
Abstract

The quasiclassical theory of superconductivity is applied to diffusive nanowires
connecting normal-metal and superconducting bulk materials. The diffusion
equations for ferromagnetic junctions with spin-orbit coupling are generalized
to include non-equilibrium phenomena. The main result of this thesis is an
analytical method to calculate non-equilibrium quantities such as currents and
differential electrical conductivity in systems with arbitrary spin structure at zero
temperature. For more general systems that also include spin-orbit coupling, a
numerical method is derived. It is shown that the rotation of the magnetization
through the wire directly determines the long-range triplet density, reduces the
Zeeman splitting of the zero-bias conductance peak in the differential conductivity
spectrum. In systems with spin-orbit coupling it is found that both the triplet
density and the position and height of peaks in the conductivity of the junction
can be tuned by changing the relative orientation of the magnetization with
respect to the wire.
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Introduction

Since its discovery in 1911 by Heike Kamerlingh Onnes [1], superconductivity has
grown from a curious abnormality to an irreplaceable part of modern technology,
with applications ranging from electromagnets in MRI machines and particle
accelerators to measuring instruments so precise that they are used to define SI
units [2]. With ongoing research and development, it is not unreasonable to expect
many more applications to follow. Quantum computing, possibly the natural
successor of conventional computing, is benefiting heavily from the invention of
several superconducting structures [3, 4]. In future, superconductors may even
prove essential for the transition to carbon neutrality, with applications in both
power generation [5] and energy transport [6]. More recently, there has been a
growing effort to incorporate superconductors into the field of spintronics [7], a
research area that has provided the world with indispensable technology from the
first digital storage in the form of tape readers, to rapid access memory (RAM)
and modern solid state drives (SSDs).

Besides its ability to transport current without energy loss, superconductors
also have unique magnetic properties, as bulk superconducting materials expel
magnetic fields from their interior, and currents in loops of superconducting wire
can be used for perpetual magnetization. On smaller scales, comparable to the
London penetration depth, the interplay of superconductors and ferromagnets
allows for interesting spin behaviour. Some notable examples include triplet
injection [8], superconducting spin valves [9, 10] and electric control of the
superconducting critical temperature [11]. It is this fusion of ferromagnetism and
superconductivity on small scales that we will concern us with in this thesis.

In superconductors, the electric current is carried by pairs of electrons with
opposite momentum, and in the case of singlet pairs, also opposite spin [12]. As
magnetic interactions, either exchange interaction with the magnetized mate-
rial [13, 14] or external magnetic field, or orbital interaction with the magnetic
vector potential [15, 16], break these pairs, superconductors and ferromagnets
seem each other’s natural foes. By clever engineering however, either by tuning
the spin-orbit coupling [17], or by using inhomogeneous ferromagnets [18], it is
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possible to create spin-triplet Cooper pairs that persist even in the presence of
magnetic interactions [7, 19–22]. To better understand this interplay between
magnetism and superconductivity, we focus in this thesis on non-equilibrium ef-
fects in nanowire junctions between normal metal and superconducting reservoirs,
where we treat both wires with inhomogeneous magnetization and wires with
intrinsic spin-orbit coupling. We describe two methods to calculate currents in
superconducting junctions: one slow but generally applicable, and one very fast
but with some limitations on what systems can be considered. Both methods are
tested, and their results are compared to existing literature.

This thesis is divided into three main chapters. The different physical inter-
actions and their energy contributions are described in chapter 1, where we also
introduce the general equations of motion for junctions with proximity-induced
superconductivity. The Usadel equation, which describes the diffusion of quasipar-
ticles (such as Cooper pairs) in materials where impurity scattering is the leading
energy term [23], is derived within the framework of the quasiclassical theory of
superconductivity. The motion of the particles is treated classically by ignoring
their oscillations on the scale of the Fermi wave length, and looking instead at
behaviour on larger length scales by only considering interactions at the Fermi
surface. The quantum nature of spin and particle-hole interactions do not permit
a classical approach, which we will still treat quantum mechanically [24]. To
keep th discussion in this chapter concise, the complete derivation of the central
Usadel equation has been moved to appendix D. Chapter 2 covers the theory on
non-equilibrium phenomena, and is supplemented with derivations in appendix E.
In this chapter the main result of this thesis is presented: an analytical method
to calculate non-equilibrium quantities, notably the differential conductivity, in
composite structures of superconducting and ferromagnetic materials. A more
general set of coupled differential equations is derived for the components of the
distribution function. Chapter 3 applies the theory of the previous chapters to
a range of systems. The dependence of various physical quantities on parame-
ters such as system dimensions, boundary resistance, magnetics and spin-orbit
coupling is calculated numerically. The validity of the analytical method derived
in chapter 2 is demonstrated by reproducing numerical and experimental results
from the literature.
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Notation and units

Most notation in this text will be standard, such as the notation of vectors by
boldface characters, for example r for the position and p for the momentum.
Bra-kets 〈·|·〉 will be used for the quantum-mechanical expectation value, square
braces with minus ([·, ·]−) and plus ([·, ·]+) signs will be used for commutators

and anticommutators respectively, and asterisks (∗) and daggers (†) for complex
conjugation and conjugate transposition. Units will be related to the natural
units c, ~ and kB where possible, and to the properties of the system (such as
the band gap ∆0, system length L and coherence length ξ) otherwise, which will
always be made explicit in the text.

Where this thesis is most likely to deviate from other works is the notation of
different matrix structures. These are described more explicitly below.

Matrices

We will distinguish in notation between the matrix dimensions in Nambu (particle-
hole) space and those in spin space. The structure in Nambu space will be
indicated by marks over the characters, whereas the structure in spin space will be
indicated by marks under the characters. For example, a retarded Green function
describing the correlation between two spins σ and σ′ would have 1× 1 structure
in both spin and Nambu space, and would be written as GRσ,σ′ . Combining the
four possible combinations of spins, we get a Green function with a 2×2 structure
in spin space, but still a 1× 1 structure in Nambu space,

GR =

(
GR↑,↑ GR↑,↓

GR↓,↑ GR↓,↓

)
.
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The 2× 2 structure in Nambu space, which we see for example when we combine
the regular and anomalous Green functions, is denoted by a hat over the function:

Ĝ
R

=

(
GR FR

−F̃R −G̃R

)

The largest matrix structure we will consider in this thesis is 8× 8, built up from
a 2 × 2 structure in Keldysh space, crossed with a 2 × 2 structrure in Nambu
space, and a 2× 2 structure in spin space. An example of such a matrix is the
following Green function combining the retarded, advanced and Keldysh Green
functions in one:

Ǧ =

(
Ĝ
R

Ĝ
K

0 Ĝ
A

)
.

The Green functions themselves are discussed in appendix C.

Pauli matrices

In order to distinguish between Pauli matrices in spin space and those in Nambu
space, we will use the symbol σ for spin space and the symbol τ̂ for Nambu space.
Since we will only use the Pauli matrices in spin space when considering fermions
with spin 1/2 (spin up and spin down), the only relevant structure in spin space
is 2× 2: σ.

The Pauli matrices in 2× 2 dimensions are given by

τ̂0, σ0 =

(
1 0
0 1

)
, τ̂1, σ1 =

(
0 1
1 0

)
,

τ̂2, σ2 =

(
0 −i
i 0

)
, and τ̂3, σ3 =

(
1 0
0 −1

)
.

Since the Pauli matrices in Nambu spaces will generally be used in combination
with those in spin space, the absence of any structure in the latter will be indicated
by only a bar under the matrix. This means that the Pauli matrix in Nambu
space is multiplied by the identity matrix in spin space,

ρ̂
i

= τ̂i ⊗
(

1 0
0 1

)
= τ̂i ⊗ σ0,

where i = 0, 1, 2, 3.
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Chapter 1

Equations of motion

The physics of nanowire junctions connecting normal metal and superconducting
bulk materials will be described within the quasiclassical theory of superconduc-
tivity. In this framework, we describe the system with Green functions, which
describe the correlations between field operators (introduced in section 1.1). The
time evolution of these functions is determined by the energy contributions of the
different interactions, introduced as Hamiltonians in sections 1.2 and 1.3. From
the time evolution of the field operators we can derive in section 1.4 a diffusion
equation for the quasiparticles formed in the superconducting state. It is this
diffusion equation, and its boundary conditions provided in sections 1.5 and 1.6,
that allows us to calculate different physical quantities for a variety of structures,
as shown in section 1.7. The derivations of the equations presented in this chapter
are provided in appendix D.

1.1 Field operators

Starting from the creation and annihilation operators for states in momentum-spin
space, the field operators for the annihilation and creation of a particle are defined,
respectively, as [25, 26]

ψσ(r, t) =
1√
V

∑
r

eik·r ck,σ, ψ†σ(r, t) =
1√
V

∑
r

e−ik·r c†k,σ. (1.1.1)

Here c, c† are the annihilation and creation operators in momentum-spin space
and V is a potential. The commutation relations for these field operators can be
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taken directly from those for the regular annihilation and creation operators:[
ci, c

†
j

]
±

= δij ⇒
[
ψσ(r, t), ψ†σ′(r

′, t′)
]
±

= δσ,σ′δ(r − r′)δ(t− t′)

[
ci, cj

]
±

=
[
c†i , c

†
j

]
±

= 0 ⇒
[
ψσ(r, t), ψσ′(r

′, t′)
]
±

= (· · · )† = 0,

(1.1.2)

where the commutators are for bosons and the anticommutators for fermions. A
vector notation can be introduced where the Nambu vectors ψ and ψ† are of the
form [27]

ψ =


ψ↑

ψ↓

ψ†↑

ψ†↓

 , ψ† =
(
ψ†↑ ψ†↓ ψ↑ ψ↓

)
. (1.1.3)

This allows us to describe all field excitations — particles and holes, with both
spin up and down — simultaneously with a single matrix expression, as will be
shown in the next section.

1.2 The Hamiltonian of mesoscopic systems

To describe the time evolution of the Nambu vectors introduced in section 1.1,
we will use the Heisenberg equations [26]

i∂tψσ =
[
ψσ,H

]
− , i∂tψ

†
σ =

[
ψ†σ,H

]
− . (1.2.1)

The Hamiltonian H on the rhs of both expressions has multiple components
describing different physical effects and interactions, as we will see in the next
section.

1.2.1 Kinetic and electromagnetic terms

In the nearly free electron model we describe an electron as moving through a
perfect lattice without impurities, including only the kinetic energy and the lattice
potential qϕ:1

H0 =
mv2

2
+ qϕ. (1.2.2)

1In this thesis we use q for the charge of the particle, which in the usual case of electrons is
−e, with e being the elementary charge. Beware that in the literature e is sometimes used for
the electron charge itself, resulting in a sign difference in some equations.
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Writing this in terms of the canonical momentum p = −i~∇r = mv + qA, we
get [17]

H0 =
(−i~∇r − qA)2

2m
+ qϕ = − (~∇r − iqA)2

2m
+ qϕ.

To assure gauge independence, we introduce the covariant derivative (see ap-
pendix B.1 for details)

∇̃r ≡ ∇r + ieA = ∇r − iqA, (1.2.3)

which simplifies our Hamiltonian to

H0 = − ~2

2m
∇̃2

r + qϕ− µ. (1.2.4)

Writing this in second quantization and including the chemical potential µ for
completeness, this becomes

H0 =
∑
σ

∫
dr ψ†σ(r, t)

(
− ~2

2m
∇̃2

r + qϕ− µ
)
ψσ(r, t). (1.2.5)

1.2.2 Superconductivity

Superconductivity stems from an attractive electron-electron interaction between
particles with opposite spin, which in second quantization can be written as2 [12]

HBCS =

∫
dr

∫
dr′ VBCS(r, r′)ψ†↓(r, t)ψ

†
↑(r
′, t)ψ↑(r

′, t)ψ↓(r, t). (1.2.6)

Assuming that the interaction is short-ranged, i.e. VBCS = δ(r − r′)λ(r), this
simplifies to

HBCS =

∫
dr λ(r)ψ†↓(r, t)ψ

†
↑(r, t)ψ↑(r, t)ψ↓(r, t). (1.2.7)

Recognizing the spin-0 pair operators

A(r, t) = ψ↓(r, t)ψ↑(r, t) and A†(r, t) = ψ†↑(r, t)ψ
†
↓(r, t), (1.2.8)

this can more clearly be written in terms of the number operator for electron
pairs:

HBCS =

∫
dr λ(r)A†(r, t)A(r, t). (1.2.9)

2For a quick introduction to superconductivity, see the book Superconductivity, Physics and
Applications by Fossheim and Sudbø [28]. The Hamiltonian we start with here can be found in
section 4.1 (albeit in slightly different notation), with a similar derivation of the gap equation in
the section after that. For a more complete phenomenological introduction, see Introduction to
Superconductivity by Rose-Innes and Rhoderick [29].
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The total number of electron pairs in the system will fluctuate around some value,
the mean field. As the dynamics of the system only depend on the deviation from
the average, it is useful to express the Hamiltonian in terms of this. Writing

µA(r, t) =
〈
A(r, t)

〉
and µ†A(r, t) =

〈
A†(r, t)

〉
(1.2.10)

for the mean field and

δA(r, t) = A(r, t)− µA(r, t), δ†A(r, t) = A†(r, t)− µ†A(r, t) (1.2.11)

for the deviation from it, we can approximate the number operator in equa-
tion (1.2.9) as

A†A = (µ†A + δ†A)(µA + δA) = µ†AµA + µ†AδA + δ†AµA + δ†AδA. (1.2.12)

The key to the mean field approximation is that we assume the deviation from
the mean to be small, allowing us to neglect the last term:

A†A ≈ µ†AµA + µ†AδA + δ†AµA, (1.2.13)

which by substitution of equation (1.2.11) becomes

A†A ≈ µ†AA +A†µA − µ
†
AµA. (1.2.14)

As we only care about the deviation from the mean field, we can ignore the
last term here as well. Defining now the gap function or order parameter3

∆(r, t) = λ(r)µA(r, t), the BCS Hamiltonian can be approximated as

HBCS =

∫
dr
(
∆∗(r, t)A(r, t) +A†(r, t)∆(r, t)

)
, (1.2.15)

or in terms of ψ and ψ† [20]:

HBCS =

∫
dr
(

∆∗(r, t)ψ↓(r, t)ψ↑(r, t) + ∆(r, t)ψ†↑(r, t)ψ
†
↓(r, t)

)
. (1.2.16)

1.2.3 Impurity scattering

We will distinguish between two types of impurities; those that leave the spin
unaffected, and those that flip it. The first kind is a position-dependent potential
Vimp(r), the second a potential Vsf(r)σ(r, t) · s(r, t) that depends on the position

3Throughout this thesis, we will consider the value of the band gap to be constant. To
incorporate its variation under changing temperature, applied magnetic fields and spin-orbit
coupling, the reader is referred to Refs. 12,21,30.
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and spin of the particle as well as the spin field s(r, t) of the material. Writing
both terms in second quantization, this gives us [20]

Himp =
∑
σ

∫
dr ψ†σ(r, t)Vimp(r)ψσ(r, t) (1.2.17)

and

Hsf =
∑
σ,σ′

∫
dr ψ†σ(r, t) [σ · s(r)]σ,σ′ Vsf(r)ψσ′(r, t). (1.2.18)

1.2.4 Ferromagnetism

The ferromagnetic term is very similar to the spin-flip scattering term, the inner
product of the particle spin and the magnetic field [20]:

Hh = −
∑
σ,σ′

∫
dr ψ†σ(r, t) [σ · h(r)]σ,σ′ ψσ′(r, t). (1.2.19)

1.2.5 The full Hamiltonian

Combining all the terms derived in the previous sections, we arrive at the full
Hamiltonian

H = H0 +HBCS +Himp +Hsf +Hh

=
∑
σ

∫
dr ψ†σ(r, t)

(
− ~2

2m
∇̃2

r + qϕ− µ+ Vimp(r)

)
ψσ(r, t)

+
∑
σ,σ′

∫
dr ψ†σ(r, t) {σ · [s(r)Vsf(r)− h(r)]}σ,σ′ ψσ′(r, t)

+

∫
dr
(

∆∗(r, t)ψ↓(r, t)ψ↑(r, t) + ∆(r, t)ψ†↑(r, t)ψ
†
↓(r, t)

)
.

(1.2.20)

1.3 Spin-orbit coupling

In nanowires, the finite thickness of the wire constricts the transverse movement
of particles with a potential V (x, y). This potential gives rise to an electric field,
experienced by the moving electrons as an effective magnetic field, to which their
spins couple. Hence the electron spin couples to its orbit, as the effective magnetic
field’s direction and magnitude are determined by the particle’s motion. This
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coupling is commonly referred to as Rashba coupling [31]. A similar coupling
happens when the momentum is restricted not by the system’s geometry, but by
the crystal’s structure, which is known as Dresselhaus coupling [32].

Spin-orbit coupling enters as a contribution to the vector potential, where we
define [30, 33]

A = qA+wσ. (1.3.1)

Here w is a 3×3 matrix acting on the vector σ, which we will derive for nanowires
here. The covariant derivative in equation (1.2.3) can then be expanded to include
this,

∇̃r 7→ ∇r − iA, (1.3.2)

leaving the notation for the Hamiltonian in equation (1.2.5) unchanged. In general,
to include the vector potential, one just needs to replace [17]

∇r 7→ ∇r − i
[
Â, ·

]
−

= ∇̃r, (1.3.3)

where Â = diag(A,−A?), as described in appendix B. With this we can also
expand the covariant Laplacian as

∇̃2
r( · ) = ∇2

r( · )− 2i
[
Â,∇r( · )

]
−
− i
[
∇rÂ, ·

]
−
−
[
Â,
[
Â, ·

]
−

]
−
. (1.3.4)

1.3.1 Rashba and Dresselhaus Hamiltonians in nanowires

The spin-orbit Hamiltonian (combining Rashba and Dresselhaus coupling) can be
defined in terms of the spin-orbit field [22, 30]:

HR+D = − p

~m∗
·ASOC = − p

~m∗
·wσ, (1.3.5)

where m∗ is the effective mass of the particle [11]4. By assuming that the width
of the wire in either direction is small compared to the Fermi wavelength, we can
reduce the Rashba and Dresselhaus Hamiltonians to one dimension [35, 36]:

HR = (αyσx − αxσy)
pz
~m∗

,

HD = β σz
pz
~m∗

.

(1.3.6)

4By choosing this notation, the α and β introduced here have the property that αL/~2 and
βL/~2 (with L the with of the wire) are dimensionless. Experimental values for α/m∗ range
from 5× 10−12 eV m to 4× 10−10 eV m [31, 34], which for a system of 1–10nm correspond to
7× 10−2 < αL/~2 < 5× 102. In this thesis, we will use values up to αL/~2 = 5.
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Here the Rashba SO field wR comes from the Lorentz force exerted on electrons
by the effective magnetic field B ∝ p×E they perceive when moving through
the confining electric fields Ex = Ey = −∇Vwire [34]. The Dresselhaus SO
field is only nonzero in materials where the crystal structure has bulk inversion
asymmetry [32], and as we will show below, only appears in nanowires that are
rotationally asymmetric in the plane orthogonal to the wire.

The parameters αk and β are defined as [36]

αk =
γR

m∗
〈∂kVk〉 ,

β =
γD

~2m∗
(
〈
p2
x

〉
−
〈
p2
y

〉
).

