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Abstract

This thesis explores two dynamical schemes for the evolution of causal sets
by a random Markov chain procedure. In many ways this thesis represents
an absolute beginner’s introduction to the subject of dynamical, random
evolution of causal sets. Rather than relaying on one of the few ready-made
solutions, the source code was written from scratch using C++. Consequently,
this thesis also functions as a manual and documentation of the custom-made
simulation package.

Additionally, the text gives an introduction to causal set theory, providing
references to several useful papers for those who would want to study the sub-
ject further. In short, causal set theory is the vision that the four dimensional
manifold structure of spacetime described by Einstein’s general relativity can
in actuality be found to arise from a discrete set of points whose only structure
is the causal order relation, and that this more fundamental description can
bring about the sought after marriage between general relativity and quantum
field theory.

The dynamical principles studied in this thesis was found to lead to the
creation of three and two layered causal sets, respectively.
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Sammendrag

Denne masteroppgaven utforsker to dynamiske systemr for evolusjon av
kausale sett ved en tilfeldig Markovkjede-basert prosedyre. På mange måter
representer denne avhandlingen en absolutt nybegynners introduksjon til
emnet dynamisk, tilfeldig evolusjon av kausale sett. I steded for å støtte seg
på en av de få ferdiglagte løsningene som allerede finnes, ble kildekoden skrevet
fra bunnen av ved hjelp C++. Følgelig fungere denne avhandlingenogså som
en manual og som dokumentasjon for denne skreddersydde simulasjonspakken.

I tillegg gir teksten en grunnleggende innføring i «kausal mengde»-teori,
og gir referanser til flere nyttige artikler for den som ønsker å studere dette
emnet videre. Kort forklart er «kausal mengde»-teori visjonen om at den fired-
imensjonale mangfoldighetsbeskrivelsen av romtiden som Einsteins generelle
relativitetsteori gir, i virkeligheten oppstår fra en diskret mengde punkter
hvis eneste struktur er kausalordningen, samt at denne mer grunnleggende
beskrivelsen kan føre til den ettertraktede sammensmeltingen av generell
relativitetstoeri og kvantefeltteori.

De to dynamiske prinsippene studert i denne oppgaven ble funnet å føre
til kausale sett med henholdsvis tre- og to temporære lag.
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Chapter 1

Introduction

Ever since the problems of ‘marrying’ Einstein’s theory of general relativity
with quantum (field) theory became clear, the search for a unifying theory
of quantum gravity has been ongoing. Many different approaches have been
proposed and explored, but none have, so far, proven irrefutably successful.
One of these proposals is causal set theory.

As the name suggests, this approach elevates the causal structure of classi-
cal spacetime to one of a very few properties with fundamental significance.
Most other spacetime qualities, like curvature, dimension and metric, are con-
sidered emergent. Among the emergent properties is also continuity, spacetime
being assumed to be discrete on (roughly) Planckian scales. The manifold
nature of general relativity is thus envisioned to arise from a discrete causal
set, from which this approach takes its name.

1.1 Project overview and motivation

One of the central challenges in the causal set approach is that while it
is rather straight-forward to ‘extract’ a physically meaningful causal set
from a continuous Lorentzian manifold, it is difficult to go the opposite way.
Attempts at finding fundamental principles which lead to causal sets with
‘reasonable’ continuum properties have so far proven largely unsuccessful, the
only partial exception [23] being the so-called classical sequential growth models
of Rideout and Sorkin [21]. The exception is only partial because although
these models leads to spacetimes with some desired properties—particularly if
one subscribes to a ‘bouncing’ cosmology where the Universe have undergone
several cycles of alternating Big Bangs and Big Crunches [1]—their continuum
limit do not resemble four dimensional Minkowski spacetime [5].

Originally, this thesis was to be a simulational exploration of the most
naïve of approaches to creating a random causal set: Holding the number of
elements constant throughout the simulation, one causal relation is randomly
added or removed for every simulation step, the probability distribution being
uniform over the space of all relations which might be added or removed at
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1 Introduction

that particular step. Unbeknownst at the time to me and my supervisor,
however, the most likely outcome of such a simulation—which turns out to
be a negative result—was already known from a mathematical theorem found
in 1975 [17], some three years before causal set theory was even introduced!

Unsurprisingly, I thus ended up with a negative result, essentially re-
discovering what is known as the entropy problem of causal set theory. If
that had been all, this thesis could simply had focused on a more thorough
analysis of when and how the asymptotic theorem referenced above applies to
small causets. However, it turned out that this was recently done by Henson,
Rideout, Sorkin and Surya—see [13], a paper which will be referenced many
times during this document—and in much more greater detail and depth than
what I could possibly hope to achieve in the limited time I had left. Hence,
finding another direction of study quickly was of the essence.

When trying to find a more fruitful approach, me and my supervisor
stumbled upon some rather unphysical dynamical principles—to be further
described in later chapters—which seem to lead to the creation of two-layered
sets. These sets could potentially provide a causal set representation of a
(limited) spatial spacetime sheet. Unfortunately, due to time running out,
the question of whether the generated two-layered sets have a Euclidean
continuum limit—as would be required if they are to represent a spatial
spacetime sheet—remains unresolved. Their dimension, and whether this
quantity is even well-defined, also remains unknown. However, preliminary
results appear to suggest negative answers to all of these questions.

1.1.1 A short overview of the rest of this document
Chapter 2 provides a review of the necessary physical theory. The explanation
of the produced simulation code is split into two chapters: chapter 3 lays out
overarching principles both structural and implementational, while chapter 4
gives a more detailed overview of the project code, listing the different classes
and their most important constituents and algorithms, as well as providing
some practical usage hints. A review of the most central simulation findings is
given in chapter 5, and discussed more closely in chapter 6. The conclusions
of this discussion is given in chapter 7, together with some closing remarks
and suggestions for further study. Finally, the complete source code is listed
in appendix A, together with a handful of practical usage examples.
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Chapter 2

Preliminaries

2.1 Causal set theory

Introduced independently by Myrheim [20] and ’t Hooft [14] in 1978 and later
formalized by Bombelli, Lee, Meyer and Sorkin in 1987 [4], causal set theory
is one of the lesser-known proposed theories of quantum gravity; its more
famous contestants being string theory and (to a lesser extent, at least to
the general public) quantum loop gravity. Its central, defining idea is that
on a fundamental level, the structure of spacetime is described by only two
things: A locally finite set of points (spacetime events), C, and a partial order
relation, known as the causal order-relation, defined on the points of C.

The causal order-relation, normally represented symbolically by ‘≺’, orders
the points of C according to causality (i.e. time), hence the name. An
expression like ‘a ≺ b’ is read as ‘a precedes b’, and is equivalent with stating
that something situated at a may, at least theoretically, influence something
situated at b. The order relation ≺ is partial because it is entirely possible to
have two distinct points a 6= b such that a ⊀ b and b ⊀ a both are true, i.e.
two points might be unordered. As a simple example, consider any two distinct
points on this paper at the exact same point in time: No physical signal can
travel from one spatial point to another in no time at all, and hence these
spatially separated points cannot be causally ordered. A scaled up version
of this example would be that nothing happening at Alpha Centauri right
now can have any effect on what’s happening right now at Earth, since Alpha
Centauri is over four light years away, and relativity tells us that no signal can
travel faster than the speed of light. Of course, by stating this, one is ignoring
the highly non-local effects arising from quantum entanglement. However,
these effects act directly on the non-observable wave function and does not
lead to any observable signals—and hence no observable effects—traveling
faster than the speed of light; see [9]. Thus, the conclusion remains unchanged.

As these examples hint at, the causal order-relation ≺ might be defined,
from the viewpoint of relativity, by the familiar concept of light cones: As-
suming a 6= b, a ≺ b if and only if b is a part of the filled future light cone

3



2 Preliminaries
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Figure 2.1: A schematic comparison between the spacetime of general relativity
(a) and a partially ordered set of causal set theory (b). In (a), the spacetime points
x1 and x2 is inside the past light cone of x3, while x5 and x6 is inside its future light
cone. The final point, x4, is outside the light cone of x3, but inside the light cones
of x1 and x5. The partial order corresponding to this arrangement is illustrated in
(b) using what is known as a Hasse diagram, where the points in C is represented by
vertices and an upwards line segment from e.g. x1 to x2 means that x1 ≺ x2 and that
@ y ∈ C ; x1 ≺ y ≺ x2. A crucial difference between (a) and (b) is that the manifold
nature of spacetime underlying (a) is completely removed from (b)—geometrical
characteristics like dimension and a metric tensor needs to be derived from the
causal relations between x1–x6 rather than assumed. Consequently, while it might
be natural to specify x1–x6 by their coordinates in some coordinate system in (a),
such a set of coordinates must be derived from x1–x6 and their causal relations in
(b).

of a (see figure 2.1). Alternatively, one might also allow a = b, this choice
corresponding to whether one takes ≺ to be reflexive or not; see section 2.2.

From the vantage point of causal set theory, this identification is entirely
backwards: Light cones are defined from the causal order-relation ≺, and not
the other way around! More specific details on how this might come about
will be given in section 2.2, where also a more precise mathematical definition
of the order relation ≺ and the set C will be presented, together with some
other useful definitions.

A small remark regarding terminology

When the points of C is labeled spacetime events, this should not be understood
in a literal (everyday) manner: If, say, xa ∈ C, there still might not happen
anything at all at xa. Rather, xa is simply one of the selected few (in the
colloquial language often used when comparing infinite sets à la Georg Cantor)
spacetime positions where the quantum fields describing matter and the
additional forces besides gravity are defined. Thus, speaking very roughly,
one might view the points of C as the ‘pixels’ of reality, provided that one is
careful to expel the mental image of a ‘regular lattice’ that this description
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2.1 Causal set theory

might provoke. Additional complications arise from the fact that C is assumed
to be subject to quantum fluctuations and/or quantum superposition; see
section 2.1.2. Furthermore, this simple ‘pixel’-image fails to incorporate
vector- and tensor fields (and hence also matter!), since spacetime directions
necessarily must be an emergent property in causal set theory. It is not known
at present how to remedy this issue [23], although some suggestions have been
made [16].

2.1.1 Motivations for causal set theory
Now, why would anyone propose that spacetime in actuality arises from
this rather simple (from a mathematical point of view) and ‘disembodied’
description? As an example of this ‘disembodiment’, consider the fact that
there’s nothing in between the points of C, nor do the points themselves have
any (intrinsic) extension in time nor space. In fact, from the perspective of
causal set theory, all of the spatial and temporal extension we do experience
stems from the seemingly even more incorporeal causal order-relation: The
only reason objects can be separated by (or indeed occupy) time is because
there exists some spacetime points which can be causally ordered, while the
only reason objects can be separated by (or occupy) space is because there are
spacetime points which cannot be causally ordered. Hence, the causal-order
relation is what gives the points of any causal set describing spacetime their
volume!

So, what reasons, if any, is there to assume that this description of reality
is correct? Why should spacetime be discrete, and why would one suspect
that the causal order is more fundamental than, say, the metric?

As it turns out, there are several reasons for seriously considering a discrete
spacetime:

First, a fundamental discreteness could potentially remove many of the
troublesome infinities of quantum field theory, and provide justification for
some of the techniques used to deal with them. While the infinities appearing
in the quantum field description of the electromagnetic, strong and week force
might be dealt with through the process of renormalization, such a scheme
seems to fail for the gravitational force. A discrete spacetime could possibly
help to eradicate these issues, and this was one of the main motivations
which ’t Hooft gave for the introduction of causal set theory in his lectures
in 1978 [14]. However, this have not yet been proven, and therefore remains
only a conjecture. See pages 14–15 of [23] for a more detailed commentary on
this by Sumati Surya.

Second, causal set theory in particular could potentially give some physical
justification for some of the renormalization techniques used when dealing with
other forces besides gravity in quantum field theory. Specifically, causal set
theory might provide some justification for so-called dimensional regularization,
whereby one temporarily allow the dimension of spacetime to deviate from
exactly 4 (even allowing for fractional values), since geometrical properties
like dimension is statistical and emergent in this theory.
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2 Preliminaries

Other suggestive evidence might be gathered from the entropy of black
holes, which—as have been shown in many different ways [2, 3, 10, 11]—might
be identified as proportional to the surface area of the event horizon measured
in Planck units. Given that the event horizon is just a (hyper-) surface in
empty spacetime, distinguished from its surroundings solely by the fact that
any causal relations across is exclusively one-directional—inwards—this result
seems to suggest both a fundamental role of the causal order-relation, and
that spacetime might be discrete on an approximately Planckian scale. This
author was made aware of this argument through a public lecture held by
Dowker [7], but it is also reminiscent of an argument made by Rafael D.
Sorkin in [22]. An interesting extension of the black hole entropy result, easily
applicable to causal set theory, might be found in [15]

Turning now to the question of why one might suspect the causal order-
relation to be more fundamental than other spacetime properties, this may
be traced back to different results in classical relativity—see [12] and [18] for
examples—which shows that the causal structure determines the geometri-
cal (manifold) structure, up to a conformal factor, of any future and past
distinguishing spacetime of known dimensionality. In the words of Dowker:
The causal order ‘is a unifying concept . . . [it] unifies within itself the other
[spacetime] structures, up to a local rescaling of the metric.’ [6].

2.1.2 Dynamics

As Dowker so eloquently remarks in her well-written 2013-article ‘Introduction
to causal sets and their phenomenology’ [6], the static causets described above
is not believed to be an adequate description of reality in full quantum gravity.
In spite of this, the dynamics of causal sets and how they relate to matter
is one of the least developed areas of causal set theory. Presently, a sum
over histories approach appears to be viewed as the best candidate, but the
aforementioned entropy problem—see section 2.3 below—presents difficulties
which have not yet been completely overcome.

Thus, finding dynamical principles which leads to physically meaningful
causal sets remains a central challenge in the causal set theory programme.
The present ‘toy example’ which is closest to providing a satisfying dynamical
scheme is the aforementioned classical sequential growth models of Rideout
and Sorkin, where the causal sets are ‘grown’ by adding new points one by one
according to certain statistical rules—see [21] for additional details. However,
these models does not have classical spacetime as their continuum limit, and
they will not be pursued further in this thesis.

The dynamical schemes explored in this thesis are by no means supposed to
be anything more than toy models themselves, as they are essentially classical
in their structure. Unfortunately, they did not lead to huge revelations,
but maybe they can shed a little bit of light on the form which the correct
principles should take. In the worst case scenario, they provide an example of
what not to do.
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2.2 Formal definitions

2.2 Formal definitions

Unfortunately for the student, causal set theory literature has two competing
standard ways of defining causal sets—causets for short—based on two different
but closely related binary relations: the irreflexive causal order-relation ≺,
and the reflexive causal order-relation �. Even worse, both standards tends to
use the same symbol—that is, ‘≺’ might be reflexive or irreflexive, depending
upon convention (if ‘�’ is used, the reader can be fairly certain that the
reflexive causal order-relation is what’s meant). As should be clear by now,
this text will employ the notation which is most reminiscent of the way the
‘normal’ order relation-pair < and ≤ is used in mathematics, meaning that ≺
will be taken to be irreflexive, while � will be considered reflexive.

The irreflexive causal order-relation ≺ satisfies the following mathematical
rules:

(1) Irreflexivity: x ⊀ x.

(2) Transitivity: If x ≺ y and y ≺ z, then x ≺ z.

(3) Antisymmetry: There’s no x and y such that x ≺ y and y ≺ x.

Strictly speaking, antisymmetry follows from irreflexivity and transitivity, but
it is included here for comparison with the reflexive causal order-relation �,
which satisfies:

(1) Reflexivity: x � x.

(2) Transitivity: If x � y and y � z, then x � z.

(3) Antisymmetry: If x � y and y � x, then x = y.

Given these order relations, a causet is simply a set of points C partially
ordered according to ≺ (alternatively �)—meaning that there might be points
x, y ∈ C such that x ⊀ y ⊀ x—and additionally satisfying the following
finiteness-condition:

(4) For any x, y ∈ C, the cardinality of the set {z ; x ≺ z ≺ y} is finite, i.e.
any two points only has a finite number of points lying ‘between’ them.

Mathematically, � is what’s known as a partial order (≺ is an example of a
strict partial order), and (C,�) might likewise be described as a locally finite
partially ordered set—or poset for short.

In addition to the above axioms, Bombelli, Lee, Meyer and Sorkin intro-
duced the notion of an embedding, which clarifies how to know if a specific
continuum (M, g) is a good approximation of a given causet C. An embedding
is any function Φ : C → (M, g). If the order relation in C has a one-to-one-
correspondence with the causal order induced on Φ(C), Φ is said to be order
preserving. If the image of an order preserving embedding Φ, Φ(C) ⊂ M
is a high probability Poisson distribution in M, Φ is known as a faithful
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2 Preliminaries

embedding [23]. The condition that a specific continuum (M, g) is a good
approximation of a given causet C is then that C can be faithfully embedded
into (M, g).

This leads to one of the fundamental conjectures in causal set theory, still
unproven for the general case: If a causal set C can be faithfully embedded at
the same density into two distinct spacetimes (M1, g1) and (M2, g2), then said
spacetimes differ only at the volume scales of the chosen Poisson distribution.

2.2.1 Some useful terminology
When discussing and comparing different causets in later chapters, some more
descriptive terminology will prove useful. Most of the following terminology
should be fairly familiar for anyone working in the field, but a few terms
useful for discussing clearly layered sets—of which one will see an example of
already in section 2.3—are ‘home-brewed’.

A link is any relation which cannot be deduced by transitivity, i.e. if
x ≺ y and @ z ∈ C such that x ≺ z ≺ y, the relation x ≺ y is known as a
link. Given this, one might now properly introduce the very useful graphical
representation of a causal set known as a Hasse diagram, already employed and
briefly explained in figure 2.1. A Hasse diagram depicting a given causal set
C—where one is using ‘C’ as a shorthand for (C,≺), a useful abbreviation which
will be employed whenever the chance for confusion is minimal—represents
the points of C by dots, and the links of C by line segments connecting these
dots. The diagrams are ‘ordered according to gravity’, meaning that if e.g.
x, y ∈ C is such that x ≺ y, then the dot representing x is drawn somewhere
below the dot representing y.

A chain from x to y of length n is a set of n + 1 points x0, . . . , xn such
that x = x0 ≺ x1 ≺ · · · ≺ xn = y. Thus, any totally ordered set is a chain. A
chain between x and y is called maximal if there’s no chains of greater length
between x and y. It should come as no surprise that maximal chains are the
causal set realization of timelike geodesics in Minkowski space.

An antichain is any set of points which are not causally related to one
another. If two incomparable elements have at least one link in common, the
antichain consisting of only these two elements will, in this document, be
labeled an antilink. Reminiscent of two-point chains, antilinks is assigned
a length of 1. Expanding on this, a connected antichain is any antichain
consisting entirely of interlinked antilinks, its length corresponding to the
number of unique antilinks. Two points x and y will be said to be anticonnected
if there exists at least one connected antichain which contains both of them.
Analogous in a certain sense to a maximal chain, a minimal connected
antichain between x and y will be the shortest connected antichain containing
x and y.

Returning to more established terminology, the height of a causet C is the
length of the longest maximal chain(s) in C. Equally intuitively will any point
in C which has no points preceding it be labeled a minimal point, while any
point which does not precede any other will be labeled maximal.
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b d e

C:

c

g

a

h

f

Figure 2.2: A small causet C illustrating some of the definitions of section 2.2. As
can be seen from the figure, C has two longest maximal chains, both connecting a and
h, and both having a length of 4. Hence, C has height 4. The pair b, g is an example
of an unconnected antichain, while the roughly horizontal dashed lines show all but
one antilinks of C, the one between c and e being suppressed due to readability.
Noteworthy are the longest minimal connected antichains—of which there are three:
one between b and d, one between b and e, and one between f and g—which illustrate
that the shared links connecting the points of a connected antichain need not all be
either exclusively ‘above’ or exclusively ‘below’ the antichain. The maximal points
of C are h and g, while b, a, d and e are minimal.

