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Abstract

Quantum mechanics, like classical mechanics, can be formulated and ana-
lyzed in many different ways. Some of these approaches are reviewed in
this thesis, to some extent from the viewpoint of how a formulation can be
modelled and solved numerically. In this thesis the numerical simulation of
two problems is studied.

The first problem is about direct numerical modelling of Heisenberg’s
matrix mechanics, implemented by replacing an explicit (infinite) matrix
representation of position (q̂) and momentum (ip̂) operators by N ×N real
matrices. A program for explicit generation and numerical analysis of Hamil-
tonians of the form

H =
D∑
j=1

(
a

(2)
j p̂2

j + b
(2)
j q̂2

j + b
(4)
j q̂4

j

)
+

∑
1≤j<k≤D

b
(2,2)
j,k q̂2

j q̂
2
j

is presented, and discussed for D = 1, 2, 3.
The second problem is numerical modelling of a two-state atom coupled

to a collection of photons. We assume an initial Schrödinger “wave func-
tion” describing the atom in the excited state, with no photons present. We
calculate the time-dependent wave function for this system numerically, and
compare the resulting (excited atom) survival probability with the expo-
nential decay rate predicted by perturbation theory and the Fermi Golden
Rule.

All simulations are done in Python, using numerical routines from the
NumPy and SciPy packages.
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Chapter 1

Introduction

Until the end of the 19th century, classical mechanics based on Newtonian
Mechanics and Gravity and Maxwell’s equations of Electricity and Mag-
netism was sufficient to explain all physical phenomena.
Statistical Mechanics was also a well developed mechanism to describe sys-
tems with a large number of degrees of freedom. At that time Einstein
introduced his Special Relativity theory which could generalized the classi-
cal mechanics to include the high velocity systems, where the speed of light
C plays a fundamental role.[1]

However, at the late of 19th and early 20th there were many problems
remained unexplained. As Black Body Radiation, the Photoelectric effect,
basic Atomic Theory, Compton Scattering, and the diffraction of particles.
But by Planck’s revolution hypothesis of energy quantization E = hν, where
ν is the frequency and h is the minimum quantum actions called Planck’s
constant, which could explained the full spectrum of the thermal radiation
through the blackbody experiment.

Ultimately, working on these problems led to the development of Quan-
tum Mechanics based on the particles -wave duality principle.[2, 3]

Quantum mechanics is one of the most important and successful math-
ematical model for describing our physical reality, but as Feynman said;

"It is impossible, absolutely impossible to explain it in any classical way" [4]

The fact that QM can not explained in classical way1 was the motivation
for new ways to formulate QM in order to expand our intuition. Quan-
tum Mechanics provided a new understanding of nature different from what

1An isolated subsystem of a statistical ensemble with infinitely many classical states
may describe a quantum system.

1



2 Introduction

Classical Mechanics provided. While the classical laws of physics are de-
terministic (Event A with physical parameter a,b leads to outcome B with
physical parameter x,y), QM is probabilistic (Event A leads to outcomes B
with probability P1 and outcome C with probability P2 and so on).

During the development of the Quantum Mechanics theory, several for-
mulations of Quantum Mechanics emerged side by side with the interpre-
tation of the theory, as physicists need it to facilitates the physical inter-
pretation processes of problems. We have to make this distinction between
the formulation and the interpretation of the QM. Where values of physical
observables such as energy and momentum no longer considered as values
of functions on phase space, but as eigenvalues, as spectral values of linear
operators or matrices in Hilbert space [5, 6, 7, 8].

Quantum mechanics may be formulated and analysed in many different
ways. As the matrix formulation (Heisenberg) section 2.3, the wavefunction
formulation (Schrödinger) section 2.4, Dirac formulation section 2.5, The pi-
lot wave formulation (de Broglie-Bohm) section 2.6, phase space formulation
(Wigner) section 2.7, and the path integral formulation (Feynman) section
2.8,. . . etc.

The rest of this thesis is outlined as follows: In Chapter 2, we introduce
several formulation to quantum mechanics. In Chapter 3, we introduce spec-
tral theory as an important mathematical tool in our thesis. In Chapter 4,
we introduce spectral analysis in Python. In Chapter 5 we take a step fur-
ther by introducing Harmonic Oscillators step by step starting with classical
unforced and undamped harmonic oscillator up to forced and damped oscil-
lator. In Chapter 6 a more detailed descriptions of our numerical simulations
is given. Finally, In Chapter 7, we summarize our work.



Chapter 2

The many formulations of
(Quantum) Mechanics

Quantum Mechanics is the foundation of most active areas of contempo-
rary physics, such as atomic and molecular physics, solid state physics, and
particle physics. I.e., where the aim is to describe objects which are very
small, and phenomena which occur very fast, compared to everyday experi-
ence. An accurate dynamical description of such cases cannot be achieved
by the classical mechanics of Newton, or its Lagrangian and Hamiltonian
reformulations.

Since there is no obvious line of separation between what should be con-
sidered “large” and “small”, or “fast” and “slow”, the same theory ought (in
principle) to be able to describe all kinds of phenomena, only with possi-
ble simplifications in various limiting cases. Therefore, classical mechanics
should be expected to be an approximation of quantum mechanics in some
limits, which must include the description of ordinary macroscopic objects.
It may therefore not be surprising that the new descriptions, which have be
realized through many (seemingly) different formulations of quantum me-
chanics, to a large degree are based on the old mechanics section 2.2 and its
extention to classical statistical mechanics. Before we discuss various quan-
tum formulations it is natural of review some parts of classical mechanics.

3



4 The many formulations of (Quantum) Mechanics

2.1 Review of classical mechanics

2.1.1 Newton’s second law of mechanics

One may say that the most basic equation of standard mechanics is Newton’s
second law of motion,

F = ma, (2.1)

where m is the mass of a point particle with position r(t), and a = r̈ is its
acceleration. The concept of a force F is therefore the most essential part of
the Newtonian formulation. As it stands, equation (2.1) has no predictive
content before an independent expression for the force known. A common
class are conservative forces, which can be expressed as the gradient of a
potential V ,

F = F (r) = −∇V (r). (2.2)

One important property of such forces is that the energy

E =
1

2
mv2 + V (r), (2.3)

remain unchanged during the motion, where v = ṙ is the particle velocity.

2.1.2 Principle of stationary action

Some of the information in this subject taken from the Wikipedia article [9].
For conservative forces, and some generalizations, there are alternative

formulations of a dynamical principle. One formulation starts by assigning
an action,

S{q} =

∫ tf

ti

dt L(q, q̇), (2.4)

to every continuous path q = q(t) from qi ≡ q(ti) to qf ≡ q(tf ). I.e.,
the action is a functional of the path, constructed as the time-integral of a
Lagrange function L(q, q̇) ≡ L(q(t), q̇(t)).

Hamilton’s principle, or the principle of stationary action1, says that of
all possible paths q the classical solution qc is one which makes the action
stationary. I.e., qc is selected such that

δS ≡ d

dε
S{qc + εδq}

∣∣∣∣
ε=0

=

∫ tf

ti

dt

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a
)

= 0, (2.5a)

for all possible deviations δq = δq(t) satisfying δq(ti) = δq(tf ) = 0. In the
integral above, (i) the vectors q and δq are assumed to have components

1Generally, the action simply stationary, neither minimum nor maximum.
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0.0 0.2 0.4 0.6 0.8 1.0
Positions q(t) = qc(t) + δq(t)

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
t

qc(t)

qi

qf

A stationary action path qc, and deviations

Classical path
With δq(t) 6= 0
· · ·
· · ·

Figure 2.1: Of all possible paths starting at position qi at time ti, and ending
at position qf at time tf , classical dynamics selects those which makes the action
stationary. Here indicated by the thick fulldrawn (blue) line.

qa and δqa, (ii) the integrand should be evaluated on the classical path,
qa(t) = qac (t), and (iii) there is an implicit sum over repeated indices a (the
Einstein summation convention). The physical content of equation (2.5a) is
illustrated in figure 2.1 for the case of motion in empty space. In such cases
the classical particle must move on a straight line with constant velocity —
in agreement with Newton’s first law of mechanics.

After integrating the 2nd term in the integrand of equation (2.5a) by
parts, one obtains

δS =

∫ tf

ti

dt

[
∂L

∂qa
− d

dt

(
∂L

∂q̇a

)]
δqa = 0. (2.5b)

It has been used that the endpoint contribution, (∂L/∂q̇a) δqa|tfti , vanishes
because δqa = 0 at the endpoints. Since equation (2.5b) must hold for all
possible δq, this leads to the Euler-Lagrange equations,

d

dt

(
∂L

∂q̇a

)
=
∂L

∂qa
for all a. (2.6)

A connection the Newtonian mechanics of subsection 2.1.1 is made by choos-



6 The many formulations of (Quantum) Mechanics

ing a Lagrange function of the form

L(q, q̇) = T (q̇)− V (q). (2.7)

For a single point particle, q can be choosen to be the position vector r of
that particle, with

T (ṙ) =
1

2
mṙ2 (2.8)

its (non-relativistic) kinetic energy, and V (r) its potential energy. Equations
(2.6) become

d

dt
mṙa = mr̈a = − ∂V

∂ra
,

which is the component form of Newton’s second law with a conservative
force F = −∇V . This can be extended a collection of N point particles
with masses mi, by choosing q to be a vector with 3N components,

q = (r1, r2, . . . , rN ) , and T (q̇) =
N∑
i=1

miṙ
2.

The potential is often a sum of pair potentials,

V (q) =
1

2

∑
i 6=j

Vij(|ri − rj |).

As examples, for Newtonian forces of gravity, V (G)
ij = −mimjGN/r, where

GN ≈ 6.674× 10−11 m3s−3kg−1 is the gravitational constant. For Coulomb
forces, V (C)

ij = QiQj/(4πε0r), where ε0 = 8.854 × 10−12 m−3kg−1s4A2 is
the permittivity of free space, and Qi is the charge of particle i measured in
Coulomb (C ≡ As).

For particles in a magnetic field B = ∇ × A(ri), the kinetic energy
become

T (q̇)→ T (q̇) + eq̇.A

where,

eq̇.A ≡
N∑
n=1

Qi.ṙi.A(ri)

In relativistic mechanics,

1

2
mṙ2 = −mc

√
1−

( ṙ
c

)2
.
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And2

T (q̇) =
1

2

∑
i

miṙ
2
i → −

∑
i

mic
2

√
1−

( ṙi
c

)2
.

2.1.3 Hamiltonian mechanics

Some of the information in this subject taken from the Wikipedia article
[10].

The Euler-Lagrange equations (2.6) can be written in the form

dpa
dt

=
∂L

∂qa
, (2.9)

where
pa ≡ (∂L/∂q̇a) (2.10)

is the canonically conjugate momentum of the coordinate qa. One may say
that this is the general version of Newton’s second law. Note that pa will
remain constant if L does not depend explicitly on qa, ∂L/∂qa = 0. This is
one reason to eliminate velocities q̇a in favor of conjugate momenta pa. At
the same time the Lagrange function L is replaced by the Hamilton function
(or Hamiltonian),

H(q,p) = paq̇
a − L(q, q̇), (2.11)

where q̇ should be interpreted to be a function of p, and possibly also q.
I.e., q̇ = q̇(q,p). The transformation from a Lagrangian to Hamiltonian
formalism,

(q, q̇)→ (q,p) with L(q, q̇)→ H(q,p),

is an example of a Legendre transformation. The equations of motion can
now be written in the form of Hamilton’s equations,(

q̇a

ṗa

)
=

(
∂H/∂pa
−∂H/∂qa

)
. (2.12)

By introducing the Poisson bracket {·, ·} between two functions A, B of q
and p,

{A,B} ≡
∑
b

[(
∂A

∂qb

)(
∂B

∂pb

)
−
(
∂B

∂qb

)(
∂A

∂pb

)]
. (2.13)

2 √
1−

( ṙi

c

)2
=
(

1− 1

2

ṙ2
i

c2
+ . . .

)
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This implies in particular that

{qa, pb} = δab , {qa, qb} = {pa, pb} = 0. (2.14)

Hamilton’s equations can be written

ża = {za, H} , (2.15)

where z = q or p. More generally in Hamiltonian mechanics, the time
dependence of any “physical quantity” (observable) O ≡ O(q,p; t) is given
by

dO
dt

= {O, H}+
∂O
∂t
. (2.16)

I.e., the requirement for an observable (which does not depend explicitly
on time) to remain constant is that it must have a vanishing Poisson bracket
with the Hamiltonian.

All descriptions above have assumed that the state of the mechanical
system is exactly known at each time t, as specified by the quantities q(t)
and p(t). This is a mathematical idealization. A more realistic description is
to define a probability density ρ ≡ ρ(q,p; t), so the probability for the system
to be in a volume element dq dp around the point (q,p) is ρ dq dp. This
means that the value of each observable O is no longer exactly known, but
must be specified statistically by quantities like its mean value and variance,

Ō =

∫
O(q,p) ρ(q,p; t) dq dp, (2.17a)

Var (O) =

∫ [
O(q,p)− Ō

]2
ρ(q,p; t) dq dp. (2.17b)

The limit of an exactly known state is obtained by the probability density

ρ(q,p; t) =
∏
a

δ(qa − qa(t)) δ(pa − pa(t)). (2.18)

The Hamilton equations for the probability density becomes

dρ

dt
= −{ρ,H} . (2.19)

Note that there is a difference in sign between eqs.(2.16) and (2.19)!
There is an alternative to (2.17) for finding the time dependence of expec-
tation values: One may instead assume the probability density to be time
independent, ρ = ρ(q,p; 0), and use observables which vary in time accord-
ing to equation (2.16), O = O(q,p, t).
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2.2 Old quantum mechanics (1913)

Some of the information in this subject taken from the Wikipedia article
[11].

One may say the quantum mechanical description of matter started with
the Bohr model in 1913 [12, 13, 14]. Earlier at the start of 20th century,
experiments of scattering alpha particles on matter [15, 16] had shown that
large deflections could occationally occur. This led Rutherford to propose
a model the atom structure as a “miniature solar system”, with electrons
orbiting the central nucleus [17]. But this model should imply that atoms

n = 1

n = 2

n = 3

+Ze

∆E = hν

Figure 2.2: The Rutherford–Bohr model of the hydrogen atom (Z = 1), where
an electron jump between orbits emit or absorb amount of electromagnetic energy
(∆E = hν).

were unstable, since the orbiting electrons would emit electromagnetic radi-
ation and lose energy while spiralling into the nucleus within a fraction of a
second. In other words, according to classical theory of mechanics and elec-
trodynamics, Rutherford’s atomic solar systems should collapse, releasing
an enormous amount of energy in the process (compared to observed atomic
transition energies).

This led Bohr to propose an amended model of the atom, according
to which it can be stable in a certain set of orbits, with a corresponding
discrete set of energies En. External perturbations might then cause the
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electrons to move from one stable orbit to another, and in the process emit
or absorb a discrete amount of electromagnetic energy in the form of one or
more electromagnetic quanta — photons. For the transition from an orbit
with energy Ei to an orbit with energy Ef < Ei, with the emission of a
single photon, the photon energy would be Ei − Ef . Hence, according to
the Einstein 1905 hypothesis [18], it should have a frequency ν such that

hν ≡ ~ω = (Ei − Ef ), (2.20)

where h = 2π~ = 6.626× 10−34 kgm2 s−1 is the Planck constant.
What should be the condition for a stable orbit? Following Bohr [12],

consider a electron of mass me and charge −e in a circular orbit of radius r
around a very much heavier nucleus of charge Ze. For a nucleus of infinite
mass, Newton’s second law becomes the condition

mev
2/r = Ze2/(4πε0r

2). (2.21)

This implies that V = −Ze2/(4πε0r) = −mev
2 = −2T . By assuming

that the electron angular momentum must be an integer multiple of ~,

L = mevr = n~, (2.22)

one obtains a condition for the allowed types of circular orbits. By combining
equations (2.21) and (2.22) one finds for the energy, velocity and radius:

En = −(Zα)2

2n2
mec

2, (2.23a)

vn =
Zα

|n|
c, (2.23b)

rn =
n2

Zα

(
~
mec

)
. (2.23c)

Here α ≡ e2/(4πε0~c) ≈ 1/137.036 is the dimensionless Sommerfeld
constant, and ~/(mec) ≈ 3.862 × 10−13 m is the electron Compton wave-
length. For Z = 1 and n = 1 (ground state of hydrogen atom) one obtains
|E1| ≈ 13.606 eV (Rydberg energy), r1 = 0.539 × 10−10 m (Bohr radius),
and v1 ≈ 2 188 km/s.

This gives for the possible transition energies in equation (2.20),

Ei − Ef = |E1|
(
n−2
f − n

−2
i

)
, (2.24)

in good agreement with the Balmer (nf = 2, ni = 3, 4, . . .) and Paschen
(nf = 3, ni = 4, 5, . . .) series [19, 20], which had been observed in stellar
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hydrogen spectra before 1913. By replacing the electron mass me with the
reduced mass of a two-body system, me → (1 + me/mN )−1me, where mN

is the mass of the nucleus, a further improvement is obtained.
Although the derivation above gives a phenomenologically very successful

description of atomic physics, at least for the hydrogen atom, it is not quite
correct. The most obvious flaw is that it does not predict a stable atom,
since an electron with angular momentum L = 0 (n = 0) would have energy
E0 = −∞. Or at least very negative, if one assumes that the nucleus to have
some kind of short range repulsion which prevents a complete collapse. In
reality, the (lowest) energy of an electron with angular momentum L = n~
is En+1 = E1/(n + 1)2. A more general condition for stable orbits was

Figure 2.3: The motion of the electron for the hydrogen atom (starting from the
green point) according to classical relativistic mechanics [21].

proposed independently by Wilson [22] and Sommerfeld [23]. According to
this a periodic, stable orbit should satisfy the relation

∮
pkdqk = 2πnk~, (2.25)

for each pair (qk, pk) of (generalized) coordinate and conjugate momenta.
For example, for a harmonic oscillator defined by the Hamiltonian H =
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1
2mp

2 + 1
2mω

2q2, the condition for an orbit with energy E becomes

2

∫ qmax

−qmax

√
2mE −m2ω2q2 dq = 2πn~, (2.26)

where m2ω2q2
max = 2mE. The value of the integral (including the factor

2 in front) is πmωq2
max = 2πE/ω. Hence, equation (2.25) predicts that

En = n~ω. I.e., that the energy of harmonic oscillations must vary in
integer units of ~ω = hν. This is correct, although the further development
of quantum mechanics leads to an overall shift of the above prediction,

En = (n+ 1
2)~ω, n = 0, 1, . . . . (2.27)

This result is in agreement with the Einstein hypothesis that the energy
of light comes in integer units of hν. In fact, the mechanical description
of the electromagnetic field is mathematically equal to an infinite collection
of harmonic oscillators; hence light is just a particular case of the general
description.

