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Abstract

The fatigue assessment of components subjected to complex loading histories is a
challenging topic. Several criteria intended for use under multiaxial stress-states
and non-proportional loading have been proposed by many researchers throughout
the years. This thesis is intended as a critical review of the fatigue assessment of
both proportional and non-proportional stress histories.

A database consisting of 268 experimental tests for biaxial fatigue limits were collec-
ted from various sources. The compiled database spans 20 materials, ranging from
carbon steels to cast irons. The data were evaluated using five multiaxial fatigue
criteria and two separate assessment methods. The first assessment method is here
described as the proportional-method, which is the assessment of relevant stress-
values based on extreme values occurring throughout a cycle. The second method,
here simply called the ASME-method, is heavily inspired by the ASME-criterion as
stated by the ASME Boiler and Pressure Vessel code. The latter method determ-
ines the relevant stress values based on relative differences in stress components over
time. In addition to the fatigue test data, a stress cycle provided from the industry
is examined and discussed.

The lack of readily available fatigue test data for validating purposes is a serious
concern that is discussed here. The database provided in the appendix is intended to
partially remedy this, and serve as a starting point for future research. A comparison
of predictions, both criteria- and methodology-wise is also provided. The results and
findings are then critically discussed.

The research shows that the predictability of a fatigue criterion depends on both
material and stress-state. For brittle materials such as the cast irons included in
the assessment, the normal stress criterion provides excellent results. For carbon
and low alloy steels, as well as the aluminium alloy 76S-T61, shear stress criteria
such as Findley yield more accurate predictions. The ASME-method increases the
complexity of the fatigue assessment, but is shown to have a positive effect on
predictions for the Findley criterion.

II



Sammendrag

Utmattingsanalyse av komponenter utsatt for komplekse spenningshistorier er et ut-
fordrende tema. Flere kriterier beregnet for bruk ved fleraksede spenningstilstander
og ikke-proporsjonal belastning er gjennom årene blitt foreslått. Denne masteropp-
gaven har til hensikt å gi et kritisk innblikk i utmattingsanalysen av spenningshis-
torier av både proporsjonal og ikke-proporsjonal natur.

I den forbindelse ble det samlet en database bestående av totalt 268 eksperimentelt
bestemte utmattingsgrenser for kombinerte belastninger. Utmattingsgrensene er
fordelt på 20 ulike materialer og tilsammen 27 testserier. Disse ble så evaluert
ved bruk av fem ulike utmattingskriterier og to forskjellige fremgangsmåter. Den
ene fremgangsmåten er den klassiske, proporsjonale fremgangsmåten for å bestemme
spenningsverdier som amplituder på. Denne metoden benytter seg av ekstremverdier
som inntreffer gjennom hele spenningssyklusen sett over ett. Den andre metoden,
baserer seg på ASME-kriteriet som gjengitt i ASME Boiler and Pressure Vessel Code.
Sistnevnte metode beregner spenningsverdier basert på deres relative forskjeller over
tid. I tillegg til utmattingsgrensene gjengitt i databasen, ble også en spenningssykel
hentet fra industrien gjennomgått og diskutert.

Manglende tilgang på testdata er en kilde til bekymring, og blir grundig diskutert.
I den anledning er utmattingsdataene samlet i databasen gjengitt som vedlegg, og
slik er de enkelt tilgjengelig for videre bruk.

Resultatet av undersøkelsen indikerer at nøyaktigheten på prediksjonene fra et ut-
mattingskriterium avhenger av både materiale og spenningstilstand. For sprøe ma-
terialer slik som støpejern, gir normalspenningskriteriet uovertrufne resultater. For
karbonstål og lavlegerte stål samt aluminiumslegeringen 76S-T61 gir skjærspen-
ningskriterier som Findley de beste resultatene. For noen kriterier, da spesielt
Findley-kriteriet, bidrar ASME-metoden til mer nøyaktige prediksjoner. I bruk
bidrar ASME-metoden til at utmattingsanalysen generelt blir mer utfordrende.
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Nomenclature

t̂ critical point in time [sec]

I1 first stress invariant [MPa]

X arithmetic mean value of random discrete variable

a support factor from FKM-Richtlinie

b support factor from FKM-Richtlinie

fcrit critical parameter (Findley)

fW,σ constant used by FKM

fW,τ constant used by FKM

k Findley constant

M mean stress sensitivity

mp mean value of predictions

n number of variables

Nf cycles to failure

P loading parameter

R relationship between max. and min. stress

Rm ultimate tensile strength [MPa]

s sample standard deviation

sp sample standard deviation of predictions

T length of stress history [sec]
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t time [sec]

Xi discrete variable

Vectors and matrixes

I1 first stress invariant matrix

n unit normal vector

S cartesian stress tensor

x placement in a body

Greek Symbols

α phase shift [deg]

β constant

φ̂ angle between x-axis and largest principal stress [◦]

λ constant

ω angular frequency [rad/sec]

φ azimuth angle between x-axis and unit normal vector [◦]

σ′ modified stress according to the ASME criterion [MPa]

σh hydrostatic stress [MPa]

σ′
f fatigue strength coefficient [MPa]

Σ stress field for P=1

σ normal stress [MPa]

σ1,2 principal stresses [MPa]

σA purely pulsating fatigue limit for tension/bending [MPa]

σW fatigue limit for fully reversed normal stress [MPa]

σar equivalent fully reversed stress amplitude [MPa]

σeq,T Tresca equivalent stress [MPa]
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σeq von Mises equivalent stress [MPa]

τ shear stress [MPa]

τA fatigue limit for purely pulsating shear stress [MPa]

τW fully reversed fatigue limit in shear [MPa]

θ polar angle [◦]

S ′ difference between principal stresses (ASME criterion) [MPa]

Subscripts

a amplitude of given stress component

max maximum value of a given stress component

min maximum value of a given stress component

m mean value of a given stress component

A,B indication of case A or case B crack growth

ij element of a given stress component in cartesian stress tensor
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1. Introduction

"Structural engineering is the art of modelling materials we do not wholly
understand into shapes we cannot precisely analyse so as to withstand
forces we cannot properly assess in such a way that the public at large
has no reason to suspect the extent of our ignorance."

- Dr. A. R. Dykes [1]

A correct prediction of the fatigue limit and lifetime of a component is of the ut-
most importance with respect to safety and cost issues. In order to address these
challenges, models for fatigue assessment need to accurately predict fatigue-life.

Many mechanical and structural components will throughout their life be subjec-
ted to loads of a time-varying nature, with stresses working in several directions.
Typical examples are drive shafts in cars, turbine blades in jet engines and wind-
mills. The resulting stress histories may be either proportional or non-proportional,
and a number for multiaxial criteria intended for use under such conditions exist.
However, the complexity of the fatigue assessment is considerably increased, and
so these criteria may be impractical for the practicing engineer. As a result, these
criteria are not yet widely implemented. Lately, with the advent of computational
resources, the fatigue assessments are made considerably more manageable. Even
at the time of writing this thesis, new criteria and algorithms are submitted to the
scientific community for review.

This thesis is meant to serve a number of purposes. Primarily, it concerns the
fatigue assessment of experimental data collected from the literature. The tests are
evaluated using selected criteria, and employed both using a proportional method
and with an ASME-inspired method. The results are then presented, and the criteria
are compared with respect to usability and accuracy of predictions.

The topic of available experimental data is also addressed, and is an important
aspect of this thesis. A thorough search for high cycle fatigue (HCF) tests was con-
ducted, and the results were compiled in a database, spanning 20 different materials
and a total of 268 tests. This was necessary in order to provide a comprehensive
comparison of the fatigue criteria. Although several such databases are known to

1



1. Introduction

exist, very few are available for public use. As a result, new criteria are often eval-
uated for a statistically insignificant number of tests. Several other discrepancies
and worrisome trends were encountered during the search, and is critically discussed
later on.

Occasionally the gathered tests were incomplete, in that they lacked relevant in-
formation regarding the uniaxial fatigue limit σA for purely pulsating loading. In
these cases, FKM-Richtlinie was used to approximate the mean stress sensitivity M
from table-values and known fatigue limits. Since most of the criteria depend on
these values, an aspect of this thesis became the quality of FKM-derived values, and
their impact on the fatigue assessment.

1.1. Limitation of Investigation

During the investigation, very little fatigue-crack growth data was found. Focus was
therefore shifted towards stress-based fatigue criteria and S-N data. The performed
analysis spans both shear-stress criteria, and pure normal stress criteria. The shear
stress criteria are here represented by the Sines-, Findley- and ASME-criterion. Two
versions of the Sines criterion are employed - one with the von Mises equivalent-
stress amplitude, and the other with the Tresca equivalent-stress amplitude. The
Findley criterion is here applied with the constant k determined by two possible
methods. The ASME-criterion as stated in the ASME Boiler and Pressure Vessel
Code is included as well. In the normal-stress category, one normal stress criterion
based on the Hempel-Morrow line is implemented. All criteria, with the exception
of the ASME-criterion are implemented in two different ways. Initially, they are
implemented using the traditional, textbook method of assessment. Secondly, an
assessment method based on the ASME-criterion is proposed and evaluated.

It was initially intended that non-proportional stress histories above the fatigue limit
and suitable cycle-counting rules should be considered. Due to limitations in time,
it was preferred to expand the database of tests regarding fatigue limits in the high-
cycle regime instead. The thesis therefore only concerns local stress based analysis,
and mostly plane stresses (2D-stresses).

A fatigue analysis of a dynamically loaded component is provided in order to provide
a more comprehensive picture, as opposed to the plane-stress, constant-amplitude
stress states provided in the fatigue database.

2



1.2. Previous Research

1.2. Previous Research

Many comparable analyses have been performed by a plethora of authors. Notable
contributions in the field are the works of Papadopoulus [2] and Carpinteri [3].
Previous research in the area at NTNU were performed in 1980 by Nøkleby and
published in his phd-thesis [4]. Large databases of fatigue limits for proportional
and non-proportional loading have been gathered by Papuga on his webpage [5], and
by Troost et al. [6]. Experimental data collected from the latter paper have been
used in this thesis.

One might conclude that such analyses are neither new nor original, as they have
been performed to a great effect by several authors in the past. What sets this thesis
apart from similar works is the amount of experimental data used for verification,
and the addition of a proposed ASME-inspired assessment method. The data used
in this thesis are also enclosed in the appendix. In that respect it might serve as a
starting point for future investigations at NTNU.
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2. Literature Review

A summary of the literature reviewed is given here. The information provided in this
chapter spans from stress analysis, to the fatigue criteria used in the stress analysis.
A description of the fatigue database containing collected data is also included in
this chapter, but is further explained later on, as several additions (newly calculated
parameters) are described in chapter 4 - Procedure.

2.1. Stress Analysis

A comprehensive knowledge of mechanics and stress-analysis is recommended to
fully understand the following theory. This section is not an extensive explanation
of the subject. It is intended rather, to give a short and clear summary of basic
theory needed to implement the fatigue criteria presented in section 2.3. For a
more in-depth explanation, the works of Dowling [7] and Marquis, Socie [8] are
recommended.

2.1.1. Static Stress Analysis

For the case of 3D-stresses, the stresses at a point x is given by the Cartesian stress
tensor S given in (2.1),

S =

⎡

⎢⎣
σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤

⎥⎦ (2.1)

where the equal indexes i = j define a normal stress, and unequal stresses i ̸= j

define a shear stress. The normal stresses are here given with only one index, i.e x
instead of xx due to practicality.

The unit normal vector originating in the point x, and characterized by the polar
angle θ with the y-axis and with the azimuth angle φ with the x-axis in a 3D-
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2. Literature Review

..

x

.

y

.

z

.

φ

.

θ

Figure 2.1.1.: 3D-coordinate system.

coordinate system as shown in figure (2.1.1) can be written as

nT =
[
sinθcosφ sinθsinφ cosφ

]
(2.2)

and the tension vector on a plane normal to the vector n is given by

s = Sn (2.3)

The normal and shear stress on the plane with unit normal vector n become

σ = nTs = nTSn τ = s− σn (2.4)

The magnitude of the shear stress vector τ given in (2.4) can be computed as given
by (2.5).

τ 2 = τTτ = (s− σn)T(s− σn) = sTs− σ2 (2.5)

The principal stresses σ1, σ2 and σ3 for a 3D-state of stresses are found by solving
equation (2.6) with respect to σ.

σ3 − σ2(σx + σy + σz) + σ(σxσy + σyσz + σxσz − τ 2xy − τ 2yz − τ 2xz)

− (σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy) (2.6)

6



2.1. Stress Analysis

2.1.2. Dynamic Stress Analysis

For stresses varying over time, the stress state can be expressed by introducing the
parameter P(t) describing the load history over time. Each of the stress components
in S from (2.1) now take the form of equation (2.7).

σij(x, t) = P (t)Σij(x) (2.7)

where x designates at which point the stresses are working, t is the point in time
and Σij(x) is the stress field in point x for P = 1. A basic alternating and cyclic
stress state based on a sinusoidal wave is possibly the easiest case of time varying
stresses. The parameter P(t) can be expressed as a sinusodial wave function when
written as P (t) = Pm + Pa sin(ωt). For proportional loading, the stress components
given in S all vary with the same ratio. This corresponds to the same P(t) valid for
all components of S, so that each of the components may be expressed by equation
(2.8),

σij(x, t) = σij,m(x) + σij,a(x)sin(ωt) (2.8)

where σij,m is the mean stress, σij,a is the stress amplitude and ω is the angular
frequency. Since the same ω applies for all stress components, the loading is pro-
portional. As a result, the principal stresses maintain a fixed position with the x, y
and z -axis.

The concept of non-proportional loading can be explained by introducing angular fre-
quencies ωij and phase-shifts αij for each individual component in S. The parameter
describing the load history now takes the form of Pij(t) = Pm + Pa sin(ωijt − αij),
with the stress components given as

σij(x, t) = σij,m(x) + σij,a(x)sin(ωijt− αij) (2.9)

The ratio between the stress-components may now vary with time, and the principal
stresses can change orientation. Other variations of non-proportional loading might
occur when Pij(t) is a completely random value.

For constant-amplitude loading described in equation (2.8) and (2.9), the cyclic
amplitude stress and the constant mean stress can be found from (2.10) and (2.11),

σa =
1

2
[σmax − σmin] (2.10)

σm =
1

2
[σmax + σmin] (2.11)
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2. Literature Review

where σmax and σmin are the maximum and minimum values of the stress compon-
ent occurring throughout a cycle. The stress ratio R between the maximum and
minimum values is given as

R =
σmin

σmax
(2.12)

and thus for fully reversed stresses with σmin = −σa and σmax = σa the R-ratio is
equal to −1. For purely pulsating stresses with σmin = 0, the ratio R = 0.

2.1.3. Special Case of Plane Stress

The case of plane stress is specifically described here as all cases calculated further
on are valid for σz = 0 and θ = π

2 . The principal stresses previously now take on
the less challenging form given in (2.13).

.. σx.σx .

σy

.

σy

.

τxy

.

τxy

.

y
. x. σx.

τxy

. x.

y
.

σ(φ)

.

τ (φ)

.

σy

.
φ

1

Figure 2.1.2.: Element showing stress components for plane stress, σz = 0.

σ1,2 =
σx + σy

2
±
√

(
σx − σy

2
)2 + τ 2xy (2.13)

With the angle φ̂ between the largest principal stress σ1 and the x-axis given in
(2.14).