Figure 2.2 sums up most of the terminology introduced so far.

Useful sets from general relativity

Given a causal set C and a point x ∈ C, the exclusive future of x is denoted by

T+(x) ≡ {z ∈ C ; x ≺ z}, (2.1)

while the exclusive past of x is given by

T−(x) ≡ {z ∈ C ; z ≺ x}. (2.2)

Given these definitions, one might now introduce two sets corresponding to
the links of x, one for the future links (x ≺ . . .)—or ‘upwards’ links—given by

L+(x) ≡ {z ∈ T+(x) ; @ y : x ≺ y ≺ z}, (2.3)

and one for the past links (. . . ≺ x)—or ‘downwards’ links—denoted by

L−(x) ≡ {z ∈ T−(x) ; @ y : z ≺ y ≺ x}. (2.4)

Finally, the Alexandrov interval A(x, y) is defined as the intersection of the
inclusive future of x and the inclusive past of y:

A(x, y) ≡ {z ∈ C ; x � z � y}. (2.5)

2.2.2 The Myrheim–Meyer dimension
In his 1978-preprint [20], Myrheim introduced the so-called ordering fraction
f , as a dimension estimator for causal sets. In Myrheim’s original definition, f

9
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Table 2.1: Values for the ordering fraction f of an Alexandrov set in flat Minkowski
spacetime of d dimensions. Copied from Myrheim’s preprint from 1978 [20].

d Ordering fraction, f
1 1
2 1/2
3 8/35
4 1/10

is the fraction of comparable (i.e. ordered) pairs to the total number of pairs
in an Alexandrov interval A(x, y). Using the volume–number correspondence
which any discrete theory of spacetime must entail, one can then calculate the
ordering fraction for flat Minkowski spacetime in different dimensions—see
table 2.1 for some reference values, copied from Myrheim’s preprint [20]. The
resulting values for f might then be compared to the ordering fraction of a
causet to get an estimate of its dimension. This procedure was studied in
greater detail and generalized by Meyer in 1989—see [19]—and the dimension
estimate thus obtained is therefore known today as the Myrheim–Meyer
dimension.

In this paper, the definition of f will be extended to include any causal
set C, irrespective of whether said set is an Alexandrov interval or not. Using
this definition, f might simply be written as

f ≡ R

Rmax
, (2.6)

where R is the number of order relations in the causet under consideration,
and Rmax is the number of order relations in a totally ordered causet with
equally many points as the one under consideration. Hence, given a causet of
n points, (2.6) becomes

f(R,n) ≡ R(
n
2
) = 2R

n(n− 1) . (2.7)

Generally, conventions seem to differ, but this usage is in agreement with
the one employed by Henson et al. in [13], a paper which will serve as an
important comparison for the first half of this thesis.

2.3 The Kleitman–Rothschild theorem

Presented in a paper by Kleitman and Rothschild in 1975 [17], the Kleitman–
Rothschild theorem forms the basis of what has come to be known as ‘the
entropy problem’ of causal set theory: For increasing n, Ωn—the set of all
causal sets with exactly n elements—becomes increasingly dominated by
causets which does not approximate classical spacetime manifolds in the

10
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x L2

L1

L3

Figure 2.3: A small Kleitman–Rothschild-type set with n = 16 points. The middle
layer L2 contains approximately (in this case, exactly) twice as many points as the
two other layers L1 and L3. Additionally, every point in any layer Li precedes
approximately half of the points in the ‘above’ layer Li+1 and/or is preceded by
half of the points in the ‘below’ layer Li−1 (depending upon whether said layers
exist or not). As an illustration of this last property, the causal relations of x, a
point in the middle layer L2, is highlighted.

slightest! Hence, for increasing n physically meaningful causets become
increasingly rare.

Specifically, the Kleitman–Rothschild theorem reveals that Ωn becomes
asymptotically dominated by sets with a natural division into three subsets—
or ‘layers’—L1, L2, L3, the division being done according to temporal position.
The three layers of these ‘Kleitman–Rothschild sets’ additionally fulfill (see
figure 2.3):

(1) The middle layer L2 contains approximately the same number of ele-
ments as the two other layers L1 and L3 combined.

(2) The elements in the two top layers L2 and L3 are preceded by approxi-
mately half of the elements in the layer immediately below.

(3) Similarly, the two bottom layers L1 and L2 precede approximately half
of the elements in the layer immediately above.

Using these properties, it is easy to find that the ordering fraction of a
Kleitman–Rothschild set should tend to approximately 3/8 for large n. How-
ever, a closer analysis of the Kleitman–Rothschild theorem performed by
Henson et al. in their exploratory paper—of which much more will be said
before this thesis is over—revealed that the asymptotic ordering fraction
varies between 1/4 and 3/8, averaging to about 1/3, but with 3/8 still being
asymptotically favored due to a slowly divergent peak [13].
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Chapter 3

Overarching implementation
principles

3.1 General design principles

Contrary to what the title of this chapter might suggest, the algorithmic
implementation of the project underlying this thesis was far more organic than
principle-driven. Thus, while C++ was chosen as the project’s programming
language due to its speed and flexibility, the actual implementation prioritized
‘readability’ (in a broad sense) and reliability over performance—especially in
the early stages of the project. Although this is a natural—and to a certain
degree wanted—prioritization, it means that a more ‘abstracted’ code might
see significant performance gains over the one used in this project.

An optimization which has already been done, is the removal of ‘sanity
checks’ on function input. This greatly improves runtime at the expense of
safety, since this means that the code has to be written such that non-sensible
input never occurs.

In this chapter the fundamental principles and design goals underlaying
the project code will be presented. A more detailed overview of the code can
be found in chapter 4, while the raw C++ is included in appendix A.

3.2 Some words about code structure

Before some of the more concrete principles are explained, it will be beneficial
to review certain core aspects of how a causet is represented in the project
code. Additional details might be found in section 4.1 and in appendix A,
section A.1. Incidentally, this provides an example of how readability trumps
performance in the chosen implementation, as ‘dual bookkeeping’ is used
extensively.

The relations between points in Cn is stored in a trinary matrix, specifying
whether a point precedes (1), is preceded by (−1), or is incomparable to (0),
another point—see figure 3.1a,b. This is itself a superfluous object, since
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(a)

x1

x2 x3

x4
(b)

x1
x2
x3
x4

(c)

L+(x) L−(x)

x1
x2
x3
x4

x1 x2 x3 x4
1

0
0 0

0
0

1 1
1
1

−1−1−1
−1
−1
0

x2, x3
x4
x4

x2, x3

x1

x1

−

−

Figure 3.1: Different ways of representing the same causal set (C4,≺): Hasse
diagram (a), relation matrix (b) and link lists (c). As can be seen from the diagonal,
the matrix representation (c) is based on the irreflexive causal order-relation ≺
rather than the reflexive �. The close relationship between the Hasse representation
(a) and the link representation (b) should also be evident.

a binary matrix would be sufficient, analogous to how b > a is redundant
information given a < b. Additionally, the relations between points are stored
in the form of dual lists of links related to the individual points, one for future
links [i.e. L+(x); see (2.3)] and one for past links [i.e. L−(x); see (2.4)]—see
figure 3.1a,c. Again, one list per point would suffice, since the up-links might
be inferred from the down links, or vice versa. While this does mean that the
relationship data is repeated four times, this solution has some conceptual
advantages, promoting the readability of the created code.

These advantages stems from the fact that it differs from one context to
another which representation is the most natural to work with, since the two
representations focuses on different characteristics of a causal set (Cn,≺). The
relation matrix exhibits the transitive nature of ≺, and provides a quick and
easy way to figure out if two points are related, and if so, which is above the
other. The link-lists, on the other hand, focuses more on the individual points
of Cn, making it easy to see which points are temporarily close to one another.
An additional conceptual advantage with the link representation is its close
relationship with Hasse diagrams, introduced in section 2.2. Comparing
figure 3.1a and -c, one sees that the link representation might be thought of
as a systematic recording of the links in a Hasse diagram. Transitioning from
one to the other is therefore straight-forward, at least in principle. (Huge,
complicated causal sets might prove hard to draw in a clear and transparent
manner).

Albeit conceptually useful, this dual bookkeeping is by no means necessary,
and one could conceivably make the code run faster by using one representation
exclusively. Due to the somewhat cumbersome nature of the link lists, which
will be partially revealed in section 3.3, this author suspects that the relation-
matrix representation would be best suited for such a solution. In regards to
the somewhat milder double bookkeeping involved in listing both ‘upwards’
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and ‘downwards’ relations, however, one will see, in chapter 4, that this might
actually have some practical benefits, owing to its temporally symmetric
structure.

3.3 How to add or remove only one order relation at a
time

One of the fundamental design goals of the project code was that one should
be able to add or remove only one order relation at a time. Given the axiom
of transitivity, it is easy to see that the only relations which might be added
or removed without also changing others, are links. As a simple example,
consider the totally ordered causet {x, y, z} where x ≺ y ≺ z. If, for example,
one tries to remove only the relation x ≺ z, one must reject the axiom of
transitivity to succeed in removing only one order relation, since x ≺ y and
y ≺ z otherwise implies x ≺ z. On the other hand, and possibly somewhat
linguistically confusing, the inclusion (or removal) of a single order relation
respecting the axiom of transitivity does not necessarily correlate with a
similar change in the number of links—the total number of order relations
are increased (or decreased) by 1, but the number of links might increase,
decrease or remain unchanged. In the example just considered, the removal
of the single relation y ≺ z—itself a link, as it should be—leaves the number
of links unchanged, since now x ≺ y, z. This linguistic quagmire could be
avoided by rejecting the axiom of transitivity, but doing so would mean to
consider multidirected sets rather than partially ordered sets as providing the
fundamental structure of reality. Such a modification of causal set theory have
been argued for by at least one author [8], but will not be pursued further
here. Hence, for the remainder of this text if one considers the removal or
addition of a singular order relation, said order relation will be assumed to be
a link.

As hinted at in the end of the previous section, the requirement of being
able to change a single order relation at a time, as it turns out, provides a
helpful example for familiarizing oneself with some of the differences between
the two causet representations used in the project code. In the matrix
representation it is completely trivial to remove a link, but a little bit of
thought is needed to deduce if any given relation actually is a link. Similarly,
the question of whether one can add a causal relation without simultaneously
introducing additional relations is also not immediately straight-forward. As
for the link representation, it is completely trivial to determine if a relation is
a link, but the operation of adding or removing a relation require a little bit
of thought.

Section 4.1.4 gives a description of the algorithms used in the project code
to implement the principles described below, while section A.1.4 in appendix A
gives the raw C++ code itself.
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x1

x2
x3

x4

x5

x6x7

x8

(a) (b)

x1

x2
x3

x4

x5

x6x7

x8C′8:C8:

Figure 3.2: Given the causal set C8, shown in (a), one cannot introduce the link
x4 ≺ x5 without also adding new relations, since x4 ≺ x5 by transitivity also implies
x2 ≺ x5, x2 ≺ x6 and x4 ≺ x6. If, on the other hand, the relations x2 ≺ x5, x2 ≺ x6
and x4 ≺ x6 are already present—as in C′8, shown in (b)—one might freely introduce
the link x4 ≺ x5. Doing so leads one to the causal set C′′8 , obtained from (a) by
replacing the dashed line with a solid line.

3.3.1 Adding or removing one order relation in the
Hasse/link representation

A simple example

Reverting for a moment back to the familiar Hasse representation, consider
now the causal set C8, depicted in figure 3.2a. As pointed out in the caption,
one cannot add the relation x4 ≺ x5 to C8 without also introducing other
relations. If, on the other hand, these additional relations are already present,
as in C′8, shown in figure 3.2b, one may add the relation x4 ≺ x5 to end up
with the causal set C′′8 , obtainable from figure 3.2a by replacing the dashed
line with a solid one.

Looking at this example from the opposite, ‘destructive’ angle, one sees
how, in the Hasse representation, removing the single relation x4 ≺ x5 (and
its corresponding link) from C′′8 , leads to the introduction of two new links in
C′8, namely x2 ≺ x5 and x4 ≺ x6, as shown in figure 3.2b. Consequently, it is
not true, in general, that adding or removing one causal relation corresponds
to the addition or subtraction of only one link.

The general case

By contemplating this example somewhat more, one realizes that the criterion
for when the relation x ≺ y can be added to a general causet C, with x, y ∈ C,
without introducing additional relations, is that the exclusive future of y must
be wholly casually connected to the inclusive future of x, and, likewise, the
exclusive past of x must be wholly causally connected to the inclusive past of
y. Or, using symbols, the link x ≺ y might be individually added to C if and
only if

T+(x) ∩ T+(y) = T+(y) (3.1a)
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T−(x) ∩ T−(y) = T−(x), (3.1b)

where eg. T+(x) is the exclusive future of x, and T−(x) the exclusive past;
see (2.1) and (2.2) in section 2.2.

However, due to transitivity, it is enough to compare the future links
of y with the exclusive future of x to determine whether (3.1a) is fulfilled.
A similar comment applies to (3.1b). Hence, a more ‘economical’ way of
expressing criterion (3.1) is

L+(y) ⊆ T+(x) (3.2a)

L−(x) ⊆ T−(y), (3.2b)

where L+(y) is the set of points which y links up to, and L−(x) is the set of
points linking up to x; see (2.3) and (2.4) in section 2.2.

Following the foregoing discussion, one realizes that criterion (3.2), or
equivalently criterion (3.1), gives a ‘checklist’ for deciding which links might
need to be added to the description of a general causal set C, with x ≺ y ∈ C,
if the link x ≺ y is removed from C. This ‘checklist’ becomes even clearer in
figure 3.3, which gives a schematic Hasse description of (3.2).

The question of whether a relation can be removed, on the other hand, is,
as already pointed out, completely trivial in the Hasse/link representation, as
this is simply a question of whether said relation is a link.

3.3.2 Adding or removing one order relation in the matrix
representation

Now, what does all of this look like in the matrix representation? Going
back to the causal sets considered in figure 3.2, one sees that the matrix
representation of C8 becomes

C8 =∧



0 1 1 1 1 1 1 1
1̄ 0 0 1 0 0 1 1
1̄ 0 0 0 1 1 0 1
1̄ 1̄ 0 0 0 0 1 1
1̄ 0 1̄ 0 0 1 0 1
1̄ 0 1̄ 0 1̄ 0 0 1
1̄ 1̄ 0 1̄ 0 0 0 1
1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 0


, (3.3)

where the notation 1̄ =∧ −1 is used in an effort to aid readability and highlight
the inherent antisymmetry of the (trinary and irreflexive) matrix representa-
tion. As stated earlier, the relation x4 ≺ x5 cannot be individually added to
C8; one would have to also include x2 ≺ x5, x2 ≺ x6 and x4 ≺ x6 if C8 should
be kept self-consistent (since ≺ is transitive). Providing a contrast to this is
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x

y

T +(x)
L+(y)

L−(x)

y1 y2

x1 x2
T−(y)

Figure 3.3: A schematic Hasse diagram generalizing the insights gathered from
contemplating the examples given in figure 3.2. While T +(y) \ L+(y) and T−(x) \
L−(x) are not explicitly shown, it is assumed that T +(y) ⊆ T +(x) and T−(x) ⊆
T−(y), in accordance with (3.1). The diagram can be interpreted both additively
and subtractively: In the additive sense, it shows the conditions under which one
might add the link x ≺ y to a causal set C, with x, y ∈ C. Note that if x ≺ y is
added to C, the links x ≺ y1, y2 and x1, x2 ≺ y will be implied by transitivity, and
hence need to be removed from the Hasse diagram (cf. the transition from C′ to C′′
detailed in the caption of figure 3.2). Understood from the subtractive point of view,
the figure reveals the relations needed to be re-established (in the Hasse diagram
representation) if one removes the link x ≺ y from C. Specifically, the relations
needed to be re-instated are the links x ≺ y1, y2 and x1, x2 ≺ y.

C′8, which has the matrix representation

C′8 =∧



0 1 1 1 1 1 1 1
1̄ 0 0 1 1 1 1 1
1̄ 0 0 0 1 1 0 1
1̄ 1̄ 0 0 0 1 1 1
1̄ 1̄ 1̄ 0 0 1 0 1
1̄ 1̄ 1̄ 1̄ 1̄ 0 0 1
1̄ 1̄ 0 1̄ 0 0 0 1
1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ 0


. (3.4)

Here, one might indeed add the relation x4 ≺ x5 without introducing other
new relations.

How then, does criterion (3.1)/(3.2) translate into the matrix representa-
tion, both generally and in this particular example?
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First, one notes that (3.1) is the more appropriate version of the criterion
to use when looking at things from the matrix perspective, since the exclusive
past and/or future of a specific point can be read of directly from that
point’s corresponding row in the relation matrix (or column, since the matrix
representation is antisymmetric). Links, on the other hand, need to be deduced
by cross-referencing several rows/columns.

Returning then to the explicit example considered above, one may start
by looking at the row corresponding to x4 in (3.3), which is the fourth row as
counted from above, the labels being implicit. It follows from the explanation
given in section 3.2 and figure 3.1, that the collection of entries (x4, z) which
have a ‘1’ in them must correspond to the exclusive future of x4, T+(x4), while
the collection of entries with ‘−1’ in them correspond to T−(x4), the exclusive
past of x4. Using this identification, one sees that (3.1) simply translates into
comparing the rows corresponding to x4 and x5, checking whether the row of
x4 has a ‘1’ in all the columns that x5 do, and whether x5 has a ‘1̄’ in all the
columns that x4 do (excess ‘1’-s in x4 and ‘1̄’-s in x5 is of no consequence).
Doing this for the matrices in (3.3) and (3.4), one sees that (3.1), with x = x4
and y = x5, is not fulfilled for C8, but is indeed satisfied for C′8, as it should
be.

As to how to recognize the links in (3.3) and (3.4), one sees that the
links of any given x can be determined by recursively iterating trough the
different elements in T (x), looking for relations which are not also implied by
transitivity: The relation x1 ≺ x2 must be a link because @x 6= x2 ∈ T+(x1)
such that x1 ≺ x ≺ x2, and so on.

The general case

This procedure generalizes to arbitrary x, y belonging to an arbitrary causal
set C in a straight-forward manner.

One note of caution, however: In (3.3) and (3.4),the matrix rows take the
particularly ordered form

[
T−(x) 0 T+(x)

]
,

for any point x ∈ C8, C′8, the ‘0’ being part of the diagonal; provided that one
takes the ‘matrix definition’ of T±(x) to be of length 8−x and x, respectively,
effectively ignoring the ‘trailing’ zeros before/after the diagonal. This is
not a general future, and arises solely because C8 and C ′8 are what’s known
as naturally labeled, meaning that x ≺ y ⇐⇒ x < y—where the first
comparison is to be understood as comparing the points x, y ∈ C, and the
second as comparing the (numerical) labels x, y ∈ Z.

Lastly, since the matrix representation is (anti-) symmetric, columns and
rows in the foregoing discussion may be interchanged.
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3.4 Dynamical principles

The two dynamical principles investigated in this thesis has a few things in
common. Firstly, in both of the dynamical systems considered, the ordering
fraction plays a central role in identifying when the sought after evolution has
been brought to fullness. Secondly, and as already hinted at above, both of
the systems described here restrict the space of possible dynamical transitions
to only include those which does not change more than one order relation
at a time. (Transitions which would lead to a ‘causet’ in conflict with the
requirements stated in section 2.2 is also, unsurprisingly, prohibited). As can
be seen from the results of the previous section, this leads to a reduction in
both the number of relations which can be removed—they must be links—and
the number of relations which might be added—they must fulfill (3.2), as
illustrated in figure 3.3. However, only one of the dynamical schemes utilized
in this thesis actually allow relations to be added. This scheme is the first to
be presented below.

