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1 BAKGRUNN 

 

Betongdammar skal vere både velte- og glidesikre. Det er framleis aktiv forsking på korleis 

heft, ruhet, friksjon, fortanning og boltar påverkar den reelle glidemotstanden mellom ein 

betongdam og fjellfundamentet. Vi står derfor i fare for å bygge og fornye konstruksjonar 

utan å kjenne den reelle kapasiteten mot gliding. Det kan føre til at konstruksjonar som anten 

ikkje er sikre nok eller til konstruksjonar som er unødvendig kostbart dimensjonert. For tida 

foregår det forskingsarbeid på temaet i samarbeid mellom NORUT (Narvik) og NTNU i 

prosjektet Stable Dams, på IFSTTAR (Lyon) i prosjektet CIBEFHY, på KTH (Stockholm) 

under leiing av Fredrik Johansson og på LTU i COMPLAB (Luleå). Det siste no er at 

Statkraft Region ØST planlegg å utføre fullskala forsøk med inntil fire pilarar frå ein 

platedam. Eit felt/fullskalaforsøk på platedampilarar vil tilføre forskingsmiljøet svært mykje 

informasjon, sidan dei nemnte prosjekta berre har utført testar og forsøk i laboratorie- og 

numerisk modell. 

 

Platedampilarar har laster ifrå vasstrykk, istrykk og eigenlast. Det spesielle med slike pilarar 

er svært lita eigenlast i høve til på meir massive betongdamtyper. Det gjer at friksjonsleddet i 

ei stabilitetsberekning (FF = FN · tan φ) vert lite og pilarane vert sensitive for bidraget ifrå 

- 



b 

 

kohesjon/heft. Det er berre testing i full skala med betongkonstruksjonar som har vorte 

påkjend med normale laster som vil gje rett svar på kor stort bidraget ifrå heft/kohesjon. 

Ulempa er at det ikkje vert mogeleg å skilje heft og kohesjon/ruhet ifrå kvarandre. 

 

Arbeidet med masteroppgåva vil bli ein del av forsøksarbeidet til Statkraft, og er avhengig av 

dette for å kunne gjennomførast. 

 

 

 

 

 2 HOVUDPUNKT I OPPGÅVA 

 

Arbeidet med prosjektoppgåva vil innehalde følgjande hovupunkt: 

 

- Overordna planlegging av trekkeforsøk saman med Statkraft 

- Grundig gjennomgang av alternative metodar for kapasitetsberekning 

- Utveljing av pilarar på platedam i Telemark 

o Kartlegging av ruhet, geologi, helling, andre eigenskaper 

- Bruke kjende metodar og berekningsgrunnlag for å finne forventa kapasitet 

o Handrekning (Patton, NTNU, Barton) 

o Avanserte metodar som FEM, evt Johansson 

- Planlegging og eventuell gjennomføring av forsøk saman med Statkraft. 

- Evaluering av resultat 

- Rapportering 

 

Innhaldet i prosjektet vil bli nærare avgjort av rettleiarane på basis av informasjon som kjem 

fram etter kvart som arbeidet går framover. 
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Abstract 
 

The shear strength of a bonded concrete-rock interface below a concrete dam consists of two 

parts: friction from the self-weight of the dam and cohesion due to the glue in the cement 

paste binding the surfaces together. For flat-slab buttress dams with low self-weight, the 

cohesive strength becomes extra significant for the sliding resistance. However, the 

Norwegian authorities on dam safety does not allow the use of cohesion in sliding stability 

calculations, unless the cohesive strength can be documented through tests. Yet, no proposal 

is given on how such tests should be carried out. 

Consequently, the main scope of this thesis have been to develop and propose a test 

methodology to estimate the cohesive strength of Norwegian flat-slab buttress dams. The 

proposed testing procedure uses rock samples from the dam site to get the occurring 

roughness and strength of the bedrock. Furthermore, the test-specimen are prepared and 

concrete replicating the concrete of the dam are then cast on the natural surfaces of the rock 

samples. A series of shear tests is then carried out to measure the shear strength of the 

concrete-rock interfaces. Finally, the value of the cohesion is extrapolated out of the τ-σ 

curve. Preliminary testing of the methodology revealed the importance of thorough 

preparation of the test-specimen beforehand, but in the end left the author optimistic regarding 

the test methodology’s future use. 