(1.3.7)

where γR and γD are the Rashba and Dresselhaus coupling strength parameters,
and Lx,y and Vx,y are the dimensions of the system and their corresponding
confining potentials in the x and y-direction. Writing this in terms of the SO field
w,

w =

 0 0 0
0 0 0
−αy αx −β

 , wσ = (−αyσx + αxσy − βσz)êz. (1.3.8)

For a system that is rotationally symmetric around the wire, we can write

αx = γR 〈∂xVx〉 = γR 〈∂yVy〉 = αy = α, (1.3.9)

where Vx,y are the confining potentials in the x and y directions and γR is the
Rashba strength parameter. Another consequence of rotational symmetry in the
x-y plane is that the Dresselhaus parameter becomes zero:

β ∝
〈
p2
x

〉
−
〈
p2
y

〉
= 0. (1.3.10)

1.4 The Usadel equation

To avoid distracting the reader from the physics with superfluous mathematics,
the full derivations of the equations mentioned in this section have been moved
to appendix D. Here, in section D.1 it is shown that the time evolution of the
creation and annihilation operators is described by the relations

iρ̂
3
∂tψ = Ĥψ, and − i∂tψ†ρ̂3

= ψ†Ĥ
†
, (1.4.1)
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where the components of the Hamiltonian in equation (1.2.20) are combined into
the matrix

Ĥ =


H ′ + V↑↑ V↑↓ 0 ∆

V↓↑ H ′ + V↓↓ −∆ 0

0 ∆∗ H ′∗ + V ∗↑↑ V ∗↓↑

−∆∗ 0 V ∗↑↓ H ′∗ + V ∗↓↓

 . (1.4.2)

This equation can be used to construct kinetic equations for the Green functions
(see appendix C): (

iρ̌
3
∂t − Ȟ(r, t)

)
Ǧ = δ(r − r′)δ(t− t′),

Ǧ
(
iρ̌

3
∂t′ − Ȟ(r′, t′)

)†
= δ(r − r′)δ(t− t′).

(1.4.3)

Appendix D.3 shows that by Fourier transforming and introducing the bullet
product • (defined in appendix A.6), we can derive the Eilenberger equation

~2p

m
· ∇̃rǦ = i

[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ •, Ǧ

]
−

− i~2e2

2m

[
Ǎ

2 •, Ǧ
]
−
− ~2e

4m

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+
.

(1.4.4)

of which the components are defined in equations (D.3.6) and (D.3.7). In the quasi-
classical approximation, the Green functions Ǧ are replaced by their quasiclassical
counterparts ǧ (see appendix D.3.1), and eq. (1.4.4) is simplified to

~2pF
m
· ∇̃r ǧ = i

[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ ◦, ǧ

]
−
. (1.4.5)

In the diffusive or dirty limit (see details in appendix D.4), we can derive the
Usadel equation, which describes the first term ǧ

s
in the spherical expansion fo ǧ:

−D∇̃r · (ǧs ◦ ∇̃r ǧs) = i

[
ερ̌

3
− qϕ̌+

i

2τsf
ρ̌

3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s

]
−
.

(1.4.6)
This differential equation describes the diffusion of the Green functions, where
the diffusion constant is defined as5

D ≡ ~2v2
F τimp

3
=

~2

3
vF `e. (1.4.7)

5In the dirty limit, we define the zero-temperature superconducting coherence length ξ ≡√
~D/∆0, where ∆0 is the band gap at T = 0 [27]. This coherence length is the distance over
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As described in appendix D.5, the Keldysh component of the 8× 8 Green function

can be written in terms of the probability distribution function ĥ ,

ĝK
s

= ĝR
s
◦ ĥ − ĥ ◦ ĝA

s
. (1.4.8)

This function can be found by solving the diffusion equation

−D∇̃r ·
(
∇̃rĥ − ĝR

s
(∇̃rĥ)ĝA

s

)
= iĝR

s

[
Êh , ĥ

]
−
− i
[
Êh , ĥ

]
−
ĝA
s
, (1.4.9)

where

Êh = ερ̂
3

+ σ̂ · ĥ(r)− ∆̂. (1.4.10)

To solve the Usadel equation numerically, it is useful to exploit the symmetries
in the Green functions. This can be done by writing the expressions in the γ, γ̃
parametrization [39, 40] (see appendix F.3), where the differential equation for γ
is found to be [30]

Dγ′′ = −2iε γ − ih · (σγ − γσ∗)−∆(σ2 − γσ2γ)

+
1

τsf

[
(2N − 1)γ − γ(1− 2Ñ)

]
+D

{
− 2γ′Ñ γ̃γ′

+2i
[
(Az + γA∗z γ̃)Nγ′ + γ′Ñ(A∗z + γ̃Azγ)

]
+2(Aγ + γA∗)Ñ(A∗ + γ̃Aγ) +A2γ − γ(A∗)2

}
.

(1.4.11)

The corresponding equation for γ̃ can be found by tilde conjugating the above,

where i, ε, γ,N,A↔ −i,−ε, γ̃, Ñ ,A∗, with the energy ε measured relative to the
Fermi surface.

1.5 Boundary conditions to the Usadel equation

Boundary conditions for non-equilibrium and non-stationary phenomena can be
derived by setting the first term of the Usadel equation to zero [41]. In this
thesis, we ignore spin-flip scattering, which allows us to write the conditions in a

which superconducting properties vary [37]. For most materials the coherence length is known,
which allows us to use the more convenient relation D = ξ2∆0/~. The diffusion constant is
directly related to the relevant energy scale of the system, the Thouless energy Eth = ~D/L2,
where L is the length of the system [38].
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much simpler form [20]. For non-ideal interfaces one should use the generalized
boundary conditions [42], which are described in detail in Ref. 21.

Using the notation from Refs. [42–44], where r = Gβ/Gb is the ratio between
the conductance of the material considered and the barrier, and τ is the transmis-
sion coefficient per channel, the boundary conditions to the Usadel equation are
given by

rǦβ∇rǦβ =
2π2

[
Ǧβ , Ǧα

]
−

4π2 − τ
([
Ǧα, Ǧβ

]
+

+ 2π2
) . (1.5.1)

Here GB = G0nτ , where G0 = e2/π~ is the conductance quantum, n the number
of channels, and nτ is the transmission coefficient of the whole barrier for all
channels combined, and α and β refer to the two sides of the interface. In the
case of tunnel junctions τ will be much smaller than one, in which case eq. (1.5.1)
simplifies considerably [20, 45]:

2rǦβ∇rǦβ =
[
Ǧα, Ǧβ

]
− . (1.5.2)

This expression is usually referred to as the Kuprianov-Lukichev boundary condi-
tion. To include spin-orbit coupling, we again replace the regular derivative by
the covariant derivative [17, 30]:

2rǦβ∇̃rǦβ =
[
Ǧα, Ǧβ

]
− . (1.5.3)

In terms of the γ, γ̃ parametrization (see appendix F.2), this can be written as [30]

rα∇rγα = (1− γ
α
γ̃
β
)(1− γ

β
γ̃
β
)−1(γ

β
− γ

α
) + iAγ

α
+ iγ

α
A∗,

rα∇rγ̃α = (1− γ̃
α
γ
β
)(1− γ̃

β
γ
β
)−1(γ̃

β
− γ̃

α
)− iA∗γ̃

α
− iγ̃

α
A,

rβ∇rγβ = (1− γ
β
γ̃
α

)(1− γ
α
γ̃
α

)−1(γ
β
− γ

α
) + iAγ

β
+ iγ

β
A∗,

rβ∇rγ̃β = (1− γ̃
β
γ
α

)(1− γ̃
α
γ
α

)−1(γ̃
β
− γ̃

α
)− iA∗γ̃

β
− iγ̃

β
A.

(1.5.4)

Note that these are vectorial expressions, so for example the derivative ∂zγ only
contains the z-component Az of the vector potential.

In this discussion we have assumed that the transmission is spin independent.
Accounting for spin dependence of reflection and transmission would require the
introduction of an extra term irφ

[
τ̂0 ⊗ σ3, ĝ

]
− on the rhs of equation (1.5.3),

and a term irφ
[
σ3, γ̃

]
− to its parametrized form in equation (1.5.4), where the

parameter rφ (now assumed zero) describes the spin-dependent interfacial phase
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shift [27]. When considering boundaries that are not tunnel junctions, it is no
longer a good approximation to use the bulk solutions in the connecting material.
The Usadel equation then needs to be solved self-consistently, where it is solved
on both sides of a boundary, with the solutions on each side being used in the
boundary conditions for the other.

1.6 Bulk solutions to the Usadel equation

The quasiclassical Green function (see appendix C.2) can by contour integration
be shown to equal to [40, 46]

ĝR(ε) =
|ε|Θ(ε2 − |∆|2)− iεΘ(|∆|2 − ε2)√

|ε2 − |∆|2|
ρ̂

3

− sign(ε)Θ(ε2 − |∆|2)− iΘ(|∆|2 − ε2)√
|ε2 − |∆|2|

∆̂

(1.6.1)

in bulk materials. We now parametrize the isotropic (subscript s) quasiclassical
retarded Green function as [47]6

ĝR
s

(r, ε) =

(
cosh θ iσ2 sinh θ eiχ

iσ2 sinh θ e−iχ − cosh θ

)
. (1.6.2)

Noting the off-diagonal structure in spin space of the pair potential (see equa-
tion (D.1.9)), we find that

cosh θ =
|ε|Θ(ε2 − |∆|2)− iεΘ(|∆|2 − ε2)√

|ε2 − |∆|2|
(1.6.3)

and

sinh θ eiχ = − sign(ε)Θ(ε2 − |∆|2)− iΘ(|∆|2 − ε2)√
|ε2 − |∆|2|

∆. (1.6.4)

Both |ε| > |∆| and |ε| < |∆| then lead to

tanh θ eiχ =
∆

ε
. (1.6.5)

6This parametrization can be extended to include spin structure due to magnetization by
introducing vector components,

ĝR
s

= τ̂3(g0σ0 + gσ) + τ̂1(f0σ0 + fσ),

where the vectors g and f are proportional to a “triplet vector” M [48].
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As a superconducting reservoir has ∆ = |∆|eiφ0 , this gives us

χ = φ0, θ = atanh

(
|∆|
ε

)
. (1.6.6)

Using the relations

cosh(atanh(x)) =
1√

1− x2
, and sinh(atanh(x)) =

x√
1− x2

, (1.6.7)

we find for the bulk solutions [20, 40, 49]

ĝR
s

=


ε√

ε2 − |∆|2
iσ2

|∆|√
ε2 − |∆|2

eiφ0

iσ2

|∆|√
ε2 − |∆|2

e−iφ0 − ε√
ε2 − |∆|/ε

 . (1.6.8)

The advanced Green function is found through the relation [49]

ĝA = −ρ̂
3

(
ĝR
)†
ρ̂

3
. (1.6.9)

1.6.1 Bulk normal metal

In a normal metal, where ∆ = 0, equation (1.6.8) gives

ĝR
s

=

(
1 0
0 −1

)
. (1.6.10)

In terms of the gamma parametrization (see appendix F.2), this means

2N − 1 = 2(1− γγ̃)−1 − 1 = 1 ⇒ γ
N

= γ̃
N

= 0. (1.6.11)

1.6.2 Bulk superconductor

Combining the top left components of equations (F.1.1) and (F.2.1) we see that

N(1 + γγ̃) = cosh θ ⇒ 1 + γγ̃ = (1− γγ̃) cosh θ

⇒ γγ̃(1 + cosh θ) = cosh θ − 1

⇒ γγ̃ =
cosh θ − 1

cosh θ + 1
σ0,

(1.6.12)
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Using this for the top-right component of ĝR:

2Nγ = iσ2 sinh θ eiχ ⇒ γ = iσ2

sinh θ eiχ

cosh θ + 1
. (1.6.13)

Similarly, the bottom-left gives

γ̃ = −1

2
(1− γ̃γ)iσ2 sinh θ e−iχ = −iσ2

sinh θ e−iχ

cosh θ + 1
. (1.6.14)

Plugging in the result from equation (1.6.6), this gives

γ
BCS

= iσ2

sinh[atanh(|∆|/ε)] eiφ0

cosh[atanh(|∆|/ε)] + 1
,

γ̃
BCS

= −iσ2

sinh[atanh(|∆|/ε)] e−iφ0

cosh[atanh(|∆|/ε)] + 1
.

(1.6.15)

1.7 Observables

To compare the theoretical and numerical results to experiments, we calculate a
few measurable physical quantities. Here we will discuss equilibrium observables:
the densities of single-particle states, and singlet and triplet Cooper pairs. After
having introduced non-equilibrium theory, we will also cover electric conductivity
in section 2.6.

1.7.1 Density of states

In our quasiclassical description, we only look at behaviour close to the Fermi
surface. Here, the density of states (DOS) for a bulk normal metal is practically
constant, and a bulk superconductor creates a band gap by combining pairs of
electrons and pairs of holes around the Fermi energy into singlets, that show up as
single-particle peaks on the left and right of this gap, respectively (see figure 1.1).

Throughout the systems we are considering, we can calculate the single-particle
DOS from [27, 53]

N(ε)/N0 = R
[
Tr(gR)

]
/2. (1.7.1)

For ferromagnetic systems, we will be interested in the DOS for the spin up
and spin down particles independently, which we find by by multiplying with
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Figure 1.1: The DOS for a bulk superconductor and a normal metal. The
superconducting DOS is plotted with an inelastic scattering η = ∆0/100.
The band gap is typically on the order of 10−6 to 10−4 eV [50–52].

(σ0 + σ3)/2 and (σ0 − σ3)/2:

N↑(ε)/N0 = R
{

Tr

[(
1 0
0 0

)
gR
]}

,

N↓(ε)/N0 = R
{

Tr

[(
0 0
0 1

)
gR
]}

.

(1.7.2)

1.7.2 Singlet and triplet parameters

By writing out the top-left component of the normalization (ĝR)2 = 1̂ [54], and
using the definition in equation (C.2.5), we find

gRgR − fRfR = 1 ⇒ g =
(

1 + ff̃
)1/2

≈ 1 + ff̃/2 (1.7.3)

The DOS in equation (1.7.1) can now be rewritten as

N(ε)/N0 ≈ 1 + R
[
Tr(ff̃)

]
/4. (1.7.4)
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Looking more closely at the components of f , we see that

f =

(
f↑↑ f↑↓
f↓↑ f↓↓

)

=

(
f↑↑ (f↑↓ + f↓↑)/2 + (f↑↓ − f↓↑)/2

(f↑↓ + f↓↑)/2− (f↑↓ − f↓↑)/2 f↓↓

)

=

(
f↑↑ (ft + fs)/

√
2

(ft − fs)/
√

2 f↓↓

)
,

(1.7.5)

introducing the singlet and triplet anomalous Green functions fs and ft. We can
now write

N(ε)/N0 ≈ 1−
R
(
fsf̃s

)
4

+
R
(
f↑↑f̃↑↑ + f↓↓f̃↓↓ + ftf̃t

)
4

. (1.7.6)

We find that singlet Cooper pairs lower the local DOS, whereas triplet pairs
enhance it. To quantify the presence of these pairs, we define the singlet and
triplet parameters,

Ns =
R
(
fsf̃s

)
4

,

Nt =
R
(
f↑↑f̃↑↑ + f↓↓f̃↓↓ + ftf̃t

)
4

.

(1.7.7)

These parameters are always positive at ε = 0, where ff̃ = |f |2, which means they
both leave clear signatures on the density of states: singlets cause a zero-energy
dip, whereas triplet cause a zero-energy peak. The singlet and triplet densities can
be found by taking the absolute values of these parameters and integrating over
energy. Note that while ft = (f↑↓ + f↓↑)/

√
2 consists of pairs with opposite spin,

f↑↑ and f↓↓ don’t. This means that the former will still undergo pair breaking due
to magnetic interactions, while the latter two remain unaffected. These unaffected
states, able to penetrate deeper into ferromagnets, are therefore referred to as
“long-range triplets”.

19



20



Chapter 2

Distribution functions and
currents

To describe non-equilibrium phenomena, we need to know not just the density
of states, but also the occupation of these states. This is described by the
distribution function, and we will show in this chapter that for systems without
spin-orbit coupling, this function can be found analytically from the equilibrium
solutions. For systems that do include spin-orbit coupling, a more general boundary
value problem, a set of coupled differential equations for the components of the
distribution function and their corresponding boundary conditions, is derived.

In systems out of equilibrium, all sorts of currents can flow through the junction,
which we combine into a single tensor in section 2.1. By writing the components
of the distribution function in a similar way in section 2.2, we see in sections 2.3
and that these are directly related to their corresponding currents. In section 2.3
we show that the currents can now be written in terms of the boundary conditions
at either side of the nanowire. Comparing this result to the divergence of the
current tensor in section 2.4, we find that we can write the currents at any point in
the wire as the covariant derivative of their corresponding distribution functions.
Finally, in section 2.5, we use this to find an analytical expression for the currents
at any point in the wire, which we apply to the zero-temperature differential
conductivity in section 2.6. The more general boundary value problems that
describe the distribution functions in any system, without any of the assumptions
made for the analytical solution, are presented in sections 2.7 and 2.8.

The main relevance of the analytical solution is the amount of time it saves in
numerical calculations. While it would take around a day on a regular desktop
machine to calculate the differential conductivity spectrum for a single set of
parameters, the analytical solutions reduces this to less than a minute. This allows
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researchers to gain more insight in the systems they consider, as the conductivity
for a range of parameters can be investigated in the time it would otherwise take
to compute it for a single configuration.

2.1 The current tensor

As shown in appendix E.1, the average velocity of particles can be written as the
derivatives of the field operators,

〈v〉 = − i~
2m

lim
r→r′

〈(
∇̃r − ∇̃r′

)
ψ†(r′)ψ(r)

〉
. (2.1.1)

By comparing this to the definition of the Keldysh Green function in equa-
tion (C.1.1), and introducing relative coordinates, the spectral current tensor
is

jij(ε) = −ivF
∫

d3p

(2π)3
p̂Tr

[
τ̂iσjĜ

K
(ε,p)

]
. (2.1.2)

Introducing the quasiclassical Green function, the current can now be written as

Iij = −N0vF
2

∫
dε
〈
p̂Tr

[
τ̂iσj ĝ

K(ε,p)
]〉

p
. (2.1.3)

In the dirty limit, the Green function is expanded in spherical harmonics, where
appendix E.3 shows that the second term in the expansion can be constructed
from the first, leaving us

Iij =
N0D

2

∫
dεTr

(
τ̂iσj

[
ǧ
s
∇̃r ǧs

]K)
. (2.1.4)

2.2 Pauli-decomposed distribution functions

Choosing the distribution function ĥ to be diagonal in Nambu (particle-hole)
space, the distribution function can be split up in longitudinal and transverse
distribution functions [55, 56], which can each be further decomposed into a scalar
and a vector component:

ĥ = τ̂0 ⊗ hL + τ̂3 ⊗ hT

= τ̂0 ⊗
(
hL0 σ0 + hL · σ

)
+ τ̂3 ⊗

(
hT0 σ0 + hT · σ

)
=

∑
i=0,3

j=0,1,2,3

τ̂iσjhij ,
(2.2.1)
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renaming hL = h0 and hT = h3. Each of these distribution functions has its
own physical interpretation. For example, the function h00 describes the particle
current and the magnitude of the order parameter, while h30 describes the phase
of the order parameter and the electric current [49, 57–59]. The functions h0i and
h3i, i = 1, 2, 3 describe the spin-heat and spin-electric currents. In the absence of
any spin structure, only h00 and h30 are nonzero. In this case, a bulk material
with a voltage V applied to it has the distribution function [20, 49]

ĥ = ρ̂
0
ĥ00 + ρ̂

3
ĥ30 =

tanh

(
β
ε+ eV

2

)
0

0 tanh

(
β
ε− eV

2

)
 , (2.2.2)

where β = 1/kBT , e is the electron charge and V is the voltage. If the voltage is
zero as well, only h00 remains, and we can write [43]

ĝK = ĝRĥ − ĥ ĝA = (ĝR − ĝA) tanh(βε/2). (2.2.3)

2.3 Currents across a boundary

The Kuprianov-Lukichev boundary conditions [45], generalized to include the
magnetic vector potential to first order [30], are given by

2rǧ
α,β
∇̃r ǧα,β =

[
ǧ
α
, ǧ
β

]
−
. (2.3.1)

Substituting these into equation (2.1.4), the current can be written in terms of
the Green functions on both sides of either boundary:

Iij(ε, x = 0, L) =
N0D

4r

∫
dεTr

(
τ̂iσj

[
ǧ
α
, ǧ
β

]K
−

) ∣∣∣
x=0,L

. (2.3.2)

Expanding the distribution functions in their Pauli components using the definition
in equation (2.2.1), we find, after computing the trace, the simpler expression[

1

2r
Tr

(
τ̂iσj

[
ǧ
α
, ǧ
β

]K
−

)]
z=0,L

=
∑
ι=α,β
k=0,3

l=0,1,2,3

[
1

2r
Cijklιhklι

]
z=0,L

, (2.3.3)

where, writing κ for the side opposite to ι,

Cijklι = Tr
(
τ̂iσj

[
(ĝR
ι
τ̂kσl − τ̂kσlĝ

A

ι
)ĝA
κ
− ĝR

κ
(ĝR
ι
τ̂kσl − τ̂kσlĝ

A

ι
)
])
. (2.3.4)
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As will be shown in section 2.5, this can be written as an 8 × 8 matrix C8×8
ijklι

operating on the vectors h8×1
klα and h8×1

klβ .1 The current in equation (2.3.2) can
now be written in terms of the constants Cijklι and the distribution function
components hklι:

Iij(ε, x = 0, L) =
N0D

4r

∫
dε

∑
ι=α,β
k=0,3

l=0,1,2,3

[
Cijklιhklι

]
z=0,L

. (2.3.5)

The current through the boundary at x = 0 is not necessarily equal to the current
through the boundary at x = L, as not all currents are conserved [55, 60].