3.4.1 Naïve dynamics
The dynamical scheme which this document will label as ‘naïve’—not because
it is inherently inadequate or ‘too simple’—it is not—but because it is among
the most natural and simplest schemes to devise—was briefly described already
in section 1.1: The number of causet points is held constant throughout the
simulation, while a single randomly chosen order relation is added or removed
(according to whichever applies) at every simulation step. The transitions are
chosen using a uniform probability distribution, which assigns an equal weight
to any transition—regardless of type—in the space of momentarily available
transitions. The elements of this space are continuously updated as relations
are added or subtracted. Hence, the probability of whether a relation might
be added or removed at any given time depends only on the ratio between
the number of relations that might be added or removed at said moment.

It should be relatively easy to see that any causet might be obtained by
this procedure, but that some are more likely than others. A completely
ordered causet is especially unlikely, and easily destroyed if momentarily
obtained. The same goes for a completely unordered causet. Here then should
be a practical and simple realization of the closing speculations found in
Myrheim’s 1978-preprint:

It is interesting to speculate on the possibility that there is a
statistical basis for the dimension of space-time [. . . ]. In fact, the
linear, or total, ordering relation on a given set is unique, and
represents an extreme case when all possible partial orderings are
considered. It is therefore a highly improbable situation, in some
vague sense. The other extreme, f = 0, is an equally unique case,
and equally improbable. In a theory of statistical geometry [i.e. in
causal set theory] one can imagine that there ought to be a ‘most
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Figure 3.4: Naïve evolution employed on a small causet with 32 points illustrating
the initial idea behind the equilibrium criterion. If the naïve dynamical scheme is
‘physically well behaved’ the initial state of the causet should become more and
more unimportant as the simulation time increases. Specifically, a totally ordered
causet should, in the end, have the same ordering fraction as a totally unordered
causet (barring statistical fluctuations). Thus, by comparing the evolution of these
two very special causets starting at opposite extremes, it should—in theory—be
possible to directly determine whether an equilibrium exists, and if so, examine
its stability. Note that the printed graph shown here is somewhat coarse grained;
it shows the maximum and minimum values for every 40 transition cycles. See
sections 5.1 and 6.1 for a closer analysis.

probable value’ of f , intermediate between 0 and 1, and a ‘most
probable dimension’ of space-time. [20]

How is this ‘most probable causet’ to be determined? It is easy to imagine
that there should exists some kind of ‘equilibrium’ where the probability for
adding an order relation is approximately equal to the probability of removing
one.

As order relations are added and removed, the ordering fraction f changes
to reflect this. Hence, if such an equilibrium exists, one should find that the
graph of f ‘flattens out’ once the causet approaches this state of balanced
probability. Moreover, if this ‘equilibrium state’ really is unique (in the
statistical, average sense), it should be independent of the initial ordering
state.

Thus, one might compare the evolution of two causets with the same
number of points—one initially totally ordered, and one initially totally
unordered—to determine whether a stable, well-defined equilibrium state
exists. This forms the basics for the ‘equilibrium criterion’ employed for naïve
dynamics in this project. See figure 3.4 for a practical illustration. If the two
graphs merge into a pair of statistically identical horizontal lines, as seems to
be the case in the above figure, then a well-defined equilibrium state exists
and the causets will be said to have reached ‘thermalisation’.
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The dynamical principles used by Henson et al.

The exploratory paper by Henson et al. [13], which examines the onset of
the asymptotic behavior described by the Kleitman–Rothschild theorem, has
been mentioned a few times earlier in this text. As hinted at in section 1.1,
the dynamical principles employed by Henson et al. closely resembles the
scheme laid out above. However, their conceptual starting point and overall
approach is slightly different, leading to some difference in details.

Unlike the algorithms which will be described later in this thesis, Henson
et al. uses a Monte Carlo-type approach, where transitions are chosen from
an extended transition space also including elements with zero probability, to
evolve their causets. They require that the evolution should be independent
of the foregoing history—i.e. it should be a Markov chain, a requirement that
is satisfied for both of the dynamical systems considered in this thesis—and
they employ a uniform probability distribution, just like the above scheme.
Moreover, they require that any order state should be repeatably obtainable
regardless of initially chosen state—i.e. the Markov chain should be ergodic—
and that detailed balance should be satisfied, meaning that for any two order
states A and B,

PAPA→B = PBPB→A, (3.5)
where PX is the probability of state X and PX→Y the transition probability
from X to Y . Since the probability distribution is uniform, PA = PB for any
A,B.

As described above, naïve evolution is ergodic. However, since transitions
are chosen only from the reduced space of momentarily allowable transitions, it
does not generally fulfill detailed balance: Looking back to the simple example
considered at the beginning of section 3.3, the initially totally ordered causet
C = {x, y, z}, with x ≺ y ≺ z, one sees that the probability of transitioning to
the reduced state x ≺ y, z, with y ⊀ z, is equal to 1/2, since no relations can
be added to C, but either one of the links x ≺ y and y ≺ z can be removed.
The probability of the reverse transition, on the other hand, is 1/4, since now
there is still two links which can be removed—x ≺ y and x ≺ z—but also two
links which can be added. Labeling the totally ordered state by C3 and the
reduced state by C ′3, one thus has

PC3→C′
3

= 1
2 6= PC′

3→C3 = 1
4 , (3.6)

provided that the points are distinguishable, as is the case for all dynamical
systems considered in this thesis. Henson et al. avoids this result by using a
Monte Carlo approach, whereby every transition A→ B is deemed equally
probable regardless of whether it actually can be executed or not.

These requirements lead Henson et al. to consider two different types of
transitions, which they label ‘the relation move’ and ‘the link move’. The
relation move is essentially equal to the removal or addition of a single order
relation at a time, discussed at length above. The link move, on the other
hand, corresponds to the removal or addition of the set of order relations
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3.4 Dynamical principles

corresponding to a line segment in the Hasse diagram description of the causet.
The addition of a Hasse line segment is subject to the requirement that none
of the thereby introduced relations are already present. The two transition
types are given equal probability.

As for the equilibrium criterion, Henson et al. seem to have taken a
more holistic approach, ultimately deciding that the ordering fraction and the
number of minimal elements provides the best indication of when a causet
have reached thermalisation.

Due to technical limitations of their chosen implementation, Henson et al.
only considers naturally labeled causets.

3.4.2 Destructive dynamics

As already hinted at, the dynamical scheme which this document labels
‘destructive’ only allows order relations to be removed, never added. The
reasoning behind the given name should thus be self-evident. Since relations
are only subtracted, this scheme is even simpler than the naïve scheme
considered above. However, there is a twist: As points gets completely
causally isolated from the rest of the causet, they are removed from the set.
Thus, unlike the naïve case, the number of points are not constant throughout
the simulation, but rather decreasing. Hence, the ordering fraction is not
constantly decreasing, since the denominator gets smaller as more points are
removed. To avoid running into problems with division by zero, the evolution
should be halted when only two points remain. Starting the simulation with
an initially totally ordered set with more than two points, one should thus
end up with a graph of the ordering fraction which both start and end at
f = 1, and with a global minimum f = fmin > 0 somewhere between the two.

This is the motivating idea behind the selection criterion used in destructive
dynamics. Rather than letting the terminating two-point causet be the final
result, the set corresponding to the global minimum of the ordering fraction
is deemed to be the resulting set of the evolution. A practical example is
shown in figure 3.5. As this figure reveals, the evolution of the initial causet
must be continued until its termination before the global minimum of f can
be determined with certainty. Hence, in the practical implementation of this
scheme, the destructive evolution is actually executed twice: once to determine
the minimum of f , continued until the terminating causet is obtained; and
once to obtain the causet corresponding to the minimized ordering fraction.

Given that the minimal causal set cannot be indisputably identified before
one have ‘dismantled’ almost the entire causal set, these dynamics seem
rather unphysical. Also, once a minimal causal set have been identified, the
dynamical principles changes entirely and abruptly, leaving the causet ‘frozen
in time’—another unphysical trait. Finally, as the ordering fraction tends to
zero, the dimensions of the corresponding spacetime tends to infinity. Hence,
minimizing the ordering fraction seems unlikely to result in the familiar four
dimensional spacetime of general relativity, or anything closely resembling it.
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Figure 3.5: An illustration of the selection criterion used in destructive dynamics.
Plot (a) shows the overall evolution of a causet with initially 4500 points. The active
ordering fraction reaches an absolute minimum after 10 120 576 simulation cycles.
This is better illustrated in (b), which shows a close-up of the relevant part of (a).
The absolute minimum is marked with a red vertical bar. A closer analysis of the
corresponding minimized set can be found in sections 5.2 and 6.2.

As a final remark, one should note that from an implementational perspec-
tive there is no need for removing points as they get causally isolated from
the rest of the causet if one instead defines an active ordering fraction, which
only calculates the ordering fraction of the causet given by the points which
are ‘active’, i.e. non-isolated. This is the solution employed in the project
code and reflected in the caption of figure 3.5.
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Chapter 4

Algorithmic implementation

The goal of this chapter is twofold: to provide an overview of the project code,
and to explain the reasoning behind the most central implementations. As
for the raw C++ code itself, it might be found in appendix A, together with a
few examples of how it might be used.

Considering overarching structure, the project code emerged from an object-
oriented programming mindset. Hence, its fundamental structure is a map of
nested classes, the ‘higher’ classes abstracting the more fundamental, ‘lower’
ones. While this design philosophy might lead to an unnecessary abundance
of classes, it makes the abstraction involved in algorithm implementation easy
by breaking it down to smaller peaces: provided the fundamental, low-level
implementations are well-written, they might safely be ignored when working
with more abstract, ‘higher-level’ objects.

In this particular case, the most basic object was a custom made dynamic
storage container namedNarray—after N -array; see below—not to dissimilar
to the C++ standard library’s std::vector. Building upon this, the Event
class was introduced to describe a single point in a causal set. Additionally, the
Transition class was defined, serving as an auxiliary structure for describing
the space of available transitions. Incorporating all of the former classes, the
World class was introduced, describing a causal set, its possible evolutions
and some basic statistics. Finally, the Worldview class was defined for more
in-depth analysis of causal sets, although this is more of an expansion than a
further abstraction of the World class.

The first four of these classes are described in greater detail in sections 4.1
and 4.2, which details the different structures used in the code’s description
of causets and the algorithms by which said causets are evolved, respectively;
while the final class is described in section 4.3, which details the analytical
tools used to scrutinize the geometric structure of causets.
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4 Algorithmic implementation

4.1 Core structures

This section details the central ‘building blocks’ of the project code, used to
represent and store the elements of a causet, and used to edit their order
relations on a low level. The implementation of the more high-level dynamical
schemes of section 3.4 is given in section 4.2.

4.1.1 The ‘Narray’ class template
As none of the standard containers (std::vector, std::deque, std::list, etc.)
was found entirely appropriate, the dynamical array class template Narray
was created. Being essentially a tailored implementation of a dynamical array,
the template name is taken from ‘N -array’, i.e. an array with N elements.

The elements of a Narray is stored in a dynamically allocated array
created at initialization or after an allocation routine is called. Additionally,
the number of active elements (the ‘length’ of the Narray) is stored as a
separate variable, allowing for a very efficient deletion routine: To ‘remove’
all elements of an array, simply set the active elements to zero; to delete
a specific element of a Narray of length N , say element i, with i < N ,
copy element N to i and reduce the length of the Narray with 1. In the
project code, to be found in section A.1.1 of appendix A, these procedures are
implemented as erase(int i) and erase_all(), respectively. Additionally, a
third erase function, for the deletion of a specific element with unknown index
is implemented, unsurprisingly named erase_element(. . . ). This member
function searches the internal array for the index of the given element and
then uses erase(int i) once the appropriate index is found. However, it only
deletes the first instance of the given element that it finds, so in the case of
duplicates it needs to be revoked several times. On the other hand, it does
not do anything at all if the element is not found, so it is harmless to call it
more times than what is needed.

Square brackets are used to access the elements of a Narray, similarly to
the normal operation of an ordinary C++ array. As per C++ standard, the
index start at zero, but there’s no safeguard preventing access to elements
with index greater than the current length of the Narray, in accordance with
the comment made in section 3.1. There’s also no safeguard against negative
indexes, or non-integer indexes for that matter. Nonetheless, all the elements
of a Narray can easily and safely be iterated through. This is thanks to the
member function length(), which returns the length of the Narray. Hence,
safe iteration can be done by incrementing an int variable from zero until the
length of the Narray is reached.

A default constructor is also defined, allowing the creation of a Narray
of unspecified length. To assign a length to such a Narray, and hence allow
elements to be stored in it, the member function allocate(int N) is provided.
This function can also be used to change the allocated length (which is stored
as a private variable, just like the length) of a Narray in a semi-safe manner:
If the allocated length of a Narray is increased, existing elements remain

26



4.1 Core structures

intact, but if it is decreased, additional elements are deleted. Either way, the
elements of the old internal, dynamical array are copied to a new one as part
of the allocation process. Hence, considering speed, it is best to minimize
the amount of allocation being done, preferably only allocating Narrays at
creation, before they are filled with any elements to copy.

The full implementation of the Narray class template can be found in
section A.1.1 of appendix A.

4.1.2 The ‘Event’ class
As detailed in section 3.2, the project code represents causets in two different
ways: a trinary relation matrix—a simple example of which is shown in
figure 3.1b—and the point-centered link lists L−(x) and L+(x)—see figure 3.1c.
The Event class, being the project code’s realization of individual causet
points, takes care of the latter, storing the link lists in two separate Narrays.

In keeping with ordinary C++ index standard, the events of a causet with
n elements is labeled by integers ranging from 0 to n− 1. Although this label
in a certain sense is a ‘global’ designator, being dependent upon the specifics
of the causal set which the Event object is part of, it is nonetheless stored
‘locally’ in the Event object itself. A similar commentary applies to the link
lists.

To avoid dynamical re-allocation of the link lists as new links are added
or removed during runtime, the total number of elements in the causet is
stored in a private variable and used to allocate the Narray lists at creation.
However, the member function set_N(int N) is also included, allowing for
the re-allocation of the link lists at run-time. This functionality was added to
make the conceptual implementation of the geometrical analysis tools easier;
cf. section 4.3.1.

At this abstraction level, the adding or removing of links are handled by
simple member functions adding or removing the appropriate event identifiers
from the internal link lists. A simple iterative check prevents duplicates
from being introduced by this process, but otherwise no safeguards are
present. Thus nothing prevents a point from being linked to itself, or for
being simultaneously both past- and future linked to another point.

Earlier versions of the project code, implementing naïve dynamics, also
had two Narrays L−H(x) and L+

H(x) for keeping explicit track of the links
which could, according to the dynamical links, hypothetically be added to
the past- and future link lists L−(x) and L+(x), respectively. This made the
space of allowed transitions T directly accessible during any point of runtime,
since T is simply the union of the past- or future link lists and the past or
future hypothetical link lists for all the points of the given causet, together
with an extra bit of information specifying whether said link should be added
or removed. In the present version, the point-specific lists L−H(x) and L+

H(x)
are removed, while the explicit T has been kept, its ‘hypothetical’ part now
constructed by iteratively checking all possible relations to see if they might
be lawfully added or not; see the succeeding section for further details.
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4 Algorithmic implementation

The full implementation of the Event class is given in section A.1.2 of
appendix A.

4.1.3 The ‘Transition’ class
In order to represent the space of allowed transitions T the imaginatively
named class Transition was created. With only three public member
variables—two integers xa and xb specifying the link xa ≺ xb, and one
boolean value corresponding to if the link was to be added—this class is
almost completely trivial. Apart from two constructors it has no member
functions. Nonetheless, this is enough to provide an explicit construction of
T by means of a Transition-filled Narray. This allows the Narray member
function length() to be used in order to determine the total number of
allowed transitions |T |, making the implementation of the different dynamical
schemes straightforward; see section 4.2.

4.1.4 The ‘World’ class
As already mentioned in the introduction to this chapter, the World class
constitutes the project code’s internal representation of a causal set. Addi-
tionally, it implements the dynamical principles for their evolution. Hence, it
should be no surprise that the World class is more complex than the more
fundamental classes considered above. Consequently, this section is divided
into several subsections for clarity.

As for the name of the class, it is a slightly whimsical reference to the
fact that a causet is assumed to be the fundamental description of reality in
causal set theory, at least when ignoring the presence of matter—see [16, 23],
earlier referenced in section 2.1.

The full implementation of the World class can be found in section A.1.4
of appendix A.

Member variables

To provide a complete link description of a causal set, the World class saves
the individual Event objects constituting the causet in a private Narray.
Rather redundantly, the total number of elements in the causet is also stored
as a private variable, despite the fact that this number is saved in all of
the individual Event objects themselves. Again, this was done for ease of
implementation.

While the implementation of the link list representation relies heavily on
the custom-made Event class, the implementation of the matrix representation
uses a simple two dimensional array made from a self-nested array of pointers.
Since the matrix is trinary rather than binary—see section 3.2 for details—its
basic elements are normal integers rather than boolean values.

As alluded to in section 4.1.3, a Transition-filled Narray is used to represent
the space of allowed transitions T . However, since in the case of destructive
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dynamics order relations only gets removed, the total number of links must
in this case be equal to the total number of possible transitions. Hence,
the total number of links is stored as a separate variable. This simplifies
the implementation of destructive dynamics. Additionally, the total number
of ‘active’ points—that is, points which are linked to at least one other
point—is also stored, together with an iterator list—to be properly explained
below—containing the labels of said points.

The possibility of saving a causet to an external file for later examination
and backup is also added to the class definition. As a part of facilitating this
functionality, a public string variable stores a descriptive identifier. When
exporting a causet, a user defined string might be added as a postfix to
create a filename. In order to allow for both easy human interpretation and
a simple algorithm for loading external causets, the causet is saved twice,
using two different file formats. The file meant for humans is saved using a
‘txt’ extension, while the file meant for later processing by the project code is
saved as a custom binary file with the file-extension ‘world’.

Constructors and initialization

Three constructors are defined: One copy constructor, one for loading a saved
causet from an external file, and one for constructing a new causet with N
elements. New causets are initialized to be totally ordered and naturally
labeled. The auxiliary member variables, like the total number of links, are
initialized to reflect this. Most of this is trivial, but the aforementioned
iterator list warrants some additional explanation.

The originating idea behind this list was that given an Event label, say x1,
the label of the ‘next’ non-detached point should be found at the list-position
corresponding to index x1. Hence, a causet Cn with n elements—which is
labeled using integers from 0 to n − 1; see above—results in a list of n − 1
event labels. A final element, having a value greater than n− 1, could then be
added to the end of this list, making it easy to write a condition for when the
iteration should stop: When the returned iterator is no longer a valid event
label, the iteration should stop. Furthermore, given that an initial causet
is naturally labeled, it would be logical to let the iterator list be naturally
ordered. As points become completely detached, their entries might be copied
to the foregoing entries.

For a practical example, consider the small causet {x0, x1, x2}, originally
ordered such that x0 ≺ x1 ≺ x2. Assuming x2 < x3, this causet have the
corresponding iterator list (x1, x2, x3). If now x1 gets detached from all its
causal relations, the iterator list becomes (x2, x2, x3). Since the second ‘x2’-
entry corresponds to the index x1, this entry will now be skipped. However,
this reveals a problem: What if x0 becomes detached? How would one know
where to start?

The answer is obvious: One needs an additional variable keeping track of
where the iteration should start. An elegant solution would then be to add
this variable to the iterator list, giving it index −1. Since the C++ standard

29



4 Algorithmic implementation

is to have array indexes start at 0, one might therefore be tempted to define a
custom class which allows negative indexes. A much simpler solution, though
potentially confusing when writing iteration loops, is to simply redefine the
correspondence between Event labels and indexes such that e.g. the label x
correspond to the index x+ 1 rather than x.

