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A model for square lattice spin orbit coupled cooper pairing is derived using mean field theory. We look
at three cases, a magnetic field parallel to the lattice, perpendicular to the lattice, and no magnetic field.
For the cases of perpendicular or zero field, the cooper pairs have zero momentum, and we are able to
find conditions on the spin-basis BCS interaction under which the system produces chiral p-wave cooper
pairing, with gaps of the form ∆(k) ∼ kx + iky. For the parallel field case, we compare calculations with
those of [1] and find corrections to the helicity basis interactions, and thus the gap equations.

I. INTRODUCTION

In 1957 J. Bardeen, L.N. Cooper, and J.R. Schrieffer introduced what is now known as the BCS model for super-
conductivity [2]. In this model, fermions on a lattice, outside of the Fermi sea, interact in such a way as to form
paired bound states. These paired states called Cooper pairs have associated with them an energy gap, a lower energy
level necessary to excite electrons into the state, as well as to break the state apart. This suppresses scattering effects
that would lead to e.g. electrical resistance, and if these effects are too weak to affect the pairs, we would get zero
electrical resistance and thus superconductivity.

There is a type of superconductor that is described in a different way altogether when compared to ordinary
phases of matter. It is called a topological superconductor, and it is joined by some other states such as topological
insulators [3–5] and systems with the quantum spin hall effect [6–8], as states that are described by topological
order rather than ordinary Landau symmetries. These types of states have in recent years been of high interest [9–
11]. Associated with the topological states are integers characterizing whether the states are topologically trivial
or not such as the first Chern number [12, 13]. The trivial states are ordinary insulators, superconductors and
so on, while the nontrivial ones have special edge states. They are known as topological states as it is not possi-
ble to adiabatically deform the energy spectra of the nontrivial states into that of the trivial ones, without edge states.

The edge states, as their names suggest, are located at the boundaries of the system, at interfaces between topo-
logically trivial and nontrivial materials. This interplay between the bulk and the edge of the system that produces
these special states is usually referred to as the bulk-boundary correspondence. The edge states are helical, that is
they have a connection between spin and momentum, and therefore are referred to as a helical liquid [14]. What
causes the boundary to be of interest is the many unique properties that the helical liquid possesses. It can be a
gapless liquid, being conductive unlike perhaps the bulk [15]. The helical properties means backscattering is difficult
and therefore it is resistant to non-magnetic impurities [16, 17]. Finally, for topological SC, the boundary states can
be Majorana fermions [18]. An important point to note here is also that these states are holographic, they appear
only on the boundary of the system, and cannot exist without the bulk boundary correspondence. Thus we are not
necessarily able to expect finding a similar structure outside of these topological materials.

However, why are these topological materials of actual interest? There are several reasons, ranging from purely
theoretical interest to actual practical effects. A rather distant goal concerns quantum computation. Topological
quantum computation involves topologically protected q-bits, using topological states such as the fractional quan-
tum hall states [19] and in general quantum computation revolves around usage of holographic Majorana states
with non-abelian statistics [20, 21]. In addition, no Majorana fermions have been observed as elementary particles,
they are only theorized to appear as quasi-particles in condensed matter systems, such as the topological materials
described above. As such, these states are a way to produce and observe Majorana fermions for experimental purposes.

The type of topological superconductor that will be looked into in this thesis is the chiral p-wave superconductor.
This type of superconductor has a gap that goes as ∆(k) ∼ kx + iky, and it is not TR invariant. The chiral p-wave
structure comes from spin orbit coupling (SOC), which is the interaction between the spin and momentum of a parti-
cle. Chiral p-wave superconductors are interesting because they allow edge states to appear and are thus topologically
non-trivial [18], but they also have interesting effects such as allowing zero energy Majorana quasiparticles inside
vortices [22], which further leads to non-abelian statistics of braided vortices [23]. This is for reasons involving deco-
herence interesting in regards to quantum computing. A physical realization of the chiral p-wave superconductor has
been proposed for some materials [24]. There are also proposals for chiral superconductors by using hybrid systems [25]

First, finding conditions for chiral p-wave pairing is what will be done in this thesis. Specifically, the working
conditions will be a square lattice of identical ions, with a perpendicular electric field causing Rashba SOC as well



2

as a Zeeman field causing further band splitting. Under these conditions we will find the requirements on the BCS
interaction potential such that the superconductivity is of a chiral p-wave nature.

Secondly, we will study the effects of adding in-plane magnetic fields briefly, and look at specific calculations of
interaction terms from an article written by Florian Loder, A. P. Kampf and Thilo Kopp [1]. The in-plane field
functions similarly to SOC, but with the important difference of being momentum independent. It will both deform
and displace the Fermi surfaces of the system, and we may as a result be dependent on finding a finite-q center
of mass momentum for the interaction, unlike the standard case of no in-plane field. There will be a discrepancy
between their results and the calculations presented in this thesis.

II. LATTICE HAMILTONIAN

We begin by briefly looking at general interactions between fermions on a 2-dimensional, square lattice of ions. The
ions are presumed to be all identical, but kept general as we use purely phenomenological interactions in this model.
Each ion contributes one fermion to the overall system, with N ions and thus N fermions. and we have the general
form of our Hamiltonian as

H =
∑
i,j,s,σ

Vi,jc
†
i,scj,σ +

∑
i,j,i′,j′

∑
s,σ,s′,σ′

Vi,j,i′,j′c
†
i,sc
†
j,σci′,s′cj′,σ′ , (1)

where i, j, i′, j′ are points on the lattice while s, σ, s′, σ′ are spin indices. Vi,j , Vi,j,i′,j′ are the potentials, while c†, c
are fermion creation and annihilation operators respectively, and thus satisfy the fermion anti-commutation relations

{c†i,s, c
†
j,σ} = {ci,s, cj,σ} = 0

{c†i,s, cj,σ} = δi,jδs,σ (2)

In equation (1), we have the first sum as a one-particle interaction term, for instance interaction with external
fields, or the lattice itself. The second is a two-particle interaction term. In our particular model, the only two-particle
term is the BCS potential itself, while the SOC potential, Zeeman field, in-plane magnetic field interactions and the
standard kinetic term are one-particle terms.

A. Kinetic energy terms

As a first calculation, we shall diagonalize the hopping term, or the kinetic energy term. The nearest neighbour
hopping term is

Hn.n =
∑

<i,j>,s

−ti,jc†i,scj,s, (3)

with ti,j as the energy value of this hopping from lattice site j to site i, while < i, j > denotes that we are including
only nearest neighbours i, j in the sum. It is of interest to transform this expression into momentum space, where the
Hamiltonian is diagonal and of a free Fermi gas form. We use the Fourier transformations

ci,s = 1√
N

∑
k

e−ikrick,s

ck,s = 1√
N

∑
i

eikrici,s, (4)

with N being the number of lattice sites, k the lattice momentum and ri denoting the position of lattice site i.
Inserting this transformation into equation (3):



3

Hn.n =
∑
<i,j>

∑
k,k′,s

ei(k
′rj−kri)−ti,j

N
c†k,sck′,s (5)

In an isotropic lattice of identical ions, ti,j must be a constant for all nearest neighbours i, j, and so it reduces to
just t. For nearest neighbours, rj = ri + δ, ri being the position of lattice point i, with δ as the vectors from one
lattice site to the four nearest neighbours. In a square lattice δ = {±ax̂,±aŷ}, with a as the lattice constant, and we
rewrite to

Hn.n = −t
N

∑
k,k′,s

∑
i,δ

ei(k
′−k)rieik

′δc†k,sck′,s. (6)

For a lattice we have
∑
i

ei(k
′−k)ri = δk,k′N , and so we reduce to

Hn.n = −t
∑
k,s

∑
δ

eikδc†k,sck,s

= −t
∑
k,s

(eikx + e−ikx + eiky + e−iky )c†k,sck,s

= −2t
∑
k,s

(cos(kx) + cos(ky))c†k,sck,s, (7)

where we have for convenience absorbed the lattice constant into the momenta kx, ky. We now have nearest
neighbour terms in diagonal form in momentum space. We could go on to derive the next nearest neighbour term,
however it is of little interest in this model, as it does not impact the qualitative results. In [1] the next nearest
neighbour interaction is included, and they have the form

Hn.n.n = 4t′
∑
k,s

cos(kx) cos(ky)c†k,sck,s, (8)

with t′ as the interaction strength. Defining now εk = −2t(cos(kx)+cos(ky))+4t′ cos(kx) cos(ky) we have as kinetic
terms

H0 =
∑
k,s

εkc
†
k,sck,s. (9)

B. Spin orbit coupling terms

There are many ways to introduce spin-orbit coupling into a system of fermions, but in this thesis we are looking
at Rashba SOC. This is simply the name for having a perpendicular electric field E on our 2-dimensional lattice. For
convenience, we set our lattice to be in the xy-plane, and so the electric field will be along the z-axis. The Rashba
SOC term in the Hamiltonian is [26]

HSOC = −
∑
i

α(E × p̂i) · σi (10)

which is just the sum of individual interactions between each fermion and the E-field, for some α as the interaction
strength.