2.4 Current tensor for conserved currents

For those currents that are conserved, such as the particle current I00 and the
electric current qI30, we can write for the divergence of the spectral current defined
in equation (2.1.4) (I =

∫
dε j)

∇r · jij =
N0D

2
∇r · Tr

(
τ̂iσj

[
ǧ
s
∇̃r ǧs

]K)
= 0. (2.4.1)

Defining the diffusion coefficients Mijkl,

Mijkl = Tr
(
τ̂iσj τ̂kσl − τ̂iσj ĝ

R

s
τ̂kσlĝ

A

s

)
, (2.4.2)

and the spectral supercurrent coefficients Qij ,
2

Qij = Tr
[
τ̂iσj

(
ĝR∇̃r ĝ

R − ĝA∇̃r ĝ
A
)]
, (2.4.3)

equation (2.4.1) is more concisely written as

∇r ·
∑
k,l

Qklhkl +Mijkl∇̃rhkl = 0, (2.4.4)

1For more details on different notations, parametrizations and the mapping between them,
see section F.5.

2These coefficients are similar to Mij and Q defined in Ref. 49, but with Pauli matrices in
spin space added. Note that Q00 = 0 since

Tr
(
ĝRĝR′

)
=

1

2
Tr
(
ĝRĝR′ + ĝR′ĝR

)
=

1

2
Tr

(
∇
[
ĝR
]2)

= 0 = Tr
(
ĝAĝA′

)
.
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which implies ∑
k,l

Qklhkl +Mijkl∇̃rhkl = Cij , (2.4.5)

where Cij are constants. Looking at the boundary conditions in equation (2.3.1),
we find the top-right (Keldysh) component to contain

ĝR(∇̃r ĝ
R)ĥ + (∇̃rĥ)− ĝR(∇̃rĥ)ĝA − ĥ ĝA(∇̃r ĝ

A) =
1

2r

[
ǧ
α
, ǧ
β

]K
−
. (2.4.6)

Multiplying both sides by τ̂iσj and taking the trace, we find an expression similar
to equation (2.4.5):

∑
k,l

Qklhkl +Mijkl∇̃rhkl
∣∣∣
α,β

=
1

2r
Tr

(
τ̂iσj

[
ǧ
α
, ǧ
β

]K
−

)
. (2.4.7)

As the distribution functions are continuous all the way up to the boundary, the
right-hand sides of eqs. (2.4.5, 2.4.7) must be equal. We end up with the eight
equations

Cij =
∑
k,l

Qklhkl +Mijkl∇̃rhkl =
∑
ι=α,β
k=0,3

l=0,1,2,3

[
1

2r
Cijklιhklι

]
z=0,L

, (2.4.8)

where i = 0, 3 and j = 0, 1, 2, 3. The conserved currents can now be expressed in
terms of the distribution functions at any position r in the wire by

Iij(ε) =
N0D

2

∫
dε
∑
k,l

Qklhkl +Mijkl∇̃rhkl. (2.4.9)

2.5 Currents in systems with zero boundary re-
sistance on one side

The current in equation (2.3.5) can be calculated if we know the distribution
functions on both sides of one of the boundaries. Suppose we have a wire between
z = 0 and z = L, with some bulk materials to the left and right of it. In this
section we will calculate the currents assuming that one of the ends of the wire
has zero boundary resistance, and that there are no supercurrents that flow
through the boundary3. In this special case, we do not need to actually find the

3This assumption means we exclude Josephson junctions.
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distribution functions within the wire, their bulk values will be enough to describe
all non-equilibrium behaviour.

By moving the constants Mijkl to the other side of equation (2.4.8), we find
an expression for the derivatives of the distribution functions. To avoid having to
take the inverse of a rank four tensor, we combine the longitudinal and transverse
distribution functions in a single vector:

ĥ4×4 =

(
hL + hT 0

0 hL − hT

)
7−→



hL,0
...

hL,3
hT,0

...
hT,3


=



h00

...
h03

h30

...
h33


= h8×1

kl , (2.5.1)

and accordingly,

M2×4×2×4
ijkl 7−→



M0000 . . . M0003 M0030 . . . M0033

...
. . .

...

M0300
. . .

...

M3000
. . .

...
...

. . .
...

M3300 . . . . . . . . . . . . M3333


= M8×8

ijkl . (2.5.2)

The two matrices Cijklα and Cijklβ have the same structure as Mijkl. Embracing
Einstein notation from now on, where summation is implied for repeated indices,

∇̃rhkl(r) = M−1
ijkl(r)

[
1

2r
Cijklιhklι

]
z=0,L

. (2.5.3)

As shown in section B.2, the covariant derivative can be replaced by

∇̃rĥ = ∇rĥ − i
[
Â, ĥ

]
−
, (2.5.4)

where the commutator equals

Â =

(
A 0
0 −A∗

)
⇒

[
Â, ĥ

]
−

=

(
[A, x]− 0

0 [x̃,A∗]−

)
. (2.5.5)

As long as the spin-orbit coupling is along the magnetization direction, this
commutator equals zero. This is not generally true, which means that the method
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derived here is mainly useful for solving systems with just a magnetic structure.4

In the absence of spin-orbit coupling, or in the case the coupling aligns with the
magnetic field, we now find an expression for the gradient of the distribution
functions:

∇rhkl(r) = M−1
ijkl(r)

[
1

2r
Cijklιhklι

]
z=0,L

. (2.5.6)

This can be used to find the distribution functions at any position in the wire,
given that we know their values at some other point.

In what follows we will assume that the ratio between the resistance of the
left boundary and the wire is rL = 0, whereas on the right rR 6= 0. To find the

current, we need to know the distribution functions ĥ(L−) and ĥ(L+). The latter

is simply the bulk value on the right, and ĥ(L−) can be expressed in terms of

ĥ(x+) by integrating eq. (2.5.6) [61]:

hkl(L−)− hkl(0+) =
1

2rR
Cijklιhklι

∫ L−

0+

M−1
ijkl(x) dx. (2.5.7)

Assuming the left boundary to have zero interface resistance

rL = 0 ⇒ hkl(0+) = hkl(0−), (2.5.8)

we can express the unknown hkl(L−) in terms of just bulk distribution functions
and the known retarded and advanced Green functions:

hkl(L−) =

(
1− Cijkl(L−)

2rR

∫ L−

0+

dx

Mijkl(x)

)−1

×

(
Cijkl(L+)

2rR

∫ L−

0+

dx

Mijkl(x)
hkl(L+) + hkl(0−)

)
.

(2.5.9)

Defining the constants

Aijkl =

(
2rR C

−1
ijkl(L−)−

∫ L−

0+

dx

Mijkl(x)

)−1

,

Bijkl =
Cijkl(L+)

2rR
+A

Cijkl(L+)

2rR

∫ L−

0+

dx

Mijkl(x)
,

(2.5.10)

4Usually magnetization itself induces currents in the plane orthogonal to the magnetization,
where the vector potential would point along these currents. In nanowires, however, there is
simply no room for such currents as momentum is really only possible along the wire.
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we can now easily express the current tensor as

Iij(ε) =
N0D

4rR

∫
dε
[
Aijklhkl(0−) +Bijklhkl(L+)

]
. (2.5.11)

2.6 Electric conductivity

Without other phenomena accounted for, the flow of particles is proportional to
the number of states that are available. The current, or energy-integrated spectral
current, is therefore proportional to the difference between the numbers of states
available for particles moving in opposite directions. As the differential conduc-
tance is the voltage-derivative of the current, we expect the voltage dependence of
the conductance to resemble the energy dependence of the density of states. To
account for the dependence of the density of states on the position in the wire, we
could make the comparison with macroscopic resistors in series, and guess that

1

σjunction(eV )
≈
∑
i

1

σi(eV )
∝
∫

dz

N(ε = eV, z)
, (2.6.1)

which in practice means that the conductivity will look like the density of states
in the “bottleneck” of the system.

2.6.1 Zero-temperature conductivity in the absence of SOC

By taking the voltage derivative of the I30 component of the current tensor in
eq. (2.5.11), we find an expression for the electric conductivity:

σ(eV ) =
qN0D

4rR
∂eV

∫ ∞
−∞

[
A30kl(ε)hkl(0−) +B30kl(ε)hkl(L+)

]
dε. (2.6.2)

At zero temperature5, assuming there is no magnetization in the bulk materials
and that the voltage V is applied on the left, equation (2.2.2) becomes for either

5At finite temperature, the distribution functions need to be calculated for the voltage range
where their derivatives are nonzero, after which the derivative is taken. There is no need to
calculate the retarded and advanced Green functions multiple times (as they do not depend on
the voltage), so also finite-temperature conductances can be found quickly with this method.
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side 
h00

h01,02,03

h30

h31,32,33


0−

=


[Θ(ε+ eV ) + Θ(ε− eV )] /2

0
[Θ(ε+ eV )−Θ(ε− eV )] /2

0

 ,


h00

h01,02,03

h30

h31,32,33


L+

=


Θ(ε)

0
0
0

 .

(2.6.3)

Their voltage derivatives are, assuming ĥ0− = ĥ0+
,

∂eV


h00

h01,02,03

h30

h31,32,33


0−

=


[δ(ε+ eV )− δ(ε− eV )] /2

0
[δ(ε+ eV ) + δ(ε− eV )] /2

0

 ,

∂eV


h00

h01,02,03

h30

h31,32,33


L+

=


0
0
0
0

 ,

(2.6.4)

leaving us the conductivity

σ(eV ) =
qN0D

8rR
[A3000(−eV ) +A3030(−eV )−A3000(eV ) +A3030(eV )] . (2.6.5)

In the absence of magnetic fields, there is perfect spin symmetry and all entries
in the matrix A are even in energy [62]:

σ(eV ) =
qN0D

4rR
A3030(eV ). (2.6.6)

With the method described in this section, the zero-temperature conductivity
of a junction can be found just by solving the boundary value problem in equa-
tions (1.4.11) and (1.5.4). Doing so for 200 energies typically takes around a
minute on a desktop machine. 6 This method can only be used in some limiting
cases:

6The bottleneck for such calculations is the processor, the times cited here are for an
Intel R©CoreTMi7-6700HQ at 2.60GHz, where the program has been parallelized to use all four
cores.
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• The current is conserved (so that equation (2.4.1) holds). This holds for
particle and charge currents, but not for spin currents in the presence of
spin-orbit coupling [60]7.

• The vector potential commutes with the distribution function within the
wire (so we can replace (2.5.3) 7→ (2.5.6)). This is always true for the
magnetic vector potential (which is real-valued), but not for the generalized
vector potential that includes spin-orbit coupling [30, 36].

• One of the boundaries needs to be transparent (so equation (2.5.8) applies).

In the general case, the boundary value problem derived in section 2.8 needs to
be solved. Here we cannot make the same convenient assumption as we did in
equation (2.6.3), where the distribution functions became step functions around
ε − eV . This means that in order to find the electric conductivity, we need to
solve the problem for both multiple energies and multiple voltages. For a typical
accuracy of integrating the spectral current over 200 energies, and drawing a plot
for 100 voltages, one needs about a day of computation time.

2.7 Boundary value problem for the distribution
functions without magnetic fields

In a system without a magnetic field, only h00 and h30 need to be considered [20].
In this case, the divergence of eq. (2.4.8) gives the two coupled differential equations

∇r ·
∑
k=0,3

Qk0hk0 +M00k0∇̃rhk0 = 0,

∇r ·
∑
k=0,3

Qk0hk0 +M30k0∇̃rhk0 = 0.

(2.7.1)

The second of these equations describes the conservation of the electric current.
From this we can also find a very simple expression for the electric current in the
absence of magnetic fields. Without particle-hole imbalance, M0030 is zero [49],
so in the absence of supercurrents we would be left with only one term [55]:

je(ε) =
qN0D

2
M3030∇̃rhT,d. (2.7.2)

7The cited article suggests an alternative way of defining the spin current in systems with
spin-orbit coupling, where the jσ ∝ 〈σ∂tr〉 used in this thesis is replaced by jσ ∝ 〈∂t(σr)〉,
adding a torque term τ = 〈r∂tσ〉. This current is conserved, but is not trivial to measure.
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From equation (2.4.7) we find the two boundary conditions∑
k=0,3

Qk0hk0 +M00k0∇̃rhk0 =
1

2r
Tr

(
τ̂0σ0

[
ǧ
α
, ǧ
β

]K
−

)
,

∑
k=0,3

Qk0hk0 +M30k0∇̃rhk0 =
1

2r
Tr

(
τ̂3σ0

[
ǧ
α
, ǧ
β

]K
−

)
.

(2.7.3)

In section 2.7 we found the general equations of motion for the distribution
functions. The system can be solved quite easily in this most simplified case,
where we find after uncoupling equations (2.7.1) for h ′′00 and h ′′30,

h ′′L,d =
(M ′0000M3030 −M3000M

′
0030) h ′L,d + (M ′3000M3030 −M3000M

′
3030) h ′T,d

M3000M0030 −M0000M3030
,

h ′′T,d =
(M ′0000M0030 −M0000M

′
0030) h ′L,d + (M ′3000M0030 −M0000M

′
3030) h ′T,d

M0000M3030 −M3000M0030
.

(2.7.4)
Combining the two, the system can be described as a first-order ordinary differen-
tial equation of the four-element vector y:

y =


hL,d
hT,d
h ′L,d
h ′T,d

 =


y1

y2

y3

y4

 , y′ =


0 0 1 0
0 0 0 1
0 0 A B
0 0 C D

 y, (2.7.5)

where

A =
M ′0000M3030 −M3000M

′
0030

M3000M0030 −M0000M3030
, B =

M ′3000M3030 −M3000M
′
3030

M3000M0030 −M0000M3030
,

C =
M ′0000M0030 −M0000M

′
0030

M0000M3030 −M3000M0030
, D =

M ′3000M0030 −M0000M
′
3030

M0000M3030 −M3000M0030
.

(2.7.6)

The boundary conditions in this case become(
Q30hT,d +M0000h ′L,d +M3000h ′T,d

)
α,β

=
1

2r
Tr

([
ǧ
α
, ǧ
β

]K
−

)
,

(
Q30hL,d +M0030h ′L,d +M3030h ′T,d

)
α,β

=
1

2r
Tr

(
ρ̂

3

[
ǧ
α
, ǧ
β

]K
−

)
.

(2.7.7)

After solving for the two components of the distribution function, equation (2.3.5)
can be used to calculate the components of the current tensor.
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2.8 General boundary value problem for the dis-
tribution functions

2.8.1 Differential equations

To calculate the distribution function, we need a differential equation that can be
solved numerically. We do this by rewriting equation (D.5.3) in such a way that

all dependence on ĥ ′′ is on the left, and all terms including ĥ ′ and ĥ are on the

right. Isolating first all terms containing ∇̃2
rĥ :

ĝR
s

(∇̃2
rĥ)− (∇̃2

rĥ)ĝA
s

=
i

D
ĝR
s

[
Êh , ĥ

]
−
ĝA
s
− i

D

[
Êh , ĥ

]
−

−(∇̃r ĝ
R

s
)(∇̃rĥ)− ĝR

s
(∇̃rĥ)(∇̃r ĝ

A

s
)ĝA
s

(2.8.1)

Expanding the covariant Laplacian ∇̃2
r using equation (1.3.4), we find

∇̃2
rĥ = ∇2

rĥ − 2i
[
Â,∇rĥ

]
−
− i
[
∇rÂ, ĥ

]
−
−
[
Â,
[
Â, ĥ

]
−

]
−
, (2.8.2)

with which we can now isolate the second spatial derivative of the distribution
function:

ĝR
s

ĥ ′′ − ĥ ′′ĝA
s

=
i

D
ĝR
s

[
Êh , ĥ

]
−
ĝA
s
− i

D

[
Êh , ĥ

]
−
− (∇̃r ĝ

R

s
)(∇̃rĥ)

−ĝR
s

(∇̃rĥ)(∇̃r ĝ
A

s
)ĝA
s

+ ĝR
s

(
2i
[
Â,∇rĥ

]
−

+i
[
∇rÂ, ĥ

]
−

+

[
Â,
[
Â, ĥ

]
−

]
−

)
−
(

2i
[
Â,∇rĥ

]
−

+i
[
∇rÂ, ĥ

]
−

+

[
Â,
[
Â, ĥ

]
−

]
−

)
ĝA
s

= Ê
4×4

ODE.

(2.8.3)

Using the methods derived in appendix F.5, we can write this as[
Fĥ (ĝR

s
, 1̂)−Fĥ (1̂, ĝA

s
)
]
∇2

rf ĥ = f Ê4×4

ODE = Ê
16×1

ODE , (2.8.4)

where we have written the matrices ĥ and Ê
4×4

ODE out in their components using
the flat-mapping f . Moving the matrix Fĥ (ĝR

s
, 1̂)−Fĥ (1̂, ĝA

s
) to the right by left
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division8, we find an expression for ∇2
rf ĥ :

∇2
r~x =

[
Fĥ (ĝR

s
, 1̂)−Fĥ (1̂, ĝA

s
)
]
\Ê

16×1

ODE . (2.8.5)

Here the notation ~x is introduced for the 8×1 vector with the nonzero components

of ĥ , which we parametrize as [40, 63]

ĥ =

(
x 0
0 −x̃

)
. (2.8.6)

2.8.2 Boundary conditions

We start off from the Lukichev-Kuprianov boundary condition in equation (1.5.3),

2rǦα,β∇̃rǦα,β =
[
Ǧα, Ǧβ

]
− . (2.8.7)

Expanding the 8× 8 Green functions into their components, we find the top-right
component of this expression to contain

2r(ĝR
α,β

(∇̃r ĝ
R

α,β
)ĥα,β + ∇̃rĥα,β − ĝRα,β(∇̃rĥα,β)ĝA

α,β
− ĥα,β ĝAα,β∇̃r ĝ

A

α,β
) =

ĝR
α
ĝR
β

ĥβ − ĝRα ĥβ ĝAβ + ĝR
α

ĥαĝAβ − hαĝ
A

α
ĝA
β
− ĝR

β
ĝR
α

ĥα + ĝR
β

ĥαĝAα

−ĝR
β

ĥβ ĝAα + ĥβ ĝAβ ĝ
A

α
.

