
= − βV

∑
n

∫
d3p

(2π)3
˜̄ψγiψ̃ = −βV 〈ψ̄γiψ〉 , (5.43)

∂

∂pi
1

β
lnZ = − 2V

∫
d3p

(2π)3

∂e(p)

∂pi
θ(µ− e(p)). (5.44)

Since we have assumed a uniform system at rest, the expectation value of the nucleon
current must be zero

〈ψ̄γiψ〉 = 0, (5.45)
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which means that the integral (5.44) must be zero. From the equation of motion (5.12), we
see that this leads to the spacial components of the ω-meson field being zero; 〈ωi〉 = 0.
Finally, with ζ = m, we find

1

Z

∂Z

∂m
= − βV

∑
n

∫
d3p

(2π)3
˜̄ψψ̃ = −βV 〈ψ̄ψ〉 , (5.46)

∂

∂m

1

β
lnZ = − 2V

∫
d3p

(2π)3

∂e(p)

∂m
θ(µ− e(p)). (5.47)

Using the expression for e(p) (5.21) and 〈ωi〉 = 0, we find the expectation value of the
scalar density

〈ψ̄ψ〉 =
1

π2

∫ pF

0

p2dp
m− gσ 〈σ〉√

p2 + (m− gσ 〈σ〉)2
. (5.48)

We have found expressions for the expectation values of the source currents 〈ψ†ψ〉, 〈ψ̄γiψ〉,
and 〈ψ̄ψ〉, which we insert in the equations of motion (5.10), (5.11), and (5.12) to find ex-
pressions for the expectation values of the meson fields. This yields

〈σ〉 =
gσ
m2
σ

1

π2

∫ pF

0

p2dp
m− gσ 〈σ〉√

p2 + (m− gσ 〈σ〉)2
, (5.49)

〈ω0〉 =
gω
m2
ω

p3
F

3π2
, (5.50)

〈ωi〉 = 0. (5.51)

We note that the 〈σ〉 field is determined by an integral equation depending on itself, which
can be solved for a given pF .

Now that we have found the expectation values of the meson fields, we can use the
partition function to find the pressure of the system. Inserting (5.38) in equation (2.3), we
find

P = 2

∫
d3p

(2π)3

[
E(p) + (µ− e(p)) θ (µ− e(p))

]
− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ωµ〉 〈ωµ〉 . (5.52)

Comparing to the pressure of an ideal Fermi gas (4.101), we see that including nuclear
interactions shifts the energy of the fermions and adds contributions from the meson fields.
We can also find the pressure by using the energy-momentum tensor. In general, the
energy-momentum tensor is given as

Tµν =
∂L

∂(∂µφi)
∂νφi − nµνL, (5.53)

where φi are the fields of the theory. With the Lagrangian density given by (5.23), only
the ψ-field will contribute to the first term of (5.53). Using that i∂νψ = pνψ, we find
that the first term becomes 〈ψ̄γµpνψ〉. For the second term, we use the Minkowski metric
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nµν = gµν = diag(−1, 1, 1, 1). Using the equation of motion for the Dirac field (5.13),
we see that the first term of the Lagrangian density is zero. We also know that the spacial
part of the ω-meson field is zero. We are then left with just the contributions from the 〈σ〉
and 〈ω0〉 fields. This means that the energy-momentum tensor is

Tµν = 〈ψ̄γµpνψ〉 − gµν
(
−1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2

)
. (5.54)

If we work in the rest frame of the matter and assume that it is a perfect fluid, the energy-
momentum tensor is diagonal and equal to

Tµν =


E 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (5.55)

where E is the energy density and P is the pressure. Combining (5.54) and (5.55), we find
expressions for the energy density and pressure;

E = 〈ψ̄γ0p0ψ〉+
1

2
m2
σ 〈σ〉

2 − 1

2
m2
ω 〈ω0〉2 , (5.56)

P =
1

3
〈ψ̄γipiψ〉 − 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 , (5.57)

where the factor 1/3 is due to that the pressure occurs three times in (5.55). We find the
expectation values in (5.56) and (5.57) by using the derivations of the source currents in
equations (5.42), (5.43), and (5.44). We then find

〈ψ̄γ0p0ψ〉 =
1

π2

∫ pF

0

dp p2e(p)

= m2
ω 〈ω0〉2 +

1

π2

∫ pF

0

dp p2
√
p2 + (m− gσ 〈σ〉)2, (5.58)

where we used (5.11) and (5.21), and

〈ψ̄γipiψ〉 =
1

π2

∫ pF

0

p2dp
∂e(p)

∂pi
pi

=
1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2
. (5.59)

Using equations (5.58) and (5.59) in equations (5.56) and (5.57), the energy density and
pressure become

E =
1

π2

∫ pF

0

dp p2
√
p2 + (m− gσ 〈σ〉)2 +

1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 , (5.60)

P =
1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2
− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 . (5.61)
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With expressions for both the energy density and the pressure we can find the equation
of state that gives the relation between the two. We also notice that the expressions are
similar to the ones for a free fermion gas, but in addition contains finite contributions from
the expectation values of the meson fields. The expressions are for pure neutron matter,
but differs only from the expressions for symmetric nuclear matter by a factor 2.

5.2 Scalar self-interactions

This section is based on reference [13].

We next extend the σ-ω model by including scalar self-interactions for the scalar me-
son field σ. This model is sometimes called the nonlinear σ-ω model. Their contribution
to the Lagrangian density are cubic and quartic

LI,σ = −1

3
bm(gσσ)3 − 1

4
c(gσσ)4, (5.62)

where b and c are dimensionless constants. The full Lagrangian density of the system is
then

L = Lnucleon + Lσ + Lω + Lint + LI,σ

= ψ̄ [iγµ (∂µ + igωω
µ)− (m− gσσ)]ψ +

1

2

(
∂µσ∂

µσ −m2
σσ

2
)

− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ − 1

3
bm(gσσ)3 − 1

4
c(gσσ)4. (5.63)

We repeat our derivations from section 5.1 to find expressions for the expectation values
of the meson fields, the energy density and the pressure in the mean-field approximation.
The equation of motion for the expectation value of the σ-meson field becomes

〈σ〉 =
gσ
m2
σ

[ 1

π2

∫ pF

0

p2dp
m− gσ 〈σ〉√

p2 + (m− gσ 〈σ〉)2

− bmg2
σ 〈σ〉

2 − cg3
σ 〈σ〉

3
]
, (5.64)

while the equations of motion for the temporal and spacial parts of the expectation value
of the ω-meson field remain the same

〈ω0〉 =
gω
m2
ω

p3
F

3π2
, (5.65)

〈ωi〉 = 0. (5.66)
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The energy density and pressure become

E =
1

π2

∫ pF

0

dp p2
√
p2 + (m− gσ 〈σ〉)2

+
1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 +

1

3
bmg3

σ 〈σ〉
3

+
1

4
cg4
σ 〈σ〉

4
, (5.67)

P =
1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2

− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 −

1

3
bmg3

σ 〈σ〉
3 − 1

4
cg4
σ 〈σ〉

4
, (5.68)

from which we see that the scalar self-interactions lead to additional finite terms to the
energy density and pressure.