φ̂ =
1

2
arctan(

2τxy
σx − σy

) (2.14)

The normal stresses (2.15) and (2.16) modified for plane stress are given as

σ(φ) = σx cos
2 φ+ σy sin

2 φ+ 2τxy sinφ cosφ (2.15)

τ(φ) = (σy − σx) sinφ cosφ+ τxy(cos
2 φ− sin2 φ) (2.16)

8



2.2. Uniaxial Fatigue Analysis

2.2. Uniaxial Fatigue Analysis

Fatigue assessment is the analysis of damage caused by varying stresses over time.
The allowable cyclic stresses in order to avoid fatigue failure are determined by the
fatigue limit, which are dependent on the material. In the literature it is differenti-
ated between shear stress criteria, and normal stress criteria - each type utilizing a
different fatigue limit. For plane stress, a failure locus depicting the boundaries of
failure can be drawn, see figure (2.2.1).

.. σ1.

σ2

.

(σW, σW)

.

(-σW, -σW)

.

τmax

1

Figure 2.2.1.: Failure locus showing the fatigue limits for fully reversed stresses in
shear and normal stress.

The grey area in figure (2.2.1) show the boundaries between a pure shear stress
case, and a pure normal stress case. According to the principal stress criteria, a
fully reversed normal stress amplitude must be beneath the fatigue limit of the
material for fully reversed stresses, σW. The shear stress criterion states that the
fatigue limit in shear for R = −1 is equal to one half of the fatigue limit for normal
stress, τW = 1

2σW.

The uniaxial fatigue limit for a uniaxial stress cycle with amplitude- and mean
stresses can be written as the Hempel-Morrow line given in (2.17),

σa

σW
+

σm

σ′
f
= 1 (2.17)

where σ′
f is a constant. Equation (2.17) is plotted in the Haigh-diagram provided

in figure (2.2.2), along with lines for several stress-ratios.

The mean stress sensitivity M, which expresses how sensitive the fatigue limit for
purely pulsating stresses, σA is to mean stresses is given by equation (2.18) and

9
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.. σm.

σa

.

M = 0.25

.

σW

.

Rm

.

σa + σm = Rm

.

σA

.

R = −1

.

R = 0

. M = 1.

M = 0

1

Figure 2.2.2.: Haigh-diagram.

plotted in the Haigh-diagram as well.

M =
σW

σA
− 1 (2.18)

Equation (2.18) is valid for fatigue limits in both shear and normal stresses. It is
however in this thesis only used in combination with the fatigue limits of normal
stress.

2.3. Multiaxial Fatigue Criteria

The fatigue models presented here are all on the form given in equation (2.19), and
follows the equivalent stress approach where an equivalent stress amplitude σar is
calculated from multiaxial stresses.

σar = f(σij, . . .) ≤ σW (2.19)

It follows that σar is the equivalent uniaxial, fully reversed stress amplitude determ-
ined by the function f, which depends on the criteria and the combination of stresses
f(σij, . . .). The determination of σar is dependent on the individual criterion. When
σar is found, it can be compared with σW, and failure is predicted when σar surpasses
σW.

The criteria utilized in this thesis are either normal-stress criteria or shear stress
criteria. They can further be divided into critical-plane criteria, stress-invariant
criteria, and principal-stress based criteria.

10



2.3. Multiaxial Fatigue Criteria

2.3.1. Normal Stress Criterion

The simplest criterion presented here is the normal stress criterion [9]. By combining
the Hempel-Morrow line given in (2.17) with the mean stress sensitivity M (2.18),
the criterion can shown to be expressed as

σar = max[σa(φ) +Mσm(φ)] ≤ σW (2.20)

As is apparent from (2.20), only normal stresses on an arbitrary plane are examined.
For constant amplitude stresses, both the amplitude and mean stress component
throughout the whole cycle are used. Fatigue failure is expected to occur on the plane
exposed to the largest combination of stresses. Thus, the plane which maximises the
expression σa(φ) + Mσm(φ) is defined as the critical-plane, and the corresponding
angle between the x -axis and normal vector n orthogonal to the plane is designated
φcrit (for plane stresses).

2.3.2. Mises-Sines Criterion

Sines proposed a criterion intended for in-phase multiaxial proportional stresses in
the 1950s [10]. The criterion as it is used here is given in (2.21),

σar = max[σeq,a +MI1] ≤ σW (2.21)

with σeq beeing the von Mises equivalent stress amplitude expressed as

σeq,a =
√

σ2
xa + σ2

ya − σxaσya + 3τ 2xya (2.22)

and the first stress invariant I1 given by

I1 = σxm + σym (2.23)

Both I1 and σeq are here expressed only for plane stress. Both being stress invariants,
their validity for non-proportional out-of-phase stresses must be taken into account.

2.3.3. Tresca-Sines Criterion

A modification of the existing Sines criterion is proposed by Härkegård [9] by using
the Tresca equivalent stress amplitude σeq,T,a = 2τa,max instead of the von Mises

11
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stress amplitude.
σar = max[2τa(φ)] +MI1 ≤ σW (2.24)

In contrast to the Mises-Sines criterion, the shear-stress on an arbitrary plane are
examined. Following the previous procedures, the plane which maximises a combin-
ation of stresses are found. Since the stress invariant I1 is equal in all directions,
the critical plane coincides with the maximum shear plane throughout a cycle.

2.3.4. ASME-Criterion for Non-Proportional Loading

Two criteria for multiaxial fatigue stress-based analysis are proposed by the ASME
(American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. Only
the ASME-criterion for non-proportional loading is presented here, the other one
being valid for proportional loading only and the two being identical for such cases.
The criterion as it is stated here is taken from [11] and [8].

The ASME-criterion for non-proportional loading may be expressed as follows:

1. Calculate the values for each of the six stress components given in the stress
tensor S, (2.1) over time.

2. Determination of a point in time t̂ = [ 0, T ], where the conditions are ex-
treme and T is the length of the stress-history. If this point in time is not
known a priori, several points in time need to be examined in order to find the
one that yields the largest alternating stress-amplitude σar.

3. Determine the stress difference between the stress components in S occurring
at t̂ and every other possible point in time t = [ 0, T ]. This is done by
subtracting the stress-value occurring at t̂ from the stress values occurring at
t. The resulting stress component is called σ′

ij.

σ′
ij = σij(t)− σij(t̂) (2.25)

4. Calculate the modified principal stresses σ′
1, σ′

2 derived from the six compon-
ents σ′

ij for each point of time during the cycle. Equation (2.13) is used for
plane stresses.

5. Determine the stress differences S ′
12 = σ′

1 − σ′
2 , S ′

23 = σ′
2 − σ′

3 , S ′
31 = σ′

3 − σ′
1

versus time, and find the largest absolute magnitude of any stress difference
of any point in time. The alternating stress amplitude according to ASME, is

12



2.3. Multiaxial Fatigue Criteria

then one half of this magnitude.

σar =
1

2
max(| S ′

12 |, | S ′
23 |, | S ′

31 |) ≤ σW (2.26)

Nowhere is it specifically stated how to implement the criterion for stress states
where non-zero mean stresses are present. Suitable modifications of mean stress are
not covered here.

2.3.5. Findley Criterion

The Findley criterion originated in the late 50’s is a critical-plane criterion where a
linear combination of stresses acting on an arbitrary plane is considered [12]. The
general background follows the assumption that shear stresses acting on a plane are
the key cause of crack initiation and failure. The maximum normal stress acting on
the same plane only amplifies the damaging effect from the shear stresses, and is
thus taken into account as well.

The criterion as it was originally presented is given in equation (2.27). The damage
parameter f is a function of both shear and normal stress occurring on an arbitrary
plane, and thus the critical plane is the plane which maximises the combinations of
stresses given in (2.27).

f = max[τa(φ) + kσmax(φ)] ≤ fcrit (2.27)

The constant k and the critical multiaxial fatigue parameter fcrit need to be de-
termined by solving (2.27) for at least two uniaxial cases, where only one stress
component is present. Input of the corresponding uniaxial fatigue limits for both
fully reversed (R = −1) and purely pulsating (R = 0) yield the four equations
(2.28).

f =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σW

2
[
√
k2 + 1 + k] R=-1 (2.28a)

σA

2
[
√
4k2 + 1 + 2k] R=0 (2.28b)

τW[
√
k2 + 1] R=-1 (2.28c)

τA[
√
4k2 + 1 R=0 (2.28d)

The parameters k and fcrit are then found by setting two of the expressions given in
(2.28) equal to each other, i.e f(σW) = f(σA) corresponding to equation (2.28b)=(2.28c)
and solving for k and fcrit.

13
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The original criterion can be rewritten as (2.29) using (2.28b), where the f and fcrit

are replaced by σar and σW. For the sake of comparison, this is the version used in
later calculations.

σar = max(
τa(φ) + kσmax(φ)
1
2(k +

√
1 + k2)

) ≤ σW (2.29)

The Findley criterion leaves the user a choice in which fatigue limits one can use to
determine the constants k and fcrit. Previous examinations (REF) have shown that
the combination of these four equations in (2.28) does not yield a unique solution,
and since the user may determine the constants based on any two known fatigue
limits, k and fcrit vary accordingly.

2.3.6. Other Fatigue Criteria

The five previous criteria are only a selection of the wide array of available options.
The following sections present additional models for assessing proportional and non-
proportional loading, but were not used in the later fatigue assessment.

2.3.6.1. Crossland Criterion

The Crossland criterion [13] is a stress-invariant criterion similar to the Mises-Sines
criterion. It uses the von Mises stress amplitude given in (2.22) in combination with
the maximum hydrostatic stress σh,max.

σeq,a + λσh,max ≤ β (2.30)

The constants λ, β are determined by solving the expression (2.22) for simple uni-
axial cases and input of the corresponding fatigue limits.

2.3.6.2. McDiarmid Criterion

The McDiarmid criterion [14],[15] utilizes the maximum shear- and normal stress
occurring on a plane throughout a cycle. The critical plane is defined as the plane
where the largest shear stress amplitude occurs, and not the plane which maximises
a combination of stresses (as opposed to the Findley and Normal Stress criterion).
The criterion is given in (2.31).

max(
τa(φ)

τA,B
) +

σa(φ)

Rm
≤ 1 (2.31)
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2.4. Statistical Analysis

The criterion stands out from the other presented criteria as the shear fatigue
strength for either Case A or Case B cracking is used to scale the maximum shear
stress. Cracks for Case A propagate parallel along the surface of a component, and
Case B cracks propagate into the component from the surface. For combined load-
ing, cracks are developing according to Case A, and τA,B is equal to the fatigue limit
in shear for fully reversed stresses, τA,B = τW.

2.3.6.3. Matake Criterion

The criterion proposed by Matake [16] is very similar to the Findley criterion, but
differs in the definition of critical plane, which is stated to be the maximum shear
plane.

max{τa(φ)}+ λσmax(φ) ≤ β (2.32)

As in the Crossland criterion, the constants λ, β are determined by solving the
expression given in (2.32) for uniaxial cases and input of the corresponding fatigue
limits. This results in a criterion which is less computationally expensive, as the
constants are easier to determine in addition to that the critical plane may be found
relatively easy for simple stress states.

2.4. Statistical Analysis

Some statistical parameters are used to better present the results. They are presen-
ted as given in [17] and provided here for further reference. The arithmetic mean
value X of n discrete, random variables are given in (2.33), where Xi is one of n
discrete variables.

X =
1

n

n∑

i=n

Xi (2.33)

The sample standard deviation s is a measure of the degree of spread, and is ex-
pressed in (2.34).

s =

√√√√ 1

n− 1

n∑

i=n

(Xi −X)2 (2.34)

2.5. FKM-Richtlinie

FKM-Richtlinie [18, 19] provides solutions and useful experimental approximations
of parameters relevant to fatigue assessment. It is mainly used here to determine the
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mean stress sensitivity M when no σA is available. M is given by equation (2.35),
with support factors depending on the material provided in table 2.1. It is worth
noting that the M is valid for 106 cycles.

M = a · 10−3Rm + b (2.35)

The fatigue limits in shear and normal stresses for fully reversed loading may be
approximated by equation (2.36) and (2.37) using tabular values given in table 2.1.

σW = Rm · fW,σ (2.36)

τW = σW · fW,τ (2.37)

Table 2.1.: Support factors for types of material groups according to FKM-
Richtlinie.

Material group Eng. Translation fW,σ fW,τ a b

Einsatzstahl Unalloyed/low alloy steels 0.40 0.577 0.35 -0.1
Stahl ausser diesen Other steels 0.45 0.577 0.35 -0.1
GS Nodular graphite cast iron 0.34 0.577 0.35 0.05
GJL Lamellar graphite cast iron 0.34 1.0 0.0 0.5
Aluminiumknetwerkstoff Wrought aluminium 0.30 0.75 1.0 -0.04

The mean stress sensitivity given in (2.35) may be used in combination with the
Hempel-Morrow line in equation (2.17) to determine the uniaxial fatigue limit for
pure pulsating stress σA.
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3. Fatigue Test Database

Due to their importance, the fatigue tests assessed in this thesis are presented in
a chapter of their own. It contains 268 fatigue limits determined for both com-
bined and uniaxial loading cases. An overview of the materials is given in tables
(3.1) and (3.2), together with calculated material parameters relevant to the fatigue
assessment.

All fatigue tests are valid for the HCF-regime, with cycles ranging from 106 and
upwards. The tests were all performed on unnotched, solid or hollow specimens, as
specified in table (A.1). The materials are roughly divided into three categories -
carbon and low alloy steels, aluminium alloys, and cast irons. The selection process
is further explained in section 4.9.

As the fatigue test data collected and assessed in this thesis grew, it became apparent
that some assumptions needed to be made. All materials were therefore assumed to
be isotropic materials, with no cyclic effects such as isotropic or kinematic hardening.

Perhaps the most influential assumption was the indifference to loading, as opposed
to the resulting stresses. As rotated bending, plane bending, and tension both
yield a normal-stress, these were treated as equal. The fatigue limits were however
chosen to correspond to the loading case when available. No discrimination was
done with respect to the determination of corresponding material parameters from
FKM-Richtlinie.
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4. Procedure

4.1. General Procedure for Fatigue Assessment

The procedure for the fatigue assessment of proportional and non-proportional
stresses may differ depending on the criterion. In order to evaluate all criteria
simultaneously, a general algorithm was needed. An overview of the algorithm such
as it was implemented is given below. Some steps are elaborated further in the
following sections. The algorithm is described for the special case of plane stress,
but may be expanded to involve three-dimensional stresses with minimal effort.

1. Determination of any material parameters relevant for the fatigue assessment.
This involved constants, fatigue limits and mean stress sensitivity-values.

2. Determination of the three stress components σx, σy and τxy, over time. In
this case, the stress history was either provided beforehand, or was modelled
as a constant-amplitude sinusoidal function.

3. Computation of the principal stresses σ1 and σ2 given in (2.13) over time.

4. Calculation of the stresses σ(φ), τ(φ) given in (2.15) and (2.16) on every plane
φ ∈ [ 0, 180◦ ] with a step of 1◦ over the course of the whole stress history.

5. Calculation of stress amplitudes σxa, σya, τxya, σa(φ), τa(φ), and the mean
stresses σxm , σym, τxym, σm(φ), τm(φ).

6. Computation of stress terms such as the stress invariant I1 from (2.23) and
the von Mises equivalent stress amplitude (2.22).

7. Evaluation of the fatigue criteria from all relevant values determined in the
previous steps.

This general algorithm describes the steps followed in order to evaluate all criteria
utilized here. It follows that some steps are redundant for some, as the computation
of I1 is essential for Mises-Sines and Tresca-Sines, but not necessary for the Findley
criterion.
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4.2. Normalizing of Stresses

The fatigue criteria presented in section 2.3 can all be normalized with respect to
σW. All criteria can now be rewritten according to equation (4.1).

