
Graphical User Interface for Petroleum
Field Optimization Software (FieldOpt)
Development of Interface for Configuring

Driver Files

Karoline Louise Rykkelid

Master of Science in Engineering and ICT

Supervisor: Jon Kleppe, IPT
Co-supervisor: Mathias Bellout, IPT

Einar Baumann, IPT

Department of Petroleum Engineering and Applied Geophysics

Submission date: December 2016

Norwegian University of Science and Technology

Abstract

This Master’s thesis concerns the further development of FieldOpt, a petroleum

field optimization software, in close collaboration with the Petroleum Cybernetics

Group at NTNU. This particular part of the development has been about creating a

graphical user interface(GUI) for configuring FieldOpt driver files. As the present

way of configuring was insufficient, especially in terms of user-friendliness, we

wanted to present a new and better solution that hopefully satisfy users on a whole

different level.

The thesis idea originates from PhD student Einar Baumann’s recommanda-

tion on further work for FieldOpt, from his master’s thesis. The development is in

addition based upon the structure of the JSON driver file created by Baumann.

We present the utilities like software, structure, and library, in addition to an intro-

duction to user interfaces and design guidelines used during the development. This

is followed by the established system requirements; what should be required and

expected of the system together with the necessary functionalities. And then the

GUI design and interface elements are presented. Based on this, we have designed

and implemented an interface, and presented the result. We have evaluated the re-

sult by comparing the solution to the requirements and guidelines set for this GUI.

Some reflection on the process and solution is also included in this report.

This thesis has resulted in a solution that has the potential to be the FieldOpt driver

configuration interface, but is not a fully functioning interface. However, at the

current state we think it has facilitated and laid the foundation for further devel-

opment and finalization of the interface that will help users to easily configure

FieldOpt driver files.

i

ii

Sammendrag

Denne masteroppgaven tar for seg deler av den videre utviklingen av FieldOpt,

et programvarerammeverk for optimaliseringsproblemer innen petroleumsfeltet. I

tett samarbeid med Petroleum Cybernetics Group (på NTNU) har det blitt utviklet

et grafisk brukergrensesnitt(GUI) for konfigurering av FieldOpt-driverfiler. Da da-

gens løsning virker mangelfull når det gjelder brukervennlighet, ønsker vi å pre-

sentere og lage en bedre løsning som tilfredsstiller brukerne på et høyere nivå.

Oppgaven baserer seg på Einar Baumanns anbefaling om videre arbeid med

FieldOpt i hans masteroppgave. Brukergrensesnittet er i tillegg utviklet på grunnlag

av driverfilen og dens data som Baumann har opprettet.

I oppgaven presenterer vi verktøyene og hjelpemidlene vi har brukt, som blant

annet programvare, filstruktur og biblitotek. I tillegg introduseres brukergrens-

esnitt og flere retningslinjer for design som er brukt under utviklingen. Dette blir

fulgt av spesifikasjonen til systemet. Hva kreves av systemet? Kravspesifikasjon er

en stor del av systemutvikling og vi har kommet frem til hva som ønskes og burde

forventes av grensesnittet sammen med de nødvendige funksjonene. Deretter blir

GUI-design og grensesnittelementer presentert. Basert på bl.a. inneholdet av disse

kapitlene, har vi designet og implementert et grensesnitt. Resultatet blir presentert

og deretter evaluert og sammenliknet med hvilke krav og retningslinjer vi satte for

det grafiske brukergrensesnittet. Refleksjon på prosessen og noen løsninger er også

med i denne rapporten.

Denne oppgaven har resultert i en løsning som har potensial til å bli “FieldOpt

driver configuration interface”, men er foreløpig ikke et fullverdig, velfungerende

og ferdigutviklet grensesnitt. Uansett mener vi at med dette resultatet har vi tilret-

telagt og lagt et godt grunnlag for videre utvikling og ferdigstilling av grensesnittet,

som skal hjelpe brukere å konfigurere FieldOpts driverfiler på en enkel og bruker-

vennlig måte.

iii

iv

Preface

This thesis is the result of work performed during the semester of 2016. It is a part of

the Master’s degree in Engineering and ICT with specialization in Integrated Opera-

tions in the Petroleum Industry, at the Department of Petroleum Engineering & Applied

Geophysics at the Norwegian University of Science and Technology(NTNU). This the-

sis work was under the supervision of Prof. Jon Kleppe, Postdoc. Mathias R. Bellout

and PhD stud. Einar J. M. Baumann. The idea for the master’s thesis was introduced by

Bellout and Baumann, members of Petroleum Cybernetics Group(PCG). It is based on

the recommendation of further work found in Einar Baumann’s Master’s thesis [1].

The work processes were carried out in close cooperation with PCG. The grahical

user interface developed during this project builds upon the JSON formatted FieldOpt

driver file and the FieldOpt Utilities library created by Einar Baumann in the beginning

of his PhD at NTNU.

It is assumened that the reader has knowledge of graphical user interface, program-

ming, and understanding of terms within this field. However, some terms are still ex-

plained or defined directly in the text.

v

vi

Acknowledgements

I would like to take this opportunity to give a special thanks to both my co-supervisors:

Postdoc. Mathias Rodriguez Bellout and PhD stud. Einar Johan M. Baumann for their

patience and assistance throughout the project. Bellout’s enthusiasm for this project

motivated me through some difficult times. Without the guidence, and help sessions

from Baumann I would probably not have made it. The team meetings we had were

really valuable to me.

I would also like to give a big thank you to my responsible supervisor Prof. Jon

Kleppe at NTNU for guiding me towards the Petroleum Cybernetics group, but also for

his support during the project. He helped me through the challenges by giving good

advise and conversations.

In addition, I would like to express how grateful I am for the friendships I have gotten

during the years in Trondheim. Thank you to all class mates and exchange students.

There are so many great people out there that helped and inspired me to keep on going.

You know who you are.

Finally, I will thank my family, my mother and father for raising me with great

values, guiding and supporting me throughout the years. It has lead me to become the

person I am today. I will also thank my sister and brother for being who you are to me.

Thanks to my family and friends for always being there when I need you. I could not

have done this without you, and your support. You have all played a huge part of this

thesis. I am grateful.

vii

viii

Contents

Abstract . i

Sammendrag . iii

Preface . v

Acknowledgement . vii

List of Figures xii

1 Introduction 1
1.1 Problem Description – Goal and Motivation 1

1.2 About PCG and FieldOpt . 3

1.3 Document Structure . 3

2 Utilities 5
2.1 Qt Application Framework . 5

2.1.1 C++ . 6

2.2 Utilities/Settings Library . 6

2.3 Driver Configuration File . 7

2.3.1 JSON . 7

2.3.2 Structure Example from Driver File 8

3 An Introduction to User Interfaces and Design Guidelines 11
3.1 Graphical User Interface Definition and Role 11

3.2 Design Guidelines . 12

3.2.1 Navigation . 12

3.2.2 Common Golden Rules of User Interface Design 13

3.2.3 Golden Rules of User Interface Design 14

3.2.4 Usability Heuristics for User Interface Design 15

ix

Contents

3.2.5 Theo Mandel’s . 16

3.2.6 Ten Application Design Mistakes 16

4 GUI Development & Implementation Process 19

4.1 The Development Process . 19

4.2 The Work Process . 20

4.2.1 Work Flow . 20

4.2.2 Challenges . 21

4.2.3 Testing . 22

5 System Requirements 23

5.1 Functional Requirements . 23

5.2 Non-Functional Requirements . 25

5.2.1 Constraints . 26

5.3 Quality Attributes . 27

5.3.1 Usability . 27

5.3.2 Portability . 28

6 GUI Design 29

6.1 User Analysis – Target audience . 29

6.1.1 Customized Design . 30

6.2 Interface Elements . 32

6.2.1 Input Controls (Widgets and Buttons) 32

6.2.2 Navigational Components . 37

6.2.3 Informational Components . 40

7 Graphical User Interface for FieldOpt Driver Configuration 43

7.1 User Interface Structure . 43

7.2 The Application . 45

7.2.1 Main Window . 45

7.2.2 Global Tab . 47

7.2.3 Model Tab . 47

7.2.4 Simulator Tab . 52

7.2.5 Optimizer Tab . 53

7.2.6 Overview . 55

7.3 Current Functionality . 57

x

8 Evaluation and Reflection 59
8.1 Design Guidelines . 59

8.2 GUI Requirements . 60

8.3 Thoughts and Reflection . 62

9 Summary and Further Work 65
9.1 Summarization . 65

9.2 Recommendation for Further Work and Development 66

References 69

A Appendix 71
A.1 JSON file - Example Configuration/driver file 71

xi

Contents

xii

List of Figures

6.1 Check box & Button: Example on feature customized for user (Specify

variables?) . 31

6.2 Button & Icon: Edit button . 33

6.3 Button: “Browse...” and “Set Parameters...” (ellipsis) 33

6.4 Radio buttons: Well state(‘Open’ or ‘Shut’) 34

6.5 Combo box: Preferred phase, oil selected. 34

6.6 Combo box: Preferred phase open with all options visible. 34

6.7 Check box: Bookkeeping . 36

6.8 Spin boxes . 37

6.9 Title & Menu bar: The main window 38

6.10 Menu bar: Menu items File and Help – content. 39

6.11 Tabs: Global and Simulator tab activated 39

6.12 Label, placeholder text, button: Grid path field 40

6.13 Placeholder text: Model’s Well name 40

6.14 Tool tip: Model path . 41

6.15 Icon: Save file . 41

6.16 Icon: Open file . 41

6.17 Icon: Exit . 41

6.18 Icon: Information . 42

6.19 Icon: Question . 42

6.20 Message box: Information about ‘Missing output path’ 42

6.21 Message box: Question to quit the program. 42

7.1 GUI structure . 44

7.2 Main window: FieldOpt Driver Config 46

7.3 Model tab . 46

xiii

List of Figures

7.4 Simulator tab . 46

7.5 Optimizer tab . 46

7.6 Model Well dialog . 49

7.7 Message box: Well block already exists 50

7.8 Model Well Controls . 50

7.9 Model Well Completions . 51

7.10 Model Well Variables . 51

7.11 Browse File Dialog: Choose simulator driver file 52

7.12 Simulator Bash dialog . 53

7.13 Optimizer parameters dialog . 53

7.14 Optimizer’s Objective dialog . 54

7.15 Optimizer’s Constraints dialog . 55

xiv

Chapter1
Introduction

This thesis concerns the development of a graphical user interface(GUI) for the field

of petroleum. We are mainly looking at the specification and development aspect of

software engineering with some software validation during the development. The focus

is on usability since user interface design is about predicting what users might need to

do, but also ensure that the interface has elements that are easy to access, understand,

and use to carry out those actions.

In this chapter, we present the goal and motivation for the project, in addition to

some background information about the group that needs a new tool for their software

in development, as well as the document structure of this thesis.

1.1 Problem Description – Goal and Motivation

As with other reservoir simulators, the main way of configuration is through driver files.

This master’s thesis idea originates from Baumann’s master’s thesis, from the Conclu-

sions & Recommendations for Further Work chapter, Chapter 5 – the paragraph about

Driver files [1]. He presents that the simulator’s driver files are to be written manually

using a text editor, but that it “feels” outdated. For further work he suggests to develop

a graphical user interface as a better alternative, and that is what we intend to do here.

The goal of this project is to create and design an interface for generating and config-

uring driver files of JSON1 format for a petroleum field optimization software (named

FieldOpt2). Petroleum Cybernetics group(PCG)3 wants a user-friendly graphical inter-

1JSON – See Section 2.3.1
2FieldOpt – See Section 1.2
3PCG – See Section 1.2

1

Chapter 1. Introduction

face that replaces an alternative of direct manipulation of a text file(driver file), i.e GUI

replacing a text editor. PCG wants a solution that let users, novices to experts, easily

interact through the GUI regardless of their skills (as long as they are identified as target

audience). The GUI should be based on the Utilities library4 and the driver file example

provided in Appendix A.1. The generated driver file should represent a meaningful con-

figuration of FieldOpt, including settings for model, selected simulator and optimizer.

With great focus on usability, the GUI aims to be an integral part of PCG’s main product

– FieldOpt.

The motivation for this project lies within the improvement the solution can give for

users – the intentional target audience: students, professors, and people in the research

community at NTNU. Manually generating a driver file requires hours of hours of

training and reading of massive manuals, and finding errors may often be very time-

consuming. It will maybe take years to master the composition. Neither learnability,

recognizability, nor accessibility are qualities that stand out from this manually way of

creating a driver file. We want to increase the learning pace, and decrease the time it

takes for the transition from being a novice user to an intermittent, and then to an ex-

pert. And we believe that this can be done by creating a GUI. There is not yet set any

quantitative goal for this.

We want a logical solution which you can use and understand without reading a

manual – the pieces should come together just by thinking and exploring the GUI. We

want students and researchers to have the best alternative that motivates and encourage

to take work a step further in detail. Maybe they can skip using months on uninteresting

material/work by using FieldOpt and the driver GUI instead. The long term goal is for

the software and GUI to be a tool that the users long to use again.

A challenge of designing is to create features that are intuitive to the user. Users should

feel reassured about how the system reacts to certain user interaction – it should be

predictable. To help with getting there, we need to have the right tools to reach the

goal. This is a crucial step of the design process. Another challenge is a combination of

personal qualification and time. During the project, the personal “knowlegde database”

needs to be expanded. This means that you have to teach yourself what you are suppose

to do, and do it at the same time, on restricted time. To be both efficient and effective

can be a great challenge, but a curious and exited mind keeps it going. To balance the

4Utilities library – See Section 2.2

2

1.2. About PCG and FieldOpt

work load based on the set of knowledge that you posesses and are able to learn, in

addition to plan according to time available, are going to be very challenging.

1.2 About PCG and FieldOpt

FieldOpt is an open-source software framework in development, written mainly in C++5.

The development of FieldOpt is a collaboration between two departments – called

NTNU Petroleum Cybernetics Group(PCG). PCG wants to promote common research

activities between the Department of Petroleum Engineering and Applied Geophysics(IPT)

and Department of Engineering Cybernetics(ITK). And that is exactly what FieldOpt

aims to be – a common platform for MSc. and Ph.D. students to conduct research.