Consider now the previous electron-nucleus system with purely radial
motion, L = 0, described by the Hamiltonian H = 1

2me
p2
r − Ze2/(4πε0r).

The condition for a bound orbit with energy E < 0 becomes

2

∫ rmax

0

√
2m [Ze2/(4πε0r)− |E|] dr = 2πnr~, (2.28)

with Ze2/(4πε0rmax) = |E|. The value of the integral (including the factor
2 in front) is (Ze2/4πε0)

√
2m/|E|π. It follows that equation (2.28) also

leads to the energy levels (2.23a),

Enr = −(Zα)2

2n2
r

mec
2. (2.29)

By insisting that nr must be a positive integer, nr = 1, 2, . . ., only stable
orbits are allowed3. However, the reason for this requirement — like the
conditions (2.25) themselves — remains unclear. In the further development
of quantum mechanics the conditions (2.25) can derived as a semi-classical
approximation, usually good only for large values of n.

2.3 Heisenberg Matrix Formulation (1925)

The Heisenberg reformulation [24] of quantum mechanics was motivated by
the problem of understanding transitions between the stable orbits of old

3Actually, it appears that Sommerfeld rejected all L = 0 orbits as unphysical.
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quantum mechanics. According to classical theory of radiation, the emitted
light should have a frequency corresponding to the oscillation frequency of
the radiating electron. This does not quite match with equation (2.20).

For a transition from orbit m to n, Heisenberg postulated a time depen-
dence

qmn(t) = ei(Em−En)t/~ qmn(0), (2.30)

in order to obtain agreement with equation (2.20). Further explorations of
this idea led to a quantum jump picture of atomic transitions which cannot be
described in terms of classical electron orbits. In fact, the “positions” qmn(t)
had to be non-commuting objects. This was soon developed further into a
full theory of matrix mechanics [25, 26, 27], where each classical coordinate
q and conjugate momentum p is replaced by a matrix (infinite-dimensional),
q̂ resp. p̂. One explicit example is the representation

q̂ =

√
~

2m̄ω̄


0
√

1 0 0 · · ·√
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .

, (2.31a)

p̂ = −i
√
m̄ω̄~

2


0

√
1 0 0 · · ·

−
√

1 0
√

2 0 · · ·
0 −

√
2 0

√
3 · · ·

0 0 −
√

3 0 · · ·
...

...
...

...
. . .

. (2.31b)

These matrices satisfy the commutation relation4

[q̂, p̂] ≡ (q̂ p̂− p̂ q̂) = i~, (2.33)

which is formally very similar to the Poisson brackets (2.14) between co-
ordinates and conjugate momenta. In fact, most concepts and equations
of Hamiltonian mechanics, as reviewed in subsection 2.1.3, can formally be

4For later use is convenient to introduce matrices (annihilation and creation operators)
a and a† such that

q̂ =

√
~

2m̄ω̄

(
a+ a†

)
, (2.32a)

p̂ = −i
√
m̄ω̄~

2

(
a− a†

)
(2.32b)

Here a† is the hermittian conjugate of a, as the notation suggests, and the commutator[
a, a†

]
= 1. One further finds that the product a†a is diagonal with eigenvalues 0, 1, . . ..
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carried over to matrix mechanics — only with a different definition of the
Poisson bracket {·, ·}. In matrix mechanics the classical definition (2.13) is
replaced by the commutator{

Â, B̂
}

=
1

i~

[
Â, B̂

]
≡ 1

i~

(
ÂB̂ − B̂Â

)
. (2.34)

With this definition, the most basic mathematical properties of the Pois-
son bracket (like linearity, antisymmetry, the product rule, and the Jacobi
identity) remain unchanged:

{A, bB + cC} = b {A,B}+ c {A,C} , (with constants b, c), (2.35a)
{A,B}+ {B,A} = 0, (2.35b)
{A,B C} = {A,B}C +B {A,C} , (2.35c)
{A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0, (2.35d)

where we have dropped the ˆ which indicate matrix quantities (which we
shall continue to do in the following). One difference between classical and
matrix mechanics is that one must be careful with ordering of terms, as in
equation (2.35c), since the quantities may no longer commute. Consider as
example equation (2.15) with Hamiltonian 1

2mp
2 + 1

2mω
2q2. One finds

q̇ = {q,H} = 1
2m

{
q, p2

}
= 1

2m (p {q, p}+ {q, p} p) = p/m, (2.36)
ṗ = {p,H} = 1

2mω
2
{
p, q2

}
= 1

2mω
2 (q {p, q}+ {p, q} q) = −mω2q,

where only general algebraic properties of the quantities involved have been
used. Specifically, linearity (2.35a), the basic Poisson brackets (2.14), the
product rule (2.35c), and the antisymmetry property (2.35b). By insertion
one can verify that

q(t) = cosωt q0 + (mω)−1 sinωt p0, (2.37a)
p(t) = −(mω) sinωt q0 + cosωt p0, (2.37b)

is a solution to (2.36), with initial conditions (q0, p0) at t = 0. For instance,
one may choose (q0, p0) = (q̂, p̂) as defined in equation (2.31), which gives

qn+1,n(t) =
[
cosωt+ i

m̄ω̄

mω
sinωt

]√~(n+ 1)

2m̄ω̄
, (2.38a)

pn+1,n(t) = i
[
cosωt+ i

mω

m̄ω̄
sinωt

]√m̄ω̄~(n+ 1)

2
(2.38b)

and qn,n+1 = q∗n+1,n, pn,n+1 = p∗n+1,n. All other matrix elements are zero.
Equations (2.38) agree with Heisenbergs postulate (2.30) when m̄ω̄ = mω.
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For the general quantum case equation (2.16) can be written as

d

dt
O =

i
~

[H,O] +
∂O
∂t
. (2.39)

Assuming that O and H have no explicit time dependence, equation
(2.39) has solution

O(t) = eiHt/~O(0) e−iHt/~. (2.40a)

Expressed in a basis where H is diagonal,
(
eiHt/~

)
mn

= eiEmtδmn, this
becomes

Omn(t) = Omn(0) ei(Em−En)t/~, (2.40b)

in general agreement with (2.30).
Hence, in the matrix formulation, the possible energies of a system must

be identified with the eigenvalues of the Hamiltonian H, and the stable or-
bits of Bohr-Sommerfeld quantization are (in some sense) replaced by the
corresponding eigenvectors of H. More generally, the best possible descrip-
tion of a system is in terms of a complex state vector ψ (with components
ψk with respect to some basis), normalized to unity:

∑
k |ψk|2 = 1. The

possible values of a quantized physical quantity (an observable) O are its
eigenvalues On. Assume the corresponding (complete, orthonormal set of)
eigenvectors to be χ(n)

O , i.e.

Oχ(n)
O = On χ(n)

O ,

and expand ψ on this basis, ψ =
∑

n ψn χ
(n)
O . Then, according to the Born

interpretation [28], the probability of observing the value On in the state
ψ is pn = |ψn|2. For a system to have exact values for some observables
O(1),O(2), . . ., it must be described by a state vector ψ which is a simulta-
neous eigenvector of all these observables.

With matrix mechanics, systems which can be treated with the Sommer-
feld quantization rule (2.25) — like the harmonic oscillator, particle angular
momentum, and the hydrogen atom — can be solved in an unambiguous
way. In particular, Pauli calculated the complete non-relativistic spectrum
of the hydrogen atom by matrix methods [29]. The general problem reduces
to the problem of finding eigenvalues of the Hamiltonian H, or other observ-
ables.
Matrix mechanics differs from classical mechanics in puzzling ways. Assume
we have found a vector χ(n) which describes a particle with exact position
qn and exact momentum pn, such that

q χ(n) = qn χ
(n), p χ(n) = pn χ

(n).
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Then we must have, since qn and pn are ordinary numbers,

q p χ(n) = q pn χ
(n) = pnq χ

(n) = pnqn χ
(n),

p q χ(n) = p qn χ
(n) = qnpχ

(n) = qnpn χ
(n).

By subtraction it follows that [q, p]χ(n) = (q p− p q)χ(n) = 0. But this is
not consistent with equation (2.33), which implies that [q, p]χ(n) = i~χ(n).
Hence, a quantum system cannot have exact position and (conjugate) mo-
mentum at the same time. This is very different from the circular or elliptical
orbits of the Bohr-Sommerfeld description.

How can one recover a classical description, which is known to work very
well for mechanical systems of everyday experience? Consider the Hamilto-
nian

H =
p2

2m
+ V (r), (2.41)

where the (matrix) components of each vector p and r commute among
themselves, but not with each other:

[pj , pk] = 0, [rj , rk] = 0, [pj , rk] = −i~δjk. (2.42)

The Heisenberg equations of motion become5

ṙj =
i

~
[H, rj ] =

i

2m~
[pkpk, rj ]

=
i

2m~
(pk [pk, rj ] + [pk, rj ] pk) =

pj
m
, (2.43a)

ṗj =
i

~
[H, pj ] =

i

~
[V (r), pj ] = − ∂

∂rj
V (r). (2.43b)

5 To derive of the last equality of equation (2.43b), with use of the relations (2.42)
only, one can first show that

r(t) ≡ eitu·p/~ r e−itu·p/~ = r + tu,

because r(t) satisfies the differential equation

d

dt
r(t) = eitu·p/~ i

~ [u · p,r] e−itu·p/~ = u,

with initial condition r(0) = r. From this it follows that

eitu·p/~ V (r) e−itu·p/~ = V (r + tu).

By differentiating with respect to t, and setting t = 0, one obtains

i

~ [u · p, V (r)] = u ·∇V (r).

Equation (2.43b) for j = 1, 2, 3 is now obtained by choosing u to respectively (1, 0, 0),
(0, 1, 0) and (0, 0, 1).
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For a given state vector ψn, we define the mean value of observables O
as

〈O〉 =
∑
mn

ψ∗mOmnψn. (2.44)

Then, by taking the mean value of the matrix equations (2.43), we obtain

〈ṙ〉 = 〈p/m〉, 〈ṗ〉 = −〈∇V (r)〉,

or
m〈r̈〉 = −〈∇V (r)〉. (2.45)

Newton’s second law is reproduced for the average position when one
can make the approximation 〈∇V (r)〉 ≈∇V (〈r〉).

2.3.1 Explicit matrix representations

Choose units in (2.31) such that m̄ω̄ = 1 and ~ = 1, and define matrices

Q(2e)
m,n ≡

(
q̂2
)

2m,2n
, (2.46a)

Q(2o)
m,n ≡

(
q̂2
)

2m+1,2n+1
, (2.46b)

P (2e)
m,n ≡

(
p̂2
)

2m,2n
, (2.46c)

P (2o)
m,n ≡

(
p̂2
)

2m+1,2n+1
, (2.46d)

Q(4e)
m,n ≡

(
q̂4
)

2m,2n
, (2.46e)

Q(4o)
m,n ≡

(
q̂4
)

2m+1,2n+1
. (2.46f)

The nonzero elements of the above quantities are

Q(2e)
n,n = 1

2(4n+ 1), (2.47a)

Q
(2e)
n,n+1 = Q

(2e)
n+1,n = 1

2

√
(2n+ 1)(2n+ 2), (2.47b)

Q(2o)
n,n = 1

2(4n+ 3), (2.47c)

Q
(2o)
n,n+1 = Q

(2o)
n+1,n = 1

2

√
(2n+ 2)(2n+ 3), (2.47d)

Q(4e)
n,n = 1

4(24n2 + 12n+ 3), (2.47e)

Q
(4e)
n,n+1 = Q

(4e)
n+1,n = 1

4(8n+ 6)
√

(2n+ 1)(2n+ 2), (2.47f)

Q
(4e)
n,n+2 = Q

(4e)
n+2,n = 1

4

√
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4), (2.47g)

Q(4o)
n,n = 1

4(24n2 + 36n+ 15), (2.47h)

Q
(4o)
n,n+1 = Q

(4o)
n+1,n = 1

4(8n+ 10)
√

(2n+ 2)(2n+ 3), (2.47i)

Q
(4o)
n,n+2 = Q

(4o)
n+2,n = 1

4

√
(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5), (2.47j)
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with further P (2p)
nn = Q

(2p)
nn , P (2p)

n,n+1 = P
(2p)
n+1,n = −Q((2p))

n,n+1 for parity p = e or
o. Note that all odd matrix elements can be obtained by shifting n→ n+ 1

2
in the expressions for the even ones.

2.4 Schrödinger Wave Formulation (1926)

The Schrödinger formulation of quantum mechanics [30] was much motivated
by a “phase-wave” description of matter, developed in the thesis of Louis
de Broglie shortly before [31]. According to the Einstein hypothesis, an
electromagnetic wave of frequency ν, moving with the speed of light c, were
associated “particles” (quanta) of energy E = hν. By extending this relation
to massive particles, de Broglie postulated the relation

E = hν =
mc2√

1− (v/c)2
. (2.48)

By identifying v with the wave propagation velocity, de Broglie found the
wave to have a phase

ν
(
t− vx/c2

)
.

I.e, a de Broglie wavelength λdB such that

1/λdB = νv/c2 = (mv/h)/
√

1− (v/c)2 = p/h.

Later one would say that a single point particle with energy E and momen-
tum p is associated with a matter wave

ψ ∼ e−i(Et−p·r)/~, (2.49)

although no formula can be found in de Broglie’s thesis. Further, no wave
equation is postulated, but de Broglie pointed out that a quantization con-
dition like (2.25) could be understood as a condition for constructive inter-
ference.

In reference [30] Schrödinger mainly discusses the time-independent equa-
tion for non-relativistic particles,[

− ~2

2m
∇2 + V (q)

]
ψ(q) = Eψ(q), (2.50)

but mentions that a time dependent equation can be obtained by making
a replacement E ψ(q) → ±i~ ∂

∂tψ(q, t). At that time it also seemed un-
clear how the wave function for a system of more that one particle should
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described. I.e, is the wave function a quantity in physical space (like the elec-
tromagnetic fields), so that waves from different particles must be added?

It was soon realized that it had to be function in configuration space, so
that a system of two particles is described by a wave function ψ(q1, q2, t).
From later viewpoints (the Schrödinger picture) the wavefunction ψ(·, t)
describes the state of a mechanical system in a time dependent way, with
physical observables O being constant in time (unless they are explicitly
time dependent). This is analogous to a classical description in terms of a
time dependent probability distribution ρ(q,p; t) (see section 2.1.3). This is
in contrast to matrix mechanics (the Heisenberg picture), where the system
is described by a time constant state vector ψn, as discussed in section 2.3,
and time dependent observables Ô = Ô(t).

In other words, the focus is shifted from the dynamics of the “measurable
quantities” (observables) to the dynamics of wave function ψ(q, t) describing
the state of the system, with expectation values of observables defined as

〈O(t)〉 =

∫
dq ψ(q, t)∗Oψ(q, t). (2.51)

Here q denotes the complete set of (generalized) coordinates. It was realized
that the Schrödinger wave function formulation was (essentially) equivalent
to the Heisenberg matrix formulation, only with different representations of
q and p,

q : ψ(q, t)→ q ψ(q, t), (2.52a)
p : ψ(q, t)→ −i~∇q ψ(q, t). (2.52b)

One finds that

[qj , pk] ψ(q, t) = −i~
(
qj

∂

∂qk
− ∂

∂qk
qj

)
ψ(q, t) = i~δjkψ(q, t),

for all ψ(q, t). Hence, the canonical commutation relation

[qj , pk] = i~δjk (2.53)

is also obeyed in the Schrödinger formulation. The two formulations are
considered equivalent, although there are some practical differences: In the
Heisenberg formulation it is (in principle) straightforward to consider expec-
tation values of observables at different times,〈

O(1)(t1)O(2)(t2) · · · O(N)(tN )
〉

=
∑

m0m1···mN

ψ∗m0
O(1)
m0m1

(t1)O(2)
m1m2

(t2) · · · O(N)
mN−1mN

(tN )ψmN .
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This seems more cumbersome to express in the Schrödinger picture. On the
other hand, the Schrödinger formulation provide unambiguous results when
one transforms from cartesian coordinates to other coordinate systems. As
example, consider a transformation to spherical coordinatesxy

z

 =

r sin θ cosφ
r sin θ sinφ
r cos θ

 , (2.54)

which implies that ∂r
(1/r) ∂θ

(1/r sin θ) ∂φ

 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ sin θ
− sinφ cosφ 0

∂x∂y
∂z

 (2.55a)

and∂x∂y
∂z

 =

sin θ cosφ cos θ sinφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ sin θ 0

 ∂r
(1/r) ∂θ

(1/r sin θ) ∂φ

 . (2.55b)

It is unambigous (but tedious) to work out from this that

∇2 = ∂2
r + (2/r)∂r + (1/r2)

[
∂2
θ + cot θ ∂θ + (1/ sin2 θ) ∂2

φ

]
. (2.55c)

In comparison, a classical canonical transformation gives

p2
x + p2

y + p2
z = p2

r + (1/r2)
[
p2
θ + (1/ sin2 θ)p2

φ

]
.

There is an ambiguity in constructing the quantum operator from this, be-
cause classically (1/r2)pr r

2pr = p2
r and (1/ sin θ)pθ sin θ pθ = p2

θ. But in
quantum mechanics all quantities do not commute; hence these equalities
are no longer true.

For example, the state of a system with two particles (spin-0) can rep-
resented mathematically by a complex function in six-dimensional config-
uration space ψ(q1, q2, t). Which evolves in time by applying Schrödinger
equation as

i~
∂ψ(q1, q2, t)

∂t
=
[
− ~2

2m1
∇2

1ψ(q1, q2, t)−
~2

2m2
∇2

2ψ(q1, q2, t)

+ V (q1, q2)ψ(q1, q2, t)
]
, (2.56)

where m1 and m2 are the particles masses, and V (q1, q2) is the classical
potential energy function.
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In another form, we may use the mathematical representation of momentum
space, which is in six-dimension

ψ̃(p1,p2, t) =

∫
d3q1

(2π~)3/2

∫
d3q2

(2π~)3/2
e−i(p1·q1+p2·q2)/~ ψ(q1, q2, t), (2.57)

where its evolution in time is

i~
∂

∂t
ψ̃(p1,p2, t) =

[(
p2

1

2m1
+
p2

2

2m2

)
ψ̃(p1,p2, t) (2.58)

+

∫
d3p′1

∫
d3p′2 Ṽ (p′1,p

′
2) ψ̃(p1 + p′1,p2 + p′2, t)

]
,

such that Ṽ (p1,p2) represent the Fourier transform of the potential energy
function,

Ṽ (p1,p2) =

∫
d3q1

(2π~)3

∫
d3q2

(2π~)3
ei(p1·q1+p2·q2)/~ V (q1, q2). (2.59)

2.4.1 Discrete Schrödinger equation

In section 2.3 we considered the possibility of replacing the operators q̂ and
p̂ in equation (2.31) by finite (N ×N) matrices,

q̂ → q̂N , p̂→ p̂N .