(2.8.8)

8The left division A\B can intuitively be understood as the inverse of the left multiplication
of B by A. This is not necessarily equal to the left multiplication of B by the inverse of A
though, as A in this case does not have a uniquely defined inverse.
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Similarly to how we did in the previous section, we isolate the terms with ∇ĥ
terms on one side by expanding the covariant derivative:

ĝR
α,β

ĥ ′α,β − ĥ ′α,β ĝ
A

α,β
= ĝR

α,β
ĥα,β ĝAα,β∇̃r ĝ

A

α,β
− (∇̃r ĝ

R

α,β
)ĥα,β

+
1

2r

(
ĝR
α,β
ĝR
α
ĝR
β

ĥβ − ĝRα,β ĝ
R

α
ĥβ ĝAβ

+ĝR
α,β
ĝR
α

ĥαĝAβ − ĝ
R

α,β
ĥαĝAα ĝ

A

β
− ĝR

α,β
ĝR
β
ĝR
α

ĥα

+ĝR
α,β
ĝR
β

ĥαĝAα − ĝ
R

α,β
ĝR
β

ĥβ ĝAα + ĝR
α,β

ĥβ ĝAβ ĝ
A

α

)
+i

(
ĝR
α,β

[
A, ĥα,β

]
−
−
[
A, ĥα,β

]
−
ĝA
α,β

)
= ÊBC.

(2.8.9)

Similarly to equation (2.8.5), we now find

∇r~x
∣∣∣
x=0,L

=
[
Fĥ (ĝR

α,β
, 1̂)−Fĥ (1̂, ĝA

α,β
)
]
\Ê

16×1

BC . (2.8.10)

To solve this boundary value problem for ĥ , the equilibrium equations presented
in sections 1.4 and 1.5 need to be solved first. Generally one would like to solve
the non-equilibrium equations for multiple values of the voltage bias, it should be
noted that the equilibrium problem is independent of the voltage and thus only
needs to be solved once.
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Chapter 3

Systems

In this chapter we solve the Usadel equation introduced in chapter 1 for a
nanowires that connect normal metal and superconducting bulk materials. Both
equilibrium and non-equilibrium properties are described using the methods
provided in chapters 1 and 2. We consider different types of wire: normal metals
(N), ferromagnets (F) and ferromagnets with spin-orbit coupling (F+SOC) (see
figure 3.1).

In section 3.1 we desribe a normal-metal nanowire, where we see the appearance
of a zero-bias conductance peak (ZBCP) that cannot be explained by the density
of states alone. When adding a magnetic field in section 3.2, we see that the
ZBCP is Zeeman splitted1. In section 3.3 we find that rotating the magnetic
field throughout the wire causes some of the singlet pairs induced from the
superconducting reservoir to convert to long-range triplets, which are sought-after
as they allow for superconducting properties to penetrate deeper into adjoined
magnetic materials [18, 22]. In section 3.4, we see that by applying a magnetic
field along or orthogonal to the wire, we can switch between a zero-energy density
dip and a zero-energy density peak in the density of states. Interestingly, we find
that the Zeeman splitting of the zero-bias conduction peak by the magnetic field
is weakened by the spin-mixing of spin-orbit coupling orthogonal to the magnetic
field.

1For an accessible derivation and insightful discussion of the Zeeman effect, see pp. 277-82 in
Ref. 64.
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N / F / F+SOC

N S

Figure 3.1: We will consider different types of nanowire junctions, in
which a normal or ferromagnetic wire connects a bulk normal metal to a
bulk superconductor.

3.1 Electric current in NNS junctions

As described in section 2.6, we expect the voltage-dependence of the conductivity
to look like the energy-dependence of the density of states. Comparing the
graphs in figure 3.2, we see that when the interface with the superconductor is
transparent (rR = 0), the conductance resembles the density of states in a normal
metal, which means that the bottleneck to the particle flow is wire itself. For
more opaque interfaces, the conductivity looks like the density of states on the
superconducting side; the bottleneck becomes the availability of states in the
material the carriers are tunneling to or from. This does not fully explain what
we see in the conductance graph though, there is another feature: a zero-bias
conductance peak (ZBCP) [61].

Without the suppression by a voltage bias or finite temperature, Andreev
reflected [65] holes have wave functions with a phase equal to the transmitted
electrons, allowing for constructive interference [66, 67]. These interferences
enhance the proximity effect in normal metal-superconductor junctions, resulting in
a higher carrier density and thus conductivity [61, 66]. This increased conductivity
around zero voltage is expressed in a ZBCP. For junctions with high transparency,
the enhanced proximity effect reduces the conductance, resulting in a zero-bias
conductance dip (ZBCD) instead [62]. In figure 3.2 we see the ZBCP on the right
for higher boundary resistances, and the ZBCD on the left for rR � 1.

The relevance of the Thouless energy as an energy scale is shown in figure 3.3,
where the conductivity is shown as a function of both the potential bias and
the length of the system. The Thouless energy is related to this length through
Eth = ∆0(ξ/L)2, where ξ is the superconducting coherence length, the distance
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over which the BCS wavefunction decays. We see that for very small systems the
interferences described above occur even when a voltage is applied, whereas they
become more improbable even at eV = 0 as the wire length is increased. The
results of this section are in agreement with the numerical studies in Refs. [40,
62].
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Figure 3.2: The DOS and conductivity of an NNS junction. The first is
a function of energy and position in the wire, normalized to the DOS in
the bulk normal metal, with the parameters rL = rR = 0.1 and L = 10ξ
(temperature map in the wire, army colours in the bulk materials). The
second is a function of voltage bias and resistance on the N/S boundary,
normalized to σ(eV � ∆0). The parameters are rL = 0 and L = 10ξ.
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Figure 3.3: The conductivity of an NNS junction as a function of the
nanowire length, on a logarithmic scale. The parameters are rL = 0,
rR = 1.
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3.2 Electric current in NFS junctions

In ferromagnetic materials a magnetic field acts on the electrons flowing through
the material. By coupling to the spin of the electrons, this field either increases
or decreases their energy, splitting the energy bands into spin sub-bands. When
looking at the densities of states of up and down spins independently, we find that
while they still align with the DOS in the superconductor close to the boundary,
deeper into the wire they shift by the amount of energy added by the field (see
figure 3.4) [68]. This shift is independent of the orientation of the field, as we only
consider the coupling between the magnetic field and the spin. We will see in
section 3.4 however, that the orientation of the magnetic field becomes important
when spin-orbit coupling is included, as it should for very thin wires.

A similar effect can be seen in the conductivity of the junction as a function
of voltage bias and magnetization, the zero-bias conduction peak we observed
in NNS junctions is Zeeman splitted similarly, as shown in figure 3.5. Note that
the peaks at eV = ±∆0 and the size of the gap between them remain unchanged
under an increase of the magnetic field, as these features are related to the number
of available states in the superconducting reservoir, which we here consider to
remain unchanged under magnetization of the wire. The results presented here
can be compared to the data in Refs. [19–21].
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Figure 3.4: The densities of states of an NFS junction for spin-up and
spin-down particles, as functions of both energy and position in the wire,
normalized to the DOS in the bulk normal metal. The parameters are
rL = rR = 0.1, h = 50Eth and L = 10ξ.
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Figure 3.5: The conductivity of an NFS junction as a function of both
voltage bias and magnetization, normalized to σ(eV � ∆0). The results
are independent of the direction of h. The parameters are rL = 0,
rR = 1, and L = 10ξ.

42



3.3 Junctions with Néel and Bloch walls

In this section we will consider two very specific types of inhomogeneous fer-
romagnets: those with continuous rotations of the magnetization throughout
the material, either around the wire (a Bloch wall) or in the plane along and
orthogonal to it (a Néel wall). Both are shown in figure 3.6.

Whereas a homogeneous magnetic field only creates short-ranged triplet pairs
ft (described in section 1.7.2), inhomogeneity of the field allows for the different
electrons in a Cooper pair to on average rotate in opposite directions as they
move through the wire in different directions. We will see in this section that the
relative densities of the short and long-range triplets are periodic in the number
of complete rotations the magnetization makes.

For stronger magnetic fields, the triplet formation happens faster both as a
function of position in the wire, and as a function of the rotation of the field. For
very strong fields the electron spins align with the field and rotate along as they
pass through the wire, and share of short and long-range triplets becomes periodic
with the number of total rotations the field makes. For a single complete flip of
the field through the wire, two electrons moving in opposite directions flip both
spins, ending up in the short-range state ft = (f↑↓ + f↓↑)/

√
2. For a rotation of

the field by π/2, the spins in a singlet pair align, and the long-range triplets f↑↑
and f↓↓ are formed. This periodicity is shown in figure 3.8.

The conductivity of the junction depends heavily on the total rotation of the
magnetization, as shown in figure 3.7, where the mixing of different spin compo-
nents of the Green functions due to the disordering effect of the inhomogeneity
reduces the Zeeman splitting of the ZBCP and broadens the peaks. For highly
inhomogeneous ferromagnets (such as for ∆θ(h, êz) = 40π in the graph), the
magnetization changes over much shorter distances than the Green functions
decay. The magnetization then averages out to zero, and we end up with a single
zero-bias conductance peak, as we saw in the NNS case in section 3.1. Note that
this peak is not a sign of triplets, but rather a feature of Andreev reflection.

It is worth noting that in the absence of spin-orbit coupling, Bloch and Néel
walls leave identical expressions in the equilibrium properties of the junction.
This is because without this coupling the magnetic interactions are completely
independent of the orientation of the wire, whether it point along or perpendicular
to the direction around which the magnetization rotates. Note that long-range
triplets in the x and y directions will not show up as diagonal components
in the anomalous Green function f , as their corresponding Pauli matrices are
off-diagonal.

The study of Bloch and Néel walls can be extended by accounting for spin-
dependent interfacial phase shifts, as discussed in section 1.5. Such phase shifts
themselves also have a triplet-creating effect [69]. For a study of similar systems
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Figure 3.6: There are two types of inhomogeneous ferromagnets we will
consider: Néel walls (above) and Bloch walls (below). The former has a
magnetization that rotates around a direction perpendicular to the wire,
the latter rotates around the orientation of the wire.

for much weaker magnetic fields (|h| � ∆̂0), see reference 48.
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Figure 3.7: The conductivity of a Néel wall with |h| = 50Eth as a
function of the total rotation of the magnetization throughout the wire.
The parameters are rL = rR = 0.1, L = 10ξ.

45



Figure 3.8: The formation of short-ranged (above) and long-ranged
(below) triplets in a Néel wall, as a function of the total difference in
angle between the magnetic field orientation on the superconducting side
and the normal-metal side. The parameters are rL = rR = 0.1, L = 10ξ,
and |h| = 50Eth.
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3.4 NFS junctions with spin-orbit coupling

When the spin is coupled to the momentum, particles with the same momentum
but opposing spins will receive an opposite energy contribution from the coupling.
Hence, similarly to what we saw in homogeneous ferromagnets in section 3.2, the
energy bands will split up into spin sub-bands [34]. Whereas in inhomogeneous
ferromagnets, as discussed in section 3.3, the triplet density depends on the
misalignment of the magnetization between different points in the wire, in homo-
geneous ferromagnets with Rashba and Dresselhaus coupling it determined by the
misalignment of the magnetization and the spin-orbit coupling. Comparable to
the results for Bloch and Néel walls, we see in figure 3.9 that the triplet density is
lowest for complete alignment of the magnetic field and the spin-orbit coupling,
and highest for complete anti-alignment. The relative variation of singlet, short-
range and long-range triplets as a function of the magnetization direction allows
for a switch between a zero-energy dip (singlet-dominated) and a zero-energy
peak (triplet-dominated), as shown in figure 3.10. Note that even though the
Dresselhaus coupling points along the wire, while the Rashba couplings point
outwards, they both have the same effect on the density of states when looking
only at the orientation of the field relative to the coupling. For a wire with only
one Rashba coupling direction (which would necessarily need to be non-symmetric
in the x and y-directions), the upper graph would be identical to the lower one,
shifted by π/2. Note that neither the Dresselhaus nor the Rashba coupling have
any effect on the density of states in the absence of magnetic fields.

When looking at the differential conductivity of ferromagnetic nanowire junc-
tions with Rasha coupling along the two directions orthogonal to the wire in
figure 3.11, we see that the Zeeman splitting of the zero-bias conduction peak
(black curve) by a magnetic field (red curve) is reduced by the spin-mixing of
spin-orbit coupling orthogonal to the magnetic field (blue curve for one, and green
curve for two orthogonal coupling directions). This effect is very similar to that
observed in the conductivity of inhomogeneous ferromagnets, as was shown in
section 3.3. We conclude that by applying and rotating a magnetic field, the
electric behaviour of the junction can be varied considerably.
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Figure 3.9: The formation of short-ranged (above) and long-ranged
(below) triplets in a ferromagnets with spin-orbit coupling, as a function
of the angle between the magnetization and the z-direction (along the
wire). The parameters are αx = αy = 5, β = 0, rL = rR = 0.1, L = 10ξ,
and |h| = 50Eth.
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Figure 3.10: The DOS at x = L of an NFS junction as a function of
the angle θ(h, êz) between the magnetic field and the wire orientation,
for |h| = 50Eth, rL = 0, rR = 0.1, and L = 10ξ. The top graph shows
pure Rashba coupling with αx = αy = 5, β = 0, the bottom graph pure
Dresselhaus coupling with αx = αy = 0, β = 5.
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h/Eth=(0,0,0), α=5

h/Eth=(0,0,50), α=0

h/Eth=(0,0,50), α=5

h/Eth=(50,0,0), α=5
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Figure 3.11: The conductivity of a ferromagnetic nanowire for different
values of the magnetization and Rashba coupling, with β = 0, T = 0.02Tc,
rL = 0, rR = 1, and L = 10ξ. (Close up in the plot below.)
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Conclusion and outlook

In this thesis different methods to calculate non-equilibrium properties of ferro-
magnetic superconducting junctions have been presented. An analytical method
is derived for and applied to systems without spin-orbit coupling, and a numerical
method is presented for systems that do include this. It is found that the density
of both short and long-range triplets can be tuned by varying either the inhomo-
geneity of the magnetization or the orientation of homogeneous magnetic fields
with respect to the intrinsic spin-orbit coupling. It is found that for very thin
wires, with a diameter below 10 nm, the Rashba coupling due to the confining
potential of the wire has a strong diminishing effect on the Zeeman splitting of
the differential conductivity spectrum.

The analytical method presented in this thesis allows for the investigation
of non-equilibrium effects in inhomogeneous ferromagnetic structures other than
Bloch and Néel walls, and should be extended to describe junctions other than
nanowires. This method can also be used for research on spin currents, a relevant
topic within spintronics.
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Appendix A

Fourier transformations

Both the main text and the appendices on the derivations of the Usadel equation
and the non-equilibrium expressions make heavy use of transformations between
spacetime and momentum-energy space. For a complete overview, we cover here
the definitions of four-vectors (section A.1), Fourier transformations (sections A.2
and A.3), and different products (sections A.4 through A.7).

A.1 Four-vectors and the metric tensor

Combining the time and position coordinates t and r = xêx + yêy + zêy into one
four-dimensional vector, the contravariant four-vector is denoted as

xµ =


ct
x
y
z

 .

Using the spacelike or Pauli convention, the covariant four-vector is defined as

xµ = gµνx
ν =



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ct
x
y
z



T

=
(
−ct x y z

)
.

In a similar fashion we can define the momentum four-vectors:

pµ =


E/c
px
py
pz

 , pµ =
(
−E/c px py pz

)
.
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A.2 General Fourier transformations

We define the Fourier transformations between the generic coordinates q and p as
follows:

F (f(q)) =

∫
dq e−iqp f(q), F−1(f(p)) =

1

2π

∫
dp eiqp f(p).

A.3 Fourier transformations in spacetime

Using the definitions in section A.1, a Fourier transformation from spacetime to
energy-momentum space can be written as

F
(
f(xµ)

)
=

∫
d4x e−ixµp

µ

f(xµ) =

∫
d4x e−ixµg

µνpν f(xµ)

=

∫
dt

∫
dr e−i(ct,r)·(−E/c,p) f(ct, r)

=

∫
dt eitE

∫
dr e−ir·p f(ct, r)

= f(E/c,p).

It is now possible to extract the Fourier transformations between time and energy,
and between position space and momentum space. Writing them separately, we
find

FE←t =

∫
dt eitE , F−1

t←E =
1

2π

∫
dE e−itE ,

Fp←r =

∫
dr e−ir·p, F−1

r←p =
1

2π

∫
dp eir·p.

Note the sign difference between the position-momentum and time-energy trans-
formations.

A.4 Convolutions

The convolution ∗ of two functions f(x) and g(x) is given by

f(x) ∗ g(x) ≡
∫
dx′ f(x′)g(x− x′).
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Using this, we can calculate F
(
f(q)

)
∗F

(
g(q)

)
:

F
(
f(q)

)
∗F

(
g(q)

)
=

∫
dp′
(∫

dq1 e
−iq1p′ f(q1)

)(∫
dq2 e

−iq2(p−p′)g(q2)

)

=

∫
dq2 e

−iq2p g(q2)

(∫
dp′ eiq2p

′
∫
dq1 e

−iq1p′ f(q1)

)

=

∫
dq2 e

−iq2p g(q2) F−1
q2←p′

(
F p′←q1

(
f(q1)

))
= F

(
f(q) · g(q)

)
.

(A.4.1)
Similarly, we can also calculate F

(
f(q) ∗ g(q)

)
:

F
(
f(q) ∗ g(q)

)
=

∫
dq1 e

−iq1p
∫
dq2 f(q2)g(q1 − q2)

=

∫
dq1 e

−i(q1−q2)p g(q1 − q2)

∫
dq2 e

−iq2p f(q2)

=

∫
dq′1 e

−i(q′1)p g(q′1)

∫
dq2 e

−iq2p f(q2)

= F
(
f(q)

)
·F

(
g(q)

)
.

(A.4.2)

A.5 The star product

The star product is defined as follows:

A(q1, q2)�B(q1, q2) ≡ F p←qδ

(∫
dq A(q1, q)B(q, q2)

)
.

This can be written as1

A(q1, q2)�B(q1, q2) = e
i(∂Aqµ∂

B
p −∂

A
p ∂

B
qµ

)/2 F p←qδ
(
A(q1, q2)

)
·F p←qδ

(
B(q1, q2)

)
,

1Here we use the notation ∂Ax for the differential operator ∂x operating on A. For example,
∂Ax (AB) = (∂xA)B and ∂Bx (AB) = A(∂xB). The exponential function of the operator is defined
by its power series exp(∂Ax ) =

∑∞
n=0(∂Ax )n/n!.
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which can be shown as follows.