5.3 Isospin force

This section is based on references [13] and [27].

In the σ-ω model we considered pure neutron matter. It can also be used for symmet-
ric nuclear matter, meaning that we assume the masses and chemical potentials of the
neutrons and protons to be identical. Inclusion of isospin force allows for antisymmetric
nuclear matter, which makes it possible to distinguish neutrons and protons. In particular,
since the chemical potentials can be different, we can have different proton and neutron
densities. This is usually the case for a neutron star, which mainly consists of neutrons and
only a small fraction of protons. This model is sometimes called the σ-ω-ρ model.

We introduce the isospin force through the ρ meson, which is a triplet of mesons ρ0,
ρ± with the same mass and charges (0,±1). We describe the mesons by a charged vector
field ρµ, whose isospin components are

ρµ = (ρµ1 , ρ
µ
2 , ρ

µ
3 ). (5.69)

The Lagrangian density of the free ρ meson is

Lρ =
1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ, (5.70)

where mρ is the mass of the ρ mesons and we define

ρµν = ∂µρν − ∂νρµ, (5.71)

as for the ω vector meson. We can form a real and two complex fields from the three
isospin components. We construct the two complex fields as

ρµ± =
1√
2

(ρµ1 ± iρ
µ
2 ), (5.72)
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which means that they are each others complex conjugates. These can be seen as combi-
nations of the raising and lowering operators for charged ρ mesons. The ρ meson has an
interaction term in the Lagrangian density

Lisospin = −gρρν · Iν , (5.73)

where gρ is a coupling constant and Iν is the total conserved isospin current, which con-
tains contributions from both the nucleon and the ρ fields. We find these conserved isospin
current using Noether’s theorem from 3.4.

If we use the free Lagrangian density Lρ of the ρ meson to find the isospin current, we
will find that it contains a derivative. This derivative will in itself also make a contribution
to the current. We should therefore add an extra term

Lint,ρ = −gρ(ρν × ρµ) · ρνµ (5.74)

to the Lagrangian density of the ρ meson when finding the isospin current. To find the
isospin current of the ρ meson, we use that the Lagrangian density is invariant under a
rotation about the 3-axis in isospin space, which can be written as

ρµ → ρµ + Λ× ρµ, (5.75)

where Λ = (Λ1,Λ2,Λ3) is an infinitesimal vector in isospin space. Using Noether’s
theorem we find that the conserved current, which is the conserved isospin current for the
ρ meson, is

Iνρ = ρµ ×
δ(Lρ + Lint,ρ)

δ(∂νρµ)
= ρµ × ρνµ − 2gρρµ × (ρν × ρµ). (5.76)

We find the isospin current of the nucleons by considering the continuous phase transfor-
mation

ψ → ψ′ = e−iτ ·Λ/2ψ, (5.77)

where τ is the vector of the three Pauli isospin matrices. An infinite transformation leads
to a change δψ in the field given by

ψ′ = (1− i

2
Λ · τ )ψ = ψ + δψ. (5.78)

We use with Noether’s theorem and insert in (3.45)

Λ · jν =
δLnucleon

δ∂νψ
δψ = ψ̄iγν(− i

2
Λ · τψ) =

1

2
ψ̄γνΛ · τψ, (5.79)

which means that the conserved Noether current, which is the conserved isospin current
for the nucleons, is

Iνnucleon = jν =
1

2
ψ̄γντψ. (5.80)
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The total conserved isospin current is thereby

Iν =
1

2
ψ̄γντψ + ρµ × ρνµ + 2gρ(ρ

ν × ρµ)× ρµ, (5.81)

containing both terms for the nucleons and the ρ meson.
Again, we want to find the expressions for the expectation values of the meson fields,

the energy density and the pressure in a mean-field approximation. In the mean-field
approximation we assume that we are in the ground state of the system and that there
are no fluctuations. Then, the expectation values of the charged ρ mesons vanish, which
we see from (5.72), and we are left with the third component ρµ3 of the ρµ field, which
corresponds to the neutral ρ meson. As with the ω meson, the spacial part vanishes since
the system is static and uniform. We are left with just the temporal part of the neutral
meson field ρ0

3, and only the nucleon contribution to the isospin current (5.81) will remain.
The full Lagrangian density of the system is therefore

L = ψ̄

[
iγµ (∂µ + igωω

µ)− (m− gσσ)− 1

2
gργµτ · ρµ

]
ψ

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ

− 1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ −

1

3
bm(gσσ)3 − 1

4
c(gσσ)4. (5.82)

We repeat our derivations from section 5.1, remembering that we now instead of the Fermi
momentum pF , have two separate Fermi momenta pn and pp for the neutrons and the
protons, respectively. The equation of motion for the expectation value of the σ field
becomes

〈σ〉 =
gσ
m2
σ

[
1

π2

∫ pn

0

p2dp
m− gσ 〈σ〉√

p2 + (m− gσ 〈σ〉)2
+

1

π2

∫ pp

0

p2dp
m− gσ 〈σ〉√

p2 + (m− gσ 〈σ〉)2

− bm(gσ 〈σ〉)2 − c(gσ 〈σ〉)3

]
. (5.83)

While the equations of motion for the temporal and spacial parts of the expectation value
of the ω-meson field become

〈ω0〉 =
gω
m2
ω

1

3π2

(
p3
n + p3

p

)
=

gω
m2
ω

(ρn + ρp) , (5.84)

〈ωi〉 = 0, (5.85)

where we have used that the proton and neutron densities are

ρn =
p3
n

3π2
, ρp =

p3
p

3π2
. (5.86)

We also find equations of motion for the ρ meson

〈ρ0
3〉 =

1

2

gρ
m2
ρ

〈ψ̄γ0τ3ψ〉 =
1

2

gρ
m2
ρ

(ρp − ρn), (5.87)

〈ρi3〉 = 0, (5.88)
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where we used that the nucleon field can be written as a bispinor for the fields of the proton
and the neutron. The Dirac equation becomes[

γµ

(
pµ − gω 〈ωµ〉 −

1

2
gρτ3 〈ρµ3 〉

)
− (m− gσ 〈σ〉)

]
ψ(p) = 0, (5.89)

and its eigenvalues become

eI3(p) = gω 〈ω0〉+ gρ 〈ρ0
3〉 I3 + E(p), (5.90)

E(p) =
√
p2 + (m− gσσ)2, (5.91)

where I3 is the isospin, which is 1
2 for protons and − 1

2 for neutrons. We notice that the
eigenvalues are shifted up or down depending on whether they are for protons or neutrons.
Finally, we find the expressions for the energy density and the pressure