σar

σW
≤ 1 (4.1)

The predictions provided by the criteria are now dimensionless, where failure is
predicted when σar

σW
> 1. Further it can be shown that the coordinate stresses used

as input now take the form of normalized values σx
σW

, σy

σW
and τxy

σW
. Advantages when

normalizing stresses in this way is the ability to directly compare predictions between
different materials and criteria. An added bonus is the more intuitive presentation
of the magnitude of a stress-value relative to the fatigue limit.

4.3. Determination of Material Parameters and
Constants

FKM-Richtlinie was used to determine the mean stress sensitivity M for cases where
it was previously unknown. M was calculated by using appropriate constants for
the materials, given in table 2.1 and equation (2.35). The fatigue limit for purely
pulsating loading σA could then be computed using M in combination with (2.18).

The Findley constant k was determined by using the fully reversed fatigue limit σW

in combination with either σA or τW. They were calculated using the corresponding
equations given in (2.28), so for k determined with the two normal stress fatigue
limits, equations (2.28b) and (2.28c) were used. The determined parameters are
given as either k(σA) or k(τW), where σA and τW denotes which fatigue limits in
addition to σW were used.

4.4. Modelling of Stress Histories

The fatigue test data compiled in chapter 3 were all reported to originate from
investigations where the loading was modelled as a sinusoidal wave with constant-
amplitude stresses. The stresses in the calculations are therefore modelled using
equation (2.9), here reproduced for ease of access.

σij(x, t) = σij,m(x) + σij,a(x)sin(ωijt− αij)
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4.5. Proportional Method for Determination of Criteria

The non-proportionality of the fatigue tests are caused by various phase shifts α

[◦]. The angular frequency ω
[
rad
sec

]
were all reported to be equal for the stress

components σij, and was set to a value of one. The length of the stress history was
chosen to include at least 3 cycles. Since the period of a sine wave is given as in
equation (4.2),

period =
2π

ω
(4.2)

this corresponds to a length T = 6π sec ≈ 18.8 sec. A length was chosen as T = 20

sec, and deemed sufficient both with respect to predictions and computing time. The
step was set to 1 seconds, forming a time-vector as t =

[
0 1 · · · 20

]
seconds.

The choice of T for constant amplitude stresses has no effect on predictions as long
as one full cycle is included in the stress history. It does however have an effect
on computing time, as it is desired to compute stresses for as few points in time as
possible.

4.5. Proportional Method for Determination of
Criteria

Most of the criteria presented here are deduced for proportional, constant amplitude
loading. The determination of the mean and alternating stress components is based
on maximum and minimum values of the stresses, occurring throughout the whole
cycle, as given in equation (2.11) and (2.10). For non-proportional loading, the
maximum and minimum values used to determine the amplitudes and mean stresses
may occur at severely different points in time, and thus the variations in stresses
(local maxima and minima) may not be taken sufficiently into accord. This method
is hereby referred to as the proportional method, as opposed to the proposed ASME-
method for determination of stress parameters presented in sthe following section.

4.6. ASME Method for Determination of Criteria

The proportional-method of assessing the criteria deals with constant-amplitude
loading. An alternative method inspired by the ASME-criterion for assessing mul-
tiaxial fatigue criteria is proposed, where the parameters used for fatigue calculation
are determined for a restricted interval in time. The stress-parameters defined on
each interval are hypothesised to have a specific relevance to each other, and thus
yielding more accurate predictions.
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4. Procedure

1. Compute the six stress components σx, σy etc. given by the Cartesian stress
tensor S for the whole cycle or stress history. The length of the stress history
measured in seconds can be denoted T.

2. Divide the resulting stress histories into steps, i.e steps of 1 second each
when dealing with a stress history measured in seconds. When dealing with
sinusoidal-functions, steps of radians may also be used.

3. The ASME-criterion states that a point in time where the conditions are ex-
treme should be chosen, or when these are not easily identifiable that several
points in time should be tried. When using the ASME-inspired assessment
method however, combinations of parameters contained in each individual cri-
terion influence the σar

σW
. As a result it might be challenging to pinpoint which

points in time corresponds to the maximum prediction value. It is highly re-
commended that every possible combination is tried and tested. The point in
time where the conditions are extreme can be denoted t̂, and can be described
by the vector t̂ ∈ [0, T ].

4. The stress parameters used by the criteria are then calculated for each potential
critical point t̂ relative to each point in time t ∈ [t̂, T ]. The stress parameters
are computed based on the stresses at the end points of the interval [ t̂, t ].
Stress amplitudes and mean stresses are calculated according to (4.3) and (4.4).
Notice that the absolute value of the stress difference is used when amplitudes
are evaluated.

σa(t̂, t) = |1
2
[σ(t̂)− σ(t)]| (4.3)

σm(t̂, t) =
1

2
[σ(t̂) + σ(t)] (4.4)

Maximum and minimum stresses on the interval [ t̂, t ] are found as

σmax = max[σ(t̂), σ(t)] (4.5)

σmin = min[σ(t̂), σ(t)] (4.6)

5. The calculated stress components may be placed in matrixes where t̂ is the
number of rows and t is the number of columns. Such a matrix is here exampled

24



4.7. Computational Algorithm

for stress-amplitudes.

σija(t̂, t) =

⎡

⎢⎢⎢⎢⎢⎣

σij,a(0, 0) σij,a(0, 1) · · · σij,a(0,T)
... σij,a(1, 1)
...

σij,a(T, 0) σij,a(0,T)

⎤

⎥⎥⎥⎥⎥⎦
(4.7)

6. Other parameters such as the stress invariant I1 are also calculated interval-
wise, so that I1(t̂, t) = σxm(t̂, t) + σym(t̂, t) for plane stress. The same goes for
the von Mises stress amplitude σeq,a.

7. When dealing with critical-plane criteria where the critical plane is unknown,
the relevant stress parameters occurring on φ ∈ [0, 180◦], i.e σmax(φ), τa(φ)
(for plane stress) need to be determined interval-wise as described in step 4.

8. The fatigue criteria may now be evaluated for every interval when all relevant
mean-values, amplitudes, maximum and minimum values are calculated for
every combination of t̂ ∈ [0, T ] and t ∈ [t̂, T ]. An example is provided using
the Mises-Sines criterion.

σar = max
(t̂,t)

[σeq(t̂, t) +MI1(t̂, t))] ≤ σW (4.8)

The combination of [ t̂, t ] yielding the largest σar, denoted σar,max is then
assumed to give the largest contribution to fatigue damage.

This method can be utilized for a wide range of criteria, both those based on stress-
invariants and critical-planes. It does however require a large amount of calculations
to be done. It is especially challenging for the criteria where the criterion needs to
be evaluated for every interval, on every possible plane.

4.7. Computational Algorithm

The calculations done in this thesis were many and often extensive. The sheer
amount of calculations meant that this task would be better executed by software.
The several types of software were chosen out of availability, and previous experience.

Microsoft Excel 2011 was used to store, and to a degree sort the collected data.
Solving of intricate equations were done in the technical computing software Maple,
version 16. For the major calculations, MATLAB R2013a was used. MATLAB
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4. Procedure

has the ability to read and write values from Excel, and this close integration was
necessary in order to effectively evaluate the test data.

It was decided that a modular approach, with several interlinking scripts and each
one performing a distinctive task, provided the best overview. A modular build was
decided upon, where several individual scripts were linked together. This ensured
a transparent process, where each script had only one specific task to fulfil. The
scripts utilized can be grouped into two categories, main-scripts and supporting-
scripts. The main scripts were responsible for compiling the essential functions
needed in order to perform the fatigue assessment as a whole. The support-scripts
each had a specific function to fulfil, and were called by the main-scripts when
needed.

Material Database This was a large excel document where fatigue tests collec-
ted from the literature were assembled. Information about stresses, stress-ratios,
material constants etc. were pre-calculated and inserted into the database.

Support 1 - SORT The SORT script, loaded values and information from the
material database into MATLAB. It then and sorts all the fatigue tests according
to a pre-set preference, i.e all tests where Rx = −1 and αxy = 0◦. The preferences
could be changed according to specific needs.

Support 2 - CALC I This script uses input values provided from one of the four
main scripts to construct a stress history. The stress history is then evaluated using
the fatigue criteria and their original method of assessment. It is designed so that it
may run in a loop, which is required from both the FAD and the FATDATA-script.
The calculated values are then exported back to a main script.

Support 3 - CALC II This script worked the same way as CALC I, but the tests
were evaluated using the ASME-method to assess the stress history.

Main script 1 - BASIC This is the simplest script utilized. It is mainly used to
check single fatigue tests with control calculations, and also to determine specific
stress combinations. It requires input of material parameters, and links to the
calculation-script (CALC). The resuls may then plotted.
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4.8. Failure Assessment Diagrams

Main script 2 - FAD The script uses either of the support scripts CALC I and
II in a loop for various combinations of normalized coordinate stresses. The results
are plotted as the diagrams shown in section 5.2.

Main script 3 - FATDATA The FATDATA-script retrieves values from the SORT-
script, then evaluates each of them using CALC I or II run in a loop. The mean
value and standard deviation of predictions from the criteria are then calculated.

Main script 4 - STRESSHIST The STRESSHIST-script loads a previously known
stress history from Excel into MATLAB. It links to CALC I or II for assessment.

4.8. Failure Assessment Diagrams

A visual presentation of a fatigue criterion provided on the normalized form given in
(4.1) can be made by calculating the σar

σW
-values for combinations of the normalized

stress components σxa
σW

, σxm
σW

, τxya
σW

, τxym
σW

, and plotting a line corresponding to a chosen
σar
σW

-value. At the fatigue limit σW, this value is equal to one and the plotted line
corresponds to the limiting state of non-failure predicted by the criterion. Diagrams
of this type are hereby referred to as failure assessment diagrams (FAD). The area
beneath the curve represents all combinations of coordinate stresses predicted to not
cause fatigue failure. An example of such a diagram is given in figure 4.8.1.
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Figure 4.8.1.: Example of a failure assessment diagram for the Tresca-Sines criterion.
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4. Procedure

The biaxial fatigue limits collected in the material database can, when normalized,
be plotted in a FAD along with a criterion. For a criterion that correctly predicts
fatigue behaviour, the plotted fatigue limits are expected to lie on, or in the im-
mediate vicinity of the plotted line. Fatigue limits from experimental data, which
when plotted lie beneath the curve, show graphically that the prediction done by the
criterion is non-conservative. Subsequently, a plotted fatigue limit above the curve
corresponds to a conservative prediction.

4.8.1. Algorithm and Plotting

As previously mentioned, the FAD’s were plotted by calculating the corresponding
σar
σW

for a combinations of the normalized coordinate stresses. The values for the
amplitude and mean stress components were chosen to range from 0 to 1.1 with a
step of 0.1 as given in equation (4.9). Each combination of stresses was calculated
by the FAD-script described in section 4.7 using the general algorithm provided in
section 4.1.

σija

σW
=

[
0 0.1 . . . 1.1

]
σijm

σW
=

[
0 0.1 . . . 1.1

]
(4.9)

The length of the row matrix given in (4.9) is 12, and for the case of R = −1 valid for
one alternating normal stress together with one alternating shear stress, 12 · 12 = 144

combinations exist. For each criterion, the value of the calculated σar
σW

was inserted
into a 12 by 12 matrix. An iso-line with a value of one was then plotted using the
contour-function in MATLAB. The contour-function automatically finds the critical
combinations of stresses yielding σar by interpolation between neighbouring values
in the matrix. This was deemed preferable to solving the criteria-equations, and
expressing one stress component as a function of another. Especially the equations
for the critical-plane criteria would have been challenging to solve.

4.8.2. Material Parameters

One of the benefits of normalizing stress components with respect to σW is that they
become dimensionless. The stress components σxa

σW
and τxya

σW
corresponding to the fa-

tigue limit for combined loading may then be plotted in the same diagram, regardless
of materials (different σW). When plotting combined fatigue limits (combinations
of σxa

σW
and τxya

σW
) for R = −1 in a FAD, the effect of the mean stress sensitivity is

removed for most of the fatigue criteria. For the Findley criterion however, the
constant k needs to be determined based on σW, σA and τW. As the latter fatigue
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4.9. Fatigue Database

limits vary between materials, the mean values k̄(σA) and k(τW) for the three dif-
ferent material groups were used. These are given in table 5.1. The resulting failure
assessment diagrams are given in figure 5.2.1, 5.2.2 and 5.2.3.

4.9. Fatigue Database

An extensive search for suitable fatigue tests from the literature was conducted.
The search yielded a total number of 268 individual tests spanning 20 materials.
It was decided to sort the data into three categories, carbon and low alloy steels,
Aluminium alloys, and cast irons. Information about the collected materials and
their sources are provided in table 4.1.

4.9.1. Selection Process

The search was restricted to only include fatigue limits in the high cycle regime,
which is here defined as 106 cycles or more. A fatigue limits/strengths for the lower
ranges were ignored. All fatigue limits were reported to be conducted on either solid
or hollow unnotched specimens. The majority of tests are determined by either S-N
testing or the staircase method, although information is lacking regarding some of
them. An overview is given in table 4.1. Fatigue limits for pure uniaxial cases were
included where available.

Materials are gathered from what was deemed as trustworthy sources. Occasionally
when the original paper cited as the primary source was unavailable, data reported
in other papers by same authors as the original paper were used. These cases are
marked with an asterisk * in table 4.1.

4.9.2. Determination of Missing Parameters

When material parameters relevant for the fatigue assessment were unavailable,
these were approximated using FKM-Richtlinie. In large, this meant determining
the mean stress sensitivity M and σA from equation (2.35) and (2.18), when σA

was unknown. The constants utilized were gathered from table 2.1. The carbon
and low-alloy steels were assumed to belong to the group einsatzstahl, while the
aluminium alloy 76S-T61 count as an aluminiumknetwerkstoff. The two groups of
cast irons were GS and GJL, with constants chosen accordingly.

As previously mentioned, the M determined from FKM-Richtlinie is valid for 106

cycles. Many test-series (see table A.1) were reported to apply for >106 cycles.
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4. Procedure

Table 4.1.: List of materials collected from the literature and their references. For
some materials, several data sets exist and and each individual data set
is numbered with a number inside a parenthesis.

Material Collected Primary Tests Remarksfrom source

Carbon- and low alloy steels
0.1%C Steel [25] Yes 7
XC18 Steel [21] Yes 5
Mild Steel [3] No, [27] 10
St35 Steel [22] No,[28] 12
St60 Steel [6] No, [29],[30] 7
Swedish Hard Steel [3] No, [27] 12
Ck 35 V [6] No, [31] 11
C20 Annealed Steel [23] No, [32] 3
34Cr4 (1) [22] No,[33, 34, 35] 9 *
34Cr4 (2) [22] No,[34, 35] 14 *
34Cr4 (3) [22] No,[34, 35] 4 *
30CrMo16 (1) [24, 21] Yes 16
30CrMo16 (2) [23] No,[36] 29 *
25CrMo4 (1) [21] No,[37] 4
25CrMo4 (2) [22] No,[37] 8
S65A [25] Yes 27
42CrMo4 [22] No,[38] 9
25CrMo4 (3) [6] No,[39],[40],[41] 12 *
3.5% NiCr Steel [25] Yes 7
34CrMo4 V [6] No, [31] 15

Aluminium alloys
76S-T61 (1)-(3) [26] Yes 21

Nodular graphite cast irons
“Silal” Cast Iron [20] Yes 7
EN-GJS800-2 [23] No,[42],[43] 4 *

Lamellar graphite cast irons
GG30 [6] No, [31] 7
Grey Cast Iron [3] No, [27] 8

Sum: 268
* Overlap of authors between primary source and paper the tests are collected from.
( ) Several data sets for each material exists and are numbered accordingly.
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4.10. Stress-Cycle From Industry

Without sufficient information, the FKM-determined M was assumed to be valid
for these cases as well. This assumption might prove passable for steels, where the
fatigue limits at higher cycles are nearly identical as the slope of an S-N curve flattens
out. It is not however justifiable for aluminium alloys, and a special exception was
made for the alloy 76S-T61. Since the uniaxial fatigue limits σW were provided for
106, 107 and 108 cycles, different values of M and σA were expected for each Nf .