We would like to convert this to the convenient second-quantized form, as well as Fourier transform the term into
momentum space so we can diagonalize the Hamiltonian once more. The electrical field is simply E = (0, 0, E) = E · ẑ,
and so we simplify to
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HSOC = 1
2
∑
i

αE(pi,yσx − pi,xσy). (11)

px and py are the momentum or translation operators which in creation and annihilation operators read

pi,x = −i(c†ricri+ax̂ − c
†
ricri−ax̂)

pi,y = −i(c†ricri+aŷ − c
†
ricri−aŷ), (12)

where the ordinary i index is changed to ri for convenience. Using also the Pauli spin matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
, (13)

we insert to get

HSOC = i

2
∑
i

∑
s,s′

A((c†ri,scri+aŷ,s′ − c
†
ri,scri−aŷ,s′)σx,ss′ − (c†ri,scri+ax̂,s′ − c

†
ri,scri−ax̂,s′)σy,ss′)

= i

2
∑
i

∑
s

A((c†ri,scri+aŷ,−s − c
†
ri,scri−aŷ,−s) + iΓ1s(c†ri,scri+ax̂,−s − c

†
ri,scri−ax̂,−s)), (14)

where we have defined A = αE and

Γαβ
{ 1 if α = β
−1 if α 6= β

, (15)

which for indices with two states is a quantity that is antisymmetric in both indices α, β.

Going to momentum space through Fourier transformation:

HSOC = i

2N
∑
i

∑
k,k′

∑
s

Aei(k
′−k)ri((eik

′aŷc†k,sck′,−s − e
−ik′aŷc†k,sck′,−s) + iΓ1s(eik

′ax̂c†k,sck′,−s − e
−ik′ax̂c†k,sck′,−s))

=
∑
k,s

A(sin(ky) + iΓ1s sin(kx))c†k,sck,−s, (16)

where on the last line we have also used that

2i sin(v) = eiv − e−iv (17)

and

∑
i

ei(k−k
′)ri = δk,k′N (18)

We finally define

Ak,s = A(sin(ky) + iΓ1s sin(kx)), (19)

which corresponds to the energy value of the above interaction. Rewriting:
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(a) No SOC, one band. (b) SOC, split bands.

Figure 1: Fermi surfaces, with or without SOC.

HSOC =
∑
k,s

Ak,sc
†
k,sck,−s. (20)

Finally, it will be convenient below to make the definition Ak = Ak,↑, because of the fact that Ak,s = A†k,−s.

We now move to diagonalize the total Hamiltonian including the already diagonal kinetic term from equation (9)
as well as the new off-diagonal SOC term. In doing this, we will turn to the helicity basis, getting a band index that
determines the helicity of each fermion. We combine equations (20) and (9) into a matrix equation,

H =
∑
k

γ†k

[
εk − µ Ak
A†k εk − µ

]
γk, (21)

where

γ†k = (c†k,↑ c
†
k,↓). (22)

The eigenvalues of the matrix in equation (21) are given by λ2 − 2(εk − µ)λ+ (εk − µ)2 − |Ak|2 = 0, which has as
solutions

Ek,α = εk − µ+ Γα1|Ak|. (23)

Fermi surfaces of this energy spectrum are plotted in Figure 1, in 1a the surface is plotted for no SOC, while in 2
the SOC has been turned on. The most notable feature is that the band has been split by the presence of SOC. Both
bands remain centro-symmetric and concentric however.

In figure 2 we see the whole of the energy spectrum Ek, α plotted for 1BZ, showing the overall shape. It is the
Ek-plane slices that are shown above in figure 1, while in this 3 dimensional figure one can see details such as the 4
minima of the lower energy blue band.



6

Figure 2: Energy spectra with SOC

Thus, in the helicity basis, we have a new Hamiltonian that reads

H =
∑
k,α

Ek,αa
†
k,αak,α. (24)

ak,α are the helicity band fermionic operators, but we need to know their exact form expressed as a linear com-
bination of spin fermionic operators. Since H is hermitian, we know that the matrix in (21) must be unitarily
diagonalizable. Inserting the eigenvalues (23) into the eigenvalue equation of the matrix in equation (21), we get

[
±|Ak| Ak
A†k ±|Ak|

](
x1
x2

)
= 0 (25)

which has as solutions

x = 1√
2

(
1
±Φ†k

)
, (26)

where the 1√
2 is for normalization purposes to keep the transformation unitary, while Φk is the phase of Ak,

Φk = Ak
|Ak|

. (27)

Inserting the transformation matrix
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P †k = 1√
2

[
1 1

Φ†k −Φ†k

]
(28)

as 1 = P †kPk into equation (21), we end up with equation (24) in matrix form:

H =
∑
k

(Pkγk)†(Pk
[
εk − µ Ak
A†k εk − µ

]
P †k)(Pkγk) =

∑
k

η†k

[
Ek,1 0

0 Ek,2

]
ηk, (29)

with

ηk =
(
ak,1
ak,2

)
= Pkγk = 1√

2

[
1 Φk
1 −Φk

](
ck,↑
ck,↓

)
. (30)

We can now write down the transformations directly from equation (30):

ak,α = ck,↑ + Γ1αΦkck,↓√
2

(31)

The inverse transformations are achieved by setting P †ηk = γk, and read:

ck,↑ = ak,1 + ak,2√
2

ck,↓ = Φ†k
ak,1 − ak,2√

2
(32)

C. In-plane magnetic field

In addition to SOC, we can add an in-plane magnetic field. This field will couple to the spins of the fermions in
much the same way as the SOC, however the combination of SOC and in-plane magnetic field significantly alters the
problem [27–29]. One should note that the Fermi surfaces are significantly both deformed and displaced from their
normal SOC-induced concentric centrosymmetric form with an in-plane magnetic field. This is shown in Figure 3, for
weak, equal, and strong in-plane fields relative to the SOC strength. As a result of the combination of in-plane fields
and SOC, we can get Fulde-Ferrell [30] Larkin Ovchinnikov [31] states, and this kind of finite momentum state can
lead to a topological superconductivity with edge state Majorana fermions [32, 33]. In a recent paper [34] a strong
magnetic field weak coupling state for a 2-dimensional electron gas was studied, and below will be calculations of an
in-plane only magnetic field, with the limit of weak SOC used to compare the transformations found by Starykh et
al. to this square lattice case.

Figure 3 shows Fermi surfaces of this system, with an in-plane magnetic field in the y-direction. Unlike the case
in Figure 1 without this magnetic field, the Fermi surfaces are not concentric or centro-symmetric. This means that
zero momentum offset q is no longer the best approximation for intraband pairing. Thus we are forced to find finite
momenta q to optimize pairing on each band. However even in doing this, there is no perfect choice like q = 0 for
centro-symmetric surfaces, because the surfaces in this case are not just offset but also deformed.

The magnetic field coupling goes as

HB =
∑
i

µBB · Ŝi (33)

with B = Bxx̂+By ŷ as the magnetic field and a constant µB determining the strength of the coupling. Using the
same notation in general as [1] for convenience and comparison, we set µBB = Hxx̂+Hy ŷ. We use the spin operator
in second quantized form Ŝi =

∑
s,s′
σss′c

†
i,sci,s′
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(a) Small in-plane field (b) In-plane field of equal magnitude to SOC

(c) Large in-plane field

Figure 3: Shown are Fermi surfaces for the system with an added in-plane magnetic field, in the y-direction. The
two bands are notably displaced from the center, but are also importantly not centro-symmetric. In 3b we see that

the Fermi surfaces touch, this happens for equal strength SOC and B-field. [1]

HB =
∑
i,s,s′

1
2 [Hx(σx)ss′ +Hy(σy)ss′ ]c†i,sci,s′ (34)

Inserting the Pauli spin matrices and going to momentum space:
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HB =
∑
i,s

1
2 [Hx − isHy]c†i,sci,−s

=
∑
k,s

1
2 [Hx − isHy]c†k,sck,−s (35)

This Hamiltonian has the same structure as (20) which means that by redefining Ak as

Ak = A(sin(ky) + i sin(kx)) +Hx − iHy (36)

and as a result, Φk to

Φk = A[sin(ky) + i sin(kx)] +Hx − iHy

|A[sin(ky) + i sin(kx)] +Hx − iHy|
(37)

the results from the previous section remain unchanged, and the transformations in (31) are the same.