In total then, the resulting iterator list has n+ 1 elements, where the first
element gives the ‘first’ non-detached point in Cn, and where the last element
is n. Given a valid Event label i, the next valid label have index i+ 1. This
is the solution implemented in the project code.

In accordance with the natural labeling of initial causets, the iterator list is
strictly ordered upon creation. As the causal relations are changed according
to the wanted dynamical principles, the procedure update_il_and_Na()
should be called to ascertain that the iterator list and number of active points
(the ‘Na’ in the function name) stays up to date.

Should the situation call for it, the causet can be re-initialized by calling
the member function order(). Moreover, in keeping with the requirements of
naïve dynamics, the causet can be totally disordered by calling the member
function disorder().

Algorithms for adding or removing a single order relation

As mentioned in section 3.3, figure 3.3 provides the blueprint for any algorithms
pertaining to the addition or removal of one order relation at a time to or
from a causal set.

It should be clear that this is trivial from the point of view of the matrix
representation: If one wants to change the relation between two points, say x
and y, one simply changes the two corresponding matrix entries—in this case
(x, y) and (y, x). Hence, the less trivial part lies in the link representation, and
specifically, which additional links besides x ≺ y that might be affected (the
creation or destruction of the direct link x ≺ y is trivial, and is handled using
the appropriate Event member functions). This is where figure 3.3 enters the
picture.

When adding the link x ≺ y, it is apparent from the figure that one should
search through the future links of x, L+(x), looking for events which are also
part of the future links of y, L+(y). This is handled by a simple, nested
for-loop iterating over the elements in L+(x) and L+(y) looking for matches,
and deleting the relevant events from the appropriate link lists if matches are
indeed found (obviously the future links of y should remain unchanged by
this). One also sees from the figure that the past links needs to be iterated
through in an entirely similar manner, the only difference being that now
it is the past link of x that should be left untouched. This algorithm is
implemented as the member function uplink(int x, int y) in the project
code.

The removal of a single order relation is now simply a matter of following
the above algorithm ‘in reverse’. After removing the link x ≺ y, it must be
determined which order relations, if any, that then become links. (Criterion
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Figure 4.1: If two points, here x and yi, are causally connected trough a maximal
chain, then either (a) they’re connected trough a link, in which case x ∈ L−(yi), y ∈
L+(x), or (b) they’re connected trough intermediate links, in which case there exists
at least one point a ∈ L+(x), and one point b ∈ L−(yi), such that a ≺ yi and x ≺ b.
Note that (b) allows a = b. Comparing these two possibilities, the moral is that
given an initially self-consistent causet, its sufficient to look at L+(x) and L−(yi)
to determine if x and yi is connected after the link x ≺ y, with y ≺ yi, has been
removed.

(3.2) ensures that, as long as the initial causet is self-consistent, the only order
relations that could be missing after removing the link x ≺ y, are themselves
links). As can be seen from figure 3.3, the relevant relations are the subset of
the future links of y which is not already connected to the exclusive future
of x through a maximal chain not involving y, as well as the subset of the
past links of x which is not likewise connected to the exclusive past of y.
In the project code the elements of these subsets are identified through the
process of elimination: Iterating through the future links of y, it is checked
whether there is a maximal chain connecting x to yi (where {yi} = L+(y),
in accordance with the notation suggested by figure 3.3). If no such chain is
found, the link x ≺ yi needs to be established in the appropriate link lists.
The points future linked to x that need to be future linked to y might be
identified in an entirely similar manner.

Now, barring consistency errors in the internal representations, the pres-
ence of a maximal chain connecting two such points might be determined by
a iterative lookup in the relation matrix using the link lists of the appropriate
points: By transitivity it is already known that x ≺ yi (continuing the example
given above). If there is already a maximal chain enforcing this relation, then
either x and yi are linked—in which case x ∈ L−(yi) and yi ∈ L+(x)—or
there must be at least one point among the future links of x which precedes
yi, whereby at least one point past linked to yi must be preceded by x; see
figure 4.1. Hence, one might iterate through L+(x) checking for all z ∈ L+(x)
if z = yi or, using the relation matrix, if z ≺ yi. Alternatively, one can iterate
through L−(yi) looking for z ∈ L−(yi) such that z = x or x ≺ z. If no points
in the respective link lists fulfills neither of these criteria, then the link x ≺ yi
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needs to be established.
The algorithm for checking whether two points are connected via a maximal

chain is implemented as the member function a_precedes_b(int a, int
b), while the algorithm for removing the link x ≺ y is implemented as
delink_ordered_pair(int x, int y).

In addition to updating the link lists and the relation matrix, the member
functions uplink(int x, int y) and delink_ordered_pair(int x, int y) also
updates the member variable keeping track of the number of links, but the
iterator list and number of non-detached points are, somewhat inconsistently,
not updated and must instead be updated using the dedicated member function
update_il_and_Na().

An algorithm for determining whether a new order relation might
be added

The dual representation of a causal set utilized in the project code makes it
easy to implement criterion (3.2) from section 3.3 as an algorithm: The link
representation reveals the elements of L−(x) and L+(y), while the matrix
representation gives an accessible realization of T+(x) and T y(y), as well
as an effective way of determining whether criterion (3.2) is fulfilled, given
the elements of L−(x) and L+(y). This algorithm is implemented in the
private member function h_link_allowed(int xa, int xb), which returns the
boolean value true if the link xa ≺ xb can be added to the causet.

Using the link lists to identify the relevant points ensures that one does
not (always) have to compare 2n matrix elements—assuming a causal set with
n elements—while the relation matrix provides a simple look-up to determine
the relation between two points, something which could easily become a
recursive task if the link representation where to use in isolation. Thus some
of the complementary qualities of the dual causet representation used in the
project code is revealed.

4.2 Implementation of dynamical principles

This section provides an overview of how the dynamical systems considered in
this thesis are implemented. Unless otherwise stated, the member functions
referred to herein belongs to the World class. Their raw C++ implementation
can therefore be found in section A.1.4 of appendix A.

4.2.1 Naïve dynamics
As described in section 4.1.3, the Narray member function length() might
be used to determine the total number of allowed transitions |T |. Assuming
|T | = m, one might then select a random integer in the closed interval [0,m−1]
to serve as a random index singling out the next transition. A trivial World
member function can then be used to convert the chosen Transition object
into an actual transition. After the transition is performed, the ordering
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fraction is saved, and the appropriate member variables updated before the
algorithm repeats itself.

This, in broad strokes, is the project code’s implementation of naïve dynam-
ics. However, a few additional details merit a somewhat closer explanation:

• The random integer is obtained using a 64-bit Mersenne Twister en-
gine providing a random float in the half open interval [0, 1) which
is then rescaled and recast to the appropriate closed integer interval.
This is accomplished through the use of the C++11 standard library
<random>, which introduces various random number engines and
variable distributions into C++. Consequently, the project code must
be compiled using the C++11 standard.

• In keeping with the prescriptions of naïve dynamics, the number of
points in the causet is kept constant throughout the entire evolution.
This means that all points are surveyed when calculating the ordering
fraction of the causet, regardless of whether they are disconnected from
the rest of the causet or not. As pointed out in section 3.4.2, this differs
from how the ordering fraction is calculated in the case of destructive
dynamics. Rather than writing a compromise algorithm which calculates
the ordering fraction relative to any total number of points, the project
code utilizes two different algorithms, one optimized for the naïve case,
and one for the destructive case. The member function f_N() calculates
the ordering fraction relative to the total number of points.

• Due to time-constraints, the code is not parallelized, meaning that it
runs on only one CPU-core at a time. Thus, two causets cannot be
evolved simultaneously. As a consequence of this, there’s no internal way
to determine whether thermalisation has occurred or not. (Conceivably,
some form of ‘averaged relative change’ of the ordering fraction could
be used as an equilibrium criterion, but as confirmed by the results in
chapter 5, such a criterion turns out to be not quite as clear cut as one
might expect). Hence, finding the ‘correct’ number of simulation cycles
is a user guided process of trial-and-error. The evolution algorithm
therefore contains the number of cycles (or simulation steps) as an
argument.

• In order to save disk space, the ordering fraction log is coarse grained,
recording only minimum and maximal points for each N transition
cycles, where N is specified in a function argument. Additionally, in
order to protect against the consequences of unexpected system restarts
and crashes, an argument for specifying causet backup intervals was also
added. In order to maximize the number of possible cycles, all arguments
pertaining to transition cycle numbers use the 64-bit unsigned integer
type uint_fast64_t.

• As it is written now, the evolution algorithm simply advances the causet
it is applied to forwards according to the simple dynamical principles
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stated in section 3.4.1. Hence, in order to discover the sought after
equilibrium state described in that same section, the algorithm needs
to be run twice, once with an initially totally ordered causet and once
with an initially totally disordered one. An eventual equilibrium can
then be deduced by comparing the two resulting ordering fraction logs.
See sections 5.1 and 6.1 for practical examples.

In the project code, naïve evolution dynamics is implemented in the
World class member function evolve_and_save(. . . ). In addition to the
three arguments already mentioned, a forth argument—incidentally the first
argument in the actual implementation—provides a seed for the Mersenne
Twister engine, enabling simulation runs to be reproduced. For technical
reasons this seed should be of the type uint_fast64_t, but a normal int also
works.

4.2.2 Destructive dynamics
Given that the destructive dynamics only removes order relations, the total
number of allowed transitions |T | at any given moment is simply equal to
the number of links in the destructive scheme. Moreover, since all of the
transitions are of the same kind, an explicit implementation of T becomes
rather unnecessary—the total number of links is really all that’s needed.
Assuming a causet Cn with n elements andm unique links, a random transition
might be chosen simply by selecting a random integer between 1 and m, and
then removing the correspondingly numbered link, the numbering being done
according to the iterator list. To locate the link which is to be removed, one
iterates trough the points of Cn, adding up the number of links per point
until the chosen number i is reached. The link is then removed, the ordering
fraction noted and compared with earlier values, and the appropriate member
variables—among them the total number of links—updated. The algorithm
then repeats itself.

This is the essence of the project code’s implementation of destructive
dynamics. A few comments:

• The random integer is obtained in an entirely similar manner as in the
preceding section. Hence, an integer seed, of the same type as described
above, needs to be provided when the evolution algorithm is run.

• When using destructive dynamics, the ordering fraction should be
calculated relative to the total number of so-called ‘active’ points in the
causet. This is implemented in the member function f(). An event is
labeled ‘active’ as long as it is linked to at least one other event.

• To avoid running into problems with undefined behavior, the destructive
evolution is halted when only two active points remains. Unlike the
situation when one is using naïve dynamics, the total number of cycles
needed to reach the final stage can therefore quite easily be calculated
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given an initially totally ordered causet with n elements. Specifically,
the calculation shows that the number of cycles scales like n2. Even so,
a backup functionality—with a corresponding function argument—is
built into the algorithm to facilitate the evolution of larger causets,
which in this context turns out to be causets with thousands of points;
see figure 3.5 and also section 5.2.

• Since the minimal causet cannot be accurately determined before ‘almost
all’ of the ordering relations are removed, and because runtime memory—
after all—is limited, the destructive evolution algorithm needs to be
run twice, similarly to the naïve dynamics case. However, unlike the
naïve case, the goal of these two runs are now subtly different, and
hence also their algorithms: The first run is done to determine the
exact number of simulation cycles needed to reach the minimal causet,
while the second is done to obtain said causet, enabling further analysis
to be carried out (see section 4.3.1. Rather than having one member
function which performs both of these algorithms successively, the project
code therefore have two implementations of destructive dynamics: The
member function dismantle_and_record(. . . ) records the evolution
of the (active) ordering fraction, and returns the number of cycles
needed to reach the causet for whom it is minimized; while the member
function dismantle_and_save(. . . ) destructively evolves the causet
it is applied to a specified amount of steps forwards. This solution makes
it easier to resume evolution from a partially ‘dismantled’ causet in the
event of an unexpected system crash.

• For the convenience of the experimenter, an information text file with
various useful data is created as part of the evolution algorithm(s).
While the evolution is still ongoing, the text file gets updated every time
the backup interval is reached, providing a means to see approximately
how far the simulation has come. When the evolution is finished, the file
gets overwritten with useful simulation data, providing a short summary
of the performed evolution and its results.

4.3 Analytical tools

Due to how it is defined, the ordering fraction is of no help when trying to
figure out the dimension of a spatial cross section of spacetime, which is the
continuum that it was hoped had been obtained through use of the destructive
dynamical scheme. This forms the backdrop for the creation of the analytical
tools described in this section.

4.3.1 The ‘Worldview’ class
Continuing the whimsical naming convention established by the World class,
the Worldview class provides tools for closer analysis of the geometrical
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Figure 4.2: To compare the dynamically obtained causets with the Kleitman–
Rothschild theorem, the Worldview class divides the causal set points into temporal
layers by the length of their longest past chain, as shown in (a). In the continuum
limit this corresponds to a specific choice of reference frame. This can be seen from
(b), which shows a two dimensional spacetime diagram corresponding to (a).

features of a given causet. As stated in the introduction of this chapter, this
class is best understood as an extension of the World class. Technically, the
Worldview class is derived from World while also being a friend of it. By
nature of its goal—and because it is somewhat unfinished and unpolished;
the unnecessary parts not completely identified and removed—it is the most
haphazard class by far. In terms of memory, it is also the most wasteful,
employing a whole plethora of member variables in its implementation.

The full implementation of the Worldview class may be found in sec-
tion A.2.1 of appendix A.

The basics

Being written first and foremost for use on causets obtained from destructive
dynamics, the constructor—which takes a World object as its argument—
removes all casually isolated points from the originating causet. As a part of
this process, the points are renumbered, removing the need for the inherited
iterator list and the variable keeping track of the number of active points.
Thus, these variables are simply ignored and left unchanged. Trying to use
them inside an implementation could therefore easily lead to unspecified
behavior.

A central goal was to be able to compare the dynamically obtained causets
with the asymptotically dominating class of causal sets described by the
Kleitman–Rothschild theorem. To do this, the resulting causets should be
divided into temporal layers according to the length of their longest past
chain. Figure 4.2a shows the needed division, while figure 4.2b gives a hint of
what this layering signifies in the corresponding continuum limit.

The temporal layers are saved as a private member variable using a Narray.
To represent the layers themselves, a Narray filled with integers is used, the
integers corresponding to the points which are elements of the given layer.
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Hence, the layers are stored in a Narray filled with Narrays filled with integers.
Due to the C++ standard of indexes starting at zero, the layers are numbered
according to the length of the longest past chain a point must have in order
to be an element in said layer. Hence, the elements of the bottom layer L0 is
easily obtained from the link representation by identifying the points which
does not have any past links. Successive layers is then constructed by iterating
trough the future links of the points in the already obtained layer(s) and
adding the linked points to the layer immediately above.

However, since the points of a causet might have several maximal past
chains of different lengths, this process is likely to lead to points being added
to several layers (consider what the above algorithm does to the point x2 in
figure 4.2a). To remedy this, the layers are then iterated through in descending
order, the elements found in higher layers erased from eventual lower layers
they are found to also be contained in.

This is the central parts of the algorithm used to initialize the layer Narray
in the member function initialize_temporal_layer().

Tools for analyzing the spatial features of a temporally layered
causet in greater detail

As already revealed in section 1.1, the causets obtained by use of destructive
dynamics are (approximately) two-layered. An analysis of the spatial features
of these sets thus becomes very interesting, in order to determine whether
they might be provide a causal set description of spatial cross sections of
ordinary spacetime. At the core of the methods presented in this section lays
two matrices showing the ‘spatial’ separation—as measured by the length of
the minimal connected antichain—between points in the same extremal layer.
The reason the minimal and maximal layers are used instead of the temporal
layers presented above is simply an accident of history, but it provides for an
analysis which to some extent can ignore the presence of a lonely ‘lump’ in
the causal cross section. However, this solution also has a small disadvantage
due to how the present code measures spatial separation, but this will be
discussed later.

In accordance with how a connected antichain is defined, these two dis-
tance matrices have two even more fundamental matrices underlying them,
one listing how many past links any pair of points—regardless of their cor-
responding layers—have in common, and one listing how many future links
are in common. These matrices are constructed in a straightforward manner
from the link lists.

Using these lists as a starting point, the distance matrices are then con-
structed in a radial manner: First, the points are sorted into their respective
matrices and given zero distance to themselves. The shared links then provide
the set of points within the two layers that are connected by a minimal
connected antichain of length 1, and these distances are saved to the respec-
tive matrix-entries. If some points are found to have no neighbors in their
corresponding layer, i.e. have no unit minimal antichains, then these points
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(a) (b)

Figure 4.3: The motivating idea for organizing the points in an anticonnected
layer into ‘shells’: Assuming a collection of concentric spheres in ordinary continuous
Euclidean geometry, the sphere any given point x belong to might be determined
by finding the longest straight line segment between x and the other points in the
collection (a). Using that straight spatial lines corresponds to minimal connected
antichains in the causal set theory regime, one might thus order the points of an
anticonnected layer into concentric ‘spherical shells’. Having done so, one might then
compare the length distribution of the connected antichains for an average point in
the inner ‘center’ shell to the overall shell distribution to obtain some information
as to what degree the obtained shell description is meaningful (b).

can never be reached by a connected antichain, and so they are given an
infinite separation from all the points in their respective layer. Having thus
established a web of unit minimal antichains, the spatial distance between two
points of unknown separation can then be determined by iterating radially
outwards from one of them until the other point is found. The theoretical
maximum length of a minimal connected antichain in a causal set with n
points is n − 1. Hence, if one fails to find a minimal connected antichain
which is shorter than n connecting two points, said points must be infinitely
spatially separated.

In the project code, −1 is used to represent infinite separation, while −3
represents an undetermined distance. For ease of implementation, all points
are listed in both distance matrices, and −2 is used to signify that a point
does not actually belong in the given layer.

If some points are infinitely separated, the causet can be ordered into
causally isolated semi-ordered groups which can then be sorted according to
their size. A list of these groups is saved in a member variable with a nested
Narray structure reminiscent of the one used for the list of temporal layers.

Finally, by exploiting the connection between minimal connected antichains
and straight lines in Euclidean space, one might order the points of an
anticonnected layer—i.e. the extremal layers restricted down to a semi-
connected group—into ‘concentric shells’. Figure 4.3 shows the motivating
idea and what this might be used for.
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Chapter 5

Simulation results

To avoid an inordinate amount of graphs and figures, some of the simulation
results are summarized in words only. The graphs and figures which are
included, are thus meant to be representative of different general trends,
although a few figures most likely fall short of this ideal, for reasons which
will be identified below as said figures are presented.

5.1 Using naïve dynamics

5.1.1 Basic results

Starting of, figure 5.1 reprints the naïve evolution of a causet with 32 points
used to illustrate the equilibrium criterion for naïve dynamics in section 3.4.1.
In order to facilitate a comparison with the Kleitman–Rothschild theorem (see
section 2.3), the mean value of the ordering fraction—disregarding the initial
‘transients’ before the graphs flatten out—have been computed as an estimate
of the equilibrium value of the ordering fraction. Note that the calculation
of this average uses the same coarse grained data as the graphs themselves,
which only records the extremal values over the given grain duration. Hence,
the true average value—and especially its standard derivation—might be
slightly different from the one calculated from the recorded fraction log, given
here.