We want FieldOpt, the petroleum field development optimization framework, to be a

user-friendly and trusted tool that contributes positively in uniting the academic field of

optimization and petroleum engineering in research. With its already built foundation,

FieldOpt will simplify and enhance the development process of optimization algorithms

to solve petroleum problems. It should make prototyping of new algorithms more ef-

ficient, and make it easier to test new techniquies. In addition, it should be easy to

configure, adapt and execute any petroleum case for optimization purposes [2].

The FieldOpt source code can be found in its entirety on GitHub

(https://github.com/PetroleumCyberneticsGroup/FieldOpt).

1.3 Document Structure

In the next chapter, Chapter 2, implementation tool and language, structure, and library

are presented as the main utilities in this GUI development.

Further, Chapter 3 defines graphical user interface, and introduces theory and guide-

lines for designing the GUI.

Some theory and description of the GUI development process, the implementation

process, and challenges is being presented in Chapter 4.

What is required of the graphical user interface? In Chapter 5, the system require-

ments are presented and divided into functional and non-functional requirements. In

addition, the GUI’s quality attributes are presented.

Requirements are followed by GUI design in Chapter 6 that presents different fea-

tures and interface elements used to create the current solution. A user analysis that

5C++ – See sub-section 2.1.1

3

https://github.com/PetroleumCyberneticsGroup/FieldOpt

Chapter 1. Introduction

discusses and defines the target audience is also included.

The results and the product of this project are being presented in Chapter 7, followed

by evaluation and reflections in Chapter 8.

Finally, the last chapter, Chapter 9, summarizes the project and presents recommen-

dation for further development of the FieldOpt driver configuration interface.

4

Chapter2
Utilities

This chapter will give a brief description of the implementation tool and framework

named Qt, an short introduction of C++, and a presentation of the JSON standard that is

chosen as the driver file format. The driver file file will contain data and information that

should be represented in the GUI. A customized library (Utilities by Einar Baumann)

that is needed in the GUI development to take care of the reading and writing interaction

between the GUI and the JSON file, is also introduced here.

2.1 Qt Application Framework

The Qt Company1 is the developer of Qt, a cross-platform framework with C++ class

Qt libaries. It has developed an integrated development environment(IDE) for open

source (and commercial) use, called Qt Creator. The cross-platform IDE is stocked

with features for easily creating UIs and applications [4]. The choice of framework was

predecided, it was one of the conditions of this thesis, as the group, PCG, had already

developed parts of the FieldOpt and gotten familiar with Qt. The library that was go-

ing to be included and used as a way to connect the GUI with the driver file, was also

created using Qt. In previous steps of the FieldOpt development, a decision of using Qt

was made based on what ResOpt(the beginning of it all) was written in, Qt. Choosing

Qt would therefore ease the reuse of this code. Another advantage of Qt is that it is

very portable when it comes to platforms/operating systems. It supports Windows, Mac

OS, and Linux. In addition, Qt provides all kinds of features perfect for creating a GUI

through the Qt Designer. It is integrated into the Qt Creator, and it can be launched

through the Design mode.
1The company is responsible for everything regarding the Qt software; product development, and

commercial and open source licensing, which is done together with the Qt Project(the Qt developers) [3].

5

Chapter 2. Utilities

The Qt Designer is the Qt Tool for building graphical user interfaces with Qt Widgets.

There can be composed and customized windows and dialogs, with/in simple steps [5].

And just as easily, there can be added elements onto them. By drag and drop from the

side library, objects can be placed onto the ui file. There is a flust of useful objects for

displaying data, taking input, or adjusting the layout. Some examples are: labels, spin

box, combo box, line/text edit, push button, radio button and (list) widgets with built-in

functionality. There also exist other objects very commonly used in, in this case, desk-

top applications.

Another convenient property of the Designer, is to use Qt’s signals and slots mechanism.

It is used in the programming code to assign behavior to the graphical elements [5]. It

can be set up by right clicking the object and “go to slot” and the function will automat-

ically be generated.

The Qt Creator also has a very convenient way to organize the project files. It creates

a folder structure by filtering them based on the file type – the .h files goes into Headers,

.cpp to Sources, .ui into Forms, and .qrc into Resources. In that way, it is easy to find

the files you want to work on.

2.1.1 C++

As mentioned, Qt uses standard C++ language – the Qt libraries are of C++ class. C++

is a general purpose programming language created with intention to be “close to the

machine”(handle machine problems in a simple, but efficient way), but also to be able

to create direct and concisely solutions. It is a language designed to support a wide

variety of uses [6]. As stated by Bjarne Stroustrup (the designer and original imple-

menter) in The C++ Programming Language [7] book, C++ is well suited for resource-

constrained applications found in software infrastructures. With its flexibility and gen-

erality, it seems to be suitable in many solutions.

With these statements, C++ covers all aspects of FieldOpt, from writing algorithms to

designing GUIs.

2.2 Utilities/Settings Library

The GUI should be based on the JSON2 standard made driver file, and use the Field-

Opt Utilities library made by Baumann. Utilities library consist of the Settings class

2JSON – See Section 2.3.1

6

2.3. Driver Configuration File

and related filehandling classes. The original files can be found in the FieldOpt repos-

itory on GitHub, by following this link: GitHub - FieldOpt Utilities library [8]. The

Settings class consists of Model, Simulator, Optimizer, and Settings. The Settings sub-

class takes the path to a driver file (JSON formatted) as input. This is parsed to get

the general runtime settings, but also to create separate objects containing the settings

and parameters for the three other sub-classes. So, it is through the use of this library

– the Settings class, that the GUI interacts with the (JSON) driver file. In order to

make the changes that the user wants, some modifications were done to the Settings

classes. Setters and some getters for different fields of interest were added. Some other

changes were made to fields by removing the const3 qualifier where needed. More

modifications will be done in the future. The modified and used version is found at

https://github.com/karolinr/FieldOpt/.../Driver-file-gui/Utilities/settings.

2.3 Driver Configuration File

As being mentioned by Baumann in the end of his thesis and what is well known for spe-

cialists in the field, the main way of configuring most reservoir simulators are through a

driver file. This will also be the case for FieldOpt.

A ‘driver’ acts like a translator, and communicates the important configurations to

the simulator like: what data and grid to use, and defining how to run simulations and

where to store the results. The driver file is often written manually using a text-editor,

and can be a quite heavvy job. It takes a lot of experience and a thick manual to conquer

the list of keywords and commands, which can be a complex and time-consuming task,

especially when we include error searching. Instead, we want the user to be able to cre-

ate and edit driver files through a GUI. The driver file should be in a machine-readable

format so the complexity of code in conjunction with the file and GUI will be reduced

significantly. To fulfill the needs, PCG decided to choose JSON as the driver file format.

2.3.1 JSON

JavaScript Object Notation, more known as JSON, is a way to store information in a

certain organized way – a structure. As it is easy for humans to read and write it, and for

computers to parse and write it, it fulfills the needs of the driver files format that is de-

sired for FieldOpt. The complexity of “read/write driver files” code will most likely be

reduced which will make it easier to add new configuration options in the future. JSON

3const – constant, not being able to change the marked field/instance/pointer etc.

7

https://github.com/PetroleumCyberneticsGroup/FieldOpt/tree/develop/FieldOpt/Settings
https://github.com/karolinr/FieldOpt/tree/feature/Driver-file-gui/FieldOpt/Utilities/settings

Chapter 2. Utilities

is therefore chosen as the driver files format. In addition, the text format is language

independent, and many programmers will be familiar with the coding and notation as it

is frequently used in the “C-family”4 languages. JSON has two structures, “a collection

of name/value pairs” and “an ordered list of values”, (for many of us) respectively called

‘object’, and ‘array’ [9].

The driver file has four objects: Global, Optimizer, Simulator, and Model. They are

present as sub-objects, and all of them must be defined. Objects may have an object

as a field. The file consists of settings and parameters for FieldOpt like: ‘name’ used

for deriving the output file names, specific parameters and settings for the selected op-

timization algorithm, what type of simulator is going to be used, path to a complete

driver file for the model (with properties to generate the grid files), and definition of the

model: reservoir and wells with related variables. There are some optional fields, but

many fields are mandatory to define.

2.3.2 Structure Example from Driver File

Listing 2.1 is a small example of how the JSON file is structured. This is an eight lines

clipping (part of the Optimizer object) from the 163 code lines long example driver

file, attached in Appendix A.1. Optimizer contains specific settings and parameters de-

pendent on the optimization algorithm chosen. It consists of these fields: Type, Mode,

Parameters, Objective, and Constraints[], but the two last objects are cut from this struc-

ture example.

Listing 2.1: Part of the Optimizer object from driver.json

1 " O p t i m i z e r " : {

2 " Type " : " Compass " ,

3 "Mode" : " Maximize " ,

4 " P a r a m e t e r s " : {

5 " MaxEva lua t i ons " : 10 ,

6 " I n i t i a l S t e p L e n g t h " : 5 0 . 0 ,

7 " MinimumStepLength " : 1 . 0

8 } ,

Type denotes what optimizer algorithm is to be used. Currently, the only implemented

algorithm is ‘Compass’. The Optimizer’s Objective function Mode is specified to be

either ‘Maximize’ or ‘Minimize’. The Parameters object has three fields for the current

4F.ex. C, C++, Java, C#, and Python

8

2.3. Driver Configuration File

choice of Optimizer Type ‘Compass’. They are quite self-explanatory. ‘MaxEvalua-

tion’ takes an integer (int). ‘InitialStepLength’ and ‘MinimumStepLength’ require float

number [10]. As seen here, there can be objects within objects, which can be of great

use when creating the desired structure.

9

Chapter 2. Utilities

10

Chapter3
An Introduction to User Interfaces and

Design Guidelines

“The golden rule of design: Don’t do to others what others have done to

you. Remember the things you don’t like in software interfaces you use.

Then make sure you don’t do the same things to users of interfaces you

design and develop.”
–Tracy Leonard (1996)

This chapter introduces the definition of a graphical user interface along with its role. It

also introduces some important guidelines for designing a good graphical user interface,

gathered and developed by different people with a lot of experience from the field. In

addition to the guidelines and formed golden rules presented in this chapter, the quote of

Leonard is something to keep in mind when designing an interface. Every detail matters,

and every choice is crucial to whether the interface’s application will be a success or not.

Therefore, in addition to personal experience, we have tried to follow and use what is

presented here in the design process as much as possible.

3.1 Graphical User Interface Definition and Role

A user interface(UI) establishes a dialog between users and computers. As they (users

and computers) are not “speaking” the same language, the interface works as an inter-

preter, translating input and output back and fourth.

A graphical user interface(GUI) is a type of interface that enables a person to com-

municate/interact with a computer through the use of icons, symbols, and other visual

11

Chapter 3. An Introduction to User Interfaces and Design Guidelines

elements and/or devices, rather than allowing interaction only by using text via the com-

mand line or a text menu.

A GUI has elements such as windows, tabs, menu bar, buttons, icons,and cursor.

The FieldOpt driver file GUI, as an application, has the specific components: appli-

cation window, dialogs, message box, text-box, buttons, radio-button, check-box, and

combo-box. The UI is part of the software and is designed such a way that it is expected

to provide the user insight of the software. There are more about the elements and con-

trols in Section 6.2.

A graphical UI is important because the alternative is not adequate especially for novice

and intermittent users. It requires even more knowledge to use a command-line based

interface. And it is harder and more time-consuming to cross the threshold to become

familiar and feel confident with the UI – a lot steeper learning curve for the text-based

interface. A GUI is visually intuitive which is a huge advantage in terms of the learnabil-

ity aspect of usability. The learnability plays a huge part to what defines a user-friendly

interface, as is mentioned in Chapter 5, in Section 5.3.1 about the usability requirement.

3.2 Design Guidelines

Designing an interface is not an exact science because applications have so many va-

rieties of amongst other: target audience, objectives, in addition to the development

concerning different platforms. This makes it difficult to form a perfect recipe and so-

lution for creating a perfect user interface. There may never be a definitive, but there

exist many guidelines based on a lot of experience. Looking at them, there are simi-

larities, and some recur more often than others. In addition, these rules are basically

the same regardless of the interface and intended platform or device. In this section,

we present guidelines and some design mistakes presented by Nielsen (and/or the NN

group), Shneiderman et al., and Theo Mandel. They agree on many of the core guide-

lines, but have a few different rules. We have picked out those (guidelines) that seem to

be relevant to this GUI.

3.2.1 Navigation

According to chapter two in Designing the User Interface [11], there need to be es-

tablished some guidelines to make navigation as smooth as possible. The relevant

guidelines for the FieldOpt GUI are considered. They are: to standarize task sequence,

12

3.2. Design Guidelines

use unique and descriptive headings, and to use radio buttons for mutually exclusive

choices1

3.2.2 Common Golden Rules of User Interface Design

In this sub-section, we have summed up the common guidelines among the mentioned

authors (Jakob Nielsen and Schneiderman et al.). There seems to be a huge agreement

regarding these “rules”:

Consistency is frequently mentioned. According to Schneiderman et al. and Nielsen,

one should strive for consistency. Why is that? Consistency in the user interface is crit-

ical to efficient learning and use of the system. The system should be consistant in how

the interface functions and reacts, but also in every design and layout element. It should

exist in terminology, abbreviations, formats, icons, color, and capitalization. If there is

consistency, the interface requires less (memory capacity) from the user throughout the

system. For example, when the user has learned how to navigate in one tab/part of the

system, it will automatically understand the next. The user do not need to turn its head

around to understand, as it is already “stored”. (Some of these guidelines are somehow

connected e.g. this is also a guideline that leads to “reduced memory load”.)

Standards have basically the same function. Users have become familiar and used

to elements acting in a certain way through other interfaces over years of experience.

On a daily/regular basis, and on different platforms, users deal with interfaces, so it

is important to be consistant and keep the known elements and actions as they usually

act/are.

Consistency seems to lead to easier learning because it will lead to for example fewer

confusions and less errors than when inconsistancy occurs. Inconsistant interfaces may

cause users to make errors, therefore we want similar procedures to be designed the

same way. Also, it is important to use the same phrasing and skip synonyms. It can be

confusing when different words are used to explain/show the same thing. The user may

overthink it and end up using much time on the issue: “Do they mean the same thing?

Does the same thing happen when I push the button?”, and in worst cases it leads to

errors. These kinds of design mistakes are very unecessary.

Feedback should be provided by the system to keep the users informed about pro-

cesses, progress etc. There should be customized feedbacks for different type of ac-

1This is backed up by Nielsen in the article Check boxes vs. Radio buttons [12].