The solution was to calculate the fatigue strength coefficient σ′
f using the Hempel-

Morrow line given in equation (2.17) and parameters valid for Nf = 106. The value
of σ′

f was calculated to σ′
f = 429.5 MPa. Since σ′

f is a constant, σA for 107 and 108

cycles could be determined using equation (2.17), and M from equation (2.18).

4.10. Stress-Cycle From Industry

A fatigue assessment of a typical stress-cycle from the industry was also carried
out. Very little information is provided due to protection of confidenciality, and
it is chiefly included here to illustrate the fatigue assessment and use of multiaxial
criteria for a cycle with variable-amplitude stresses in three dimensions. The stress
cycle consisting of the stress components σx, σy and τxy normalized with respect to
the largest absolute value of the occuring stresses |σx|max is given in figure 4.10.1.
Selected values of the stresses occuring throughout the cycle is given in table 4.2.
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Figure 4.10.1.: Cyclic stresses for dynamically loaded mechanical component.
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4. Procedure

Table 4.2.: Extreme values of stresses during a cycle of a dynamically loaded com-
ponent.

σx,max

|σx|max

σx,min

|σx|max

σy,max

|σx|max

σy,min

|σx|max

τxy,max

|σx|max

τxy,min

|σx|max

τxy
|σx|max

Value 0.94 -1.00 0.28 -0.28 0.12 -0.38 -0.12
Step 23 89 23 89 53 89 23

As so little was previously known about the cycle, several assumptions were neces-
sary in order to perform the fatigue assessment.

1. The material is assumed to be a Stahl ausser diesen with Rm = 1000 MPa and
fatigue limits and other parameters calculated from FKM-Richtlinie according
to section 2.5. The parameters are given in table 4.3.

2. The length of the cycle is given as 142 steps. Assuming the specimen is rotat-
ing, an angular step of 2.5◦ corresponds to 360◦

2.5◦ = 144 steps, leaving two steps
short of a full cycle. It is assumed that the two missing steps do not impact
the fatigue assessment. This is supported by the fact that the stresses in step
1 and 142 are close to each other, and relatively far from any influencing global
extreme-values.

3. When using the ASME-method, it was assumed that each step corresponds
to a point in time with equal difference between two consecutive values. The
ASME-method is then used by substituting points in time with steps.

The Hempel-Morrow line given in (2.17) was used to determine σA. The resulting
material parameters and fatigue limits are given in table 4.3.

Table 4.3.: Material parameters for a constructed steel according to FKM-Richtlinie
and assumed to be valid for the stress cycle given in figure (4.10.1).

Rm σW τW σA M k(σA) k(τW)(MPa) (MPa) (MPa) (MPa)

1000 450 259.7 360 0.250 0.237 0.156
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5. Results

5.1. Determination of Parameters

The calculated parameters are for comparisons sake given together with the repor-
ted material parameters in table 3.1 for carbon/low alloy steels and table 3.2 for
Aluminium/cast irons. The degree of appropriateness can to a certain degree be
determined by comparing the calculated σA with the reported value in cases where
this was obtainable. In general, the σA calculated from FKM-Richtlinie and the
Hempel-Morrow line is larger than the reported value. In this respect, FKM and
Hempel-Morrow yield non-conservative results. It is worth noting however, that the
true experimentally determined σA was only reported for about half of the test series
used in the fatigue assessment.

Average values for the material parameters M, k(σA) and k(τW) used in the fatigue
assessment are given for the three material groups in table 5.1.

Table 5.1.: Average values of M, k(σA) and k(τW) reported in table 3.1 and 3.2 with
respect to material grouping. Only values used in the fatigue analysis
was counted in.

Material group M k(σA) k(τW)

Carbon- and low alloy steels 0.204 0.194 0.263
Aluminium 0.431 0.427 0.303
Cast irons 0.366 0.362 1.286

Comparing the average values, the Findley constant k determined with the fatigue
limits σW and σA lie close to the mean stress sensitivity. There are however a notable
difference between the mean values k(σA) and k(τW) between material groups.

33



5. Results

5.2. Failure Assessment Diagrams

As previously stated, a failure assessment diagram is a visual presentation of a
criterion at the fatigue limit. The area under each individual curve represents the
safe combinations, where a criterion does not predict failure. Three such diagrams
are presented here, with the criteria calculated using the average values for each
material group given in table 5.1. The criteria are plotted for fully reversed R = −1

stresses, with no phase difference, αij = 0◦. Since no mean-stresses are present, the
influence of M is negated. For the sake of comparison, Findley evaluated with k(σA)

is left out. Only criteria assessed the traditional way are plotted.

Fatigue test data for the corresponding cases and shear- and normal-stresses are
plotted for each material group as well. For the case of uniaxial stresses, only
the shear stresses are plotted (points along the τxya

σW
-axis). Since the criteria are

calculated based on average material parameters, some deviation between the points
and the curves is expected.

The FAD for all three material groups are given in table 5.2.1-5.2.3. Some general
trends are immediately valid for all material groups. Only the Findley criterion is
shown to adapt to the change between fatigue-fracture governed by either normal
or shear-stresses, due to k being evaluated by σW and τW. All the other criteria
are the same for all material groups. The Tresca-Sines criterion is identical to the
ASME-criterion, and due to this overlap, the ASME-criterion is the only one shown.

The normal stress criterion, which only takes normal-stresses into account predicts a
limiting state of non-fracture both at pure shear τxya

σW
= 1 and for pure normal stress

σxa
σW

= 1. For fully reversed loading, this is easily explained using principal stresses
(equation (2.13)) and it can be shown that the largest alternating amplitude is
allowed to be equal to σW. The same goes for pure shear stress, as σ1 =

√
τ 2xya = σW.

The Mises-Sines criteria predicts for fully reversed normal stress σar =
√
σ2
xa = σW,

and fully reversed shear stress, σar =
√

3τ 2xya =⇒ τxya
σW

= 1√
3
= 0.577. The Tresca-

Sines criterion predicts σar = 2τxya =⇒ τxya
σW

= 1
2 = 0.5 for pure shear, and σar =

2τxya = 2 · 1
2σ1,max =⇒ σxa

σW
= 1 for pure normal stress. The end points for the Findley

criterion are challenging to show in a practical manner due to the critical-plane.

For carbon and low alloy steels plotted in figure 5.2.1, the fatigue test data seem to
lie in the vicinity of the shear stress criteria. The predictions for these seem overall
to be conservative, while the normal-stress criterion is mainly non-conservative.

As for the carbon and low alloy steels, the fatigue data for aluminium plotted in
figure 5.2.2 show a good correlation with the shear criteria. The FAD for cast irons
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5.3. Predictions for Tests at the Fatigue Limit
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Figure 5.2.1.: Failure assessment diagram, R = −1 and αij = 0◦. Test data are 34
fatigue tests for carbon/low alloy steels.

given in 5.2.3 show data in good correlation with the normal stress criterion, rather
than with the shear stress criteria. Some outliers are present.

5.3. Predictions for Tests at the Fatigue Limit

What follows are the results from the evaluation of the fatigue criteria at the collected
tests from the literature. An overview of the data is given in table 3.1 and 3.2, while
the data themselves are given in appendix A, tables A.2 to A.11. The predictions for
all 268 tests provided in table 5.2 includes all loading cases present. The outcome
is also plotted in the histograms 5.3.1 and 5.3.2.

The fatigue tests were grouped according to selected stress states and materials.
Both predictions based on traditional criteria and ASME-criteria are presented side
by side for the sake of comparison. The predictions are given in table 5.2 and 5.3.

5.3.1. Predictions for Selected Loading Cases

Predictions for several selected stress ratios and variations of loading parameters are
given in table 5.2 and 3.1.
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Figure 5.2.2.: Failure assessment diagram, R = −1 and αij = 0◦. Test data are 13
fatigue tests for 76S-T61.
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Figure 5.2.3.: Failure assessment diagram, R = −1 and αij = 0◦. Test data are 12
fatigue tests for cast irons.
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5.3. Predictions for Tests at the Fatigue Limit

The normal-stress criterion is the only criterion with overall non-conservative pre-
dictions, as the mean value of σar

σW
lies beneath 1. The criterion performs quite badly

when used to assess the 11 tests for fully reversed shear stresses. The standard devi-
ation sp = 0.14 is lower or equal than the standard deviations for other criteria. This
indicates that the predictions are gathered relatively close. For the normal stress cri-
terion, no overall difference is found when comparing the ASME-assessment method
with the traditional critical plane approach.

The Mises-Sines criterion yields good predictions overall, with predictions slightly on
the conservative side. For fully reversed loading with αxy ̸= 0◦, Mises-Sines-ASME
yields a mean value beneath 1. For loading with mean stresses without a phase shift,
a mp very close to one is observed for both Mises-Sines and Mises-Sines-ASME. The
sp however is quite high.

The Tresca-Sines criterion has one of the overall largest spread with sp = 0.22 and
sp = 0.21 for Tresca-Sines-ASME. Both versions provide highly inaccurate predic-
tions for the pure shear tests. For stresses with R = −1 and αxy ̸= 0◦, a large spread
in the predictions for both variations of the criterion is observed. The mean value
however is very good for Tresca-Sines.

The ASME-criterion stands out with a accurate mean value mp = 0.99. The stand-
ard deviation is however quite large signalling a large spread in predictions. For the
11 cases of pure shear, the predictions are highly conservative and inaccurate (large
spread). For cases with mean stresses present, the criterion is non-conservative. For
stresses with R = −1 the ASME-criterion yields the same predictions as Tresca-
Sines.

The Findley criterion shows an improvement in mean value mp when assessed with
the ASME-method. This is especially prominent for stresses where R ̸= −1 without
phase shifts. The Findley criterion using k(σA) yields overall a mp slightly closer
to one than when using k(τW), but the latter performs extremely well for the 11
pure shear-tests. A distinct decrease in mean value occur for Findley-ASME and
R ̸= −1, αxy ̸= 0◦.

For cases given in table 3.1 where σy is taken into account, the predictions for all
criteria are generally characterized by a large spread in predictions. The normal
stress criterion however, yields similar predictions for a shear stress component with
both one and two normal stress components present. The Mises-Sines criterion yields
very good predictions, but the results worsen when assessed with the ASME-method.
For cases with three stress components, the Findley criterion yields non-conservative
predictions with a high degree of spread.

37



5. Results

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

60

70

σ
ar

 / σ
W

N
u

m
b

e
r 

o
f 

T
e
s
ts

Normal Stress Criterion

 

 

2*s
p

m
p

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

60

70

σ
ar

 / σ
W

N
u

m
b

e
r 

o
f 

T
e

s
ts

Mises−Sines Criterion

 

 

2*s
p

m
p

(b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

60

70

σ
ar

 / σ
W

N
u

m
b

e
r 

o
f 

T
e

s
ts

Tresca−Sines Criterion

 

 

2*s
p

m
p

(c)

Figure 5.3.1.: Predictions and their distribution for the criteria normal stress, Mises-
Sines and Tresca-Sines for all 268 tests.
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Figure 5.3.2.: Histograms of all predictions from the ASME criterion and Findley
k(σA) and k(τW) for 268 tests.
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5. Results

From figure 5.3.1 and 5.3.2, it is apparent that outliers are present. For the normal
stress criterion, the outliers on the conservative side are caused by the aluminium
alloy 76S-T61, test nr 227 and 235. Large mean stresses for σx are present in both
tests. Compared to the other criteria, the predictions are closely gathered on the
non-conservative side.

Some test-series seem to be the cause of outliers for many criteria, namely 34CrMo4
V. This test-series yields outliers for Mises-Sines, Tresca-Sines, ASME and both
variations of Findley. Test nr 212 with τxym = 794.6 MPa causes the most non-
conservative prediction for both Sines-criteria and the ASME-criterion. Tresca-Sines
and the ASME-criterion produce low quality predictions for cast iron from Nishi-
hara/Kawamoto, and these cause the conservative outliers seen in the histograms.

5.3.2. Comparison of Predictions for Material Groups

The materials were grouped into three distinct material divisions: carbon and low
alloy steels, aluminium alloys and cast irons. A summary of the predictions are
given in table 3.1. The group with carbon and low alloy steels is by far the largest,
consisting of 221 experiments (≈ 82.5% of all tests).

The normal stress criterion yields non-conservative predictions for all material groups,
but more for the carbon/low alloy steels and aluminium 76S-T61. An acceptable
degree of accuracy is noticeable for the predictions regarding cast irons. The tradi-
tional assessment method and the ASME-assessment method provide no differences
in predictions.

Mises-Sines and Mises-Sines-ASME yield quite similar predictions, with a mean
value closer to one for the latter. A high degree of spread is observed for cast irons.

Tresca-Sines provide a quite large spread in predictions for all three material groups,
and the mean-value is closer to 1 for the carbon/low alloy steels than aluminium
and cast irons.

The ASME-criterion predictions have a slightly non-conservative mean value for
carbon and low alloy steels, but a large spread. For both the aluminium tests and
cast irons, the mean value is conservative. Predictions for cast iron are marked by
high spread and are thus inaccurate.

The Findley criterion shows an improvement in mean value for carbon and low alloy
steels, and cast irons, when assessed with the ASME-method. This is especially
pronounced for Findley (σA) and carbon/low alloy steels. Predictions made with
Findley (τW)-ASME are betterm but still contains a high degreee of spread.
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5.4. Stress-Cycle of Dynamically Loaded Component

5.4. Stress-Cycle of Dynamically Loaded
Component

The results of the fatigue assessment for the dynamically loaded component with
stresses plotted in figure 4.10.1 are given in table 5.5. All stress-values are normalized
with respect to |σx|max. The stress cycle was evaluated using all criteria and both
assessment methods.

The conversion given in equation 5.1 gives the equivalent uniaxial amplitude nor-
malized with respect to σW. Values for the stress cycle normalized on σW are given
in table x.

σar

σW
=

σar

|σx|max
· |σx|max

σW
(5.1)

All predictions σar
|σx|max

are below 1, and so with the assumption that |σx|max < σW for
the real material (not the approximated σW = 450 MPa), failure is not predicted.

For the normal stress criterion, the proportional assessment method and ASME-
method yield no differences in predictions. The critical plane is unchanged between
the two, and the stresses which result in the largest σar

|σx|max
occur on the same steps.

It is noticeable that the critical plane is “chosen” based on the highest combination
of normal stresses, as the shear stress occurring on the same plane and the resulting
shear stress amplitude is lower than those for the shear stress criteria.

For the Mises-Sines criterion, the variation Mises-Sines-ASME yield a more conser-
vative value, but the stress values σij used in the assessment of the criteria are all
taken from the same steps.

The Tresca-Sines and Tresca-Sines-Mises criterion show differences in the critical
plane, as well as a marginal difference in σar

|σx|max
. The values however are taken from

the same steps. The ASME-criterion yields the same σar
|σx|max

as Tresca-Sines-ASME.
Both criteria regardless of assessment method (for Sines-Mises criterion) yield the
most non-conservative predictions out of all the fatigue criteria.