E =
1

π2

∫ pn

0

dp p2
√
p2 + (m− gσ 〈σ〉)2 +

1

π2

∫ pp

0

dp p2
√
p2 + (m− gσ 〈σ〉)2

+
1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 +

1

2
m2
ρ 〈ρ0

3〉
2

+
1

3
bmg3

σ 〈σ〉
3

+
1

4
cg4
σ 〈σ〉

4
, (5.92)

P =
1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2
+

1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2

− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 +

1

2
m2
ρ 〈ρ0

3〉
2 − 1

3
bmg3

σ 〈σ〉
3 − 1

4
cg4
σ 〈σ〉

4
. (5.93)

5.4 Electrons and muons
This section is based on reference [13].

In order for the neutron star as a whole to be electrically neutral, we need negative charges
to balance the positive charges from the protons. We therefore introduce leptons, more
specifically electrons e− and muons µ−, to the model. Since leptons are fermions, we can
describe them with Dirac fields. Their Lagrangian density can therefore be written as

Lµ,e =
∑
λ=µ,e

ψ̄λ(iγµ∂
µ −mλ)ψλ, (5.94)

where mµ and me are the muon and electron masses. The introduction of muons and
electrons lead to two new Fermi momenta: pe and pµ. The chemical potentials of the
electrons µe and muons µµ should be equal to assure that the reaction e− → µ−+νe+ ν̄µ
is in equilibrium, such that√

m2
e + p2

e = µe = µµ =
√
m2
µ + p2

µ. (5.95)

Adding the Lagrangian density of electrons and muons (5.94) to the σ-ω-ρ model in the
mean-field approximation leaves the expressions for the expectation values of the meson
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fields unchanged, so we can still use equations (5.83), (5.84), (5.85), (5.87), and (5.88).
The energy density and pressure of this model become

E =
1

π2

∫ pn

0

dp p2
√
p2 + (m− gσ 〈σ〉)2 +

1

π2

∫ pp

0

dp p2
√
p2 + (m− gσ 〈σ〉)2

+
1

π2

∫ pe

0

dp p2
√
p2 +m2

e +
1

π2

∫ pµ

0

dp p2
√
p2 +m2

µ

+
1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 +

1

2
m2
ρ 〈ρ0

3〉
2

+
1

3
bm(gσ 〈σ〉)3 +

1

4
c(gσ 〈σ〉)4, (5.96)

P =
1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2
+

1

3

1

π2

∫ pF

0

dp
p4√

p2 + (m− gσ 〈σ〉)2

+
1

3

1

π2

∫ pe

0

dp
p4√

p2 +m2
e

+
1

3

1

π2

∫ pµ

0

dp
p4√

p2 +m2
µ

− 1

2
m2
σ 〈σ〉

2
+

1

2
m2
ω 〈ω0〉2 +

1

2
m2
ρ 〈ρ0

3〉
2 − 1

3
bm(gσ 〈σ〉)3 − 1

4
c(gσ 〈σ〉)4. (5.97)

To be able to solve this system, we must impose several restrictions. Firstly, we require
electrical neutrality, which means that the proton density should be equal to the sum of the
electron density ρe and muon density ρµ

ρp = ρe + ρµ. (5.98)

The electron density and muon density are given by

ρe =
p3
e

3π2
, ρµ =

p3
µ

3π2
, (5.99)

so the charge neutrality can also be written in terms of the Fermi momenta

p3
p = p3

e + p3
µ. (5.100)

We also require baryon charge to be conserved, which puts a constraint on the chemical
potentials

µp = µn − µe. (5.101)

This constraint is also required for the reaction n → p + e− + ν̄e to be in equilibrium.
With these constraints, it is possible to determine the density fraction and Fermi momenta
of each type of particle for a given density of the system. We can then calculate the energy
density and pressure for a range of densities to find the equation of state.
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Chapter 6
Numerical Solutions

In chapter 5 we found expressions for the pressure and energy density for a Fermi gas
consisting of interacting Dirac fermions, which we now will calculate numerically to find
the equation of state. We next use the equation of state to solve the Tolman-Oppenheimer-
Volkoff equation and the mass continuity equation, which are derived in Appendix A.
Finally, solving the equations for a range of central pressures, gives the mass-radius re-
lation of neutron stars. All the numerical solutions in this thesis are performed with the
mathematical computation program Mathematica. The code can be found in Appendix B.

6.1 Note on units

When working with quantum field theory and elementary particles, it is most common to
use natural units, where c = ~ = 1. The particles we are interested in, such as neutrons,
protons and mesons, then have mass of order 102-103 MeV. However, when working with
the TOV equation to find the mass of a neutron star, natural units are impractical, as the
mass is on the order of 1M� and the radius is on the order of 10 km. We will therefore,
after having solved the system in terms of dimensionless variables, restore our results to
SI units.

6.2 Dimensionless stellar structure equations

In order to solve the equations for stellar structure numerically, we write them in terms of
dimensionless variables. We scale the mass M by the solar mass M� and the pressure P
and the energy density E by E0, which we define as

E0 =
m4c5

3π2~3
, (6.1)
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where m is the neutron mass. This constant shows up when working with ideal Fermi
gases and is therefore a natural choice. The dimensionless variables are then

M̄ =
M

M�
, P̄ =

P

E0
, Ē =

E
E0
. (6.2)

Inserting (6.2) into the TOV equation (A.38), we get

dP̄

dr
= −

[
Ē(r) + P̄ (r)

] [
M̄(r) + 4πE0

M�c2
r3P̄ (r)

]
c2

GM�
r2 − 2M̄(r)r

, (6.3)

while the mass continuity equation (A.26) becomes

dM̄

dr
=

4πE0
M�c2

r3Ē(r). (6.4)

We define two constants

α =
4πE0
M�c2

, R0 =
c2

GM�
, (6.5)

such that equations (6.3) and (6.4) can be written as

dP̄

dr
=−

[
Ē(r) + P̄ (r)

] [
M̄(r) + αr3P̄ (r)

]
R0r2 − 2M̄(r)r

, (6.6)

dM̄

dr
=αr3Ē(r). (6.7)

6.3 Equation of state for σ - ω model
We calculate the equation of state for the σ-ω model with the energy density and pressure
given by equations (5.60) and (5.61). The energy density and pressure are functions of
the Fermi momentum pF and the expectation values of the two meson fields 〈σ〉 and
〈ω0〉, which also are functions of the Fermi momentum and given by equations (5.49) and
(5.50). The system can therefore be solved for a given pF , first finding the meson fields,
then inserting the meson fields into the expressions for the energy density and pressure.
Repeating the procedure for a suitable range of Fermi momenta, relating the corresponding
pressures and energy densities, gives the equation of state.