13

Chapter 3. An Introduction to User Interfaces and Design Guidelines

tions; modest response for frequent and minor actions, while responses for infrequent

and major actions should be of more substance. By making the system status visible

for users they will get in more control, exactly what Mandel wants to achieve with his

principles.

Simple error handling is what the system should offer to prevent the user from mak-

ing serious errors. The error should be detected (before executed), and messages should

indicate the problem in plain language. The messages should suggest a solution and

recovery. Let the system be helpful. According to Mandel this will also help the users

to be in control.

User control and freedom are topics that is about giving the user permit to easily re-

vert an action. Schneiderman et al. claims that this feature relieves anxiety, because the

user knows that he can make an error without bigger consequences – it can be undone.

In this way, users will grow confidence and explore unknown functions. Undo and redo

functions or the opportunity to make changes are measures to take.

Reduce short-term memory load Because of human’s limited information pro-

cessing in short-term memory, it should be required of the GUI designs to adjust to that

area. A measure is to use recognition rather than recall. The user should not need to

remember information from one part of the program to another. By keeping the layout

simple, reducing/combining multiple pages into something solid, making objects, ac-

tions, and options visible, the user’s memory load will be minimized.

Confirmation of the rules Jesse James Garrett is another author that builds up

on that these are the guidelines that should be followed, which he does in his book:

Elements of User Experience: User-Centered Design for the Web and Beyond (2nd

Edition). He again confirms what we think of as the main guidlines for desiging inter-

faces.

3.2.3 Golden Rules of User Interface Design

The following rules are some of the golden rules for GUI design according to Shnei-

derman, Plaisant, Cohen, and Jacobs in their book, Designing the User Interface [11].

The most of them are gathered in the common guidelines section, but the authors had

different focus on some of the main rules, so they are mentioned here.

14

3.2. Design Guidelines

Enable frequent users to use shortcuts As this system is not the biggest and

most complex, we have not seen any need for the use of this guideline yet. Thus, we

have thought of personal customization and therefore some hidden commands, but not

especially due to frequent users, see Section 6.1.1.

3.2.4 Usability Heuristics for User Interface Design

The following list is some of Jakob Nielsen’s 10 general principles for interaction de-

sign [13]. Even though according to Nielsen, “They are called “heuristics” because they

are broad rules of thumb and not specific usability guidelines”, we have used the term

“guideline” for “heuristic” as we think of it as equals rather than strict “rule”. Some of

his principles are gathered under the common guidelines section, Section 3.2.2.

Match between system and the real world One should try to follow the real-

world’s “code”. The system should communicate in the users’ language and use famil-

iar concepts and standards. This includes making information appear in a natural and

logical order.

Error prevention “Even better than good error messages is a careful design which

prevents a problem from occurring in the first place.” [13, Nielsen, 1995]. This is some-

thing we really want to fulfill to the fullest. The design solutions should not let users be

able to do anything wrong. If there have to exist such error-prone parts, one should try

to reduce the risk of error as much as possible with thorougly descriptions, and one can

present a confirmation option before they commit the action. But the best is to eliminate

error-prone conditions.

Flexibility and efficienct of use will allow users to tailor frequent actions. This may

speed the interaction for the expert, and let the user, inexperienced or experienced, be

in control.

Aesthetic and minimalist design One must evaluate what kind of information the

dialogs should be filled with. They should not contain information without relevance

or something that is barely in use. All information (whether it’s relevant or not) are

competing for users’ attention. We do not want users to lose focus from the important.

Help and documentation are something we want to avoid needing, but it may be

necessary. Nielsen provides some tips e.g. this kind of information should be easy to

15

Chapter 3. An Introduction to User Interfaces and Design Guidelines

search for, the focus should be on user’s task, and there should be a short and consise

list of steps to follow.

3.2.5 Theo Mandel’s

We have included these principles by Mandel because they are short and consise, and

can be great to look-up during the GUI development. See chapter five in Mandel’s pa-

per [14] about principle that helps to place users in control, let the GUI:

1. Be modeless – use modes judiciously

2. Be flexible – allow users to use either the keyboard or mouse

3. Be interruptible – allow users to change focus

4. Be helpful – display descriptive messages and text

5. Be forgiving – provide immediate and reversible actions, and feedback

6. Be navigable – provide meaningful paths and exits

7. Be accessible – accommodate users with different skill levels

8. Be facilitative – Make the user interface transparent

9. Be adjustable – allow users to customize the interface (preferences)

10. Be interactive – allow users to directly manipulate interface objects.

3.2.6 Ten Application Design Mistakes

The following is a list of common design mistakes that we want to avoid. The ten mis-

takes are presented in a report by Whitenton et al. from 2012 [15]. They are presented

as common mistakes based on many candidates, not from the 13 winners chosen for the

Application Design Showcase report, but from submissions that the NN group judged.

Some of these had rigid design and/or usability issues. Back to the quote of Leonard

in the epigraph, we learn from more than what guidelines to follow. We can also learn

from other’s mistakes.

1. Steps in a task or process presented out of order on a page or screen

2. Missing simple paths

3. Invisible controls and cryptic icons

4. Hideous forms

5. Unclear differences when comparing choices

16

3.2. Design Guidelines

6. Indistinguashable current selection status

7. Branding feature or menu commands

8. Only the promise of content

9. Views and modes that trap people

10. Bad dialog.

17

Chapter 3. An Introduction to User Interfaces and Design Guidelines

18

Chapter4
GUI Development & Implementation

Process

In this chapter, the GUI development process is defined and presented including further

description of the project work process. In addition, we shed some light on challenges

and risk related to this project.

4.1 The Development Process

In this thesis’ user interface development process, the iterative development model is

used as a guide. According to Tutorial Points1 a model for GUI implementation should

consist of the following steps in a cycle [16].

• GUI Requirement Specification

• GUI User Analysis

• GUI Task Analysis

• GUI Design & Implementation

• GUI Testing

The design is developed iteratively – steps are repeated. Formality and detail is added

during the development with a continuos correction of earlier solutions.

GUI Requirement Gathering The functionality of the GUI is defined here. The

designers may want to have a list of all functional and non-functional requirements.

1A company with the mission of delivering “Simply Easy Learning” online.

19

Chapter 4. GUI Development & Implementation Process

This can be taken from user/customer demands. If they have any exisiting software so-

lution, requirements (and “don’ts”) can be drawn from this. All kinds of constraints are

listed here.

User Analysis The designer needs to do a careful user analysis; defining and de-

ciding whom the system will be of use for. This is an important part of the GUI devel-

opment since the target audience are the ones the design details change according to.

Knowledge and skills of the user are keys to what the GUI should look like.

Task Analysis Tasks should represent what the system should be able to do. After

the designer analyzes and presents the tasks, the identified tasks are directly being con-

verted to goals in the GUI presentation. The user should be able to perform those tasks

through the interface. To simplify, (major) tasks may be divided into smaller sub-tasks.

The flow of information between the sub-tasks often mirror the flow of GUI contents.

GUI Design and Implementation After carrying out the previous steps, the devel-

oper should have an overview and information about requirements, user environment,

and goals for the GUI. The next step is to design and implement the GUI using the cho-

sen software and/or programming language. It is then self-tested by the developers.

Testing GUI testing can be done in various ways. Continously desk-checking dur-

ing the implementation, debugging, involvement of users for testing and validation, and

release of beta version are a few of them. Testing may include learnability, operability,

effectiveness, efficency, satisfaction etc.

4.2 The Work Process

4.2.1 Work Flow

The Petroleum Cybernetics group started with some thoughts and ideas of what the

coming GUI could be. We had meetings where we discussed what the solution should

do and be, and with the use of a whiteboard we started thinking of a design. The mem-

bers of PCG can also be considered as potential users, so getting feedback from them

could be an advantage in the early process. At the most, we had weekly meetings where

we reviewed the work that was done, and we discussed the next steps and checked the

progress of the work. From the beginning, we focused on the whole package with func-

20

4.2. The Work Process

tional elements rather than just the interface design. We wanted to be able to run and test

the application during the process. By openly sharing our thoughts, we are more sure

of having the same understanding of the goal and vision of FieldOpt and of this driver

interface. Bellout took control and clearified, as Morten T. Hansen in chapter four of

"Collaboration", about unifying goal, teamwork, and inspiration and delegation. [17]

The weekly process was generally like this:

1. Feedback session: Consult with the team (co-supervisors). Go through the current

solution. Reach an agreement on further work.

2. Do as discussed. Process, change, remove, and improve.

3. Expand to new solutions.

4. Repeat

Process when coding and working in Qt
1. Think of a solution to implement the idea.

2. Implement it in Qt.

3. Try to compile, and fix errors until it compiles.

4. Test the new solution in every way. And then ask some questions:

• Does it handle all scenarios?

• Is it intuitive and logical for users?

• Is there no risk of user errors, or as low risk as possible?

• Is the consistency kept throughout the design?

Try to avoid any of the ten design mistakes presented in the theory – Section 3.2.6.

5. If good enough, move on to the next idea. If not, improve the solution until

satisfied.

The work process/steps are repeated after coding small parts. These are small cycles

within the development that have many iterations. [18]

4.2.2 Challenges

Technical competence There are risks and challenges related to a limited techni-

cal competence within the field of graphical user interfaces, software development, and

programming. Without the expert developer with years and years of experience, the risk

of a slow and time-consuming development are quite high. It can be very hard to plan

and do time estimations on problem solving and programming. Unexpected problems

will pop up throughout the project period. The problems may be small and easy to solve,

21

Chapter 4. GUI Development & Implementation Process

or complex and time costly. In addition, it is very likely that lots of time will be spent

on getting to know all the utilities, as well as learning GUI theory and how to practice

it to be able to carry out this project.

Major and minor design changes
During the GUI implementation the JSON driver file structure/setup changes as well, as

it is also under development. New fields or parameters are introduced, and others are

removed. As a result, the GUI’s layout will need to undergo changes in addition to the

“normal” construction based on the initial driver file structure. Meaning there are a par-

allel development process that has to be taken into account – another factor in the GUI’s

process. The already very dynamic process can and will be less predictable, especially

considering time. It can be hard to know how time-consuming it will be.

As mentioned above, design changes will happen. After starting discussing design in

front of the whiteboard and drawing sketches, we are jumping right to the implemen-

tation part. We are planning to design further and evaluate during the implementation

part – learning by doing. There exists a risk that this process may end up with several

design changes. Minor ones does not need to affect the progress, but bigger changes in

this phase will often be a very costly affair in terms of time. If we realize the current

design cannot be implemented or there exist a much better solution, there may be a great

challenge ahead.

4.2.3 Testing

During the implementation of the interface application, the code and program are tested

continuously. After a function is written the code is checked for spelling mistakes or/and

syntax errors, then ran to see if it compiles. An attempt to compile will reveal any

typographical error or incorrect use of the programming language. Qt Creator will give

feedback, messages, and hints about what seems to be the problem. The debugging

starts, where we try to locate, detect, and remove all errors in the computer application.

We want to get rid of every logic error, “bug”, that is caused by incorrect use of control

structures. We will also ask questions like: Does the GUI design respond like it should

do? Is the positioning of elements logic? Is the naming right? Are elements intuitive?

During the process, we may do some beta testing with real data (e.g. importing a .json

driver file). For further testing, at a later stage when more of the functionality is in order,

we can let users test the interface, get feedback, evaluate, and continue developing.

22

Chapter5
System Requirements

This chapter contains system functionality, in addition to its constraints, the usabil-

ity and portability quality attributes are presented. Software Engineering by Ian Som-

merville [19] is used for guidance in most of this chapter.

A part of software engineering, requirement engineering, is to think of what is required

of a system to be a good system. The system should deliver the required functionalities,

but also in performance to the user, it should be maintainable, dependable, and usable.

In this case, the system is defined as the GUI. “System” and “GUI” will be used inter-

changeably.

GUI specification is, in this case, another term for the process of understanding and

defining what services(functionalities) that should be required of the system, and iden-

tifying the constraints on the system’s operation and development. In addition, the

requirement engineering process aims to specify a system that is satisfying stakeholder-

s/user requirements. In this engineering process, there is no feasibility study as there is

no budget to think of and the developer(student) works for free. PCG can be looked at

as the customer, and we have roles as (user), consultant, developer, and designer. Some

requirements have already been decided for in other parts of the FieldOpt development,

and those processes have led to some predetermined constraints for the driver GUI.

5.1 Functional Requirements

A functional requirement states what service the system should provide, in addition

to how the system should behave to certain inputs and/or situations. What the system

23

Chapter 5. System Requirements

should not do, may also be stated.

Each functional requirement is given a specific priority, categorized into three levels:

Priority high(H), medium(M), or low(L). Priority high means that the requirement is

necessary for the system to function, i.e. mandatory. Medium priority is for desirable

requirements. Low priority is assigned for a requirement that is optional – to fine tune

the system.

Nr. Short label Description Priority

1 Read JSON file GUI should be able to, through the use of the
Utilities libary, read a JSON file.

H

2 Write JSON file GUI should be able to, through the use of the
Utilities library, write to a JSON file.

H

3 Data presentation GUI should be able to present the data stored in
the driver file in a human readable way.

H

4 User manipulation of
data

GUI should enable the user to manipulate and
change information/data.

H

5 Import from JSON file GUI should enable the user to import data from
an existing JSON file.

H

6 Save GUI should enable the user to save the updated
information (to that JSON file).

H

7 Save as GUI should enable the user to save to a new
JSON file (save as...)

H

8 Meaningful driver file GUI should generate a meaningful configura-
tion of FieldOpt as a driver file.

H

9 Valid input GUI should only accept valid input from the
user.

H

10 Learnability GUI should be simple enough for users to easily
use it without a manual.

H

11 Sense of progress GUI should enable the user to get a sense of
progress.

M

12 Navigation GUI should enable the user to easily navigate
through the menus, options, and settings.

H

13 Prevent mistakes/ avoid
error

GUI should be designed in a way to prevent the
user from doing typing mistakes. Create solu-
tions for avoiding errors.

H

14 Diversity in users GUI should facilitate options and solutions for
the diversity of users.

L

Table 5.1: GUI Requirements – What the system should be able to do and provide.

24

5.2. Non-Functional Requirements

These are requirements that we want the GUI to fulfill, then the user is able to perform

certain tasks and the GUI is responding in a certain way.