Additionally, to investigate the effect of including cohesion in sliding stability calculations, 

the sliding safety of one of Statkrafts flat-slab buttress dams, Kalhovd dam, was assessed with 

a combination of FE-analysis and simplified hand calculations. The results showed that by 

assuming reasonable values for the cohesion, the dam managed to meet the requirements from 

the Norwegian dam authorities. One problem when applying cohesion in calculations, 

however, is to determine the compressive zone of the dam. Assuming a linearly distributed 

normal stress seemed to overestimate the compressive area compared to the results from the 

finite element analysis, indicating that the latter might be the best tool for this purpose. 
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Sammendrag 
 

Skjærstyrken til et glideplan mellom betong og fjell under en dam består av to deler: friksjon 

fra egenvekta til dammen og kohesjon fra limet i sementpastaen som binder overflatene 

sammen. For platedammer med lav egenvekt, så er kohesjonsstyrkene ekstra avgjørende for 

glidemotstanden. De norske dam-myndighetene tillater likevel ikke å bruke kohesjon i 

glidesikkerhetsberegninger, med mindre kohesjonsstyrken kan dokumenteres gjennom tester. 

Hvordan slike tester kan gjennomføres blir derimot ikke nevnt. 

Hovedmålet med denne oppgaven er derfor å utvikle og foreslå en testmetode for å estimere 

kohesjonsstyrken til norske platedammer. Den foreslåtte metoden benytter fjellprøver fra 

damstedet til å ta inn den opptredende ruheten og styrken i fjellet. Videre blir prøvene 

bearbeidet og betong tilsvarende dammens betong blir støp mellom de naturlige overflatene 

av fjellprøvene. En serie med skjærtester måler så skjærstyrken til kontaktflatene mellom 

betong og fjell. Kohesjonsverdien blir til slutt ekstrapolert ut fra τ-σ-kurven. Preliminær 

testing avdekket viktigheten av å bearbeide prøvene godt på forhånd, men etterlot forfatteren 

optimistisk med tanke på metodens fremtid.  

For å undersøke effekten av å inkludere ruhet i beregninger ble glidesikkerheten til en av 

Statkraft platedammer, dam Kalhovd, analysert med en kombinasjon av 

elementmetodeanalyse og forenklede håndberegninger. Resultatene viste at med å anta 

fornuftige kohesjonsverdier, så klarte dammen å komme innenfor kravene fra de norske dam-

myndighetene. Et problem ved å benytte kohesjon i beregninger er derimot å bestemme 

trykksonen på dammen. Å anta lineært fordelte normalspenninger virket å overestimere 

trykksonen sammenlignet med resultatene fra elementmetodeanalysen, noe som antyder at 

elementmetoden kanskje er det mest egnede verktøyet for dette formålet. 
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1. Introduction 
 

1.1 Background 
 

During the early 1900th, the Norwegian engineer Nils Ambursen invented the flat-slab 

buttress dam, also called the Ambursen dam. The dam consists of two structural elements: a 

flat slab taking the water pressure and buttresses that support the slab and transfer the load 

down into the foundation. The design aims to minimize the concrete usage, thus making it a 

popular choice for Norwegian dam owners with scarce resources. The drawback with this 

dam type, however, is that with a low self-weight the available friction resistance against 

sliding usually is quite small. Consequently, many older flat-slab buttress dams fail to meet 

the modern sliding stability criterion given by the Norwegian dam authorities. However, the 

criterion used neglects the cohesive strength of the concrete-rock interface coming from the 

glue in the cement paste, unless the strength be documented.  

In order to avoid costly rehabilitation projects for dams that, in reality, are stable against 

sliding, a method for documenting the cohesion is wanted. 

  

1.2 Objectives 

 

The main scope of this thesis have been to test and come up with a reliable method to estimate 

the cohesion between the concrete and the rock for flat-slab buttress dams. 

A secondary objective have been to estimate the available shear strength of Kalhovd dam, one 

of Statkrafts flat-slab buttress dams located Telemark, to see the effect of including cohesion 

in the calculations. 

 

1.3 Method 

 

The development of the testing methodology for documenting cohesion have consisted of the 

following main steps:  
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- A preliminary testing methodology was developed through a combination of literature 

studies and discussion with lab personnel at the structural lab at NTNU and the 

supervisors.  

- The preliminary methodology was tested at the structural lab at NTNU. 

- The results of the tests were analysed and an improved methodology have been 

proposed based on the experiences from the preliminary testing. 

Furthermore, to assess the sliding stability of Kalhovd dam the following steps have been 

carried out: 

- Field trip to the dam to assess the condition and geometry of the dam, the bedrock 

geology and pick a buttress for analysis.  

- A FE-analysis of selected the buttress been carried to assess the stress distribution. 

- Based the found stress distribution, the factor of safety was calculated using two 

different shear models.  

 

1.4 Extent and limitations 

 

In general, sliding of concrete dams is a three dimensional problem. However, to understand 

the 3D-effects, you first have to understand the 2D-effects. Thus, only sliding in a two 

dimensional space is considered. Additionally, the focus of this thesis have been on the 

sliding capacity of the concrete-rock interface. Consequently, potential sliding planes in the 

concrete or rock are not taken into account.  

 

1.5 Structure  

 

This thesis consists of five chapters in total. The first chapter contains a brief introduction of 

the objective, method, limitations and structure of the thesis. 