The Findley criterion for both k(σA) and k(τW) yield identical results, but marginally
different critical planes.

Figure 5.4.1 show the stresses on the predicted critical planes for the normal stress
criterion, Tresca-Sines and the Findley (σA) criterion throughout the cycle. For the
normal stress criterion, the plane is chosen based on the normal mean and amplitude
stress. This is visible in 5.4.1 (a). The Findley (σA) criterion finds the critical plane
based on shear stress amplitude and maximum occuring normal stress. Compared to
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5. Results

Table 5.4.: Results of stress-cycle assessment for all criteria and both assessment
methods normalized with σW.

Normal Stress Mises-Sines Tresca-Sines ASME Fin. (σA) Fin. (τW)

Proportional assessment method
σar

σW
0.44 0.43 0.33 - 0.41 0.39

ASME-method
σar

σW
0.44 0.40 0.33 0.33 0.41 0.39

the critical plane predicted by the normal stress criterion, the variation in parameters
taken into account for each criterion becomes apparent.

Figure 5.4.1 also show at which step the extreme values of stresses on the different
critical planes occur. This coincides well with the steps given in table 5.5.
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5.4. Stress-Cycle of Dynamically Loaded Component

Table 5.5.: Results of stress-cycle assessment for all criteria and both assessment
methods. The names for the criteria are shortened, so that NS corres-
ponds to the normal stress criterion etc.

NS MS TS ASME F (σA) F (τW)

Proportional assessment method
σar

|σx|max
0.97 0.96 0.73 - 0.90 0.86

φ (◦) 6 - 56 - 150 149

σmax(φ)

|σx|max
Value 0.91 - (0.38) - 0.87 0.86

Step 23 - 23 23 23
σmin(φ)

|σx|max
Value -1.07 - (-0.86) - (-0.49) (-0.48)

Step 89 89 89 89
τmax(φ)

|σx|max
Value (0.10) - 0.47 - 0.23 0.24

Step 54 89 23 23
τmin(φ)

|σx|max
Value (-0.30) - -0.27 - -0.50 -0.49

Step 76 23 89 89

ASME-method
σar

|σx|max
0.97 0.89 0.74 0.74 0.90 0.86

φ (◦) 6 - 146 - 150 149

Interval 23-89 23-89 23-89 23-89 23-89 23-89

() Stress values in paranthesis not used by the criterion.
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Figure 5.4.1.: Stresses throughout the cycle on critical planes predicted by the
critical-plane criteria.
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6. Discussion

6.1. Requirements of a Fatigue Criterion

The fatigue criteria are reviewed based on three requirements. In search for the
perfect fatigue criterion, these requirements should all be fulfilled.

1. Accuracy of predictions

2. Criterion should be based on physical properties proven to have an effect on
fatigue damage mechanisms

3. Ease of use and implementation of criterion

A good criterion should produce accurate predictions for a wide selection of materials
and loading cases. Parameters such as angular frequency, phase shift and R-ratios
should all be correctly accounted for. The normalized fatigue prediction parameters
σar
σW

given in table 5.2 and 5.3 are a quantitative measure of the accuracy of each
criterion.

The criteria are assessed based on their usability and ease of implementation. The
practicing engineer is taken into account on this point. If the criterion is difficult
to utilize, its general accept in the engineering community will probably suffer as a
result.

Every criterion should as well be based on logical and proven material dependencies.
As cumulative fatigue damage is a process involving many variables, such parameters
should be taken into account as are proven to have an effect on fatigue life.

Hence, a perfect criterion is one which is based on proven and logical material de-
pendencies, which gives excellent predictions, and is simple to use and implement. In
reality, these three requirements might be extremely difficult to fulfil. They do how-
ever provide a platform on which to compare and evaluate each criterion. The last
two requirements might suffer from subjective opinions. With the increased avail-
ability of fatigue post-processors, the second requirement can be questioned. The
literature commonly focus on accuracy of predictions, without thought to practicing

47



6. Discussion

engineers. A trade-off between these three requirements is generally the criterion
which will see the most widespread use.

6.2. Assessment and Suitability of Criteria

An accurate prediction is as previously stated when the equivalent uniaxial stress
amplitude σar coincides with the uniaxial fully reversed fatigue limit σW. As a
certain degree of scatter is expected in fatigue tests, the overall, mean value of
predictions serve as a quantitative measure of the predictability of a criterion. The
predictability is presented as the mean value of predictions plus/minus the sample
standard deviation, mp ± sp. A high degree of accuracy is then characterized by
mp close to one, and sp close to zero. It is important that the two are compared
together. One might argue that a low spread is preferable to a perfect mean value
equal to 1, as the mean value can be countered by introducing a fitting safety factor.

6.2.1. Normal Stress Criterion

The normal stress criterion show overall inaccurate and non-conservative predictions
for materials, where failure is expected to occur based on shear-stress induced fatigue
cracks. The results for brittle materials with a τW

σW
-ratio close to 1 are however

significally better, and the predictions are far better than the shear-stress criteria.
The physical relevance of the criterion is well established for uniaxial, proportional
cases as it is based on the Hempel-Morrow line.

Out of the critical-plane criteria, the normal stress criterion is by far the easiest to
use when utilizing the proportional assessment method. This is due to the material
parameters needed for the fatigue assessment only being the mean stress sensitivity
M and the fatigue limit σW. In addition, only the normal-stress on the critical plane
is taken into account, making calculations easier. When combined with the ASME-
method, no differences in predictability were found. This is possibly due to the fact
that only the normal stress component on the plane is taken into account, but this
is further discussed in section 6.3. The computational difficulty is however increased
whenever the ASME-method is used, and since no differences in predictability were
found for the normal stress criterion, this should be taken into account when using
the criterion.
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6.2. Assessment and Suitability of Criteria

6.2.2. Mises-Sines Criterion

The Mises-Sines criterion yields good predictions for proportional cases when as-
sessed with the proportional-method. For shear-dominated cases however, the cri-
terion might be expected to yield inaccurate predictions. The validity of stress
invariants may be questioned for stress histories of a non-proportional nature, but
comparing the predictions for both the proportional-method and the ASME-method
show that they are fairly close to each other. The predictions yielded when using
the latter method are only slightly better for Mises-Sines-ASME, but the decrease in
computability is distinct. Still, the mean value of predictions for Mises-Sines-ASME
is very accurate, on par with the Findley criterion. Since it is based on stress-
invariants rather than critical-plane methodology, the implementation of Mises-Sines
is fairly simple. The criterion is also based on empirical data for proportional load-
ing.

6.2.3. Tresca-Sines Criterion

The Tresca-Sines criterion is, together with the normal stress criterion, fairly simple
to use. The critical-plane is relatvely easy to determine, since it is determined by the
maximum shear stress amplitude. Utilizing the stress-invariant for mean stresses,
the fatigue assessment as a whole is relatively simple. The predictions however, are
marked by a high degree of spread, especially for brittle materials such as cast irons.
The predictions for Tresca-Sines-ASME are somewhat similar overall, and thus the
ASME-method only contributes negatively in terms of computationability.

6.2.4. ASME-Criterion

The ASME-criterion, while not modified for mean stresses yield (not surprisingly)
inaccurate predictions with a high degree of spread. The good mean value of X
for all of the 268 fatigue tests is a result of pure chance, as the more differentiated
stress cases show. For stresses with ratio R = −1 , the predictions are equal to
the Tresca-Sines criterion. This gives grounds to the validity of the approximation
σeq,T,a ≈ 2τa,max(ASME). The criterion itself is somewhat easier to compute than
the critical-plane criteria, not requiring to calculate stresses on every plane φ ∈
[ 0◦, 180◦] , and provided the extreme-values and their points in time are known.
When these points in time are unknown, the computability decreases.
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6.2.5. Findley Criterion

The Findley criterion is the most extensive criterion to compute and implement.
It requires the determination of k, here only shown for pure shear or pure normal
stresses and the stress ratios R = −1 and R = 0 in equation (2.28). Since the fatigue
limits used to determine k yield different values, the notion of k as a constant should
be addressed. Since the k have such a large impact on the accuracy of predictions,
the uncertainty of which two fatigue limits should be combined increases insecurity
around the implementation. In this thesis, two k ’s were evaluated with σW in
combination with σA and τW. From table 5.2 the difference in predictions for k(σA)

and k(τW) are apparent. Overall, the predictions when k(σA) is used are more
accurate, with a mean value closer to 1 and slightly lesser spread than for k(τW).
For fully reversed, pure shear stresses the predictions with k(τW) are considerably
better than the k(σA). This might indicate that for stress cycles dominated by
shear-stresses, k should be determined using the shear fatigue limit τW, and the
opposite is valid for cycles where normal-stresses dominate.

As a critical-plane criterion, it makes use of both the shear and normal-stress on
the critical plane. This makes the calculation slightly more challenging than the
other critical plane criteria reviewed here, as they all only utilize one stress com-
ponent (either the shear stress or normal stress). The effect is however diminishing
when using computational resources like MATLAB. A significant improvement of
the mean value of predictions is observed when using the ASME-method, although
the usability of the criterion is diminished. Not only are the stresses for each stress
component on the plane assessed together with the stresses at every other point in
time calculated, but this has to be done for φ ∈ [ 0◦, 180◦] .

6.3. Proportional Method vs ASME-Method

Fatigue criteria derived for proportional loading are commonly used to assess situ-
ations where the loading is non-proportional. The common method of determin-
ing stress parameters and subsequently the criteria, is here called the proportional-
method and explained in section 4.5.

According to the proportional method, global extreme values should be used to
determine relevant stress components used by the fatigue criterion. The alternating
and mean stress components may then be found by equation (2.10) and (2.11).
For non-proportional loading however, the stress-values utilized by a criterion may
occur at potentially large differences in time. An example of such a stress cycle
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is presented in figure 6.3.1, and the question can be raised of the validity of the
proportional method for such cases.

Assuming that the plane on which the stresses in figure 6.3.1 are working, is the
critical plane for both the normal stress criterion and the Findley criterion. This
assumption is only done here to explain the advantages of the ASME-method.

The proportional method of determining stress values, will yield the maximum shear
stress amplitude on the plane as τa(φ) = 1

2 [τ(φ, t1) − τ(φ, t1)]. The shear stresses
occurring at the points in time t1 and t2 are used. The normal stress amplitude may
be determined as σa(φ) =

1
2 [σ(φ, t3)−σ(φ, t1)] =

1
2 [σ(φ, t3)−σ(φ, t2)], as the normal

stress occurring at t1 and t2 are equal. The mean stress components are determined
accordingly.

The normal stress criterion makes use of both σa(φ) and σm(φ), while the shear
stress components on the plane are disregarded. The normal stresses occurring in
the relative vicinity of t3 then govern the predictions made by the criterion. The
Findley criterion utilizes both τa(φ) and σmax(φ), and while the largest τa(φ) is found
around t1 and t2, the maximum normal stress occurs at t3. Since t3 ≫ t1, t2 it is not
obvious how the normal stress may have a direct, physical influence on the fatigue
damage. This aspect is however neglected when using the proportional method. The
determined stress-values are used indiscriminately, only in capacity of occurring on
the same plane throughout the cycle.

..

t
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σ(φ), τ (φ)

.

t1

.

t2

.

t3

.

τ (φ)

.

σ(φ)

1

Figure 6.3.1.: Stress cycle with one shear and one normal stress component.

The proposed ASME-method attempts to remedy this by using stress-components
calculated on intervals between two points in time, where the stresses are hypothes-
ized to have a specific relevance to each other. Stress components for an interval
[t̂, t] are then based only on the stresses occurring at time t̂ and t. When following
the ASME-method, each stress component at each point in time, is compared rel-
ative to every other stress component, occurring at every other point in time. The
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maximum and minimum values on each interval are used to find amplitudes and
mean stresses, and so each fatigue criterion may be calculated interval-wise. The
interval in time which corresponds to the largest predicted σar then governs fatigue
damage on the plane.

For the cyclic stresses in figure 6.3.1, the intervals [t1, t3] and [t2, t3] yield the same
amplitude and mean normal stress. When using the ASME-method, the normal
stress criterion then predicts the same local σar for both intervals. For interval
[t1, t2], the amplitude σa(φ) = 0, which will yield a smaller σar only based on σm(φ).

For the Findley criterion in combination with the ASME-method, the interval [t1, t2]
yields the largest shear stress amplitude, but a σmax(φ) = σ(φ, t1) = σ(φ, t2). The
interval [t1, t3] yields a smaller shear stress amplitude, but a significantly larger
maximum normal stress. The interval [t2, t3] yields the same values as for [t1, t3],
with exception of a negative τm(φ). The mean shear stress is however not taken into
account by the Findley criterion.

The influence of this assessment method is larger for the Findley criterion, and
in a positive way (see section 5.3). This might be caused by the fact that both
normal- and shear stresses are taken into account. For the normal stress criterion
however, the ASME-method were in this case reduced to a laborious alternative for
determining the amplitude and mean normal stress. The ASME-method then shows
promise, and deserves further testing. This is especially for critical-plane criteria
where both normal- and shear stresses are taken into account.

6.4. Fatigue Assessment of Stress Cycle

An interesting aspect when comparing the results from the fatigue database with
the results for the stress cycle, is the relative differences between the criteria predic-
tions. Based on the trend from the fatigue tests as shown in the failure assessment
diagrams, the normal stress criterion should yield a more non-conservative predic-
tion than the other criteria for most combinations of shear and normal stresses. In
that respect, the σar

σW
predicted by the normal stress criterion should be below the

σar
σW

-values for the criteria based on shear stress. It is however above these values,
which is intriguing. The summaries are mainly done for combinations of one normal
stress together with a shear stress, and do not provide sufficient information on cases
where two normal stresses are present. The low value of φcrit also show that the crit-
ical plane is quite close to the x-axis, which indicates that the fatigue assessment is
dominated by the quite large σx

|σx|max
-component. Assuming the fatigue assessment
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is dominated by the σx
|σx|max

-component, which might be a more than reasonable as-
sumption, this would correspond to the bottom right corner of a fatigue assessment
diagram. The overall similarity of the the σar

σW
-values support this.

The ASME-criterion however stands out as the most non-conservative. Since it
does not take mean stresses into account, this is reasonable, as the other criteria
account for mean stresses and are expected to yield predictions closer to failure on
the conservative side.

6.5. A Note on the Availability of Fatigue
Test-Data

This thesis builds on a now long tradition of comparing multiaxial fatigue criteria
with tests found in the literature. In this regard it falls in line with several works
based on the same basic pattern. Older criteria are compared with a newly proposed
criterion or assessment method, using limited test data collected from the literature,
often from unreliable sources. It is clear that the topic of fatigue test data for
proportional and non-proportional data deserves to be discussed further.

As table 4.1 shows, an extensive search after usable and trustworthy experimental
results was conducted. Gathering such experimental data proved to be a long, and
often frustrating process, during which several concerns was discovered.

The availability of readily usable fatigue test results is a major issue. Countless
experiments have been performed, but several authors only publish the results and
are content with referring to the test data used. In the rare case that the test data
are presented, it is often in the form of graphs that require a potential inaccurate
reading in order to become usable. Several citations are also lacking in accuracy, as
they occasionally hail non-primary sources as the origin of the data.