Since q̂N is a real symmetric matrix it can be diagonalized by a real orthog-
onal matrix S, q̂N = S−1 q̄N S, where q̄N is real and diagonal. Hence for
any function V (q) one has

V (q̂N ) = S−1 V (q̄N )S. (2.60)

A corresponding rewriting of the kinetic energy becomes

T =
1

2m
p̂2
N =

1

2m
S−1p̄2

N S, (2.61)

where T is a symmetric, but non-diagonal matrix. This leads to a general
discrete Schrödinger representation, with a general Hamiltonian

H =
1

2m
p̄2
N + V (q̄N ), (2.62)

and a diagonal position operator. It is further quite straightforward to ex-
tend this to higher dimensions D. Dropping N from the explicit notation,

H =
1

2m
p̄2 + V (q̄). (2.63)
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The advantage is that only the diagonal components of V (q̄) is nonzero, and
need to be stored (alltogether ND componenents). Further, we may write

p̄2 =
D∑
j=1

p̄2
j (2.64)

with each p̄2
j a symmetric N ×N matrix. This means that the Hamiltonian

at most requires the storage of DN(N + 1)/2 +ND components, instead of
ND(ND + 1)/2.

2.5 Dirac Formulation (1927)

Some of the information in this subject taken from the Wikipedia article
[32].

It’s known also as interaction picture. It’s a sort of intermediary between
the Schrödinger picture (see section 2.4) and the Heisenberg picture (see
section 2.3) as both the quantum states |ψ〉 and the operators Ô carry time
dependence.[33, 34]

|ψ〉 = |ψ(t)〉 (2.65)

Ô = Ô(t) (2.66)

This formulation is useful as it gives ability to construct the solution to
the many body schrödinger equation of two parts solution. A part to the
free particle problem together with unknown interaction part.

Hs = H0,s +H1,s (2.67)

where the free parts H0,s have to be solvable, while H1,s contain the system
perturbation parts. Which is not easy to solve.
Some problem have explicit time-dependent Hamiltonian (for example, if the
quantum system placed within an electric field that varies in time) which
considered as an advantage (including the explicity time-dependent terms
with H1,s part, leaving the free part H0,s time-independent).
The state vectors of Dirac picture defined as transformation of the Schrödinger
states |ψs(t)〉

|ψI(t)〉 = eiH0,st/~ |ψs(t)〉 , (2.68)

while the operators are transformed similarly to the Heisenberg operators

ÔI(t) = eiĤ0,st/~ Ôs e−iĤ0,st/~. (2.69)
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Where Ôs is not time dependent unless the operator has "explicit time
dependence".
By considering that the interaction picture counterparts to the Hamiltonian
operator of Schrödinger picture.

Ĥ0,I(t) = eiĤ0,st/~ Ĥ0,s e
−iĤ0,st/~

= Ĥ0,s. (2.70)

For the perturbation Hamiltonian we have,

Ĥ1,I(t) = eiĤ0,st/~ Ĥ1,I e
−iĤ0,st/~ (2.71)

where the perturbation Hamiltonian becomes a time-dependent unless [H1,s, H0,s=0].
And by transforming the Schrödinger equation into the Dirac picture we

get the time-evolution of states,

i~
d

dt
|ψI(t)〉 = H1,I(t) |ψI(t)〉 . (2.72)

Where it’s clear that the state vector |ψI(t)〉 evolve in time according
to the interaction term only. While the operators Ôs has no explicit time
dependence,

i~
d

dt
ÔI(t) =

[
ÔI(t), H0

]
. (2.73)

2.6 Bohm Pilot Wave Theory (1927)

Some of the information in this subject taken from the Wikipedia article
[35, 36].

The pilot wave interpretation combine both the classical and wavefunc-
tion mathematical representation. While the first mechanics represent a
system of one electron and one proton (spin-0) by two points tracing out tra-
jectories in three-dimensional physical space and the other formulation rep-
resent it by a complex-valued wavefunction which evolve in six-dimensional
configuration space (2.56), the pilot wave mechanics represent this system
mathematically by the wavefunction (called pilot wave) via a guiding equa-
tion which provide information telling the two points how to move.

The evolution of the wave function over time is given by Schrödinger’s
equation,

i~
∂ψ

∂t
= (− ~2

2m
52 +V )ψ. (2.74)
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The Bohm complex wave function for this system can be represented as

ψ(q1, q2, t) = R(q1, q2, t) e
iS(q1,q2,t)/~, (2.75)

where R(q1, q2, t) is the real magnitude term and eiS(q1,q2,t)/~ is the phase
functions term.

By plugging equation(2.75) into schrödinger equation(2.74) we get first
the continuity equation for the probability density P [37],

∂P

∂t
+

1

m1
∇1.(P∇1S) +

1

m2
∇2.(P∇2S) = 0, (2.76)

where6

P (q1, q2, t) = R2(q1, q2, t) (2.77)

and
1

mi
∇iS for i = 1, 2 (2.78)

represent the velocity field of the system particles which is defined by the
guidance equation7.

And we get a modified Hamilton-Jacobi equation for the action S,

∂P

∂t
= −(∇1S)2

2m1
− ∇2S)2

2m2
− V (q1, q2)−Q(q1, q2, t) (2.79)

where Q(q1, q2, t) represent the state-dependent "quantum potential"

Q(q1, q2, t) = − ~2

2m1

∇2
1R

R
− ~2

2m2

∇2
2R

R
. (2.80)

Based on this the two point particles will move with accelerations

m1
dv1

dt
= −∇1V −∇1Q and m2

dv2

dt
= −∇2V −∇2Q (2.81)

From the last term in equation(2.81) we can understand that the force
is given by both the gradient of the classical and quantum potential as well.

We can arrive to the classical limit of the Bohm pilot wave formulation
by neglecting the quantum potential Q. This will reduce equation(2.79) to
the Hamilton-Jacobi of a classical point particle[38].

6Since the probability density defined as P (q, t) = |ψ(q, t)|2
7The guiding equation for many particles k

dqk

dt
(t) =

~
mk

Im
(∇kψ

ψ

)
(q1,q2, . . . ,qN , t),

where the velocity firld depends on the actual positions of all the N particles in the
universe.
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2.7 Wigner Phase Space Formulation (1932)

An alternative formulation which is not very popular. It’s probably equiv-
alent to the schrödinger formulation of quantum mechanics8, which is the
standard formulation.

This formulation was given in 1932 in a paper on the Quantum Correc-
tion for Thermodynamic Equilibrium.[39] Wigner was not looking for finding
another formulation of quantum mechanics, but rather in finding a quantum
correction (Boltzmann equation which is the main equation in the classical
statistical mechanics).

For a single particle in one dimension, the Wigner phase-space distribu-
tion function, which is given in terms of Quasi-distribution functions, is

W (x, p, t) =
1

2π~

∫ +∞

−∞
ψ∗(x− 1

2
y, t)ψ(x+

1

2
y, t)e−ipy/~ dy. (2.82)

A quasi-distribution is not a probability distribution since it has a neg-
ative peak at some places. But if we integrates over impulses we get real
probability distribution of positions.∫ +∞

−∞
W (x, p, t)dy = |ψ(x, t)|2. (2.83)

And if we integrats over positions we get real probability distribution of
impulses. ∫ +∞

−∞
W (x, p, t)dx = |ψ̃(p, t)|2. (2.84)

The time development of equation (2.82) is

∂W (x, p, t)

∂t
= − p

m

∂W (x, p, t)

∂x

∫ +∞

−∞
K(x, p′) W (x, p+ p′, t) dp′ (2.85)

where the kernel K(x, p) is

K(x, p) =
1

2πh̄

∫ +∞

−∞

[
V (x− 1

2
y)− V (x+

1

2
y)
]

sin(
py

~
) dy. (2.86)

It’s difficult to solve equation (2.85) even numerically.
Where a quasi distribution function defined over the phase space and it’s

6th dimensional space. And if we have n particles system, its phase space
becomes a (6×n) dimensional space. Which is mathematically very difficult
problem.

8Mathematically, Wigner formulation and Schrödinger formulation are equivalent. By
using Wigner-Weyl transformation, we can start from one formulation to get the other
corresponding one.
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2.8 The Path Integral Formulation (1948)

Some of the information in this subject taken from the Wikipedia article
[40].

It is an approach to quantum mechanics by Feynman that was already
described by Dirac early (see section 2.5). This formulation shifts the focus
from "state" to "Transition probability".

The basic idea behind the path integral is that to calculate the quantum
transition amplitude for a particle moved from a particular position qi at
a particular time ti to a different position qf at a later time tf . Where we
have to consider all the possible classical space-time paths that the particle
can take from the initial to the final state (calculate the classical action S =∫

(Lagrangian)dt for each path) assign each path a "transition amplitude "
proportional to eiS/~.

And to calculate the total amplitude for the particle movement we have
to add up all the complex amplitudes over all the paths the particle can
take through it’s journey or by other words we take the path integral as this
movement will have a continuum of paths.

ψ(t1, q1) =

∫
e

iS(q,q̇)
~ dq(t) ψ(t0, q0) (2.87)

where the asction is
S =

∫
dt
[1
2
mq̇2 − V (q)

]
. (2.88)

Integrate (2.87) over all possible paths from (t0, q0) to (t1, q1). Here

t→ −iτ, dt = idτ

and, (dq
dt

)2
=
(dσ
dt

)2( dq
dσ

)2
= −

(dq
dτ

)2

.
Then the action S in equation (2.88) become,

SE =

∫
dτ
[1

2

(dq
dτ

)2
+ V (q)

]
. (2.89)

And equation (2.87),

ψ(t1, q1) =

∫
e
−iSE

~ dq(t) ψ(t0, q0). (2.90)

The standard way to interpret this amplitude is by taken it’s square
absolute value, which we call it the probability, such that
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∫ ∣∣ψ(t, q)
∣∣2dq = 1 (2.91)

for V = 0 (Brownian motion).Comparing this formulation to Bohm for-
mulation section 2.6 we find that path integral formulation is intrinsically
relativistic and it does not require any inertial frame, while Bohm mechanics
need the fram to applied to a relativistic system[41, 42].

One of the advantages of this formulation is that we can arrive to the
classical limit by ~→ 0, as the weight factor eiS/~ will oscillate very rapidly.
By other words, in small ~ limit the path integral dominates by the classical
trajectory.
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Chapter 3

Spectral theory

Some of the information in this subject taken from the Wikipedia article
[43].

In physical models which can be described by linear equations, such
as quantum mechanics, it is common and convenient to describe the time
evolution as a superposition of fundamental modes of oscillations, each mode
undergoing periodic motion with a given frequency. Examples can be the
determination of the natural oscillation frequencies of an harmonic string or
a drum, or the energy eigenvalues of quantum systems. From this pont of
view spectral theory is the mathematical tool to determine the fundamental
frequencies (eigenvalues), and the corresponding modes (eigenvectors).

But on the mathematical and technical level, spectral theory is not de-
pendent on such a physical perspective. In particular from a practical point
of view, where only systems with a finite numbers of modes can be handled
numerically, it can be considered to be a subset of linear algebra. As such it
consists of a collection of theoretical concepts and theorems, together with a
set of theoretical and practical methods to find a discrete set of eigenvalues
and eigenvectors of finite matrices.

3.1 Spectral representation

This reference [44] was useful of writing this part.
A N × N matrix A can be completely diagonalized if we can find N

eigenvalues Dn, each with a corresponding left eigenvector χ(n), and corre-
sponding right eigenvector ϕ(n), such that

χ(n)A = Dn χ
(n), Aϕ(n) = ϕ(n)Dn, for n = 1, 2, . . . , N. (3.1)

29
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By using both of these relations, and subtracting, we find that

0 = χ(m)Aϕ(n) − χ(m)Aϕ(n) = (Dm −Dn)χ(m) · ϕ(n).

I.e., when Dm 6= Dn we must have that

χ(m) · ϕ(n) ≡
N∑
k=1

χ
(m)
k ϕ

(n)
k = 0. (3.2)

When Dm = Dn for m 6= n, the matrix is said to have degenerate
eigenvalues. Then the ortogonality condition (3.2) can be achieved through
a Gram-Schmidt ortogonalization process.[refer to an appendix] Further, the
relative normalizations of left and right eigenvectors can be chosen such that
χ(n) · ϕ(n) = 1. With a complete set of such orthonormalized left and right
eigenvectors, we can define a N×N matrix S−1 such that its nth row equals
χ(n), and another matrix S such that the nth column in S equals ϕ(n).
Explicitly

S−1 =


χ

(1)
1 χ

(1)
2 · · · χ

(1)
n

χ
(2)
1 χ

(2)
2 · · · χ

(2)
n

...
...

. . .
...

χ
(n)
1 χ

(n)
2 · · · χ

(n)
n

 , S =


ϕ

(1)
1 ϕ

(2)
1 · · · ϕ

(n)
1

ϕ
(1)
2 ϕ

(2)
2 · · · ϕ

(n)
2

...
...

. . .
...

ϕ
(1)
n ϕ

(2)
n · · · ϕ

(n)
n

 .

The orthonormalization condition can then be written in a matrix form

(
S−1S

)
mn

=
N∑
k=1

χ
(m)
k ϕ

(n)
k = δmn. (3.3a)

This means that S−1S = I, where I is the N ×N unit matrix, so that
S−1 is the (left) inverse of S (as the notation suggests). But since the left
and right inverse of finite-dimensional matrices are equal, we must also have

(
SS−1

)
jk

=

N∑
n=1

ϕ
(n)
j χ

(n)
k = δjk. (3.3b)

This is the completeness relation for the eigenvectors. By introducing
Dirac notation we can rewrite the completeness relation as,∑

n

|n〉 〈n| = 1,

and the orthogonality as,
〈n|m〉 = δnm.
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And as we know the relation between χ and ϕ is χj =
∑

nCnϕ
n
j or, we

can rewrite it as,

|χ〉 =
∑
n

|n〉 〈n|χ〉,

where |χ〉 ≡ χk, |n〉 ≡ ϕnj and 〈n|χ〉 ≡ Cn.
The previous definitions can be used to decompose the matrix A into the

form

A = S−1DS

from which we may evaluate functions of A as

f(A) = S−1f(D)S

Here D is a diagonal matrix, D = diag(D1, D2, . . . , DN ).
The generalization to systems with infinitely many modes leads to a

much broader theory of linear operators [45], with extended possibilities
for spectra and (generalized) eigenmodes. One may say that the spectral
theorem identifies a class of linear operators that can be represented by
multiplication operators, after a suitable change of basis. This is as simple
as a linear operator can be.

At this point it should be pointed out that not all matrices can be com-
pletely diagonalized. The problem is related to the occurence of degenerate
eigenvalues. To each eigenvalue, not counting degeneracies, there is at least
one left and right eigenvector. But not necessarily equally many as the nu-
mer of degenerate eigenvalues. The latter is called the algebraic multiplicity,
while the number of linearly independent eigenvectors corresponding to the
eigenvalue is called the geometric multiplicity. I.e, the geometric multiplicity
is equal or smaller than the algebraic multiplicity, but never smaller than 1.

3.2 Diagonalization of general matrices

Consider a general n× n matrix

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

...
...

...
an1 an2 ... ann

 , (3.4)



32 Spectral theory

which we want to diagonalize. This means that we must find a matrix P
such that P−1AP = D, where D diagonal. I.e.,

P−1AP = D =


λ1 0 ... 0
0 λ2 ... 0
...

...
...

...
0 0 ... λn

 . (3.5)

Equation (3.5) can also be written as AP = PD, or written explicitly:∑
k

AikPkj = PikDkj = Pijλj . (3.6)

In the last equality we have used that D is diagonal, Dkj = δkjλj . This
means that the vector v(j) with components v(j)

i ≡ Pij is a right eigenvector
of A with eigenvalue λj :∑

k

Aikv
(j)
k = λj v

(j)
i , or Av(j) = λjv

(j), for j = 1, 2, . . . n, (3.7)

in matrix notation. This means that the diagonalizing matrix P consists of
the right eigenvectors of A,

P =
(
v(1), v(2), . . . , v(n)

)
. (3.8)

We can rewrite equation (3.7) as (A− λjI)v(j) = 0, where I is the unit
matrix. This equation has a nonzero solution only when there is a λ such
that

det (A− λI) = 0. (3.9)

As can be seen by expanding the determinant, this is a nth order algebraic
equation for λ. Hence, counting degeneracies, the eigenvalue equation (3.9)
has n roots.

3.2.1 The case of 2× 2 matrices

To illustrate the general procedure, and the exceptional cases which may
arise for arbitrary square matrices, consider the case of a 2× 2 matrix,

A =

(
a11 a12

a21 a22.

)
(3.10)
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To find an eigenvalue and a right eigenvector of A means that we must
find a number λ and a non-zero vector v, such that

Av = λv, or (A− λI)v = 0, (3.11)

where I is the 2 × 2 unit matrix. If A − λI is invertible, we can just solve
equation (3.11), with the result that v = (A− λI)−1 0 = 0, in contradiction
to the requirement that v be non-zero. Hence, to have an eigenvector the
matrix (A − λI) cannot be invertible, which is the case if and only if its
determinant is 0,

det (A− λI) = (a11 − λ)(a22 − λ)− a12 a21 = 0. (3.12)

This is the eigenvalue equation, which in this case is a second order
equation for λ. Hence, counting degeneracies, we find two solutions,

λ± =
1

2

[
(a11 + a22)±

√
(a11 − a22)2 + 4a12a21

]
. (3.13)

Consider first the case of two degenerate solutions, λ+ = λ−. This occur
when the square root in (3.13) vanishes; i.e., when (TrA)2 = 4 detA. In this
case we find the eigenvector equation to be

(A− λI)v =

(√
−a12 a21 a12

a21 −
√
−a12 a21

)(
v1

v2

)
= 0. (3.14)

This has two linearely independent solutions only when a12 = a21 = 0.
I.e., when A is proportional to the unit matrix (in which case it is already
diagonal). Otherwise the geometric multiplicity (the number of linearly in-
dependent eigenvectors corresponding to an eigenvalue) is smaller than the
algebraic multiplicity (the number of degenerate eigenvalues).

3.3 Diagonalization of Hermitian matrices

This reference [46] was useful of writing this part.
We are always able to diagonalize hermitian matrices, and more generally

normal matrices ( i.e. Commutator with their hermitian conjugate). Real
hermitian matrices are symmetrical, that means, they are identical to the
hermitian conjugate. Diagonalisation matrices are unitary (orthogonal of
real matrices).

Consider a hermitian n× n matrix A

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

...
...