A(q1, q2) � B(q1, q2)

= F p←qδ

(∫
dq A(q1, q)B(q, q2)

)

= F p←qδ

(∫
dq A(qµ + 1

2qδ, q)B(q, qµ − 1
2qδ)

)

= F p←qδ

(∫
dq A(qµ + 1

2qδ, qµ + q)B(qµ + q, qµ − 1
2qδ)

)

=

∫
dqδ e

−iqδp
∫
dq A(qµ + 1

2qδ, qµ + q)B(qµ + q, qµ − 1
2qδ).

Introducing the coupled variables u and v:
u = q + 1

2qδ

v = q − 1
2qδ

,


q =

u− v
2

qδ = u+ v

⇒ J =

∥∥∥∥∥∥∥∥
∂q

∂u

∂q

∂v

∂qδ
∂u

∂qδ
∂v

∥∥∥∥∥∥∥∥ = 1,

the integral becomes

A�B =

∫
du

∫
dv e−i(u+v)pA

(
qµ +

u+ v

2
, qµ +

u− v
2

)

×B
(
qµ +

u− v
2

, qµ −
u+ v

2

)
.

The two arguments of both functions are similar, apart from a shift by u or v,
which allows us to simplify the equations by defining

Ã(q, y) = A
(
q +

y

2
, q − y

2

)
,

Ã
(
qµ +

u

2
, v
)

= A

(
qµ +

u+ v

2
, qµ +

u− v
2

)
,

B̃(q, y) = B
(
q +

y

2
, q − y

2

)
,

B̃
(
qµ −

v

2
, u
)

= B

(
qµ +

u− v
2

, qµ −
u+ v

2

)
,
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leading to

A�B =

∫
du

∫
dv e−i(u+v)p Ã

(
qµ +

u

2
, v
)
B̃
(
qµ −

v

2
, u
)
. (A.5.1)

In order to extract the Fourier transforms, we need to create two independent
integrals. This can be done by Taylor expanding the functions Ã and B̃, absorbing
the u dependence of Ã and the v dependence of B̃ in infinite sums that can be
taken out of the integral. As the Taylor expansion of Ã around u = 0,

Ã
(
qµ +

u

2
, v
)

=

∞∑
n=0

[
∂nu Ã

(
qµ +

u

2
, v
)]

u=0

un

n!
,

can be written in terms of derivations to qµ instead of u using

df(a+ 1
2b)

db
=

1

2

df(a+ 1
2 )

da
,

we can write

Ã
(
qµ +

u

2
, v
)

=

∞∑
n=0

(u/2)n

n!
∂nqµÃ (qµ, v) .

Similarly,

B̃
(
qµ −

v

2
, u
)

=

∞∑
n=0

(−v/2)n

n!
∂nqµB̃ (qµ, u) .

Substituting this back into equation (A.5.1), we find

A�B =

∞∑
n,m=0

1

n!

1

m!

∫
dv

(
−v
2

)m
e−ivp ∂nqµÃ (qµ, v)

×
∫
du
(u

2

)n
e−iup ∂mqµB̃ (qµ, u)

=

∞∑
n,m=0

(∂Aqµ)n

n!

(∂Bqµ)m

m!

∫
dv

(
−i∂p

2

)m
e−ivp Ã (qµ, v)

×
∫
du

(
i∂p
2

)n
e−iup B̃ (qµ, u) .

(A.5.2)
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As the functions Ã(qµ, v) and B̃(qµ, u) do not depend on p, we can simply put
the operators ∂p in front of the integrals:

A�B =

∞∑
n,m=0

(∂Aqµ)n

n!

(∂Bqµ)m

m!

(
−i∂p

2

)m
A(qµ, p)

(
i∂p
2

)n
B(qµ, p)

=

∞∑
n,m=0

(i∂Aqµ∂
B
p )n/2

n!

(−i∂Ap ∂Bqµ)m/2

m!
A(qµ, p)B(qµ, p)

= e
i(∂Aqµ∂

B
p −∂

A
p ∂

B
qµ

)/2
A(qµ, p)B(qµ, p).

(A.5.3)

A.5.1 The star product in case one of the arguments de-
pends on only a single coordinate

Whereas the normal star product was defined as

A(q1, q2)�B(q1, q2) ≡ F p←qδ

(∫
dq A(q1, q)B(q, q2)

)
,

the star product of two functions where one depends only on a single variable is
defined simply as

A(q1)�B(q1, q2) ≡ F p←qδ
(
A(q1)B(q1, q2)

)
.

Writing this down in the mixed representation as

A(q1)�B(q1, q2) =

∫
dqδ e

−iqδpA(qµ + 1
2qδ)B(qµ + 1

2qδ, qµ −
1
2qδ),

we can without further ado Taylor expand A:

A(qµ + 1
2qδ) =

∞∑
n=0

(qδ/2)n

n!
∂nqµA(qµ).

60



Bringing the terms that do not depend on qδ outside the integral, this gives

A(q1)�B(q1, q2) =

∞∑
n=0

(∂Aqµ)n

n!
A(qµ)

×
∫
dqδ

(qδ
2

)n
e−iqδpB(qµ + 1

2qδ, qµ −
1
2qδ)

=

∞∑
n=0

(i∂Aqµ∂
B
p /2)n

n!
A(qµ)

×
∫
dqδ e

−iqδpB(qµ + 1
2qδ, qµ −

1
2qδ)

= e
i(∂Aqµ∂

B
p )/2

A(qµ)B(qµ, p).

(A.5.4)

A.6 The bullet product

The bullet product is a special case of the star product in which both the spatial
and time coordinates are convoluted:

A(x1, x2) •B(x1, x2) = F

(∫
dr

∫
dtA(x1, x)B(x, x2)

)
,

where x, x1 and x2 are four-vectors. This is similar to equation (A.5.3), with the
difference that here we replace the scalar coordinates with four-vectors:

A(x1, x2) •B(x1, x2) = ei(∂
A
x ∂

B
p −∂

A
p ∂

B
x )/2A(x, p)B(x, p).

Here the subscript µ on the four-vectors is left out to avoid confusion. The double
derivatives ∂Ax ∂

B
p and ∂Ap ∂

B
x are invariant inner products between two operators

with four components:

∂Ax ∂
B
p =

(
∂Ax
)
µ

(
∂Bp
)µ

=
(
∂A−ct ∇Ar

)∂BE/c
∇Bp

 = −∂At ∂BE +∇Ar∇Bp . (A.6.1)

An other way to trace the origin of the minus sign in front of the first term is to
look at the first and second line of equations (A.5.2, A.5.4), where the exponential
function would have the opposite sign, as derived in section A.3.
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With this we can write the bullet product explicitly in terms of time and
position coordinates:

A(r1, t1;r2, t2) •B(r1, t1; r2, t2)

= Fp←rδ, ε←tδ

(∫
dr

∫
dtA(r1, t1; r, t)B(r, t; r2, t2)

)
= e

i
2 (−∂At ∂

B
ε +∂Aε ∂

B
t +∇Ar ∇

B
p−∇

A
p∇

B
r )A(r, t,p, ε)B(r, t,p, ε),

(A.6.2)

where the spatial and time coordinates on the right hand side are the average
coordinates in the mixed representation.

A.6.1 The bullet product in case one of the arguments de-
pends on only a single set of coordinates

If one of the functions depends on only one set of coordinates, the bullet product
simplifies to

A(x1) •B(x1, x2) = F
(
A(x1)B(x1, x2)

)
.

In correspondence with equation (A.5.4), this can be written as

A(x1) •B(x1, x2) = ei(∂
A
x ∂

B
p )/2A(x)B(x, p).

Making use of equation (A.6.1) again, this brings us to

A(r1, t1) •B(r1, t1; r2, t2) = Fp←rδ, ε←tδ (A(r1, t1)B(r1, t1; r2, t2))

= ei(−∂
A
t ∂

B
ε +∇Ar ∇

B
p )/2A(r, t)B(r, t,p, ε).

Similarly, the bullet product in case the second set of coordinates is shared is
given by

B(r1, t1; r2, t2) •A(r2, t2) = ei(∂
A
t ∂

B
ε −∇

A
r ∇

B
p )/2B(r, t,p, ε)A(r, t).

These two equations can be used to define commutators. Using the shorthand
notation

A = A(r1, t1), B = B(r1, t1; r2, t2),

the bullet commutator and anticommutator can be defined as

[A •, B]± = ei(−∂
A
t ∂

B
ε +∇Ar ∇

B
p )/2AB ± ei(∂

A
t ∂

B
ε −∇

A
r ∇

B
p )/2BA.
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A.7 The ring product

The ring product is a special case of the bullet product in which only the time
and energy derivatives remain. In the case where both functions depend on two
sets of coordinates, this means that

A(r1, t1; r2, t2) ◦B(r1, t1; r2, t2) = e
i
2 (−∂At ∂

B
ε +∂Aε ∂

B
t )A(r, t,p, ε)B(r, t,p, ε).

Similarly, in the case where one of the functions depends on only a single set of
coordinates, we get

A(r1, t1) ◦B(r1, t1; r2, t2) = ei(−∂
A
t ∂

B
ε )/2A(r, t)B(r, t,p, ε)

or
B(r1, t1; r2, t2) ◦A(r2, t2) = ei(∂

A
t ∂

B
ε )/2B(r, t,p, ε)A(r, t).
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Appendix B

Electromagnetic properties

To account for electromagnetic interactions, the regular derivative is often replaced
by the covariant derivative in the main text. This appendix covers both its
derivation and some often-invoked properties.

B.1 The covariant derivative

An electromagnetic gauge transformation represented by the unitary operator U
with U−1 = U† is given by [70]

A 7−→ A− 1

e
∇λ, U(r) = eiλ(r), U†(r) = e−iλ(r).

This transforms the annihilation operator as

ψσ 7−→ ψσ
′ = Uψσ.

Gauge invariance of the number operator helps us derive the transformation of
the creation operator:

ψ†σψσ 7−→ (ψ†σ)′Uψσ = ψ†σψσ ⇒ ψ†σ 7−→ (ψ†σ)′ = ψ†σU
†.

The normal spatial derivatives of ψσ and ψ†σ would under such a transformation
behave as

∇ψσ 7−→ ∇(Uψσ) = U(∇+ i∇λ)ψσ,

∇ψ†σ 7−→ ∇(ψ†σU
†) = U(∇− i∇λ)ψ†σ.

Defining the covariant derivative ∇̃ such that it commutes with the gauge trans-
formation, this must satisfy

∇̃(Uψσ) = U∇̃ψσ, ∇̃(ψ†σU
†) = (∇̃ψ†σ)U†.
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Writing ∇̃ as the normal derivative with a correction term,

∇̃ = ∇+X,

this means that

∇̃ψσ 7−→ U(∇+ i∇λ+X ′)ψσ ⇒ Xψσ 7−→ UX ′ψσ = U(X − i∇λ)ψσ,

∇̃ψ†σ 7−→ U(∇− i∇λ+X ′)ψ†σ ⇒ Xψ†σ 7−→ UX ′ψ†σ = U(X + i∇λ)ψ†σ.

We find that X behaves as ±ieA, and hence

∇̃ = ∇± ieA, (B.1.1)

where the upper sign is for the annihilation operator and the lower sign for the
creation operator.

B.2 The covariant derivative acting on pairs of
operators

Taking into account the matrix structure of the vector potential in this thesis, the
4× 4 and 8× 8 dimensional structures of A are given by [30]

Â =

(
A 0
0 −A?

)
, Ǎ = 1̌⊗

(
A 0
0 −A?

)
. (B.2.1)

The covariant derivatives then operate on ψ and ψ† as follows:

∇̃ψ = ∇ψ + ieÂψ,

∇̃ψ† = ∇ψ† − ieψ†Â.
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The covariant derivatives of the two products ψψ† and ψ†ψ are therefore:

∇̃
(
ψψ†

)
=
(
∇̃ψ
)
ψ† + ψ

(
∇̃ψ†

)
=
(
∇ψ + ieÂψ

)
ψ† + ψ

(
∇ψ† − ieψ†Â

)
= ∇

(
ψψ†

)
+ ie

[
Â, ψψ†

]
−
,

∇̃
(
ψ†ψ

)
=
(
∇̃ψ†

)
ψ + ψ†

(
∇̃ψ
)

=
(
∇ψ† − ieψ†Â

)
ψ + ψ†

(
∇ψ + ieÂψ

)
= ∇

(
ψ†ψ

)
.

(B.2.2)

67



68



Appendix C

Green’s functions

This thesis is written in the language of quasiclassical theory, where the dynamics
of te system are described by the Green functions, which describe correlations
between the field operators. The formalism is introduced with definitions of the
most important objects, with references to relevant literature where needed.

C.1 The Keldysh formalism

Using the Keldysh formalism, we write the Green functions as [46, 47, 71, 72]

GRσσ′(r, t; r
′, t′) ≡ −i

〈[
ψσ(r, t), ψ†σ′(r

′, t′)
]
±

〉
Θ(t− t′),

GAσσ′(r, t; r
′, t′) ≡ +i

〈[
ψσ(r, t), ψ†σ′(r

′, t′)
]
±

〉
Θ(t′ − t),

GKσσ′(r, t; r
′, t′) ≡ −i

〈[
ψσ(r, t), ψ†σ′(r

′, t′)
]
∓

〉
,

(C.1.1)

where the order of the times t and t′ in the Heaviside step function determines
whether the annihilation happens before or after the creation. The sign ± and ∓
denote the difference between bosons and fermions, with the upper sign for fermions
and the lower sign for bosons. In the retarded Green function the creation happens
before the annihilation, whereas annihilation comes first in the advanced Green
function. These functions provide information about the transport of particles:
the retarded Green function gives the probability amplitude for a particle to be
at r at time t given that it was at r′ at time t [25], the advanced Green function
describes the same for holes. The Keldysh function is the only function defined
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as a commutator instead of an anticommutator (or anticommutator instead of a
commutator in case of bosons), providing non-equilibrium information [47, 63].

The anomalous Green functions give correlations between two annihilation
operators (as their conjugates do for two creation operators):

FRσσ′(r, t; r
′, t′) ≡ −i

〈[
ψσ(r, t), ψσ′(r

′, t′)
]
±

〉
Θ(t− t′),

FAσσ′(r, t; r
′, t′) ≡ +i

〈[
ψσ(r, t), ψσ′(r

′, t′)
]
±

〉
Θ(t′ − t),

FKσσ′(r, t; r
′, t′) ≡ −i

〈[
ψσ(r, t), ψσ′(r

′, t′)
]
∓

〉
.

In non-superconducting systems we would not expect any correlation between
two particles at different locations and times, and the anomalous Green functions
should be zero. In the case of superconductivity, however, we see a time-delayed
interaction between electrons of opposite spin, and these functions will yield
nonzero values. The singlet and triplet densities can be calculated from the
different spin-space components of these functions, as described in section 1.7.2.

We now focus on fermions, assuming spin-1/2 particles. The one-dimensional
Green functions have two spin indices, allowing four different spin combinations.
We can combine these four correlations in one function, forming 2× 2 matrices:

GR,A,K ≡

GR,A,K↑↑ GR,A,K↑↓

GR,A,K↓↑ GR,A,K↓↓

 , FR,A,K ≡

FR,A,K↑↑ FR,A,K↑↓

FR,A,K↓↑ FR,A,K↓↓

 .

The elements of the matrices describe different scenarios, the top-right element of
GR for example gives the probability of a spin-up particle at spacetime coordinate
r, t to induce a spin-down particle at r′, t′. Going one step further, we can define
the 4× 4 Green functions:

Ĝ
R

=

(
GR FR

−F̃R −G̃R

)
, Ĝ

A
=

(
GA FA

−F̃A −G̃A

)
, Ĝ

K
=

(
GK FK

−F̃K −G̃K

)
.

(C.1.2)
These matrices can be rewritten in terms of the Nambu 4-vector from eq. (1.1.3)
such that

Ĝ
R

= −iρ̂
3

〈[
ψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t− t′),

Ĝ
A

= +iρ̂
3

〈[
ψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t′ − t),

Ĝ
K

= −iρ̂
3

〈[
ψ(r, t), ψ†(r′, t′)

]
−

〉
.

(C.1.3)
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Here the commutators are interpreted component-wise, meaning that〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉
ij

=

〈[
ψi(r, t), ψ

†
j (r
′, t′)

]
±

〉
. (C.1.4)

Combining the above 4× 4 functions into one 8× 8 matrix, we write1

Ǧ =

(
Ĝ
R

Ĝ
K

0 Ĝ
A

)
. (C.1.5)

C.2 The quasiclassical approximation

In the quasiclassical approximation we assume that the net transport happens
at the Fermi surface [24]. In this case the small-scale oscillations of the Green
function are well defined. As we are generally interested in the behaviour of the
Green function over distances much larger than the Fermi wavelength, we can
compensate for these oscillations and focus on the outline that envelops them.

Taking into the assumption that the momentum is confined to the Fermi
surface, the envelope of the Green function can be described by [46, 47, 73]

ǧR(r,p, ε, t) =
i

π

∫
δ(|p| − |pF |) F [Ǧ

R
(r, t; r′, t′)]dξp, (C.2.1)

where we integrate over kinetic energy,

ξp =
p2

2m
. (C.2.2)

By writing a factor i/π in front of the integral here, we assure that the function ǧ
is normalized such that [54]

ǧ • ǧ = 1̌. (C.2.3)

We have now defined the quasiclassical Green function

ǧ =

(
ĝR ĝK

0 ĝA

)
, (C.2.4)

with components

ĝR =

(
gR fR

−f̃
R
−g̃R

)
, ĝA =

(
gA fA

−f̃
A
−g̃A

)
, ĝK =

(
gK fK

−f̃
K
−g̃K

)
.

(C.2.5)
It follows from our normalization condition that

ĝR • ĝR = ĝA • ĝA = 1, ĝR • ĝK + ĝK • ĝA = 0. (C.2.6)

1The choice of arranging the components like this has been motivated in Ref. 46.
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Appendix D

Full derivation of the Usadel
equation

The systems in chapter 3 are studied by solving the equilibrium and non-
equilibrium diffusion equations. These equations are components of the Usadel
equation, which is derived in this appendix.

D.1 Equations of motion for the field operators

As described in sections 1.2.1 to 1.2.3, the Hamiltonian in equation (1.2.1) contains
sets of two and four field operators. As these are fermion fields, which satisfy
the anticommutation relations in equation (1.1.2), it will be useful to express
the right-hand side of the Heisenberg relations in equation (1.2.1) in terms of
anticommutators.

Looking more closely at the Hamiltonian, we find that there the terms can be
grouped by their type of summation. There is one term involving only a spatial
integral (HBCS), two terms involving a spatial integral and a single spin sum (H0

and Himp), and one term involving a spatial integral and a double spin sum (Hsf).
Starting with HBCS, we encounter the following expression:[
ψσ(r, t),

∫
dr′
(

∆?(r′, t)ψ↓(r
′, t)ψ↑(r

′, t) + ∆(r′, t)ψ†↑(r
′, t)ψ†↓(r

′, t)
) ]
−

=

∫
dr′
( [
ψσ(r, t),∆?(r′, t)ψ↓(r

′, t)ψ↑(r
′, t)
]
−

+
[
ψσ(r, t),∆(r′, t)ψ†↑(r

′, t)ψ†↓(r
′, t)
]
−

)
.

(D.1.1)
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As the gap function ∆ is a mere scalar, it can be pulled out of the integral, leaving
us with the commutators[

ψσ(r, t), ψ↓(r
′, t)ψ↑(r

′, t)
]
−

and
[
ψσ(r, t), ψ†↑(r

′, t)ψ†↓(r
′, t)
]
−
.