With the apparent demand of usable experimental data, researchers are forced to
carry out own investigations or make do with tests provided in the literature. As so
few new experiments are published, most of the available data stem from relatively
old sources. The test series performed by Nishihara & Kawamoto [27], Lempp [38],
Zenner et al. [35, 33] and Froustey & Lasserre [24] are among the most frequently
cited. This in itself is problematic for a number of reasons. The Nishihara &
Kawamoto data were published in Japan in 1945. The original Japanese paper is
extremely hard to procure, as well as any translated versions. The amount if use
seems in no way to be affected by the elusiveness of the original publication. With no
copy of the original source available, great caution should be exercised with respect
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to the quality and aptitude of these investigations. Information on how the tests
were conducted is lost, assumptions are unknown, testing apparatus is uncertain
and so on. This leaves the user to trust in secondary sources at best when searching
for data suitable for validating purposes.

Of the roughly 30 papers reviewed in connection with this thesis, the Nishihara &
Kawamoto data is referred to in 12 of them. It is questionable as well that such a
large amount of later investigations are relying on experiments from the same source.
New and proposed criteria are constantly being tried against the same experiments.
The lack of new input can have a severe impact if this trend continues. This thesis
is no exception, as all the examples mentioned are included and used here. This
is the result of a trade-off between need and resources. The need and wish for as
many tests as possible to be able to provide an in-depth statistical evaluation of
predictions, against the urge to only employ safe original sources and up to date
experiments.

Several private databases containing fatigue experiments are known to exist, and are
used to great effect by their assemblers. Most notably are the databases by Papuga
and Susmel [44]. In an attempt to remedy this, Papuga has amassed a large amount
of fatigue tests from the literature on his webpage [5]. These data are available to
the public, and provide an excellent starting point for further investigations.

One can only speculate on the reasons why so few new experiments are being pub-
lished. Since up to date experimental data are so scarce, new and fresh experimental
data would surely receive a lot of attention.

6.6. Continued Work and Suggested Improvements

When comparing the work done in this thesis with the quite extensive problem
description, it becomes apparent that only a portion is covered here. In addition
to explore the topics not included here, some ideas for further investigation also
emerged as a result of the investigation.

Expansion of the fatigue database Due to the lack of test data, it would be
desirable to perform in-house fatigue testing of select materials. Not only would
they serve as a trustworthy platform for future investigations, but would surely
attract the attention to any papers they are published in. A further expansion
of the existing test-database with experimental data from the literature should be
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considered as well. Especially the sections regarding aluminium alloys and cast irons
should be improved in order to give statistically sufficient results.

More criteria combined with the ASME-method A total of 11 different versions
of well-known fatigue criteria were examined during this investigation. The Findley-
ASME criterion stands out, with an overall increase in accuracy compared to the
traditional Findley criterion. The ASME-method of assessing stress cycles shows
promise and deserves to be further tested on other criteria.

Improved calculation scripts and database management systems All of the
main calculations in this thesis were done in MATLAB, while the literature tests
were gathered and stored in Excel. They were chosen at the time out of practicality
and previous experience. While the MATLAB-Excel setup performed suitably well,
there is some room for improvement. The storing of data in Excel works fine for
a limited amount of data. As the amount increases, management of the data be-
comes increasingly hard to handle. Large Excel-sheets are also prone to accidental
misentries, where faulty values may go unnoticed.

The scripts used to perform the fatigue assessment were all made by the author.
In no way should they be considered as optimal in terms of computational elegance
and optimization. This should not have an effect on the results, but will provide
scripts that run smoother. In that regard, input should be sought from someone with
extended computational experience. Other programming-languages such as Python
should also be considered. As the fatigue database is expanded, other options for
storing the data should be considered. Available possibilities are dedicated database
management systems such as MySQL.
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The main purpose of this thesis was to provide a critical review of the fatigue
assessment of components subjected to non-proportional stress histories. A large
database consisting of 268 biaxial fatigue limits for combined loading, spanning 27
test series and 20 materials was assembled. For the sake of comparison, cases for
both proportional and non-proportional loading were included.

Gathering experimental data from credible sources proved to be an exhausting pro-
cess. Several comprehensive databases of the sort are known to exist, but are not,
with the exception of occasionally republished snippets, readily available to the fa-
tigue community at large. As a result, engineers and scientists are forced to make
the best out of old experiments from sources of often uncertain quality. A total of
268 experimental tests were gathered in this thesis in an attempt to remedy this,
which in this context can be seen as formidable. The experimental data, some of it
very old, are still commonly used for validating purposes. With this in mind they
have been reproduced here.

The experimental data was evaluated using five criteria intended for multiaxial fa-
tigue assessment. The original criteria included in the assessment were the normal
stress criterion, Sines criterion with the von Mises stress amplitude, Sines criterion
with the Tresca stress amplitude, the ASME-criterion and the Findley criterion.
In addition to the traditional, proportional-method based on max-min stress-values
over the course of a cycle, an ASME-method is proposed and implemented. The
ASME-method calculates stress-values based on intervals, which may or not coin-
cide with the proportional-method of assessing stresses throughout a cycle. Both the
criteria and the two assessment-methods were evaluated and compared with respect
to usability and quality of predictions.

The normal stress criterion yielded non-conservative predictions for both the car-
bon/low alloyed steels and the aluminium alloy 76S-T61 included in the compiled
fatigue database. The accuracy for brittle materials was however unprecedented.
The ASME-criterion without correction for mean stresses yielded an almost aston-
ishing overall mean predicted value of 0.99. The standard deviation however was the
highest for all criteria, indicating a high spread in predictions. These were chiefly

57



7. Conclusion

caused by test data with nonzero mean stresses. For the Findley criterion evaluated
with two different values of k, the ASME-assessment method yielded a significant
improvement in the quality of predictions. However, the ASME-method had no
effect on other criteria such as the normal stress criterion. This indicates that the
ASME-method may have a positive effect on other criteria, and deserves further
evaluation.

From a user-friendly point of view, the Mises-Sines criterion based on stress invari-
ants is the least challenging. Even though the concept of the von-Mises stress invari-
ant is not valid for non-proportional loading, the criterion yielded relatively good
predictions overall. The critical plane criteria, here represented by normal stress,
Tresca-Sines and Findley all require computations to be done over a wide range of
angles. Findley requiring the determination of at least the material parameter k is
the least user friendly of the three. The computability is severely decreased when
the criteria are assessed with the ASME-method. This is especially the case for
critical-plane criteria. With the overall result of improved predictions, this is an
aspect that needs to be considered.

The overall conclusion of this thesis is that multiaxial fatigue assessment is an in-
credibly complex process. Knowledge in a variety of disciplines is necessary in order
to effectively perform a proper evaluation, and computational experience is a must.
The benefit of performing such an analysis is the better predictability of fatigue
failure.

58



Bibliography

[1] J. A. Schmidt. The definition of structural engineering.
http://www.structuremag.org/article.aspx?articleID=829, last checked:
13/12- 2013.

[2] I. V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, and A. Bernasconi. A
comparative study of multiaxial high-cycle fatigue criteria for metals. Interna-
tional Journal of Fatigue, 19(3):219–235, 1997.

[3] A. Carpinteri and A. Spagnoli. Multiaxial high-cycle fatigue criterion for hard
metals. International Journal of Fatigue, 23(2):135 – 145, 2001.

[4] J. O. Nøkleby. Fatigue under multiaxial stress conditions. PhD thesis, Divi-
sion of Machine Elements, The Norwegian Institute of Technology, Trondheim,
Norway., 1980.

[5] J. Papuga. Pragtic website. http://www.pragtic.com/, last checked: 13/12-
2013.

[6] A. Troost, O. Akin, and F. Klubberg. Versuchs-und rechendaten zur
dauerschwingfestigkeit von metallischen werkstoffen unter mehrachsiger beans-
pruchung. Materialwissenschaft und Werkstofftechnik, 23(1):1–12, 1992.

[7] N. E. Dowling. Mechanical behavior of materials: engineering methods for
deformation, fracture, and fatigue. Pearson, Boston, 4th ed edition, 2013.

[8] D. F. Socie and G. B. Marquis. Multiaxial fatigue. Society of Automotive
Engineers, Warrendale, Pa., 2000.

[9] G. Härkegård. Fatigue assessment of engineering components subjected to ar-
bitrary multiaxial stress histories, February 2013.

[10] G. Sines, J. L. Waisman, and T. J. Dolan. Metal fatigue, pages 145–169.
McGraw-Hill, 1959.

[11] E. Roos. Festigkeitslehre 1. Institut für Materialprüfung, Werkstoffkunde und
Festigkeitslehre, Universität Stuttgart, 34. auflage edition, 2010.

59



Bibliography

[12] W. N. Findley. A theory for the effect of mean stress on fatigue of metals under
combined torsion and axial load or bending. Basic research on fatigue fail-
ures under combined stress: Technical report. Engineering Materials Research
Laboratory, Division of Engineering, Brown University, 1958.

[13] B. Crossland. Effect of large hydrostatic pressures on the torsional fatigue
strength of an alloy steel. In Proc. Int. Conf. on Fatigue of Metals, Institution
of Mechanical Engineers, London, pages 138–149, 1956.

[14] DL. McDiarmid. A shear stress based critical-plane criterion of multiaxial fa-
tigue failure for design and life prediction. Fatigue &amp; Fracture of Engin-
eering Materials &amp; Structures, 17(12):1475–1484, 1994.

[15] DL. McDiarmid. A general criterion for high cycle multiaxial fatigue failure.
Fatigue & Fracture of Engineering Materials & Structures, 14(4):429–453, 1991.

[16] T. Matake. An explanation on fatigue limit under combined stress. Bulletin of
JSME, 20(141):257–263, 1977.

[17] W. Navidi. Statistics for Engineers and Scientists, pages 13–14. McGraw-Hill,
second edition.

[18] Rechnerischer Festigkeitsnachweis für Maschinenbauteile, page 87. VDMA-
Verlag, 6 edition, 2012.

[19] Rechnerischer Festigkeitsnachweis für Maschinenbauteile, pages 96–97. VDMA-
Verlag, 6 edition, 2012.

[20] H. J. Gough and H. V. Pollard. The strength of metals under combined altern-
ating stresses. Proceedings of the Institution of Mechanical Engineers, 131(1):3–
103, 1935.

[21] S. Lasserre and C. Froustey. Multiaxial fatigue of steel - testing out of phase
and in blocks: validity and applicability of some criteria. International journal
of fatigue, 14(2):113–120, 1992.

[22] H. Zenner, R. Heidenreich, and I. Richter. Dauerschwingfestigkeit bei nichtsyn-
chroner mehrachsiger beanspruchung. Materialwissenschaft und Werkstofftech-
nik, 16(3):101–112, 1985.

[23] A. Banvillet, T. Palin-Luc, and S. Lasserre. A volumetric energy based high
cycle multiaxial fatigue citerion. International journal of fatigue, 25(8):755–769,
2003.

[24] C. Froustey and S. Lasserre. Multiaxial fatigue endurance of 30ncd16 steel.
International Journal of Fatigue, 11(3):169 – 175, 1989.

60



Bibliography

[25] H. J. Gough. Engineering steels under combined cyclic and static stresses.
Proceedings of the Institution of Mechanical Engineers, 160(1):417–440, 1949.

[26] W. N. Findley. Combined-stress fatigue strength of 76s-t61 aluminum alloy
with superimposed mean stresses and corrections for yielding, 1953.

[27] T. Nishihara and M. Kawamoto. The strength of metals under combined al-
ternating bending and torsion with phase difference. Memories of the College
of Engineering, Kyoto Imperial University, 11(85):112, 1945.

[28] L. Issler. Festigkeitsverhalten metallischer Werkstoffe bei mehrachsiger phasen-
verschobener Schwingbeanspruchung. PhD thesis, Staatl. Materialprüfungsanst.
TU Stuttgart, 1973.

[29] E. El-Magd and S. Mielke. Dauerfestigkeit bei überlagerter zweiachsiger stat-
ischer beanspruchung. Konstruktion, 29(7):253–257, 1977.

[30] A. Troost, E. El-Magd, and S. Keil. Grundlagen zur berechnung der schwing-
festigkeit bei mehrachsiger beanspruchung ohne phasenverschiebung: Schwing-
festigkeit ohne phasenverschiebung. Forschungsbericht des Landes NRW, Fach-
gruppe Maschinenbau/verfahrenstechnik, Westd. Verlag, Nr 2812, 1979.

[31] F. J. Baier. Zeit-und Dauerfestigkeit bei überlagerter statischer und schwin-
gender Zug-, Druck-und Torsionsbeanspruchung. PhD thesis, Diss. Staatl. Ma-
terialprüfungsanst. TU Stuttgart, 1970.

[32] A. Galtier. Contribution à l’étude de l’endommagement des aciers sous soli-
citations uni ou multiaxials. PhD thesis, ENSAM CER de Bordeaux, France,
1993.

[33] R. Heidenreich. Schubspannungsintensitätshypothese - dauerschwingfestigkeit
bei mehrachsiger beanspruchung. Forschungshefte FKM, Heft 105, 1983.

[34] R. Heidenreich and H. Zenner. Schubspannungsintensitaetshypothese-
erweiterung und experimentelle abschaetzung einer neuen festigkeitshypothese
fuer schwingende beanspruchung. Forschungshefte FKM, (77), 1979.

[35] H. Zenner and R. Heidenreich. Festigkeitshypothese - berechnung der dauer-
festigkeit für beiliebige beanspruchungskombinationen. Forschungshefte FKM,
Heft 55, 1979.

[36] C. Froustey, S. Lasserre, and L. Dubar. Validité des critères de fatigue mul-
tiaxiale à l’endurance en flexion-torsion. Mat-Tech, 92:79–82, 1992.

[37] S. Mielke. Festigkeitsverhalten metallischer Werkstoffe unter zweiachsig schwin-
gender Beanspruchung mit verschiedenen Spannungszeitverläufen. PhD thesis,
Aachen, Techn. Hochsch., Fak. für Maschinenwesen„ 1980.

61



Bibliography

[38] W. Lempp. Festigkeitsverhalten von Stählen bei mehrachsiger Dauerschwing-
beanspruchung durch Normalspannungen mit überlagerten phasengleichen und
phasenverschobenen Schubspannungen. PhD thesis, Staatl. Materialprüfung-
sanst., 1977.

[39] F. Klubberg. Zweiachsige Schwingfestigkeitsversuche mit drei schwingenden
Lastkomponenten und vergleichende Auswer- tung nach verschiedenen stat-
istischen Methoden. PhD thesis, RWTH Aachen, 1985.

[40] A. Troost, O. Akin, and F. Klubberg. Dauerfestigkeitsverhalten metallischer
werkstoffe bei zweiachsiger beanspruchung durch drei phasenverschoben schwin-
gene lastspannungen. Konstruktion, 39:479–488, 1987.

[41] P. Grün, A. Troost, O. Akin, and F. Klubberg. Langzeit-und dauerschwing-
festigkeit des vergütungsstahls 25crmo4 bei mehrachsiger beanspruchung durch
drei schwingende lastspannungen. Materialwissenschaft und Werkstofftechnik,
22(3):73–80, 1991.

[42] T. Palin-Luc. Fatigue multiaxiale d’une fonte GS sous sollicitations combinées
d’amplitude variable. PhD thesis, ENSAM CER de Bordeaux, 1996.

[43] M. Bennebach. Fatigue multiaxiale d’une fonte GS. Influence de l’entaille et
d’un traitement de surface. PhD thesis, ENSAM CER de Bordeaux, 1993.

[44] L. Susmel. La progettazione a fatica in presenza di stati complessi di sol-
lecitazione. PhD thesis, Universita degli Studi di Padova, 2002.