Some kinds of GUI requirements can also be found in the chapter about the design-

ing guidelines. Even though they are not specified in this table nor defined as rules, they

may be as important to follow.

5.2 Non-Functional Requirements

Non-functional requirements apply mostly to the overall system. These result in con-

straints on the product being developed and services provided by the system, develop-

ment process, and may also include time constraints and constraints in consequences of

standards.

Non-functional requirements may be divided into three categories with even more sub-

categories, according to Figure 4.3 in Software Engineering. Considering our system,

we have chosen to not include and consider external(ethical, regulatory, and legisla-

tive) requirements. Some organizational(environmental, operational, and development)

requirements are thought of and presented here. We are also focusing on product re-

quirements which constrain the behavior of the system. The product requirements are

categorized into usability, efficiency, dependability, and security [20].

There is no focus on efficiency in terms of performance. Other parts of FieldOpt will

and have considered this. Security requirements for FieldOpt have been considered, but

at this stage FieldOpt seems to not need any special measures, also in regards to the

GUI. As the system is free and open-source and available on GitHub, it is supposed to

be open and accessible. It is therefore little need for protection, even though the open-

ness comes with some vulnerabilities. At this stage, we cannot see any security threats

for the system. Summed up, we are mainly looking at the usability sub-category, and

some organizational requirements.

In this section, the constraints will be described. The constraints are due to the choice

of components, technology, programming language, framework, layout language, and

data structure. Some of the components are thoroughly described in Chapter 2.

25

Chapter 5. System Requirements

5.2.1 Constraints

Our GUI will be created and implemented using the Qt Framework and Designer – a

design decision made by the Petroleum Cybernetics Group. It constrains the system

to be inside the frames of Qt with its graphical library. This was chosen so the code

could be compatable with the rest of FieldOpt, as the most of the pre-existing code is

written in C++. Therefore the programming language will be C++. And by using Qt,

the GUI will also be available and recognizable for all platforms as it adapts and uses

the different operating systems’ layout. See Section 2.1 in Chapter 2 for a more detailed

description of what Qt is.

Another decision that was already made was to use the Utilities/Settings library

made by Einar Baumenn, see Section 2.2. The library is not yet complete, and it will

be developed alongside the FieldOpt driver file GUI. Since the library is mostly con-

strained by C++ and Qt, and it is dynamic, it does not need to be seen as an additional

constrain. The Utilities was already written to handle reading from a JSON file.

JSON is the data structure chosen for the driver/configuration file. The standard may

come with some restriction to what can be done. See Section 2.3.1 for more information

about that utility.

In terms of physical material, hardware should not be an issue. The GUI itself will

not require any kind of special hardware. Other parts of FieldOpt may have require-

ments about the hardware, especially considering the simulations. The system is to be

developed for desktops, so it is intentionally not created nor compatible for for example

mobile devices. Neither security nor safety will be issues here, and the application will

not be connected to a network.

A time constraint is given by NTNU. The project needs to be completed during a

specific time period. Due to the limited time some GUI functionalities have not been

implemented. If these assignments were handled by an expert in this field, time would

not have been such a constraint for the progress of the GUI. Others with more compe-

tence would probably not need to use time to learn how to master Qt or use as much

time to solve programming problems and come up with solutions.

26

5.3. Quality Attributes

5.3 Quality Attributes

“A quality attribute is a measurable or testable property of a system that is used

to indicate how well the system satifies the needs of its stakeholders.”
–Bass et al. [21]

Since we want our product to be of quality, this is something we need to focus on during

the development. The product quality model is an important part of how to do quality

evaluation of a system. It determines which quality characteristics will be considered

during an evaluation of the properties of a software product. This is an ISO/IEC stan-

dard, called ISO/IEC FCD1 25010 (new in 2011). ISO, short for International Organi-

zation for Standardization, forms together with International Electrotechnical Commis-

sion(IEC) joint committees. They are representatives from various national standards

organizations that promotes standards mainly to enhance and increase the number of

products/services that are safe, reliable and of good quality [22] [23].

When deciding what qualities to choose, it is important to think of what you want the

system to be focusing on. There are eight quality characteristics defined by the product

quality model. We have chosen to focus on two attributes in the development. Imple-

mentation of the quality attributes will be required for the system. The usability and

portability attributes are presented in the following sub-sections.

5.3.1 Usability

Probably the most important feature and attribute for a user interface is for it to be

user-friendly, and naturally it applies to this GUI as well. The quality of usability is a

requirement that needs to be fulfilled and reached to the fullest to deliver a quality GUI.

Usability is defined as “The degree to which a product or system can be used by speci-

fied users to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use.” on page 193 in Software Architecture in Pratice [24], which

is taken from the ISO standard [25].

According to the ISO/IEC FCD 25010 product quality standard, usability characteristic

is composed of appropriate recognizability, learnability, operability, user interface aes-

thetics, and accessibility. These qualities are somehow all mentioned in the introduction

chapter to user interfaces and design guidelines – Chapter 3. The guidelines and stan-

1Final Committee Draft(FCD).

27

Chapter 5. System Requirements

dard are agreeing on what should be required of a user interface. We want our GUI to

be lucid and recognizable. It should be easy to achieve goals of learning in an effective

and efficient matter. The user should feel satisfied and pleased during and after using

the interface. It should be designed in a way that makes it easy to operate and navigate.

We want to understand the user and his behavior to be able to predict what and how he

will use the system. Then the system can be built up and designed in a way that prevent

errors and mistakes. The GUI should also be accessible for users with every kind of

skillset and range of knowledge, within the target audience.

5.3.2 Portability

As mentioned before, we want FieldOpt to be used independently of operating system

and available for different platforms. This requirement can be fulfilled by using a cross-

platform framework and a GUI toolkit, then the code will be universal to all compilers.

According to the ISO/IEC FCD 25010 product quality standard, the portability quality

is composed of adaptability, installability, and replaceability [26]. We especially had

the adaptability part of portability in mind when we were thinking about what kind of

qualities FieldOpt and the GUI should have.

It is wanted for the GUI to replace direct textmanipulation of a configuration/driver

file. Later, the GUI could be evaluated on the degree to which the GUI could replace

the current or another existing solution for the same purpose in the same environment

– evaluate the replaceability. In addition, an evaluation of how the system fulfills the

requirements to be adaptable can be carried out.

28

Chapter6
GUI Design

This chapter describes GUI design elements used in our system with application exam-

ples, and how they shall be used. They are tools in the process of meeting the require-

ments and following the selected guidelines. The first section defines the target audience

of the system and gives an example from the system of how it can be customized. As

the design details change according to the knowledge and competency level of the user,

doing a user analysis is important.

6.1 User Analysis – Target audience

Understanding users is key to designing a customized UI. Before designing and imple-

menting the GUI, we need to understand the users of the system, as the design depend

heavily on who they are. It is about anticipating user behavior and ensuring that the so-

lution has elements that are accessible, understandable, and that facilitate their wished

actions.

As FieldOpt aims to be a tool for students, professors and others in the research commu-

nity at the university (see section 1.2), so will the target audience for this GUI be. Users

will mainly be M.Sc and PhD students within the field of petroleum or cybernetics that

possess the corresponding knowledge and skillset. The field of FieldOpt will determine

whom the user of this driver GUI will be. Even though people are different and may

possess f.ex. different skills in computer application, we have a somewhat clear idea

of what kind of diversity we have to deal with. Education level, motivation, goals, and

skills they aquire will mostly be the same for every user by neglecting the exceptions.

The users will be of both genders. The students have graduated from high school and

29

Chapter 6. GUI Design

have managed to get into NTNU by fulfilling NTNU’s admission requirements and pass

a certain grade limit, or they have graduated from other universities. The age of our

users could range from 20 to close to 70, depending on the professors and if and when

someone decide to take a PhD. In that way we somehow know what they are capable of.

They are used to aquire new knowledge and have typically had experience with many

different types of interfaces, but their skills is as diverse as the user group. Therefore

there will be novice, intermittent, and experts amongst them. One of our goals is that

people should be able to make a fast transition just by exploring the application.

6.1.1 Customized Design

A good GUI should let the frequent users (soon to-be experts) tailor actions and use

shortcuts (see Section 3.2). This is about the flexibility of the interface – a customized

design. In today’s solution, there are options that all categories of users may choose to

use or not. With the use of a check-box it implies that the feature is optional to use. The

option has different purposes; such as giving the user more parameters to specify, which

can be seen as more advanced.

Unsecure or novice users will probably not choose to specify settings if they are unsure

of what to enter. They have the option of skipping the step by keeping the check-box

unchecked, or leaving it like the imported driver file may have specified it.

The other purpose is regardless of current type of user. There are times these param-

eters do not need to be specified because the experiment and simulation have to do with

other parts of the model or the focus is on other details. Then the option to skip certain

specifications can be of good use, and may be time saving and “mind” saving.

Except from the check-box expansion of settings, there are no differences in the GUI

design for different users. We do not recognize needs for big differences in accessabil-

ity/availability, as we do not want the GUI to be that complicated. We want to keep it

simple enough for all type of users.

Figure 6.1 is a clipping and example of how our GUI have features customized for

users. As explained above this feature has the purpose of giving an extra option to

specify some variables, in addition to be a way to please all types of users and their

need.

30

6.1. User Analysis – Target audience

(a) Unchecked check-box – I do not want to
specify variables, so the Set Variables...-button
and dialog is unavailable.

(b) Checked check-box – I want to specify vari-
ables, so the Set Variables...-button and dialog
is available.

Figure 6.1: Screenshot of a part of the Model - Well dialog – clipping of the I want to
specify array for variables check-box. This is an example of a feature customized for user.
The user can choose to specify array for variables or not by checking (or unchecking) the
check box. The button change from an unavailable state to an available state, when checked.
By clicking the button a new dialog opens with variables settings.

Another solution could be to make the user specify and choose what type of user they

are, and then restricting their options. But if there are any uncertainties of what will

be restricted, the user may be unsure of what to choose, and this may lead to unwanted

confusion. Anyhow, we do not know what the different user would want to specify.

It may not depend on how they determine themselves. Our solution keeps the options

open. All type of users will have the the possibility to specify what they want to specify

(of the voluntary options), but they are not forced to use them. Hopefully the system

will contain solutions that will not frustrate the advanced users, nor the novice ones. We

do not want any confused users on any part of the scale.

31

Chapter 6. GUI Design

6.2 Interface Elements

Qt provides the familiar layout and element design to satisfy users. We use standard

elements from the Qt libraries found in the ‘Widget Box’. These elements have a certain

standard look: a special form, function and style. The user should at ones be able

to recognize e.g. a button and predict its function. If we have used the elements in

the right way, the user should be able to predict actions allowed just by looking at the

design.

By having no vague or misleading options that are impossible for the average user

to understand, and as Jakob Nielsen says: by employing the design elements correctly

enchance user’s sense of mastery over technology [12], we may be able to satisfy the

diversity of users.

When adopting these elements we have tried to keep in mind the guidelines pre-

sented in Chapter 3. How can we use these components to convey what we want from

the user? How do we present what is accepted and what type of input we require? We

need to use the available components to follow the guidelines.

The interface elements help us to direct, guide, and lead the user through the ap-

plication, so they can execute actions, and enter correct/valid input, in order for us to

fullfill the users’ wish, and in the end getting the result of a configured JSON driver file.

6.2.1 Input Controls (Widgets and Buttons)

Through the use of these elements we get to retrieve user input, so we have enough

information to generate a driver file for FieldOpt, and later execute a simulation, so the

user can get their results.

As other elements, buttons and widgets should also have a familiar and clean design

so it is easily recognizable as the element that it is. They should be describtive, and it

should be possible to predict the behavior and action of the system after clicking/select-

ing the element.

For push buttons, the text is set as short and consise as possible, or the text is replaced

by a descriptive icon as in Figure 6.2. The buttons change state when the pointer is

above the button area, giving a hint that it is active and ready to be clicked. This can be

seen by the shining or highlighted layout. Mostly, this applies to the other elements as

well. By clicking the button, we expect the system to respond with an action. But some

buttons express that there is no immediate action after, but that there is further choices

32

6.2. Interface Elements

beneath or a need for additional information. This is expressed through the use of an

ellipsis, a set of three periods, in the descriptive text. This is illustrated by the examples

from the GUI in Figure 6.3. It indicates that you can explore the software without any

fear of something unforeseen happening.

Figure 6.2: Screenshot of an edit button with an icon as the descriptive informa-
tion. A pencil is a well known symbol for edit.

(a) A button with the text: “Browse...” used in
the Global, Model, and Simulator tab.

(b) The button with the text: “Set Parame-
ters...” used in the Optimizer tab.

Figure 6.3: Screenshots of push buttons with descriptive text and an ellipsis; telling the
user that the response of the click is not an immediate action. A new dialog will appear –
another step where additional information is needed.

By clicking the button in 6.3a (in the application) you get into a browsing file dialog

where you may choose a path to a predecided type of file, and you may search through

your computer system directories for the file (or directory) you want to choose. Click

‘Open’ to take the further step to choose it.

By clicking the button, 6.3b, you open a dialog where you need to set additional

parameters, and then click ‘Ok’ to accept the new parameters.

Radio buttons are meant for mutually exclusive choices. These options cannot be cho-

sen, be true, or exist at the same time. One option makes the other(s) unavailable for

that state. The alternatives cannot be chosen more than one at a time, and one needs to

be chosen. Not only does the radio buttons convey that these alternatives can only be

used separately, but it also secures and prevents users from making a mistake (misun-

derstanding or mistyping) regarding the choice.

As the Figure 6.4 illustrate, radio buttons present the options openly – all options are

permanently visible without forcing the user to click anything (to take any action). The

user may easily/faster figure out which option applies to them. This has a lower cog-

nitive load1 compared to the design alternative combo box according to the Nielsen

Norman Group [12]. A well state cannot be something other than open or shut, and

therefore there is no question about preparing the design for any additional option or

1Cognitive load – “the amount of mental resources that is required to operate the system” [27]

33

Chapter 6. GUI Design

(a) Well state “Open”.

(b) Well state “Shut”.

Figure 6.4: Screenshots from the model well controls dialog, where
the well has a state of either open or shut, here represented by radio
buttons. The subfigures 6.4a and 6.4b illustrates the two options.

change in further development. If that is the case, or there is limited space, a combo box

may be the solution. The combo box can present more options in a tidier design, and

can be more convenient to use as a solution when the alternatives are many. But unlike

radio buttons, it does not show all the options without the user clicking the box, as you

can see in Figure 6.5. By clicking the box, the menu rolls out, as seen in Figure 6.6. In

other words, the options stays hidden until the user clicks it/takes an action.