Using now that
[A,BC]− = [A,B]+ C −B [A,C]+ , (D.1.2)

we find the anticommutators we were looking for:[
ψσ(r, t), ψ↓(r

′, t)ψ↑(r
′, t)
]
−

=
[
ψσ(r, t), ψ↓(r

′, t)
]

+︸ ︷︷ ︸
0

ψ↑(r
′, t)

−ψ↓(r′, t)
[
ψσ(r, t), ψ↑(r

′, t)
]

+︸ ︷︷ ︸
0

,

[
ψσ(r, t), ψ†↑(r

′, t)ψ†↓(r
′, t)
]
−

=
[
ψσ(r, t), ψ†↑(r

′, t)
]

+︸ ︷︷ ︸
δ(r−r′)δσ,↑

ψ†↓(r
′, t)

−ψ†↑(r′, t)
[
ψσ(r, t), ψ†↓(r

′, t)
]

+︸ ︷︷ ︸
δ(r−r′)δσ,↓

.

Substituting these results back in equation (D.1.1), we find

[
ψσ(r, t),HBCS

]
− =

∫
dr′∆(r′, t)

(
δ(r − r′)δσ,↑ψ†↓(r

′, t)

−ψ†↑(r′, t)δ(r − r′)δσ,σ′
)

= ∆(r, t)
(
δσ,↑ψ

†
↓(r, t)− δσ,↓ψ

†
↑(r, t)

)
.

Similarly, the commutator between ψ†σ and HBCS is found to be[
ψ†σ(r, t),HBCS

]
− = ∆?(r, t)

(
δσ,↓ψ↑(r, t)− δσ,↑ψ↓(r, t)

)
,

which can be checked with[
ψ†σ,H

]
− = i∂tψ

†
σ = −

(
i∂tψσ

)†
= −

([
ψσ,H

]
−

)†
. (D.1.3)
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Moving on to the next part of the Hamiltonian, by writing

H0+imp = − ~2

2m
∇̃2 + qϕ− µ+ Vimp(r),

the commutator becomes, employing again equation (D.1.2),[
ψσ(r, t),H0 +Himp

]
− =

∑
σ′

∫
dr′

[
ψσ(r, t), ψ†σ′(r

′, t)H0+impψσ′(r
′, t)
]
−

=
∑
σ′

∫
dr′

[
ψσ(r, t), ψ†σ′(r

′, t)
]

+︸ ︷︷ ︸
δ(r−r′)δσ,σ′

H0+impψσ′(r
′, t)

−ψ†σ′(r′, t)
[
ψσ(r, t), H0+impψσ′(r

′, t)
]

+︸ ︷︷ ︸
0

.

Performing the sum and integration, we are left with[
ψσ(r, t),H0 +Himp

]
− = H0+impψσ(r, t). (D.1.4)

Comparably, using equation (D.1.3), we find[
ψ†σ(r, t),H0 +Himp

]
− = −ψ†σ(r, t)H†0+imp, (D.1.5)

where H†0+imp works to the left. The last remaining terms are the commutator

between ψσ and Hsf and Hh. Looking at Hsf first:[
ψσ(r, t),Hsf

]
−

=
∑
σ′,σ′′

∫
dr′
[
ψσ(r, t), ψ†σ′′(r, t) [σ · S(r′)]σ′′σ′ Vsf(r

′)ψσ′(r
′, t)
]
−

=
∑
σ′,σ′′

∫
dr′
[
ψσ(r, t), ψ†σ′′(r, t)

]
+︸ ︷︷ ︸

δ(r−r′)δσ,σ′′

[σ · S(r′)]σ′′σ′ Vsf(r
′)ψσ′(r

′, t)

−ψ†σ′′(r, t)
[
ψσ(r, t), [σ · S(r′)]σ′′σ′ Vsf(r

′)ψσ′(r
′, t)
]

+︸ ︷︷ ︸
0

=
∑
σ′

[σ · S(r)]σσ′ Vsf(r)ψσ′(r, t),

75



and thus [
ψ†σ(r, t),Hsf

]
− = −

∑
σ′

ψ†σ′(r, t)Vsf(r) [σ · S(r)]
†
σ′σ ,

and [
ψ†σ(r, t),Hh

]
− =

∑
σ′

ψ†σ′(r, t) [σ · h(r)]
†
σ′σ , (D.1.6)

where the indices on the spin interaction are switched as the dagger conjugation
includes both complex conjugation and transposition. Collecting terms,

i∂tψσ(r, t) = H0+impψσ(r, t) + ∆(r, t)
(
δσ,↑ψ

†
↓(r, t)− δσ,↓ψ

†
↑(r, t)

)
+
∑
σ′

[σ · S(r)]σσ′ Vsf(r)ψσ′(r, t)−
∑
σ′

[σ · h(r)]σσ′ ψσ′(r, t),

i∂tψ
†
σ(r, t) = −ψ†σ(r, t)H†0+imp + ∆?(r, t)

(
δσ,↓ψ↑(r, t)− δσ,↑ψ↓(r, t)

)
−
∑
σ′

ψ†σ′(r, t)Vsf(r) [σ · S(r)]
†
σ′σ +

∑
σ′

ψ†σ′(r, t) [σ · h(r)]
†
σ′σ .

Writing

V = Vsf [σ · S]− σ · h,

we can rewrite the last two terms here as a matrix multiplication:∑
σ′

ψ†σ′V
†
σ′σ =

∑
σ′

V †σ′σψ
†
σ′ =

∑
σ′

V ?σσ′ψ
†
σ′ = V ?σψ

†,

where V σ is the σth row of V , so that we end up with

i∂tψσ = H0+impψσ + ∆
(
δσ,↑ψ

†
↓ − δσ,↓ψ

†
↑

)
+ V σψσ′ ,

i∂tψ
†
σ = −ψ†σH

†
0+imp + ∆?

(
δσ,↓ψ↑ − δσ,↑ψ↓

)
− V ?σψ

†
σ′ .

Using the definitions in equation (1.1.3), these two equations can be combined:

i∂t


ψ↑

ψ↓

ψ†↑

ψ†↓

 =


H ′ + V↑↑ V↑↓ 0 ∆

V↓↑ H ′ + V↓↓ −∆ 0

0 −∆? −H ′? − V ?
↑↑ −V ?

↑↓

∆? 0 −V ?
↓↑ −H ′? − V ?

↓↓



ψ↑

ψ↓

ψ†↑

ψ†↓

 ,
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where H ′ = H0+imp. We recognize the symmetry of equation (D.1.3) clearly; the
bottom half of the matrix is simply minus the conjugate of the line above. To
express this, we move this minus sign to the lhs of the equation in the form of ρ̂

3
.

Applying also equation (D.1.3), we find

iρ̂
3
∂tψ = Ĥψ, and − i∂tψ†ρ̂3

= ψ†Ĥ
†
. (D.1.7)

where

Ĥ =


H ′ + V↑↑ V↑↓ 0 ∆

V↓↑ H ′ + V↓↓ −∆ 0

0 ∆? H ′? + V ?↑↑ V ?↓↑

−∆? 0 V ?↑↓ H ′? + V ?↓↓


=

(
H ′ + V ∆

∆† H ′† + V †

)
,

(D.1.8)

and the anti-Hermitian matrix ∆ = −∆† is defined as

∆ ≡
(

0 ∆
−∆ 0

)
. (D.1.9)

D.2 Equations of motion for Green’s functions

The time derivative of the retarded Green function, as defined in equation (C.1.3),
is given by

∂tĜ
R

= −iρ̂
3

〈[
∂tψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t− t′)

−iρ̂
3

〈[
ψ(r, t), ψ†(r′, t′)

]
+

〉
∂tΘ(t− t′)

= −i
〈[
ρ̂

3
∂tψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t− t′)

−iρ̂
3
δ(r − r′)δ(t− t′).

Here the matrix ρ̂
3

is moved into the anticommutator and to the first argument
in the first term. Because ρ̂

3
is Hermitian, we can do this for bosons as well. This
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allows us to insert equation (D.1.7):

∂tĜ
R

= −i
〈[
−iĤ(r, t)ψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t− t′)

−iρ̂
3
δ(r − r′)δ(t− t′).

Since Ĥ(r, t) acts on neither r′ nor t, we can move it outside the commutator.
Multiplying also by iρ̂−1

3
= iρ̂

3
from the left, we get

iρ̂
3
∂tĜ

R
= −iĤ(r, t)ρ̂

3

〈[
ψ(r, t), ψ†(r′, t′)

]
+

〉
Θ(t− t′)

+δ(r − r′)δ(t− t′).

Here we recognize the definition of the Green function again, which gives us(
iρ̂

3
∂t − Ĥ(r, t)

)
Ĝ
R

= δ(r − r′)δ(t− t′).

Similarly, taking the derivative of the Green function with respect to t′ instead of
t, we use the second equation in (D.1.7), leading to

Ĝ
R
(
iρ̂

3
∂t′ − Ĥ(r′, t′)

)†
= δ(r − r′)δ(t− t′).

Introducing the 8× 8 Hamiltonian

Ȟ = 12×2 ⊗ Ĥ =


H ′ + V ∆ 0 0

∆† H ′† + V † 0 0
0 0 H ′ + V ∆
0 0 ∆† H ′† + V †

 , (D.2.1)

and the 8× 8 Pauli matrix

ρ̌
3

= 12×2 ⊗ ρ̂
3

=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

we can now use the other definitions in equation (C.1.3) to find similar equations
for the advanced and Keldysh components and combine the results in the notation
of equation (C.1.5) [46, 74]:(

iρ̌
3
∂t − Ȟ(r, t)

)
Ǧ = δ(r − r′)δ(t− t′),

Ǧ
(
iρ̌

3
∂t′ − Ȟ(r′, t′)

)†
= δ(r − r′)δ(t− t′).

(D.2.2)
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D.3 The Eilenberger equation

Equations (D.2.2) have identical terms on the right-hand sides, which implies that
the left-hand sides must be equal:(

iρ̌
3
∂t − Ȟ(r, t)

)
Ǧ = Ǧ

(
iρ̌

3
∂t′ − Ȟ(r′, t′)

)†
,

or

iρ̌
3
∂tǦ+ i∂t′Ǧ ρ̌3

= Ȟ(r, t)Ǧ− ǦȞ†(r′, t′).

This equation contains two different time derivatives, which can be united by
defining a relative and an average time coordinate:

tµ =
t+ t′

2
, tδ = t− t′ ⇒ ∂t =

1

2
∂tµ + ∂tδ , ∂t′ =

1

2
∂tµ − ∂tδ ,

which turns the left-hand side into

(lhs) = iρ̌
3

(
1

2
∂tµ + ∂tδ

)
Ǧ+ i

(
1

2
∂tµ − ∂tδ

)
Ǧ ρ̌

3
.

A change of coordinates in which we exchange tδ for its Fourier transform ε (the
energy of the system described by Ǧ), allows us to discard one of the derivatives:

F ε←tδ
[
∂tδǦ

]
=

∫
dtδ e

itδε ∂tδǦ = eitδε Ǧ
∣∣∣∞
−∞
−
∫
dtδ iε e

itδε Ǧ = −iεǦ,

(D.3.1)
which means that

F ε←tδ (lhs) = iρ̌
3

(
1

2
∂tµ − iε

)
Ǧ+ i

(
1

2
∂tµ + iε

)
Ǧ ρ̌

3
.

Collecting these terms, the left-hand side can be written as

(lhs) =
i

2

[
ρ̌

3
, ∂tµǦ

]
+

+
[
ερ̌

3
, Ǧ
]
−
.

As there are no spatial operators on this side, we can go on and implicitly Fourier
transform to momentum space:

i

2

[
ρ̌

3
, ∂tµǦ

]
+

+
[
ερ̌

3
, Ǧ
]
−

= F ε←tδ,p←rδ

(
Ȟ(r, t)Ǧ− ǦȞ†(r′, t′)

)
. (D.3.2)

Until now, we have only specified that we consider fermions, apart from that the
above equality holds true for any Hamiltonian Ȟ. To gain more information, we
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now have to specify the Hamiltonian. Looking at equation (D.2.1), we identify
three different terms

H ′(r, t) = − ~2

2m
∇̃2

r + qϕ− µ+ Vimp(r),

V (r, t) = Vsf(r)

(
[σ · S(r)]↑↑ [σ · S(r)]↑↓
[σ · S(r)]↓↑ [σ · S(r)]↓↓

)
−
(

[σ · h(r)]↑↑ [σ · h(r)]↑↓
[σ · h(r)]↓↑ [σ · h(r)]↓↓

)
= Vsf(r)σ · S(r)− σ · h(r),

∆(r, t) =

(
0 ∆(r, t)

−∆(r, t) 0

)
= i∆(r, t)σ2.

(D.3.3)
Using equation (B.1.1):

∇̃ ≡ ∇+ ieA ⇒ ∇̃2 = ∇2 + ie(∇ ·A+A · ∇)− e2A2,

and introducing the average and relative spatial coordinates rµ and rδ:

rµ =
r + r′

2
, rδ = r − r′ ⇒ ∇r =

1

2
∇rµ +∇rδ , ∇r′ =

1

2
∇rµ −∇rδ ,

we can rewrite ∇̃2
r and ∇̃2

r′ . This leads to

∇̃2
r =

1

4
∇2

rµ +∇2
rδ

+∇rµ · ∇rδ

+ie

[(
1

2
∇rµ +∇rδ

)
·A+A ·

(
1

2
∇rµ +∇rδ

)]
− e2A2,

∇̃2
r′ =

1

4
∇2

rµ +∇2
rδ
−∇rµ · ∇rδ

+ie

[(
1

2
∇rµ −∇rδ

)
·A+A ·

(
1

2
∇rµ −∇rδ

)]
− e2A2.

(D.3.4)

When calculating the term ∇̃2
rǦ− Ǧ

(
∇̃2

r′

)†
, we can discard the first two terms

in ∇̃2
r and ∇̃2

r′ . As the latter acts to the left, they leave(
1

4
∇2

rµ +∇2
rδ

)
Ǧ− Ǧ

(
1

4
∇2

rµ +∇2
rδ

)†
= 0.
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Fourier transforming the pair of derivatives ∇rµ · ∇rδ acting on Ǧ gives

F
(
∇rµ · ∇rδǦ

)
= F ε←tδ

(∫
drδ e

−irδ·p∇rµ · ∇rδǦ

)

= F ε←tδ

(
e−irδ·p∇rµǦ

∣∣∣rδ=+∞

rδ=−∞

−
∫
drδ

[
∇rδe

−irδ·p
]
· ∇rµǦ

)
= F ε←tδ

(
ip ·

∫
drδ e

−irδ·p∇rµǦ

)
= ip ·F ε←tδ,p←rδ

(
∇rµǦ

)
.

With this we can calculate the contribution of the last terms in the expressions
for ∇̃2

r and ∇̃2
r′ in equation (D.3.4):

F
(
∇rµ · ∇rδǦ+ Ǧ

[
∇rµ · ∇rδ

]†)
= 2ip · ∇rǦ.

Transforming ∇rδ to ip in a similar fashion, the remaining terms become (we
write Ǎ to express its 8× 8 structure as described in appendix B.2)

ie

(
1

2

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+

+ 2ip ·
[
Ǎ •, Ǧ

]
−

)
− e2

[
Ǎ

2 •, Ǧ
]
−
.

Collecting terms, we find

F

(
∇̃2

rǦ− Ǧ
(
∇̃2

r′

)†)
=2ip ·

(
∇rǦ+ ie

[
Ǎ •, Ǧ

]
−

)
− e2

[
Ǎ

2 •, Ǧ
]
−

+
ie

2

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+
.

(D.3.5)

Fourier transforming a term V (r)Ǧ − ǦV (r′) for a generic position-dependent
function V (r) with the help of section A.6.1 gives

F

[
V

(
rµ +

1

2
rδ

)
Ǧ− Ǧ V

(
rµ −

1

2
rδ

)]
=
[
V (r) •, Ǧ

]
− .
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We define the diagonal matrices

ϕ̌ = 12×2 ⊗
(
ϕ 0
0 ϕ†

)
⊗ 12×2,

µ̌ = 12×2 ⊗
(
µ 0
0 µ†

)
⊗ 12×2 = µ18×8,

V̌ imp = 12×2 ⊗
(
Vimp(r) 0

0 Vimp(r)†

)
⊗ 12×2,

(D.3.6)

and the non-diagonal (not necessarily off-diagonal) matrices

V̌ sf = 12×2 ⊗
(
Vsf(r)σ · S(r) 0

0 [Vsf(r)σ · S(r)]
?

)
= 12×2 ⊗ Vsf(r)σ̂ · Ŝ(r),

V̌ h = 12×2 ⊗
(
σ · h(r) 0

0 [σ · h(r)]
?

)
= 12×2 ⊗ σ̂ · ĥ(r),

∆̌ = 12×2 ⊗
(

0 iσ2∆(r, t)
[iσ2∆(r, t)]

?
0

)
= 12×2 ⊗ ∆̂(r, t).

(D.3.7)
Combining the above components, as well as those in equation (D.3.5), the
right-hand side of equation (D.3.2) becomes

− i~
2p

m
·
(
∇rǦ+ ie

[
Ǎ •, Ǧ

]
−

)
+
[
qϕ̌+ V̌ imp + V̌ sf + V̌ h + ∆̌ •, Ǧ

]
−

+
~2e2

2m

[
Ǎ

2 •, Ǧ
]
−
− i~2e

4m

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+
,

(D.3.8)

where µ̌ is left out because it is a scalar that does not depend on any coordinate and

therefore bullet commutes with Ǧ. Writing the left-hand side of equation (D.3.2)
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in a similar way, we note that1[
ερ̌

3
•, Ǧ
]
−

= ei(∂
ερ̌

3
ε ∂

Ǧ
t )/2 ερ̌

3
Ǧ− ei(−∂

ερ̌
3

ε ∂
Ǧ
t )/2 Ǧερ̌

3

=

(
1 +

i

2
∂
ερ̌

3
ε ∂

Ǧ
t

)
ερ̌

3
Ǧ−

(
1− i

2
∂
ερ̌

3
ε ∂

Ǧ
t

)
Ǧερ̌

3

= ερ̌
3
Ǧ+

i

2
ρ̌

3
∂tǦ− Ǧερ̌3

+
i

2
∂tǦρ̌3

=
i

2

[
ρ̌

3
, ∂tǦ

]
+

+
[
ερ̌

3
, Ǧ
]
−
.

(D.3.9)

Combining equations (D.3.8, D.3.9), moving the first term to the left and multi-
plying by i, we find

~2p

m
·
(
∇rǦ+ ie

[
Ǎ •, Ǧ

]
−

)
= i
[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ •, Ǧ

]
−

− i~2e2

2m

[
Ǎ

2 •, Ǧ
]
−
− ~2e

4m

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+
.

(D.3.10)

As we are more interested in the canonical momentum than in the kinetic mo-
mentum, it would be more appropriate to replace the spatial derivative ∇r that
works on Ǧ with the covariant derivative ∇̃r = ∇r + ieǍ = ip/~. To see how
this operator behaves when acting on the Green function, we take a closer look
at the definitions of its components in equation (C.1.3). The spatial part of
each component is contained by the expectation value of an (anti)commutator of
field operators. Matrices can be brought inside the expectation bra-ket because
as shown in equation (C.1.4). Similarly, operators in spacetime and energy-
momentum space can be brought inside the expectation value, as the bra and ket
states that the argument is placed between are defined in Fock space (rather than
in Hilbert space). This means that

∇̃rµ

〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉
=
〈
∇̃rµ

(
ψ(r, t)ψ†(r′, t′)± ψ†(r′, t′)ψ(r, t)

)〉
.