62



List of Figures

2.1.1.3D-coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2.Element showing stress components for plane stress, σz = 0. . . . . . 8
2.2.1.Failure locus showing the fatigue limits for fully reversed stresses in

shear and normal stress. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.Haigh-diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.8.1.Example of a failure assessment diagram for the Tresca-Sines criterion. 27
4.10.1.Cyclic stresses for dynamically loaded mechanical component. . . . . 31

5.2.1.Failure assessment diagram, R = −1 and αij = 0◦. Test data are 34
fatigue tests for carbon/low alloy steels. . . . . . . . . . . . . . . . . . 35

5.2.2.Failure assessment diagram, R = −1 and αij = 0◦. Test data are 13
fatigue tests for 76S-T61. . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3.Failure assessment diagram, R = −1 and αij = 0◦. Test data are 12
fatigue tests for cast irons. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1.Predictions and their distribution for the criteria normal stress, Mises-
Sines and Tresca-Sines for all 268 tests. . . . . . . . . . . . . . . . . . 38

5.3.2.Histograms of all predictions from the ASME criterion and Findley
k(σA) and k(τW) for 268 tests. . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1.Stresses throughout the cycle on critical planes predicted by the
critical-plane criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.1.Stress cycle with one shear and one normal stress component. . . . . 51

63





List of Tables

2.1. Support factors for types of material groups according to FKM-Richtlinie. 16

3.1. Given and calculated material parameters for carbon steels and al-
loyed steels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Given and calculated material parameters for aluminium alloys and
cast irons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1. List of materials collected from the literature and their references.
For some materials, several data sets exist and and each individual
data set is numbered with a number inside a parenthesis. . . . . . . 30

4.2. Extreme values of stresses during a cycle of a dynamically loaded
component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. Material parameters for a constructed steel according to FKM-Richtlinie
and assumed to be valid for the stress cycle given in figure (4.10.1). . 32

5.1. Average values of M, k(σA) and k(τW) reported in table 3.1 and 3.2
with respect to material grouping. Only values used in the fatigue
analysis was counted in. . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2. Comparison of predictions for all criteria and different loading cases.
The predictions are presented as the mean value plus/minus one
standard deviation, mp ± sp. . . . . . . . . . . . . . . . . . . . . . . . 41

5.3. Comparison of predictions for all criteria, a selection of stress com-
ponents present, and different groups of materials. No selection of
stress-ratios or the like have been made. The predictions are presen-
ted as the mean value plus/minus one standard deviation, mp ± sp. . 42

5.4. Results of stress-cycle assessment for all criteria and both assessment
methods normalized with σW. . . . . . . . . . . . . . . . . . . . . . . 44

5.5. Results of stress-cycle assessment for all criteria and both assessment
methods. The names for the criteria are shortened, so that NS cor-
responds to the normal stress criterion etc. . . . . . . . . . . . . . . 45

65



List of Tables

A.1. Specimens, number of cycles the fatigue limits given in table 3.1 and
3.2 are valid for, and their method of determination. . . . . . . . . . . 68

A.2. Data collected from Gough [25]. Material parameters given in table
3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3. Data collected from Gough [25]. Material parameters given in table
3.1 and 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4. Data collected from Froustey [24, 21]. Material parameters given in
table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.5. Data collected from Carpinteri [3]. Material parameters given in table
3.1 and 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.6. Data collected from Zenner [22]. Material parameters given in table
3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.7. Data from collected from Zenner [22]. Material parameters given in
table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.8. Data collected from Troost [6]. Material parameters given in table 3.1. 75
A.9. Data collected from Troost [6]. Material parameters given in table

3.1 and 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.10.Data from Findley [26]. Material parameters given in table 3.1. . . . . 77
A.11.Data collected from Banvillet [23]. Material parameters given in table

3.1 and 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.1. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 80
B.2. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 81
B.3. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 82
B.4. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 83
B.5. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 84
B.6. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 85
B.7. Predictions for all tests and selected criteria. . . . . . . . . . . . . . . 86

66



A. Material Data

67



A. Material Data

Table A.1.: Specimens, number of cycles the fatigue limits given in table 3.1 and 3.2
are valid for, and their method of determination.

Material Ref. Spec. Nf Determined by

Carbon and low alloy steels
0.1 % C Steel [25] SS 107 S-N testing
XC18 Steel [21] - 106 Staircase method, 10-12 spec.
Mild Steel [3] SS 106 or more -
St35 Steel [22] HS 2 · 106 -
St60 Steel [6] HS 2 · 106 -
Swedish Hard Steel [3] SS 106 or more -
Ck 35 V [6] HS 107 -
C20 annealed Steel [23] SS 106 or more Staircase method, ≥15 spec.
34Cr4 (1) [22] HS 1, 5 · 106 Staircase method
34Cr4 (2) [22] SS 2 · 106 Staircase method
34Cr4 (3) [22] SS 1, 5 · 106 Staircase method
30CrMo16 (1) [24, 21] SS 106 S-N testing
30CrMo16 (2) [23] SS 106 or more Staircase method, ≥15 spec.
25CrMo4 (1) [21] HS 2 · 106 Staircase method, ≥15 spec.
25CrMo4 (2) [22] HS - Staircase method.
S65A [25] SS 107 S-N testing
42CrMo4 [22] HS 2 · 106 -
25CrMo4 (3) [6] HS 107 -
3.5% NiCr steel [25] SS 107 S-N testing
34CrMo4 V [6] SS 107 -

Aluminium
76S-T61 (1) [26] SS 106 S-N testing
76S-T61 (2) [26] SS 107 S-N testing
76S-T61 (3) [26] SS 108 S-N testing

Nodular graphite cast irons
“Silal” cast iron [20] SS 107 S-N testing
EN-GJS800-2 [23] - 106 or more Staircase method, ≥15 spec.

Lamellar graphite cast irons
GG30 [6] SS 107 -
Cast iron [3] SS - -

() Stress values are calculated for comparability but not used in later calculations.
SS = Solid specimen, HS = Hollow specimen, - = No Info
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Table A.2.: Data collected from Gough [25]. Material parameters given in table 3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

0.1% C Steel from Gough [25].
1 268.7 0 0 0 0 0 0 0
2 262.5 0 0 0 35.5 0 0 0
3 242.4 0 0 0 69.5 0 0 0
4 205.4 0 0 0 103.4 0 0 0
5 146.7 0 0 0 126.6 0 0 0
6 78.7 0 0 0 146.7 0 0 0
7 0 0 0 0 151.3 0 0 0

S65A from Gough [25].
152 552.9 266.4 0 0 0 0 0 0
153 532.8 532.8 0 0 0 0 0 0
154 0 0 0 0 339 169.9 0 0
155 0 0 0 0 343.6 343.6 0 0
156 549.8 0 0 0 0 169.9 0 0
157 540.5 0 0 0 0 343.6 0 0
158 556 266.4 0 0 0 169.9 0 0
159 556 266.4 0 0 0 343.6 0 0
160 469.5 532.8 0 0 0 169.9 0 0
161 472.6 532.8 0 0 0 343.6 0 0
162 0 266.4 0 0 312 0 0 0
163 0 532.8 0 0 284.2 0 0 0
164 0 266.4 0 0 304.3 169.9 0 0
165 0 532.8 0 0 281.1 169.9 0 0
166 0 266.4 0 0 308.9 343.6 0 0
167 0 532.8 0 0 293.4 343.6 0 0
168 547.5 0 0 0 156 0 0 0
169 389.2 0 0 0 259.5 0 0 0
170 168.3 0 0 0 335.9 0 0 0
171 496.5 266.4 0 0 141.3 169.9 0 0
172 374.5 266.4 0 0 249.4 169.9 0 0
173 161.4 266.4 0 0 322 169.9 0 0
174 428.6 532.8 0 0 121.2 343.6 0 0
175 315.1 532.8 0 0 210 343.6 0 0
176 126.6 532.8 0 0 251.7 343.6 0 0
177 386.1 266.4 0 0 257.1 0 0 0
178 383.8 0 0 0 255.6 169.9 0 0
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A. Material Data

Table A.3.: Data collected from Gough [25]. Material parameters given in table 3.1
and 3.2.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

3.5% NiCr Steel from Gough [25].
200 540.4 0 0 0 0.0 0 0 0
201 538.9 0 0 0 71.0 0 0 0
202 491.0 0 0 0 142.0 0 0 0
203 410.7 0 0 0 205.4 0 0 0
204 328.9 0 0 0 284.1 0 0 0
205 179.1 0 0 0 333.5 0 0 0
206 0.0 0 0 0 352.0 0 0 0

“Silal” Cast Iron from Gough [25].
243 240.9 0 0 0 0.0 0 0 0
244 234.7 0 0 0 30.9 0 0 0
245 210.0 0 0 0 60.2 0 0 0
246 194.5 0 0 0 97.3 0 0 0
247 152.9 0 0 0 132.8 0 0 0
248 89.6 0 0 0 166.8 0 0 0
249 0.0 0 0 0 219.2 0 0 0
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Table A.4.: Data collected from Froustey [24, 21]. Material parameters given in table
3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

XC18 Steel from Froustey/Lasserre [21].
8 310 0 0 0 0 0 0 0
9 0 0 0 0 179 0 0 0
10 230 0 0 0 133 0 0 0
11 230 0 0 0 133 0 0 45
12 242 0 0 0 140 0 0 90

30CrMo16 (1) from Froustey/Lasserre [24, 21].
95 630 300 0 0 0 0 0 0
96 0 300 0 0 370 0 0 0
97 211 300 0 0 365 0 0 0
98 220 300 0 0 385 0 0 90
99 590 300 0 0 148 0 0 0
100 563 300 0 0 141 0 0 45
101 540 300 0 0 135 0 0 90
102 480 300 0 0 277 0 0 0
103 480 300 0 0 277 0 0 45
104 470 300 0 0 271 0 0 60
105 473 300 0 0 273 0 0 90
106 710 0 0 0 0 0 0 0
107 0 0 0 0 450 0 0 0
108 485 0 0 0 280 0 0 0
109 480 0 0 0 277 0 0 90
110 0 300 0 0 395 0 0 0

25CrMo4 (1) from Mielke [37].
140 361 0 0 0 0 0 0 0
141 270 0 0 0 135 0 0 0
142 261 0 0 0 131 0 0 60
143 277 0 0 0 139 0 0 90
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A. Material Data

Table A.5.: Data collected from Carpinteri [3]. Material parameters given in table
3.1 and 3.2.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

Mild steel from Nishihara/Kawamoto [27].
13 245.3 0 0 0 0 0 0 0
14 235.6 0 0 0 48.9 0 0 0
15 187.3 0 0 0 93.6 0 0 0
16 101.3 0 0 0 122.3 0 0 0
17 0 0 0 0 142.3 0 0 0
18 194.2 0 0 0 97.1 0 0 60
19 108.9 0 0 0 131.5 0 0 60
20 235.6 0 0 0 48.9 0 0 90
21 208.1 0 0 0 104.1 0 0 90
22 112.6 0 0 0 136 0 0 90

Swedish hard steel from Nishihara/Kawamoto [27].
42 327.7 0 0 0 0 0 0 0
43 308 0 0 0 63.9 0 0 0
44 255.1 0 0 0 127.5 0 0 0
45 141.9 0 0 0 171.3 0 0 0
46 0 0 0 0 201.1 0 0 0
47 255.1 0 0 0 127.5 0 0 30
48 142 0 0 0 171.2 0 0 30
49 255.1 0 0 0 127.5 0 0 60
50 147.2 0 0 0 177.6 0 0 60
51 308 0 0 0 63.9 0 0 90
52 264.9 0 0 0 132.4 0 0 90
53 152.5 0 0 0 184.2 0 0 90

Grey Cast Iron from Nishihara/Kawamoto [27].
261 93.2 0 0 0 0 0 0 0
262 95.2 0 0 0 19.7 0 0 0
263 83.4 0 0 0 41.6 0 0 0
264 56.3 0 0 0 68 0 0 0
265 0 0 0 0 94.2 0 0 0
266 104.2 0 0 0 21.6 0 0 90
267 97.1 0 0 0 48.6 0 0 90
268 71.3 0 0 0 86.1 0 0 90
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Table A.6.: Data collected from Zenner [22]. Material parameters given in table 3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

St35 Steel from Issler [28].
23 139 153 139 153 0 0 0 0
24 147 162 147 162 0 0 60 0
25 129 142 129 142 0 0 90 0
26 110 121 110 121 0 0 120 0
27 100 110 100 110 0 0 180 0
28 154 169 77 92 0 0 0 0
29 149 164 75 89 0 0 60 0
30 142 156 11 85 0 0 90 0
31 123 135 62 74 0 0 180 0
32 157 173 79 0 0 0 0 0
33 145 160 73 0 0 0 90 0
34 118 130 59 0 0 0 180 0

25CrMo4 (2) from Mielke [37].
144 261 170 261 340 0 0 0 0
145 275 170 275 340 0 0 60 0
146 240 170 240 340 0 0 90 0
147 196 170 196 340 0 0 180 0
148 0 170 220 340 110 0 0 60
149 0 170 233 340 117 0 0 90
150 0 170 155 340 155 0 0 60
151 0 170 159 340 159 0 0 90

42CrMo4 from Lempp [38].
179 328 0 0 0 157 0 0 0
180 286 0 0 0 137 0 0 90
181 233 0 0 0 224 0 0 0
182 213 0 0 0 205 0 0 90
183 280 280 0 0 134 0 0 0
184 271 271 0 0 130 0 0 90
185 266 0 0 0 128 128 0 0
186 283 0 0 0 136 136 0 90
187 333 0 0 0 160 160 0 180
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A. Material Data

Table A.7.: Data from collected from Zenner [22]. Material parameters given in table
3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

34Cr4 (1) from Heidenreich [33, 34, 35].
68 225 275 225 275 0 0 0 0
69 225 275 225 275 0 0 60 0
70 190 232 190 232 0 0 180 0
71 205 250 205 250 96 0 0 0
72 175 214 175 214 82 0 180 0
73 181 221 181 221 85 85 0 0
74 195 238 195 238 92 92 0 90
75 192 234 192 234 90 90 60 90
76 180 220 180 220 85 85 180 90

34Cr4 (2) from Heidenreich [34, 35].
77 314 0 0 0 157 0 0 0
78 315 0 0 0 158 0 0 60
79 316 0 0 0 158 0 0 90
80 315 0 0 0 158 0 0 120
81 224 0 0 0 224 0 0 90
82 380 0 0 0 95 0 0 90
83 316 0 0 0 158 158 0 0
84 314 0 0 0 157 157 0 60
85 315 0 0 0 158 158 0 90
86 279 279 0 0 140 0 0 0
87 284 284 0 0 142 0 0 90
88 355 0 0 0 89 178 0 0
89 212 212 0 0 212 0 0 90
90 129 0 0 0 258 0 0 90

34Cr4 (3) from Heidenreich [34, 35].
91 280 0 0 0 140 280 0 0
92 309 0 0 0 155 309 0 180
93 320 -160 0 0 160 160 0 0
94 350 -175 0 0 175 175 0 180
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Table A.8.: Data collected from Troost [6]. Material parameters given in table 3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

St60 Steel from El Magd/Troost [29].[30].
35 290.4 0 0 306.8 0 0 0 0
36 259 0 0 460.2 0 0 0 0
37 286.5 76.7 0 306.8 0 0 0 0
38 259 76.7 0 460.2 0 0 0 0
39 280.6 153.4 0 153.4 0 0 0 0
40 278.6 153.4 0 306.8 0 0 0 0
41 262.9 153.4 0 460.2 0 0 0 0