To compare with [34] we set Hy = 0, Hx � A, and then expand Φk. In this large in-plane field limit, Φk is almost
real, and so we write

eiγk = Φk (38)

From the definition of Φk in (37), we have

tan(γk) = A

Hx

(
sin(kx)

A
Hx

sin(ky) + 1

)
(39)

We expand eix = 1 + ix− x2

2 +O(x3), arctan(x) = x+O(x3) and 1
1+x = 1− x+O(x2). Since the in-plane field is

very large, we only keep terms of O
(
A2

H2
x

)
. Hence

eiγk ∼ 1− i A
Hx

sin(kx) + A2

H2
x

sin(kx)(i sin(ky)− 1
2 sin(kx)). (40)

Below we will end up with a potential that goes as ΦkΦ†k′ , and when using the above expansion the potential reads

ΦkΦ†k′ ∼ 1 + A

Hx
(sin(k′x)− sin(kx))− A2

H2
x

(
1
2(sin(k′x)− sin(kx))2 + i(sin(k′x) sin(k′y)− sin(kx) sin(ky))

)
. (41)

Note that the imaginary term does not break hermiticity because there is in the Hamiltonian a sum over both
k and k′. Therefore only the sum Γα,α′ΦkΦ†k′ a

†
k,αa

†
−k+q,βa−k′+q,β′ak′,α′ + Γα′,αΦk′Φ†k a

†
k′,α′a

†
−k′+q,β′a−k+q,βak,α

needs to be hermitian, or in other words the potential must remain unchanged under the simultaneous operations of
hermitian conjugate, α, β, β′, α′ → α′, β′, β, α and k,k′ → k′,k.

Next is a comparison between the transformations (32) in this high in-plane field limit, and the corresponding
transformations used in [34] which read

(ck,↑)x =
[
1− k2

xA
2

8H2
x

]
ak,1 − i

kxA

2Hx
ak,2

(ck,↓)x =
[
1− k2

xA
2

8H2
x

]
ak,2 − i

kxA

2Hx
ak,1 (42)
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where we have used the notation in this text, and set the magnetic field to be entirely in-plane. To compare with
these transformations, note that the transformations (32) can be multiplied by an arbitrary complex phase without
changing the Hamiltonian. To get the same structure as Starykh et al. we multiply on the right side by the phase
e
γk
2 . For an in-plane only field, they have also quantized the spin along the x-axis, and so a spin rotation eiπ4 σy by
−90◦ is also included.

(
ck,↑
ck,↓

)
x

= 1√
2

(
1 1
−1 1

)(
ck,↑
ck,↓

)
z

=
(

Re(e i2γk)ak,1 + iIm(e i2γk)ak,2
−iIm(e i2γk)ak,1 − Re(e i2γk)ak,2

)

=

 [
1− A2

8H2
x

sin2(kx)
]
ak,1 + i

[
A

2Hx sin(kx)− A2

2H2
x

sin(kx) sin(ky)
]
ak,2

−
[
1− A2

8H2
x

sin2(kx)
]
ak,2 − i

[
A

2Hx sin(kx)− A2

2H2
x

sin(kx) sin(ky)
]
ak,1

 (43)

In the continuum limit which is what Starykh et al. were working on, (sin(kx), sin(ky))→ (kx, ky). Even so, there is
an extra term i A

2

2H2
x

sin(kx) sin(ky) that is not present in (42), and also the signs of the terms proportional to ak,2 are

different. Unfortunately the cause of this is unknown. The terms are to the same order O
(
A2

H2
x

)
as [34], though there

is a difference in terms of rotational symmetry which is absent in this square lattice while present in the continuum
case. Investigating this difference would be of interest for further work.

III. BCS MODEL

The fundamental interaction of BCS theory is an attractive potential that affects fermions in a small shell around
the Fermi level [2]. This interaction could for example be electron-phonon-electron interactions [35]. In this thesis
we are working however with a purely phenomenological potential, and so the origin of this BCS potential is of little
interest. We assume that there is such a potential, and do not speculate on the cause.

A general spin-space BCS interaction can be written in momentum space as

HBCS =
∑
k,k′,q

∑
s,s′

Vs,s′(k, k′)c†k+q,sc
†
k′−q,s′ck′,s′ck,s, (44)

where the potential scatters two fermions with momenta and spin k, s and k′, s′ into two fermions with other
momenta but the same spins k + q, s and k′ − q, s′. These momenta are assumed as mentioned above to all be in a
small shell around the Fermi level. For a simple model with only kinetic energy terms, the Fermi surfaces will look
similar to the one shown in Figure 1a. On this kind of centrosymmetric surface, there is a configuration which has as
a property that for all k, q such that k,k+q are in the shell, k′,k′−q must also be in the shell. It is simply k′ = −k,
while in all other configurations there are k, q that do not fulfil the requirement of being in the shell. Thus we expect
the dominant contribution to come from this particular configuration, since it has the largest available phase space.
With this in mind we rewrite: q → k − k′, k → k′, k′ → −k′ + q. This q is the offset from the dominant k,−k
contribution, or in other words the center of mass momentum (COMM) of the pair. An example of a single band
interaction like this is shown in figure 4a, where it is clear that q = 0 maximizes the available phase space. In the
new notation equation (44) reads:

HBCS =
∑
k,k′,q

∑
s,s′

Vs,s′(k,k′)c†k,sc
†
−k+q,s′c−k′+q,s′ck′,s (45)

When SOC interaction is added to the problem and the bands split, other types of BCS interaction can be included,
namely interband and pair hopping interactions. This is determined by the band indices in the field operators.
Interband interactions would go as a†k,αa

†
−k+q,βa−k′+q,βa−k,α while pair hopping terms as a†k,αa

†
−k+q,αa−k′+q,βa−k,β .

In this way, pair hopping terms are interactions that move pairs from one band to the other, while interband terms
involve pairs that are on opposite bands. As can be seen in Figure 1, the SOC split keeps the surfaces concentric and



11

(a) Single band (b) Interband

(c) Pair hopping

Figure 4: Shown are three types of pairing. 4a shows single band or intraband pairing, 4b shows interband pairing
and 4c shows pair hopping. Shown are examples of concentric Fermi surfaces, for instance the two bands in our SOC

split model. The vectors k, k′, q correspond to pair hopping (a) and αββα-type interband (b).

centrosymmetric, which means that the intraband terms as in the one band case have dominant contributions from
q = 0. This is also true for the pair hopping interaction shown in 4c. However, in Figure 4b it is clear that interband
interactions do not have contributions at all from q = 0, and require in general a momentum dependent q = q(k,k′)
to maximize phase space. If one also includes an in-plane magnetic field, the Fermi surfaces will look like Figure 3
and these surfaces are deformed and displaced, and so in this case q = 0 is not necessarily the dominant contribution
even for intraband and pair hopping terms. We see the surfaces are displaced in opposite directions, and so picking
out two COMMs as twice the center of each surface would function similarly to the SOC only case with respect to
intraband pairing, with some inaccuracy from the deformations. This is what is done in [1], to optimize intraband
pairing on each band.

A. Applying BCS to an SOC split model

We are ready to apply the BCS interaction, with the purpose of finding requirements for having chiral p-wave gaps,
of the form ∆k ∼ kx + iky.

A general BCS type interaction in the helicity basis can be written as:
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HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ , (46)

To preserve hermiticity we require V †α,α′,β,β′(k, k′, q) = Vα′,α,β′,β(k, k′, q). Using the transformations in equation
(31), we return to the spin basis version of this interaction. Inserting directly yields:

HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)
4 (ck,↑ + Γ1αΦkck,↓)(c−k+q,↑ + Γ1βΦ−k+qc−k+q,↓)

·(c−k′+q,↑ + Γ1β′Φ−k′+qc−k′+q,↓)(ck′,↑ + Γ1α′Φk′ck′,↓). (47)

In this equation, every one of the 16 combinations of spins are present, so by introducing new functions

Zsα(k)
{ 1 if s =↑

Γ1αΦk if s =↓ (48)

we can rewrite equation (47) as

HI =
∑
k,k′,q

∑
α,α′,β,β′

∑
s,s′,σ,σ′

Vα,α′,β,β′(k, k′, q)
4 Z†sα(k)Z†σβ(−k + q)Zσ′β′(−k′ + q)Zs′α′(k′)c†k,sc

†
−k+q,σc−k′+q,σ′ck′,s′ .

(49)

This is an equation that determines what the potential is in the spin basis, when given a potential in the helicity
basis. It is of interest, since one generally looks at interactions that have their origin in ordinary Fermions with spin
rather than the quasiparticle excitations in a given model. Since the potential is arbitrary, we try to find one that
is as simple as possible and thus solvable, in both the helicity and spin bases, while giving a chiral p-wave gap function.

We pick out a potential that has only two indices in the following manner:

Vα,α′,β,β′(k, k′, q) ∝ δαβδα′β′ . (50)

Inserting this into equation (46), the coupling becomes as a†k,αa
†
−k+q,αa−k′+q,α′ak′,α′ . This choice of potential is

convenient, because the coupling then describes both intraband pairing and pair hopping, for α = α′ and α 6= α′,
respectively. As described previously, the choice of q = 0 will maximize the phase space for these interactions, and
as such be the dominant contribution. As for interband interactions, since k and −k + q have to be on opposite
bands in this case and the bands are centrosymmetric, there is no one q that can satisfy this for all k. For the case
of Figure 4b, there are two q-values that satisfy our requirement, the intersections between two displaced copies of
the inner band. In general this isn’t necessarily the case, if the band split is large enough there will be for certain
momenta k,k′ no intersections and thus no q-values that satisfy our requirement. However even for the cases that do
have q-values that are satisfactory, they must be dependent on the other momenta k,k′ and the shape of the surface
itself in a nontrivial way. To avoid this we therefore choose a potential that sidesteps this problem by only including
intraband and pairhopping terms. In the following, we will drop the sum over q and use (19), that is no in-plane
magnetic field.