Using the result in equation (B.2.2), the right-hand side becomes〈
∇rµ

(
ψ(r, t)ψ†(r′, t′)± ψ†(r′, t′)ψ(r, t)

)
+ ie

[
Â, ψ(r, t)ψ†(r′, t′)

]
−

〉
.

1Here we use the notation ∂Ax for the differential operator ∂x operating on A. For example,
∂Ax (AB) = (∂xA)B and ∂Bx (AB) = A(∂xB). The exponential function of the operator is defined
by its power series exp(∂Ax ) =

∑∞
n=0(∂Ax )n/n!.

83



As the product ψ†ψ is diagonal and thus commutes with the vector potential, we
are free to add or subtract this to the right-hand side of the commutator in the
second term. We thus get to

∇̃rµ

〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉
=

〈
∇rµ

[
ψ(r, t), ψ†(r′, t′)

]
± + ie

[
Â,
[
ψ(r, t), ψ†(r′, t′)

]
±

]
−

〉
,

or, splitting this up and moving the derivative and vector potential back outside
the braket, we have

∇̃rµ

〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉
= ∇rµ

〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉
+ ie

[
Â,
〈[
ψ(r, t), ψ†(r′, t′)

]
±

〉]
−
.

In short, we conclude
∇̃rǦ = ∇rǦ+ ie

[
Ǎ •, Ǧ

]
− . (D.3.11)

Substituting this into equation (D.3.10), we can write it in the appreciable form

~2p

m
· ∇̃rǦ = i

[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ •, Ǧ

]
−

− i~2e2

2m

[
Ǎ

2 •, Ǧ
]
−
− ~2e

4m

[
∇r · Ǎ+ Ǎ · ∇r

•, Ǧ
]
+
.

(D.3.12)

D.3.1 The quasiclassical approximation

In the quasiclassical approximation, we assume that the quantities we are interested
in vary over distances much larger than the Fermi wavelength [24]. We assume
that the net transport of particles, charge and spin happens at the Fermi surface.
This means that we can consider the momentum of the Green functions to be
approximately equal to the Fermi momentum,

|p| ≈ pF = ~kF =
2π~
λF

.

Simultaneously, we assume that both Ǧ and A depend on r on a scale comparable
to the size of the system, which we will call L. Terms such as ∇̃rǦ, ∇rǦ and
∇r ·A will therefore be of order 1/L. This means that whereas the left-hand
side of equation (D.3.12) is of order 1/(λFL), the last term is of order 1/L2.
Assuming now that L � λF , we can discard the last term on the right. The
second-last term is gauge dependent, where we are free to choose a gauge such
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that the average of A2 is zero, leaving just the local deviation from this average.
As this variation is again of the order 1/L2, it also drops out.2 This leaves the
manageable Eilenberger equation

~2p

m
· ∇̃rǦ = i

[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ •, Ǧ

]
−
,

which upon replacing the Green functions with their quasiclassical counterparts
becomes3

~2pF
m
· ∇̃r ǧ = i

[
ερ̌

3
− qϕ̌− V̌ imp − V̌ sf − V̌ h − ∆̌ ◦, ǧ

]
−
. (D.3.13)

Since in the quasiclassical approximation the Green function is expected to be zero
everywhere except on the Fermi surface, the products of position and momentum
derivatives in the bullet product drop out, and we can replace it by a ring product
(see appendix A.7).

D.4 The dirty limit and the Usadel equation

In the “dirty limit” we assume that impurity scattering self-energy dominates the
Hamiltonian. In this case the rate of scattering is so high that the mean free path
is much shorter than the phase coherence length, the electron will on average
change its momentum direction many times before losing its phase coherence.
This has as effect that the Green function becomes nearly isotropic. In terms of
the involved physical quantities, which implies that [47]

|Vimp| � |ε|, |qϕ|, |∆|, |h(r)|, `e � `φ, τimp � τsf. (D.4.1)

In this case we can expand the Green function in spherical harmonics and only
keep the first two terms [23, 74]:

ǧ = ǧ
s

+ p̂ · ǧ
p
,

where neither ǧ
s

nor ǧ
p

depends on the direction of the momentum. We are now

only interested in the angular average of ǧ, which can be approximated as〈
ǧ(r, p̂, ε)

〉
p̂

=
〈
ǧ
s
(r, ε) + p̂ · ǧ

p
(r, ε)

〉
p̂

=
〈
ǧ
s
(r, ε)

〉
p̂
.

2This argument is based on section 4.4 in Ref. 75.
3See appendix C.2 or Ref. 47 for details on the quasiclassical Green function. The cited

article also gives a very thorough introduction to the Green’s function techniques used in this
thesis.
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We can now replace the scattering potentials with their corresponding self-
energies.4 In equation (D.3.13) we replace [20]

V̌ imp 7→ σimp = − i~
2τimp

, V̌ sf 7→ σsf = − i~
2τsf

ρ̌
3
ǧ
s
ρ̌

3
.

Upon substituting these for the scattering potentials in equation (D.3.13), the
Eilenberger equation reads

~2vF p̂ ·∇̃r

(
ǧ
s

+ p̂ · ǧ
p

)
= i

[
ερ̌

3
− qϕ̌+

i~
2τimp

ǧ
s

+
i~

2τsf
ρ̌

3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s
+ p̂ · ǧ

p

]
−
.

It is crucial to note that the terms odd in p̂ are independent of those even in p̂,
which means that we can split the above into two decoupled equations

~2vF p̂ · ∇̃r ǧs =

i

[
ερ̌

3
− qϕ̌+

i~
2τimp

ǧ
s

+
i~

2τsf
ρ̌

3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, p̂ · ǧ

p

]
−
,

~2vF p̂ · ∇̃r(p̂ · ǧ
p
) =

i

[
ερ̌

3
− qϕ̌+

i~
2τimp

ǧ
s

+
i~

2τsf
ρ̌

3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s

]
−
.

(D.4.2)

Using the specifications in equation (D.4.1), the first term is approximated as

~2vF ∇̃r ǧs = − 1

2τimp

[
ǧ
s
◦, ǧ

p

]
−
, (D.4.3)

where the p̂ left and right were dropped. Using the identity ǧ ◦ ǧ = 18×8 [41],
collecting terms odd and even in p̂ again and ignoring the terms quadratic in ǧ

p
,

the normalization conditions for ǧ
s

and ǧ
p

read

ǧ
s
◦ ǧ

s
≈ 18×8, ǧ

s
◦ ǧ

p
+ ǧ

p
◦ ǧ

s
= 0. (D.4.4)

The latter can be used to replace the commutator in equation (D.4.3) with a
simple ring product:

~2vF ∇̃r ǧs = − 1

τimp
ǧ
s
◦ ǧ

p
, (D.4.5)

4For details and more background on ensemble-averaging, self-energies, lifetimes and the
Dyson equation, the reader is directed to Ref. 76, pp.147-59,226-31,300-40, Ref. 25 pp.211-25,
and Ref. 26 pp.86-102.
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or, multiplying with ǧ
s

from the left and using the commutativity of the ring
product,

ǧ
s
◦ (ǧ

s
◦ ǧ

p
) = (ǧ

s
◦ ǧ

s
) ◦ ǧ

p
= ǧ

p
= −τimp~2vF ǧs ◦ ∇̃r ǧs. (D.4.6)

Looking more closely at the second line in equation (D.4.2), we see that the third

term in the commutator commutes, as
[
ǧ
s
, ǧ
s

]
−

= 0, allowing us to simplify this

to

~2vF p̂ · ∇̃r(p̂ · ǧ
p
) = i

[
ερ̌

3
− qϕ̌+

i~
2τsf

ρ̌
3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s

]
−
.

Since we consider the diffusive case, we can extract just the isotropic information
by taking the angular average. The right-hand side does not depend on the
direction of the momentum, whereas the angular average of the left-hand side
becomes 〈

p̂ · ∇̃r(p̂ · ǧ
p
)
〉
p̂

=
〈
p̂ · ∇r(p̂ · ǧ

p
)
〉
p̂

+ ie
〈

(p̂ ·A)(p̂ · ǧ
p
)
〉
p̂
.

Assessing these two terms separately,〈
p̂ · ∇r(p̂ · ǧ

p
)
〉
p̂

=
1

4π

∫ 2π

0

cos2 φdφ︸ ︷︷ ︸
π

∫ π

0

sin3 θ dθ︸ ︷︷ ︸
4/3

∂xǧp,x + (· · · )y + (· · · )z

+
1

4π

∫ 2π

0

cosφ sinφdφ︸ ︷︷ ︸
0

∫ π

0

sin3 θ dθ(∂xǧp,y + ∂y ǧp,x)

+(· · · )xz + (· · · )yz

=
1

3
∇r · ǧp,

and similarly,

ie
〈

(p̂ ·A)(p̂ · ǧ
p
)
〉
p̂

=
1

3
A · ǧ

p
.

This introduces a factor 1/3 by effectively dropping the crossterms:〈
p̂ · ∇̃r(p̂ · ǧ

p
)
〉
p̂

=
1

3
∇̃r · ǧp.
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Combining this with equation (D.4.6), this gives

−~2v2
F τimp

3
∇̃r · (ǧs ◦ ∇̃r ǧs) = i

[
ερ̌

3
− qϕ̌+

i~
2τsf

ρ̌
3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s

]
−
.

Note that the Fermi velocity — the average velocity — times the scattering time
equals the mean free path, so we can write [23, 46]

D ≡ ~2v2
F τimp

3
=

~4

3
vF `e, (D.4.7)

by which we arrive at the Usadel equation [17, 22]

−D∇̃r · (ǧs ◦ ∇̃r ǧs) = i

[
ερ̌

3
− qϕ̌+

i~
2τsf

ρ̌
3
ǧ
s
ρ̌

3
+ σ̂ · ĥ(r)− ∆̌ ◦, ǧ

s

]
−
.

(D.4.8)
By writing this out in components of ǧ

s
, the chain of derivatives on the left

becomes

∇̃r · (ǧs ◦ ∇̃r ǧs) = ∇̃r ·

(
ĝR
s
◦ ∇̃r ĝ

R

s
ĝR
s
◦ ∇̃r ĝ

K

s
+ ĝK

s
◦ ∇̃r ĝ

A

s

0 ĝA
s
◦ ∇̃r ĝ

A

s

)
,

which gives us the three equations

−D∇̃r ·
(
ĝR
s
◦ ∇̃r ĝ

R

s

)
= i

[
ερ̂

3
− qϕ̂+

i~
2τsf

ρ̂
3
ĝR
s
ρ̂

3
+ σ̂ · ĥ(r)− ∆̂ ◦, ĝR

s

]
−
,

(D.4.9a)

−D∇̃r ·
(
ĝA
s
◦ ∇̃r ĝ

A

s

)
= i

[
ερ̂

3
− qϕ̂+

i~
2τsf

ρ̂
3
ĝA
s
ρ̂

3
+ σ̂ · ĥ(r)− ∆̂ ◦, ĝA

s

]
−
,

(D.4.9b)

−D∇̃r·
(
ĝR
s
◦ ∇̃r ĝ

K

s
+ ĝK

s
◦ ∇̃r ĝ

A

s

)
= i
[
ερ̂

3
− qϕ̂+ σ̂ · ĥ(r)− ∆̂ ◦, ĝK

s

]
−

− ~
2τsf

(
ρ̂

3
ĝR
s
ρ̂

3
ĝK
s

+ ĝK
s
ρ̂

3
ĝA
s
ρ̂

3
− ĝR

s
ρ̂

3
ĝK
s
ρ̂

3
− ρ̂

3
ĝK
s
ρ̂

3
ĝA
s

)
.

(D.4.9c)
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D.5 Distribution functions in stationary systems

As the non-equilibrium information is contained by the Keldysh component, we
would like to find an equation of motion that describes it. Using the normalization
condition from equation (D.4.4), we find that ĝK

s
is normalized in a way similar

to ĝK (as stated in equation (C.2.6)):

ĝR
s
◦ ĝK

s
≈ −ĝK

s
◦ ĝA

s
,

which is accurate to first order in ĝ
p
. In order for the left-hand side to be equal

to the right-hand side, ĝK
s

needs to contain a term with ĝA
s

on the right. Hence

one way of writing ĝK
s

is [46, 63]

ĝK
s

= ĝR
s
◦ ĥ − ĥ ◦ ĝA

s
, (D.5.1)

where we call ĥ the distribution function, which is explored in more detail in
section 2.2. Substituting this ansatz back into the normalization condition, we

get ĥ − ĝR
s
◦ ĥ ◦ ĝA

s
on both sides.

Assuming now a stationary (i.e. time-independent) system, we can replace
the ring products by ordinary products. Assuming also that the scalar potential
is real, ϕ̂ commutes with the Green functions and drops out of the commutator.
Making now the approximation that the contribution from spin-flip scattering
is much smaller than the contributions from the other terms, the second line in
equation (D.4.9c) drops out. With these approximations, we find

−D∇̃r ·
(
∇̃rĥ + ĝR

s
(∇̃r ĝ

R

s
)ĥ − ĝR

s
(∇̃rĥ)ĝA

s
− ĥ ĝA

s
∇̃r ĝ

A

s

)
= i
[
ερ̂

3
+ σ̂ · ĥ(r)− ∆̂, ĝR

s
ĥ − ĥ ĝA

s

]
−
.

(D.5.2)

The terms ĝR
s

(∇̃r ĝ
R

s
)ĥ on the left and ĝR

s
ĥ on the right suggest we can simplify

this by subtracting equation (D.4.9a) multiplied by ĥ from the right. Simi-

larly, the terms −ĥ ĝA
s
∇̃r ĝ

A

s
on the left and −ĥ ĝA

s
on the right suggest adding

equation (D.4.9b) multiplied by ĥ from the left. This gives

−D∇̃r ·
(
∇̃rĥ − ĝR

s
(∇̃rĥ)ĝA

s

)
= iĝR

s

[
Êh , ĥ

]
−
− i
[
Êh , ĥ

]
−
ĝA
s
, (D.5.3)

where
Êh = ερ̂

3
+ σ̂ · ĥ(r)− ∆̂. (D.5.4)
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This equation describes the diffusion of the distribution functions across the
system, as function of both the local retarded and advanced Green functions and
the available energy.
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Appendix E

Full derivation of the
current tensor

In the main text, chapter 2 is written without explicit derivations of the presented
equations. This appendix describes the involved physics mathematics more
thoroughly, and refers to the literature where necessary.

E.1 Velocity in quantum mechanics

From the quantum-mechanical definition of the expectation value, we calculate
the expectation value of the velocity:

〈v〉 = ∂t 〈r〉 =

∫
R
dV r∂t|ψ |2 =

∫
R
dV r

(
ψ†∂tψ + (∂tψ

†)ψ
)
. (E.1.1)

Applying now Schrödinger’s equation, we have

∂tψ =
i~
2m
∇̃2

rψ −
i

~
V ψ, ∂tψ

† = − i~
2m
∇̃2

rψ
† +

i

~
V ψ†, (E.1.2)

which can be rewritten as

〈v〉 =
i~
2m

∫
R
dV r

(
ψ†∇̃2

rψ − (∇̃2
rψ
†)ψ
)

=
i~
2m

∫
R
dV r∇̃r

(
ψ†∇̃rψ − (∇̃rψ

†)ψ
)
.

(E.1.3)

Performing partial integration, it simplifies to

〈v〉 = − i~
2m

∫
R
dV

(
ψ†∇̃rψ − (∇̃rψ

†)ψ
)
. (E.1.4)
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We can pull out the differential operators by ascribing different coordinates to
the two wave functions:

〈v〉 = − i~
2m

lim
r→r′

∫
R

∫
R′
dV dV ′

(
ψ†(r′)∇̃rψ(r)− ∇̃r′ψ

†(r′)ψ(r)
)

= − i~
2m

lim
r→r′

〈(
∇̃r − ∇̃r′

)
ψ†(r′)ψ(r)

〉
.

(E.1.5)

E.2 Relation to Green’s functions

We found in section C.1 that for fermions

GKσ,σ′(r, t; r
′, t′) ≡ −i

〈[
ψσ(r, t), ψ†σ′(r

′, t′)
]
−

〉
,

which can be related to our expression for 〈v〉 by extracting〈
ψ†(r′)ψ(r)

〉
= lim
t→t′

(〈
ψ(r, t)ψ†(r′, t′)

〉
−
〈[
ψ(r, t), ψ†(r′, t′)

]
−

〉)

= lim
t→t′

(
δ(r, r′; t, t′)− i

∑
σ

GKσ,σ(r, t; r′, t′)

)
.

Since (∇̃r − ∇̃r′)δ(r, r
′; t, t′) = 0,

〈v〉 =
~

2m
lim

r,t→t′,r′

[(
∇̃r′ − ∇̃r

)∑
σ

GKσ,σ(r, t; r′, t′)

]
.

To find our preferred component of the current density (for example j00 for
the particle current, or qj30 for the electric current), we multiply with the
corresponding Pauli matrices:

jij =
~

2m
lim

r,t→t′,r′

[(
∇̃r′ − ∇̃r

)∑
σ

(
τ̂iσjĜ

K
)
σ,σ

(r, t; r′, t′)

]

=
~

2m
lim

r,t→t′,r′

[(
∇̃r′ − ∇̃r

)
Tr
{
τ̂iσjĜ

K
(r, t; r′, t′)

}]
.

The particle current density is found by counting all diagonal components, and
is therefore represented by jij . To find the electric current density, we subtract
the holes from the particles and multiply by the electron charge. Relating this to

92



the regular derivative, we need to note that the particles and holes have opposite
charge1:

∇̃r = ∇r −
iqh
~
A = ∇r +

iqp
~
A, ∇̃r′ = ∇r′ −

iqp
~
A,

which allows us to write

jij = lim
t→t′

lim
r→r′

[
~

2m

(
∇r′ −∇r +

2iq

~
A

)
Tr
{
τ̂iσjG

K(r, t; r′, t′)
}]
,

which can be compared to Ref. [76, p. 316]2. Introducing the average and relative
spatial coordinates rµ and rδ

rµ =
r + r′

2
, rδ = r − r′,

with the derivatives

∇̃r =
1

2
∇̃rµ + ∇̃rδ , ∇̃r′ =

1

2
∇̃rµ − ∇̃rδ ,

we can write jij as

jij(t, r) = −~q
m

lim
r,t→t′,r′

[
∇̃rδ Tr

{
τ̂iσjG

K(r, t; r′, t′)
}]
.

Fourier transforming, we replace ∇̃rδ → imv~:

jij(ε,p) = −ivTr
[
τ̂iσjG

K(ε,p)
]
.

Assuming now that the only significant contributions come from the Fermi surface,
we can replace v with vF p̂. The spectral current then becomes [40, 72]

jij(ε) = −ivF
∫

d3p

(2π)3
p̂Tr

[
τ̂iσjĜ

K
(ε,p)

]
. (E.2.1)

To find the total current density, this expression can be integrated over energy.

E.3 The dirty limit

Replacing the momentum integral in equation (E.2.1) [46, 49],∫
d3p

(2π)3
→ N0

∫
dξ

∫
dΩp

4π
, (E.3.1)

1To include the spin-orbit vector potential too, we just need to replace qA 7→ A.
2Datta specifically calculates the electric current here, hence the factor e.
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where ξ is the kinetic energy, we get

jij(ε) = −ivFN0

∫
dξ

∫
dΩp

4π
p̂Tr

[
τ̂iσjĜ

K
(ε,p)

]
. (E.3.2)

Introducing the quasiclassical Green function as defined in eq. (C.2.1),3

jij(ε) = −N0vF
2

∫
dΩp

4π
p̂Tr

[
τ̂iσj ĝ

K(ε,p)
]

= −vFN0

2

〈
p̂Tr

[
τ̂iσj ĝ

K(ε,p)
]〉

p
.