The second chapter is literature review of different analysis methods for assessing sliding 

stability and the shear strength of unbonded and bonded concrete-rock interfaces. 

In the third chapter, a stability analysis of Kalhovd dam have been carried out with both the 

finite element software Abaqus and hand-calculations. 
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The fourth chapter presents the development of the testing methodology for documenting 

cohesion. This chapter contains both the preliminary testing, the results and the proposed 

testing procedure. 

At the last chapter, a conclusion of the master’s work is presented, in addition to a proposal 

for further work.  
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 Literature Review 
 

2.1 Introduction 

 

For concrete dams founded on bedrock, the shear capacity is a function of various parameters. 

From the authors specialization project (Nymo 2015) the shear resistance was found to b, at 

least influenced, by surface roughness, the applied normal stress and the degree of bonding 

and cohesion between the rock and concrete. Furthermore, the weakest sliding plane for a 

concrete dam is not necessarily in the concrete-rock interface. It might as well be a weakness 

plane in the concrete, typically a construction joint, or in weakness plane in the rock 

foundation beneath the dam. However, as mentioned in chapter 1.4, this thesis will focus 

mainly on the shear strength and failure mechanisms of the concrete-rock interface. To give 

both the author and the reader an understanding of the different methods of assessing sliding 

stability and the shear strength of concrete-rock joints, a thorough literature review is 

presented. 

 

2.2 Analysis Methods 

 

During the last 100 years of dam building, there has been several different approaches to 

analyse the sliding stability of concrete dams. The three most used methods is the sliding 

resistance method, the shear friction method and the limit equilibrium method. 

 

2.2.1 The Sliding Resistance Method 

 

In 1933, Henny published an important paper on the topic of sliding stability of dams (cited in 

Nicholson 1983). According to Henny, before the 1930s, the following safety criterion was 

commonly used for dam safety analysis: 

 
𝐹𝑆 =  

𝑃

𝑊 − 𝑢
  

 

(2.1) 

 

where FS is the factor of safety, P is the driving horizontal forces, W is the self-weight of the 

dam above the assumed sliding plane and u is the uplift force of the dam. This method is often 
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referred to in literature as the sliding resistance method. How the factor of safety was selected 

is not clearly given in literature (Nicholson 1983). 

 

2.2.2 The Shear Friction Method 

 

In his paper from 1933, Henny also presented a new method to calculate the safety against 

sliding. The method is called the shear friction method and it was derivated by combining the 

Coulomb failure criterion and the general expression for the sliding safety of a dam: 

 
𝐹𝑆 =

𝑆

𝑃
 

 

(2.2) 

where S is the total shear capacity of the plane and P is the total driving horizontal forces.  

 

Expressing S with the Coulomb equation gives 

 
𝑆 =  𝑠1 + 𝑘(𝑊 − 𝑢) 

 

(2.3) 

where s1 is the total shear capacity without loading, k is a factor of increase in shear strength, 

W is the total weight of the dam and u is the uplift forces on the dam,  

 

By combining equation (2.2) and (2.3) Henny developed an expression for the safety factor 

against sliding for a horizontal dam: 

 
𝐹𝑆 =  

𝑠1 + 𝑘(𝑊 − 𝑢)

𝑃
 

 

(2.4) 

 

In modern literature, equation (2.4) is usually given on the following form: 

 
 𝐹𝑆 =  

𝑐 ∙ 𝐴 + ∑𝑉′ ∙ tan ø

∑𝐻
 

 

(2.5) 

with the following parameters: 

FS = the factor of safety 

c = cohesion 

A = contact area between dam and foundation 

∑𝑉′ = the sum of effective vertical forces on the dam 
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∑𝐻 = the sum of horizontal forces on the dam 

ø = the friction angle between the dam and the foundation 

 

The U.S. Army Corps of Engineers extended the shear friction model to include inclined 

sliding planes and embedment toe resistance (Nicholson 1983). The new factor of safety 

hence became: 

 
𝐹𝑆 =  

𝑅 + 𝑃𝑝
∑𝐻

  
 

(2.6) 

where R is the maximum horizontal force the potential failure plane below the dam can resist 

and PP  is the maximum passive resistance of a rock wedge located at the dam toe.  

For an upslope sliding problem R is: 

 
𝑅 =  ∑𝑉′ ∙ tan(ø + 𝛼𝑠) +

𝑐𝑠 ∙ 𝐴𝑠
cos 𝛼𝑠 ∙ (1 − 𝑡𝑎𝑛 ø ∙ tan 𝛼𝑠)

   
 

(2.7) 

 

where 𝛼𝑠 is the angle between the inclined sliding plane of the dam and the horizontal plane.  