To proceed one should diagonalize the total Hamiltonian given as the sum of (46) and (24) to find the eigenstates
and energy spectrum of the system. However, this is difficult, so an approximation is required. We use a Mean-Field
approximation to reduce the interaction to a one-particle problem, and define

bαα′(k) =< a−k,αak,α′ > . (51)

bαα′(k) is the expectation value of this particular combination of field operators. The approximation is to assume
that the field operators deviate only slightly around this expectation value, and we write
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a−k,αak,α′ = bαα′(k) + (a−k,αak,α′ − bαα′(k)) = bαα′(k) + δαα′(k) (52)

with δαα′(k) as the deviation. Since it is assumed small, we ignore all terms of O(δαα′(k)2). Rewriting the
interaction Hamiltonian (46) using equation (52), and ignoring higher powers of δαα′(k), we get the result

HI =
∑
k,k′

∑
α,α′

Vα,α′(k, k′, q)[b†αα(k)a−k′,α′ak′,α′ + bα′α′(k′, q)a†k,αa
†
−k,α − b

†
αα(k)bα′α′(k′, q)]. (53)

This Hamiltonian is much simpler, being bilinear the field operators. Thus we can diagonalize the total Hamiltonian
in order to find the gap equations. We introduce the order parameters

∆α(k) =
∑
k′,α′

Vα,α′(k, k′, q)bα′α′(k′, q). (54)

and rewrite equation (53) as

HI =
∑
k,α

∆α(k)a†k,αa
†
−k,α + ∆†α(k)a−k,αak,α + ∆α(k)b†αα(k) (55)

Including the entire Hamiltonian, meaning the sum of equations (55) and (24), omitting constant terms, and
rewriting to matrix form gives:

H =
∑
k

ξ†k


E1,k

2 ∆†1(k) 0 0
∆1(k) −E1,−k

2 0 0
0 0 E2,k

2 ∆†2(k)
0 0 ∆2(k) −E2,−k

2

 ξk, (56)

for

ξ†k = (a†k,1 a−k,1 a†k,2 a−k,2). (57)

This matrix is easily diagonalizable being block diagonal, and the eigenvalues are:

λ±α (k) = Eα,k − Eα,−k
4 ±

√(
Eα,k + Eα,−k

4

)2
+ |∆α(k)|2. (58)

Since Ak = −A−k and ε−k = εk, the energy Eα,k is symmetric in k, so that inserting equation (23) yields

λ±α (k) = ±

√(
εk + Γ1α|Ak| − µ

2

)2
+ |∆α(k)|2. (59)

Equation (59) is the energy value of the new Fermi operators ηk,α, γkα, defining the basis in which the total
Hamiltonian is diagonal,

H =
∑
k,α

λα(k)(ηk,α − γkα) +H0 (60)

where we have defined λα(k) = λ+
α (k) and H0 = −∆α(k)b†αα(k).

Since this is of the form of a free Fermi gas, we can use the partition function
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Z =
∏
k,α

(1 + e−βλα(k))(1 + eβλα(k))e−βH0 , (61)

with β = 1
kBT

where kB is Boltzmann’s constant and T is temperature, along with the free energy

F = − 1
β

log(Z) (62)

to determine the gap functions ∆α(k). To do this, we differentiate the free energy with respect to the gap function
to minimize it, and use that in thermodynamic equilibrium the system will come to rest in a state that minimizes the
free energy:

∂F

∂∆α′(k′)
= − 1

β

∂

∂∆α′(k′)
∑
k,α

(
log(1 + e−βλα(k)) + log(1 + eβλα(k)) + log e−βH0

)

= ∂λα′(k′)
∂∆α′(k′)

(
e−βλα′ (k

′)

1 + e−βλα′ (k′)
− eβλα′ (k

′)

1 + eβλα′ (k′)

)
+ ∂H0

∂∆α′(k′)

= ∂λα′(k′)
∂∆α′(k′)

tanh
(
−βλα′(k′)

2

)
+ ∂H0

∂∆α′(k′)
. (63)

The two derivatives are

∂λα′(k′)
∂∆α′(k′)

= ∆†α′(k′)
2λα′(k′)

(64)

∂H0

∂∆α′(k′)
= −b†α′α′(k

′) (65)

treating ∆α′(k′) and ∆†α′(k′) as different variables. Setting equation (63) equal to zero, inserting the derivatives,
multiplying both sides with Vα,α′(k,k′), and summing over α′,k′ yields

∆†α(k) =
∑
k′,α′

∆†α′(k′)
2λα′(k′)

tanh
(
−βλα′(k′)

2

)
Vα,α′(k, k′), (66)

where we have used the hermitian conjugate of equation (54) to obtain ∆†α(k). There is another gap equation
for ∆α(k), the hermitian conjugate of equation (66), which is obtainable by differentiating with respect to ∆†α(k)
instead of ∆α(k). It is possible to solve these gap equations self consistently using numerical methods. However it
is important to note that in setting equation (63) to zero we have merely obtained an extremum. Unless multiple
solutions exist this must be a minimum since the free energy must be bound from below, but in the event of multiple
solutions one must insert the gap functions back into the free energy to confirm which is the proper minimum. In
this case, the specific numerics are of little interest and so we assume that we pick out the correct solution in the
following.

We are interested in what potential inserted into this equation will yield a chiral p-wave gap function. A simple
separable potential is convenient, so we set

Vαα′(k,k′) = V U†α(k)Uα′(k′)vα,α′ , (67)

where V is a constant, Uα(k) and vα,α′ can be any functions at this point, with the restriction that Vαα′(k,k′) =
V †α′α(k′,k). Below we insert Uα(k) = Ak, vα,α′ = Γα,α′ , as it leads to a chiral p-wave gap, and a simple expression in
spin-space when inserted into equation (49). Inserting the potential (67) into equation (66) gives
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∆†α(k) =

∑
k′,α′

∆†α′(k
′)χα′(k′)vα,α′Uα′(k′)

U†α(k), (68)

with χα′(k′) = 1
2λα′ (k′)

tanh
(
−βλα′ (k

′)
2

)
. Equation (68) determines the k-dependence of ∆α(k) as

∆†α(k) = ∆†αU†α(k), (69)

defining ∆†α =
( ∑
k′,α′

∆†α′(k′)χα′(k′)vα,α′Uα′(k′)
)
. Choosing Uα(k) = A†k we see

∆α(k) = A∆α(sin(ky) + i sin(kx)), (70)

which is exactly a chiral p-wave gap function. Of course, using a different function Uα(k) can yield any k-dependence
as desired. It is important to stress that this is assuming a potential that both leads to zero interband interaction
terms and also is separable. In principle, an equation similar to (68) with a non-separable potential could be used,
but to find the k-dependence would involve numerical self consistent solutions.

We have at this point a chiral p-wave gap, and so we wish to know what kind of spin space interaction would cause
this. Returning to the potential in (67), and inserting this potential into equation (49) to discover the spin space
representation of this interaction yields

HI = V
∑
k,k′

∑
α,α′

∑
s,s′,σ,σ′

AkA
†
k′Γαα′
4 Z†sα(k)Z†σα(−k)Zσ′α′(−k′)Zs′α′(k′)c†k,sc

†
−k,σc−k′,σ′ck′,s′ . (71)

Γαα′ is antisymmetric in both α and α′, and as a result of the sum over band indices, all terms that have an overall
antisymmetric factor in either α or α′ will vanish. The remaining terms will therefore, considering the definition of
Zsα from equation (48), have exactly one spin down from each of s, σ and s′, σ′ to cancel out the antisymmetry in
the potential. In other words, s = −σ and s′ = −σ′, and we get the additional factors Γss′Φ†kΦk′ :

HI = V
∑
k,k′

∑
s,s′,σ,σ′

AkA
†
k′

4 Γss′Φ†kΦk′c†k,sc
†
−k,−sc−k′,−s′ck′,s′ . (72)

As Φk is the phase of Ak, they cancel leaving only |Ak||A′k| = |A|2
√

(sin2(kx) + sin2(ky))(sin2(k′x) + sin2(k′y)).
Performing also the sum over α, α′ gives

HI = V |A|2
∑
k,k′

∑
s,s′

√
(sin2(kx) + sin2(ky))(sin2(k′x) + sin2(k′y))Γss′c†k,sc

†
−k,−sc−k′,−s′ck′,s′ , (73)

which is the final spin space interaction for our particular chiral p-wave gap. In other words, this interaction,
when transformed into helicity space will cause chiral p-wave gapped superconductivity. The continuum limit of this
equation reads

HI = V |A|2
∑
k,k′

∑
s,s′

|k||k′|Γss′c†k,sc
†
−k,−sc−k′,−s′ck′,s′ , (74)
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(a) Pair hopping (b) Interband

Figure 5: X-plane slice of the Fermi levels, with only SOC and SOC and Zeeman B-field, respectively. The energy
bands are separated by the B-field.