...
an1 an2 ... ann

 , (3.15)
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where aji = a∗ij .
We will first prove that it’s eigenvalues are real and the eigenvectors cor-

responding to different eigenvalues are orthogonal.
Denote ψ(j) as the eigenvectors to matrix A, with λj as the matrix eigen-
values, i.e. ∑

aikψ
(j)
k = λjψ

(j)
i (3.16)

where both ψ(j) and λj a priori may be complex, and

ψ(j) =
(
ψj1, ψ

j
2, ψ

j
3, . . .

)T
. (3.17)

By multiplying equation (3.16) by ψ∗(j)i , and summation over i, we get∑
ik

aikψ
∗(j)
i ψ

(j)
k = λj

∑
i

ψ
∗(j)
i ψ

(j)
i , (3.18a)

or

λj =

∑
ik aikψ

∗(j)
i ψ

(j)
k∑

ψ
∗(j)
i ψ

(j)
i

. (3.18b)

Here the number on the right hand side is real, because a∗ik = aki,(∑
ik

aikψ
∗(j)
i ψ

(j)
k

)∗
=
∑
ik

a∗ikψ
(j)
i ψ

(j)∗
k (3.19a)

=
∑
ik

akiψ
(j)∗
k ψ

(j)
i . (3.19b)

Consider next another eigenvector ψq corresponding to an eigenvalue
λq 6= λi, ∑

k

aikψ
(q)
k = λqψ

(q)
i . (3.20)

Multiply this by ψ(j)∗
i and, sum over i, and complex conjugate the ex-

pression (∑
ik

ψ
(j)∗
i aikψ

(q)
k

)∗
=
∑
ik

ψ
(q)∗
k a∗ikψ

(j)
i (3.21a)

=
∑
ik

ψ
(q)∗
k akiψ

(j)
i = λj

∑
k

ψ
(q)∗
k ψ

(j)
k (3.21b)

= λq
∑
i

ψ
(q)∗
i ψ

(j)
i . (3.21c)
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I.e., (
λj − λq

)∑
k

ψ
∗(q)
i ψ

(j)
i = 0. (3.22)

Since λj − λq 6= 0 by assumption, we must have that∑
i

ψ
∗(a)
i ψ

(j)
i = 0. (3.23)

It is possible that λj = λq for j 6= q (degeneracy), but it can be shown
that the result still holds. if the eigenvectors ψjk are chosen such that∑

i

ψ∗jk ψ
j
k = 1, (3.24)

then they are orthonormalized. We can rewrite equation (3.23) as∑
i

ψ∗jk ψ
q
k = δiq. (3.25)

Now, we have to show that the matrix U is unitary matrix, where the
columns elements are the orthonormalized eigenfunctions ψji of the matrix
A. The elements of the unitary matrix U are,

Uij = ψji ⇐⇒ U−1
ij = U∗ji = ψ

∗(i)
j (3.26)

Hence, (
U−1U

)
i1

= U−1
ij Uj1 = ψ

∗(i)
j ψ

(1)
j = δi1 (3.27)

or,
U∗U = 1⇐⇒ U∗ = U−1. (3.28)

Which means that the matrix U is unitary. Next, we have to show that
U−1AU is a diagonal matrix, where the diagonal elements are the eigenvalues
λj of the matrix A.(

U−1AU
)
ij

=
(
U∗AU

)
ij

= U∗i1a1iUij = ψ
∗(i)
1 a1iψ

(j)
i = ψ

∗(i)
1 λjψ

(j)
1 = λj

(
ψ
∗(i)
1 ψ

(j)
1

)
(3.29)

In other words,
Ar = U−1AU (3.30)

is a diagonal matrix, where the diagonal elements are the eigenvalues of
the matrix A. Hence that the two matrices Ar and A are similar for any
non-singular matrix U . This means that by this unitary-similarity trans-
formation equation (3.30) it is always possible to diagonalize a Hermitian
matrix.
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Chapter 4

Spectral analysis in Python

This chapter gives an introduction — by way of examples — to the Python
computer language, and the numerical array and linear algebra routines
in the NumPy and SciPy packages. In particular the diagonalization rou-
tines in scipy.linalg and scipy.sparse.linalg. The examples provide
an overview of most coding used in the models discussed later. They are
given in a form of short snippets which should be simpler to grasp than the
complete program (included in appendix A).

4.1 Numerical matrix mechanics

4.1.1 Constructing matrices. Numerical matrix algebra

Consider the matrices q̂ and p̂ defined in equations (2.31), but restriced to
the N × N matrices (which we denote as q̂N and p̂N ). By choosing units
such that mω = 1 and ~ = 1, first superdiagonal of q̂N can be defined as in
numpy by the the code

N = 10
Q11 = numpy.sqrt(numpy.arange(1, N)/2)

Here arange constructs a sequence [1., 2., ... ,9.] (a numpy.array),
after which each element is divided by 2., and finally the square root of each
element is taken. Note that Q11 contain N − 1 elements, not N . In general,
the syntax is such that last element of a range is not included. Q11[0] refers
to the first element of Q11, Q11[-1] refers to the last element, and Q11[:-1]
refers to all elements except the last.

We may use Q11 to define the action of q̂N and p̂N on a N -component
vector psi, in terms of the routines

37
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def q(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] += Q11 * psi[:-1]
return Psi

Here the first line constructs a 0-filled array Psi with the same structure
as psi. The second line multiplies the last N − 1 elements of psi with the
corresponding elements of Q11 and adds the result to the first N−1 elements
of Psi. Since the matrices only differ in the sign of the subdiagonal, the
corresponding code for ip̂N becomes

def ip(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] -= Q11 * psi[:-1]
return Psi

Note that the code above contain no explict for-loops (or similar); the
syntax is such that iteration over array elements is handled automatically
by efficient compiled code. This is important, because native python loops
would often be impractically slow.

So far no explicit matrices have been constructed; what we have are
examples of the LinearOperator concept, which in many cases are all that
is needed by the iterative routines in scipy.sparse.linalg. Routines in
scipy.linalg require normal matrices, however. It is therefore useful to
write a general routine which constructs a matrix from a LinearOperator

def matrix(operator):
M = numpy.zeros((N, )*2) # Space for matrix
id = numpy.eye(N) # The unit matrix
for n in range(N):

M[:,n] = operator(id[:,n]) # Add n’th column
return M

This is an example where an explicit python for-loop is acceptable, several
array operations are performed in each iteration. One may now construct
matrix representations of q and ip, and check the commutator

Mq = matrix(q); Mip = matrix(ip)
C = numpy.dot(Mq, Mip) - numpy.dot(Mip, Mq)
print (C)



4.1. Numerical matrix mechanics 39

The result is (for N = 5):

[[-1. 0. 0. 0. 0.]
[ 0. -1. 0. 0. 0.]
[ 0. 0. -1. 0. 0.]
[ 0. 0. 0. -1. 0.]
[ 0. 0. 0. 0. 4.]]

Apart from the last element, this agrees with the canonical commutation
relation, since one should have (in units where ~ = 1) [q̂, ip̂] = i2 = −1. But
such a relation is impossible to obtain for finite matrices, since one generally
must have

Tr [A,B] ≡
∑
m

(AB −BA)mm =
∑
mn

(AmnBnm −BnmAnm) = 0.

I.e., the matrices q̂N and p̂N do their best to fulfill the commutation relation,
by only changing the last diagonal element of the commutator, in such a way
that it becomes traceless.

4.1.2 Matrix diagonalization by scipy.linalg.eigh

We may next construct a quadratic Hamiltonian H =
(
p̂2
N + q̂2

N

)
,

H = -numpy.dot(Mip,Mip) + numpy.dot(Mq, Mq)
print (H)

The result (for N = 5) show that this matrix is already diagonal,

[[ 1. 0. 0. 0. 0.]
[ 0. 3. 0. 0. 0.]
[ 0. 0. 5. 0. 0.]
[ 0. 0. 0. 7. 0.]
[ 0. 0. 0. 0. 4.]]

but that the last eigenvalue differs from the exact result, En = (2n+1). For
a less trivial situation, we consider the anharmonic oscillator, H = p̂2

N + q̂4
N .

The corresponding matrix is sparse, with the only non-zero elements being
Hm,m, Hm,m+2 = Hm+2,m, and Hm,m+4 = Hm+4,m. It can be diagonalized
by the eigh routine from scipy.linalg, which computes eigenvalues and
eigenvectors of real symmetric or complex hermittian matrices:

E, S = eigh(H)

Here E is a N -component array of eigenvalues, and S a N ×N is an array of
eigenvectors, such that S[:, n] is the nth eigenvector, with eigenvalue E[n].
We can check how well this works:
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for n in range(N):
psi = S[:, n]; dpsi = numpy.dot(H, psi) - E[n]*psi
print ("%.5e" % numpy.linalg.norm(dpsi, ord=numpy.inf))

This prints out the largest absolute component of each dpsi (which analyt-
ically should be zero):

1.08247e-15
2.44249e-15
4.70742e-16
5.32907e-15
3.55271e-15

This is quite close to the obtainable accuracy of double precision numbers,
but becomes gradually worse as N increases. One may also check the eigen-
vectors for orthonormality, STS = 1, and completeness, S ST = 1.

unity = numpy.dot(S.T, S)
ortherr = numpy.linalg.norm(unity - numpy.eye(N),

ord=numpy.inf)
unity = numpy.dot(S, S.T)
comperr = numpy.linalg.norm(unity - numpy.eye(N),

ord=numpy.inf)
print ("N=%4d:␣ortherror=%.5e␣␣comperr=%.5e" %
(N, ortherr, comperr))

The results show a reasonable degradation of accuracy as N increases.

N= 5: ortherror=6.85948e-16 comperr=7.85608e-16
N= 20: ortherror=3.90616e-15 comperr=3.65959e-15
N= 50: ortherror=9.28002e-15 comperr=1.02578e-14
N= 200: ortherror=2.86420e-14 comperr=4.20343e-14
N= 500: ortherror=8.04324e-14 comperr=9.10659e-14
N=2000: ortherror=3.09277e-13 comperr=5.90044e-13
N=5000: ortherror=8.61635e-13 comperr=1.59215e-12

4.1.3 Full spectral decomposition

One may also check how the workings of a full spectral decomposition,

D = STHS

D = numpy.dot(S.T, numpy.dot(H, S))
err = numpy.linalg.norm(D - numpy.diag(E), ord=numpy.inf)
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dt = time.time() - t0
print ("N=%4d:␣maxerror=%.5e␣␣time=%8.5f␣secs" % (N, err, dt))

The printout shows that one may solve quite large system in reasonable time,
but that the loss of numerical accuracy may be a more significant problem.

N= 5: maxerror=1.54613e-14 time= 0.01167 secs
N= 20: maxerror=4.07478e-12 time= 0.00418 secs
N= 50: maxerror=3.06072e-11 time= 0.00375 secs
N= 200: maxerror=1.41194e-09 time= 0.01578 secs
N= 500: maxerror=1.27761e-08 time= 0.09018 secs
N=2000: maxerror=5.29558e-07 time= 2.57153 secs
N=5000: maxerror=6.72480e-06 time=29.76773 secs

4.1.4 Matrix diagonalization by scipy.sparse.linalg.eigsh

For very large systems one may use routines in scipy.sparse.linalg to find
a subset of eigenvalues, and optionally eigenvectors, using iterative methods.
Without extra programming efforts this works fastest for eigenvalues of the
largest magnitude, while in quantum mechanics one is usually interested
in the eigenvalues of the smallest magnitude (where eigsh also works, but
perhaps in a less impressive way).

A straightforward (but less than optimal) solution is the code snippet
below, which computes the k eigenvalues of smallest magnitude, and their
corresponding eigenvectors:

def p2(psi):
chi = ip(psi)
return -ip(chi)

def q2(psi):
chi = q(psi)
return q(chi)

def H(psi):
chi = q2(psi)
return p2(psi) + q2(chi)

A = LinearOperator((N, N), matvec=H, dtype=float)
E, S = eigsh(A, k=k, which=’SM’)
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For each N we have computed the maximal violation of the eigenvalue con-
dition,

maxerror = maxn‖(H − En)ψ(n)‖∞,

and the time used to find the solution. One should be aware that asking for
fewer eigenvalues does not always lead to a faster solution; sometimes this
may even lead to a convergence failure of eigsh.

N= 50 (k= 20): maxerror=2.62013e-12 time= 0.08374 secs
N= 200 (k= 20): maxerror=4.21337e-11 time= 0.25605 secs
N= 500 (k= 80): maxerror=4.86842e-10 time= 0.90722 secs
N=2000 (k= 80): maxerror=4.61745e-09 time= 11.17339 secs
N=5000 (k=100): maxerror=3.08765e-08 time=121.62463 secs

4.2 Numerical wave mechanics

In the Schrödinger picture the state of a system is described by a time
dependent “wave function”. In units where ~ = 1,

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 , |ψ(0)〉 = |ψ0〉. (4.1)

The solution can be written

|ψ(t)〉 = e−iHt |ψ0〉 =
∑
mn

|m〉〈m|e−iHt|n〉〈n|ψ0〉 =
∑
n

|n〉e−iEnt 〈n|ψ0〉,

where we have inserted the completeness relation
∑

n |n〉〈n| = 1 twice, with
|n〉 the eigenvalue En eigenstate of H. The amplitude M0(t) for being in
the state |ψ0〉 at time t is

M0(t) = 〈ψ0|ψ(t)〉 =
∑
n

(cosEnt+ i sinEnt) |〈n|ψ0〉|2 (4.2)

This gives the survival probability

p0(t) = |M0(t)|2 = M2
0R +M2

0I , (4.3)

where M0R and M0I are the real and imaginary parts of M0(t). The corre-
sponding amplitude Mk(t) for being in a state |ψk〉 at time t is obtained by
the replacement |〈n|ψ0〉|2 → 〈n|ψk〉∗〈n|ψ0〉 in equation (4.2).
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A numerical implementation can be as follows (after the matrix H has been
generated)

E, S = eigh(H)
Nt = 200
t = numpy.linspace(0., 150., Nt)
Et = t.reshape(Nt,1) * E.reshape(1,N) # Broadcast mechanism
S02 = S[0,:]**2
M0R = numpy.dot(numpy.cos(Et), S02)
M0I = numpy.dot(numpy.sin(Et), S02)
P0t = M0R**2 + M0I**2

Note how Et is constructed as a two-dimensional array of size Nt×N, by
multiplication of two one-dimensional arrays of sizes Nt and N, with use of
the Broadcast mechanism in NumPy. Actually, this is similar to what is done
analytically every time one multiplies two functions of different variables,
like h = f(t) g(E). Here one must provide some structure information, by
redefining a N -dimensional vector as a (1×N)-dimensional matrix — which
is different from a (N × 1)-dimensional matrix. The numerical data is not
changed or moved by this, only the information of how the data should be
interpreted.
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Chapter 5

The harmonic oscillator

In this chapter we make a detailed discussion of classical harmonic oscilla-
tors. The motivation for this was to simulate the Langevin equation for the
dynamics of “particles” in a fluctuating environment. In classical physics
such fluctuations are usually considered to be of thermal origin, but this
is similar to fluctuations of quantum origin. In the stochastic quantization
method of Parisi and Wu [47] a similar coupling between dynamical variables
and randomly fluctuating “force fields” was introduced.
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ẋ(t)

Figure 5.1: This figure shows the motion (position and velocity) of a planar pen-
dulum (i.e., one-dimensional motion) in the small angle approximation.
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5.1 Examples of harmonic oscillating systems

One of the most encountered systems in physics is the harmonic oscillator.
This has exactly known analytical solutions, both in classical and quantum
physics. It occurs very often in physics and elsewhere, because many systems
may be considered close to some equilibrium configuration. Then, to first
order in deviation from equilibrium the dynamics is usually determined by
linear equations of motion. Among systems in our world which often can be
described as one or more harmonic oscillators one finds the planar pendulum,
atomic vibrations in molecules and in a lattice, (violin) strings, sound waves,
etc.

Planar pendulum

A planar pendulum is an example of harmonic oscillations of a single point-
like object undergoing one-dimensional motion.

For small displacements from its equilibrium point (small-angle approx-
imation) the motion of a pendulum can be described by linear equations. A
pendulum with one coordinate degree of freedom (a planar pendulum) will
act as a simple harmonic oscillator. Classically the equation of motion is
used to calculate the position of the pendulum over time,

(q̈ + ω2q) = 0, with solution q(t) = q0 cos (ωt+ φ). (5.1)

Here q would actually be (proportional to) the angular displacement from
equilibrium, and ω = 2πν with ν the oscillation frequency (ω is generally
referred to as the angular frequency; this is unrelated to q being an angle in
this case).

Atomic vibrations in molecules

Atomic vibrations in molecules is an example of several point-like objects
undergoing harmonic motion.

Consider a 3-atomic molecule, as illustrated in figure 5.2, and let qi be
the fluctuation from the equilibrium position r0i of particle i,

qi = (ri − r0i), i = 1, 2, 3.

Assume masses m1 = m3 6= m2 and short range interactions, such that only
nearest the potential energy between neighbors need be considered. Then
the dynamics can be described by the Lagrangian

L = T − V, (5.2a)
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q1 q2 q3

m1 m2 m3

Linear 3-atomic molecule

Figure 5.2: Example of a linear 3-atomic molecule, simplified to one-
dimensional motion.

with the kinetic energy

T =
1

2
m1

(
q̇2

1 + q̇2
3

)
+

1

2
m2q̇

2
2 (5.2b)

and the potential energy

V =
1

2
k(q1 − q2)2 − 1

2
k(q2 − q3)2. (5.2c)

Due to translation symmetry the center of mass

QCM = [m1 (q1 + q3) +m2 q2]/M, (5.3)

will be unaffected by the internal atomic motion, and will move with constant
speed. Here M = 2m1 + m3 is the total mass. We can choose coordinates
such that the center of mass is at rest at the origin, QCM = 0, and use this
to eliminate

q2 = −(m1/m2)(q1 + q3) = −(m1/m2)Qa,

where we have introduced new coordinates

Qa = q1 + q3 and Qs = q1 − q3. (5.4)
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Expressed by these variables we find

T =
1

4
m1Q̇

2
s +

1

4
m1

(
M

m2

)
Q̇2
a, V =

1

4
kQ2

s +
1

4
k

(
M

m2

)2

Q2
a,

such that the Lagrangian (5.2a) can be written as a sum of two independent
isotropic three-dimensional systems

L = Ls + La =
1

2
ms

(
Q̇2
s + ω2

sQ
2
s

)
+

1

2
ma

(
Q̇2
a + ω2

aQ
2
a

)
(5.5a)

=
1

2

(
Θ̇2
s + ω2

sΘ
2
s

)
+

1

2

(
Θ̇2
a + ω2

aΘ
2
a

)
. (5.5b)

where Θs =
√
m1/2 Qs, Θa =

√
m1M/(2m2) Qa, and

ms =
1

2
m1, ω2

s ≡
ks
ms

=
k

m1
, (5.6a)

ma =
1

2
m1(m2/M), ω2

a ≡
ka
ma

=
kM

m1m2
. (5.6b)

One can transform the above calculations to a more general situation by
introducing mass and interaction matrices Mij and Kij , such that the La-
grangian can be written

L =
1

2
q̇iMijq̇j −

1

2
qiKijqj , (5.7)

where we use the Einstein summation convention (implicit sum over indices
that are repeated twice).