To solve the system numerically, we also write the equation of state in terms of di-
mensionless variables. We scale the Fermi momentum by the neutron mass and the meson
fields by the neutron mass and their respective coupling constants, such that

p̄F =
pF
m
, σ̄ =

gσ 〈σ〉
m

, ω̄0 =
gω 〈ω0〉
m

. (6.8)

The coupling constants are parameters of the theory and should be chosen so that the
saturation density and binding per energy is in accord with empirical values. In our com-
putation we will use the coupling constants from [7], given as

gσ = 9.569, gω = 11.665. (6.9)
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Using the dimensionless variables (6.8), we can write the two equations for the meson
fields as

σ̄ =
g2
σ

m2
σ

m2

π2

∫ p̄F

0

p̄2dp̄
1− σ̄√

p̄2 + (1− σ̄)2
, (6.10)

ω̄0 =
g2
ω

m2
ω

m2

3π2
p̄3
F . (6.11)

As for the TOV equation, we scale the energy density and pressure by E0, which in natural
units become

E0 =
m4

3π3
. (6.12)

The dimensionless expressions for the energy density and pressure then become

Ē =
1

E0

(
m4

π2

∫ p̄F

0

dp̄ p̄2
√
p̄2 + (1− σ̄)2 +

1

2

m2
σm

2

g2
σ

σ̄2 +
1

2

m2
ωm

2

gω
ω̄2

0

)
, (6.13)

P̄ =
1

E0

(
m4

3π2

∫ p̄F

0

dp̄
p̄4√

p̄2 + (1− σ̄)2
− 1

2

m2
σm

2

g2
σ

〈σ〉2 +
1

2

m2
ωm

2

g2
ω

ω̄2
0

)
, (6.14)

which we solve numerically to find the equation of state.
We first plot the pressure as a function of the Fermi momentum in Figure 6.1. As seen

from the figure, the pressure is negative for Fermi momenta in the range 0.2 < p̄F < 0.3.
These negative pressures mean that also the equation of state will have negative values, as
seen in Figure 6.2. To resolve this problem, we replace the low values of the equation of
state for the σ-ω model with the equation of state for a free Fermi gas, described by the
only first terms of (6.13) and (6.14). The two solutions intersect at P̄i = 0.00131, so we
make a new equation of state using the free Fermi gas for pressures lower than P̄i, and the
σ-ω model for pressures higher than P̄i. The new equation of state in shown in Figure 6.3.

6.4 Mass-radius relation
Using the equation of state for the σ-ω model shown in Figure 6.3, we can solve the TOV
equation (6.6) and the mass continuity equation (6.7) for a given dimensionless central
pressure P̄0. Figures 6.4 and 6.5 show the dimensionless mass M̄(r) = M(r)/M� and
dimensionless pressure P̄ (r) = P (r)/E0 as functions of the radial distance for P̄0 = 5.
The mass and radius of this neutron star are Mstar = 1.886M� and Rstar = 9.749 km.
We next solve the TOV equation and mass continuity equation for a range of dimension-
less central pressures. We can then plot the neutron star radii and neutron star masses
as functions of P̄0, as seen in Figures 6.6 and 6.7. Finally we find the relation between
the mass and the radius of a neutron star in Figure 6.8. The curve has a maximum mass
Mmax = 2.595M� at radius Rmax = 12.64 km.
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Figure 6.1: Dimensionless pressure P̄ as a function of dimensionless Fermi momentum p̄F for the
σ-ω model.

Figure 6.2: Dimensionless equation of state for the σ-ω model.
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Figure 6.3: Combined dimensionless equation of state for a free Fermi gas and the σ-ω model.

Figure 6.4: Dimensionless mass M̄(r) as a function of radial distance r in km for a neutron star
with dimensionless central pressure P̄0 = 5.
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Figure 6.5: Dimensionless pressure P̄ (r) as a function of radial distance r in km for a neutron star
with dimensionless central pressure P̄0 = 5.

Figure 6.6: Dimensionless neutron star mass as a function of dimensionless central pressure P̄0.
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Figure 6.7: Neutron star radius in km as a function of dimensionless central pressure P̄0.

Figure 6.8: The relation between the mass and radius of neutron stars. The mass is scaled by solar
masses M� and the radius in km.
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Chapter 7
Upper Bound On Neutron Star
Mass and Stability

7.1 Upper bound neutron star mass

As seen from Figure 6.8, the mass-radius relation of neutron stars has a maximum mass
Mmax = 2.595M� for a radius Rmax = 12.64 km. This maximum means that there
is an upper bound on the mass of a neutron star. The same situation arises for a white
dwarf, where the upper bound on the mass is 1.39M� and is called the Chandrasekhar
limit [6]. The maximum mass for a neutron star happens when the central pressure is
P0 = 7.684 · 1034 kgm−1s−2 and central energy density is E0 = 1.573 · 1035 kgm−1s−2,
which corresponds to a central density of ρ0 = 1.750 · 1018 kgm−3. The core of a neutron
star with this mass is almost ten times as dense as the nucleus of an atom.

The upper bound on the mass of a neutron star is a result of relativistic gravity and low
temperatures. Relativistic causality requires that the speed of sound does not exceed the
speed of light [30]. The speed of sound is given by c2s = dP

dρ , meaning that the requirement
can be written as dP

dρ ≤ c
2 or dPdE ≤ 1. For low temperatures, the pressure mainly depends

on the density, while its temperature dependence is negligible. An increase in density will
lead to an increase in gravitational attraction. To balance this, the pressure must increase
equivalently. However, there is a limit to how much the pressure can increase and beyond
this the pressure will no longer be able to balance the gravitational attraction, leading
to gravitational collapse. There must therefore be an upper bound on how large a mass
a neutron star can have, which corresponds to the limiting case where the pressure still
manages to balance the gravitational attraction.

As expected, the inclusion of nuclear interactions in the equation of state allows for
larger neutron star masses than the equation of state of an ideal Fermi gas, which gives
a maximum mass of 0.77M� [32]. This result is in better agreement with observations,
where neutron stars with masses up to 2M� have been found [2][10]. However, the σ-
ω model suffers problems with negative pressures, as seen in Figure 6.1. It has been
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argued that this region can be seen as a liquid-gas phase transition, similar to the Van der
Waals equation of state [20]. Using a Maxwell construction to avoid the negative values,
the authors of [7] find the maximum mass of a neutron star to be 2.57M�. Our result
is in close agreement with this, although the equations of state differ for low pressures.
Another problem is that the parameters of the σ-ω model, such as the compression modulus
and the Dirac effective mass, are in poor agreement with empirical values [13]. Further
extensions of the model, such as described in sections 5.2 - 5.4, is therefore necessary.
These extensions will lead to lower maximum masses, such as 2.15M� [12] and 2.02M�
[18].