 

For a downslope sliding problem R becomes: 

 

 
𝑅 = ∑𝑉′ ∙ tan(ø − 𝛼𝑠) +

𝑐𝑠 ∙ 𝐴𝑠
cos 𝛼𝑠 ∙ (1 + 𝑡𝑎𝑛 ø ∙ tan 𝛼𝑠)

    
 

(2.8) 

 

The equation for the passive wedge resistance PP is according to Nicholson: 

 
𝑃𝑝 =  𝑊′ ∙ tan(ø + 𝛼𝑃) +

𝑐𝑃 ∙ 𝐴𝑃
cos 𝛼𝑃 ∙ (1 − 𝑡𝑎𝑛 ø ∙ tan 𝛼𝑃)

     
 

(2.9) 

  

where W’ is the effective weight of the passive rock wedge at the dam toe and 𝛼𝑃 is the angle 

of the inclined sliding plane of the passive wedge and the horizontal plane. 
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Figure 2.1: Illustration of a concrete dam with a passive rock wedge (From Nicholson 1983). 

2.2.3 Limit Equlibrium Method 

 

The limit equilibrium method uses geotechnical properties based on the shearing resistance of 

soil and rock to calculate the safety factor (Nicholson 1983): 

 
𝐹𝑆 =  

𝜏𝐹
𝜏
  

 

(2.10) 

where FS is the factor of safety, τF is the available shear strength, and τ is the shear strength 

required for equilibrium. Thus, the dam is stable against sliding when the resultant of the 

shear stresses necessary for equilibrium is less than the maximum mobilizable shear strength. 

Nicholson (1983) listed seven assumptions required to be fulfilled for the method to be valid: 

1. The factor of safety is defined by equation (2.10) 

2. Impending failure occurs according to the requirements imposed by elastic-plastic 

failure theory 

3. The maximum shear strength that can be mobilized is adequately defined by the 

Mohr-Coulomb failure criteria 

4. Failure modes can be represented by two-dimensional, kinematically possible planes 

5. The factor of safety computed from the stability equations is the average factor of 

safety for the total potential failure surface. 

6. To derive easy, simple-to-use equations, the vertical stresses/forces acting between 

wedges or slices are assumed to be negligible 

7. The structural wedge must be defined by only one wedge 

This method can be further expanded to assess multiple wedges as shown in the figure below: 
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The force difference between wedge i and i-e for the figure above can be expressed by the 

following formula (Nicholson (1983)): 

 

(𝑃𝑖−1 − 𝑃𝑖) =  
(𝑉𝑖  ∙ cos 𝛼𝑖 − 𝑈𝑖 + 𝐻𝑖 ∙ sin 𝛼𝑖) ∙

tan ø𝑖
𝐹𝑆𝑖

(cos 𝛼𝑖 −sin 𝛼𝑖 ∙  
tan ø𝑖
𝐹𝑆𝑖

)

− 
𝐻𝑖  ∙ cos 𝛼𝑖 + 𝑉𝑖 ∙ sin 𝛼𝑖 + 

𝑐𝑖
𝐹𝑆𝑖

∙ 𝐿𝑖

(cos 𝛼𝑖 −sin𝛼𝑖 ∙  
tan ø𝑖
𝐹𝑆𝑖

)
  

 

(2.11) 

 

P = horizontal force acting on the vertical face of a wedge 

Vi = sum of the vertical forces acting on wedge i 

Ui = sum of the uplift forces acting on wedge i 

Hi = sum of external horizontal forces acting on wedge i 

αi = angle between horizontal plane and sliding plane for wedge i. Positive for upwards 

sliding, negative for downward sliding. 

Figure 2.2: Geometry, forces, and coordinate system for an ith wedge in a hypothetical wedge 
system (from Johansson 2009) based on Nicholson (1983). 
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FS = factor of safety 

Li  = length of the wedge along the sliding plane 

c = cohesion 

ø = friction angle for the rock  

By demanding that the factor of safety is equal for all parts of a system of n wedges, the result 

is n equations with n+1 unknowns satisfying 

  

𝐹𝑆𝑖  = 𝐹𝑆1 = 𝐹𝑆2 = . . . =  𝐹𝑆𝑛  

 

(2.12) 

where FSi = the safety factor for wedge i.  

This system can then be solved by applying an equation demanding horizontal equilibrium 

between the wedges such that  

 
𝑃𝑖−1 − 𝑃𝑖  = 𝑃𝐵 

 

(2.13) 

where PB is the boundary forces between the wedges. For most cases the boundary forces PB 

are zero, thus the problem can be solved by a using the conditional equation: 

 
 ∑(𝑃𝑖−1 − 𝑃𝑖) = 0

𝑛

𝑖=1

 
 

(2.14) 

 

The factor of safety can then be calculated by guessing a solution for FS in equation (2.8) 

until equation (2.11) is fulfilled. 