Mijq̈j +Kijqj = 0. (5.8)

We make the solution ansatz that qi ∝ q(0)
i e−iωt (or the real or imaginary

part of this) to transform the equations of motion (5.7) to an algebraic
equation

Kij q
(0)
j = ω2Mij q

(0)
j , (5.9)

which is a (generalized) eigenvalue problem, with ω2 being the eigenvalues.
They are determined by the algebraic determinant conditions∣∣∣K− ω2M

∣∣∣ = 0. (5.10a)

where K is the symmetric matrix with elements Kij and M the symmetric
matrix with elements Mij . The mass matrix M should be positive definite
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(and is usually diagonal), so we may define its inverse square root M−1/2,
and transform (5.10a) to a normal eigenvalue condition∣∣∣M−1/2 K M−1/2 − ω21

∣∣∣ = 0, (5.10b)

Compared with T and V in equations(5.2b) and (5.2c) we find

M =

m1 0 0
0 m2 0
0 0 m1

 , K =

 k −k 0
−k 2k −k
0 −k k

 , (5.11)

and equation (5.10a) becomes explicitly,

Det =

∣∣∣∣∣
k − ω2m1 −k 0
−k 2k − ω2m2 −k
0 −k k − ω2m1

∣∣∣∣∣ = 0.

An expansion of the determinant shows that

Det = −ω2
(
m1ω

2 − k
) [
m1m2ω

2 − (2m1 +m1)k
]
,

in agreement with the results (5.6).

Atomic vibrations in a lattice

An infinite atomic (or molecular) lattice is an example of harmonic oscilla-
tions of an infinite set of point-like objects. It reveals a continuous infinity
of oscillation frequencies, distributed over a finite range.

From the point of view of the discussion above, a lattice can be considered
as the infinite size limit of a very large molecule. This limit will usually
have lattice translations symmetry, which helps to solve the problem with
the use of the Fourier transformation technique. Since the system consists
of an infinite number of harmonic oscillators, it will have infinitely many
oscillation frequencies, all of them within in a bounded range.

Strings

A (mathematically idealized) string of finite length is an example of har-
monic oscillations of a one-dimensional continuous object. It reveals an
infinity of discrete oscillation frequencies, increasing to infinity.

Consider a thin homogeneous string in the plane, stretched out between
two fixed points x0 and x1. We may orient coordinates such that these
points lie on the x-axis, x0 = (x0, 0) and x1 = (x1, 0), and further label the
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X0 X1

y(x, t) x-direction

Figure 5.3: A string in the xy-plane.

points of the string by a parameter λ such that x(λ) = x0 + (x1 − x0)λ,
y(λ) = 0 when the string is at rest, with 0 ≤ λ ≤ 1. The string may now be
set in motion, with mainly transverse displacement y(λ) of its points.

The equation of motion for this displacement is

ρ ÿ(t, λ) = σy′′(t, λ), y(t, 0) = y(t, 1) = 0, (5.12)

where ρ is the mass density per unit of length (as measured by λ) and σ is
a tension force. We can expand the displacement in a trigonometric series

y(t, λ) =
∞∑
n=1

yn(t) sin(nπλ),

which inserted into (5.12) gives an infinite discrete sequence of harmonic
oscillator equations

ÿn + ω2
n yn = 0, n = 1, 2, . . . , (5.13)

where ω2
n = (nπ)2(σ/ρ). Here cs ≡

√
σ/ρ is the wave propagation speed

along the string. Note that all frequencies ωn is an integer multiple of the
basic frequency ω1.
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Sound waves

The (mathematically idealized) model for sound waves in infinite space is an
example of harmonic oscillations in three-dimensional continuous fluid. It
reveals an continuous infinity of oscillation frequences, increasing to infinity.

Similar to string equation of motion (5.12), sound equation of motion in
a fluid becomes

∂2P

∂t2
=
K

ρ

∂2P

∂x2
(5.14)

where K = ρ0 (∂P/∂ρ)adiabatic is the bulk modulus of the fluid [48].
In contrast to the string equation, this equation describes how the pres-

sure in the fluid varies with space and time. Hence it is not directly related
to any displacements in space; it is a scalar wave equation. (The wave will
propagate in space, of course.)

A solution to equation (5.14) is,

P = Pm sin (kx− ωt). (5.15)

By deriving equation (5.15) we get,

∂2P

∂t2
= −Pmω2 sin (km− ωt). (5.16)

And,
∂2P

∂x2
= −Pmk2 sin (km− ωt). (5.17)

So the speed cs of sound wave is

cs =

√
K

ρ
. (5.18)

In the atmosphere, the speed of sound waves are

cs =

√
γPeq

ρ
, (5.19)

where Peq is the equilibrium atmospheric pressure.

5.2 Thermal and quantum fluctuations

Everything in this universe undergoes fluctuations. In classical physics this
requires a finite temperature, leading to thermal fluctuations, but in quan-
tum physics there are fluctuations even at zero absolute temperature (zero-
point fluctuations). As the temperature increases from zero, the quantum
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fluctuations gradually term turn into thermal ones. Hence ought to be pos-
sible to describe them in a common formalism, treating them in a similar
fashion.

Ny assuming the flutuations to be small around an equilibrium con-
figuration, they can be treated as fluctuations of a collection of harmonic
oscillators with various frequencies.

5.2.1 Classical equipartition principle

Thermal fluctuations of classical particles at finite temperature T can in the
first approximation be described by the equipartition principle. The idea is
that the total energy of the system on the average will be shared equally
among all dynamical degrees of freedom (dof) of the system, whether they
correspond translational, rotational or vibrational motion,

Edof =
1

2
kB T (5.20)

where kB = 1.381× 10−23 m2 kg s−2 K−1 is the Boltzmann constant. Hence
it becomes a question of counting the (effective) number Ne of degrees of
freedom.

- Each freely moving point particle in three-dimensional space contribute
Ne = 3, one for each velocity direction (the position degree of freedom
does not count when the potential is zero).

- Each independent mode of harmonic oscillation contribute Ne = 2,
one from velocity and one from position.

- The rotation of linar (i.e two-atomic) molecules contributes Ne = 2,
from the motion of the motion of molecule orientation (rotation around
the symmetry axis of the molecule does not count).

- The rotation of larger molecules contributes Ne = 3, since rotation
around all three axes of the molecule counts.

5.2.2 Quantum zero-point fluctuation

For quantum mechanical zero-point fluctuations, consider the ground state
fluctuations in position a haromic oscillator,

Var(q̂) = 〈0|q̂2|0〉 − 〈0|q̂|0〉2. (5.21)
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By writing q̂ in terms of annihilation and creation operators [see eqs. (2.32)]

q̂ =

√
~

2mω

(
a+ a†

)
, (5.22)

we find 〈0|q̂|0〉 = 0, and

Var(q̂) = 〈0|q̂2|0〉 =
~

2mω
〈0|aa†|0〉 =

~
2mω

, (5.23)

since a|0〉 = 0, 〈0|a† = 0, and aa† = a†a+1. By comparison with the classical
equipartition principle one finds that quantum fluctuations correspond to an
effective temperature Tqu such that

kBTqu = ~ω. (5.24)

5.3 Classical unforced and undamped oscillator

In this and the following sections we will first analyse a classical unforced
and undamped oscillator (section 5.3), next a classical forced and damped
oscillator (section 5.4), then Langevin equations (section 5.5) and finally the
linear harmonic chain (section 5.6).

The harmonic oscillator Hamiltonian for one-dimensional motion is

H =
1

2
p2 +

1

2
q2. (5.25)

Here the coordinate q describe the (small) deviation from a equilibrium
position, and the momentum p = mv the corresponding velocity. We have
choosen units for mass and time such that particle mass m = 1 and angular
oscillation frequency ω = 1.

Accordingly Hamilton’s equations of motion, equations (2.12) for this
system becomes

q̇ =
∂H

∂p
= p, (5.26a)

ṗ = −∂H
∂q

= −q, (5.26b)

where ˙ denotes time derivative. Equation (5.26a) just reproduces the (de-
fined) relation between momentum and velocity. Equation (5.26b) shows
that the system introduces a linear restoring force which opposes the dis-
placement. This is necessary to keep stability of the system.
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In matrix form both equations (5.26b) can be written as,[
d

dt
+D

](
q (t)
p (t)

)
= 0, D =

(
0 −1
1 0

)
. (5.27)

Note that we have use a dimensionless time τ , and dimensionless coor-
dinates q, p.

To solve Hamilton’s equations, we rewrite (5.27) as

e−tD
d

dt
etD
(
q (t)
p (t)

)
= 0, or

d

dt
etD
(
q (t)
p (t)

)
= 0. (5.28)

Integrated from 0 to t this gives 1,

etD
(
q (t)
p (t)

)
−
(
q0

p0

)
= 0,

or, (
q (t)
p (t)

)
= e−tD

(
q0

p0

)
=

(
cos (t) sin (t)
− sin (t) cos (t)

)(
q0

p0

)
.

(5.29)

We can use these solutions for more general problems; 1) by rescaling the
position and momentum coordinates, and 2) by translating the position
coordinate.

Consider the Hamiltonian

H =
1

2m
P 2 +

1

2
KQ2 ≡ 1

2m
P 2 +

1

2
mω2Q2. (5.30)

Here ω2 = K/m. By introducing new coordinates 2, q = (mω)−1/2Q and
p = (mω)1/2P , we find

H =
1

2
ω(p2 + q2). (5.31)

This is the same Hamiltonian as in (5.25), with τ = ωt.Hence, the solution
becomes(

Q (t)
P (t)

)
=V

(
cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

)
V

(
Q0

P0

)
=

(
cos (ωt) mω sin (ωt)

−(mω)−1 sin (ωt) cos (ωt)

)(
Q0

P0

)
.

(5.32)

1 We can verify directly that this expression satisfies (5.26b) or, we may note that
D2 = −1, which implies that,

e−tD =

∞∑
n=0

1

n!
(−tD)n =

∞∑
m=0

(−1)m

2m!
t2m −

∞∑
m=0

(−1)m

(2m+ 1)!
t2m+1D = cos (t) 1− sin (t)D

2Defined such that the Poisson bracket is maintained, {p,q}={P,Q}.
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Where

V =

(
(mω)1/2 0

0 (mω)−1/2

)
,

and

U =

(
cos (ωt) mω sin (ωt)

−(mω)−1 sin (ωt) cos (ωt)

)
.

We generalize the Hamiltonian once more,

H =
1

2m
P 2 +

1

2
mω2Q2 − FQ

=
1

2m
P 2 +

1

2
mω2

[
(Q− Q̄)2 − Q̄2

]
− FQ. (5.33)

Here F is an external constant force, and Q̄ = F/(mω2). The constant
−(1/2)mω2Q̄2 is a shift in energy which does not contribute to the equations
of motion; hence we find(

Q (t)− Q̄
P (t)

)
= U

(
Q0 − Q̄
P0

)
, (5.34)

or (
Q (t)
P (t)

)
= U

(
Q0

P0

)
+

(
1− cos (ωt)

(mω)−1 sin (ωt)

)
F

(mω2)
. (5.35)

5.4 Classical forced and damped oscillator

5.4.1 Forced oscillator

Next modify the Hamiltonian by addition of a time dependent external force,

H −→ 1

2
p2 +

1

2
q2 − f (t) q. (5.36)

This changes the Hamilton’s equations to

q̇ = p, ṗ = −q + f (t) . (5.37)

In matrix form we now get

e−tD
d

dt
etD
(
q (t)
p (t)

)
=

(
0

f (t)

)
(5.38)

or,
d

dt

[
etD
(
q (t)
p (t)

)]
= etD

(
0

f (t)

)
.
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Integrated for 0 to t

etD
(
q (t)
p (t)

)
−
(
q0

p0

)
=

∫ t

0
du euD

(
0

f (u)

)
.

I.e. (
q (t)
p (t)

)
= e−tD

(
q0

p0

)
+

∫ t

0
du e−(t−u)D

(
0

f (u)

)
. (5.39)

To proceed from here we need to know more about the function f (u).
As a simple check, assume it is constant. Then, by use of

∫ t
0 du cos(t− u) =

sin(t),
∫ t

0 du sin(t− u) = 1− cos(t) we find∫ t

0
du e−(t−u)D

(
0
f

)
=

(
1− cos(t)

sin(t)

)
f. (5.40)

With this result inserted into (5.74a) we see that it agrees with eq.(5.35)
when m = ω = 1.

5.4.2 Damped oscillator

We next introduce a (small) damping term. Then the system no longer can
be described by a Hamiltonian. The Hamilton’s equations (5.37) changes to
the more general dynamical equation

q̇ = p, ṗ = −q + f (t)− γp. (5.41)

This can still be formulated in matrix form, like in eq.(5.38)

e−tD
d

dt
etD
(
q (t)
p (t)

)
=

(
0

f (t)

)
, (5.42)

but now with a dynamical matrix

D =

(
0 −1
1 γ

)
. (5.43)

This matrix has eigenvalues λ± = 1
2γ ± i

√
1− γ2

4 , satisfying λ+ + λ− =
γ and λ+λ− = 1. It can be decomposed as

D = R

(
λ+ 0
0 λ−

)
R−1, (5.44)
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where R is a matrix of right eigenvectors,

R =

(
1 −λ+

−λ+ 1

)
, R−1 =

1

1− λ2
+

(
1 λ+

λ+ 1

)
≡ L. (5.45)

Hence, any function of D can be decomposed as

f(D) = R

(
f(λ+) 0

0 f(λ−)

)
R−1. (5.46)

In particular we may write, for γ2 ≤ 4,

e−(t−u)D = e−
1
2

(t−u)γR

(
e−i(t−u)ws 0

o ei(t−u)ωs

)
R−1 (5.47)

where ωs =
√

1− γ2/4. Note that e−tD decreases exponentially with time
like e−γt/2.

5.4.3 Forced and damped oscillator
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Figure 5.4: The possible time evolutions of some damped harmonic oscillators.
Note that a critically damped oscillator, γ = 2, will have the fastest decay to
equilbrium. Underdamped oscillators (here with γ = 1

2 ) decay in an oscillatory
manner.
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The general solution can be written as

(
q (t)
p (t)

)
=

e−tD︷ ︸︸ ︷
Re−tD L

(
q0

p0

)
+

t∫
0

du

e−(t−u)D︷ ︸︸ ︷
R e−(t−u)D L

(
0

f (u)

)
. (5.48)

Here the first term of the right side of eq.(5.48) has a common factor

e−
1
2
γtR e∓iωstL

(
q0

p0

)
, (5.49)

which means that the dependence on the initial values q0, p0 is attenuated
exponentially when t becomes large, proportional to e−γt/2. One may say
that the system has acquired short time memory. This makes it simpler to
find the large-time solution. Assume an oscillatory force, f(u) = f0 cosωt =
Re
(
f0eiωt

)
, and a solution which oscillates with the same frequency,(

q(t)
p(t)

)
= Re

[(
q
p

)
eiωt
]
. (5.50)

Here q̄ and p̄ are complex constants which depend on the driving force (and
other parameters). Since taking the real part of an expression is a linear
operation, we have (

q̇(t)
ṗ(t)

)
= Re

[
iω

(
q
p

)
eiωt
]
. (5.51)

Since e−iωt is never zero, insertion into equation (5.41) leads to the condition(
iω −1
1 iω + γ

)(
q
p

)
=

(
0
f0

)
, (5.52)

with solution(
q
p

)
=

1− ω2 − iγω
(1− ω2)2 + (γω)2

(
iω + γ 1
−1 iω

)(
0
f0

)
=

1− ω2 − iγω
(1− ω2)2 + (γω)2

(
1
iω

)
f0 ≡ R(ω) e−iφ

(
1

ei(π/2)ω

)
f0.

(5.53)

Here
R(ω) =

1√
(1− ω2)2 + (γω)2

, tanφ =
γω

1− ω2
. (5.54)

To proceed to the solution for a general driving force, the time integral in
equation (5.48) must be done numerically. Or, due to linearity, one may
superpose oscillatory solutions of the type found above (but the latter will
also require numerical work to comprehend).
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Figure 5.5: This figure show the long time behavior of a damped oscillator, driven
with an oscillatory force of constant amplitude. The two quantities of main interest
are (i) the ratio f0 between the source and force amplitudes, and (ii) the phase
difference φ between the two quantities.

5.4.4 Forced and damped oscillators

The explicit analysis of the previous section can be carried over, in symbolic
form, to the general multicomponent case. The equation of motion can be
writtem

e−uD
d

du
euD︸ ︷︷ ︸

( d
du

+D)

z (u) = f (u) . (5.55)

Here z is a multicomponent vector of all positions and momenta, D a general
dynamical matrix, and f(u) a multicomponent vector of (generalized) time-
dependent forces. We rewrite this equation as

d

du
euDz(u) = euDf(u), (5.56)

and integrate over u from u = 0 to t, to find

etDz(t)− z(0) =

∫ t

0
du euDf(u). (5.57)
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I.e., the general formal solution is

z(t) = e−tD
[
z(0) +

∫ t

0
du euDf(u)

]
. (5.58)

This form is a useful starting point for numerical work. We only have to
find a spectral representation of the dynamical matrix D. From the point of
view of numerical routines, D is a general 2N×2N -dimensional real matrix,
with complex eigenvalues and eigenvectors.

To proceed a bit further analytically, assume that f(u) = cosωu f0, We
must do the integral

1

2

∫ t

0
du euD

(
eiωu + e−iωu

)
=

1

2

∫ t

0
du
[
eu(D+iω) + eu(D−iω)

]
=

1

2

[
1

D + iω
eu(D+iω) +

1

D − iω
eu(D−iω)

]u=t

u=0

=
1

2

(D − iω)
[
et(D+iω) − 1

]
+ (D + iω)

[
et(D−iω) − 1

]
(D + iω) (D − iω)

=
1

2

D etD(eiωt + e−iωt)− iωetD(eiωt − e−iωt)
(D2 + ω2)

− (D − iω +D + iω)

(D2 + ω2)

= etD
[
D cos(ωt) + ω sin(ωt)

(D2 + ω2)

]
− D

(D2 + ω2)
.