IV. OUT OF PLANE MAGNETIC FIELD

The Majorana edge states are of interest because they protect the superconductor as described above. However, each
band will contribute one Majorana fermion each. A simple way to argue for this is to use the chemical potential [18].
Suppose that outside of the system is vacuum. Then there must be no states present outside the bulk. Hence the
chemical potential is effectively negative and very large in this area. Then, at the boundary, the chemical potential
should pass from the bulk value to the vacuum value. For convenience we shift the energy values Eα,k so that E2,0 = 0,
using the chemical potential. In other words, we set µ → µ′ = µ + E2,0. With this renaming of µ, if µ is positive in
the bulk, it must be zero somewhere at the interface between bulk and vacuum. Keeping this in mind we look at the
dispersion relation (59), for (µ,k)→ (0, 0):

λ±α (k) = ±

√(
Γ1α|A|k − µ

2

)2
+ |A|2|∆α|2k2. (75)

Here we have let εk → 0 and |Ak| → k, as they should for sufficiently small k. Some reordering yields

λ±α (k) = ±

√
µ2 |∆α|2

1 + 4|∆α|2
+ |A|2

(
1
4 + |∆α|2

)(
k − Γ1αµ

|A| (1 + 4|∆α|2)

)2
(76)

This shows that at the points on the interface for which µ = 0 the states will be massless fermionic states with
dispersion relation

λ±α (k) = ±|A|
√

1
4 + |∆α|2 k (77)

If on the other hand µ is negative in the bulk, it never needs to pass through zero at the interface and this argument
fails.

With only SOC we have E1,0 = E2,0, and thus µ > 0 means that both bands contribute. However there are ways of
separating the bands to prevent this, allowing only one of the bands to contribute to the Majorana edge states. This
is important because an odd number of edge state pairs become topologically trivial [7]. One way is to add a magnetic
field B in the ẑ direction, a Zeeman field. Figure 5 shows the energy values Eα,k before BCS of our system without
and with Zeeman field, respectively, for one particular ky-value. As stated, the bands are separated by the Zeeman
field. Next will be explicitly calculating the energy spectra of the Zeeman-shifted system, as well as checking how the
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magnetic field affects equation (49), to establish conditions under which one can get a chiral p-wave superconductor
protected by one-band surface Majorana fermions.

The B-field will couple to the spins as

HB =
∑
i

Bẑ · Si (78)

for Si = σ
2 c
†
i,sci,s′ , and after Fourier transforming into k-space, and using the third Pauli matrix

σz =
(

1 0
0 −1

)
, (79)

we have

HB =
∑
k,s

BΓ1sc
†
k,sck,s. (80)

Applying to this Hamiltonian the transformations in equation (32):

HB =
∑
k

B
1
2 [(a†k,1 + a†k,2)(ak,1 + ak,2)− Φk(a†k,1 − a

†
k,2)Φ†k(ak,1 − ak,2)]

=
∑
k

B(a†k,1ak,2 + a†k,2ak,1). (81)

Adding this equation to equation (24) and rewriting into matrix form yields

H =
∑
k

φ†k

(
εk + |Ak| B

B εk − |Ak|

)
φk, (82)

defining φk =
(
ak,1
ak,2

)
. The eigenvalues of equation (82) are found to be

EBzk = εk ±
√
|Ak|2 +B2, (83)

and as claimed these energy values are as the previous Ek SOC band spectra, but separated by the B-field.

Next it is of interest to see how the Zeeman field with affect equation (49). To find this we require the transformations
from the SOC helicity basis into the SOC and Zeeman helicity basis. Since our matrix in equation (82) is not only
hermitian but also real, we can find real orthogonal matrices to diagonalize it. We have

(
εk +

√
|Ak|2 +B2 0
0 εk −

√
|Ak|2 +B2

)
=
(

cos(θk) − sin(θk)
sin(θk) cos(θk)

)(
εk + |Ak| B

B εk − |Ak|

)(
cos(θk) sin(θk)
− sin(θk) cos(θk)

)
=
(
εk + cos(2θk)|Ak| − sin(2θk)B sin(2θk)|Ak|+ cos(2θk)B

sin(2θk)|Ak|+ cos(2θk)B εk + cos(2θk)|Ak|+ sin(2θk)B)

)
,

(84)

which has as solution

θk = 1
2 arctan

(
−B
|Ak|

)
. (85)

The transformations are thus given as
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(
cos(θk) sin(θk)
− sin(θk) cos(θk)

)(
ak,1
ak,2

)
=
(
dk,1
dk,2

)
or

dk,α = cos(θk)ak,α + Γ2ᾱ sin(θk)ak,ᾱ, (86)

with dk,α as the SOC and Zeeman helicity band operators, and ᾱ referring to the band index opposite of α.
Constructing once again a general, intraband, BCS-type interaction in our new basis, we get exactly the same results
as in equations (59) and (68), only now with |Ak| →

√
|Ak|2 +B2 in the energy spectrum,

λ±α (k) = ±

√√√√(εk + Γ1α
√
|Ak|2 +B2 − µ

2

)2

+ |∆α(k)|2. (87)

This means we will still have chiral p-wave gap functions, as long as we let the BCS-interaction be defined in the
Zeeman-modified helicity basis dk,α:

HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)d†k,αd
†
−k+q,βd−k′+q,β′dk′,α′ . (88)

The arguments leading to equation (68) apply to this interaction in exactly the same way.

To find the spin basis interaction, we go through the reverse transformations, finding

HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)d†k,αd
†
−k+q,βd−k′+q,β′dk′,α′

=
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)(cos(θk)ak,α + Γ2ᾱ sin(θk)ak,ᾱ)(cos(θ−k+q)a−k+q,β + Γ2β̄ sin(θ−k+q)a−k+q,β̄)

(cos(θ−k′+q)a−k′+q,β′ + Γ2β̄′ sin(θ−k′+q)a−k′+q,β̄′)(cos(θk′)ak′,α′ + Γ2ᾱ′ sin(θk′)ak′,ᾱ′) (89)

HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)( cos(θk) cos(θ−k+q) cos(θ−k′+q) cos(θk′)a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′

+Γ2ᾱ sin(θk) cos(θ−k+q) cos(θ−k′+q) cos(θk′)a†k,ᾱa
†
−k+q,βa−k′+q,β′ak′,α′

+Γ2β̄ cos(θk) sin(θ−k+q) cos(θ−k′+q) cos(θk′)a†k,ᾱa
†
−k+q,β̄a−k′+q,β′ak′,α′

+... ), (90)

where the sixteen terms in the parenthesis are not all written out for brevity. Since the sum runs over both bands
in each index, we can reverse in every term the barred and unbarred indices in such a way that the field operators
factor:

HI =
∑
k,k′,q

∑
α,α′,β,β′

(Vα,α′,β,β′(k, k′, q) cos(θk) cos(θ−k+q) cos(θ−k′+q) cos(θk′)

+Γ2αVᾱ,α′,β,β′(k, k′, q) sin(θk) cos(θ−k+q) cos(θ−k′+q) cos(θk′)
+Γ2βVα,α′,β̄,β′(k, k′, q) cos(θk) sin(θ−k+q) cos(θ−k′+q) cos(θk′)

+... )a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ (91)

This equation has the same form as equation (47), with a differing potential defined by the sixteen terms in the
parenthesis above. Inserting we get
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HI =
∑
k,k′,q

∑
α,α′,β,β′

Vα,α′,β,β′(k, k′, q)Us,s
′,σ,σ′

α,α′,β,β′(k, k
′, q)Z†sα(k)Z†σβ(−k + q)Zσ′β′(−k′ + q)Zs′α′(k′)c†k,sc

†
−k+q,σc−k′+q,σ′ck′,s′ .

(92)

once again switching the barred indices with unbarred ones in each term as to factor out the potential Vα,α′,β,β′(k, k′, q),
and then using that Γαβ̄ = −Γαβ to find Zsᾱ(k) = Γ↑sZsα(k). The sixteen term coefficient to the interaction becomes

Us,s
′,σ,σ′

α,α′,β,β′(k, k
′, q) =ckc−k+qc−k′+qck′ + skc−k+qc−k′+qck′Γ1αΓ↑s + cks−k+qc−k′+qck′Γ1βΓ↑σ + ckc−k+qs−k′+qck′Γ1β′Γ↑σ′

+ckc−k+qc−k′+qsk′Γ1α′Γ↑s′ + sks−k+qc−k′+qck′ΓβαΓσs + ckc−k+qs−k′+qsk
′Γβ′α′Γσ′s′

+skc−k+qs−k′+qck′Γβ′αΓσ′s + skc−k+qc−k′+qsk′Γα′αΓs′s + cks−k+qs−k′+qck′Γββ′Γσσ′
+cks−k+qc−k′+qsk′Γβα′Γσs′ + skc−k+qs−k′+qsk′Γβ′α′Γσ′s′Γ1αΓ↑s + cks−k+qs−k′+qsk′Γβ′α′Γσ′s′Γ1βΓ↑σ
+sks−k+qs−k′+qck′ΓβαΓσsΓ1β′Γ↑σ′ + sks−k+qc−k′+qsk′ΓβαΓσsΓ1α′Γ↑s′
+sks−k+qs−k′+qsk′ΓβαΓσsΓβ′α′Γσ′s′ , (93)

where we have made for notational simplicity the definitions ck = cos(θk), sk = sin(θk). Setting B → 0 we see us-
ing equation (85) that θk → 0, and so Us,s

′,σ,σ′

α,α′,β,β′(k, k′, q)→ 1, and as expected equation (92) reduces to equation (49).