7.2 Stability of solution
The neutron stars with radii shorter than Rmax, are unstable. We see in Figure 6.8 that
the solutions to the left of the maximum mass make up a spiral shape. The spiral con-
verges to the point where Mspiral = 1.956M� and Rspiral = 10.30 km. This happens for
large values of the dimensionless central pressure P̄0, as seen from Figures 6.6 and 6.7,
where the mass and radius approach Mspiral and Rspiral for large P̄0 . Since the solutions
are unstable, they are easily affected by small fluctuations, which will lead the gravita-
tional attraction to exceed the pressure, allowing further gravitational collapse to continue,
thereby turning the neutron star into a black hole.
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Conclusion and Outlook

8.1 Conclusion
In this master’s thesis we have studied the mass-radius relation of neutron stars. To
describe the stellar structure of a neutron star, we have used the Tolman-Oppenheimer-
Volkoff equation together with the mass continuity equation. In order to solve the TOV
and mass continuity equations, we need an equation of state. We first derived expressions
for the energy density and pressure of an ideal Fermi gas using quantum field theory. Next,
interactions between the fermions were included using the σ-ω model, where mesons were
introduced in a mean-field approximation. We also looked at extensions of this model. In
the non-linear σ-ω model, scalar self-interactions for the scalar meson were included. In
the σ-ω-ρ model, the isospin force was introduced using a ρ meson, which allow us to
distinguish between protons and neutrons. In order to impose electrical neutrality, leptons
were also included in the model.

For our numerical computations, we used the expressions for the pressure and energy
density of the σ-ω model to find an equation of state. Using this equation of state, we
solved TOV equation and mass continuity equation numerically for a given central pres-
sure. By iterating over a range of central pressures, the relation between the mass and
radius of neutron star was found. This curve has a maximum mass of Mmax = 2.595M�,
for a radius ofRmax = 12.64 km. We argued that this maximum means that there is an up-
per bound on the mass of a neutron star, and that solutions beyond this point are unstable,
meaning that these neutron stars will collapse further into black holes.
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8.2 Outlook
The present model can be extended in several directions to better describe a neutron star
and its mass-radius relation.

As described in section 5.2, we can extend the σ-ω model into the nonlinear σ-ω model
by including scalar self-interactions for the scalar meson. Protons, electrons and muons
should also be included in the model, as described in sections 5.3 and 5.4. The neutrons in
a neutron star can undergo weak decay, where a neutron n decays to a proton p, an electron
e− and an anti-neutrino ν̄e, via n → p + e− + ν̄e. There will arise an equilibrium where
the rate of weak decay is balanced by rate of neutron capture, such that the neutron star
also contains small amounts of protons and electrons.

For high enough densities, we should also allow for the occurrence of hyperons [13].
The six hyperons Σ0, Σ+, Σ−, Ξ0, Ξ− and Λ are baryons with spin 1

2 and make up the
baryon octet together with the neutron and proton. They are composed of the three quarks
up, down, and strange. They all have masses larger than that of the neutron and the proton,
and it is when the Fermi energy of the system exceeds these masses that these particles
appear. To include hyperons in the model, we can use the Lagrangian density

L =
∑
B

ψ̄B

[
iγµ (∂µ + igωBω

µ)− (mB − gσBσ)− 1

2
gρBγµτ · ρµ

]
ψB

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ − 1

4
c(gσσ)4

− 1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ −

1

3
bm(gσσ)3 +

∑
λ=µ−,e−

ψ̄λ(iγµ∂
µ −mλ)ψλ,

where B denotes the baryon species, gσB , gωB and gρB are the hyperon coupling con-
stants and the sum should be taken over all the states in the baryon octet. The hyperon
coupling constants have not been determined experimentally. They have great impact on
the system, and [18] finds that the maximum mass varies from 1.44M� to 2.02M� when
using different values for the coupling constants.

In our computations we have omitted the vacuum contribution. The term is divergent,
but can be calculated using e.g. dimensional regularisation. It is a result of using quantum
field theory, and replaces the notion of empty space with that of a vacuum state, which
corresponds to the ground state of a collection of quantum fields. The quantum fields
fluctuate, even when there are no particles or radiation. These zero-point fluctuations
lead to a vacuum energy density ρvac, which is believed to contribute to the cosmological
constant Λ from Einstein’s field equations

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν ,

thereby connecting quantum field theory and general relativity. However, the observed
value of the cosmological constant is very small, while the theoretical estimates for various
contributions to the vacuum energy density are much larger. This discrepancy is known
as the cosmological constant problem and is one of the fundamental problems in modern
physics [26].
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Another assumption to consider is whether the equation of state is valid for all densi-
ties. In our computations we have assumed that the same equation of state can be applied
for the whole neutron star. This however is too simplistic. As the density increases from
the surface inwards to the core, the character of the matter changes considerably. The
low-density surface of a neutron star is usually made up of iron 56Fe nuclei arranged in
a lattice. As the density increases, the electrons become free and subsequently fully rel-
ativistic. The lowest energy state of matter will gradually change from a lattice of iron
56Fe nuclei to lattices of nuclei progressively richer in neutrons. At the neutron drip point
ρ ≈ 4.3 · 10−11 gcm−3, the continuum neutron state begin to populate, and as the density
increases, the matter consists of nuclei in a lattice with a gas of free neutrons and electrons
penetrating it. At even higher densities, the nuclei will no longer be present, and the matter
is mainly a mix of neutrons, protons and electrons. Finally, at the core the density is so
high that hyperons may appear. Each of these regions should be represented by its own
equation of state, as described in [3], and the equation of state for the whole neutron star
should be put together from these.

We next consider the zero-temperature assumption. Neutron stars are the remnants af-
ter supernova explosions and are believed to have temperatures over 1011 K when formed.
The temperature decreases rapidly through neutrino emission and will within a day drop to
109-1010 K. When the core reaches 108 K, the cooling mechanism is dominated by photon
emission. The surface temperature is usually two orders of magnitude smaller [29]. When
working with non-zero temperature in the nonlinear σ-ω model it is possible to avoid the
problem with negative pressures [20].

It is unlikely that neutron stars are static, although we have made this assumption. Most
stellar objects rotate, and when a massive star collapses during a supernova explosion, the
conservation of angular momentum will cause the resulting neutron star to rotate rapidly.
The neutron star called the Crab pulsar rotates with a frequency of 30 rotations per second
[13]. With a non-static neutron star, we can no longer use the diagonal metric. Instead we
can replace it with a perturbation of the diagonal matrix on the form

ds2 = −A(r) [1 + 2 (h0 + h2P2)] (cdt)
2

+B(r)

[
1 + 2

m0 +m2P2

r − 2GM/c2

]
dr2

+r2 [1 + 2 (v2 − h2)P2]
[
dθ2 + sin2 θ (dφ− ωdt)2

]
,

where P2 is a Legendre polynomial, ω is the angular velocity of the local inertial frame,
and h0, h2, m0, m2 and v2 are functions of r and proportional to square of the angular
velocity of the star. This is called the Hartle-Thorne metric and can be used to describe
slowly rotating neutron stars [17].

Many neutron stars are surrounded by strong magnetic fields. The direction of the
magnetic field breaks the spherical symmetry of the system, meaning we can no longer use
the TOV equation as stellar structure equation. Its magnitude will increase with density,
which mean the equation of state will be changed.