Figure 6.5: This is a screenshot from the
Model’s well dialog. Only one option
can be selected for that field. According
to this state, the preferred phase of the
current well is oil.

Figure 6.6: An example of an open combo
box with all options visible. The preferred
phase of this well can be the optional ‘Oil’,
‘Water’, ‘Gas’, or ‘Liquid’. This is a screen-
shot from the Model’s well dialog.

A drop down menu, or here referred to as a combo box, allows the user to select a sin-

gle option out of (usually) a large number of items. As mentioned above, radio buttons

may serve a similar need. Limited space usually forces the use of combo boxes. In the

today’s solution you may argue that many of the combo boxes should be replaced by

radio buttons, but this solution is chosen due to further development. We have focus

on portability and the possibility to modify the application in the future. An expansion

with more options (e.g. other types and modes) will be much easier with an existing

combo-box than by adding additional radio buttons and demanding more space on the

screen. Some examples are the Optimizer’s type and mode field that currently have only

one and two options. We have chosen to automatically select an option for all combo

box fields. We do not require the user to manually select it, especially not when there is

34

6.2. Interface Elements

only one option to choose from. We do not want to require the user to take any unneces-

sary actions that would not give you any additional information or make any difference.

If we had not, that may have lead to frustrated users in the long run.

List boxes are boxes that can contain list of items. In the system, we use list boxes

not as a list where you have to choose a specific element as an input, but as a way to

organize components that have more information related to them. The user is able to

add and remove items from the list, and set/change additional item information. The

list is always visible in the specific dialog. Because of limited space, the box is set to

a restricted size. When the list is filled with more items than the list can view, the box

automatically gains a vertical scroll bar, making it possible to scroll through the whole

list of items. The user may also maximize the dialog to view more items at a time. The

list is designed to expand vertically. Single-selection list boxes are used since we are

currenctly allowing the user to manipulate only one item’s data at a time.

Generally for the GUI design, when the Settings class or the JSON driver file expect

an array of a specific field, we have decided to use list boxes to represent the array. Re-

lated fields are represented by GUI elements beside the list, and are connected to items

in the list. An item represent an array component. An example can be seen in the Opti-

mizer’s Objective dialog, Figure 7.14. The other dialogs with the same basis have been

structured the same.

Figure 7.15 is a screenshot of the Optimizer’s Constraints dialog. By selecting an

item in the list box, the corresponding values for the related fields will show on the right.

These can be changed dynamically. The idea is for them to be temporary saved after

selecting other items, or clicking ‘Ok’/accept. It will not be permanently saved until

the user clicks ‘Save’ or ‘Save as...’ or use the shortkey ‘Ctrl’ + ‘s’. That functionality

is not yet implemented. As mentioned, this solution has been implemented and used

throughout the GUI, keeping it consistent.

A check box is used for a single option. The user switches through two different states,

turning the option on or off. This is used when we want a typical boolean answer from

the user. In regard to design, it is important to use this only when the reaction is clear

for the user; what happens if it is checked, what happens if it is not? The user should

feel safe to take an action. We do not want to make the 5th design mistake from Sub-

section 3.2.6. Figure 6.7 is an example of how the check box can be used and are used

in this GUI. You either want to set a bookkeeping tolerance or you do not want book-

keeping. These are the two mutually exclusive options. The box can be toggled on and

35

Chapter 6. GUI Design

off. By having the ‘bookkeeping tolerance’ field visible at all time and using the en-

abling/disabling feature, it is easier for the user to understand what the consequences of

checking/unchecking the check box are. Another quite similar example from the GUI

is the Figure 6.1.

(a) Screenshot of a the unchecked bookkeeping
check box.

(b) Screenshot of the checked bookkeeping
check box.

Figure 6.7: Screenshot from the Global tab, demonstrating how bookkeeping is an option
to set or not. The subfigures a and b are a demonstration of what it looks like unchecked
vs. checked; disabling and enabling setting the bookkeeping tolerance field.

Line edit is a component where the user can enter text input, graphically extending in

only one line. We try to set the graphical size of the element so it matches the reality,

and we try to predict the length of the input. From there we set the horizontal length as

practical as possible. The width (vertical length) is set appropriate to font size 27. If we

had needed more text entered, the text edit would have been used. That is a text box of

a chosen size with more lines (you could write paragraphs). A read only text edit were

used for an informative purpose in the Simulator BASH Commands, see Figure 7.12.

In this solution, we have been forced to use the line edit as a way to require input

when we cannot decide or predict the user input alternatives – and we are depending

on individual input. When using edit elements in our design we may open up for user

error, because we cannot control exactly what the input might be. Somehow we can

keep control by allowing certain characters, and restricting length directly through the

element. We can also set up controls and checks of content, and give feedback of if the

entered input is accepted or not. But if we do not know what we are looking for, like

the case is in the BASH dialog (read about it in Section 7.2.4, we cannot implement that

solution. Anyway, no such checks have been implemented yet, but we try to guide the

user as much as possible by providing information.

Spin box (Figure 6.8a) and double spin box (Figure 6.8b) are used to restrict input to

be of type integer or float. When we demand numbers(integer or float) as input, we

can use these specific elements for that purpose. A certain range, with minimum and

maximum values, is set to avoid meaningless input. This is a measure that prevents user

36

6.2. Interface Elements

errors. The help arrows on the side can be set to a specific step length to give users, that

would like to use the mouse as much as possible, a good experience.

(a) Spin box. Input: integer. (b) Double spin box. Input: float.

Figure 6.8: Example of the two types of spin boxes.

6.2.2 Navigational Components

To be able to navigate through an application in a satisfying way and perform wanted

actions we need universal navigation components. We have tried to follow advice of

keeping consistency by standarize task sequences and group related tasks together, and

structure those as logical as possible. The navigational components and measures used

are title bar, menu bar, buttons, scroll bar, tabs, tab order, and modal window(dialog

mode). Icons can also be mentioned as they can be a measure to guide the user to the

right buttons and actions. See Subsection 6.2.3 (Informational components) for more

about icons, and which icons that are being used in this application.

Generally, there are two kinds of windows/dialogs: modal and modeless dialog. A

modal window is a child window that creates a mode so that the main and/or parent

window cannot be used while itself is open. It is usually chosen to force or require the

user to finish the interaction in that particular dialog before continuing in the main/-

parent dialog window. It is also typically used in message boxes, in our case, for the

information and question ones. In this interface, we use modal window as a feature to

help the user to keep control of the dialogs. By restricting the amount of open dialogs

to only the main window and the first level dialogs, there is a lower risk of the user

getting confused in the potential sea of dialogs. The modal yields for the second level

dialogs, seen in Figure 7.1. The rest of the GUI structure, the main window and first

level dialogs, are modeless dialogs which implies they can be open at the same time. Qt

has decided to keep the parent dialog as it is when we activate a child window. The title

bar is greyed as when a dialog is not active. The rest is still visible, but the windows

are disabled. It is not allowed to take any action (in the parent window or levels above)

before closing the modal/child dialog, except for moving them around.

An application window has a certain possible layout where you can add standarized

37

Chapter 6. GUI Design

bars in addition to the very common title and menu bar, e.g. tool and status bar. We

have chosen to not have a tool bar because it does not seem relevant or useful. A status

bar may be a future solution to show progress (e.g. keeping count of the settings and

entered input).

(a) The title bar area is marked by the red rect-
angle, and has the current title title: “FieldOpt
Driver Config – Global tab”, in addition to the
standard exit, roll-up, and maximize/minimize
buttons on the left.

(b) The menu bar area is marked by the red rect-
angle, with the current menu names: “File” and
“Help”.

Figure 6.9: Screenshots of the application’s main window’s left corner – the title bar and
menu bar. Their location is illustrated in the subfigures a and b by a red rectangle.

The title bar is used to display the name of the application or dialog window you are

accessing. It lies horizontally on the top of the window dialog, as you can see in Fig-

ure 6.9a. It may and does also contain small buttons for minimizing, maximizing, ex-

iting or rolling up the windows. Window and dialog title (title bar) is in addition an

informative component, and could also have been mentioned in Subsection 6.2.3.

The menu bar is at the top level of the menu hierarchy, and consist of menus, so-called

pop-up menus. Only pop-up windows can contain a menu bar, implying that child win-

dows cannot. Currently, our GUI has two menu items or menu names: ‘File’ and ‘Help’

marked in Figure 6.9b. They are always visible in the main window in contrary to the

menu that drop downs from these names only after being clicked. To help seperating the

menus’ menu items, a separator is used. This is a line that does not steal much attention,

but does a solid job on grouping the items, which makes it easier for the user to select

the wanted option. A similar separator, also a design element, has been used several

places, horizontally and vertically, in the interface with the same intention of helping

the user to group the content.

The Help item currently consists only of ‘About FieldOpt’ (see Figure 6.10b), when

clicked by the user, opens a dialog with information about FieldOpt. It could have been

replaced to a level up as there are no additional options, just an unecessary extra step to

reach the only option. But this solution is under development and is therefore a tempo-

rary solution. Later, we may add more submenu items like a manual.

38

6.2. Interface Elements

The File menu name, when clicked, activates a menu with the four menu command

items, seen in Figure 6.10a. Well-known icons have been chosen along with ordinary

informative names, and shortcut keys on the side.

(a) A state where File is clicked showing the
command items with icons and shortcut keys.

(b) A state where Help is clicked showing the
‘About FieldOpt’ item.

Figure 6.10: Screenshots of the Menu bar with menu items File and Help. The subfigures
a and b demonstrates what the submenus looks like.

Tabs let the user move quickly between the equally important views. As these

views will be used frequently, tab is a great tool. A tab has a title to descibe its content.

In Figure 6.11 you can see what it looks like when a tab is active. The content and view

change depending on the specific tab, as you can see when comparing Figure 7.2, 7.3,

7.4, and Figure 7.5 from GUI Development & Implementation Process, Chapter 4.

(a) A state where the Global tab is active. (b) A state where the Simulator tab is active.

Figure 6.11: screenshots of the GUI’s tabs in two different states. The subfigures a and b
demonstrates what activation of different tabs look like.

Tab order is an order of importance especially for those who like to use the keyboard

as much as possible. When navigating by pressing ‘tab’ the selection is expected, but

also designed to move in a logical, practical, and predictable order. The selection order

usually goes from top to bottom, and from left to right.

39

Chapter 6. GUI Design

6.2.3 Informational Components

With the right combination of informational components in our application, we may

have created a user-friendly informative solution.

The main way of describing what a specific ‘field’ is about is through the use of a

display widget called ‘label’. The informative text is direct, usually short and consise,

and in a normal font and size. By ’direct’ we mean that the information is clearly visible

without requiring any special action from the user.

Figure 6.12: This is a screenshot from the Model tab of the path
field that consist of: the label ‘Path’, the placeholder text ‘Path to
the grid file (.GRID or .EGRID), and the ‘Browse...’ push button.

Placeholder text is another feature for guiding the user in a direct way. Information

can be placed in line edits and text fields by the use of this feature. The font is of

normal size and style. Contrary to labels, the text is grey and discreet. In this way, the

text will not steal attention and focus away from other elements. In addition, it helps

on keeping design simplicity. When the user starts writing, the new text replaces the

placeholder text, exactly what the name of the feature hints about. With the use of these

two components the user should be aware of and sure about what to put in that particular

element. If more information is needed, a tool tip can be used, especially for elements

that do not have the placeholder text feature available.

Figure 6.13: Screenshot of the Model’s Well name field’s line edit, with the placeholder
text: “Well name”.

Tool tip is a feature that helps out on pinpointing what input a field requires, or gives

information about other type of graphical elements on the screen. For very “obvious”

fields, the tool tip will probably be exactly the same text as the label. It may be present

only to confirm the user’s suspicion about the field, but also to keep consistency. For

more complicated fields, extra information could clarify some uncertainties. The tip pop

ups as a line of information when the user holds the pointer over a specific element for

40

6.2. Interface Elements

a second. The “box” has black fill and white text color. An example from the GUI can

be seen in Figure 6.14. Every element placed in the application can have a tool tip, and

we want to provide that in our GUI. Some other examples are: the Model tab’s browse

button has the tip: “Browse – Find the path to the grid file (.GRID or .EGRID)” which

is similar to the other browse buttons, and the plus button at Model’s control times says:

“Add control time step (item) to the list”.

Figure 6.14: Tool tip of the model grid path appears when the
pointer is on the element. This is a screenshot of parts of the Model
tab: the Model’s field Type and Path.

A graphical symbol/icon should have a clear, familiar and intuitive meaning. It is im-

portant to be keep consistency in using the icon. For example: it is well known that the

floppy disc as an icon represent ‘save’ action. The floppy disc icon, Figure 6.15, chosen

for this GUI is of Ubuntu/Linux design, and can be found in the menu bar together with

the open/import file icon(Figure 6.16), and exit/quit icon(Figure 6.17). Figure 6.2 is a

combined example of button and icon with the well known pensil for editing. There is

also an icon attatched to the message box.

Figure 6.15: Save file
(floppy disc) icon.

Figure 6.16: Open file
(open document case and
arrow) icon.

Figure 6.17: Exit icon,
well known as the power
sign (illustrated by a 1 and
0).

Message boxes are modal dialogs that pop ups to give the user a message – a feedback

from the system. They represent different types of messages, and are well known for

most people. The feedback is given as a respond to particular actions taken by the user.

The “name” of the box/dialog together with a symbol represent the message we want to

41

Chapter 6. GUI Design

convey, e.g the degree of severity. The icon state the kind of feedback: i for information

(see Figure 6.18, triangular sign with an exclamation mark for warning (warning sign),

or a question mark (see Figure 6.19) for a question or request. Error message boxes with

a red cross(x) can also be used. Those standard dialogs are set up with specific reply

buttons.

Figure 6.18: Screenshot of the informa-
tion icon that is attached to the informa-
tion message box.

Figure 6.19: Screenshot of the question
icon that is attached to the question mes-
sage box.

Figure 6.20 is an information message box that pop ups to guide the user to the right task

order. If the user has tried to import a file without specifying the output file path, this

dialog will appear. Figure 7.7 is another example, from the Model Tab. The Figure 6.21

is great example of a kind of safety net we provide, to make sure the user knows what

is going on. We use this response only when the consequences can be of importance,

i.e if the action that was taken was not done intentionally. Overuse will only result in

irritated and frustrated users.