For zero in-plane fields, we have |Ak| = |A−k|, and so sin(θk) = sin(θ−k), cos(θk) = cos(θ−k), and the above is
simplified for q = 0:

Us,s
′,σ,σ′

α,α′,β,β′(k,k
′, 0) =c2kc2k′ + skckc

2
k′(Γ1αΓ↑s + Γ1βΓ↑σ) + c2kck′sk′(Γ1α′Γ↑s′ + Γ1β′Γ↑σ′) + c2ks

2
k′Γα′β′Γσ′s′ + s2

kc
2
k′ΓαβΓσs

+skcksk′ck′(Γαβ′Γsσ′ + Γα′βΓs′σ + Γα′αΓss′ + Γββ′Γσσ′) + skcks
2
k′Γβ′α′Γσ′s′(Γ1αΓ↑s + Γ1βΓ↑σ)

+s2
kck′sk′ΓβαΓσs(Γ1α′Γ↑s′ + Γ1β′Γ↑σ′) + s2

ks
2
k′Γβ′α′Γσ′s′ΓβαΓσs. (94)

Going back to equation (92) and inserting the potential (67) as an example, we see that each spin configuration con-
tributes, since Us,s

′,σ,σ′

α,α′,β,β′(k,k′, 0) has terms that are antisymmetric in every possible combination of indices. Working
out the specifics we see that

HI =
∑

k,k′,s,s′

AkA
†
k′ [Φ†kΦk′ cos(2θk) cos(2θk′)Γss′c†k,sc

†
−k,−sc−k′,−s′ck′,s′

+(Z†s1(k))2(Zs′1(k′))2 sin(2θk) sin(2θk′)c†k,sc
†
−k,sc−k′,s′ck′,s′

+Φ†k(Zs′1(k′))2 cos(2θk) sin(2θk′)Γs1c†k,−sc
†
−k,sc−k′,s′ck′,s′

+Φk′(Zs1(k))2 sin(2θk) cos(2θk′)Γ1s′c
†
k,sc
†
−k,sc−k′,s′ck′,−s′ ] (95)

Using this result we as expected can return to the zero-B-field case, by setting B → 0 which through equation
(85) results in cos(2θk) = 1, sin(2θk) = 0, and we reduce to equation (72). Conversely, by setting B >> |A|,
cos(2θk) ∼ 0, sin(2θk) ∼ −1, and the interaction reduces to

HI =
∑

k,k′,s,s′

|Ak||Ak′ |
(

ΦkΦ†k′ ΦkΦk′

Φ†kΦ†k′ Φ†kΦk′

)
s,s′

c†k,sc
†
−k,sc−k′,s′ck′,s′ , (96)

As in the zero magnetic field case, the magnitude of the potential reduces to |k||k′| for the continuum limit. The
complex phase difference between kx and ky is what causes this, which is the core quality of chiral p-wave pairing.

V. BCS WITH IN-PLANE MAGNETIC FIELD

In regards to the article in by Florian Loder, A. P. Kampf and Thilo kopp [1] who worked on a system with in-plane
magnetic fields and SOC. The in-plane fields as written above will lead to finite pair momentum superconducting
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states, depending on the field strength relative to SOC strength. This is what makes the problem complex, and below
some of the calculations in [1] will be investigated, and we will find slightly different results which lead to a differing
potential as well as altered gap equations.

The specific calculation of interest here is the one leading from equation <4> to equation <5> in [1]. They are
repeated in this text as (97) and (98) respectively.

A. The results of Loder et al.

At first we will present the calculations of Loder et al. from equation <4> to equation <5>, and then look at the
gap equations.

The interaction defined by equation <4> is a BCS type interaction in the spin basis,

HI = −U
∑

k,k′,q,s

c†k,sc
†
−k+q,−sc−k′+q,−sck′,s, (97)

where U is the magnitude of the interaction, equal to V
2N2 in [1] but the exact value is mostly irrelevant for this

comparison. The next step is applying the transformations (31), with Φk defined as in (37). With this they arrive at
equation <5>, which reads

HI = U
∑
k,k′,q

∑
α,α′,β,β′

Γβ,β′(Veven(k, k′, q) + Vodd(k, k′, q)) a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ . (98)

Where

Vλ(k, k′, q) = g∗λ(k, q)gλ(k′, q) (99)

and

gλ(k, q)
{ 1

2 (Φk + Φ−k+q) if λ = even
1
2 (Φk − Φ−k+q) if λ = odd

. (100)

After rewriting (Veven(k, k′, q) + Vodd(k, k′, q)) to the phases (ΦkΦ†k′ + Φ−k+qΦ†−k′+q), the interaction reduces to

HI = U
∑
k,k′,q

∑
α,α′,β,β′

Γβ,β′(ΦkΦ†k′ + Φ−k+qΦ†−k′+q) a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′

= U
∑
k,k′,q

∑
α,α′,β,β′

ΦkΦ†k′(Γβ,β′ + Γα,α′) a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ , (101)

where on the second line we have used anticommutation, shifted (k,k′) → (−k + q,−k′ + q) and renamed
(α, β, α′, β′) → (β, α, β′, α′) in the second term of the parenthesis. This is done to compare more easily with results
presented below.

By applying typical mean-field approximations, they arrive at equation <13>, which reads (by adding the constant
term from mean-field as well as the Hermitian conjugate that they have not included) as

HI =
∑
k,q

∆̃odd(k, q)(a†k,1a
†
−k+q,1 − a

†
k,2a

†
−k+q,2) + ∆̃even(k, q)(a†k,1a

†
−k+q,2 − a

†
k,2a

†
−k+q,1)

+ ∆̃†odd(k, q)(a−k+q,1ak,1 − a−k+q,2ak,2) + ∆̃†even(k, q)(a−k+q,2ak,1 − a−k+q,1ak,2)−BL(k, q). (102)
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The gap functions are

∆̃odd(k, q) = Ugodd(k, q)
∑
k′

g†odd(k
′, q)[b11(k′, q)− b22(k′, q)]

∆̃even(k, q) = Ugeven(k, q)
∑
k′

g†even(k′, q)[b12(k′, q)− b21(k′, q)]. (103)

and the constant term is

BL(k, q) = ∆̃odd(k, q)[b†11(k, q)− b†22(k, q)] + ∆̃even(k, q)[b†12(k, q)− b†21(k, q)]. (104)

Next they rewrite the Hamiltonian into matrix form, as

H =
∑
k

η†k



ξk,1 0 ∆̃odd(k, q1) ∆̃even(k, q1) ∆̃odd(k, q2) ∆̃even(k, q2)
0 ξk,2 −∆̃even(k, q1) −∆̃odd(k, q1) −∆̃even(k, q2) −∆̃odd(k, q2)

∆̃†odd(k, q1) −∆̃†even(k, q1) −ξ−k+q1,1 0 0 0
∆̃†even(k, q1) −∆̃†odd(k, q1) 0 −ξ−k+q1,2 0 0
∆̃†odd(k, q2) −∆̃†even(k, q2) 0 0 −ξ−k+q2,1 0
∆̃†even(k, q2) −∆̃†odd(k, q2) 0 0 0 −ξ−k+q2,2


ηk

−
∑
qi

BL(k, qi), (105)

where the matrix can be extended to support any number of q-values, and

η†k = (a†k1, a
†
k2, a−k+q1,1, a−k+q1,2, a−k+q2,1, a−k+q2,2). (106)

This matrix must be diagonalized numerically to solve the gap equations, and we call the eigenvalues λρ(k), with
ρ being an index running from 1 to 6, or more if there are more pair momenta included in the sum. Note that these
eigenvalues are dependent on all the pair momenta in the sum over q, but this dependency is not written down for
notational simplicity. In diagonalizing, the Hamiltonian will turn to the form of a free Fermi gas,

H =
∑
k,ρ

(
λρ(k)γ†k,ργk,ρ −

∑
qi

BL(k, qi)
)

(107)

which is then used to minimize the free energy, as before, in order to find the gap equations:

∂F

∂∆̃λ(k, qi)
= − 1

β

∂

∂∆̃λ(k, qi)

∑
k,ρ

(
log(1 + e−βλρ(k)) + log e−βBL(k,qi)

)
. (108)

Setting ∂F
∂∆̃λ(k,qi)

= 0 to minimize:

∂BL(k, qi)
∂∆̃λ(k, qi)

=
∑
ρ

∂λρ(k)
∂∆̃λ(k, qi)

e−βλρ(k)

1 + e−βλρ(k) . (109)

Using equation (104) and using ∆odd(k, q) in the derivatives, we see

(b†11(k, qi)− b†22(k, qi)) =
∑
ρ

∂λρ(k)
∂∆odd(k, qi)

e−βλρ(k)

1 + e−βλρ(k) , (110)

while for ∆even(k, qi) we get
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(b†12(k, qi)− b†21(k, qi)) =
∑
ρ

∂λρ(k)
∂∆even(k, qi)

e−βλρ(k)

1 + e−βλρ(k) . (111)

Using the definitions from equation (103), the gap equations are

∆̃†odd(k, qi) = g†odd(k, qi)
∑
ρ,k′

(
∂λρ(k′)

∂∆̃odd(k′, qi)
godd(k′, qi)

e−βλρ(k′)

1 + e−βλρ(k′)

)
, (112)

∆̃†even(k, qi) = g†even(k, qi)
∑
ρ,k′

(
∂λρ(k′)

∂∆̃even(k′, qi)
geven(k′, qi)

e−βλρ(k′)

1 + e−βλρ(k′)

)
. (113)

To solve them, we must numerically diagonalize the matrix of equation (105) to find the eigenvalues, as well as
their derivatives with respect to the gaps.