Nicholson also suggested an alternative equation making it possible to calculate the factor of 

safety directly:  

 

𝐹𝑆 =  
∑

𝑐𝑖 ∙ 𝐴𝑖 ∙ cos 𝛼𝑖 + (𝑉𝑖 − 𝑈𝑖 ∙ cos 𝛼𝑖) ∙ tan ø𝑖
𝑛𝛼𝑖

𝑛
𝑖=1

∑ (𝐻𝑖 − 𝑉𝑖 ∙ tan 𝛼𝑖
𝑛
𝑖=1 )

 

 

 

 

(2.15) 

Where Ai is the area of the sliding plane for wedge i, nαi is as defined by equation (2.13) and 

the other variables are as defined for equation (2.8).  
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𝑛𝛼 = 
1 − 

tan ø𝑖 ∙ tan 𝛼𝑖
𝑆𝐹

1 + tan 2 𝛼𝑖
  

 

(2.16) 

 

2.3 Shear Strength and Failure criterions 

 

Shear strength of concrete-rock foundations is basically a frictional problem. Amontons’ 

friction model from late 1700th century states that the frictional force 𝐹𝑓 on a moving object is 

proportional to the normal force 𝐹𝑛  with the proportionality constant, often referred to as 

coefficient of friction 𝜇: 

 
𝐹𝑓 =  𝜇 ∙  𝐹𝑛  

 

(2.17) 

 Amontons’ model generalized for stresses gives the following expression: 

 
 𝜏 =  𝜇 ∙  𝜎𝑛 

 

(2.18) 

where 𝜏 is the shear stress and 𝜎𝑛 is the normal stress. 

In the 18th century, Coulomb century investigated the shear capacity of soil materials and 

came up with the Coulomb strength theory (Golder 1948). According to Coulombs strength 

theory the shear strength of two materials can be divided in two: a cohesion part, representing 

the internal molecular attraction between the materials (shear strength with no applied normal 

stress), and a friction part, representing the lateral motion resistance between two surfaces. 

Coulomb agreed with Amontons regarding the proportionality of the friction and the normal 

force (Golder 1948). Furthermore, he stated that the total cohesion is proportional to the area 

of the surface of rupture.  

At the end of the 19th century, Mohr developed a generalized form of Coulombs strength 

theory using Mohr circles (S.A. Miedema. 2014). Consequently, the combined strength theory 

is commonly referred to as the Mohr-Coulomb strength theory. In modern literature the Mohr-

Coulomb failure criterion is usually given on the form 

 
 𝜏 = 𝑐 + 𝜎𝑛 ∙ tan ø 

 

(2.19) 

where τ is the shear strength, c is the cohesion, σ is the normal stress and ø is the angle of 

internal friction. 
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The Mohr-Coulomb failure criterion have since been adopted to describe the shear strength of 

brittle materials as concrete and rock. The failure criterion assumes a linear relationship 

between the normal stress and the shear capacity. However, shear tests of concrete-rock joints 

exhibit a curvilinear τ-σ relationship, both for bonded and unbonded joints (Donnelly et al 

1996). Furthermore, cohesive bonds giving the cohesive additive strength are only present for 

bonded concrete-rock joints. Once the structure start to deform significantly, these bonds are 

broken, and only the friction resistance is left to withstand the deformation. Hence, the failure 

behaviour and peak shear capacity of bonded and unbonded joints are very different, as 

illustrated by figure 2.3. It is therefore essential to distinguish between bonded and unbonded 

surfaces when assessing the shear capacity of concrete dams.  

 

Figure 2.3: Typical stress-displacement curves for bonded, unbonded smooth and unbonded rough joints 

 

2.3.1 Shear Strength for Unbonded Concrete-Rock Joints 

 

Most research on unbonded concrete-rock joints proceed on earlier work done on rough rock-

rock joints due to the similar nature of the materials. Originally, the peak strength of rough 

(non-planar) rock joints was assumed to increase linearly with increasing normal load as 

described by the Mohr-Coulomb criterion. However, studies done during in the mid-twentieth 

century suggested a curved strength curve for rough discontinues due to an added dilatational 

resistance for low normal stresses (Jaeger 1959; Lane and Heck 1964; Patton 1966; among 
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others). Some of the most important models for estimating the shear strength of rough rock 

joints are presented in this chapter. 

Patton (1966) performed over 200 direct shear test of artificially made laboratory specimens 

with varying geometry. The result was a strength criterion that considers the roughness 

through an average asperity angle i along the interface: 

 
 𝜏 = 𝜎𝑛

′  ∙ tan(ø𝑏 + 𝑖) 
 

(2.20) 

τ is the total shear strength 

𝜎𝑛 is effective the normal stress 

øb is the basic friction angle, defined as the friction angle of a smooth flat surface. 

i is the inclination angle of the failure interface 

This criterion is, however, only valid for small normal loads. For rock joints subjected to 

higher normal stress, the internal shear capacity of the rock become the governing factor for 

the overall sliding resistance. The reason for this is a change in failure mode from sliding over 

the asperities to shearing through them. Thus, the strength criterion becomes 

 
 𝜏 =  𝑐𝑥 + 𝜎𝑛

′  ∙ tan(ø𝑟) 
 