Corresponding graphs for causets with 64 and 80 points are shown in
figures 5.2 and 5.3, respectively. Note that the causet with 80 points does
not reach equilibrium during the set simulation time. Although this might
be as expected when one compares the jump in thermalisation time from
figure 5.1 to 5.2, and considers the—by comparison—modest change in run
time between figure 5.2 and 5.3, this is indicative of the results obtained when
attempting to simulate larger causets.
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Figure 5.1: A reprint of figure 3.4; this time with an estimated equilibrium
value included. The underlying causet(s) has 32 points, and the data is coarse
grained using a cycle length of 40 transitions. The estimated equilibrium value
〈f〉 = (39.3± 1.4) % is the average of the plotted data corresponding to the last
1.8× 105 transition cycles; the preliminary 2000 cycles before the graphs assimilate
are ignored. In the rest of this text, the terminal causet obtained from the initially
totally ordered causet with 32 points will be labeled Cn

32, while the one evolved from
the totally disordered causet will be labeled C′n32.
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Figure 5.2: Naïve evolution employed on a causet with 64 points. The used coarse
graining is 2× 104 transitions. The estimated equilibrium value 〈f〉 = (33.3± 1.0) %
is the average of the plotted data corresponding to the final 6× 106 cycles after
the graphs ‘settles down’ around the 4× 106 mark. In the rest of this paper, the
terminal causets obtained from this evolution will be labeled Cn

64 and C′n64, where
one is using a similar naming convention as the one described in the caption of
figure 5.1.

General remarks

Using an older version of the project code, naïve evolution was attempted
employed on causets with 128, 256 and even 512 points. However, as already
hinted at, these simulations did not reach equilibrium during the given runtime,
even after—in the case of one of the causets with 128 points—over two and
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Figure 5.3: Naïve evolution employed on a causet with 80 points, using a coarse
graining of 3.6× 104 transition cycles. The calculation of the estimated equilibrium
value 〈f〉 = (32.6± 0.4) % is done using all of the available data, except for the part
corresponding to the first 1.98× 106 transition cycles. Given that the two graphs
doesn’t seem set to meet for many millions of cycles yet, the real uncertainty in
〈f〉 is largely unknown. Using a similar naming convention as for the causets in
figures 5.1 and 5.2, the terminal causets will be labeled Cn

80 and C′n80.

a half billion transitions! Hence, figure 5.3 is indicative of these results, the
larger causets being further from equilibrium by the end of the simulation
time than the smaller ones. In addition to depending on the causet size,
the transition time was also seen to depend on the complexity of the order
relations, and hence also weakly on the ordering fraction; strongly ordered
causets transitioned faster than less ordered ones, but lightly ordered causets
transitioned faster than the more complex intermediate ones. Hence, when
performing a parallel run of one initially totally ordered causet and one
initially minimally ordered (see below), the initially totally ordered would
finish the first hundred of thousands transitions faster than the other causet,
but as the simulation continued on, they would more or less catch up to each
other.

5.1.2 A closer look at the resulting causets
In addition to providing an asymptotic value for the average ordering frac-
tion, the Kleitman–Rothschild theorem also details the typical structure of
an asymptotic causet, which turns out to be temporally three-layered; see
figure 2.3. To address this, figures 5.4, 5.5 and 5.6 are included, giving the
temporal layer structure of the six resulting causets obtained after the evo-
lutions shown in figures 5.1, 5.2 and 5.3, respectively. However, these sets
is by no means claimed to give representative pictures of typical equilibrium
sets, since such a claim would have to be backed by analysis of thousands (or
at least hundreds) of similar causets, and such an in-depth analysis have not
been performed as part of this thesis. Instead, the characteristics of these
causets will be compared to the averages found by Henson et al. [13] in their
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Figure 5.4: The layer structure of C′n32 and Cn
32, respectively, the two resulting

causets after the evolution shown in figure 5.1 has been carried out. The layers are
numbered according to the length of the maximal past chains of it is constituent
points, which incidentally coincides with the standard index numbering used in
C++.
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Figure 5.5: The layer structure of respectively C′n64 and Cn
64, the two causets of

figure 5.2 after the evolution has been carried out.

remarkably detailed exploratory work.
Finally, to address the question of whether the apparent equilibriums

shown in figures 5.1 and 5.2 are stable, figure 5.7, which shows the naïve
evolution of a causet with 64 points continued for over 5 billion cycles, is
included. As mentioned in the caption, this figure was created using an older
version of the project code, specifically, the same as the one mentioned above
when discussing the results for causets with more than 80 points. Unlike the
current version of the project code, this older version insisted that the causet
should remain an Alexandrov interval at all times, meaning that any causet C
had a fixed starting point x0 ∈ C such that ∀x 6= x0 ∈ C : x0 ≺ x, and a fixed
ending point xf ∈ C such that ∀x 6= xf ∈ C : x ≺ xf . Hence, the initial causet
cannot be completely disordered, as mentioned but not explained above, and
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Figure 5.6: The resulting layer structure of respectively C′n80 and Cn
80, the two

causets in figure 5.3 after the evolution has been carried out.
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Figure 5.7: Using a slightly older version of the project code, a causet with 64
points was naïvely evolved using a coarse graining of 5× 109 transition cycles to
check the stability of the apparent equilibrium seen in figures corresponding to
figures 5.1 and 5.2. Compared to the relative coarse graining of earlier graphs, this
graph is quite detailed; extremum values are shown for every 216 cycles. When
calculating the estimated equilibrium value 〈f〉 = (41.8± 0.5) %, the first 224 cycles
has been ignored. Unlike the code which produced figure 5.2, the older code used
here never allowed the causet to cease being an Alexandrov interval. Hence, it
should be no surprise that 〈f〉 as calculated here is higher than the corresponding
value in figure 5.2.

one would expect the estimated equilibrium value to be greater than when
using the present version of the code. Hence, the estimate of 〈f〉 shown in
figure 5.7 might be reconcilable with that in figure 5.2.
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Figure 5.8: The layer structure of Cd
2035, the causet obtained after the destructive

evolution shown in figure 3.5. While the initial causet had 4500 points, Cd
2035, as

the name suggests, has 2035.

5.2 Using destructive dynamics

5.2.1 Basic results

Turning now to the simulation results obtained when using destructive dynam-
ics, figure 5.8 shows the layer structure of the largest destructively evolved
causet, whose evolution was shown in figure 3.5. Incidentally, this is also the
largest causal set the project code has successfully dynamically simulated,
having initially as many as 4500 points, and ending up with 2035 still intact
when the minimal order relation was reached some days later. As can be seen,
the obtained causet, which will from hereon be labeled as Cd

2035, is practically
two-layered, only one single point having a maximal past chain of length 2.
Later results presented below will reveal that this point can safely be ignored,
as it turns out to only be linked to one single point. Thus, this point does not
represent a significant departure from a two-layered causet, since one might
identify it with its linked partner to obtain a two layered causet with 2034
points.

Turning now from the temporal structure of Cd
2035 to the spatial one,

figures 5.9 and 5.10, reveal the distance, as defined by the length of minimal
connected antilinks, between points in the same extremal layer. As pointed
out in section 4.3.1, the definition of an extremal layer is subtly different from
the layers shown in figure 5.8. Specifically, a minimal layer consists solely of
points which have no preceding points. Similarly, a maximal layer consists
exclusively of points which does not precede any other points.

These plots are strongly indicative that Cd
2035 does not consist of one jointly

connected causet, but rather of a disjoint collection of smaller causets; one
significantly bigger than the others. The reason the multitude of ‘infinitely
spatially separated’ points are only suggestive evidence of a disjoint set,
is because the distance tables underlying the shown figures only gives the
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Figure 5.9: A table of the ‘spatial’ distance between the points in the minimal
layer of Cd

2035, represented as a heat map. The layer contains a total of 994 points.
In this context, the ‘spatial distance’ between any two points is equal to the length
of a minimal connected antilink between them; if no such antilink can be found, the
distance is set to ∞. The fact that there are several points which in this sense is
‘infinitely’ separated is an indication that Cd

2035 might not be one interconnected
causet, but rather a collection of smaller disconnected causets.

length of the minimal connected antichains, which is based on common links.
Hence, if two points are connected through a set of shared order relations
where none of them are shared links, the points will be said to be infinitely
spatially separated. Since Cd

2035 has three temporal layers, there thus exists the
theoretical possibility that all of the points shown to be spatially disconnected
in figures 5.9 and 5.10 actually are connected trough the single point occupying
the third layer L2 shown in figure 5.8.

However, by using the order relation matrix together with the distance
tables underlying figures 5.9 and 5.10, one might mediate this shortcoming,
revealing whether the isolated blocks seen in the figures actually corresponds
to causally isolated subsets or not. Doing so, one finds that there is a total
of 116 causally isolated subsets in Cd

2035, 83 of which only consist of two
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Figure 5.10: A table of the ‘spatial’ distance between the points in the maximal
layer of Cd

2035, represented as a heat map. The layer contains 1040 points. Incidentally,
this is exactly the same number as in the second layer of figure 5.8, but there’s a
subtle difference in what is meant by a ‘layer’ here: In the histograms shown in
figures 5.4–5.6 and 5.8, points are assigned a ‘layer’ according to the length of their
longest past chain—‘layer 0’ contains all points which have no past links, ‘layer 1’
contains all points with no past chains longer than 1, and so on. The ‘maximal layer’
shown in this figure, however, is simply the set of points which have no future links;
hence, a point which is in ‘layer 1’ in figure 5.8, will be part of the ‘maximal layer’
shown in this figure as long as it does not precedes the one point in the third layer
of figure 5.8! (The ‘minimal layer’ of figure 5.9 is defined in a similar manner, but
here the definitions actually coincide). Again, the presence of infinitely ‘spatially’
separated points strongly suggests that Cd

2035 consists of several smaller disconnected
causets.

(totally ordered) points. The composition of the ten largest subsets is listed in
table 5.1. The geometry of the largest of these subsets will be further explored
in section 5.2.2.
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Table 5.1: The ten largest causally isolated subsets of Cd
2035 and their composition.

Group Points in total . . . in minimal layer . . . in maximal layer
0 1750 850 899
1 11 6 5
2 6 3 3
3 5 2 3
4 5 2 3
5 5 3 2
6 4 2 2
7 4 1 3
8 4 1 3
9 4 2 2

General remarks

Destructively evolving causets of increasing size revealed, unsurprisingly, that
larger initial causets results in smaller minimal ordering fractions. Moreover,
all of the minimal causets had roughly half of the points of the totally ordered
causet that they where made from, but this number was seen to vary quite a
bit depending upon the initial seed. However, as only two sets with 4000 or
more initial points were sampled, it is unknown whether a ‘better’ seed would
have produced a causet with ∼ 3000 points, and if so, how this set would
have looked.

Considering the structure of the destructively evolved causets, present
results indicate that they indeed seem to be practically or exactly two-layered,
a lonely point like the one in figure 5.8 showing up in roughly every other
set. The situation shown in table 5.1 is especially typical—I have found no
exceptions so far: A clear majority of the causet points are gathered into one
relatively large causally connected subset, while the remaining points form a
collection of several small subsets consisting only of a handful of points each.
In terms of a cross section of a continuous, classical spacetime, the resulting
picture seems to somewhat resemble that of a big ‘soap bubble’ surrounded
by several significantly smaller ones.

5.2.2 A closer look at the largest simulated subset

Using the analytical tools described in section 4.3.1 on the largest subset of
Cd

2035, figures 5.11 and 5.12 are obtained. From the first figure one sees that
the subset is relatively spatially dense—the great majority of the points is
packed together within a ‘sphere’ 10 length units in diameter, and none are
further separated than 14 length units (this last fact can also be inferred from
figures 5.9 and 5.10). This might also explain the large standard deviations
seen in figure ??.
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Figure 5.11: The points of the largest causally connected subset of Cd
2035 distributed

according to the length of their longest minimal connected antichain. In (a),
the distribution of the points in the minimal layer is shown, while (b) gives the
distribution for the maximal layer. As can be seen using the identification indicated
by figure 4.3a, the minimal center shell has 26 points, while the maximal center
shell has 7, less than one third of the points in its corresponding shell in the layer
below it. Interestingly, the ‘diameter’ of the minimal layer is less than that of the
maximal. The overall shell distribution is also markedly different.

For a d-dimensional sphere in ordinary, continuous Euclidean geometry
there exists a natural correlation between the longest distance to another point
of the sphere and radial position within the sphere (figure 4.3a). Employing the
same identification on the discrete anticonnected points shown in figure 5.11,
one sees that the points of the minimal layer are more gathered in the
innermost shells than the points of the maximal layer. In fact, the minimal
layer has one less shell than the maximal layer.

Figure 5.12a shows the distance distribution of an average point in the
center shell in the minimal layer, while figure 5.12b shows the corresponding
distribution for an average point in the maximal layer. There is some clear
discrepancies between the shell distributions implied by figure 5.12 and those
implied by figure 5.11.

It is unknown how these graphs compare to a ‘general’ causet obtained by
use of destructive dynamics. Preliminary results obtained from looking at the
average distance distributions in the extremal layers of the causet as a whole,
suggest that the statistics shown in figures 5.11 and 5.12 are likely to vary
quite a lot from one causet to another.
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Figure 5.12: Average ‘spatial’ radial distribution for the points in the two extremal
center shells of the largest causally connected subset of Cd

2035. Similarly to figure 5.11,
(a) shows the distribution for the minimal layer, while (b) shows the same statistics
for the maximal layer. The shell distribution seen by an average point in the central
shells are markedly ‘skewed’ compared with the overall ‘objective’ distributions seen
in figure 5.11a,b.
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Chapter 6

Analysis

6.1 Naïve dynamics

The results listed in section 5.1 suggests that naïve dynamics is unable to
escape the entropy problem revealed by the Kleitman–Rothschild theorem.
Although only two of the six analyzed sets have exactly three layers, and only
one of them have a layer distribution somewhat resembling that given in the
theorem, all the simulations result in an average ordering fraction which is in
the ballpark of that suggested by the theorem. Hence, naïve dynamics seem
unlikely to result in causets resembling classical four dimensional spacetime.
In any case, it is clear that the naïve dynamical scheme quickly becomes
impractical when trying to simulate causets of a physically interesting size—
even a rather modest sized set with 64 points require millions of simulation
cycles to approach something resembling an equilibrium, and a causet only
twice as big does not thermalise even after two and a half billion cycles!

6.1.1 Comparing with the results of Henson et al.

Despite the slight difference in implementation, the results are also in general
agreement with those of Henson et al. [13]. This provides another argument
for suspecting that naïve dynamics in general leads to the creation of three-
layered Kleitman–Rothschild-type sets, as the main goal of Henson et al. was
to find a lower bound of when the asymptotic behavior of the theorem kicks
in.

Among other things, Henson et al. find that thermalised causets with close
to 30 points have an average height of about 4.5. This is in good agreement
with figure 5.4, which shows the layer structure of the two resulting 32-point
causets after the evolution shown in figure 5.1. For causets with 64 points
Henson et al. finds an average height slightly larger than 3, while causets
with 80 or more points have an average height which is very close to 3. This
is more or less in agreement with figures 5.5 and 5.6, but while the results of
Henson et al. are obtained trough averaging a large sampling of thermalised

51



6 Analysis

causets, figures 5.5 and 5.6 only gives two isolated examples, and in the case
of figure 5.6 the causets are not even thermalised!

When it comes to the mean ordering fractions, a small deviation from the
results of Henson et al. is seen, but it is most pronounced for the smallest
causet. Henson et al. finds a mean order fraction slightly less than 35 % for
causets with 32 points, which is significantly lower than the (39.3± 1.4) % in
figure 5.1. For sets with 64 points, Henson et al. finds an average ordering
fraction of approximately 34 %. This is within the standard derivation of the
average calculated in figure 5.2. Finally, for causets with 80 points, Henson et
al. gets virtually the same average as they did for 64 points. This is slightly
above the average found in figure 5.3, but given that the causets of this figure
does not reach thermalisation, it is unknown to what degree this estimate
reflects the actual average of the thermalised sets.

6.1.2 Stability
The code which produced the evolution shown in figure 5.7 required the causet
to always remain an Alexandrov interval. This is different from the present
definition of the naïve dynamical scheme, which considers all causets with a set
number of points, regardless of type. However, any causet can be transformed
into an Alexandrov interval by adding two points: one point which precedes
all the other points, and one which is preceded by all the others. Hence, there
is no reason to suspect that the present code is not equally stable as the one
that produced figure 5.7, and the apparent equilibriums of figures 5.1 and 5.2
are therefore likely to be very robust.

Armed with the combined insight of the Kleitman–Rothschild theorem
and figure 3.3, it is also possible to find theoretical reasons for why naïve
dynamics ought to have a robust three-layered equilibrium for ‘sufficiently
large’ causets. It is also possible to see why this equilibrium is harder to reach
for larger sets, effectively branching of into several semi-equilibriums as the
number of points increases.

Given an initially totally disordered causet, the situation shown in figure 3.3
gets less and less likely to occur as more and more layers are added to the
set. This is provided that the layers are not simply ‘stacked’ on top of each
other, consisting only of a disconnected ensemble of totally ordered subsets of
approximately the same hight. However, as order relations are added randomly,
this very special configuration is extremely unlikely to occur, at least if the
causet is sufficiently large. Figure 3.3 does not prevent the formation of a
two-layered causet from an initially (‘one-layered’) totally disordered set, but
once the causet gets sufficiently causally it makes higher layers progressively
more unlikely to be created. Thus a sufficiently large causet will get almost
completely stuck already at approximately two layers. Reaching a hight of
four layers will be practically impossible. This effect can be seen in practice
already for 80 points by comparing figures 5.3 and 5.6.

What then about an initially totally ordered causet? The principle illus-
trated in figure 3.3 will make the initial disordering of the causet tend to
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happen through growing ‘vertical’ tears (cf. figure 3.2a,b). This will slowly
decrease the height of the causet, but as more and more ordering relations are
removed, the likelihood of figure 3.3 working in the opposite direction—adding
a relation rather than removing one—will increase. Hence the reduction of
layers will not continue in perpetuity. The Kleitman–Rothschild theorem
suggests that the eventual balance point should be reached somewhere near
an approximately three-layered causet.

Hence both of the evolutions seen in figure 5.3 are explained.

6.2 Destructive dynamics

Destructive dynamics appear to lead to the production of an approximately
two-layered causets, but the resulting causets are not a causally connected
whole, but rather a collection of several smaller, isolated subsets. Most of the
subsets are very small, consisting only of a handful of points, but one of the
subsets are significantly greater than the others, consisting of well over half
of all the points in the total causet.

Considering how the destructive dynamical scheme is defined, it should
be no surprise that the resulting causet is highly disordered. The scheme
minimizes the ordering fraction as measured when completely causally isolated
points are ignored. Hence, the presence of several small causally isolated
subsets is just as one would expect, and the two-layeredness is also, at least on
a superficial level, not surprising. Moreover, when starting from an initially
totally ordered causet, it is at least somewhat natural to assume that a larger,
main subset remains for quite a while as the causet gets disordered and
gradually broken up into smaller subsets, given that order relations are only
allowed to be removed if they do not change others by transitivity. What
the results reveal, then, is the overall point of balance at which the ordering
fraction is thus minimized.

Assuming a causet with n points, the removal of an ordering relation which
does not causally isolate any points leads to the ordering fraction decreasing by
2/n(n− 1)—see equation (2.7). If, on the other hand, one point gets causally
isolated, the ordering fraction increases with a factor of 1 + (2−n/R)/(n− 2),
where R is the number of order relations before the removal happened. This
factor must be greater than or equal to one, since the fact that points gets
removed if they are causally isolated requires R ≥ n/2 =⇒ 2 − n/R ≥ 0.
Given this, it is easy to see that if the removal causes two points to get causally
isolated, the ordering fraction increases even more. This can only happen if
there are isolated subsets consisting of only two points, something which is
bound to eventually happen as smaller subsets gets isolated from the main
causet.

Thus, there should be a point in the evolution where the combined likeli-
hood of an increase in the ordering fraction due to the destruction of isolated
two-point fragments or the removal of single nearly-isolated points overcomes
the likelihood of continued decrease due to the removal of ‘safe’ order rela-
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tions from the larger subsets. What the results therefore reveals is that this
happens at a time where the main subset is still vastly larger than the isolated
fragments, but not before all of the subsets have become nearly perfectly
two-layered. Moreover, roughly half of the initial points are removed before
this tipping point is reached.

While certainly an interesting result by itself, its greater significance seems
somewhat moot, especially considering how little geometrical structure seem
present in the resulting causet, even when restricted only to the main causally
connected subset.