Ck35 V Steel from Baier [31].
54 273 0 0 0 0 156.5 0 0
55 273 0 0 0 0 303.61 0 0
56 216 0 0 0 0 441.33 0 0
57 229 229 0 0 0 172.15 0 0
58 181 181 0 0 0 344.3 0 0
59 0 0 0 0 191 191 0 0
60 0 -547.75 0 0 239 0 0 0
61 0 -275.44 0 0 229 0 0 0
62 0 294.22 0 0 176 0 0 0
63 0 441.33 0 0 141 0 0 0
64 0 588.44 0 0 130 0 0 0

25CrMo4 (3) from Klubberg/Troost/Grün [39],[40],[41].
188 205 340 205.0 221 102.5 0 0 90
189 185 340 185.0 221 92.5 0 0 90
190 218.8 255 164.1 210.8 109.4 0 0 0
191 207.5 255 155.6 210.8 103.75 0 0 90
192 212.1 255 159.1 210.8 106.05 0 0 180
193 225 255 168.8 210.8 112.5 0 0 90
194 222.1 255 166.6 210.8 111.05 0 0 45
195 205 255 153.8 210.8 102.5 0 0 90
196 215 255 161.3 210.8 107.5 0 0 135
197 187.9 255 140.9 210.8 93.95 0 0 0
198 223.6 255 167.7 210.8 111.8 0 0 90
199 215 255 161.3 210.8 107.5 88.4 0 135
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A. Material Data

Table A.9.: Data collected from Troost [6]. Material parameters given in table 3.1
and 3.2.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

34CrMo4 V from Baier [31].
207 378 0 0 0 0 107.0 0 0
208 353 0 0 0 0 217.7 0 0
209 329 0 0 0 0 324.7 0 0
210 320 0 0 0 0 431.7 0 0
211 294 294 0 0 0 645.6 0 0
212 88 88 0 0 0 794.6 0 0
213 311 311 0 0 0 194.8 0 0
214 273 0 0 0 0 489.0 0 0
215 0 0 0 0 256 256 0 0
216 0 -550.1 0 0 343 0 0 0
217 0 -179.5 0 0 284 0 0 0
218 0 179.5 0 0 283 0 0 0
219 0 351.4 0 0 235 0 0 0
220 0 511.9 0 0 222 0 0 0
221 0 695.2 0 0 156 0 0 0

GG30 from Baier [31].
254 145 0 0 0 0 74 0 0
255 127 0 0 0 0 112.5 0 0
256 107 0 0 0 0 146.5 0 0
257 99 0 0 0 0 186.5 0 0
258 96.5 0 0 0 0 108.0 0 0
259 75 0 0 0 0 217.6 0 0
260 53.5 0 0 0 0 196.8 0 0
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Table A.10.: Data from Findley [26]. Material parameters given in table 3.1.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

76S-T61 (1) for 106 cycles.
222 217.9 0.0 0 0 0.0 0 0 0
223 0.0 0.0 0 0 143.4 0 0 0
224 215.8 0.0 0 0 44.7 0.0 0 0
225 171.0 0.0 0 0 85.5 0.0 0 0
226 153.1 82.7 0 0 76.5 41.4 0 0
227 129.6 206.8 0 0 64.8 103.4 0 0
228 139.3 0.0 0 0 101.9 0.0 0 0
229 104.5 0.0 0 0 126.2 0.0 0 0

76S-T61 (2) for 107 cycles.
230 188.2 0.0 0 0 0.0 0.0 0 0
231 0.0 0.0 0 0 119.3 0 0 0
232 180.6 0.0 0 0 37.4 0.0 0 0
233 139.3 0.0 0 0 69.6 0.0 0 0
234 136.5 82.7 0 0 68.3 41.4 0 0
235 122.0 206.8 0 0 61.0 103.4 0 0
236 117.9 0.0 0 0 86.2 0.0 0 0
237 86.7 0.0 0 0 104.1 0.0 0 0

76S-T61 (3) for 108 cycles.
238 170.3 0.0 0 0 0.0 0.0 0 0
239 0.0 0.0 0 0 109.6 0 0 0
240 124.8 0.0 0 0 62.4 0.0 0 0
241 12.4 82.7 0 0 62.1 41.4 0 0
242 102.7 0.0 0 0 75.2 0.0 0 0
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A. Material Data

Table A.11.: Data collected from Banvillet [23]. Material parameters given in table
3.1 and 3.2.

Nr. σxa σxm σya σym τxya τxym αy αxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (◦) (◦)

C20 annealed Steel from Galtier [32].
65 246 0 0 0 138 0 0 0
66 246 0 0 0 138 0 0 45
67 264 0 0 0 148 0 0 90

30CrMo16 (2) from Froustey [36].
111 575 375 0 0 0 0 0 0
112 558 428 0 0 0 0 0 0
113 627 273 0 0 0 0 0 0
114 679 156 0 0 0 0 0 0
115 519 0 0 0 291 0 0 0
116 514 0 0 0 288 0 0 90
117 451 294 0 0 250 191 0 0
118 462 294 0 0 258 191 0 90
119 474 294 0 0 265 0 0 45
120 464 294 0 0 259 0 0 60
121 554 287 0 0 135 0 0 45
122 474 0 0 0 265 0 0 90
123 220 199 0 0 368 0 0 90
124 470 299 0 0 261 0 0 90
125 527 287 0 0 129 0 0 90
126 433 472 0 0 240 0 0 90
127 418 622 0 0 234 0 0 90
128 0 299 0 0 396 0 0 0
129 0 486 0 0 411 0 0 0
130 0 655 0 0 364 0 0 0
131 482 0 0 0 268 0 0 0
132 207 299 0 0 350 0 0 0
133 474 294 0 0 265 0 0 0
134 584 281 0 0 142 0 0 0
135 447 473 0 0 252 0 0 0
136 425 635 0 0 223 0 0 0
137 235 745 0 0 0 0 0 0
138 251 704 0 0 0 0 0 0
139 527 222 0 0 0 0 0 0

EN-GJS800-2 Cast Iron from [42],[43].
250 228 0 0 0 132 0 0 0
251 245 0 0 0 142 0 0 90
252 199 0 0 0 147 0 0 0
253 184 225 0 0 0 0 0 0
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B. Predictions

Table B.1.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

1 1.02 1.02 1.02
2 1.02 1.03 1.03
3 0.99 1.05 1.05
4 0.95 1.07 1.07
5 0.84 1.05 1.05
6 0.73 1.05 1.05
7 0.58 1.02 1.02
8 1.00 1.00 1.00
9 0.58 1.00 1.00
10 0.94 1.08 1.08
11 0.87 1.04 1.00
12 0.78 0.98 0.83
13 1.04 1.04 1.04
14 1.04 1.07 1.07
15 0.96 1.08 1.08
16 0.78 1.03 1.03
17 0.60 1.04 1.04
18 0.89 1.04 0.98
19 0.73 1.09 1.03
20 1.00 1.01 1.00
21 0.88 1.00 0.89
22 0.63 1.11 1.00
23 0.84 0.46 0.46
24 0.89 1.04 0.91
25 0.78 1.10 0.99
26 0.66 1.04 0.97
27 0.60 0.99 0.99
28 0.93 0.72 0.72
29 0.90 0.89 0.86
30 0.86 0.89 0.89
31 0.74 0.98 0.98
32 0.95 0.69 0.69
33 0.88 0.94 0.91
34 0.71 0.90 0.90
35 0.98 1.16 1.16
36 0.88 1.17 1.17
37 1.00 1.20 1.20
38 0.91 1.21 1.21
39 1.01 1.15 1.15
40 1.01 1.22 1.22
41 0.95 1.27 1.27
42 1.04 1.04 1.04
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Table B.2.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

43 1.02 1.05 1.05
44 0.98 1.08 1.08
45 0.82 1.04 1.04
46 0.64 1.02 1.02
47 0.95 1.07 1.05
48 0.79 1.03 1.01
49 0.88 1.03 0.96
50 0.74 1.07 0.99
51 0.98 1.00 0.98
52 0.84 0.99 0.86
53 0.64 1.10 0.96
54 0.89 1.12 0.66
55 0.95 1.37 0.90
56 0.87 1.42 1.05
57 0.96 1.27 0.87
58 0.85 1.33 0.98
59 0.78 1.06 1.06
60 0.56 1.10 1.10
61 0.62 1.06 1.06
62 0.71 1.31 1.31
63 0.69 1.39 1.39
64 0.75 1.59 1.59
65 0.93 1.07 1.07
66 0.87 1.02 0.99
67 0.80 0.96 0.83
68 0.89 0.46 0.46
69 0.89 0.98 0.86
70 0.75 1.15 1.15
71 1.09 0.89 0.89
72 0.75 1.15 1.15
73 1.04 0.81 0.81
74 0.91 0.85 0.76
75 0.96 1.08 0.99
76 0.72 1.23 1.17
77 0.92 1.02 1.02
78 0.83 0.97 0.91
79 0.77 0.90 0.79
80 0.83 0.97 0.89
81 0.63 1.07 0.91
82 0.93 0.95 0.93
83 1.01 1.16 0.96
84 0.90 1.04 0.84
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B. Predictions

Table B.3.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

85 0.80 0.99 0.74
86 0.99 1.16 1.16
87 0.89 1.09 0.95
88 0.98 1.12 0.83
89 0.70 1.21 1.06
90 0.65 1.10 1.02
91 0.97 1.14 0.80
92 0.77 1.18 0.96
93 0.93 1.12 0.81
94 0.82 1.07 0.95
95 1.09 1.07 1.07
96 0.63 1.08 1.08
97 0.83 1.17 1.17
98 0.69 1.22 1.13
99 1.08 1.13 1.13
100 1.02 1.06 1.05
101 0.96 0.96 0.94
102 1.04 1.20 1.20
103 0.98 1.18 1.13
104 0.92 1.14 1.06
105 0.86 1.10 0.93
106 1.08 1.08 1.08
107 0.68 1.10 1.10
108 0.93 1.05 1.05
109 0.73 0.94 0.77
110 0.67 1.14 1.14
111 1.01 0.97 0.97
112 1.01 0.97 0.97
113 1.04 1.01 1.01
114 1.06 1.04 1.04
115 0.94 1.06 1.06
116 0.74 0.94 0.78
117 0.99 1.05 1.03
118 0.82 1.03 0.85
119 0.92 1.09 1.06
120 0.87 1.05 0.99
121 0.96 0.99 0.98
122 0.69 0.87 0.72
123 0.61 1.07 0.98
124 0.82 1.02 0.87
125 0.90 0.89 0.87
126 0.85 1.05 0.91
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Table B.4.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

127 0.89 1.12 0.97
128 0.65 1.09 1.09
129 0.72 1.23 1.23
130 0.70 1.21 1.21
131 0.87 0.98 0.98
132 0.77 1.08 1.08
133 0.97 1.12 1.12
134 1.02 1.05 1.05
135 1.00 1.17 1.17
136 1.01 1.18 1.18
137 0.85 0.81 0.81
138 0.85 0.81 0.81
139 1.07 1.04 1.04
140 1.00 1.00 1.00
141 0.90 0.99 0.99
142 0.78 0.91 0.85
143 0.77 0.91 0.79
144 0.91 0.69 0.69
145 0.95 1.16 1.03
146 0.86 1.22 1.11
147 0.73 1.18 1.18
148 0.84 1.15 0.97
149 0.84 1.16 1.03
150 0.77 1.23 1.05
151 0.67 1.25 1.12
152 1.06 1.08 1.08
153 1.14 1.18 1.18
154 0.65 0.96 0.96
155 0.74 1.02 1.02
156 0.95 1.06 0.82
157 0.95 1.17 0.78
158 1.07 1.20 0.97
159 1.09 1.32 0.87
160 1.04 1.18 0.97
161 1.06 1.30 0.89
162 0.59 1.03 1.03
163 0.61 1.15 1.15
164 0.65 1.05 1.05
165 0.68 1.17 1.17
166 0.74 1.11 1.11
167 0.77 1.26 1.26
168 1.01 1.05 1.05
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B. Predictions

Table B.5.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

169 0.89 1.02 1.02
170 0.74 1.00 1.00
171 1.06 1.15 1.05
172 1.00 1.13 1.13
173 0.85 1.16 1.16
174 1.08 1.25 1.05
175 1.02 1.16 1.16
176 0.84 1.17 1.17
177 0.97 1.20 1.20
178 0.94 1.10 0.96
179 0.98 1.07 1.07
180 0.72 0.84 0.74
181 0.93 1.11 1.11
182 0.60 1.00 0.84
183 1.01 1.22 1.22
184 0.87 1.11 0.98
185 0.87 1.00 0.81
186 0.73 0.94 0.68
187 0.93 1.19 0.92
188 0.85 1.38 1.25
189 0.68 1.34 1.28
190 0.99 1.16 1.16
191 0.73 1.12 0.98
192 0.96 1.14 1.08
193 0.80 1.29 1.13
194 0.86 1.29 1.14
195 0.71 1.28 1.10
196 0.81 1.30 1.17
197 0.72 1.24 1.24
198 0.76 1.35 1.27
199 0.79 1.40 1.24
200 1.00 1.00 1.00
201 1.01 1.02 1.02
202 0.98 1.02 1.02
203 0.92 1.00 1.00
204 0.91 1.07 1.07
205 0.80 1.06 1.06
206 0.65 1.00 1.00
207 0.99 1.15 0.84
208 0.94 1.27 0.78
209 0.90 1.38 0.90
210 0.91 1.53 1.06
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Table B.6.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

211 1.08 2.14 1.71
212 0.64 1.65 1.52
213 1.01 1.50 1.16
214 0.82 1.51 1.10
215 0.82 1.18 1.18
216 0.75 1.17 1.17
217 0.69 0.98 0.98
218 0.80 1.29 1.29
219 0.73 1.40 1.40
220 0.75 1.62 1.62
221 0.67 1.70 1.70
222 1.00 1.00 1.00
223 0.66 1.00 1.00
224 1.03 1.05 1.05
225 0.95 1.03 1.03
226 1.06 1.06 1.06
227 1.24 1.17 1.17
228 0.89 1.01 1.01
229 0.87 1.07 1.07
230 1.00 1.00 1.00
231 0.63 1.00 1.00
232 1.00 1.02 1.02
233 0.89 0.98 0.98
234 1.11 1.10 1.10
235 1.36 1.24 1.24
236 0.87 1.01 1.01
237 0.83 1.04 1.04
238 1.00 1.00 1.00
239 0.64 1.00 1.00
240 0.88 0.97 0.97
241 0.61 0.83 0.83
242 0.84 0.96 0.96
243 1.05 1.05 1.05
244 1.04 1.04 1.04
245 0.98 0.99 0.99
246 1.02 1.05 1.05
247 1.00 1.05 1.05
248 0.94 1.03 1.03
249 0.95 1.10 1.10
250 0.98 1.05 1.05
251 0.83 1.11 0.91
252 0.94 1.03 1.03
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B. Predictions

Table B.7.: Predictions for all tests and selected criteria.

Nr. σar/σW

Normal stress Findley (τW) Findley (τW)-ASME

253 0.90 1.05 1.05
254 1.03 1.32 1.07
255 0.97 1.42 1.18
256 0.93 1.49 1.28
257 0.99 1.68 1.48
258 0.79 1.21 1.02
259 0.95 1.73 1.58
260 0.80 1.49 1.38
261 0.97 0.97 0.97
262 1.03 1.03 1.03
263 1.05 1.06 1.06
264 1.06 1.08 1.08
265 0.98 1.03 1.03
266 1.08 1.13 1.10
267 1.01 1.19 1.09
268 0.98 1.17 1.08

max 1.36 2.14 1.71
min 0.56 0.46 0.46
mp 0.88 1.10 1.03
sp 0.14 0.18 0.17
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