(2.21) 

where τ is the total shear strength, cx is the internal cohesion in the rock asperities, σn’ is the 

effective normal stress and ø𝑟 is the residual or weathered friction angle. The change in 

failure modes is illustrated in figure 3.1 by the change of slope in the failure envelope: 

 

Figure 2.4: Bilinear failure curve proposed by Patton (from Johansson 2009) 
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Patton (1966) emphasized, however, that for a real rock sample there is not one simple change 

of failure modes, but rather a change “in the “intensities” of different modes of failure 

occurring simultaneously” due to variances in size, inclination, internal strengths and friction 

coefficients in irregular asperities along the surface.  

In order to account the irregularity of the surface roughness Ladanyi and Archambault (1969) 

developed a model with basis in energy considerations, instead of the more common 

statistical methodology. 

By looking at the shearing along an interface, and assuming no shearing through the 

asperities, they described the total shearing force S as a sum of three components: 

 
 𝑆 = 𝑆1 + 𝑆2 + 𝑆3 

 

(2.22) 

S1 = component due to external work in dilating against the external force N 

S2 = component due to additional internal work in friction caused by dilatancy 

S3 = component due to work done in internal friction if sample did not change volume in 

shear 

 

S1 can be defined from rearranging the work equation:  

 
𝑆1 = 𝑁 ∙

𝑑𝑦

𝑑𝑥
= 𝑁 ∙ ὐ   

 

(2.23) 

where ὐ is the dilation rate at failure defined as the ratio between the increments of the normal 

displacement dy and the shear displacement dx at failure and N is external the normal force on 

the rock. Figure 2.5 shows an graphical illustration of the dilation rate. S1 is the same as N ∙ 

tan i for a regular tooth formed asperity and it becomes zero for smooth plane sliding 

interface. 

A rough shearing interface will create an additional shearing force 

 
 𝑆2 = 𝑆 ∙ ὐ ∙  ø𝑓 

 

(2.24) 

where ø𝑓 defined as an statistical average value of the friction angle when sliding occurs 

along irregularities of different orientations and S is the external shearing force. According to 

Ladanyi and Archambault (1969) ø𝑓 will not vary much from the friction angle of the rock 

along the shearing interface ø𝜇 for initially well interlocked rock interfaces that becomes 

significantly dilatant at failure. 
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S3 is the friction component for a flat rough surface exposed to the normal force N 

 
 𝑆3 = 𝑁 ∙ tan ø𝜇 

 

(2.25) 

Furthermore, they defined a fourth shear force component S4 describing shearing through the 

asperities as  

 
 𝑆4 = 𝐴 ∙ 𝑠0 + 𝑁 ∙ tan ø0 

 

(2.26) 

where A is the projected shear area, where 𝑠0 is the internal cohesion strength of the intact 

rock material and ø0 is the friction angle of the intact rock material. 

As both the failure modes, sliding across and shearing through the asperities, can happen 

simultaneously, it was necessary to define a shear area ratio 

 
 𝑎𝑠 = 𝐴𝑠/𝐴 

 

(2.27) 

where 𝐴𝑠 is the portion of area where asperities are sheared off and A is the total projected 

area. 

Thus, the total shearing force S describing both failure modes can be rewritten as 

 
 𝑆 = (𝑆1 + 𝑆2 + 𝑆3) (1 − 𝑎𝑠) + 𝑆4 ∙ 𝑎𝑠  

 

(2.28) 

By inserting eq. (2.23), (2.24), (2.25) and (2.26) into eq. (2.28) and dividing with the area A, 

an expression for the shear stress 𝜏 is found: 

 

 
 𝜏 =  

𝑆

𝐴
=  
𝜎 (1 − 𝑎𝑠 )(ὐ + tan ø𝜇) + 𝑎𝑠 (𝜎 ∙ tan ø0 + 𝑠0)

1 − (1 − 𝑎𝑠) ὐ ∙ tan ø0
 

 

 

(2.29) 
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Figure 2.5: A graphic illustration of the basic assumptions and anticipated results for the proposed failure model.  

(a) Definition of the dilation rate and the shear area rate. (b) Anticipated failure envelopes for irregular rock surfaces and 

rock mass, respectively. (c) Anticipated variation of the dilation rate and shear area rate with normal pressure (from 

Ladanyi and Archambault 1969). 

This expression is, however, according to Ladanyi and Archambault (1969) only valid under 

the assumption of tightly closed cracks and complete interlocking. These assumptions are not 

necessarily valid for natural rock profiles exposed to, for instance, creep, variable water 

levels, weathering or stress relief. To account for variances in the interlocking they introduced 

a degree of interlocking 𝜂 given by 
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 𝜂 = 1 −  Δ𝑥/Δ𝐿 

 

(2.30) 

where Δ𝑥 is length of the shear displacement and Δ𝐿 is the projected length of the asperities in 

the shear direction. See figure 2.6 for a graphical illustration of the degree of interlocking.  