This is revealed from a comparison between figures 5.11 and 5.12. The
points appear relatively tightly knit, but the differences between the two
different distributions indicate a complicated and distinctly discrete net of
anticonnections. The layers appears to have a somewhat well-defined center,
but the distributions give no clear indication of dimension or other geometrical
features. Additionally, the differences between the two extremal layers are
rather pronounced if the causet should be seen as a ‘purely spatial’ cross
section of spacetime.
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Chapter 7

Closing remarks

It is well known that hindsight is 20/20. In retrospect, the results obtained
by the simulations done as part of this thesis might seem rather intuitive.
However, intuition is not always a reliable guide on the path to knowledge, so
even if the broader conclusions drawn here might not seem so surprising after
the fact, this does not in it self makes the journey worthless or pointless.

Where does the road go from here?

7.1 Possible code improvements

As was pointed out in section 5.2, the definition of anticonnected points used
presently does not necessarily correspond to whether or not said points have
a shared order relation, something which leads to a somewhat incomplete and
unclear relation to the spatial distances present in the continuum limit.

Although this was partly remedied by the use of the relation matrix to
provide the division into causally connected subsets, this could be completely
remedied by redefining what a connected antichain is—see figure 7.1.

7.2 Regarding the continued hunt for physically sensible
dynamics

From the theoretical discussion in section 6.1.2, it follows that the requirement
of only changing one order relation at a time should probably be abandoned.
However, the results of Henson et al., obtained by partly abandoning this re-
quirement, shows that merely allowing for the possibility that several relations
be changed simultaneously is not enough to combat the power of figure 3.3.
It therefore seems plausible that the changing of only one order relation at
a time should be more forbidden than encouraged in order to arrive at a
physically meaningful causet.
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b

d

ca

e

Figure 7.1: Using the definition of connected antichains given in section 2.2,
there’s no connected antichain between a and b, even though they both precede
d. A natural extension would be to say that a and b are anticonnected through
a minimal connected antichain of length 2. Likewise, a and c could be said to be
anticonnected with a distance of 3. Alternatively, one could take the minimal sum of
the maximal chains connecting two causally unrelated points together as the length
of the connected antichain between the two points. Then, the ‘spatial’ distance
between a and b would be 4, and the distance between a and c 6.
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Appendix A

C++ code used

The attached code utilizes parts of the C++11 standard library, and will most
likely not compile if older C++ standards are used.

A.1 Core structures

A.1.1 The ‘Narray’ class template
Since Narray is a class template, all implementations are in the header file.
Hence there is no accompanying source file.

Header file

#ifndef NARRAY_H_INCLUDED
#define NARRAY_H_INCLUDED

#include <utility>

template<class T>
class Narray{
private:

T* theArray;
int L; // The length of the array, i.e. the part of it which has

data.
int L_max; // The allocated, maximum length of the array.

public:
Narray();
Narray(const int N);
Narray(const int N, const int length);
Narray(const Narray<T>& other);
void initialize();
~Narray();
bool is_valid() const;
void allocate(const int length);
int length() const;
int allocated_length() const;
void push_back(T element);
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void erase(const int i); // Erases element i.
void erase_element(T element); // Erases the given element if

possible.
bool contains_element(T element); // Checks if the given element

already exists.
void erase_all(); // Sets L=0; doesn’t actually delete stuff.
Narray<T>& operator=(Narray<T> rhs);
T& operator[](const int i);

};

/* Implementations. */

template<class T>
Narray<T>::Narray(){

initialize();
}

template<class T>
Narray<T>::Narray(const int N){

L = 0;
if(N<1){

theArray = 0;
L_max = 0;

}else{
theArray = new T[N]{};
L_max = N;

}
}

template<class T>
Narray<T>::Narray(const int N, const int length){

L = length;
theArray = new T[N]{};
L_max = N;

}

template<class T>
Narray<T>::Narray(const Narray<T>& other){

if(other.is_valid()){
L = other.L;
L_max = other.L_max;
theArray = new T[L_max]{};
for(int i=0; i<L; ++i){

theArray[i] = other.theArray[i];
}

}else{
initialize();

}
}

template<class T>
void Narray<T>::initialize(){

theArray = 0;
L_max = 0;
L = 0;

}
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template<class T>
Narray<T>::~Narray(){

delete [] theArray;
theArray = 0;
L = 0;
L_max = 0;

}

template<class T>
bool Narray<T>::is_valid() const{

return L_max!=0 && theArray!=0;
}

template<class T>
void Narray<T>::allocate(const int length){

Narray<T> temp(*this);
delete [] theArray;
theArray = 0;
L_max = length;
theArray = new T[L_max]{};
int i = 0;
while(i<temp.L && i<L_max){

theArray[i] = temp.theArray[i];
++i;

}
L = i;

}

template<class T>
int Narray<T>::length() const{

return L;
}

template<class T>
int Narray<T>::allocated_length() const{

return L_max;
}

template<class T>
void Narray<T>::push_back(T element){

theArray[L] = element;
++L;

}

template<class T>
void Narray<T>::erase(const int i){

theArray[i] = theArray[L-1];
--L;

}

/* Note: The member-function "erase_element" only deletes the
first instance of the given element, and must therefore be
revoked several times in order to deal with duplicates.

*/
template<class T>
void Narray<T>::erase_element(T element){
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int i = 0;
while(i<L){

if(theArray[i]==element){
erase(i);
break;

}else{
++i;

}
}

}

template<class T>
bool Narray<T>::contains_element(T element){

int i = 0;
while(i<L){

if(theArray[i]==element){
return true;

}else{
++i;

}
}
return false; // If this point is reached, the element is not in

Narray.
}

template<class T>
void Narray<T>::erase_all(){

L = 0;
}

template<class T>
Narray<T>& Narray<T>::operator=(Narray<T> rhs){

std::swap(L, rhs.L);
std::swap(L_max, rhs.L_max);
std::swap(theArray, rhs.theArray);
return *this;

}

template<class T>
T& Narray<T>::operator[](const int i){

return theArray[i];
}

#endif // NARRAY_H_INCLUDED

A.1.2 The ‘Event’ class
Header file

#ifndef EVENT_H_INCLUDED
#define EVENT_H_INCLUDED

#include <iostream>
#include "narray.h"
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class Event{
private:

int N; // Total # of events (in the World). Must be >0.
public:

int id; // Identifier. Must be >=0 and <N, in accordance with
array-indexes.

Narray<int> up_links; // Realized "upwards" links. Initially
empty.

Narray<int> down_links; // Realized "downwards" links. Initially
empty.

/* End of public variables. */
Event();
Event(const int n, const int N_max); // n = ID, N_max = # events

in total.
Event(const Event& other);
void set_N(int new_N);
bool up_linked(const int id_b);
bool down_linked(const int id_b);
void up_link(const int id_b);
void down_link(const int id_b);
Event& operator=(Event rhs);
friend std::ostream& operator <<(std::ostream& os, Event& a);

};

#endif // EVENT_H_INCLUDED

Source file

#include "event.h"
#include "narray.h"
#include <iostream>
#include <utility>

using std::cout;
using std::endl;
using std::ostream;
using std::swap;

Event::Event(){
N = 0;
id = 0;
up_links.initialize();
down_links.initialize();

}

Event::Event(const int n, const int N_max){
N = N_max;
id = n;
up_links.allocate(N);
down_links.allocate(N);

}

Event::Event(const Event& other){
N = other.N;
id = other.id;
up_links = other.up_links;
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down_links = other.down_links;
}

void Event::set_N(int new_N){
N = new_N;
up_links.allocate(N);
down_links.allocate(N);

}

/* Note: The member functions "up_linked" and "down_linked" only
returns TRUE if the corresponding lists for a actually contains
b. Hence, they can not be used to check whether a and b ought
to be linked (e.g. a.up_linked(b) cannot be used to check
whether there’s any point c such that a<c<b).

*/
bool Event::up_linked(const int id_b){ // Implies a < b.

for(int i=0; i<up_links.length(); ++i){
if(up_links[i] == id_b){

return true;
}

}
return false;

}

bool Event::down_linked(const int id_b){ // Implies b < a.
for(int i=0; i<down_links.length(); ++i){

if(down_links[i] == id_b){
return true;

}
}
return false;

}

void Event::up_link(const int id_b){
bool in_a = false;
for(int i=0; i<up_links.length(); ++i){

if(up_links[i]==id_b){
in_a = true;
break;

}
}
if(!in_a){

up_links.push_back(id_b);
}

}

void Event::down_link(const int id_b){
bool in_a = false;
for(int i=0; i<down_links.length(); ++i){

if(down_links[i]==id_b){
in_a = true;
break;

}
}
if(!in_a){

down_links.push_back(id_b);
}
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}

Event& Event::operator=(Event rhs){
swap(N,rhs.N);
swap(id,rhs.id);
swap(up_links,rhs.up_links);
swap(down_links,rhs.down_links);
return *this;

}

ostream& operator <<(ostream& os, Event& a){
os << a.id;
os << "\t|";
for (int i=0; i<a.up_links.length(); ++i){

os << a.up_links[i] << " ";
}
os << "\t|";
for (int i=0; i<a.down_links.length(); ++i){

os << a.down_links[i] << " ";
}
return os;

}

A.1.3 The ‘Transition’ class
Header file

#ifndef TRANSITION_H_INCLUDED
#define TRANSITION_H_INCLUDED

class Transition{
public:

bool order;
int id_a;
int id_b;
Transition();
Transition(const bool add_link, const int a_id, const int b_id);

};

#endif // TRANSITION_H_INCLUDED

Source file

#include "transition.h"

Transition::Transition():order(false), id_a(0), id_b(0){
// Intentionally left empty.

}

Transition::Transition(const bool add_link, const int a_id, const int
b_id){

order = add_link;
id_a = a_id;
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id_b = b_id;
}

A.1.4 The ‘World’ class
Header file

#ifndef WORLD_H_INCLUDED
#define WORLD_H_INCLUDED

#include <iostream>
#include <string>
#include "narray.h"
#include "event.h"
#include "transition.h"

class World{
friend class Worldview;

private:
Narray<Event> the_World;
int N; // Total # of events (in the World). Must be >0.
int N_active; // active N used by dismantle functions and f().
int N_links; // Total # of (up/down) links.
Narray<Transition> possible_transitions;
Narray<int> iterator_list; // iteration list used by the

dismantle-functions and f(). Note that i = iterator_list[i+1]
always gives next value of i.

int** order_table; // Table over the orderings between a and b.
/* Utility functions of different kinds. */
void create_missing_links(const int id_a); // Links all events in

a’s lists to a.
void delink_ordered_pair(const int id_a, const int id_b); //

Assumes a<b. Does NOT update il and Na!
void uplink(const int id_a, const int id_b); // Makes a<b. Does

NOT update il and Na!
void transition(Transition T); // Does NOT update

possible_transitions!
bool h_link_allowed(const int id_a, const int id_b); // Checks if

a<b is allowed, given a!=b, a!<b, b!<a.
void update_il_and_Na(); // Updates N_active and iterator_list.
int count_up_links();

public:
std::string id;
World(const int sum_events); // sum_events = total # of events.

Must be >0.
World(std::string filename); // file-type should NOT be included!
World(World& other);
~World();
void order(); // Initializes causet to f=100%.
void disorder(); // Initializes causet to f=0%.
bool a_precedes_b(const int id_a, const int id_b);
bool a_precedes_b_req(const int id_a, const int id_b);
bool b_precedes_a_req(const int id_a, const int id_b);
void evolve_and_save(const uint_fast64_t seed, const

uint_fast64_t steps, const uint_fast64_t step_length, const
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uint_fast64_t save_interval); // Uses naive dynamics to
evolve the causet.

uint_fast32_t dismantle_and_record(const uint_fast64_t seed,
const uint_fast32_t save_interval); // Removes links until no
events are left. Returns the # of steps needed to reach
f_min.

void dismantle_and_save(const uint_fast64_t seed, const
uint_fast32_t save_step, const uint_fast32_t save_interval);

void set_id(std::string unique_id);
void update_possible_transitions();
double f(); // Returns the ordering fraction f relative N_active.
double f_N(); // Returns the ordering fraction f relative N.
void print_order_table();
void save_order_table(const std::string post_id); // file-type

should NOT be included!
void save_to_file(const std::string post_id); // file-type should

NOT be included!
friend std::ostream& operator <<(std::ostream& os, World& w);

};

#endif // WORLD_H_INCLUDED

Source file

#include "world.h"
#include "transition.h"
#include "event.h"
#include "narray.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <random>
#include <cmath>
#include <stdlib.h>

using std::cout;
using std::endl;
using std::ostream;
using std::ofstream;
using std::ifstream;
using std::stringstream;
using std::string;
using std::mt19937_64;
using std::uniform_real_distribution;
using std::abs;

World::World(const int sum_events){
N = sum_events;
N_active = N;
the_World.allocate(N);
iterator_list.allocate(N+1);
possible_transitions.allocate(N*N); // More than ever needed.
for (int i=0; i<N; ++i){

the_World.push_back(Event(i, N));
iterator_list.push_back(i);
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if(i>0){
the_World[i-1].up_links.push_back(i);
the_World[i].down_links.push_back(i-1);

}
}
iterator_list.push_back(N);
order_table = new int*[N];
order_table[0] = new int[N*N];
for(int i=1; i<N; i++){

order_table[i] = order_table[i-1] + N;
}
for(int i=0; i<N; ++i){

for(int j=0; j<N; ++j){
if(j>i){

order_table[i][j] = 1;
}else if(i==j){

order_table[i][j] = 0;
}else{

order_table[i][j] = -1;
}

}
}
set_id("");
N_links = count_up_links();
update_possible_transitions();

}

World::World(string filename){
id = filename;
filename += ".world";
string input = "";
ifstream file (filename.c_str());
if(file.is_open()){

getline(file,input);
N = atoi(input.c_str());
N_active = N;
the_World.allocate(N);
iterator_list.allocate(N+1);
possible_transitions.allocate(N*N); // More than ever needed.
for(int i=0; i<N; ++i){

the_World.push_back(Event(i, N));
iterator_list.push_back(i);

}
iterator_list.push_back(N);
int l = 0;
int id_b = -1;
for(int id_a=0; id_a<N; ++id_a){

getline(file,input);
l = atoi(input.c_str());
for(int j=0; j<l; ++j){

getline(file,input);
id_b = atoi(input.c_str());
the_World[id_a].up_links.push_back(id_b);
the_World[id_b].down_links.push_back(id_a);

}
}
file.close();
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order_table = new int*[N];
order_table[0] = new int[N*N];
for(int i=1; i<N; i++){

order_table[i] = order_table[i-1] + N;
}
for(int i=0; i<N; ++i){

for(int j=0; j<N; ++j){
if(a_precedes_b_req(i,j)){

order_table[i][j]=1;
}else if(b_precedes_a_req(i,j)){

order_table[i][j]=-1;
}else{

order_table[i][j]=0;
}

}
}
update_il_and_Na();
update_possible_transitions();
N_links = count_up_links();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

World::World(World& other){
N = other.N;
iterator_list.allocate(N+1);
possible_transitions.allocate(N*N);
id = other.id;
the_World = other.the_World;
order_table = new int*[N];
order_table[0] = new int[N*N];
for(int i=1; i<N; i++){

order_table[i] = order_table[i-1] + N;
}
for(int i=0; i<N; ++i){

iterator_list.push_back(i);
for(int j=0; j<N; ++j){

if(a_precedes_b_req(i,j)){
order_table[i][j]=1;

}else if(b_precedes_a_req(i,j)){
order_table[i][j]=-1;

}else{
order_table[i][j]=0;

}
}

}
iterator_list.push_back(N);
update_il_and_Na();
update_possible_transitions();
N_links = count_up_links();

}

World::~World(){
delete [] order_table[0];
order_table[0] = 0;
delete [] order_table;
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order_table = 0;
}

void World::order(){
iterator_list.erase_all();
N_active = N;
for(int i=0; i<N; ++i){

the_World[i].up_links.erase_all();
the_World[i].down_links.erase_all();
iterator_list.push_back(i);
if(i>0){

the_World[i-1].up_links.push_back(i);
the_World[i].down_links.push_back(i-1);

}
for(int j=0; j<N; ++j){

if(j>i){
order_table[i][j] = 1;

}else if(i==j){
order_table[i][j] = 0;

}else{
order_table[i][j] = -1;

}
}

}
iterator_list.push_back(N);
N_links = count_up_links();

}

void World::disorder(){
for(int i=0; i<N; ++i){

the_World[i].up_links.erase_all();
the_World[i].down_links.erase_all();
for(int j=0; j<N; ++j){

order_table[i][j]=0;
}

}
update_possible_transitions();
update_il_and_Na();
N_links = 0;

}

bool World::h_link_allowed(const int id_a, const int id_b){
Narray<int>& a_d = the_World[id_a].down_links;
Narray<int>& b_u = the_World[id_b].up_links;
for(int j=0; j<a_d.length(); ++j){

if(order_table[a_d[j]][id_b]!=1){
return false;

}
}
for(int j=0; j<b_u.length(); ++j){

if(order_table[id_a][b_u[j]]!=1){
return false;

}
}
return true; // If all tests above are passed, this is the

conclusion.
}
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void World::create_missing_links(const int id_a){
Narray<int> *a = &the_World[id_a].up_links;
for(int i=0; i<(*a).length(); ++i){

Event& c = the_World[(*a)[i]];
if(!c.down_linked(id_a)){

c.down_link(id_a);
}

}
a = &the_World[id_a].down_links;
for(int i=0; i<(*a).length(); ++i){

Event& c = the_World[(*a)[i]];
if(!c.up_linked(id_a)){

c.up_link(id_a);
++N_links;

}
}

}

/* Note: The following member-function is NOT a simple table-
lookup! It’s purpose is to determine whether there’s a chain
of links connecting a and b, specially if the order_table
already states that a<b (Thus, it might be used to "fill in"
"missing links").

*/
bool World::a_precedes_b(const int id_a, const int id_b){

if(id_a==id_b){
// Intentionally left empty. This is simply a time-saver.

}else{
Narray<int>& a = the_World[id_a].up_links;
Narray<int>& b = the_World[id_b].down_links;
for(int i=0; i<a.length(); ++i){

for(int j=0; j<b.length(); ++j){
if(a[i]==id_b || b[j]==id_a){

return true;
}
else{

if(order_table[a[i]][id_b]==1){
return true;

}else if(order_table[id_a][b[j]]==1){
return true;

}
}

}
}

}
return false;

}

/* Note: The following member-function checks whether a<b using
the up-links lists, and can thus be used to check part of the
consistency of the order_table.

*/
bool World::a_precedes_b_req(const int id_a, const int id_b){

bool precedes = false;
if(id_a == id_b){

// Intentionally left empty. This is simply a time-saver.
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}else{
Narray<int>& a = the_World[id_a].up_links;
for(int i=0; i<a.length(); ++i){

if(a[i] == id_b){
return true;

}else{
precedes = a_precedes_b_req(a[i], id_b);
if(precedes){

return true;
}

}
}

}
return precedes;

}

/* Note: The following member-function checks whether a>b using
the down-links lists, and can thus be used to check part of
the consistency of the order_table.

*/
bool World::b_precedes_a_req(const int id_a, const int id_b){

bool succeed = false;
if(id_a == id_b){

// Intentionally left empty. This is simply a time-saver.
}else{

Narray<int>& a = the_World[id_a].down_links;
for(int i=0; i<a.length(); ++i){

if(a[i] == id_b){
return true;

}else{
succeed = b_precedes_a_req(a[i], id_b);
if(succeed){

return true;
}

}
}

}
return succeed;

}

/* Note: The following member-function assumes a<b.