We have made use the fact that D is the only matrix in the problem. Since it
commutes with itself, it can formally be treated as an ordinary number. But
one must be aware that quantities must be understood as matrix products,
inverses, exponentials. The above computation can be summarized as

e−tD
∫ t

0
du euD cosωu =

D cosωt+ ω sinωt−De−tD

(D2 + ω2)

= R

[
D cos(ωt) + ω sin(ωt)−De−tD

(D2 + ω2)

]
L (5.59)

where we have performed a spectral decomposition D = RDL, with D the
diagonal matrix of eigenvalues of D, and R and L the corresponding matrices
of right and left eigenvectors, properly normalized so that RL = LR = 1.
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5.5 Langevin equations

The equations to be solved are typically of the form

q̇m =
∂H

∂pm
= M−1

mn pm, (5.60)

ṗm = − ∂H
∂qm

− Γmn pn + fm, (5.61)

where fm are stochastic forces (usually with a gaussian distribution) and M
is a symmetric positive definite matrix and Γ is a symmetric non-negative
matrix (both usually diagonal). The summation convention that repeated
indices are summed over is used. In the first approximation one may assume
the equations to be linear, i.e. that ∂H/∂qm = Kmnqn. The equation to be
solved becomes

d
dt

(
q(t)
p(t)

)
=

(
0 M−1

−K −Γ

)(
q(t)
p(t)

)
+

(
0

f(t)

)
, (5.62)

where boldface denotes N × N matrices and N -component vectors. This
can be rewritten in compact form as

d
dt

etD y(t) = etD x(t), (5.63)

where boldface now denotes 2N -component vectors and 2N × 2N matrices,

y(t) =

(
q(t)
p(t)

)
, x(t) =

(
0

f(t)

)
, D =

(
0 −M−1

K Γ

)
. (5.64)

Choose a timestep h and integrate equation (5.68) from t = kh to t =
(k + 1)h. One obtains

y((k + 1)h) = e−hD y(kh) + e−(k+1)hD
∫ (k+1)h

kh
etDx(t) dt. (5.65)

Define

yk ≡ y(kh), G ≡ e−hD, and xk ≡ e−(k+1)hD
∫ (k+1)h

kh
etDx(t) dt,

to rewrite (5.65) as
yk+1 = Gyk + xk. (5.66)
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This equation is an exact consequence of (5.68). Here the dependence
on the timestep h is not indicated explicitly.
Then the eq. (5.82) will take the form,

C1
mn = K

∑
kl

RmkLk2 Rnl Ll2
(λk + λl)

. (5.67)

5.5.1 Langevin Description of Thermalization

Consider a set of linear stochastic differential equations

mj ẍj +Kjkxk = δj1 (f1 −m1γ ẋ1) , (5.68)

where all mj are positive, and Kjk is a positive definite symmetric matrix.
We introduce yj =

√
mjxj , i.e. xj = yj/

√
mj , and divide equation (5.68) by√

mj . This gives
ÿj +Kjkyk = δj1 (g1 − γ ẏ1) , (5.69)

where Kjk = Kjk/
√
mjmk is also a positive definite symmetric matrix,

and g1 = f1/
√
m1. We have used that δj1/

√
mj = δj1/

√
m1. Kjk can be

diagonalized by a real orthogonal transform,

Kjk =
∑
r

Orj ω
2
r Ork, (5.70)

where Orj Ork = δjk. We define ur ≡ Ork yk to get

Orj
(
ür + ω2

rur
)

= δj1 (g1 − γ ẏ1) . (5.71)

5.5.2 Oscillator influenced by a random force

[
d

dt
+D

](
q (t)
p (t)

)
=

(
0

f (t)

)
(5.72)

(
q (t)
p (t)

)
= e−tD

(
q0

p0

)
+

∫ t

0
du e−(t−u)D

(
0

f (u)

)
. (5.73)

Now we asume that f(u) is a Gaussian distributed random function. It
is complete charactraized by its mean value 〈f(u)〉 = 0 and fluctuations
〈f(u)f(v)〉 = Kδu− v. We want to compute the probability distribution of
q, p at time t. As a sum (integral) of Gaussian distributed random variables,
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it will also be a Gaussian distributed random variable. Hence we need to
compute,

(
q (t)
p (t)

)
= e−tD

(
q0

p0

)
+

∫ t

0
du e−(t−u)D

(
0

f (u)

)
(5.74a)

= e−tD
(
q0

p0

)
. (5.74b)

And,

C ≡
(
〈q (t1) q (t2)〉 〈q (t1) p (t2)〉
〈p (t1) q (t2)〉 〈p (t1) p (t2)〉

)
(5.75)

〈(
q (t1)
p (t1)

)
⊗
(
q (t2)
p (t2)

)〉
= e−t1D

(
q0

p0

)
⊗ e−t2D

(
q0

p0

)
+ e−t1D

(
q0

p0

)
⊗
∫ t2

0
du e−(t2−u)D

(
0

〈f(u)〉

)
+

∫ t1

0
du e−(t1−u)D

(
0

〈f(u)〉

)
⊗ e−t2D

(
q0

p0

)
+

∫ t1

0
du1

∫ t2

0
du2 e

−(t1−u1)D
〈(

0
f(u1)

)
⊗ e−(t2−u2)D

(
0

f(u2)

)〉
, (5.76)

let ε(t) = e−(t)D, the last term will be,∫ t1

0
du1

∫ t2

0
du2 εn2(t1 − u1)εm2(t2 − u2) f(u1) f(u2). (5.77)

We may decompose C = C(0) + C(1), where,

C(0)
mn = εmp(t1)εnp(t2)z

(0)
p z(0)

q (5.78)

depends in a deterministic way on the initial coordinates, and

C(1)
mn =

∫ t1

0

du1

∫ t2

0

du2 εm2(t1 − u1) εn2(t2 − u2) 〈f (u1) f (u2)〉

(5.79)
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With t< =min (t1, t2) and Kδ(u1 − u2) we get,

C(1)
mn = K

∫ t<

0

du εm2(t1 − u) εn2(t2 − u). (5.80)

Since we have diagonalized D,

εmn(t) =
∑
k

Rmk e
−λkt Lkn. (5.81)

We find,

C1
mn = K

∑
kl

Rmk Lk2 Rnl Ll2

∫ t<

0

du e−λk(t1−u) e−λl(t2−u) (5.82)

At t1 = t2 = t the integral in the last eq. will be,

e−(λkt1+λlt2)

∫ t<

0
du e(λk+λl)u =

1− e−(λk+λl)t

(λk + λl)
. (5.83)

At t→∞ will,
1− e−(λk+λl)t

(λk + λl)
=

1

(λk + λl)
. (5.84)

5.6 Linear harmonic chain (many oscillators)

The Hamiltonian of a linear chain can be described as

H =
1

2

d∑
k=0

mk ẏ
2
k +

1

2
Kk y

2
k +

1

2

d−1∑
k=0

Qk (yk+1 − yk)2 , (5.85)

where all mk, and Qk are positive, and all Kk non-negative3. This means
that the inverse mass matrix is

M−1 = diag0

(
m−1

0 ,m−1
1 , . . . ,m−1

d

)
, (5.86)

and that the interaction matrix is

K = diag0 (K0,K1, . . .Kd−1,Kd) + diag0 (Q0, Q1, . . . , Qd−1, 0) +

+ diag0 (0, Q0, . . . , Qd−2, Qd−1)−
∑
n=±1

diagn (Q0, Q1, . . . , Qd−1) . (5.87)

3In a model where Kk = 0 is allowed we should probably take Kk = 0 everywhere
except possibly at the endpoints.
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In a model with random positive parameters we may choose each of the
parameters as

Z = Z̄ + ∆Z ζ, (5.88)

where Z is any of the parametersMk, Kk, or Qk. Here ζ should take random
values in the interval

[
−1

2 ,
1
2

]
with ∆Z < Z̄.
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Chapter 6

Simulations in Python

Recently, gained Python programing language great interest and widespread
use. It is an open source language, able for developement, has a very easy
syntax to write, read and learn, since Python was written in C programming
language.

Its an interpreted high-level programming language, which able to read
quickly any changes of code. There is no need to compile the code to make
it run as other languages, where compiling take long time. But Python still
slow language as it need to figure out what the code does every time the code
runs. Thats make it attractive for rapid application development but not for
the extended numerical computations. Suitably, there is a Python scientific
computing packages as NumPy [49] and SciPy [50] which provides sev-
eral needed routines for this kind of numerical computations, directly from
Python. Fortunately these packages are freely available for most operating
systems, including Linux, OSX, and MS-Windows. In this thesis was use-
ful to use some of these routines for solving partial differential equations
discretized on a square grid to proceed for a general solution of a classical,
damped oscillator with a time-dependent force.

However, the classes used to solve this problem are designed with addi-
tional topologies, geometries, and applications in mind. These classes are
Lattice ,LatticeFunction , and LatticeOperator . A specific application
from Quantum Mechanics has been refactored to extend these classes.

6.1 Anharmonic oscillators

The anharmonic oscillator was one of the first system studied by Heisen-
berg when he introduced matrix mechanics, and this has been an extremely
popular model to study ever since. Here we will continue to study it as an

67
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extension of the work described in section 4.1.

We have already constructed matrices for q̂ and p̂, with respect to the
lowest N states of the Hamiltonian

H0 = p̂2 + q̂2. (6.1)

One may construct matrices for p̂2 and q̂2 by squaring the matrices for q̂
and p̂, as was done in section 4.1, but it seems slightly better to construct
them directly in infinite-state model, and only thereafter reduce the to the
space of lowest N states. A similar procedure can be done to generate the
lowest N states of q̂4.

Moreover, for a symmetric model,

H = a(2)p̂2 + b(2)q̂2 + b(4)q̂4, (6.2)

only matrix elements between states with the same parity will be non-zero.
Hence, it is advantageous to construct separate H-matrices for the positive
and negative parity subspaces. The results are given in the nex subsection

6.1.1 Explicit matrix representations

Choose units in (2.31) such that m̄ω̄ = 1 and ~ = 1, and define matrices

Q(2e)
m,n ≡

(
q̂2
)

2m,2n
, (6.3a)

Q(2o)
m,n ≡

(
q̂2
)

2m+1,2n+1
, (6.3b)

P (2e)
m,n ≡

(
p̂2
)

2m,2n
, (6.3c)

P (2o)
m,n ≡

(
p̂2
)

2m+1,2n+1
, (6.3d)

Q(4e)
m,n ≡

(
q̂4
)

2m,2n
, (6.3e)

Q(4o)
m,n ≡

(
q̂4
)

2m+1,2n+1
. (6.3f)
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The nonzero elements of the above quantities are

Q(2e)
n,n = 1

2(4n+ 1), (6.4a)

Q
(2e)
n,n+1 = Q

(2e)
n+1,n = 1

2

√
(2n+ 1)(2n+ 2), (6.4b)

Q(2o)
n,n = 1

2(4n+ 3), (6.4c)

Q
(2o)
n,n+1 = Q

(2o)
n+1,n = 1

2

√
(2n+ 2)(2n+ 3), (6.4d)

Q(4e)
n,n = 1

4(24n2 + 12n+ 3), (6.4e)

Q
(4e)
n,n+1 = Q

(4e)
n+1,n = 1

4(8n+ 6)
√

(2n+ 1)(2n+ 2), (6.4f)

Q
(4e)
n,n+2 = Q

(4e)
n+2,n = 1

4

√
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4), (6.4g)

Q(4o)
n,n = 1

4(24n2 + 36n+ 15), (6.4h)

Q
(4o)
n,n+1 = Q

(4o)
n+1,n = 1

4(8n+ 10)
√

(2n+ 2)(2n+ 3), (6.4i)

Q
(4o)
n,n+2 = Q

(4o)
n+2,n = 1

4

√
(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5), (6.4j)

with further P (2p)
nn = Q

(2p)
nn , P (2p)

n,n+1 = P
(2p)
n+1,n = −Q((2p))

n,n+1 for parity p = e or
o. Note that all odd matrix elements can be obtained by shifting n→ n+ 1

2
in the expressions for the even ones.

6.1.2 Extensions to more than one dimension

By using the representation above, and taking N = 50, we found that the
about lowest 20 eigenvalues of the pure anharmonic oscillator,

Han = p̂2 + q̂4, (6.5)

can be reduced to full numerical precision (about 14 decimals). I.e., no
improvement is obtained for the lowest states by going to higher N .

This means that two-dimensional systems can be handled by taking
N = 50 in two directions, leading to a 2500 × 2500-matrix. This is also
unproblematic to handle by normal (dense) matrix routines, running on an
ordinary laptops. By going to three dimensions one may have to use a
Hilbert space of dimension 503 = 125 000. This is a bit to large for a dense
matrix routine on a laptop, but can easily be handled by a sparse, iterative
routine.

Even 4-dimensional systems, 504 = 6 250 000, should be easily within
reach (with some time and patience), while 5-dimensional systems, 505 =
312 500 000, would probably require and a high-end laptop (and lot of time
and patience). But these last two possibilities have not been explored.
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It is fairly straightforward to write Python code which generalize matrix
multiplications to multi-index object. Recall the operation of q̂ on a one-
dimensional wave-function

Psi[:-1] += Q11 * psi[1:]
Psi[1:] += Q11 * psi[:-1]

. In a two-dimensional model, psi will be a two-index array. Then, the
operation of q̂x can simply be coded as

Psi[:-1,:] += Q11 * psi[1:, :]
Psi[1:, :] += Q11 * psi[:-1,:]

, while the corresponding operation of q̂x becomes

Psi[:, :-1] += Q11 * psi[:, 1:]
Psi[:, 1:] += Q11 * psi[:,:-1]

Then generalizations to more dimensions, and matrices with more sub- and
super-diagonals in a single diminsion, is straightforward. We have use the
above technique to generate LinearOperator representations of hamiltoni-
ans of the form

H =

D∑
j=1

(
a

(2)
j p̂2

j + b
(2)
j q̂2

j + b
(4)
j q̂4

j

)
+

∑
1≤j<k≤D

b
(2,2)
j,k q̂2

j q̂
2
j (6.6)

for arbitrary dimensions D, and coefficient arrays a(2), b(2), b(4), b(2,2). This
code is organized as a Python class, listed in appendix C. An example using
this class is listed in appendix D.

6.2 Decay of a two-state atom

Consider a decay process like the one illustrated in figure 2.2. As a simplified
model for the atom we consider a two-state system with Hamiltonian

Ha =

(
Ea 0
0 0

)
= Ea σ

+σ−, where σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (6.7a)

The atom may decay to a “photon”. We model the non-interacting photon
system by a finite (a numerical limitation) collection of harmonic oscillators,

Hph =
N∑
n=0

En a
†
nan. (6.7b)
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Finally we model the interaction between the atom and the photon system
by an interaction Hamiltonian

Hint =
N∑
n=0

λn

(
σ+an + σ−a†n

)
, (6.7c)

so that the total hamiltonian becomes

H = Ha +Hph +Hph. (6.7d)

This Hamiltonian is constructed such that the total “excitation number”

6.2.1 Physical model with Hamiltonian

0 1 2 3 4 5
Γ0 t

0.0

0.2

0.4

0.6

0.8

1.0

p 0
(t

)

Numerical rate and Golden rule prediction

Golden rule
Numerical

Figure 6.1: As shown in this figure, the numerical calculation of the survival
probability of an excited two-level atom agrees very well with the exponential
decay rate p0(t) = e−Γ0t predicted by the Fermi Golden rule.

Ne = σ+σ− +

N∑
n=0

a†nan (6.8)
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Figure 6.2: Short time behavior of the atomic decay rate. The behavior is not
exponential in time t at first, but quadratic in t. This phenomenon is reffered to
as the quantum Zeno effect. The curves are calculated for different values of Emax,
with λ adjusted such that Γ0 remains constant. As can be seen, the quadratic range
becomes smaller and smaller as Emax increases. For a real-world system, Emax is
infinite; hence the effect can be expected to disappear.

is conserved, becauseHint may reduce the atomic excitation by one (from the
excited atom to the ground state) with the creation of a photon (a photonic
excitation), or vice versa.

Since Ne commutes with H, we may reduce H to the subspace where Ne

is constant. For Ne = 1, this leads to the (N + 2)× (N + 2) Hamiltonian

H =


Ea γ0 γ1 · · · γN
γ0 E0 0 · · · 0
γ1 0 E1 · · · 0
...

...
. . .

...
γN 0 0 · · · EN

 (6.9)

with all matrix elements real. We will only consider the case with n-
independent γn = γ/

√
N .
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Figure 6.3: As shown in this figure, there will be a revival of the excited state afters
sufficiently long time. The revival time is inversely proportional to the the gap
∆E = En+1−En, hence proportional to N . The plateau of minimum p0(t) ≈ 10−9

which seems to develop is probably an artifact of finite numerical accuracy.

This representation is such that the state

ψ(a) =
(
1, 0, . . . , 0

)T
, (6.10a)

represents an excited atom with energy Ea, and zero photons. The state

ψ(n) =
(
0, . . . , n, . . . , 0

)T
, (6.10b)

represents an atom in the ground state plus exactly one photon with en-
ergy En. In the real world the number of photon modes is infinite, with
a continuous spectrum of energies extending to infinity. But one may use
this Hamiltonian (6.9) to model systems where the photons are confined to
a cavity, and have a discrete spectrum.

We will use this model to solve the Schrödinger equation

i
d

dt
ψ(t) = H ψ(t), ψ(0) = ψ(a), (6.11)

numerically. The procedure for doing this was outlined in section 4.2, with
the complete code listed in appendix E.
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6.2.2 Perturbation theory. Fermi Golden Rule

Assuming that λ is small we may calculate the decay amplitude to first order
in perturbation theory, interpreting the result as a calculation of the decay
rate Γ0, defined such that the probability of finding the excited state being
excited at time t is

p0(t) = e−Γ0t, (6.12)

provided we start in the excited state at time t = 0. According to the Fermi
Golden rule we should in this case have

Γ0 = 2πλ2ρ(Ea)/N, (6.13a)

where ρ(Ea) is the density of states per energy at energy Ea. We will only
consider the case that En is distributed evenly with n from E0 = 0 to
EN = Emax. Hence the density of states is ρ(Ea) = N/Emax. This leads to
the prediction that

Γ0 = 2πλ2/Emax, (6.13b)

which may be compared with the numerical results. As shown if figure 6.1
the agreement is excellent, provided one looks in a favorable time interval.