B. Corrected results

We return to equation (97), and work through the transformations in detail. As shall be shown, the result differs
from equation (98), and this impacts the gap equations.

In order to transform equation (97) more easily, we rewrite the transformations (32) to the following form:

ck,s = ak,1 + s ak,2√
2ei

(1−s)
2 γk

, (114)

where we have defined Φk = eiγk and changed the spin index s to ±1, identifying +1 with spin up, and −1 with
spin down. Inserting this rewritten transformation into equation (97):

HI = −U4
∑

k,k′,q,s

(a†k,1 + sa†k,2)(a†−k+q,1 − sa
†
−k+q,2)(a−k′+q,1 − sa−k′+q,2)(ak′,1 + sak′,2)

× e i2 ((1−s)γk+(1+s)γ−k+q+(1+s)γ−k′+q−(1−s)γk′ ), (115)

which by defining

Xs,α

{ 1 if α = 1
s if α = 2 (116)

reduces to

HI = −U4
∑

k,k′,q,s

∑
α,α′,β,β′

Xs,αX−s,βX−s,β′Xs,α′e
i
2 ((1−s)γk+(1+s)γ−k+q+(1+s)γ−k′+q−(1−s)γk′ )a†k,αa

†
−k+q,βa−k′+q,β′ak′,α′

= −U4
∑
k,k′,q

∑
α,α′,β,β′

(X1,αX−1,βX−1,β′X1,α′e
i(γ−k+q−γ−k′+q) +X−1,αX1,βX1,β′X−1,α′e

i(γk−γk′ ))a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′

= −U4
∑
k,k′,q

∑
α,α′,β,β′

(Γβ,β′Φ−k+qΦ†−k′+q + Γα,α′ ΦkΦ†k′)a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ . (117)

We can simplify the third line in equation (117) further by as before renaming (β, β′) ↔ (α, α′), (k,k′) → (−k +
q,−k′+q) in the first term only, and then anticommuting the field operators in that term a†−k+q,βa

†
k,αak′,α′a−k′+q,β′ =

a†k,αa
†
−k+q,βa−k′+q,β′ak′,α′ , for the final interaction
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Figure 6: This diagram shows a type of interaction that is absent in the calculations from [1], and is present in the
corrected Hamiltonian (118).

HI = −U4
∑
k,k′,q

∑
α,α′,β,β′

2Γα,α′ΦkΦ†k′ a
†
k,αa

†
−k+q,βa−k′+q,β′ak′,α′ . (118)

This interaction is of a very similar form to equation (101), but with a clear and important difference. The
coefficient in (101) is zero for certain band-index combinations such as (α, β, β′, α′) = (1, 1, 1, 2), while the coefficient
in (118) can only take on nonzero values. Hence (118) includes interactions such as the one shown in Figure 6. They
are however identical for the remaining 8 combinations. Otherwise there is a difference in the prefactor which should
not change the results significantly.

To see how this difference impacts the gap equations, we apply Mean-Field theory to the interaction in (118). Using
the same definition as in equation (51) and the same general approach, we get

HI = −U2
∑
k,k′,q

∑
α,β,α′,β′

Γα,α′ΦkΦ†k′ [b†αβ(k, q)a−k′+q,β′ak′,α′ + bβ′α′(k′, q)a†k,αa
†
−k+q,β − b

†
αβ(k, q)bβ′α′(k′, q)].

(119)

The following is simpler by substituting in the equation

ΦkΦ†k′ =
∑
σ,λ

gσ(k, q)g†λ(k′, q), (120)

where the indices (λ, σ) are to be summed over (even, odd). As is evident from their definition (100) gλ(k, q) is
even or odd, depending on index, in the shift k → −k + q. Noting that the first term in equation (119) is just the
hermitian conjugate of the second with some renaming of indices as it should be, we work on the second term:

∑
k,k′,q

∑
α,β,α′,β′

Γα,α′
∑
σ,λ

gσ(k, q)g†λ(k′, q)bβ′α′(k′, q)a†k,αa
†
−k+q,β

=
∑
k,k′,q

∑
α′,β′

∑
σ,λ

Γ1,α′gσ(k, q)g†λ(k′, q)bβ′α′(k′, q)(a†k,1a
†
−k+q,1 − a

†
k,2a

†
−k+q,2 + a†k,1a

†
−k+q,2 − a

†
k,2a

†
−k+q,1). (121)

The first two terms of field operators in this equation are both antisymmetric under the transformation k→ −k+q,
while the sum of the two last terms are symmetric, as is evident by anticommutation. Thus we can rid ourselves
of the corresponding symmetric and antisymmetric coefficients gλ(k, q), respectively for these field operator terms.
This exact argument holds true in the same way when performing the sum over (α′, β′), as b11(k′, q) − b22(k′, q)
is antisymmetric and b12(k′, q) − b21(k′, q) is symmetric in the shift k′ → −k′ + q. Hence in these terms the
symmetric and antisymmetric coefficients g†λ(k, q) also vanish, respectively. The k′- and (α′, β′)-dependent quantities
are subsumed into the gaps defined as
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∆odd(k, q) = −U2 godd(k, q)
∑
k′

g†odd(k
′, q)[b11(k′, q)− b22(k′, q)] + g†even(k′, q)[b21(k′, q)− b12(k′, q)]

∆even(k, q) = −U2 geven(k, q)
∑
k′

g†odd(k
′, q)[b11(k′, q)− b22(k′, q)] + g†even(k′, q)[b21(k′, q)− b12(k′, q)], (122)

which, along with the constant term

B(k, q) = ∆odd(k, q)[b†11(k, q)− b†22(k, q)] + ∆even(k, q)[b†12(k, q)− b†21(k, q)] (123)

and the previous observation that the hermitian conjugate can be handled in the same way, leads to our interaction:

HI =
∑
k,q

∆odd(k, q)(a†k,1a
†
−k+q,1 − a

†
k,2a

†
−k+q,2) + ∆even(k, q)(a†k,1a

†
−k+q,2 − a

†
k,2a

†
−k+q,1)

+ ∆†odd(k, q)(a−k+q,1ak,1 − a−k+q,2ak,2) + ∆†even(k, q)(a−k+q,2ak,1 − a−k+q,1ak,2)−B(k, q), (124)

We see that there is a difference in gap structure, with the gaps (122) having extra cross terms godd(k, q)g†even(k′, q)
and geven(k, q)g†odd(k′, q) that the gaps (103) do not. However, the larger Hamiltonian structure is unchanged under
this definition.

Since the overall structure of the Hamiltonian is unchanged, we may repeat the steps from equation (105) to
equation (111), with new gaps ∆λ(k, q) (and by extension, new constant term B(k, q)) now defined by equation
(122). This time, we multiply (110) by g†odd(k′, q)

∑
k

godd(k, q) and (111) by g†odd(k′, q)
∑
k

geven(k, q) and add them

together, which with the new gaps yields

∆†odd(k, q) = g†odd(k, q)
∑
ρ,k′

(
∂λρ(k′)

∂∆odd(k′, q)godd(k
′, q) + ∂λρ(k′)

∂∆even(k′, q)geven(k′, q)
)

e−βλρ(k′)

1 + e−βλρ(k′) . (125)

Multiplying instead by g†even(k′, q)
∑
k

godd(k, q) and g†even(k′, q)
∑
k

geven(k, q):

∆†even(k, q) = g†even(k, q)
∑
ρ,k′

(
∂λρ(k′)

∂∆odd(k′, q)godd(k
′, q) + ∂λρ(k′)

∂∆even(k′, q)geven(k′, q)
)

e−βλρ(k′)

1 + e−βλρ(k′) . (126)

These are the same equations as in (113), (112), but with additional cross terms g†odd(k, q)geven(k′, q) and
g†even(k, q)godd(k′, q). Any gaps that could satisfy (113) and (112) must necessarily be unable to satisfy (126) and
(125), and hence despite the seemingly identical structure between (124) and (102), the numerical solutions should
differ.