As we have seen, describing the stellar structure of a neutron star is not a simple task.
Considerations must be done to decide in what manner the neutron star should be described
and which assumptions should be applied.

65



Chapter 8. Conclusion and Outlook

66



8.2 Outlook

Appendices

67



Chapter 8. Conclusion and Outlook

68



Appendix A
The Tolman-Oppenheimer-Volkoff
Equation

The following derivation of the Tolman-Oppenheimer-Volkoff (TOV) equation was per-
formed as part of the specialization project [32]. The derivations are done in SI units, as
this will be used in the numerical computations so that the neutron star mass can be given
in solar masses M� and the radius in km.

The section is based on references [35] and [37] .

The Tolman-Oppenheimer-Volkoff equation describes the interior of a relativistic stellar
object, such as a neutron star. The TOV equation is the relativistic equivalent of the equa-
tion of hydrostatic equilibrium for nonrelativistic stellar objects. It can be derived from
Einstein’s field equations,

Rµν =
8πG

c4
(Tµν − 1

2
gµνT ), (A.1)

where Rµν is the Ricci tensor, Tµν is the energy-momentum tensor and gµν is the metric.
The following conditions are assumed:

• Static, spherically symmetric interior The interior is assumed to be static and spheri-
cally symmetric, which can be described by the diagonal metric

ds2 = −A(r)(cdt)2 +B(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (A.2)

where A(r) and B(r) are functions of r to be determined.

• Perfect fluid The interior is assumed to consist of a perfect fluid with energy-momentum
tensor Tµν given as

Tµν =

(
ρ+

P

c2

)
UµUν + Pgµν =

1

c2
(E + P )UµUν + Pgµν , (A.3)
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where Uµ, ρ, E and P are the 4-velocity, density, energy density and pressure of the
fluid, respectively.

In the last step of (A.3), the relation between the density and energy density

E = ρc2, (A.4)

was used. Inserting equation (A.3) into (A.1) gives

Rµν =
8πG

c4

[(
ρ+

P

c2

)
UµUν +

1

2

(
ρc2 − P

)
gµν

]
, (A.5)

where the normalization condition gµνUµUν = −c2 and gµνgµν = 4 were used. The
Ricci tensor Rµν is found from contracting the Riemann curvature tensor Rσµλν with an
equal lower and upper index, such that

Rµν = Rσµσν =
(
∂σΓσµν + ΓσκσΓκµν

)
−
(
∂νΓσµσ + ΓσκνΓκµσ

)
. (A.6)

The Christoffel symbols Γρµν can be found from the metric gµν using

Γρµν =
1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν), (A.7)

giving a total of 43 Christoffel symbols to be calculated. The number can be reduced
by symmetry considerations. From the diagonal metric (A.2), one finds that the only
nonzero components of gµν are the ones with identical indices: gtt, grr, gθθ and gφφ.
Therefore, the Christoffel symbols must have at least two identical indices to be nonzero.
This condition reduces the number of Christoffel symbols by 24. Also, the Christoffel
symbols are symmetric in the lower indices, reducing the number further by 12. Finally,
the condition that the stellar interior is static, means that the metric should be invariant
under the transformation t → −t. Any Christoffel symbols with an odd number of index
t, of which there are seven, must therefore be zero. This leaves us with 21 Christoffel
symbols to calculate.

An alternative way of finding the Christoffel symbols is interpreting the geodesic equa-
tions,

d2Xµ

dσ2
+ Γµνλ

dXν

dσ

dXλ

dσ
= 0, (A.8)

as the Euler-Langrange equations,

d

dσ

∂L

∂Ẋµ
− ∂L

∂Xµ
= 0. (A.9)

The Lagrangian is given as

L =

√
−gαβ

∂Xα

∂σ

∂Xβ

∂σ
. (A.10)
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For the metric given by the diagonal metric (A.2) and the proper time τ chosen as the
parameter, the Lagrangian (A.10) becomes

L =

√
A (r)

(
cdt

dτ

)2

−B (r)

(
dr

dτ

)2

− r2

(
dθ

dτ

)2

− r2 sin2 θ

(
dφ

dτ

)2

. (A.11)

Inserting the Lagrangian (A.11) into the Euler-Lagrange equations (A.9) gives

cd2t

dτ2
+
A′ (r)

A (r)

dr

dτ

cdt

dτ
= 0, (A.12)

d2r

dτ2
+
A′ (r)

2B (r)

(
cdt

dτ

)2

+
B′ (r)

2B (r)

(
dr

dτ

)2

− r

B (r)

(
dθ

dτ

)2

− r sin2 θ

B (r)

(
dφ

dτ

)2

= 0,

(A.13)

d2θ

dτ2
+

2

r

dr

dτ

dθ

dτ
− sin θ cos θ

(
dφ

dτ

)2

= 0, (A.14)

d2φ

dτ2
+

2

r

dr

dτ

dθ

dτ
+

2 cos θ

sin θ

dθ

dτ

dφ

dτ
= 0. (A.15)

Comparing equations (A.12)-(A.15) to the geodesic equations (A.8) and exploiting that
the Christoffel symbols are symmetric in the lower indices, give nine nonzero Christoffel
symbols, as shown in Table A.1.

Table A.1: Christoffel symbols for the diagonal metric ds2 = −A(r)(cdt)2 +B(r)dr2 + r2dθ2 +
r2 sin2 θdφ2.

Γttr Γrtt Γrrr Γrθθ Γrφφ Γθrθ Γθφφ Γφrφ Γφθφ

A′(r)
2A(r)

A′(r)
2B(r)

B′(r)
2B(r)

− r
B(r)

− r sin2 θ
B(r)

1
r
− sin θ cos θ 1

r
cot θ

Under the given conditions, the Ricci tensor must be diagonal. The condition of a static
interior is equal to no fluid flow, which means that the spacial part of the local 4-velocity of
the fluid should be zero, U i = 0, while U t 6= 0. The spherical symmetry makes the metric
gµν diagonal. Then, the energy-momentum tensor of a perfect fluid, given by equation
(A.3), must also be diagonal. Inserting a diagonal Tµν and gµν into (A.1) leaves only Rtt,
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Rrr, Rθθ and Rφφ nonzero. Using the results for the Christoffel symbols from Table A.1
in equation (A.6) gives

Rtt =
A′′ (r)

2B (r)
+
A′ (r)

rB (r)
− A′ (r)

4B (r)

(
A′ (r)

A (r)
+
B′ (r)

B (r)

)
, (A.16)

Rrr = −A
′′ (r)

2A (r)
+
B′ (r)

rB (r)
+
A′ (r)

4A (r)

(
A′ (r)

A (r)
+
B′ (r)

B (r)

)
, (A.17)

Rθθ = 1− 1

B (r)
− r

2B (r)

(
A′ (r)

A (r)
− B′ (r)