*/
void World::delink_ordered_pair(const int id_a, const int id_b){

Event& a = the_World[id_a];
Event& b = the_World[id_b];
// Start actual code. Above just for readability.
order_table[id_a][id_b] = 0;
order_table[id_b][id_a] = 0;
a.up_links.erase_element(id_b);
--N_links;
for(int i=0; i<b.up_links.length(); ++i){

if(!a_precedes_b(id_a, b.up_links[i])){
a.up_link(b.up_links[i]);
the_World[b.up_links[i]].down_link(id_a);
++N_links;

}
}
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b.down_links.erase_element(id_a);
for(int i=0; i<a.down_links.length(); ++i){

if(!a_precedes_b(a.down_links[i], id_b)){
b.down_link(a.down_links[i]);
the_World[a.down_links[i]].up_link(id_b);
++N_links;

}
}

}

void World::uplink(const int id_a, const int id_b){
Event& a = the_World[id_a];
Event& b = the_World[id_b];
// Start actual code. Above just for readability.
a.up_link(id_b);
b.down_link(id_a);
order_table[id_a][id_b] = 1;
order_table[id_b][id_a] = -1;
++N_links;
// Deletion of illegal links upwards from a or downwards from b.
for(int i=0; i<b.up_links.length(); ++i){

for(int j=0; j<a.up_links.length(); ++j){
if(a.up_links[j]==b.up_links[i]){

Event& c = the_World[a.up_links[j]];
c.down_links.erase_element(id_a);
a.up_links.erase(j);
--N_links;

}
}

}
for(int i=0; i<a.down_links.length(); ++i){

for(int j=0; j<b.down_links.length(); ++j){
if(b.down_links[j]==a.down_links[i]){

Event& c = the_World[b.down_links[j]];
c.up_links.erase_element(id_b);
b.down_links.erase(j);
--N_links;

}
}

}
}

void World::evolve_and_save(const uint_fast64_t seed, const
uint_fast64_t steps, const uint_fast64_t step_length, const
uint_fast64_t save_interval){
mt19937_64 gen(seed); // Random number generator.
uniform_real_distribution<double> rand_double(0, 1);
stringstream post_id;
post_id << ".f";
int f_value = 100*f_N();
if(f_value < 10){

post_id << "00";
}else if(f_value < 100){

post_id << "0";
}
post_id << f_value << "(seed" << seed << ")c" << steps << "(" <<

step_length << ")";
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string datafile_name = id + post_id.str() + ".txt";
string savefile_post_id = post_id.str();
double f_min = f_N();
double f_max = f_min;
Narray<double> temp(step_length);
ofstream file (datafile_name.c_str());
if(file.is_open()){

file << 0 << "\t" << f_min << "\t" << f_max << endl;
for(uint_fast64_t i=0; i<steps; ++i){

int j = rand_double(gen) * possible_transitions.length();
transition(possible_transitions[j]);
update_possible_transitions();
temp.push_back(f_N());
if(i%step_length==step_length-1){

f_min = temp[0];
f_max = f_min;
for(int j=1; j<temp.length(); ++j){

if(temp[j]<f_min){
f_min = temp[j];

}else if(temp[j]>f_max){
f_max = temp[j];

}
}
file << i+1 << "\t" << f_min << "\t" << f_max << endl

;
temp.erase_all();

}
if(i%save_interval==save_interval-1){

save_to_file(savefile_post_id);
}

}
file.close();
save_to_file(savefile_post_id);

}else{
cout << "ERROR: Couldn’t open " << datafile_name << endl;

}
}

uint_fast32_t World::dismantle_and_record(const uint_fast64_t seed,
const uint_fast32_t save_interval){
mt19937_64 gen(seed); // Random number generator.
uniform_real_distribution<double> rand_double(0, 1);
stringstream post_idstrm;
post_idstrm << ".dismantled(seed" << seed << ")";
string info_file_name = id + post_idstrm.str() + ".info";
string datafile_name = id + post_idstrm.str() + ".txt";
string savefile_post_id = post_idstrm.str();
string saveinfofile_name = id + post_idstrm.str() + ".saveinfo";
uint_fast32_t i = 0; // Counter.
double f_temp = f();
double f_min = f_temp;
uint_fast32_t i_min = 0;
int N_f_min = N_active;
ofstream file (datafile_name.c_str());
if(file.is_open()){

file << 0 << "\t" << f_temp << "\t" << N_active << endl;
while(N_active>2){
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int n = rand_double(gen) * N_links + 1;
int j = 0;
int id_a = -1;
while(n>j){

id_a = iterator_list[id_a+1];
j += the_World[id_a].up_links.length();

}
int k = 0;
j -= the_World[id_a].up_links.length(); // Re-sets j.
++j; // Synchronizes j with n.
while(n>j){

++k;
++j;

}
int id_b = the_World[id_a].up_links[k];
delink_ordered_pair(id_a,id_b);
update_il_and_Na();
++i;
f_temp = f();
if(f_temp < f_min){

f_min = f_temp;
i_min = i;
N_f_min = N_active;

}
file << i << "\t" << f_temp << "\t" << N_active << endl;
if(i%save_interval==0){

save_to_file(savefile_post_id);
ofstream info_file (saveinfofile_name.c_str());
if(info_file.is_open()){

info_file << "Runs:\t" << i+1 << endl;
info_file.close();

}
}

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << datafile_name << endl;

}
file.open(info_file_name.c_str());
if(file.is_open()){

file << "Seed:\t\t\t" << seed << endl;
file << "Total steps:\t\t" << i << endl;
file << "-------------------------------------" << endl;
file << "f_min:\t\t\t" << f_min << endl;
file << "Step at which f=f_min:\t" << i_min << endl;
file << "Active points at f_min:\t" << N_f_min << endl;
file.close();

}else{
cout << "ERROR: Couldn’t open " << info_file_name << endl;

}
return i_min;

}

void World::dismantle_and_save(const uint_fast64_t seed, const
uint_fast32_t save_step, const uint_fast32_t save_interval){
mt19937_64 gen(seed); // Random number generator.
uniform_real_distribution<double> rand_double(0, 1);
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stringstream post_idstrm;
post_idstrm << ".dismantled(seed" << seed << ")run" << save_step;
string savefile_post_id = post_idstrm.str();
string saveinfofile_name = id + post_idstrm.str() + ".saveinfo";
uint_fast32_t i=0;
while(i<save_step){

int n = rand_double(gen) * N_links + 1;
int j = 0;
int id_a = -1;
while(n>j){

id_a = iterator_list[id_a+1];
j += the_World[id_a].up_links.length();

}
int k = 0;
j -= the_World[id_a].up_links.length(); // Re-sets j.
++j; // Synchronizes j with n.
while(n>j){

++k;
++j;

}
int id_b = the_World[id_a].up_links[k];
delink_ordered_pair(id_a,id_b);
update_il_and_Na();
if(i%save_interval==0){

save_to_file(savefile_post_id);
ofstream info_file (saveinfofile_name.c_str());
if(info_file.is_open()){

info_file << "Runs:\t" << i+1 << endl;
info_file.close();

}
}
++i;

}
save_to_file(savefile_post_id);
ofstream info_file (saveinfofile_name.c_str());
if(info_file.is_open()){

info_file << "f_min:\t\t" << f() << endl;
info_file << "Runs:\t\t" << i << endl;
info_file << "Active points:\t" << N_active << endl;
info_file << "-------------------------------------" << endl;
info_file << "Minimum f reached." << endl;
info_file.close();

}
}

void World::set_id(string unique_id){
stringstream tempid;
tempid << N;
tempid << unique_id;
id = tempid.str();

}

void World::transition(Transition T){
if(T.order){

uplink(T.id_a, T.id_b);
}else{

delink_ordered_pair(T.id_a, T.id_b);
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}
}

void World::update_possible_transitions(){
possible_transitions.erase_all();
for(int i=0; i<N; ++i){

Event& a = the_World[i];
// Update the list of possible transitions.
for(int j=0; j<a.up_links.length(); ++j){

Transition temp(false, i, a.up_links[j]);
possible_transitions.push_back(temp);

}
for(int j=0; j<N; ++j){

if(i!=j && order_table[i][j]==0){
if(h_link_allowed(i,j)){

Transition temp(true, i, j);
possible_transitions.push_back(temp);

}
}

}
}

}

void World::update_il_and_Na(){
N_active = 0;
for(int i = 0; i<N; ++i){

int j = i;
while(i<N && the_World[i].up_links.length()==0 && the_World[i

].down_links.length()==0){
++i;

}
iterator_list[j] = i;
if(i<N){

++N_active;
}

}
}

double World::f(){
double x = 0.0;
for(int i=iterator_list[0]; i<N;){

for(int j=iterator_list[0]; j<N;){
if(order_table[i][j]==1){

++x;
}
j = iterator_list[j+1];

}
i = iterator_list[i+1];

}
double y = N_active*(N_active-1.0)/2.0;
return x/y;

}

double World::f_N(){
double x = 0.0;
for(int i=0; i<N; ++i){

for(int j=0; j<N; ++j){
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if(order_table[i][j]==1){
++x;

}
}

}
double y = N*(N-1.0)/2.0;
return x/y;

}

int World::count_up_links(){
int total_links = 0;
for(int i=0; i<N; ++i){

total_links += the_World[i].up_links.length();
}
return total_links;

}

void World::print_order_table(){
for(int i=0; i<N; ++i){

cout << i << "\t|";
for(int j=0; j<N; ++j){

if(j!=0){
cout << " ";

}
if(order_table[i][j]!=-1){

cout << " ";
}
cout << order_table[i][j];

}
cout << "|" << endl;

}
}

void World::save_order_table(const string post_id){
string filename = id + post_id + ".txt";
ofstream file (filename.c_str());
if(file.is_open()){

for(int i=0; i<N; ++i){
file << i << "\t|";
for(int j=0; j<N; ++j){

if(j!=0){
file << " ";

}
if(order_table[i][j]!=-1){

file << " ";
}
file << order_table[i][j];

}
file << "|" << endl;

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

void World::save_to_file(const string post_id){
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string filename1 = id + post_id + ".world.txt"; // Redundant file
. Formatted for human eyes.

string filename2 = id + post_id + ".world";
ofstream file1 (filename1.c_str());
ofstream file2 (filename2.c_str());
if(file1.is_open()){

if(file2.is_open()){
file2 << N << endl;
for(int i=0; i<N; ++i){

Narray<int>& i_up_links = the_World[i].up_links;
file1 << i << "\t|";
file2 << i_up_links.length() << endl;
for(int j=0; j<i_up_links.length(); ++j){

file1 << i_up_links[j];
file2 << i_up_links[j] << endl;
if(j<i_up_links.length()-1){

file1 << ", ";
}

}
file1 << endl;

}
file2.close();

}else{
cout << "ERROR: Couldn’t open " << filename2 << endl;

}
file1.close();

}else{
cout << "ERROR: Couldn’t open " << filename1 << endl;

}
}

ostream& operator <<(ostream& os, World& w){
for(int i=0; i<w.N; i++){

os << w.the_World[i] << endl;
}
return os;

}

A.2 Analytical tools

A.2.1 The ‘Worldview’ class
Header file

#ifndef WORLDVIEW_H_INCLUDED
#define WORLDVIEW_H_INCLUDED

#include "narray.h"
#include "world.h"
#include <string>

class Worldview: public World{
private:

Narray<Narray<int>> temporal_layer; // A list of the id-s of
events belonging to temporal layer n.
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Narray<Narray<int>> group; // A list of the id-s of events
belonging to group n.

Narray<int> minimal_layer;
Narray<int> maximal_layer;
int** shared_up_links;
int** shared_down_links;
int** distance_table_min_layer;
int** distance_table_max_layer;
/* Utility functions of different kinds. */
void initialize_groups();
void initialize_temporal_layer();

public:
Worldview(World& basis);
~Worldview();
void save_info_file(const std::string post_id);
void save_layers(const std::string post_id); // Saves the

elements of the temporal layers to a text file.
void save_layer_plot(const std::string post_id, const

uint_fast64_t seed); // Uses a random spatial coordinate.
void save_shared_links_plots(const std::string post_id);
void save_distance_tables(const std::string post_id);
void save_distance_histograms(const std::string post_id);
void save_distance_histograms(const int group_id, const std::

string post_id); // Provides histograms per shell.
void save_layer_histogram(const std::string post_id);
void save_max_distance_histograms(const int group_id, const std::

string post_id); // Histogram of longest minimal connected
antichains.

};

#endif // WORLDVIEW_H_INCLUDED

Source file

#include "worldview.h"
#include "narray.h"
#include "world.h"
#include <cmath> // sqrt.
#include <fstream> // ofstream, ifstream.
#include <iostream> // cout, endl.
#include <random> // mt19937_64, uniform_real_distribution.
#include <string>
#include <sstream> // stringstream.

using std::cout;
using std::endl;
using std::mt19937_64;
using std::ofstream;
using std::string;
using std::stringstream;
using std::uniform_real_distribution;

/* When creating a Worldview from a World, any isolated events
get removed. As a part of this process, the remaining events
are renamed so that they can easily be iterated through with-
out having to use the cumbersome iterator list and N_active
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defined in World. Hence, these variables are completely
ignored by the constructor below.

*/
Worldview::Worldview(World& basis): World(basis.N_active){

id = basis.id;
temporal_layer.allocate(N);
minimal_layer.allocate(N);
maximal_layer.allocate(N);
int j = 0; // Counter. Could also be used for consistency-

checking.
int old_N = basis.N;
Narray<int> old_ids(old_N); // List used to temporarily link "old

" and "new" event ID-s.
shared_down_links = new int*[N];
shared_up_links = new int*[N];
distance_table_min_layer = new int*[N];
distance_table_max_layer = new int*[N];
shared_down_links[0] = new int[N*N];
shared_up_links[0] = new int[N*N];
distance_table_min_layer[0] = new int[N*N];
distance_table_max_layer[0] = new int[N*N];
for(int i=1; i<N; i++){

shared_down_links[i] = shared_down_links[i-1] + N;
shared_up_links[i] = shared_up_links[i-1] + N;
distance_table_min_layer[i] = distance_table_min_layer[i-1] +

N;
distance_table_max_layer[i] = distance_table_max_layer[i-1] +

N;
}
for(int i=0; i<old_N; ++i){

old_ids.push_back(-1); // Temporary placeholders.
}
for(int i=basis.iterator_list[0]; i<old_N;){

Event temp(basis.the_World[i]);
temp.set_N(N);
the_World[j] = temp;
old_ids[i] = j;
++j;
i = basis.iterator_list[i+1];

}
for(int i=0; i<N; ++i){ // Renames all link-IDs, and identifies

top- and bottom-layer events.
the_World[i].id = i;
for(int j=0; j<the_World[i].down_links.length(); ++j){ // Re-

use of j.
the_World[i].down_links[j] = old_ids[the_World[i].

down_links[j]];
}
if(the_World[i].down_links.length()==0){

minimal_layer.push_back(i);
}
for(int j=0; j<the_World[i].up_links.length(); ++j){ // Re-

use of j.
the_World[i].up_links[j] = old_ids[the_World[i].up_links[

j]];
}
if(the_World[i].up_links.length()==0){
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maximal_layer.push_back(i);
}

}
for(int i=0; i<N; ++i){

for(j=0; j<N; ++j){ // Re-use of j.
if(a_precedes_b_req(i,j)){

order_table[i][j]=1;
}else if(b_precedes_a_req(i,j)){

order_table[i][j]=-1;
}else{

order_table[i][j]=0;
}
// Update shared-links-tables.
int sum_down = 0;
int sum_up = 0;
if(i!=j){

for(int k=0; k<the_World[i].down_links.length(); ++k)
{
int id_a = the_World[i].down_links[k];
if(the_World[j].down_links.contains_element(id_a)

){
++sum_down;

}
}
for(int k=0; k<the_World[i].up_links.length(); ++k){

int id_a = the_World[i].up_links[k];
if(the_World[j].up_links.contains_element(id_a)){

++sum_up;
}

}
}
shared_down_links[i][j] = sum_down;
shared_up_links[i][j] = sum_up;
// Initialize distance-tables. -1=\inf, -2=should not be

included, -3=undetermined.
if(i!=j){

if(the_World[i].down_links.length()==0 && the_World[j
].down_links.length()==0){
distance_table_max_layer[i][j] = -2;
if(shared_up_links[i][j]>0){

distance_table_min_layer[i][j] = 1;
}else{

distance_table_min_layer[i][j] = -3;
}

}else if(the_World[i].up_links.length()==0 &&
the_World[j].up_links.length()==0){
distance_table_min_layer[i][j] = -2;
if(shared_down_links[i][j]>0){

distance_table_max_layer[i][j] = 1;
}else{

distance_table_max_layer[i][j] = -3;
}

}else{
distance_table_min_layer[i][j] = -2;
distance_table_max_layer[i][j] = -2;

}
}else{
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if(the_World[i].down_links.length()==0 && the_World[j
].down_links.length()==0){
distance_table_min_layer[i][j] = 0;
distance_table_max_layer[i][j] = -2;

}else if(the_World[i].up_links.length()==0 &&
the_World[j].up_links.length()==0){
distance_table_min_layer[i][j] = -2;
distance_table_max_layer[i][j] = 0;

}else{
distance_table_min_layer[i][j] = -2;
distance_table_max_layer[i][j] = -2;

}
}

}
}
// Update distance-tables.
for(int i=0; i<N; ++i){

int neighbors_min = 0;
int neighbors_max = 0;
for(j=0; j<N; ++j){ // Re-use of j.

if(distance_table_min_layer[i][j]==1){
++neighbors_min;

}else if(distance_table_max_layer[i][j]==1){
++neighbors_max;

}
}
if(neighbors_min==0){

for(j=0; j<N; ++j){ // Re-use of j.
if(distance_table_min_layer[i][j]==-3){

distance_table_min_layer[i][j] = -1;
}
if(distance_table_min_layer[j][i]==-3){

distance_table_min_layer[j][i] = -1;
}

}
}
if(neighbors_max==0){

for(j=0; j<N; ++j){ // Re-use of j.
if(distance_table_max_layer[i][j]==-3){

distance_table_max_layer[i][j] = -1;
}
if(distance_table_max_layer[j][i]==-3){

distance_table_max_layer[j][i] = -1;
}

}
}

}
bool finished = false;
int r = 1; // Distance.
while(!finished){

for(int i=0; i<N; ++i){
for(j=0; j<N; ++j){ // Re-use of j.

if(distance_table_min_layer[i][j]==r){
for(int k=0; k<N; ++k){

if(distance_table_min_layer[j][k]==1){
if(distance_table_min_layer[i][k]==-3){

distance_table_min_layer[i][k] = r+1;
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}
}

}
}else if(distance_table_max_layer[i][j]==r){

for(int k=0; k<N; ++k){
if(distance_table_max_layer[j][k]==1){

if(distance_table_max_layer[i][k]==-3){
distance_table_max_layer[i][k] = r+1;

}
}

}
}

}
}
// Check if tables are finished.
finished = true;
for(int i=0; i<N; ++i){

for(j=0; j<N; ++j){ // Re-use of j.
if(distance_table_min_layer[i][j]==-3){

if(r<N){
finished = false;
goto check_done;

}else{
distance_table_min_layer[i][j] = -1;

}
}else if(distance_table_max_layer[i][j]==-3){

if(r<N){
finished = false;
goto check_done;

}else{
distance_table_max_layer[i][j] = -1;

}
}

}
}
check_done:
++r;

}
initialize_groups();
initialize_temporal_layer();

}

Worldview::~Worldview(){
delete [] shared_up_links[0];
shared_up_links[0] = 0;
delete [] shared_up_links;
shared_up_links = 0;
delete [] shared_down_links[0];
shared_down_links[0] = 0;
delete [] shared_down_links;
shared_down_links = 0;
delete [] distance_table_max_layer[0];
distance_table_max_layer[0] = 0;
delete [] distance_table_max_layer;
distance_table_max_layer = 0;
delete [] distance_table_min_layer[0];
distance_table_min_layer[0] = 0;
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delete [] distance_table_min_layer;
distance_table_min_layer = 0;