Next, it is of interest to see what kind of spin-basis interaction one would require in order to get to the same results
as Loder et al. To achieve this, we transform their helicity space interaction, before mean field approximations,
equation (101) back to spin space, using equation (49). Using as potential Vα,β,α′,β′(k, k′, q) = ΦkΦ†k′(Γα,α′ + Γβ,β′):

HI = U
∑
k,k′,q

∑
α,α′,β,β′

∑
s,s′,σ,σ′

ΦkΦ†k′(Γα,α′ + Γβ,β′)
4 Z†sα(k)Z†σβ(−k + q)Zσ′β′(−k′ + q)Zs′α′(k′)c†k,sc

†
−k+q,σc−k′+q,σ′ck′,s′ .

(127)

The terms with Γα,α′ are antisymmetric in (α, α′) and symmetric in (β, β′). Hence the only nonzero spin con-
figuration is (s, σ, σ′, s′) = (↓, ↑, ↑, ↓). Likewise, the terms with Γβ,β′ are antisymmetric in (β, β′) and symmetric
in (α, α′), and their spin configuration becomes (s, σ, σ′, s′) = (↑, ↓, ↓, ↑). These spin configurations bring along the
factors Φ†kΦk′Γα,α′ and Φ†−k+qΦ−k′+qΓβ,β′ respectively, cancelling the band index dependence in both cases, and in
the first term only also cancels the momentum dependence. The spin space interaction then reads
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HI = U
∑
k,k′,q

∑
s

Ys(k, k′, q)c†k,−sc
†
−k+q,sc−k′+q,sck′,−s, (128)

with the definition of Ys(k, k′, q) as

Ys(k, k′, q)
{ 1 if s =↑

ΦkΦ†−k+qΦ†k′Φ−k′+q if s =↓. (129)

This interaction is clearly momentum dependent, but is only slightly unlike equation (97). By comparison, inserting
the potential Vα,β,α′,β′(k, k′, q) = (Γβ,β′Φ−k+qΦ†−k′+q + Γα,α′ΦkΦ†k′) into equation (49) instead, we see that using
the exact same arguments, the momentum dependent phases will cancel perfectly, and we return to equation (97).
Note also that for the case when the in-plane magnetic field is zero, Φk = −Φ−k and so Ys(k,k′, 0) = 1. In this case
then equation (128) reduces to equation (97) for q = 0, the dominant contribution, as we would expect from the fact
that under these conditions equations (101) and (118) are also equivalent.

VI. SUMMARY

A model for cooper pairing in a square 2-dimensional lattice was established with both Rashba spin-orbit coupling
and perpendicular Zeeman field. The cooper pairing interaction was defined in the set of eigenstates of the system
after having included both SOC and Zeeman interactions, so as to more easily find conditions for chiral p-wave
gap states. A specific cooper pairing potential Vα,α′,β,β′(k, k′, q) = Γα,α′δαβδα′β′AkA†k′ was used knowing that it
leads to regular intraband pairing, as well as pair hopping between bands. These were chosen because they allow
for zero center of mass momentum q as the most significant contribution to the Hamiltonian, thus simplifying the
calculations. Under these conditions, the potential can be chosen to yield chiral p-wave structure in the gap equations,
∆α(k) = ∆α(sin(ky)+ i sin(kx)). We also established what the structure of the pairing interaction in spin-momentum
space would have to be to acquire a given interaction in helicity band space, both with and without Zeeman field
interactions. Using this, a spin-momentum interaction that would cause chiral p-wave pairing states was found.

The requirement for chiral p-wave gap states for the SOC states ends up being quite pleasing, with only a simple
dependence on both spin and momentum. However, turning on the out of plane magnetic field and going to SOC
+ Zeeman states makes the spin-momentum interaction much more complex. This is somewhat unfortunate as the
Zeeman field is important for raising one band out of the Fermi level so that the resulting Majorana fermions do not
cancel out.

Further work of interest could be repeating the same calculations for different lattices, as this would impact the
kinetic and SOC terms, and thus significantly change the resulting interactions leading to chiral p-wave. Generalizing
equation (49) to include other kinds of interactions might be of interest, although using it to find chiral p-wave
structures would also require generalizing the energy spectra and the gap equations themselves.

As for the calculation of in-plane fields, we found slightly differing transformations to that of [34], and further
work on this would be of interest, to find the cause of this difference. The calculation of the BCS-interaction itself,
going from spin-momentum eigenstates to helicity eigenstates, was repeated here as it was done in [1]. We found a
discrepancy in the results that take the form of additional terms in the gap coefficients, but without changing the
major structure of the equations. This difference in gap structure however does correspond to a difference in the gap
equations themselves, which as explained above means that the numerical results found by Loder et al. should not
solve the gap equations presented here.

Further work would involve investigating the numerical results more thoroughly to determine whether the large
scale qualitative effects are changed by the correction of this interaction.

Appendix A: Cooper pair problem

In this appendix we will go through the beginnings of the cooper pair problem for finite in-plane and zero out of
plane magnetic fields. We compare briefly with the appendix of [34]. The reason for these calculations is intrinsically
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to find pair momenta that maximize the gaps, however doing this without approximations such as large in-plane fields
is complex.

We first try a general Hamiltonian

H =
∑
k

εka
†
kak +

∑
k,k′

(V gkg†k′)a†ka
†
−ka−k′ak′ (A1)

with no band indices, zero COMM and a separable BCS interaction potential. The function gk is arbitrary, and
εk is the one-particle energy of a particle with momentum k. Solving the Cooper pair problem involves solving the
Schrödinger equation

H |Ψ〉 = Ec |Ψ〉 . (A2)

We expand the state |Ψ〉 into a complete set of basis states

|Ψ〉 =
∑
p

cp |p,−p〉 (A3)

and project down to 〈p′,−p′| = |p′,−p′〉†. This yields

(εp′ + ε−p′ − E)cp′ = −V
∑
p

cpgp′g
†
p. (A4)

Next we look at the Cooper pairing problem for a general Hamiltonian with band indices and finite COMM q. This
time the Hamiltonian is

H0 +HI =
∑
k,α

Ek,αa
†
k,αak,α +

∑
k,k′

∑
α,α′,β,β′,γ′

Vα,α′(k,k′, qγ′)a†
k+

q
γ′
2 ,α

a†
−k+

q
γ′
2 ,β

a−k+
q
γ′
2 ,β′

a
k+

q
γ′
2 ,α′

. (A5)

The potential is the same as for (118),

Vα,α′(k,k′, qγ′) = 2UΓα,α′Φk+ qγ
2

Φ†
k′+ qγ

2
(A6)

with Φk defined as (37). We expand this time |Ψ〉 as

|Ψ〉 =
∑
p,γ

cγ(p, qγ) |p+ qγ
2 ,−p+ qγ

2 〉γ,γ
(A7)

The Cooper pair states are |p+ qγ
2 ,−p+ qγ

2 〉γ,γ = a†
p+ qγ

2 ,γ
a†−p+ qγ

2 ,γ
|0〉. We expand this way because we are

interested in pair hopping and intraband pairing, which are both covered by this expansion. The COMM qγ are
chosen such that they optimize pairing on band γ. In this case we only have one COMM for each band.

H0 |Ψ〉 =
∑
k,γ

(Ek+ qγ
2 ,γ + E−k+ qγ

2 ,γ)cγ(k, qγ) |k + qγ
2 ,−k + qγ

2 〉γ,γ
(A8)

HI |Ψ〉 =
∑
k,p

∑
α,β,γ,γ′

Vα,γ(k,p, qγ′)cγ(p, qγ) |k + qγ′

2 ,−k + qγ′

2 〉α,β
(A9)

Ec,q |Ψ〉 = Ec,q
∑
p,γ

cγ(p, qγ) |p+ qγ
2 ,−p+ qγ

2 〉γ,γ
(A10)
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We multiply the Schrödinger equation (A2) by 〈k′ + qσ
2 ,−k

′ + qσ
2 |σ,σ from the left:

(Ek′+ qσ
2 ,σ + E−k′+ qσ

2 ,σ)cσ(k′, qσ) +
∑
p,γ

Vσ,γ(k′,p, qσ))cγ(p, qγ) = Ec,qcσ(k′, qσ) (A11)

Using as potential Vσ,γ(k′,p, qσ) = U2ΓσγΦk′+ qσ
2

Φ†
p+ qσ

2
, and defining ∆σ(k′, qσ) = (Ek′+ qσ

2 ,σ+E−k′+ qσ
2 ,σ)−Ec,q,

we have

∆σ(k′, qσ)cσ(k′, qσ) = −
∑
p,γ

2UΓσγΦk′+ qσ
2

Φ†
p+ qσ

2
cγ(p, qγ) (A12)

This equation can be compared to <A4> in [34]. To proceed, one would have to expand the wave functions
cσ(k′, qσ) and interactions in square lattice harmonics, and then go to energy space and perform an integration.
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