6.2.3 Quadratic behavior at short times

However, on closer look one finds deviation from exponential behavior. For
short times t the decay rate is not exponential (i.e., linear in time for small
t), but quadratic in t. This is easy to understand by solving the Schroödinger
equation (6.11) to first order in t. We find

〈ψ(n)|ψ(t)〉 = -iλt/
√
N,

such that the probability for not being the state ψ(a) becomes, cf. figure 6.2,

1− p0(t) = λ2t2. (6.14)

6.2.4 Long-time revival behavior

For large times we observe a different deviation from exponential decay, as
shown in figure 6.3. Since the photon decays into a finite spatial region, of
size inverse to the energy gap ∆E = En+1 − En, it must eventually return.
The is shown by repeated revivals of the excited state after a sufficiently
long times. As can be seen, the revival time increased with N , since this
makes ∆E smaller. The numerical curves also exhibit a plateau of minimum
survival probability, independent of N . This is probabliy an artifact of finite
numerical accuracy.
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6.3 Langevin description of stochastic evolution

A general mathematical formulation of such models may start from the
Lagrangian

L =
1

2

∑
j

Mj q̇
2
j −

∑
j

Uj −
1

2

∑
j,k

Vjk, (6.15)

where Uj ≡ Uj(qj), Vjk ≡ Vjk(qj , qk), and the indices j, k run over all
lattice sites. The interactions Vjk = Vkj are symmetric in their arguments,
Vjk(qj , qk) = Vjk(qk, qj). The corresponding Hamiltonian

H =
1

2

∑
j

M−1
j ṗ2

j +
∑
j

Uj +
1

2

∑
j,k

Vjk, (6.16)

generate the classical equations of motion

q̇j = M−1
j pj , (6.17a)

ṗj = −∇j

[
Uj +

∑
k

Vjk

]
. (6.17b)

To introduce (thermal or quantum) fluctuations into this model we convert
eqs.(6.17) to a set of stochastic equations, by adding damping (Γ) and (ran-
dom) fluctuating force (f) terms. This leads to the system of Langevin
equations,

q̇j = M−1
j pj , (6.18a)

ṗj = −∇j

[
Uj +

∑
k

Vjk

]
− Γj + fj(t), (6.18b)

where fj(t) are gaussian distributed with zero mean, 〈fj(t)〉 = 0, and vari-
ance

〈fj(t)fk(u)〉 = Gj δjk δ(t− u). (6.18c)

6.4 Example 1: One-dimensional harmonic oscilla-
tor

As an introductory example, consider the case of a one-dimensional harmonic
oscillator, described by the Hamiltonian H = 1

2(p2 + q2). The Langevin
equations becomes(

q̇
ṗ

)
+

(
0 −1
1 γ

)(
q
p

)
=

(
0
f(t)

)
. (6.19)
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They can be integrated to(
q(t)
p(t)

)
= e−tD

(
q(t0)
p(t0)

)
+

∫ t

t0

e−(t−u)D
(

0
f(u)

)
du. (6.20)

Here D =

(
0 −1
1 γ

)
, so that for real ω ≡ (1− γ2/4)1/2,

e−tD = e−γt/2
(

cosωt+ κ sinωt ω−1 sinωt
−ω−1 sinωt cosωt− κ sinωt

)
(6.21a)

= e−γt/2
(
ρ cos(ωt− φ) ω−1 sinωt
−ω−1 sinωt ρ cos(ωt+ φ)

)
, (6.21b)

where κ = 1
2γω

−1 = tanφ, and ρ = (1 + κ2)1/2 = 1/ cosφ.

6.5 Numerical implementation in NumPy

A numerical implementation requires very little work in NumPy. One first
creates the dynamical matrix D in some way. F.i.

gamma = 0.1
dynamicMatrix = numpy.array([[0,-1],[1, gamma]])

The eigenvalues and eigenvectors are then painless to find

[evals, R] = numpy.linalg.eig(dynamicMatrix)
L = numpy.linalg.inv(R)

With the initial conditions specified,

z0 = numpy.array([0, 1])
g0 = numpy.dot(L,z0)

it is straightforward to evaluate the solution at a specified set of timevalues:

# Prepare for computation of time evolution
tstart = 0; tend = 20; ntimes = 1001
tvals = numpy.linspace(tstart,tend,ntimes)
qvals = numpy.zeros(ntimes, dtype=float)
pvals = numpy.zeros(ntimes, dtype=float)
# Evaluate the path
for n in xrange(ntimes):
t = tvals[n]
gt = numpy.exp(-t*evals)*g0
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zt = numpy.real(numpy.dot(R, gt))
qvals[n] = zt[0]
pvals[n] = zt[1]

Figure example of damped oscillator, plus code example
Note the code snippets above require very little change when generalized

to a 2D–dimensional linear Hamiltonian system.
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Chapter 7

Summary

This thesis has reported from works done over many years, collecting notes
and programs from different stages of development. For this reason it may
contain some unintended repetition of content, and (equally unintended)
variation of notation.

Apart from a general literature study of the formulations and develop-
ment of quantum mechanics, it attempts to solve some interesting problems
numerically, with the help of code available from the NumPy and SciPy pack-
ages of Python.

The syntax of the multi-dimensional arrays in Numpy is such that one of-
ten can write rather compact code for the required linear algebra operations.
The most time consuming processes, like multiplication of large matrices or
the solution of eigenvalue problems, are done in a compact natural expres-
sion or by a single function call. This means that such operations are carried
out by precompiled library routines generated from code written in numer-
ically efficient languages like Fortran, C or C++. The use of an interpreted
computer language like Python does not prohibit efficient numerical use of
the computer.

We have found that a problem like finding the lowest eigenvalues of a full
3-dimensional anharmonic oscillator (i.e., without separation of variables)
can be solved on an ordinary laptop in a few minutes.

For the model of the a two-state decaying atom it was found that the
limiting factor was not the available computer memory or computational
time, but the inherent limitation of double precision numerical accuracy.

The numerical modelling of the classical Langevin equations did not
reach a conclusive stage.
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Appendix A

MatrixMechanicsDemo.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: MatrixMechanicsDemo.py

import sys
import time
import pickle
import numpy
from scipy.linalg import eigh, eigvalsh
from scipy.sparse.linalg import LinearOperator, eigsh

def checkDiagonalization(N=5):
t0 = time.time()
Q11 = numpy.sqrt(numpy.arange(1, N)/2)

def q(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] += Q11 * psi[:-1]
return Psi

def ip(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] -= Q11 * psi[:-1]
return Psi
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def matrix(operator):
M = numpy.zeros((N, )*2) # Space for matrix
id = numpy.eye(N) # The unit matrix
for n in range(N):

M[:,n] = operator(id[:,n]) # Add n’th column
return M

Mq = matrix(q); Mip = matrix(ip)
C = numpy.dot(Mq, Mip) - numpy.dot(Mip, Mq)
# print (C)

Mp2 = -numpy.dot(Mip, Mip); Mq2 = numpy.dot(Mq, Mq)
H = Mp2 + Mq2
# print (H)

H = Mp2 + numpy.dot(Mq2, Mq2)
# print (H)
E, S = eigh(H)
# print (E)
# for n in range(N):
# psi = S[:, n]; dpsi = numpy.dot(H, psi) - E[n]*psi
# print ("%.5e" % numpy.linalg.norm(dpsi,
ord=numpy.inf))

D = numpy.dot(S.T, numpy.dot(H, S))
err = numpy.linalg.norm(D - numpy.diag(E), ord=numpy.inf)
dt = time.time() - t0
print ("N=%4d:␣maxerror=%.5e␣␣time=%8.5f␣secs" % (N, err,
dt))

# unity = numpy.dot(S.T, S)
# ortherr = numpy.linalg.norm(unity - numpy.eye(N),
# ord=numpy.inf)
# unity = numpy.dot(S, S.T)
# comperr = numpy.linalg.norm(unity - numpy.eye(N),
# ord=numpy.inf)
# print ("N=%4d: ortherror=%.5e comperr=%.5e" %
# (N, ortherr, comperr))
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def checkDiagonalization2(N=5):
if N >= 3000:

k = 100
elif N >= 500:

k = 80
elif N >= 50:

k = 20
elif N >= 20:

k=10
else:

k=6
t0 = time.time()
Q11 = numpy.sqrt(numpy.arange(1, N)/2)

def q(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] += Q11 * psi[:-1]
return Psi

def ip(psi):
Psi = numpy.zeros_like(psi)
Psi[:-1] += Q11 * psi[1:]
Psi[1:] -= Q11 * psi[:-1]
return Psi

def p2(psi):
chi = ip(psi)
return -ip(chi)

def q2(psi):
chi = q(psi)
return q(chi)

def H(psi):
chi = q2(psi)
return p2(psi) + q2(chi)

A = LinearOperator((N, N), matvec=H, dtype=float)
E, S = eigsh(A, k=k, which=’SM’)
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dt = time.time() - t0
err = -1.
for n in range(k):

psi = S[:, n]; dpsi = H(psi) - E[n]*psi
errn = numpy.linalg.norm(dpsi, ord=numpy.inf)
if errn > err:

err = errn
print ("N=%4d␣(k=%3d):␣maxerror=%.5e␣␣time=%9.5f␣secs" %

(N, k, err, dt))

def main(argv):
for N in [5, 20, 50, 200, 500, 2000, 5000]:

checkDiagonalization(N=N)
# for N in [50, 200, 500, 2000, 5000]:
# checkDiagonalization2(N=N)

if __name__ == "__main__":
main(sys.argv[1:])
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WaveMechanicsDemo.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: MatrixMechanicsDemo.py

import sys
import time
import pickle
import numpy
from scipy.linalg import eigh

from matplotlib import rc
rc(’text’, usetex=True)
import matplotlib
# matplotlib.use(’PDF’)
import matplotlib.pyplot as pyplot

def _H(psi):
dpsi0 = lamda * numpy.sum(psi[1:])
psi[1:] *= en; psi[1:] += lamda * psi[0]
psi[0] *= e0; psi[0] += dpsi0
return psi

def matrix(operator):
M = numpy.zeros((N, )*2) # Space for matrix
id = numpy.eye(N) # The unit matrix
for n in range(N):

M[:,n] = operator(id[:,n]) # Add n’th column
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return M

def main(argv):
global N, e0, en, lamda
N = 400; e0 = 1
lamda = 0.12/numpy.sqrt(N-1)
en = numpy.linspace(0, 2*e0, N-1)
H = matrix(_H)
E, S = eigh(H)
tmax = 120 # 120 for vanlig plot
Nt = 200
t = numpy.linspace(0., tmax, Nt)
Et = t.reshape(Nt,1) * E.reshape(1,N) # Broadcast
mechanism
S02 = S[0,:]**2
M0R = numpy.dot(numpy.cos(Et), S02)
M0I = numpy.dot(numpy.sin(Et), S02)
P0t = M0R**2 + M0I**2
# pyplot.ylim(0.9, 1.01)
pyplot.plot(t, P0t)
pyplot.show()

if __name__ == "__main__":
main(sys.argv[1:])
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MatrixQM.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: MatrixQM.py

import sys
import numpy
from scipy.linalg import eigh

class MatrixQM():
’’’Representation of H with respect to harmonic oscillator
basis
’’’

def __init__(self, N=50):
self.N = N
n = numpy.arange(2*self.N)
self.Q11 = (numpy.sqrt(n+1)/2)[:-1]
self.Q20 = (2*n+1)/2
self.Q22 = (numpy.sqrt((n+1)*(n+2))/2)[:-2]
self.Q40 = (6*n*n + 6*n + 3)/4
self.Q42 = ((4*n+6)*numpy.sqrt((n+1)*(n+2))/4)[:-2]
self.Q44 = (numpy.sqrt((n+1)*(n+2)*(n+3)*(n+4))/4)[:-4]

def setTplusV(self, dim=1, a2=None, V=None):
’’’Set properties for Hamiltonian

H = sum(a2[j] p_j**2; j=1..dim) + V(x)
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’’’
self.dim = dim
self.shape = (2*self.N, ) * dim
if a2 is None:

self.a2 = (1,) * dim
if (dim==1) and ((type(a2)==int) or (type(a2)==float)):

self.a2 = (a2,)

A = self.matrix(self.q, shape=(2*self.N,))
Q, S = eigh(A)
self.Q = Q
A = self.matrix(self.p2, shape=(2*self.N,))
self.P2 = numpy.dot(S.T, numpy.dot(A, S))

def setSimpleH(self, dim=1, a2=None, b2=None, b4=None,
b22=None):

’’’Set matrix elements for simple symmetric Hamiltonian

H = sum(a2[j] p_j**2 + b2[j] q_j**2 + b4[j]
q_j**4; j=1..dim)

+ sum( b22[j,k] q_j**2 q_k**2; j=1..dim-1,
k=j+1..dim)

’’’
self.dim = dim; self.shape = (self.N, ) * dim

kw = [a2, b2, b4, b22]
dfltval = [1, 1, 0, 0]
dfltsize = [dim, dim, dim, (dim*(dim-1))//2]
d1 = [1, 1, 1, 2]
for k in range(len(kw)):

if kw[k] is None:
kw[k] = (dfltval[k], ) * dfltsize[k]

if (dim==d1[k]) and (type(kw[k])==int or
type(kw[k])==float):

kw[k] = (kwarg[k], )
a2, b2, b4, self.b22 = kw

self.H0 = [0, ]*dim; self.H2 = [0, ]*dim; self.H4 =
[0,]*dim

self.h0 = [0, ]*dim; self.h2 = [0, ]*dim
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N = self.N; x = [1,]*dim
for n in range(dim):

xn = list(x); xn[n] = N; tn = tuple(xn)
self.H0[n] = ((b2[n]+a2[n]) * self.Q20 +

b4[n] * self.Q40).reshape(tn)
self.h0[n] = self.Q20.reshape(tn)

xn[n] = N-2; tn = tuple(xn)
self.H2[n] = ((b2[n]-a2[n]) * self.Q22 +

b4[n] * self.Q42).reshape(tn)
self.h2[n] = self.Q22.reshape(tn)

xn[n] = N-4; tn = tuple(xn)
self.H4[n] = (b4[n] * self.Q44).reshape(tn)

def setParities(self, parities=None):
’’’Select subspace of parity symmetries
’’’
if parities is None:

parities = (0, ) * self.dim
if (self.dim==1) and type(parities)==int:

parities = (parities, )
self.Hs0 = [0, ]*self.dim; self.Hs1 = [0, ]*self.dim
self.Hs2 = [0, ]*self.dim
self.hs0 = [0, ]*self.dim; self.hs1 = [0, ]*self.dim
for n in range(self.dim):

if parities[n] == 0:
self.Hs0[n] = (self.H0[n])[0::2]
self.Hs1[n] = (self.H2[n])[0::2]
self.Hs2[n] = (self.H4[n])[0::2]
self.hs0[n] = (self.h0[n])[0::2]
self.hs1[n] = (self.h2[n])[0::2]

else:
self.Hs0[n] = (self.H0[n])[1::2]
self.Hs1[n] = (self.H2[n])[1::2]
self.Hs2[n] = (self.H4[n])[1::2]
self.hs0[n] = (self.h0[n])[1::2]
self.hs1[n] = (self.h2[n])[1::2]

def H(self, psi):
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’’’LinearOperator representation of a simple symmetric
Hamiltonian

’’’
phi = psi.reshape((self.N, ) * self.dim)
phiH = numpy.zeros_like(phi)
t0 = [slice(None, None),] * self.dim
for n in range(self.dim):

phiH += self.Hs0[n] * phi
tn = list(t0); tn[n] = slice(None, -1)
sn = list(t0); sn[n] = slice(1, None)
phiH[tn] += self.Hs1[n] * phi[sn]
tn = list(t0); tn[n] = slice(1, None)
sn = list(t0); sn[n] = slice(None,-1)
phiH[tn] += self.Hs1[n] * phi[sn]
tn = list(t0); tn[n] = slice(None, -2)
sn = list(t0); sn[n] = slice(2, None)
phiH[tn] += self.Hs2[n] * phi[sn]
tn = list(t0); tn[n] = slice(2, None)
sn = list(t0); sn[n] = slice(None,-2)
phiH[tn] += self.Hs2[n] * phi[sn]

for m in range(self.dim-1):
chi = self.hs0[m] * phi
tm = list(t0); tm[m] = slice(None, -1)
sm = list(t0); sm[m] = slice(1, None)
chi[tm] += self.hs1[m] * phi[sm]
tm = list(t0); tm[m] = slice(1, None)
sm = list(t0); sm[m] = slice(None, -1)
chi[tm] += self.hs1[m] * phi[sm]
for n in range(m+1, self.dim):

imn = n-1 + m*(self.dim-2) - m*(m-1)//2
phiH += (self.b22[imn] * self.hs0[n]) * chi
hs1 = self.b22[imn] * self.hs1[n]
tn = list(t0); tn[n] = slice(None, -1)
sn = list(t0); sn[n] = slice(1, None)
phiH[tn] += hs1 * chi[sn]
tn = list(t0); tn[n] = slice(1, None)
sn = list(t0); sn[n] = slice(None,-1)
phiH[tn] += hs1 * chi[sn]
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return numpy.ravel(phiH)

def q(self, psi):
’’’LinearOperator representation of position operator q
’’’
psiQ = numpy.zeros_like(psi)
psiQ[:-1] += self.Q11 * psi[1:]
psiQ[1:] += self.Q11 * psi[:-1]
return psiQ

def ip(self, psi):
’’’LinearOperator representation of momentum operator

sqrt(-1)*p
’’’
psiP = numpy.zeros_like(psi)
psiP[:-1] += self.Q11 * psi[1:]
psiP[1:] -= self.Q11 * psi[:-1]
return psiP

def q2(self, psi):
’’’LinearOperator representation of V = q**2
’’’
psiV = numpy.zeros_like(psi)
psiV = self.Q20 * psi
psiV[:-2] += self.Q22 * psi[2:]
psiV[2:] += self.Q22 * psi[:-2]
return psiV

def p2(self, psi):
’’’LinearOperator representation of T = p**2
’’’
psiT = numpy.zeros_like(psi)
psiT = self.Q20 * psi
psiT[:-2] -= self.Q22 * psi[2:]
psiT[2:] -= self.Q22 * psi[:-2]
return psiT

def TplusV(self, psi):
’’’LinearOperator representation of p**2 + V(q)
’’’
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phi = psi.reshape(self.shape)
phiH = self.V * phi
if self.dim == 1:

phiH += self.a2[0] * numpy.dot(self.P2, phi)
elif self.dim == 2:

phiH += self.a2[0] * numpy.dot(self.P2, phi)
phiH += self.a2[1] * numpy.dot(self.P2, phi.T).T

else:
for n in range(self.dim):

chi0 = numpy.dot(self.P2, numpy.swapaxes(phi,
n, -2))

chi1 = numpy.swapaxes(chi0, 0, -2)
phiH += self.a2[n] * numpy.swapaxes(chi1, n,

-2)
return numpy.ravel(phiH)

def matrix(self, operator, shape=None):
’’’Return matrix representation of operator
’’’
if shape is None:

shape = self.shape
N = numpy.prod(shape)
matrix = numpy.zeros((N, )*2) # Allocate space for

matrix
id = numpy.eye(N)
for n in range(N):

psi = id[:,n].reshape(shape)
matrix[:,n] = operator(psi)

return matrix
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useMatrixQM.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: useMatrixQM.py

import sys
import time
import pickle
import numpy
from scipy.linalg import eigvalsh
from scipy.sparse.linalg import LinearOperator, eigsh

from MatrixQM import MatrixQM

from matplotlib import rc
rc(’text’, usetex=True)
import matplotlib
# matplotlib.use(’PDF’)
import matplotlib.pyplot as pyplot