Thus, the true projected area At can be described by A∙ 𝜂, and eq. (2.29) becomes 

 
 𝜏 =  

𝑆

𝐴
=  
𝜎 (1 − 𝑎𝑠 )(ὐ + tan ø𝜇) + 𝑎𝑠 (𝜎 ∙ tan ø0 + 𝑠0 ∙ 𝜂)

1 − (1 − 𝑎𝑠) ὐ ∙ tan ø0
  

 

(2.31) 

 

 

 

Figure 2.6: Effects of reducing the degree of interlock. (a) Definition of the degree of interlocking. (b) Results according to 

the bilinear model. (c) Results according to the proposed model (from Ladanyi and Archambault 1969). 
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To estimate 𝑎𝑠 and ὐ, Ladanyi and Archambault (1969) suggested using the following 

empirical approximations probable variation of the parameters within the interval 

 0 < 𝜎 <  𝜎𝑇 for the normal stress: 

  𝑎𝑠  ≈ 1 − (1 − 
 𝜎𝑇
𝜂 ∙ 𝜎𝑇

)𝑘1 (2.32) 

  
 ὐ ≈ (1 − 

 𝜎𝑇
𝜂 ∙ 𝜎𝑇

)
𝑘2

∙ tan 𝑖 
 (2.33) 

 

Using the available experimental data the exponents where approximated to k1 ≈ 1,5 and k2 ≈ 

4. Comparing with the available empirical data, the model managed to describe the relative 

contributions from most of the important parameters for the total shear strength of irregular 

rock joints (Ladanyi and Archambault 1969). The authors underlined, however, that more 

experimental data was necessary to further validate the model. 

Barton (1973) and Barton and Choubey (1977) developed a non-linear empirical failure 

criterion, often called the JRC-JCS joint model. The criterion was established using data from 

numerous direct shear tests on rock joints. 

 

By plotting the peak friction angle ø = tan−1(
𝜏

𝜎𝑛
) against the peak dilation angle dn, Barton 

(1973) developed the following relationship 

  𝜏 =  𝜎𝑛 ∙ tan(2𝑑𝑛 + 30°)  (2.34) 

where 𝜏 is the peak shear stress, 𝜎𝑛 is the normal stress and 𝑑𝑛 is the peak dilation angle, 

which is the instantaneous inclination  dv/dh of the shearing path at peak strength, relative to 

the mean plane. 

In addition, he discovered that the peak dilation angle was proportional to the logarithm of the 

ratio between the unconfined compression strength and the normal stress: 

 𝑑𝑛 = 10 log(
𝜎𝑐
𝜎𝑛
)   (2.35) 

By inserting equation (2.35) into (2.34) the earliest expression of the failure criteria was 

created: 
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 𝜏 =  𝜎𝑛  ∙ tan(20  log(
𝜎𝑐

𝜎𝑛
)  + 30°)             (2.36) 

 

By replacing 30° with the basic friction angle 𝜙𝑏 the expression was generalized to 

 
 𝜏 =  𝜎𝑛 ∙ tan(20  log(

𝜎𝑐
𝜎𝑛
)  + 𝜙𝑏) 

 

(2.37) 

 

Barton (1973) further argued that weathering of the joint would reduce the compressive 

strength, thus using the unconfined compression strength 𝜎𝑐 would only be valid for 

completely unweathered rock joints. Consequently, he introduced the effective joint wall 

compressive strength JCS, which is the actual compressive strength measured on the joint 

itself, to replace 𝜎𝑐 in weathered joints. Barton and Choubey summarized the weathering 

process of rocks in the following basic steps: 

 

1) Formation of joint in intact rock; No weathering means JCS value are the same as the 

unconfined compression strength 𝜎𝑐. 

2) Slow reduction of joint wall strength if joints are water-conducting; JCS become less 

than 𝜎𝑐. 

3) Common intermediate stage; weathered, water-conducting joints, impermeable rock blocks 

between, JCS is some fraction of  𝜎𝑐. 

4) Penetration of joint weathering effect into rock blocks; progressive reduction of  𝜎𝑐 from 

the walls of the blocks inwards, JCS continues to reduce slowly. 

5) Advanced stage of weathering; more uniformly reduced  𝜎𝑐 finally drops to the same level 

as JCS; rock mass is permeable throughout.  

According to Barton and Choubey (1977) the JCS value can be estimated by using, for 

instance, the Schmidt hammer rebound test. 