(E.3.3)

To find the total current density we integrate the partial current density over
energy:

Iij = −N0vF
2

∫
dε
〈
p̂Tr

[
τ̂iσj ĝ

K(ε,p)
]〉

p
. (E.3.4)

This can be compared to Ref. [47, p. 336].4 In the dirty, or diffusive limit,
the elastic scattering energy is much greater than all other energy terms in the
Eilenberger equation:

Vimp| � |ε|, |qϕ|, |∆|, `e � `φ, τimp � τsf.

This means that the mean free path is much shorter than the system dimensions,
and the Green functions approach isotropy. In this case we can expand the Green
function in spherical harmonics and only keep the first two terms:

ǧ = ǧ
s

+ p̂ · ǧ
p
,

where neither ǧ
s

or ǧ
p

depends on the direction of the momentum. Hence the

angular average of ǧ can be approximated as

〈
ǧ(r, p̂, ε)

〉
p̂

=
〈
ǧ
s
(r, ε) + p̂ · ǧ

p
(r, ε)

〉
p̂

=
〈
ǧ
s
(r, ε)

〉
p̂

+
〈
p̂ · ǧ

p
(r, ε)

〉
p̂

=
〈
ǧ
s
(r, ε)

〉
p̂
.

3Note the factor 1/2π that comes from the Fourier transformation.
4Ref. [47, p. 7] includes Tr τ̂3 to select the electric current from the matrix expression, but

differs by a factor two. Equation (3.30) in Ref. [46] omits the trace and Pauli matrices, but
presents the correct factor −qN0/2 (remember that Ie = qIij).
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We can now calculate the angular average in equation (E.3.4). We find〈
p̂Tr

(
τ̂iσj ĝ

K
)〉

p̂
=
〈

Tr
(
τ̂iσj

[
p̂ ĝK

s
+ p̂ (p̂ · ĝK

p
)
])〉

p̂

= Tr

(
τ̂iσj

〈
p̂ (p̂ · ĝK

p
)
〉
p̂

)
.

As described in appendix D.4, by applying these approximations to the Usadel
equation (where we drop the ring product by assuming time independence),

ǧ
p

= −τimp~2vF ǧs ◦ ∇̃r ǧs = −τimp~2vF ǧs∇̃r ǧs,

and thus, using that
〈
p̂ (p̂ · ĝK

p
)
〉
p̂

= ĝK
p
/3, equation (E.3.4) cna be expressed as

Iij = −N0vF
6

∫
dεTr

(
−τ̂iσjτimp~2vF

[
ǧ
s
∇̃r ǧs

]K)
. (E.3.5)

Introducing again the diffusion constant D from equation (D.4.7), this is more
simply expressed as [42]

Iij =
N0D

2

∫
dεTr

(
τ̂iσj

[
ǧ
s
∇̃r ǧs

]K)
. (E.3.6)

This is the expression for the current tensor we use in the discussion in the main
text.
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Appendix F

Parametrization

Throughout the thesis different parametrizations have been used, depending on
what is most convenient in that context. To assist the reader in converting
between these different notations, both the definitions of the parametrizatins and
the transformations between them have been provided here.

F.1 Theta parametrization

We can parametrize the Green functions as [47]

Ĝ
R

(ε, r) =

(
G F

−F̃ −G̃

)
=

(
cosh θ iσ2 sinh θ eiχ

iσ2 sinh θ e−iχ − cosh θ

)
, (F.1.1)

with the following identities for conjugation:

θ̃(ε) = θ∗(−ε) = −θ(ε), χ̃(ε) = χ∗(−ε) = χ(ε).

The SNS boundary value problem is given by

D∂xθ = −2iε sinh θ =
D

2
(∂xχ)2 sinh(2θ),

with the boundary conditions

left: θ = atanh

(
∆

ε

)
, χ = 0, right: θ = atanh

(
∆

ε

)
, χ = φ0.
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F.2 Gamma parametrization

The Riccati parametrization is given by [39, 40]

Ĝ
R.A

=

(
G F

−F̃ −G̃

)
=

(
N 0

0 −Ñ

)(
1 + γγ̃ 2γ

2γ̃ 1 + γ̃γ

)

=

(
2N − 1 2Nγ

−2Ñ γ̃ 1− 2Ñ

)
,

(F.2.1)

where

N = (1− γγ̃)−1, Ñ = (1− γ̃γ)−1.

The tilde ∼ denotes tilde conjugation, which is a combination of complex conjuga-
tion and energy inversion:

f̃(ε) = f?(−ε). (F.2.2)

The retarded and advanced gamma functions are related through [42, 63]

γA = (γ̃R)† = −(γ̃R)?. (F.2.3)

The following identities apply:

(Nγ)−1 = γ−1 − γ̃ = (γÑ)−1, (Ñ γ̃)−1 = γ̃−1 − γ = (γ̃N)−1,

which directly implies that

Nγ = γÑ, Ñ γ̃ = γ̃N. (F.2.4)

Using the matrix identity [77]

∂xA
−1 = −A−1(∂xA)A−1,

the derivative of N is

∂xN = ∂x(1− γγ̃)−1 = −N∂x(1− γγ̃)N = N(γ′γ̃ + γγ̃′)N, (F.2.5a)

where the prime indicates derivation with respect to x. Conjugating gives us the
corresponding equation for Ñ :

∂xÑ = Ñ(γ̃′γ + γ̃γ′)Ñ . (F.2.5b)
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F.3 Parametrization of the Usadel equation

The Usadel equation will be easier to solve numerically if we exploit the symmetries
present in the Green functions to reduce the number of components that need to
be calculated. In order to be able to use the rules given in equation (F.2.4), we
need to replace the ring products by normal products. This means looking at the
time-independent case.

F.3.1 The retarded component in a system with isotropy
along two axes

We defined in equation (D.4.9a) the Usadel equation for the retarded component
of the Green function,

−D∇̃r ·
(
ĝR
s
◦ ∇̃r ĝ

R

s

)
= i

[
ερ̂

3
− qϕ̂+

i

2τsf
ρ̂

3
ĝR
s
ρ̂

3
+ σ̂ · ĥ(r)− ∆̂ ◦, ĝR

s

]
−
.

Assuming time independence, the scalar terms drop out:

−D∇̃r ·
(
ĝR
s
∇̃r ĝ

R

s

)
= i

[
ερ̂

3
+

i

2τsf
ρ̂

3
ĝR
s
ρ̂

3
+ σ̂ · ĥ(r)− ∆̂, ĝR

s

]
−
. (F.3.1)

The covariant derivatives on the left-hand side need to be expanded in spatial
derivatives and vector fields in order to be able to use equations (F.2.5). Using
the result derived in equation (D.3.11),

∇̃rǦ = ∇rǦ+ i
[
Ǎ •, Ǧ

]
− ⇒ ∇̃r ĝ

R

s
= ∇r ĝ

R

s
+ i
[
Â, ĝR

s

]
−
,

the expansion becomes

∇̃r ·
(
ĝR
s
∇̃r ĝ

R

s

)
= ∇r ·

(
ĝR
s
∇r ĝ

R

s

)
+ i∇r ·

(
ĝR
s

[
Â, ĝR

s

]
−

)

+ i
[
Â, ĝR

s
∇r ĝ

R

s

]
−
−
[
Â, ĝR

s

[
Â, ĝR

s

]
−

]
−
.

This can be simplified somewhat by considering isotropy in two directions (which
we will choose to be êx and êy) and that (ĝR

s
)2 ≈ 1. The former allows us to

assume that
∂y ĝ

R

s
= ∂z ĝ

R

s
= 0,

whereas the latter simplifies

∇r ·
(
ĝR
s

[
Â, ĝR

s

]
−

)
= ∇r ·

(
ĝR
s
ÂĝR

s
− Â

)
= ∇r ·

(
ĝR
s
ÂĝR

s

)
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and [
Â, ĝR

s

[
Â, ĝR

s

]
−

]
−

= ÂĝR
s
ÂĝR

s
− ĝR

s
ÂĝR

s
Â =

[
Â, ĝR

s
ÂĝR

s

]
−
.

Here we assumed that the spatial derivatives of the vector potential are negligible.
We will now assume that the system is isotropic in two directions, and focus
on the direction in which it is not, which we choose to be êz. Looking at the
covariant derivative in this direction, we find1

∇̃r ·
(
ĝR
s
∇̃r ĝ

R

s

)
= ∂z

(
ĝR
s
∂z ĝ

R

s

)
+ i∂z

(
ĝR
s
Âz ĝ

R

s

)
+ i
[
Âz, ĝ

R

s
∂z ĝ

R

s

]
−
−
[
Â, ĝR

s
ÂĝR

s

]
−
.

(F.3.2)

Using the parametrization in equation (F.2.1),

ĝR
s

=

(
2N − 1 2Nγ

−2Ñ γ̃ 1− 2Ñ

)
,

we can write this in terms of γ and N . Since the bottom row of the ĝR
s

on the
right-hand side of equation (F.3.1) is just minus the conjugated top row, the
latter contains all the information we need. We thus focus on the top row on the
left-hand side as well. There are some repeating terms, which we can simplify by
using equations (F.2.4, F.2.5).(

ĝR
s
∂z ĝ

R

s

)(1,1)

= (2N − 1)∂z(2N − 1)− (2Nγ)∂z(2Ñ γ̃)

= 2N(γ′γ̃ − γγ̃′)N,

(
ĝR
s
∂z ĝ

R

s

)(1,2)

= (2N − 1)∂z(2Nγ) + (2Nγ)∂z(1− 2Ñ)

= 2N(γ′ − γγ̃′γ)Ñ .

Similarly, to find the second term on the right of equation (F.3.2) we calculate(
ĝR
s
ÂĝR

s

)(1,1)

= (2N − 1)A(2N − 1) + 4NγA?Ñ γ̃,

(
ĝR
s
ÂĝR

s

)(1,2)

= (4N − 2)ANγ + 2NγA?(2Ñ − 1).

1Note that because of the dot product on the left, only Az enters in the second and third
term on the right.
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Note that the diagonality in spin space is an approximation in itself, neglecting
general spin-orbit coupling [30]. With this approximation, the last two terms in
equation (F.3.2) drop out. Calculating the top row of the first term, we find[

∂z

(
ĝR
s
∂z ĝ

R

s

)](1,1)

= ∂z
[
2N(γ′γ̃ − γγ̃′)N

]
= 2N(γ′′ + 2γ′Ñ γ̃γ′)γ̃N − 2Nγ(γ̃′′ + 2γ̃′Nγγ̃′)N.

[
∂z

(
ĝR
s
∂z ĝ

R

s

)](1,2)

= ∂z

[
2N(γ′ − γγ̃′γ)Ñ

]
= 2N(γ′′ + 2γ′Ñ γ̃γ′)Ñ − 2Nγ(γ̃′′ + 2γ̃′Nγγ̃′)γÑ.

Similarly, the top row of the second term becomes[
∂z

(
ĝR
s
Âz ĝ

R

s

)](1,1)

= 2N
[
(1 + γγ̃)AzN(γγ̃′ + γ′γ̃)

+(γγ̃′ + γ′γ̃)NAz(1 + γγ̃)
]
N

+4N
[
γA?

zÑ(γ̃′ + γ̃γ′γ̃) + (γ′ + γγ̃′γ)ÑA?
z γ̃
]
N,

[
∂z

(
ĝR
s
Âz ĝ

R

s

)](1,2)

= 2N
[
(1 + γγ̃)AzN(γ′ + γγ̃′γ̃)

+(γ′ + γγ̃′γ)ÑAz(1 + γ̃γ)
]
Ñ

+4N
[
γA?

zÑ(γ̃γ′ + γ̃′γ) + (γγ̃′ + γ′γ̃)NA?
z γ̃
]
Ñ .

(F.3.3)
Multiplying the top-left component by γ from the right, using equation (F.2.4),

subtracting the result from the top-right component and multiplying by N−1/2D
from the left, we find an expression for γ′′:

γ′′ =
N−1

2D

([
∇̃r ·

(
ĝR
s
∇̃r ĝ

R

s

)](1,2)

−
[
∇̃r ·

(
ĝR
s
∇̃r ĝ

R

s

)](1,1)

γ

)

−2γ′Ñ γ̃γ′ + 2i
[
(Az + γA?

z γ̃)Nγ′ + γ′Ñ(A?
z + γ̃Azγ)

]
+2(Aγ + γA?)Ñ(A? + γ̃Aγ) +A2γ − γ(A?)2.

(F.3.4)

101



Calculating now also the top row of the right-hand side of equation (F.3.1) using
the definitions in equation (D.3.7),

([
ερ̂

3
+

i

2τsf
ρ̂

3
ĝR
s
ρ̂

3
+ σ̂ · ĥ(r) − ∆̂, ĝR

s

]
−

)(1,1)

= 2h · (σN −Nσ)

−2iσ2∆ Ñ γ̃ − 2Nγ [iσ2∆]
†
,

([
ερ̂

3
+

i

2τsf
ρ̂

3
ĝR
s
ρ̂

3
+ σ̂ · ĥ(r) − ∆̂, ĝR

s

]
−

)(1,2)

= 2h · (σNγ −Nγσ?)

4εNγ + iσ2∆(1− 2Ñ) + (1− 2N)iσ2∆

+
2i

τsf

[
(2N − 1)Nγ −Nγ(1− 2Ñ)

]
,

we can write (assuming ∆ = ∆†) [30]

Dγ′′ = −2iε γ − ih · (σγ − γσ?)−∆(σ2 − γσ2γ)

+
1

τsf

[
(2N − 1)γ − γ(1− 2Ñ)

]
+D

{
− 2γ′Ñ γ̃γ′

+2i
[
(Az + γA?

z γ̃)Nγ′ + γ′Ñ(A?
z + γ̃Azγ)

]
+2(Aγ + γA?)Ñ(A? + γ̃Aγ) +A2γ − γ(A?)2

}
.

(F.3.5)

The corresponding expression for γ̃′′ is found through tilde conjugation (see
equation (F.2.2)).

F.4 Pauli decomposition

Any 2× 2 matrix A in spin space can be built up from the four Pauli matrices:

A =
∑
i

APi σi.

102



To find the coefficients APi , we first define a flat mapping or “flatmap” that simply
lists the elements of A row by row:

flatmap f : A→ ~A,

(
A11 A12

A21 A22

)
7→


A11

A12

A21

A22

 .

By simply writing out the expression ~A = P ~AP we find

P =


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 , P−1 =


1/2 0 0 1/2
0 1/2 1/2 0
0 i/2 −i/2 0

1/2 0 0 −1/2

 .

We can now find the Pauli coefficients APi with the operation

~AP = P−1f A.

In this thesis we also write out the distribution function ĥ in its Pauli components,
in which we account for the simpler structure in Nambu space (only τ̂0 and τ̂3 are
involved) by only listing eight coefficients. Accounting for the empty top-right
and bottom-left quarters, we define the distribution function-specific flatmap as

flatmap fĥ : ĥ =

(
x
0 −x̃

)
7→



x11

...
x22

−x̃11

...
−x̃22


= ~x.

The Pauli decomposition that decomposes ~x into its Pauli matrix components
~h = hkl is then represented by the matrix P̂

−1
such that

~x = P̂~h , ~h = P̂
−1
~x, where P̂ =

(
P P
P −P

)
.

Combining the two operations, the 4× 4 matrix ĥ and the Pauli decomposition
hkl can be related by

hkl = P̂
−1f ĥ , ĥ = f −1P̂hkl.
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F.5 Mapping between parametrizations

Suppose an 8 × 8 matrix A8×8 maps the vector ~x (equivalent to ĥ) to another

vector ~x′ (equivalent to ĥ ′), then there should exist a 4 × 4 matrix B4×4 that,

when operating on ĥ , creates ĥ ′. Writing out A8×8~x = ~x′, we find that the top-left

component of ĥ ′ is equal to
∑
iA1ixi. We see that the first column of ĥ ′ contains

elements of all columns of ĥ , which per matrix multiplication is impossible unless
A12, A14 . . . A18, A21, A23, A25 . . . A28, A32, A34 . . . A38, etc. are zero. Keeping 48
of the 64 elements of A8×8 zero is a simple way to ensure that the pairing of B4×4

and A8×8 is a bijection. The matrix B4×4 would then be

B4×4 =


A11 A13 0 0
A31 A33 0 0
0 0 A55 A57

0 0 A75 A77

 =


A22 A24 0 0
A42 A44 0 0
0 0 A66 A68

0 0 A86 A88

 . (F.5.1)

Similarly, from B we can find A:

A8×8 =



B11 0 B12 0 0 0 0 0
0 B11 0 B12 0 0 0 0
B21 0 B22 0 0 0 0 0
0 B21 0 B22 0 0 0 0
0 0 0 0 B33 0 B34 0
0 0 0 0 0 B33 0 B34

0 0 0 0 B43 0 B44 0
0 0 0 0 0 B43 0 B44


,

where we see the extra restriction that each even row of A8×8 must be equal to
the row above it, shifted by one position to the right.

If the result of the operation on the distribution function is not another
distribution function, and has nonzero elements in the top-right and bottom-left
quadrant, it cannot be represented by a square matrix when operating on the
Pauli decomposed function. A square matrix B with nonzero elements in all
quadrants will not have a square but a 16× 8 representation when acting on the
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Pauli decomposition:

A16×8 =



B11 0 B12 0 0 0 0 0
0 B11 0 B12 0 0 0 0
0 0 0 0 B13 0 B14 0
0 0 0 0 0 B13 0 B14

B21 0 B22 0 0 0 0 0
0 B21 0 B22 0 0 0 0
0 0 0 0 B23 0 B24 0
0 0 0 0 0 B23 0 B24

B31 0 B32 0 0 0 0 0
0 B31 0 B32 0 0 0 0
0 0 0 0 B33 0 B34 0
0 0 0 0 0 B33 0 B34

B41 0 B42 0 0 0 0 0
0 B41 0 B42 0 0 0 0
0 0 0 0 B43 0 B44 0
0 0 0 0 0 B43 0 B44



,

which has the inverse

B4×4 =


A11 A13 A35 A37

A51 A53 A75 A77

A91 A93 A11,5 A11,7

A13,1 A13,3 A15,5 A15,7

 =


A22 A24 A46 A48

A62 A64 A86 A88

A10,2 A10,4 A12,6 A12,8

A14,2 A14,4 A16,6 A16,8

 .

Quite often, one encounters an expression where ĥ is operated on both from the
left and the right. For example, in section 2.8 we twice find the expression

Aĥ + ĥB = C.

Note that in the more general expression AĥB = C (from which we can construct
expressions like those above by choosing either A or B to be the identity), the
elements are given by

(AĥB)ij =
∑
k,l

AikĥklBlj .

We introduce the function Fĥ that operates on the flatmapped distribution

function,
Fĥ (A,B)f X = Fĥ (A,B)~x = f C,

where element Cij of C, equivalent to row (i− 1) ∗ dim(C) + j of f C, is given by

Cij =
∑
k,l

AikXklBlj .
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In flatmapped notation row i then equals∑
k=1:8

Adi/4e,dk/2e~xkBk−2dk/2e+2dk/4e,i+4−4di/4e,

so element i, j of Fĥ is

(Fĥ )ij(A,B) = Adi/4e,dj/2eBj−2dj/2e+2dj/4e,i+4−4di/4e. (F.5.2)

This operation allows us to quickly find the ordinary differential equations and
boundary conditions for the distribution functions in section 2.8.
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