# Eigenvalues E_n, n=0,..1000, for anharmonic oscillator
eigvals = numpy.loadtxt("x4En.dat")

def checkClass():
marks=[’^g’, ’^b’,’vr’,’vg’,’vb’,’or’,’og’,’ob’, ’og’,
’or’]
Nvals = range(20, 56, 5)
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lenN = len(Nvals)
evalErrors = numpy.zeros((6, lenN))
for k in range(lenN):

myQM = MatrixQM(N=Nvals[k])
H = myQM.matrix(myQM.lin1De)
errors = numpy.abs(eigvalsh(H)[:6] -

eigvals[0:12:2][:,1])
evalErrors[:,k] = errors

xvals = 2*numpy.arange(6) + 1
for k in range(lenN):

pyplot.semilogy(xvals, evalErrors[:,k], marks[k],
label=r"N=%d" % Nvals[k])

pyplot.semilogy(xvals, evalErrors[:,-1], ’-b’)
pyplot.xlim(-0.5, 11.5)
pyplot.legend(loc=’upper␣left’, numpoints=3)
pyplot.show()

# print ("%2d: %19.16f" % (2*n, evals[n]- evalsE[n]))

def checkEvals(nmax=50):
for N in [8, 16, 32, 64]:

myQM = MatrixQM(N=N)
evals = numpy.zeros(2*N)
H = myQM.matrix(myQM.H1De)
evals[0:2*N:2] = eigvalsh(H)
H = myQM.matrix(myQM.H1Do)
evals[1:2*N:2] = eigvalsh(H)
nmx = min(2*N, nmax+1)
pyplot.semilogy(eigvals[:nmx,0], evals[:nmx], ’g^’)

pyplot.semilogy(eigvals[:nmax+1,0],
eigvals[:nmax+1,1],’ro’)
pyplot.xlim(-0.5, nmax+0.5)
pyplot.ylim(0.5, 1e3)
pyplot.show()

def checkEvalErrors(nmax=80):
for N in [8, 16, 32, 64, 128, 256]:

myQM = MatrixQM(N=N)
evals = numpy.zeros(2*N)
H = myQM.matrix(myQM.H1De)
evals[0:2*N:2] = eigvalsh(H)
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H = myQM.matrix(myQM.H1Do)
evals[1:2*N:2] = eigvalsh(H)
nmx = min(2*N, nmax+1)
pyplot.semilogy(eigvals[:nmx,0],

numpy.abs(evals[:nmx]-eigvals[:nmx,1]), ’g^’)
pyplot.xlim(-0.5, nmax+0.5)

# pyplot.ylim(0.5, 1e3)
pyplot.show()

def checkQ2(N=100):
myQM = MatrixQM(N=N, a2=0, b2=1, b4=0)
A = myQM.matrix(myQM.q, N=2*N)
q1 = eigvalsh(A)
A = myQM.matrix(myQM.H1De)
q2e = numpy.sqrt(eigvalsh(A))
A = myQM.matrix(myQM.H1Do)
q2o = numpy.sqrt(eigvalsh(A))
for n in range(N):

print ("%22.15e" % (q1[N+n]-q2e[n]))
#pyplot.semilogy(x, ’b.’)
#pyplot.show()

def checkQ(N=100):
myQM = MatrixQM(N=N)
A = myQM.matrix(myQM.q2e)
q2, S = eigh(A)
A = myQM.matrix(myQM.p2e)
p2 = numpy.dot(S.T,numpy.dot(A, S))
print (p2)

def makeV(q2):
V = numpy.empty_like(q2)
for n in range(q2.size):

V[n] = q2[n]**2
return V

def test(N=64):
myQM = MatrixQM(N=64)
myQM.setSimpleH1D(b2=0, b4=1)
myQM.V = makeV(myQM.q2e)
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myQM.p2 = myQM.p2e
A = myQM.matrix(myQM.H1De)
evals0 = eigvalsh(A)
A = myQM.matrix(myQM.linOpH)
evals1 = eigvalsh(A)
print ((evals0-evals1)[:50])

def checkHarmonicOscillators():
’’’Compute spectra of simple harmonic oscillators in 1, 2,
3 dimensions
’’’
myQM = MatrixQM(N=8)
for dim in range(1, 4):

myQM.setSimpleH(dim=dim)
for parities in numpy.ndindex((2,) * dim):

myQM.setParities(parities)
t0 = time.time()
A = myQM.matrix(myQM.H)
eN = eigvalsh(A)
dt = time.time() - t0
print ("%d-dim,␣parity␣%s,␣eigenvalues␣in␣%f␣

secs:" %
(dim, parities, dt))

print (eN)
print ()

def checkAnharmonicOscillators():
’’’Compute spectra of simple anharmonic oscillators in 1,
2, 3 dimensions
’’’
myQM = MatrixQM(N=50)
eNs = []
for dim in range(1, 3):

myQM.setSimpleH(dim=dim, b2=(0, )*dim, b4=(1, )*dim)
for parities in numpy.ndindex((2,) * dim):

myQM.setParities(parities)
t0 = time.time()
Nd = myQM.N**dim
if Nd <= 4000:

A = myQM.matrix(myQM.H)
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eN = eigvalsh(A)
else:

A = LinearOperator((Nd, Nd), matvec=myQM.H,
dtype=float)

eN = eigsh(A, k=20, which=’SA’,
return_eigenvectors=False)

eN = numpy.sort(eN)
dt = time.time() - t0
print ("%d-dim,␣parity␣%s,␣eigenvalues␣in␣%f␣

secs:" %
(dim, parities, dt))

print (eN[:20])
eNs.append([dim, parities, dt, eN])

with open("EvalsAnharmonicOscillator.pkl", "wb") as
outfile:

pickle.dump(eNs, outfile)

def main(argv):
checkTensor()
return
shape = (3,5,7)
a = numpy.arange(numpy.prod(shape)).reshape(shape)
lens = len(shape)
if (lens > 1):

for n in range(len(shape)):
N = shape[n]
p2 = numpy.arange(N**2).reshape(N,N)
y = numpy.dot(p2, numpy.swapaxes(a,-2,n))
print (y.shape)
z = numpy.swapaxes(y,0,-2)
print (z.shape)
w = numpy.swapaxes(z,-2,n)
print (w.shape)
print ()

return
# checkHarmonicOscillators()
# checkAnharmonicOscillators()

if __name__ == "__main__":
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main(sys.argv[1:])



Appendix E

TwoLevelAtom.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: TwoLevelAtom.py

# Model for a two-level atom coupled to a "photon" distribution

import sys
import numpy
from scipy.linalg import eigh

from matplotlib import rc
rc(’text’, usetex=True)
import matplotlib
matplotlib.use(’PDF’)
import matplotlib.pyplot as pyplot

class TwoLevelAtom():
’’’A two-level atom coupled to a "photon" distribution
’’’
def __init__(self, N=1000, lamda=0.1, E0=1, Emax=None,
noise=0):

’’’Set model parameters
’’’
self.N = N
self.shape = (N+2,)
self.E0 = E0
if Emax is None:
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self.Emax = 8*E0
else:

self.Emax = Emax
# Photon spectrum
self.Eph = numpy.linspace(0, self.Emax, N+1)
self.dEph = self.Emax/N # Inverse density of states
self.lamda = lamda*numpy.sqrt(self.dEph)
# Random perturbation of spectrum (0 <= noise < 1)
if noise != 0:

self.Eph +=
noise*(numpy.random.rand(N+1)-1/2)*self.dEph

def H(self, psi):
’’’LinearOperator representation of Hamiltonian
’’’
dpsi0 = self.lamda * numpy.sum(psi[1:])
psi[1:] *= self.Eph
psi[1:] += self.lamda * psi[0]
psi[0] *= self.E0
psi[0] += dpsi0
return psi

def matrix(self, operator, shape=None):
’’’Return matrix representation of operator
’’’
if shape is None:

shape = self.shape
N = numpy.prod(shape)
matrix = numpy.zeros((N, )*2) # Allocate space for

matrix
id = numpy.eye(N)
for n in range(N):

psi = id[:,n].reshape(shape)
matrix[:,n] = operator(psi)

return matrix

def demonstrateModel(tmax=700, Nt=200):
’’’Demonstrate basic (favorable) properties of the model
’’’
tL = TwoLevelAtom()
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H = tL.matrix(tL.H)
E, S = eigh(H)
N = len(E)
t = numpy.linspace(0., tmax, Nt)
Et = t.reshape(Nt,1) * E.reshape(1,N) # Broadcast
mechanism
S02 = S[0,:]**2
M0R = numpy.dot(numpy.cos(Et), S02)
M0I = numpy.dot(numpy.sin(Et), S02)
P0t = M0R**2 + M0I**2
G0 = 2*numpy.pi*tL.lamda**2/tL.dEph # Golden Rule decay
rate
# Plot result
fig = pyplot.figure()
linewidth = 358.50475/72
fig.set_size_inches(linewidth, 0.618*linewidth)
subfig = fig.add_subplot(1,1,1)
pyplot.plot(G0*t, numpy.exp(-G0*t), ’b’, lw=2.5,

label=r"Golden␣rule")
pyplot.plot(G0*t, P0t, ’y’, lw=1,

label=r"Numerical")
pyplot.xlim(0, 5)
pyplot.legend(loc=’upper␣right’)
pyplot.title(r"Numerical␣rate␣and␣Golden␣rule␣prediction")
pyplot.xlabel(r"$\Gamma_0\,t$")
pyplot.ylabel(r"$p_0(t)$")
pyplot.savefig("TwoLevelAtomicDecay0",

dpi=1200, bbox_inches=’tight’)

def shortTimeBehavior(tmax=1, Nt=200):
’’’Show non-exponential behavior at short times
’’’
Emx = [2, 4, 8];
tmx = [1.9, 1.7, 1.6]
mrk = [’b-.’, ’g--’, ’r’]
fig = pyplot.figure()
linewidth = 358.50475/72
fig.set_size_inches(linewidth, 0.618*linewidth)
subfig = fig.add_subplot(1,1,1)
for n in range(len(Emx)):
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Emax = Emx[n]; tmax = tmx[n]
tL = TwoLevelAtom(Emax=Emax)
G0 = 2*numpy.pi*tL.lamda**2/tL.dEph
H = tL.matrix(tL.H)
E, S = eigh(H)
N = len(E)
t = numpy.linspace(0., tmax, Nt)
Et = t.reshape(Nt,1) * E.reshape(1,N)
S02 = S[0,:]**2
M0R = numpy.dot(numpy.cos(Et), S02)
M0I = numpy.dot(numpy.sin(Et), S02)
P0t = M0R**2 + M0I**2
pyplot.plot(G0*t, P0t, mrk[n],

label=r"$E_{\text{max}}␣=␣%d$" % Emax)
pyplot.legend(loc=’upper␣right’)
pyplot.title(r"Short␣time␣behavior")
pyplot.xlabel(r"$\Gamma_0\,t$")
pyplot.ylabel(r"$p_0(t)$")
pyplot.ylim(0.94, 1.002)

# pyplot.show()
pyplot.savefig("TwoLevelAtomicDecay1",

dpi=1200, bbox_inches=’tight’)

def longTimeRevival(tmax=1500, Nt=413):
’’’Show revival behavior at long times
’’’
fig = pyplot.figure()
linewidth = 358.50475/72
fig.set_size_inches(linewidth, 0.618*linewidth)
subfig = fig.add_subplot(1,1,1)
tx = [1340, 1961, 1570]
Nn = [500, 1250, 2000]
mrk = [’b’, ’g--’, ’r-.’]
for n in range(len(Nn)):

N = Nn[n]
tmax = tx[n]
tL = TwoLevelAtom(N=N)
H = tL.matrix(tL.H)
E, S = eigh(H)
NE = len(E)
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t = numpy.linspace(0., tmax, Nt)
Et = t.reshape(Nt,1) * E.reshape(1,NE)
S02 = S[0,:]**2
M0R = numpy.dot(numpy.cos(Et), S02)
M0I = numpy.dot(numpy.sin(Et), S02)
P0t = M0R**2 + M0I**2
G0 = 2*numpy.pi*tL.lamda**2/tL.dEph
# Plot result
pyplot.semilogy(G0*t, P0t, mrk[n],

label=r"$N=%d$" % N)
leg = pyplot.legend(loc=’upper␣right’)
leg.get_frame().set_alpha(0.2)
pyplot.title(r"Long␣time␣revivals")
pyplot.xlabel(r"$\Gamma_0\,t$")
pyplot.ylabel(r"$p_0(t)$")
pyplot.xlim(0, 140)

# pyplot.show()
pyplot.savefig("TwoLevelAtomicDecay2",

dpi=1200, bbox_inches=’tight’)

def main(argv):
demonstrateModel()

# shortTimeBehavior()
# longTimeRevival()

return

if __name__ == "__main__":
main(sys.argv[1:])
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Appendix F

DynamicalLattice.py

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# File: dynamicallattice.py

import sys
import time
import itertools
import numpy
from numpy import roll
import numpy.core.umath_tests as ut
import scipy
from scipy.linalg import eigvals
from scipy.sparse.linalg import LinearOperator, eigs

from lattice import Lattice
from latticefunctions import LatticeFunctions
from latticeoperator import LatticeOperator

class DynamicalLattice(LatticeOperator):
"""Dynamical evolution of linear lattice vibrations"""

def __init__(self, lattice, Mx=None, M=None, Gx=None,
G=None, def_K=None):

if def_K is None:
def_K = lambda k2: sum(k2) # Discrete Laplace

operator in k-space
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LatticeOperator.__init__(self, lattice, stensil=None)
self.size = 2 * lattice.size

if Mx is None:
# Possible values of inverse mass
Mx = numpy.array([numpy.sqrt(1/2),1,numpy.sqrt(2)])

if M is None:
# Choose values drawn at random from Mx
self.M = Mx[numpy.random.randint(Mx.size,

size=lattice.size)].reshape(lattice.shape)
if Gx is None:

# Possible values of dissipatrion
Gx = numpy.array([0.1])

if G is None:
# Choose values drawn at random from Gx
self.G = Gx[numpy.random.randint(Gx.size,

size=lattice.size)].reshape(lattice.shape)
if def_K is None:

def_K = lambda k2: sum(k2) # Discrete Laplace
operator in k-space

self.myF = LatticeFunction(lattice, def_G=def_K,
evalG=True)

# if dynM is None:
# dynM = numpy.random.rand(2,2)
# dynM[0,0] = 0
# dynM[1,0] = -dynM[1,0]
# dynM[1,1] = -0.1*dynM[1,1]
# self.dynM = dynM
# else:
# myF = LatticeFunction(lattice)
# # Generate masses (diagonal terms)
# self.invM = myF.evalFr(def_F=dynM[0],

returnResult=True)
# # Generate dampings (local terms)
# self.gamma = myF.evalFr(def_F=dynM[1],

returnResult=True)
# # Generate local interactions ()
# self.locK = myF.evalFr(def_F=dynM[2],
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returnResult=True)
# dynM = numpy.zero(2,2)
# dynM[0,1] = -self.invM
# dynM[1,1] = -self.gamma
# dynM[1,0] = self.locK
# self.dynM = dynM
# self.shapeI = shapeI
# if shapeI is None:
# self.size = self.lattice.size
# else:
# self.size = self.lattice.size *

numpy.prod(shapeI)
# self.varOp = self.dynOp

def linOp(self, phi0):
"""Convert input to multidimensional and output back"""
shape = (2, ) + self.lattice.shape
print (self.size)
print (phi0.shape)
return
phi = phi0.reshape(shape)
return numpy.ravel(self.varOp(phi))

def varOp(self, phi):
"""Apply dynamical matrix to input vector"""
Phi = numpy.zeros_like(phi)
Phi[0] = self.M * phi[0]
print ("Phi_0", Phi[0])
Phi[1] = self.myF.FFT(phi[0])
print ("FFT␣Phi_1", Phi[1])
Phi[1] *= self.myF.valuesG
print ("FFT␣Phi1*G", Phi[1])
Phi[1] = self.myF.iFFT(Phi[1])
print ("iFFT␣Phi1", Phi[1])
Phi[1] += self.G * phi[1]
print (Phi[1])
return (Phi)

def checkDynamicalSystem():
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myL = Lattice(shape=(8,))
myD = DynamicalLattice(myL)
matD = myD.matrix()
return
print (matD)
return
matrix = myD.matrix()
evals = eigvals(matrix)
print (evals)

def tstGeneralizedUfunc():
shape = (10,10)
shapeD = shape + (2,2)
shapeV = shape + (2,1)
D = numpy.random.rand(*shapeD)
V = numpy.random.rand(*shapeV)
W = ut.matrix_multiply(D, V) # Matrix-vector mult on each
lattice point
for ix in numpy.ndindex(shape):

Wix = numpy.dot(D[ix],V[ix]).reshape((2,1))
print (numpy.max(W[ix]-Wix))

def rectFunc():
n = 3; k=3
myL = Lattice(shape=(2**n,)*2)
lat = 0.5*numpy.ones(myL.shape)
lat[2**(n-1)-k:2**(n-1)+k, 2**(n-1)-k:2**(n-1)+k] += 1.5
print (lat)

def main(argv):
rectFunc()

# tstGeneralizedUfunc()
# checkDynamicalSystem()

if __name__ == "__main__":
main(sys.argv[1:])



Appendix G

The Gram-Schmidt Process

The orthonormal basis is the best basis to decompose vectors. And by Gram-
Schmidit process we are able to convert an arbitary basis {X1, . . . ,Xn} for
any independent space V to an orthogonal basis {Y1, . . . ,Yn}, then convert
the orthogonal basis to an orthonormal basis {Z1, . . . ,Zn}.

The whole idea is recursive as, Yj equal to part of the correspondingXj ,
which is perpendicular to all the privious Yn = {Y1, . . . ,Yj−1} vectors.

For more clarification see the illustrations below,

Y1

X1

X1 ≡ Y1

X2

Y1

X2⊥ = Y2

X2‖

X1

Starting from X1 and subtract it with the the previous direction which
is in this stage is Y1.

Y1 = X1

Next subtract X2‖ from Y1 to get,

Y2 = X2 − PY1X2 = |X2〉 −
|Y1〉 〈Y1|X2〉
〈Y1|Y1〉
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Y1

Y2

X3

X3‖

X3⊥ = Y3

Then subtract the X3‖ from Y1,Y2 subspace to get,

Y3 = X3 − PY1X3 − PY2X3

In next stage we subtract X4‖ from the subspace (Y1,Y2,Y3) to get Y4

and so on. The vectors Y1,Y2,Y3 have to be orthogonal to each other.
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