B (r)

)
, (A.18)

Rφφ =

[
1− 1

B
− r

2B (r)

(
A′ (r)

A (r)
− B′ (r)

B (r)

)]
sin2 θ. (A.19)

We note that Rφφ = Rθθ sin2 θ. The Ricci tensor can also be expressed by the right-hand
side of equation (A.5). Using that the only nonzero component of the 4-velocity is U t

together with the normalization condition gµνUµUν = −c2, gives that Ut = −cA(t)1/2.
Inserting into equation (A.5) leads to

Rtt =
8πG

c4
1

2
(ρc2 + 3P )A(r), (A.20)

Rrr =
8πG

c4
1

2
(ρc2 − P )B(r), (A.21)

Rθθ =
8πG

c4
1

2
(ρc2 − P )r2, (A.22)

Rφφ =
8πG

c4
1

2
(ρc2 − P )r2 sin2 θ. (A.23)

Equations (A.16)-(A.19), or the equivalent equations (A.20)-(A.23), constitute a set of
three coupled differential equations (one equation is redundant since Rφφ = Rθθ sin2 θ).

To find the TOV equation, the functions A(r) and B(r) should be found. Using the
combination Rtt

A(r) + Rrr
B(r) + 2Rθθ

r2 leads to

1

B(r)
+ r

(
1

B(r)

)′
= 1− 8πGρr2

c2
. (A.24)

Similarly to the Schwarzschild solution, one can choose

1

B(r)
= 1− 2GM (r)

c2r
, (A.25)
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where M (r) is a mass function that describes the mass contained within a radius r. In-
serting the solution (A.25) into equation (A.24) gives

dM

dr
= 4πr2ρ (r) , (A.26)

which is equal to the mass continuity equation from Newtonian theory. An expression for
A(r) can be found by using the combination Rtt

A(r) + Rrr
B(r) , leading to

A′(r)

A(r)
=

2GM(r)

c2r2

(
1 + 4πr3P (r)

M(r)c2

)
(

1− 2GM(r)
c2r

) . (A.27)

In the Newtonian limit, the diagonal metric becomes ds2 = −(cdt)2 + dr2 + r2dθ +

r2 sin θdφ2, meaning that A (∞) = 1. Using that A
′(r)
A(r) = d lnA(r)

dr and integrating equa-
tion (A.27) gives∫ A(∞)

A(r)

d lnA(r) =
2G

c2

∫ ∞
r

M(r)
(

1 + 4πr3P (r)
M(r)c2

)
r2
(

1− 2GM(r)
c2r

) dr. (A.28)

Choosing r ≥ R outside the star means that the pressure is zero, P (r ≥ R) = 0, and the
mass function remains constant, M (r ≥ R) = Mstar. Inserting this into (A.28) one finds
that

A(r ≥ R) = 1− 2GMstar

c2r
. (A.29)

To arrive at the TOV equation, the Bianchi identity,

DνRρµσλ +DσRρµλν +DλRρµνσ = 0, (A.30)

is needed. Contracting (A.30) repeatedly with the metric gµν , it can be written as

Dµ

(
Rµν −

1

2
gµνR

)
= 0, (A.31)

where Dµ is the covariant divergence of a tensor. Einstein’s field equations (A.1) can be
rewritten as

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (A.32)

leading to

DµTµν = 0. (A.33)

Inserting the expression for the energy-momentum tensor from equation (A.3) and using
that Dµg

µν = 0 by definition, gives

DµTµν = gµν∂µP +
1√
−g

∂µ{
√
−g
(
ρ+

P

c2

)
UµUν}+ Γνµλ

(
ρ+

P

c2

)
UµUλ,

(A.34)
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where −g = det (gµν) = A (r)B (r) r4 sin2 θ. Again exploiting that the only nonzero
component of Uµ is U t and that the object is static, simplifies (A.34) to

DµTµν = gµν∂µP +
Γνtt
A(r)

(
ρc2 + P

)
. (A.35)

Because of the spherical symmetry, the pressure is assumed to depend only on r, such that
P = P (r). The only nonzero metric tensor component and Christoffel symbol are thus
grr = 1

B(r) and Γrtt = A′(r)
2B(r) , which inserted into (A.35) gives

A′(r)

A(r)
=
−2P ′

ρc2 + P
. (A.36)

Using equations (A.25) and (A.36) in the expression for Rθθ, given by equations (A.18)
and (A.22), lead to

dP

dr
= −GM (r) ρ (r)

r2

(
1 +

P (r)

c2ρ (r)

)(
1 +

4πr3P (r)

c2M (r)

)(
1− 2GM (r)

c2r

)−1

,

(A.37)

which is known as the Tolman-Oppenheimer-Volkoff equation [25][33]. The TOV equa-
tion can also be written in terms of the energy density E , using equation (A.4), such that

dP

dr
= −GM (r) E (r)

c2r2

(
1 +

P (r)

E (r)

)(
1 +

4πr3P (r)

c2M (r)

)(
1− 2GM (r)

c2r

)−1

. (A.38)

The TOV equation is the relativistic equivalent of the equation of hydrostatic equilib-
rium and should approach the Newtonian solution in the nonrelativistic limit. The correc-
tions in the two first parentheses of (A.37) arise from the special relativistic correction of
the energy, ε =

√
p2c2 +m2c4, while the correction in the third term is connected to the

metric of general relativity. All three terms lead to increase in the gravitational attraction.
In the Newtonian limit c2 → ∞, the three parentheses approach unity and the expression
becomes

dP

dr
→ −GM (r) ρ (r)

r2
, (A.39)

as expected.
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Appendix B
Mathematica Code

The following Mathematica code is used for numerical computations. The equation of
state is found by combining the solution for a free Fermi gas with the solution for the σ-ω
model at their intersection. The equation of state is used to solve the TOV equation and
mass continuity equation. The solutions are performed for a range of central pressures,
which gives the mass-radius relation.
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(*�������� �� � �������� �� ����� ��������*)

������� �� ������� ����������� ������� �������
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�����������[��_] �=
�

��
*
� * ����������

� * � * ����
* ����������

���

����[��� + �]
� {�� �� ��}

(*�������� �� �������� ��� ������ ������� ��� � ����� �� ����� ��������
�������� �� ���� �� �������� �� ������ *)
������� = {}�

���[�� = �� �� < ������ �� += �������
������� = ������[�������� {�����������[��]� ����������������[��]}]�

]
(*�������� �� ����� ��� ����� ����� ���*)
������ = �������������[�������]

(*�����-����� �����*)

(*�������� �������� ��� ����� ����� �����*)
�������������[�����_���������� ��_] �=
� * �������� * ����������

� * �������� * ����
����������

��� * � - �����

���� ��� + � - ����� ��
� {�� �� ��}

(*����� ����� �����*)

����������[��_] �=
�������� * ����������

��������
*
� * ����

� * ����
(*������ ������� �� � �������� �� ����� ������
����� ����� ��� ����� ��������*)
����������������[�����_� �����_� ��_] �=
�

��

�

�
*
�������� * ����������

��������
* ������� +

�

�
*
�������� * ����������

��������
* ������� +

� * ����������

� * ����
* ���������� ���� ��� + � - ����� �� * ���� {�� �� ��}

(*�������� �� � �������� �� ����� ������ ����� ����� ��� ����� ��������*)
�����������[�����_� �����_� ��_] �=
�

��
-
�

�
*
�������� * ����������

��������
* ������� +

�

�
*
�������� * ����������

��������
* ������� +

� * ����������

� * ����
* ����������

���

���� ��� + � - ����� ��
� {�� �� ��}

(*�������� �� �������� ��� ������ ������� ��� � ����� �� ����� ��������
�������� �� ���� �� �������� �� ������ *)
������� = {}�
�������� = {}�
(*����� ��� ����� �� ����� ����� ���� �� ������� �� ��� ���� *)
���������� = �
���[�� = �� �� ≤ ������ �� += �������
������������� =
��������[�������������[������ ��] ⩵ ������ {������ ����������}]�

������ = ����� /� ��������������
������ = ����������[��]�
�������� = �����������[������� ������� ��]�
������������� = ����������������[������� ������� ��]�
������� = ������[�������� {��������� �������������}]�
�������� = ������[��������� {��� ��������}]�
���������� = �������

]

2 MasterNeutronStarPDF2.nb

������� �� ������� ����������� ������� �������

77



Chapter B. Mathematica Code

	�������[{
�&�[�����5% -++]% 
�&�[�������% -++]}]

	������� 
�&�[���3����% 11+]% ���� → 
���%

����	�"�� → ��7�� <
3�
�
<% )+ % ��7�� <

� (3�)

ε�
<% )+ %

������7�� → ��#���% ������	�"�� → ����

	������� 
�&�[�������% 1,+]% ���� → 
���%

����	�"�� → ��7�� <
�

ε�
<% )+ % ��7�� <

ε

ε�
<% )+ %

������7�� → ��#���% ������	�"�� → ����

(*�������� �� ����� ��� �����-����� ��#��*)
������ = �����3�������[
�&�[�������% -12-+]]

(*�;��
��� � �
�
�*)
(*�������!���� "������ � � ��������� �� �����*)
�������!��������������� = ��#����[����5[8] ⩵ ������[8]% {8% +*++2}]
�������!���� = 8 /* �������!���������������
(*$��"��� �#��� ���� ��� ��� ��� 3�������� ��# �����
����� ��#�� ���  �� 3������� �� ���� ��� �������� �� ����� *)

���[�_] (= ���!�����[
{{����5[�]% � < �������!����}% {������[�]% � > �������!����}}]

���� ���[�]% {�% +% +*++,}% ���� → 
���%

����	�"�� → ��7�� <
�

ε�
<% )+ % ��7�� <

ε

ε�
<% )+ %

������7�� → ��#���% ������	�"�� → ����

(*
�� �;��
���*)

(*��!���� � �� ������ � � 
�� �������� ��� � ����� !������
3������� �+* ������� � � ��#��� ��# ���� �� � � ������� ����%

��# � � 3������� ��# ���� �� ���!����� �� ��#��� #�����!�* *)

�����������[�+_] (=
��#��� {�3�����% �����% ��#% �����������!����% �������$��#������%
����$��#������% �����% �����% ���������% ��������}%

�3����� = ) * )+0(-)+)9
����� = ) * )+0(-)+)9
��# = )+069

�����������!���� =
�'[�] ⩵ ��3 � * �02 * ���[�[�]]%

�'[�] == -
(���[�[�]] + �[�]) * �[�] + ��3 � * �[�] * �01

�+ * �02 - 2 * �[�] * �

9

�������$��#������ = {
�[�����] ⩵ +%
�[�����] ⩵ �+

}9

����$��#������ = {
= �������[�[�] ≤ �3�����%
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{������������������
����� = ��
����� = �[�]}

]
}�

��������� = ����[����������������� ������������������ ���������������]�

�������� = ��������[�������[���������� {�� �}�
{�� ������ ���}� ������������ → ��� ������������� → ��]]�

������[{������ ������ ��������}]�

�

(*������� �� �������� ��� ��=�*)
{������ ������ �����} = �����������[�]�
���� �[�] /� ������ {�� �� �����}� ����� → �����

���������� → �����[�� [�]�� ��]� ����� �
� (�)

��
�� �� �

���������� → ������� ����������� → �����
���� �[�] /� ������ {�� �� �����}� ����� → �����

���������� → �����[�� [�]�� ��]� ����� �
� (�)

ε�
�� �� �

���������� → ������� ����������� → �����
�����
�����

(*����-������ ��������*)
(*������ ����������� ��� � ����� �� ������� ��������� ���
�� ���� ��� ����-������ �������� �� � ������� ����*)

(* ������ �� ����� �������*)
�������������� = {}�
���������������� = {}�
������������ = {}�

(*���� ����� �� ��*)
�� = {}
���[ � = -�� � ≤ �� �++�
���[� = �� � ≤ �� � += ����
�� = ������[��� � * ����]

]
]

(*���� ��������� ��� ����� �� ������*)
��� � = �� � ≤ ������[��]� �++�
{������ ������ ��������} = �����������[��[[�]]]�
�������������� = ������[��������������� {��[[�]]� �����}]�
���������������� = ������ ����������������� ��[[�]]� ����� ���� �
������������ = ������ ������������� ����� ����� ����� �

�������� ����[��������������� ���]� ����� → �����
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���������� → �����[���/ε��� ��]� ����� �
�����
��

�� �� �

���������� → ������� ����������� → �����
��������[����[����������������� ���]� ����� → �����
���������� → {�����[���/ε��� ��]� �����[������[��]�� ��]}�
���������� → ������� ����������� → �����]

�������� ������������� ����� → �����

���������� → �����[������ [��]�� ��]� ����� �
�����
��

�� �� �

���������� → ������� ����������� → �����

(*������� ���� ��� ������������� ������*)
���� = ���[������������[[���� �]]]
����������� = ��������[������������� ����]
���� = ������������[[�����������[[�� �]]� �]]

(* ��� ���� ��� �������� �� ����� �� �� �����*)
����� = ���[��������������[[���� �]]]
������������� = ��������[��������������� �����]
������ = ��������������[[�������������[[�� �]]� �]]

(*������� ������ ��� �������� �� ����� �� �� �����*)
����� = ���[����������������[[���� �]]]
������������� = ��������[����������������� �����]
������ = ����������������[[�������������[[�� �]]� �]]

(*����������*)
���������� = ����[��������������]
���������� = ����[����������������]
������������� = ����[������������]

(*������� ��������� ������ ������� ��� ������� ��� *)
������ = ������ * ��
������ = ���[������] * ��
�������� = ���[������] * �� ���
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