Figure 6.20: The information message box that pop ups when
the output path is missing and the user is trying to open/import a
.json file.

Figure 6.21: The question message box that pop ups when the exit button in the title bar of
the main window is released.

42

Chapter7
Graphical User Interface for FieldOpt

Driver Configuration

The Petroleum Cybernetics Group wanted to get a better and more user-friendly solu-

tion related to their petroleum optimization software in development, FieldOpt. The

product, a graphical user interface, is the result of this Master’s thesis work. We here

presents the FieldOpt Driver Configuration interface with it’s interface elements includ-

ing description and screenshots of the different parts of the GUI. For the source code

we refer to the GitHub repository https://github.com/karolinr/FieldOptDriverGUI.

The modified version of the Utilities library that was used can be found here:

https://github.com/karolinr/FieldOpt/.../Driver-file-gui/Utilities/settings. To better un-

derstand the GUI’s fields we recommend to read through the Utilities/Settings README

file. https://github.com/karolinr/FieldOpt/.../Utilities/settings/README.md. The user

should be able to access every alternative and parameter that are supported by that li-

brary, through the GUI.

7.1 User Interface Structure

The current application dialog structure is illustrated in Figure 7.1. The figure provides

an overview on how to operate the application. Everything can be accessed through

the main application window.The main window consists of four tabs: Global, Model,

Simulator, and Optimizer tab, and an overview (see Figure 7.2. It is through those

views the first level dialogs can be opened and accessed. From the structure it can be

seen which of the tabs that has to be active before the user can access the other dialogs.

To get access to the next level’s dialog, you need to click a button that triggers the

43

https://github.com/karolinr/FieldOptDriverGUI
https://github.com/karolinr/FieldOpt/tree/feature/Driver-file-gui/FieldOpt/Utilities/settings
https://github.com/karolinr/FieldOpt/blob/develop/FieldOpt/Utilities/settings/README.md

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

application to open the intended dialog.

This structure can also give a better understanding of what the object hierarchy from

the Utilities/Settings library and the structure of the JSON driver file look like. Since the

GUI structure is made on the basis of these, it is easily recognizable when comparing

this to the driver.json in the Appendix.

Figure 7.1: A simple dialog structure chart of the FieldOpt Driver Config interface.

All dialogs can be open at the same time, apart from the second level dialogs; the Model

tab’s well’s child windows can only be open one at a time. Those are defined as modal

dialogs. That means that the other “active” dialogs are blocked/disabled until the current

second level dialog is closed. The other dialogs are of modeless type, opposite of modal,

meaning that the user can switch focus between the main window and the first level

dialogs (have them open).

44

7.2. The Application

7.2 The Application

7.2.1 Main Window

The main window consist of the title bar, menu bar, tabs, and an overview. The menu

bar has currently two menu names, as already explained in the previous chapter.

At this point, on the basis of the target audience, we have chosen to not focus and

go for a solution with a start “page”. We think the application’s purpose is clear to most

of those who will start it, and an extra navigational step will only be of irritation.

By executing the driver configuration application, the user also automatically starts

on a new JSON file in order to create and edit driver file in the GUI. But it is not until the

user clicks ’Save’ or ’Save As...’ that the temporary saved input should be tranformed

into a configured driver file. These applications are not yet implemented.

As mentioned in the 6.2.2 section, tabs are a great tool to use when there are equally

important views that will be used often. In general, this GUI does not have many forced

orders or task flows. There are some inputs that depend on other, but we are planning

to give feedback to the users if they have missed out on something. But we try discretly

to make a natural order without locking the user to a specific flow. We hope the user

will go through the tabs from left to right, in that way the user will be interrupted by

messages about what to do next.

45

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

Figure 7.2: The main window with the Global tab active.

Figure 7.3: The main window’s Model tab.

Figure 7.4: The main window’s Simulator tab.

Figure 7.5: The main window’s Optimizer tab.

46

7.2. The Application

7.2.2 Global Tab

In the Global tab, see Figure 7.2, three inputs are required from the user – through the

use of two line edits and a double spin box for the float input. “Name” is of string type

and the input is used to derive the output file name(s). The user also gets to choose the

path to a directory where the generated output files will be placed later. Through the

well-known and simple browse button a standard browse file dialog opens that has been

programmed to restrict the choice to the only valid choice, a directory.

The bookkeeper tolerance is used to set the tolerance for the case bookkeeper. The

bookkeeper keeps track of which sets of variables that have been evaluated, to prevent

unnecessary evaluation. The tolerance has to do with the limit for evaluating variables

a “distance” to other already evaluated variables. In the design we have added a way to

simplify the choice if you do not want bookkeeping. By not checking the “I want book-

keeping”, the bookkeeping field is disabled(not enabled) and the default value is set to

0.0. That value is what the driver file will store. The user only needs to check the box if

he wants to set the tolerance, and then he may enter the desired value. For users that do

not know what a bookkeeper is and what the tolerance may be, the choice of wanting

it, is less confusing than to set it to manually to 0.0. This is also a field that should be

considered to be included in the future manual, suggested in the Recommendation for

Further Work and Development section.

The desired inputs are communicated to the user by label, the tool tip, and placeholder

text, in addition communicated “discreetly” through the chosen GUI design element.

7.2.3 Model Tab

Through the Model tab, Figure 7.3, the user defines model related settings, i.e defining

wells for the reservoir. The user needs to choose the type of reservoir model that is

going to be used. The combo box restricts the use of models to the ones supported by

the software – to avoid errors or misunderstandings. The only supported source, for

now, is ‘ECLIPSE’, so the placeholder text and other help features hints about the path

to a specific type of file. If others are added, the help text should dynamically change

with the current selected model source. But for now, the GUI asks for the path to this

reservoir grid file. Again, the user may browse for a path to the only valid file type,

restricted to .GRID and .EGRID.

For the Control Times, we want to collect an array for all time steps at which any

47

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

variable is allowed to vary. That means that the user needs to set all time steps that are

going to be used further in the model. The GUI elements restrict the user to only enter

integer numbers. Small add and remove buttons with the commonly known signs, + and

-, shall be used to add/remove the desired/undesired time steps to the list box. The use

of tool tips is quite valuable here to hopefully confirm the user’s first impression and

opinions about how to take action.

Wells can be defined and information about them can be specified in the “Model - Well”

dialog, Figure 7.6, starting by clicking ‘Add wells...’ in the Model tab. From here the

user should set well controls and completions; however, to set Variables are optional.

See Figure 7.8, Figure 7.9, and Figure 7.10 to study the Model’s second level dialogs

further. If the user wants to specify array for variables, he can check the check box, and

then the button for opening the dialog will be enabled.

Some elements in the dialogs are placed there depending on some choices made by

the user, e.g. changing well definition type from ‘Well Blocks’ to ‘Well Spline’ changes

the label’s text, and spin boxes from integer to double/float type. If the user tries to add

a well block that already exists, the response is that a message box pops up and informs

the user (see Figure 7.7). It prevents the user from adding an identical block, and it

explains why the normal response of clicking the button did not happen. Users should

always be fully aware of what happens during interactions and why.

48

7.2. The Application

Figure 7.6: The Model’s Well dialog with imported data from the driver.json file.

49

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

Figure 7.7: The information message box that pop ups as a response to an action in the
Model’s Well dialog.

Again, GUI elements are specially chosen for a purpose of restricting user input to the

valid values and types. This idea is applied in every dialog.

Figure 7.8: The Model Well’s Controls dialog with some imported data from the driver.json
file

50

7.2. The Application

Figure 7.9: The Model Well’s Completions dialog.

Figure 7.10: The Model Well’s Variables dialog. Incomplete design of blocks/spline points.

51

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

7.2.4 Simulator Tab

The Simulator tab, Figure 7.4, contains fields so the user can define settings and param-

eters that is needed to launch the simulator. The field ‘Type’ denotes what simulator

that is being used. The user can currently switch between two types in the combo box,

either ‘ECLIPSE’ or ‘ADGPRS’.

Again, the browsing is restricted to a specific file type. This time we want the user

to choose the path to a complete driver file for the reservoir model, a .DATA file.

Figure 7.11: The Simulator’s browse for a driver file dialog.

After clicking the ‘Set BASH commands’ button in the Simulator tab, the ‘Simulator

– BASH Commands’ dialog opens. In this dialog, Figure 7.12, we want the user to

enter and/or choose suited BASH command(s) for their computer and shell type, so the

chosen simulator can be executed later. Users can also customize their own command

if none of the examples match their need.

Risk of error The BASH command dialog is recognized as a specially error prone

part of the interface, in terms of user error. It is probably the most demanding and

difficult parameter to ask of the user, hence the most challenging part to keep error free.

We are forced to accept whatever is being written in the line edit as we do not have a

way to test or find the right bash commands for the specific user, because it is hard for

us to know exactly the type of computer used. Our solution is to try to reduce the risk

of error as much as possible. Our thoughts here are that we try to guide and help the

user towards a correct input. There is a describtion text and example bash commands –

52

7.2. The Application

Figure 7.12: The Simulator’s BASH dialog with imported data.

better and more examples will be provided along with tool tips.

7.2.5 Optimizer Tab

Through the Optimizer tab, Figure 7.5, we require the user to specify settings and pa-

rameters for the chosen optimization algorithm. The only algorithm type that can be

chosen in the current solution is ‘Compass’. The mode is chosen between either ‘Max-

imize’ or ‘Minimize’ the objective function. The Optimizer tab contains three sub-

objects – first level dialogs. By clicking either of the buttons in Figure 7.5, a new dialog

opens; either the parameters, objective, or constraints settings will be available for spec-

ification. The Parameters dialog has only three fields. The input is controlled through

Figure 7.13: The Optimizer’s Parameters dialog with imported data from driver.json.

the use of spin boxes. When the range of the different parameters are decided, they will

be set in the GUI making sure only valid numbers are accepted as input. Max evalua-

53

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

tions are set to be an integer number, initial and minimum step length can only be a float

with one decimal.

Figure 7.14: The Optimizer’s Objective dialog

The user gets to set constraints on a well if there exists any. The combo box should

be filled with well names as soon as the well items are being added in the Model section.

If no wells have been added, the rest of the constraints dialog elements are disabled.

Figure 7.15 shows the Constraints dialog with imported data. The current constraints

for the PROD well is of the BHP type, and that is the reason for why the Well Spline

points elements are disabled. The GUI has the intention of ’PROD’ in the Well name

line edit to added as an item to the list. There is no reason to let the user have access to

fields that are related to the other option, when they are mutually exlusive.

54

7.2. The Application

Figure 7.15: The Optimizer’s Constraints dialog with imported data from driver.json.

7.2.6 Overview

The overview is a “static” view, in the meaning that it is available and visible indepen-

dently of the active current tab – only It will probably be reorganized. Which parame-

ters that will be included and summarized in the overview will be evaulated/considered

closely. A user survey could also be of use to see what information most users would

prefer to see in the summary section.

For example, the formula and result of the optimizer’s objective input variables can

be interesting. At the moment the only planned type(objective function) supported is

weighted sum – meaning that the calculated weighted sum could have been added as

data for the overview. The overview is probably going to be considered more in the

last part of the development, when more of the application is functional and we can get

users’ advice.

If the overview needs to contain a lot more information, we can expand and adapt

the initial size of the main window to the wanted displayed information. Anyway, it is

important to include only relevant data.

55

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

Feature In the current solution, we have gathered the different source/file paths

along with shortcut edit buttons. When the files are browsed for and selected, the path is

changed, then the overview field will change accordingly. The edit button will take the

user to the correlated tab and right into the ordinary way of selecting the file path. The

text elements are disabled and less visible if the fields are empty – demanding less focus,

as seen in Figure 7.2. The Optimizer algorithm type is also included in the overview

– for now. After more review, maybe the only information about the Optimizer that is

needed is a check list for the necessary input. Since the most of the information in the

application is so easily accessable anyway, it does seem unnecessary to add the data to

the overview as well. However, some information could be valuable anyway.

Intention of the overview is simple; to get the best overview of what parameters and

variables the user needs to change or view before they can hit ‘save’ and have an ideal

configured driver file. We want to give the user a sense of what is going on through the

use of a simple summary of some of the input data. If there are some temporary results,

these can also be shown here.

The idea is that the user can use the overview as a kind of check list. It may not be

possible to include everything in the checklist, but at least it should give a clue of what

the user needs to change/add to be able to run a simulation – all mandatory fields. We

have considered the idea to involve the status bar available in the main window, to let

the user keep track on the progress, but other solutions may be better.

56

7.3. Current Functionality

7.3 Current Functionality

In this section, we have decided to briefly present a couple parts of the GUI and how the

functional part of the application is and can be.

Dialogs Every dialog has a button box with an ‘Ok’ and ‘Cancel’ button present.

To further explain to the user what the concequences of the click actions are, the tool tip

is set. For most of the dialogs the text is something similar to this: “’Ok’ to accept new

changes/values. ’Cancel’ to reject changes.”. The original settings are reinstated to the

previously accepted input, if the ‘Cancel’ button is pushed. ‘Ok’ will provisional save

the settings, so a ‘Cancel’ next time will lead to the settings’s previous state.

When maximizing the dialogs, almost every dialog keep their initial horizontal size.

This design choice may be evaluated later, but we cannot see any reason it will give

the user any advantage, at least in the way the dialogs are designed today. However, the

dialogs expand vertically, mostly because there are list boxes present. If the user decides

to add many items to those lists, it can be easier to keep track on the items by viewing

more of them at the same time. The user may use the scroll bar to navigate through the

list if there are more items than it is possible to view on the screen.

Open/import a JSON file First, make sure you have chosen a directory for your

output files. Then click ‘File’ on the menu bar and click the ‘Open/File (.json)...’, a

new dialog opens which let you browse to select the JSON file you want to open in

FieldOpt Driver Config. If you have not set the output directory yet, an information

message box will pop-up letting you know what you have to do before opening a file,

see Figure 6.20. After following these instructions, the driver information should be

visible in the application.