}

void Worldview::initialize_groups(){
Narray<int> group_list(N);
for(int i=0; i<N; ++i){

group_list.push_back(-1);
}
int N_groups = 0;
for(int i=0; i<N; ++i){

if(group_list[i]==-1){
++N_groups;
if(distance_table_min_layer[i][i]==0){

for(int j=0; j<N; ++j){
if(distance_table_min_layer[i][j]>=0){ // This

will also assign a group_list to event i.
group_list[j] = N_groups-1;

}
}
for(int j=0; j<N; ++j){

for(int k=0; k<N; ++k){
if(group_list[k]==group_list[i]){

if(a_precedes_b(k,j)){
group_list[j] = N_groups-1;

}
}

}
}

}else if(distance_table_max_layer[i][i]==0){
for(int j=0; j<N; ++j){

if(distance_table_max_layer[i][j]>=0){ // This
will also assign a group to event i.
group_list[j] = N_groups-1;

}
}
for(int j=0; j<N; ++j){

for(int k=0; k<N; ++k){
if(group_list[k]==group_list[i]){

if(a_precedes_b(j,k)){
group_list[j] = N_groups-1;

}
}

}
}

}else{ // There might be events which are neither in the
top ~ nor bottom layer!
group_list[i] = N_groups-1;
for(int j=0; j<N; ++j){

if(a_precedes_b(j,i)){
group_list[j] = N_groups-1;

}else if(a_precedes_b(i,j)){
group_list[j] = N_groups-1;

}
}
for(int j=0; j<N; ++j){

for(int k=0; k<N; ++k){
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if(group_list[k]==group_list[i]){
if(a_precedes_b(j,k)){

group_list[j] = N_groups-1;
}else if(a_precedes_b(k,j)){

group_list[j] = N_groups-1;
}

}
}

}
}

}
}
group.allocate(N_groups);
Narray<int> temp(N);
for(int n=0; n<N_groups; ++n){

group.push_back(temp);
for(int i=0; i<N; ++i){

if(group_list[i]==n){
group[n].push_back(i);

}
}

}
// Sort the groups according to size using insertion sort.
for(int i=1; i<N_groups; ++i){

temp = group[i];
int j = i-1;
while(temp.length()>group[j].length() && j>0){

--j;
}
for(int k=i-1; k>j; --k){

group[k+1] = group[k];
}
if(temp.length()>group[j].length()){

group[j+1] = group[j];
group[j]=temp;

}else{
group[j+1]=temp;

}
}

}

void Worldview::initialize_temporal_layer(){
Narray<int> temp(N);
// Establish the bottom layer, equal to the minimal layer.
temporal_layer.push_back(temp);
for(int i=0; i<N; ++i){

if(the_World[i].down_links.length()==0){
temporal_layer[0].push_back(i);

}
}
// Attach remaining points, and move them up to their correct

layer.
for(int i=1; i<N; ++i){

temporal_layer.push_back(temp);
for(int j=0; j<temporal_layer[i-1].length(); ++j){ // Re-use

of j.
int id_a = temporal_layer[i-1][j];
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for(int k=0; k<the_World[id_a].up_links.length(); ++k){
int id_b = the_World[id_a].up_links[k];
if(!temporal_layer[i].contains_element(id_b)){

temporal_layer[i].push_back(id_b);
}

}
}

}
// Erase misplaced, duplicated id-s, and empty layers.
for(int i=N-1; i>0; --i){

if(temporal_layer[i].length()!=0){
for(int j=0; j<temporal_layer[i].length(); ++j){ // Re-

use of j.
int id_a = temporal_layer[i][j];
for(int k=i-1; k>-1; --k){

temporal_layer[k].erase_element(id_a); // Deletes
id_a iff temporal_layer[k] contains it.

}
}

}else{
temporal_layer.erase(i); // Deletes all empty layers (

which MUST be at the top).
}

}
}

void Worldview::save_info_file(const string post_id){
string filename = id + post_id + ".info";
ofstream file (filename.c_str());
if(file.is_open()){

int N_b = minimal_layer.length();
int N_t = maximal_layer.length();
file << "Bottom layer points [N_b]:\t" << N_b << endl;
file << "Top layer points [N_t]:\t\t" << N_t << endl;
file << "Total points [N]:\t\t" << N << endl;
file << endl << "Ratio [N_b/N_t]:\t\t" << (1.0*N_b)/(1.0*N_t)

<< endl;
file << "Ratio [N_b/N]:\t\t\t" << (1.0*N_b)/(1.0*N) << endl;
file << "Ratio [N_t/N]:\t\t\t" << (1.0*N_t)/(1.0*N) << endl;
file << endl << endl << "------------------------------";
file << "-----------------------------" << endl;
file << "Group\t\t#total\t\t#bottom\t\t#top" << endl;
file << "------------------------------";
file << "-----------------------------" << endl;
for(int i=0; i<group.length(); ++i){

file << i << "\t\t" << group[i].length() << "\t\t";
N_b = 0; // Re-use.
N_t = 0; // Re-use.
for(int j=0; j<group[i].length(); ++j){

int id_a = group[i][j];
if(distance_table_min_layer[id_a][id_a]==0){

++N_b;
}else if(distance_table_max_layer[id_a][id_a]==0){

++N_t;
}

}
file << N_b << "\t\t" << N_t << endl;
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}
file << "------------------------------";
file << "-----------------------------" << endl;
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

void Worldview::save_layers(const string post_id){
string filename = id + post_id + ".txt";
ofstream file (filename.c_str());
if(file.is_open()){

file << "Layer\tPoints" << endl;
file << "------------------------------";
file << "-----------------------------" << endl;
for(int i=0; i<temporal_layer.length(); ++i){

file << i << "\t";
int j = 0;
for(;j<temporal_layer[i].length()-1; ++j){

file << temporal_layer[i][j] << ", ";
}
file << temporal_layer[i][j] << endl;

}
file << "------------------------------";
file << "-----------------------------" << endl;
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

void Worldview::save_layer_plot(const string post_id, const
uint_fast64_t seed){
string filename = id + post_id + ".plot";
ofstream file (filename.c_str());
if(file.is_open()){

mt19937_64 gen(seed); // Random number generator.
uniform_real_distribution<double> rand_double(0, 1);
for(int i=0; i<N; ++i){

int t_i = 0;
for(int j=0; j<temporal_layer.length(); ++j){

if(temporal_layer[j].contains_element(i)){
t_i = j;
break;

}
}
double x_i = 0.5*N*(2*rand_double(gen) - 1);
file << x_i << "\t" << t_i << endl;

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

void Worldview::save_shared_links_plots(const string post_id){
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string filename_ul = id + post_id + "_up.plot";
string filename_dl = id + post_id + "_down.plot";
string infofilename = id + post_id + ".info";
int total_ul = 0;
int total_dl = 0;
double N_ul = N - maximal_layer.length();
double N_dl = N - minimal_layer.length();
ofstream file_ul (filename_ul.c_str());
if(file_ul.is_open()){

ofstream file_dl (filename_dl.c_str());
if(file_dl.is_open()){

for(int i=0; i<N; ++i){
for(int j=0; j<N; ++j){

if(distance_table_max_layer[i][j]==-2){
int sum = shared_up_links[i][j];
total_ul += sum;
file_ul << i << "\t" << j << "\t" << sum <<

endl;
}else if(distance_table_min_layer[i][j]==-2){

int sum = shared_down_links[i][j];
total_dl += sum;
file_dl << i << "\t" << j << "\t" << sum <<

endl;
}

}
}
file_dl.close();

}else{
cout << "ERROR: Couldn’t open " << filename_dl << endl;

}
file_ul.close();
file_ul.open(infofilename.c_str()); // Re-use.
if(file_ul.is_open()){

double mean_ul_1 = 1.0*total_ul/(N_ul*N_ul-N_ul);
double mean_ul_2 = 1.0*total_ul/N_ul;
double mean_dl_1 = 1.0*total_dl/(N_dl*N_dl-N_dl);
double mean_dl_2 = 1.0*total_dl/N_dl;
file_ul << "Average shared up-links between two bottom

layer-points:\t" << mean_ul_1 << endl;
file_ul << "Average shared down-links between two top

layer-points:\t\t" << mean_dl_1 << endl << endl;
file_ul << "Average neighbors per bottom layer-point:\t\t

\t" << mean_ul_2 << endl;
file_ul << "Average neighbors per top layer-point:\t\t\t\

t" << mean_dl_2 << endl;
file_ul.close();

}else{
cout << "ERROR: Couldn’t open " << infofilename << endl;

}
}else{

cout << "ERROR: Couldn’t open " << filename_ul << endl;
}

}

void Worldview::save_distance_tables(const string post_id){
string filename_b = id + post_id + "_minimal_layer.plot";
string filename_t = id + post_id + "_maximal_layer.plot";
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ofstream file_b (filename_b.c_str());
int N_groups = group.length();
if(file_b.is_open()){

ofstream file_t (filename_t.c_str());
if(file_t.is_open()){

int i_b = 1; // i_b,j_b and i_t,j_t are used to rename
the points of the plots in order to avoid problems
with "missing points".

int i_t = 1;
for(int i=0; i<N_groups; ++i){

for(int j=0; j<group[i].length(); ++j){
int id_a = group[i][j];
int j_b = 1;
int j_t = 1;
for(int k=0; k<N_groups; ++k){

for(int l=0; l<group[k].length(); ++l){
int id_b = group[k][l];
if(distance_table_min_layer[id_a][id_b

]!=-2){
file_b << i_b << "\t" << j_b << "\t"

<< distance_table_min_layer[id_a
][id_b] << endl;

++j_b;
}else if(distance_table_max_layer[id_a][

id_b]!=-2){
file_t << i_t << "\t" << j_t << "\t"

<< distance_table_max_layer[id_a
][id_b] << endl;

++j_t;
}

}
}
if(j_b>1){

++i_b;
}
if(j_t>1){

++i_t;
}

}
}
file_t.close();

}else{
cout << "ERROR: Couldn’t open " << filename_t << endl;

}
file_b.close();

}else{
cout << "ERROR: Couldn’t open " << filename_b << endl;

}
}

void Worldview::save_distance_histograms(const string post_id){
string filename_b = id + post_id + "_minimal_layer.plot";
string filename_t = id + post_id + "_maximal_layer.plot";
ofstream file_b (filename_b.c_str());
if(file_b.is_open()){

ofstream file_t (filename_t.c_str());
if(file_t.is_open()){
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int N_b = minimal_layer.length();
int N_t = maximal_layer.length();
Narray<int> sum_b (N_b);
Narray<int> sum_t (N_t);
for(int r=1; r<N; ++r){

sum_b.erase_all();
sum_t.erase_all();
int total_sum_b = 0;
int total_sum_t = 0;
for(int i=0; i<N; ++i){

int temp_b = 0;
int temp_t = 0;
for(int j=0; j<N; ++j){

if(distance_table_min_layer[i][j]==r){
++total_sum_b;
++temp_b;

}else if(distance_table_max_layer[i][j]==r){
++total_sum_t;
++temp_t;

}
}
if(temp_b>0){

sum_b.push_back(temp_b);
}
if(temp_t>0){

sum_t.push_back(temp_t);
}

}
if(total_sum_b>0){

long double mean = 1.0*total_sum_b/N_b;
long double sigma = 0.0;
int i=0;
for(; i<sum_b.length(); ++i){

long double temp = 1.0*sum_b[i] - mean;
sigma += temp*temp;

}
for(; i<N_b; ++i){

sigma += mean*mean;
}
sigma = sqrt(sigma/N_b); // Makes sigma equal to

the standard derivation.
long double mean_min = mean - sigma;
long double mean_max = mean + sigma;
if(mean_min<0){ // mean_min<0 makes no physical

sense.
mean_min = 0;

}
file_b << r << "\t" << mean << "\t" << mean_min

<< "\t" << mean_max << endl;
}
if(total_sum_t>0){

long double mean = 1.0*total_sum_t/N_t;
long double sigma = 0.0;
int i=0;
for(; i<sum_t.length(); ++i){

long double temp = 1.0*sum_t[i] - mean;
sigma += temp*temp;
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}
for(; i<N_t; ++i){

sigma += mean*mean;
}
sigma = sqrt(sigma/N_t); // Makes sigma equal to

the standard derivation.
long double mean_min = mean - sigma;
long double mean_max = mean + sigma;
if(mean_min<0){ // mean_min<0 makes no physical

sense.
mean_min = 0;

}
file_t << r << "\t" << mean << "\t" << mean_min

<< "\t" << mean_max << endl;
}

}
file_t.close();

}else{
cout << "ERROR: Couldn’t open " << filename_t << endl;

}
file_b.close();

}else{
cout << "ERROR: Couldn’t open " << filename_b << endl;

}
}

void Worldview::save_distance_histograms(const int group_id, const
string post_id){
int N_b = 0;
int N_t = 0;
for(int i=0; i<group[group_id].length(); ++i){

int id_a = group[group_id][i];
if(distance_table_min_layer[id_a][id_a]==0){

++N_b;
}else if(distance_table_max_layer[id_a][id_a]==0){

++N_t;
}

}
Narray<Narray<int>> shell_b(N_b);
Narray<Narray<int>> shell_t(N_t);
int i_shell_b = 0;
int i_shell_t = 0;
Narray<int> temp_b(N_b);
Narray<int> temp_t(N_t);
shell_b.push_back(temp_b);
shell_t.push_back(temp_t);
for(int r=0; r<N; ++r){

int sum_b = 0;
int sum_t = 0;
for(int i=0; i<N; ++i){

if(group[group_id].contains_element(i)){
int r_max = 0;
if(distance_table_min_layer[i][i]==0){

for(int j=0; j<N; ++j){
if(distance_table_min_layer[i][j]>r_max){

r_max = distance_table_min_layer[i][j];
}
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}
if(r_max==r){

shell_b[i_shell_b].push_back(i);
++sum_b;

}
}else if(distance_table_max_layer[i][i]==0){

for(int j=0; j<N; ++j){
if(distance_table_max_layer[i][j]>r_max){

r_max = distance_table_max_layer[i][j];
}

}
if(r_max==r){

shell_t[i_shell_t].push_back(i);
++sum_t;

}
}

}
}
if(sum_b>0){

shell_b.push_back(temp_b);
++i_shell_b;

}
if(sum_t>0){

shell_t.push_back(temp_t);
++i_shell_t;

}
}
shell_b.erase(shell_b.length()-1); // Deletes the last element,

which is empty.
shell_t.erase(shell_t.length()-1); // Deletes the last element,

which is empty.
for(int i=0; i<shell_b.length(); ++i){

stringstream addendum;
addendum << "(Group" << group_id << "Shell" << i << ")";
string filename = id + addendum.str() + post_id + "

_minimal_layer.plot";
ofstream file (filename.c_str());
if(file.is_open()){

Narray<int> sum(N);
N_b = shell_b[i].length(); // Re-use;
for(int r=1; r<N; ++r){

sum.erase_all();
int total_sum = 0;
for(int j=0; j<N; ++j){

if(shell_b[i].contains_element(j)){
int temp = 0;
for(int k=0; k<N; ++k){

if(distance_table_min_layer[j][k]==r){
++total_sum;
++temp;

}
}
if(temp>0){

sum.push_back(temp);
}

}
}
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if(total_sum>0){
long double mean = 1.0*total_sum/N_b;
long double sigma = 0.0;
int j=0;
for(; j<sum.length(); ++j){

long double temp = 1.0*sum[j] - mean;
sigma += temp*temp;

}
for(; j<N_b; ++j){

sigma += mean*mean;
}
sigma = sqrt(sigma/N_b); // Makes sigma equal to

the standard derivation.
long double mean_min = mean - sigma;
long double mean_max = mean + sigma;
if(mean_min<0){ // mean_min<0 makes no physical

sense.
mean_min = 0;

}
file << r << "\t" << mean << "\t" << mean_min <<

"\t" << mean_max << endl;
}

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}
for(int i=0; i<shell_t.length(); ++i){

stringstream addendum;
addendum << "(Group" << group_id << "Shell" << i << ")";
string filename = id + addendum.str() + post_id + "

_maximal_layer.plot";
ofstream file (filename.c_str());
if(file.is_open()){

Narray<int> sum(N);
N_t = shell_t[i].length(); // Re-use;
for(int r=1; r<N; ++r){

sum.erase_all();
int total_sum = 0;
for(int j=0; j<N; ++j){

if(shell_t[i].contains_element(j)){
int temp = 0;
for(int k=0; k<N; ++k){

if(distance_table_max_layer[j][k]==r){
++total_sum;
++temp;

}
}
if(temp>0){

sum.push_back(temp);
}

}
}
if(total_sum>0){

long double mean = 1.0*total_sum/N_t;
long double sigma = 0.0;
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int j=0;
for(; j<sum.length(); ++j){

long double temp = 1.0*sum[j] - mean;
sigma += temp*temp;

}
for(; j<N_t; ++j){

sigma += mean*mean;
}
sigma = sqrt(sigma/N_t); // Makes sigma equal to

the standard derivation.
long double mean_min = mean - sigma;
long double mean_max = mean + sigma;
if(mean_min<0){ // mean_min<0 makes no physical

sense.
mean_min = 0;

}
file << r << "\t" << mean << "\t" << mean_min <<

"\t" << mean_max << endl;
}

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

}

void Worldview::save_layer_histogram(const string post_id){
string filename = id + post_id + ".plot";
ofstream file (filename.c_str());
if(file.is_open()){

for(int i=0; i<temporal_layer.length(); ++i){
file << i << "\t" << temporal_layer[i].length() << endl;

}
file.close();

}else{
cout << "ERROR: Couldn’t open " << filename << endl;

}
}

void Worldview::save_max_distance_histograms(const int group_id,
const string post_id){
stringstream addendum;
addendum << "(Group" << group_id << ")";
string filename_b = id + addendum.str() + post_id + "

_minimal_layer.plot";
string filename_t = id + addendum.str() + post_id + "

_maximal_layer.plot";
ofstream file_b (filename_b.c_str());
if(file_b.is_open()){

ofstream file_t (filename_t.c_str());
if(file_t.is_open()){

for(int r=0; r<N; ++r){
int sum_b = 0;
int sum_t = 0;
for(int i=0; i<N; ++i){

if(group[group_id].contains_element(i)){
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int r_max = 0;
if(distance_table_min_layer[i][i]==0){

for(int j=0; j<N; ++j){
if(distance_table_min_layer[i][j]>

r_max){
r_max = distance_table_min_layer[

i][j];
}

}
if(r_max==r){

++sum_b;
}

}else if(distance_table_max_layer[i][i]==0){
for(int j=0; j<N; ++j){

if(distance_table_max_layer[i][j]>
r_max){
r_max = distance_table_max_layer[

i][j];
}

}
if(r_max==r){

++sum_t;
}

}
}

}
if(sum_b>0){

file_b << r << "\t" << sum_b << endl;
}
if(sum_t>0){

file_t << r << "\t" << sum_t << endl;
}

}
file_t.close();

}else{
cout << "ERROR: Couldn’t open " << filename_t << endl;

}
file_b.close();

}else{
cout << "ERROR: Couldn’t open " << filename_b << endl;

}
}

A.3 Some usage examples

The following main file creates the log files necessary to recreate figure 5.2, and
in doing so also saves the two causets which are closer examined in figure 5.5:

#include "narray.h"
#include "event.h"
#include "transition.h"
#include "world.h"
#include "worldview.h"

int main(){
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int N = 64;
uint_fast64_t steps = 10000000;
uint_fast64_t step_l = 20000;
uint_fast64_t save_int = 1000000;
uint_fast64_t seed = 90073;
World theMatrix(N);
theMatrix.evolve_and_save(seed,steps,step_l,save_int);
theMatrix.disorder();
theMatrix.set_id("");
theMatrix.evolve_and_save(seed,steps,step_l,save_int);
return 0;

}
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