Response The current not complete version of the application does not handle ev-

ery dialog signal yet. There is a lot of remaining coding to do before the interface is

totally functioning. The program will unexpectedly finish in five of the dialogs when

clicking ‘Ok’ or ‘Cancel’ in the current dialog, except from the Optimizer ones. How-

ever, that is only if you have not imported a JSON file. The coding part is in the middle

of a state where functions are implemented to temporary save new changes done in a

dialog. A Settings class object from the Utilities/Settings library is not yet created when

starting from scratch on a driver file. Some functions assume there exists an instance

and uses this kind of object. Therefore will errors occur when these functions are run,

leading to the unexpected finish.

57

Chapter 7. Graphical User Interface for FieldOpt Driver Configuration

58

Chapter8
Evaluation and Reflection

In this chapter, we have evaluated the project. We are looking at the degree of fulfill-

ment, and we are comparing the result with the given requirements from Chapter 5, in

addition to the design guidelines established in Section 3.2. The following bold text are

points, rules, or requirements taken from those parts of the project report, marked to let

the reader follow more easily. Further, we present some thoughts and reflection.

8.1 Design Guidelines

This section will briefly sum up how and if the golden rules and heuristics have been

used and followed.

We have strived for consistency in every part of and throughout the interface, as far

as we see it. We have designed the GUI with left-sided labels, we have consistently

placed elements at the same starting point horizontally, on the x axes, and navigation is

standardized. The GUI elements are generally used for their purpose and what they are

known as for most users – fulfilling the recognizability quality. The GUI has the same

structure for the same type of input collecting.

We have managed to follow the point about error prevention; how to prevent and

avoid errors from Usability Heuristics for User Interface Design to the limit. Some er-

ror prone parts are recognized (Simulator class), and have been handled as far as we are

capable. The risk of errors are assumed to have been reduced, however unfortunately

not eliminated.

59

Chapter 8. Evaluation and Reflection

We know that some parts has the potential to make the user do something wrong,

and therefore we have responses to those actions. We stop and help them by providing

guided feedback for simple error handling, and we force them to handle in a certain

task order.

We have kept the layout simple, aesthetic and minimalist design, so the user’s
memory load is minimized. We have not included information without relevance that

competes for the user’s attention. User control and freedom are given by letting the

users undo changes by a click on the ‘Cancel’ button in dialogs and because it is easy

to change back values manually. The GUI is quite simple and is therefore, in our eyes,

not complex enough to have extra flexible solutions or have shortcuts(other than the File

menu ones). We do not think there can exist more efficient GUI solutions. There are

short steps from start to finish for most input. Though, there are some optionally fields,

but that originates from the JSON driver file structure.

When it comes to help and documentation we have chosen to not focus on those.

One of our goals is anyway to create a GUI that can be handled without any help option.

Thus, there is created a menu item that can be expanded with such information.

We have managed to avoid most of the design mistakes that were presented in Chap-

ter 3. Though, we do not have objective opinions from “real” users, opinions of the

forms created, nor of if options are unclear or not etc. In addition, since the interface

is not yet complete, there exist some promise of content that is not there. In that way,

we cannot really conclude about the mistakes nor if we have succeeded in following the

guidelines. Though, in the end, they are just guidelines. At least, we have tried to follow

them to best of our knowledge. And it is not too late to change text, placement etc. to

improve the graphical user interface.

8.2 GUI Requirements

After working through the Table 5.1 of the 14 functional GUI requirements, we can

conclude that we have faciliated for many of these requirements, but that they are not

necessarily functioning at the current state of the GUI. Some requirements are only par-

tially fulfilled. We chose to prioritize all the listed requirements as high, except for two,

sense of progress and diversity in users, that was defined as medium and low.

The application has included the Utilities/Settings library, as also written in the project

60

8.2. GUI Requirements

description, in order to read a JSON file, so the GUI can enable the user to import a
JSON file. Some programming and placement for a couple of elements remain be-

fore this requirement is more than partially fulfilled. As mentioned, this is not the only

requirement that needs programming to be fulfilled.

The write JSON file requirement cannot be implemented as long as the functions

in the Settings class are not implemented yet. These functions can be implemented in a

similar way to what we have seen for the read file functions. This is also a huge part of

why the GUI is not fully functioning.

Concering data presentation and user manipulation of data, the user is able to use

GUI elements that presents all the data and manipulate it, with only a few exceptions in

the Optimizer’s Constraints and Model’s Well’s Variables dialog.

All functionality that concerns valid input has not yet been implemented, but through

the use of interface elements with special purposes, and already implemented tests, we

have met most of the requirement. The only thing that remains is to understand the

petroleum fields: numbers and values, to be able to set the restrictions/range for the

input directly on the element. To set them is an easy job. However, we have a weakness

and risk of error mentioned earlier, in the Simulator’s BASH Commands dialog. And

since we cannot meet that criteria for all input, the requirement cannot be fulfilled to the

fullest.

Currently, the user is being able to access and click the ‘Save’ and ‘Save As...’ item

in the File menu, or use the shortcut for save, but the functionality is not implemented.

Meaning, that the front-end of the requirement is fulfilled, but not the back-end.

PCG stated that they want the GUI to generate a meaningful driver file. Assuming

the JSON driver file structure is meaningful, the GUI only accepts valid input, and the

Settings class’ functions are used correctly, this should also be fulfilled. At the current

state, the GUI is not implemented with all its functionality, so for now, this requirement

is not met.

Concering the requirement of learnability, we feel we cannot state much without

conducting a usability test on a group of target audience. Nevertheless, we believe

that by following all UI guidelines (that has the main focus of usability(which includes

learnability)), we have facilitated and laid a good foundation for this to be true and

fulfilled.

As already mentioned above, we have prevented mistakes to our best by only ac-

cepting valid input, but also by handling actions with important consequenses in a good

way, through the use of message boxes.

61

Chapter 8. Evaluation and Reflection

We claim that the requirement of navigation is fulfilled, which implies that the user

is able to easily navigate through the menus, options, and settings.

You may have noticed that we did not have the time to implement all the high priority

requirements, and therefore, naturally we did not focus much on the sense of progress
that was desireable either. The GUI can fully work without the overview.

Parts of the low prioritized diversity in users were fulfilled, but only as a conse-

quence of optional fields.

In the Non-Functional Requirements section, the constraints were introduced, and they

were taken into account during the development process. Developing the GUI using the

Qt framework fulfills the portability quality requirement set for the system.

Concering usability, the quality attribute, we suggest based on what is written in the

Section 5.3.1, that only appropriate user testing can evaluate those criterias. However,

some of these have already been mentioned in other parts of this evaluation masked in

other requirements. So on the basis of those we conclude that recognizability, learnabil-

ity, operability, user interface aesthetics, and accessibility, are met to a certain degree.

8.3 Thoughts and Reflection

Even though the application is not functioning as we want yet, and the design still can

be further developed. This GUI and Master’s thesis will give ideas of how to continue

developing the driver configuration GUI, and help and guide the PCG towards a good

and better solution.

Great foundation As far as our knownledge reach, this is a GUI that should be

easy to use and understand, even when the user have not used it before. We have tried

our best to follow the golden rules set for the graphical user interface, and to avoid the

common mistakes. There are some challenges with the GUI that still needs to be dealt

with, but the GUI should be a great foundation for further development.

Although, we have not user-tested the GUI, some acceptance for the GUI’s layout

has come from potential users, especially in the early stages of the project. Some of the

members of PCG have been a part of the feedback sessions, and they are categorized

as target audience of the FieldOpt driver configuration interface. That gives us some

confidence that the layout has the potential to be good.

62

8.3. Thoughts and Reflection

This interface needs to be thoroughly tested for its user-friendliness/usability. Dif-

ferent use cases and scenarios can be created, then carried out by different test users.

These users should be monitored, and surveys will be conducted to detect weaknesses

and strengths – to see what parts of the interface are working as intended [Rykkelid,

2015].

Weaknesses The greatest weakness of this development has been the planning, the

underestimating of the time constraint, and overestimating the expertise. The progress

did not meet our expectations for this project. Those are not a good combination, and

we are disappointed that we did not manage to end up with a more complete working

application, but ending up with a not fully functioning GUI that has not been tested by

users. That is certainly not ideal. In the most ideal world, we would have had a lot of

user data to evaluate, then use this data to improve the GUI, and iterative again.

As mentioned earlier, one of the challenges and a weakness has been the technical

competence of the developer. The lack of experience with this type of development has

been a weakness for the result and process.

If we had predicted the time we had to use on the back-end implementation part

of the application(the functionality), we could have switched focus to more of a total

front-end development with the GUI layout and elements. Restricting the project could

have been a solution to our challenges.

Large set of data/components. is a potential weakness of the GUI. List boxes are

an attempt to handle objects with many components. But if there are very large sets of

data, is the GUI designed to handle it? Is this a limitation of the design, or does the user

get a good overview of the data without losing track of the components?

Design details Users notice every little design detail. If there is a disagreement

between the developer and user, it will affect the use of the software/interface. Details

that frustrate and irritates the user will affect their opinion about the interface, and every

litle itch will count more than all the correct and positive design choices. If he gains neg-

ative attitude towards the interface, he will most likely spread this energy and thoughts

about the GUI to other potential users. This will harm the software in the long run. That

has to be avoided at all costs.

Even though, the project did not end up with having as good progress as first hoped

for, it resulted in more than the visual results. The personal experience has great value.

63

Chapter 8. Evaluation and Reflection

In many ways, this project is successful.

64

Chapter9
Summary and Further Work

In this chapter, we summarize the project and thesis, in addition we describe further

recommendations and thoughts for the result’s road ahead.

9.1 Summarization

This Master’s thesis has concerned the development of a graphical user interface tailored

for configuring driver files. These files are configured for the petroleum field optimiza-

tion software, FieldOpt, that is currently being developed by the Petroleum Cybernetics

Group at NTNU. The GUI was made as a replacement for the much simpler and incon-

venient solution of direct text manipulation.

We have managed to follow the established design guidelines, partially fulfilled the

system requirements, and we have exploited the GUI design elements, and carried out

the development and implementation process.

Through the use of Qt Creator we have managed to create a GUI that could be

used in the future to configure the JSON driver files. That interface will score high on

usability as long as GUI golden rules are still being followed and thoroughly tested by

target users in the future continuation of this project.

The current solution of the GUI, the application is not yet sufficient to take on any role

in FieldOpt. We need to finish up the main functionalities and ideas of this GUI, before

it can be accepted and realized as a true solution for PCG.

However, this thesis work has layed a solid foundation for the further development of

the user-friendly FieldOpt driver configuration interface.

65

Chapter 9. Summary and Further Work

9.2 Recommendation for Further Work and Develop-

ment

This section presents some thoughts and recommendation for further work on comple-

tion, expansion, and improvement of the interface.

Fully functional version There is still work left to do on the graphical user in-

terface before it can be tested by potential users. To really test the GUI design the

application needs to be fully functional and further developed from the already estab-

lished foundation. Included in that finalization is the save function. Write-to-JSON-file

functions have to be implemented in the Utilities/Settings library, and further used in

the application. This can be done in a very similar matter to reading the JSON file.

To create a successful overview has the potential to be a very important detail of the

interface. The development of the overview; structuring and placements of elements,

and deciding what information to include, may play a huge part of if the FieldOpt Drive

Config will have success or not.

Validation is an important part of figuring out if a creation is good enough. Other than

the evaluation of the GUI and to what degree it fulfills the requirements, the GUI has not

been evaluated. It has not been measured or assessed to what an individual, represent-

ing the target audience, experience in use. The current version has not been user-tested.

The interface needs to be thoroughly tested for its user-friendliness/usability. We want

to know if the GUI is usable, trustable, what the end-user and the PCG requires of the

FiledOpt Driver Config GUI.

Software evolution As FieldOpt develops, even more parameters may need to be

added to the GUI and driver file. The user needs to be able to configure these new

parameters. The GUI have to be developed in parallel with FieldOpt. There may also

be changes in operative systems and technology, which may lead developers to renew

code. Hopefully, Qt will be developing along the way, and figure out ways to keep “old”

code usable, at least easy to “convert”.

User manual In our curent solution, the only item of the Help menu is About Fiel-

dOpt. This menu could be expanded by adding access to a manual for guiding users. We

would like to think that the interface should be simple and user-friendly enough so that

66

9.2. Recommendation for Further Work and Development

the users will not have the need for any extra guidence or help. However, the manual

may give users a comfort and answers when in doubt about how the GUI is working.

This is something that can be explored while performing usability/user testing. Maybe

the users feel the need to be able to search in a dictionary-like manual with explanations

for all the parameters and some of the functions?

67

Chapter 9. Summary and Further Work

68

Bibliography

[1] E. J. M. Baumann, “Fieldopt: Enchanced software framework for petroleum field

optimization,” Master’s thesis, Norwegian University of Science and Technology,

June 2015.

[2] E. J. M. Baumann and M. R. Bellout, Personal communication, November 2015.

[3] The Qt Company, “Qt - about us.” (n.d.)., accessed: 02.2016. [Online]. Available:

http://www.qt.io/about-us/

[4] The Qt company, “Qt - the ide.” (n.d.)., accessed: 02.2016. [Online]. Available:

http://www.qt.io/ide

[5] The Qt Company, “Qt designer manual.” (n.d.)., accessed: 02.2016. [Online].

Available: http://doc.qt.io/qt-5/qtdesigner-manual.html

[6] B. Stroustrup, The C++ Programming language, 4th ed. Addison-Wesley

Pearson, 2014, ch. 1.2, pp. 9–16. [Online]. Available: http://mazonka.com/shared/

Straustrup4th.pdf

[7] B. Stroustrup., The C++ Programming Language, 4th ed. Addison-Wesley

Pearson, 2014. [Online]. Available: http://mazonka.com/shared/Straustrup4th.pdf

[8] E. J. M. Baumann, “Fieldopt utilities/settings,” September 2015, accessed:

03.2016. [Online]. Available: https://github.com/PetroleumCyberneticsGroup/

FieldOpt/tree/develop/FieldOpt/Utilities/settings

[9] JSON, “Introducing json,” (n.d.)., accessed: 03.2016. [Online]. Available:

http://json.org/

69

http://www.qt.io/about-us/
http://www.qt.io/ide
http://doc.qt.io/qt-5/qtdesigner-manual.html
http://mazonka.com/shared/Straustrup4th.pdf
http://mazonka.com/shared/Straustrup4th.pdf
http://mazonka.com/shared/Straustrup4th.pdf
https://github.com/PetroleumCyberneticsGroup/FieldOpt/tree/develop/FieldOpt/Utilities/settings
https://github.com/PetroleumCyberneticsGroup/FieldOpt/tree/develop/FieldOpt/Utilities/settings
http://json.org/

Bibliography

[10] E. J. M. Baumann, “Settings readme.md,” September 2015, accessed: 04.2016.

[Online]. Available: https://github.com/PetroleumCyberneticsGroup/FieldOpt/

blob/develop/FieldOpt/Utilities/settings/README.md

[11] B. Shneiderman, Plaisant, Cohen, and Jacobs., Designing the User Interface:

Strategies for Effective Human-Computer Interaction, 5th ed. Pearson, 2014.

[12] J. Nielsen, “Checkboxes vs. radio buttons,” September 2004, ac-

cessed: 10.11.2015. [Online]. Available: http://www.nngroup.com/articles/

checkboxes-vs-radio-buttons/

[13] ——, “10 usability heuristics for user interface design,” January 1995,

accessed: 18.12.2015. [Online]. Available: https://www.nngroup.com/articles/

ten-usability-heuristics/

[14] T. Mandel, The Elements of User Interface Design. John Wiley & Sons, 1997,

ch. 5. [Online]. Available: http://theomandel.com/wp-content/uploads/2012/07/

Mandel-GoldenRules.pdf

[15] K. Whitenton, K. Pernice, P. Caya, and J. Nielsen, “Application design

showcase:2012,” Nielsen Norman Group, no. 02, pp. 229–299, 2012. [Online].

Available: https://media.nngroup.com/media/reports/free/Application_Design_

Showcase_2nd_edition.pdf

[16] T. Point, “Software user interface design,” 2016, accessed: 05.2016. [Online].

Available: http://www.tutorialspoint.com/software_engineering/software_user_

interface_design.htm

[17] M. Hansen, Collaboration: How leaders avoid the traps, create unity, and reap

big results., 3rd ed. Boston, Mass.: Harvard Business Press., 2013.

[18] B. K. Williams and S. C. Sawyer, Using Information Technology: A Practical In-

troduction to Computers & Communication: Complete Version, 9th ed. McGraw

Hill, 2011, ch. 10, pp. 491–531.

[19] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, September

2011. [Online]. Available: http://faculty.mu.edu.sa/public/uploads/1429431793.

203Software%20Engineering%20by%20Somerville.pdf

70

https://github.com/PetroleumCyberneticsGroup/FieldOpt/blob/develop/FieldOpt/Utilities/settings/README.md
https://github.com/PetroleumCyberneticsGroup/FieldOpt/blob/develop/FieldOpt/Utilities/settings/README.md
http://www.nngroup.com/articles/checkboxes-vs-radio-buttons/
http://www.nngroup.com/articles/checkboxes-vs-radio-buttons/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
http://theomandel.com/wp-content/uploads/2012/07/Mandel-GoldenRules.pdf
http://theomandel.com/wp-content/uploads/2012/07/Mandel-GoldenRules.pdf
https://media.nngroup.com/media/reports/free/Application_Design_Showcase_2nd_edition.pdf
https://media.nngroup.com/media/reports/free/Application_Design_Showcase_2nd_edition.pdf
http://www.tutorialspoint.com/software_engineering/software_user_interface_design.htm
http://www.tutorialspoint.com/software_engineering/software_user_interface_design.htm
http://faculty.mu.edu.sa/public/uploads/1429431793.203Software%20Engineering%20by%20Somerville.pdf
http://faculty.mu.edu.sa/public/uploads/1429431793.203Software%20Engineering%20by%20Somerville.pdf

Bibliography

[20] ——, Software Engineering. Addison-Wesley, 2011, ch. 4, pp. 82–117, pdf: pp.

99-134. [Online]. Available: http://faculty.mu.edu.sa/public/uploads/1429431793.

203Software%20Engineering%20by%20Somerville.pdf

[21] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Upper

Saddle River, NJ: Addison-Wesley Pearson, 2013, ch. 4, pp. 63–65.

[22] International Organization for Standardization, “About iso,” (n.d.)., accessed:

22.05.2016. [Online]. Available: http://www.iso.org/iso/home/about.htm

[23] Wikipedia, “International organization for standardization,” May 2016, accessed:

10.05.2016. [Online]. Available: https://en.wikipedia.org/wiki/International_

Organization_for_Standardization

[24] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Upper

Saddle River, NJ: Addison-Wesley Pearson, 2013, ch. 12, pp. 185–200.

[25] International Organization for Standardization, “ISO/IEC 25010 – Security, Main-

tainability, Portability,” (n.d.)., accessed: 22.05.2016. [Online]. Available: http:

//iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=3

[26] International Organization for standardization, “ISO/IEC 25010 – Compatability,

Usability, Reliability,” (n.d.)., accessed: 22.05.2016. [Online]. Available: http:

//iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=6

[27] K. Whitenton, “Minimize cognitive load to maximize usability,” Nielsen Norman

Group, December 2013. [Online]. Available: https://www.nngroup.com/articles/

minimize-cognitive-load/

[28] Microsoft, “About menus,” (n.d.). [Online]. Available: https://msdn.microsoft.

com/en-us/library/windows/desktop/ms647553(v=vs.85).aspx#bars_menus

71

http://faculty.mu.edu.sa/public/uploads/1429431793.203Software%20Engineering%20by%20Somerville.pdf
http://faculty.mu.edu.sa/public/uploads/1429431793.203Software%20Engineering%20by%20Somerville.pdf
http://www.iso.org/iso/home/about.htm
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=3
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=3
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=6
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&start=6
https://www.nngroup.com/articles/minimize-cognitive-load/
https://www.nngroup.com/articles/minimize-cognitive-load/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms647553(v=vs.85).aspx#bars_menus
https://msdn.microsoft.com/en-us/library/windows/desktop/ms647553(v=vs.85).aspx#bars_menus

Bibliography

72

AppendixA
A.1 JSON file - Example Configuration/driver file

Listing A.1: driver.json

1 {

2 " G lo ba l " : {

3 "Name" : " TestRun " ,

4 " B o o k k e e p e r T o l e r a n c e " : 0 . 0

5 } ,

6 " O p t i m i z e r " : {

7 " Type " : " Compass " ,

8 "Mode" : " Maximize " ,

9 " P a r a m e t e r s " : {

10 " MaxEva lua t i ons " : 10 ,

11 " I n i t i a l S t e p L e n g t h " : 5 0 . 0 ,

12 " MinimumStepLength " : 1 . 0

13 } ,

14 " O b j e c t i v e " : {

15 " Type " : " WeightedSum " ,

16 " WeightedSumComponents " : [

17 {

18 " C o e f f i c i e n t " : 1 . 0 , " P r o p e r t y " : "

C u m u l a t i v e O i l P r o d u c t i o n " , " TimeStep " : −1,

19 " I s W e l l P r o p " : f a l s e

20 } ,

21 {

22 " C o e f f i c i e n t " : −0.2 , " P r o p e r t y " : "

C u m u l a t i v e W e l l W a t e r P r o d u c t i o n " , " TimeStep " : 10 ,

23 " I s W e l l P r o p " : t r u e , " Well " : "PROD"

24 }

25]

26 } ,

71

Appendix A. Appendix

27 " C o n s t r a i n t s " : [

28 {

29 "Name" : "PROD−BHP−1" ,

30 " Type " : "BHP" ,

31 " Well " : "PROD" ,

32 "Max" : 3 0 0 0 . 0 ,

33 " Min " : 1000 .0

34 } ,

35 {

36 "Name" : " INJ−S p l i n e P o i n t s −1" ,

37 " Type " : " W e l l S p l i n e P o i n t s " ,

38 " Well " : " INJ " ,

39 " W e l l S p l i n e P o i n t s I n p u t T y p e " : "MaxMin" ,

40 " W e l l S p l i n e P o i n t L i m i t s " : [

41 {

42 "Max" : [4 0 . 0 , 1 0 . 0 , 4 0 . 0] ,

43 " Min " : [0 . 0 , 0 . 0 , 0 . 0]

44 } ,

45 {

46 "Max" : [4 0 . 0 , 4 0 . 0 , 4 0 . 0] ,

47 " Min " : [2 0 . 0 , 4 0 . 0 , 2 0 . 0]

48 }

49]

50 }

51

52]

53 } ,

54 " S i m u l a t o r " : {

55 " Type " : " ECLIPSE " ,

56 " E x e c u t i o n S c r i p t " : " c s h _ e c l r u n " ,

57 "Commands" : [" t c s h −c \ " e v a l s o u r c e ~ / . c s h r c ; e c l r u n e c l i p s e

\ " "] ,

58 " D r i v e r P a t h " : " . . / . . / examples / ECLIPSE /HORZWELL/HORZWELL.DATA"

59 } ,

60 " Model " : {

61 " C o n t r o l T i m e s " : [0 , 50 , 100 , 3 6 5] ,

62 " R e s e r v o i r " : {

63 " Type " : " ECLIPSE " ,

64 " Pa th " : " . . / . . / examples / ECLIPSE /HORZWELL/HORZWELL. EGRID"

65 } ,

66 " Wel l s " : [

67 {

68 "Name" : "PROD" ,

72

A.1. JSON file - Example Configuration/driver file

69 " Type " : " P r o d u c e r " ,

70 " D e f i n i t i o n T y p e " : " Wel lBlocks " ,

71 " P r e f e r e d P h a s e " : " O i l " ,

72 " Heel " : [1 , 1 , 1] ,

73 " W e l l b o r e R a d i u s " : 0 . 7 5 ,

74 " D i r e c t i o n " : "X" ,

75 " Wel lBlocks " : [

76 [1 , 4 , 2] ,

77 [2 , 4 , 2] ,

78 [3 , 4 , 2] ,

79 [4 , 4 , 2]

80] ,

81 " Comple t i ons " : [

82 {

83 " Type " : " P e r f o r a t i o n " ,

84 " Wel lBlock " : [2 , 4 , 2] ,

85 " T r a n s m i s s i b i l i t y F a c t o r " : 1 . 0

86 } ,

87 {

88 " Type " : " P e r f o r a t i o n " ,

89 " Wel lBlock " : [3 , 4 , 2] ,

90 " T r a n s m i s s i b i l i t y F a c t o r " : 1 . 0

91 }

92] ,

93 " C o n t r o l s " : [

94 {

95 " TimeStep " : 0 ,

96 " S t a t e " : " Open " ,

97 "Mode" : "BHP" ,

98 "BHP" : 2000 .0

99 } ,

100 {

101 " TimeStep " : 50 ,

102 " S t a t e " : " Open " ,

103 "Mode" : "BHP" ,

104 "BHP" : 2000 .0

105 } ,

106 {

107 " TimeStep " : 365 ,

108 " S t a t e " : " Open " ,

109 "Mode" : "BHP" ,

110 "BHP" : 2000 .0

111 }

73

Appendix A. Appendix

112] ,

113 " V a r i a b l e s " : [

114 {

115 "Name" : "PROD−BHP−1" ,

116 " Type " : "BHP" ,

117 " TimeSteps " : [0 , 50 , 365]

118 } ,

119 {

120 "Name" : "PROD−TRANS−ALL" ,

121 " Type " : " T r a n s m i s s i b i l i t y " ,

122 " Blocks " : "WELL"

123 } ,

124 {

125 "Name" : "PROD−WELLBLOCKS−ALL" ,

126 " Type " : " W e l l B l o c k P o s i t i o n " ,

127 " Blocks " : "WELL"

128 }

129]

130 } ,

131 {

132 "Name" : " INJ " ,

133 " Type " : " I n j e c t o r " ,

134 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,

135 " P r e f e r e d P h a s e " : " Water " ,

136 " Heel " : [2 , 1 , 2] ,

137 " W e l l b o r e R a d i u s " : 0 . 7 5 ,

138 " D i r e c t i o n " : "X" ,

139 " S p l i n e P o i n t s " : [

140 [2 0 . 0 , 0 . 0 , 2 0 . 0] ,

141 [2 0 . 0 , 4 0 . 0 , 2 0 . 0]

142] ,

143 " C o n t r o l s " : [

144 {

145 " TimeStep " : 0 ,

146 " Type " : " Water " ,

147 " S t a t e " : " Open " ,

148 "Mode" : " Rate " ,

149 " Rate " : 1200 .0

150 }

151] ,

152 " V a r i a b l e s " : [

153 {

154 "Name" : " INJ−S p l i n e P o i n t s −1" ,

74

A.1. JSON file - Example Configuration/driver file

155 " Type " : " S p l i n e P o i n t s " ,

156 " V a r i a b l e S p l i n e P o i n t I n d i c e s " : [0 , 1] ,

157 " TimeSteps " : [0]

158 }

159]

160 }

161]

162 }

163 }

Baumann,“https://github.com/.../Driver-file-gui/FieldOpt/.../driver.json”

75

https://github.com/karolinr/FieldOpt/blob/feature/Driver-file-gui/FieldOpt/GTest/Utilities/driver/driver.json

	Abstract
	Sammendrag
	Preface
	Acknowledgement
	List of Figures
	Introduction
	Problem Description – Goal and Motivation
	About PCG and FieldOpt
	Document Structure

	Utilities
	Qt Application Framework
	C++

	Utilities/Settings Library
	Driver Configuration File
	JSON
	Structure Example from Driver File

	An Introduction to User Interfaces and Design Guidelines
	Graphical User Interface Definition and Role
	Design Guidelines
	Navigation
	Common Golden Rules of User Interface Design
	Golden Rules of User Interface Design
	Usability Heuristics for User Interface Design
	Theo Mandel's
	Ten Application Design Mistakes

	GUI Development & Implementation Process
	The Development Process
	The Work Process
	Work Flow
	Challenges
	Testing

	System Requirements
	Functional Requirements
	Non-Functional Requirements
	Constraints

	Quality Attributes
	Usability
	Portability

	GUI Design
	User Analysis – Target audience
	Customized Design

	Interface Elements
	Input Controls (Widgets and Buttons)
	Navigational Components
	Informational Components

	Graphical User Interface for FieldOpt Driver Configuration
	User Interface Structure
	The Application
	Main Window
	Global Tab
	Model Tab
	Simulator Tab
	Optimizer Tab
	Overview

	Current Functionality

	Evaluation and Reflection
	Design Guidelines
	GUI Requirements
	Thoughts and Reflection

	Summary and Further Work
	Summarization
	Recommendation for Further Work and Development

	References
	Appendix
	JSON file - Example Configuration/driver file