 

Furthermore, it was necessary to take into account joints with lower degrees of roughness 

than those considered above. This is rock joints, which according to Barton (1973), lie 

somewhere in between the brittle-fracture tension joints and the smooth residual shear 

interfaces. Therefore, the joint roughness coefficient JRC was presented as a measure on the 

roughness along the joint. The JRC varies from 0 (smooth) to 20 (rough) depending on the 
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roughness profile. The value can be estimated through visual inspection and comparison with 

the predefined roughness profiles given in figure 2.7. However, as this method is highly 

subjective, Barton and Choubey (1977) argued that the most satisfactory procedure is tilt tests 

on rock samples from site, and back calculation of the actual JRC-value. 

 

Figure 2.7: Typical roughness profiles (from Barton and Choubey 1977) 

Hence, Barton (1973) presented the following equation to estimate the peak shear strength of 

rough rock joints, also taking into account the variances in surface roughness and weathered 

compressive strength: 

 
𝜏 = 𝜎𝑛 ∙ tan[𝐽𝑅𝐶 ∙ log10(

𝐽𝐶𝑆

𝜎𝑛
) + ø𝑏]  

 

(2.38) 

where  

JRC is the joint roughness coefficient, varying from 0 (smooth) to 20 (rough) 

JCS is the effective joint wall compressive strength 

𝜎𝑛 is the normal stress. 

øb is the basic friction angle  

Barton and Choubey (1977) later argued that the basic friction angle ø𝑏 from equation (2.38) 

should be replaced with the residual friction angle ø𝑟, which represents the minimum shear 

capacity. The reason being that most of the values of ø𝑏 is obtained from unweathered rock 

specimen which are saw-cut, and in many cases also sandblasted. Furthermore, the test results 
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from 136 joints showed a significant reduction in the friction angle due to weathering. The 

result is the following updated expression for the general peak shear strength: 

 
 𝜏 = 𝜎𝑛 ∙ tan[𝐽𝑅𝐶 ∙ log10(

𝐽𝐶𝑆

𝜎𝑛
) + ø𝑟] 

  

(2.39) 

 

To estimate the residual friction angle the authors (Barton and Choubey 1977) suggested 

using Schimdt rebound tests combined with the empirical relationship between ø𝑟 and the 

basic friction angle ø𝑏: 

 
ø𝑟 = (ø𝑏 − 20°) + 20 ∙ (

𝑟

𝑅
)  

 

(2.40) 

 

where 𝑅 is the Schmidt rebound on dry unweathered sawn surfaces and r is the Schmidt 

rebound on wet joint surfaces. 

They also mentioned that for smooth plane joints or joints that present signs of early 

movement, the sole shear strength would have be based on ø𝑟 for design purposes, as the 

joints cannot be expected to have any asperity or roughness contribution to the shear capacity. 

On the other side, if the joints are non-planar (rough), not presheared and some measures (as 

i.e bolts) are taken to stop further deformations, the peak dilation angle will give an estimate 

off the additional shear capacity beyond ø𝑟. Hence, the total friction angle should be at least 

equal to the sum of the residual friction angle and the peak dilation angle. In other words: 

 
 ø𝑟 + 𝑑𝑛 ≤ tan

−1(
𝜏

𝜎𝑛
) 

 

(2.41) 

According to Barton and Choubey the total shear resistance is likely higher than just the sum 

of  ø𝑟 and 𝑑𝑛 since the additional capacity from crushing of the asperities is neglected.  

Barton and Bandis (1983) argued that the shear strength and shear stiffness is reduced with 

increasing specimen size. The reason is a reduction in effective joint roughness and asperity 

strength. Using the results from widespread testing of joints, joint replicas and literature 

reviews, they proposed the following empirical equations for scale corrections: 

 
 𝐽𝑅𝐶𝑛  ≈ 𝐽𝑅𝐶𝑜 [

𝐿𝑛
𝐿𝑜
]
−0.02𝐽𝑅𝐶𝑜

 
 

(2.42) 
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 𝐽𝐶𝑆𝑛  ≈ 𝐽𝐶𝑆𝑜 [

𝐿𝑛
𝐿𝑜
]
−0.03𝐽𝑅𝐶𝑜

  
 

(2.43) 

 

where L is the length of the sample or rock joint and the subscripts (o) and (n) refer to lab 

scale (100mm) and in situ size, respectively.  

Grasselli (2001) developed a strength criteria by comparing test results from direct shear tests 

with measurements of the surface roughness using a three-dimensional scanning device called 

ATS (Advanced Topometric System). The device measured the surface as point clouds and a 

triangulation algorithm reconstructed the surface as a finite number of triangles. He proposed 

that only the triangles facing the shear direction influenced the shear capacity. This was also 

in line with the test results, where inspection afterwards showed that only the steepest zones 

facing the shear direction exhibited visible damage. Grasselli introduced a parameter he called 

the apparent dip angle θ*, which describes the contribution of the projected inclination of each 

triangle. A geometrical explanation of θ* can be seen in figure 2.8. 

 

 

Figure 2.8: Geometrical identification of the apparent dip angles, in function of the shear direction (From Grasselli 2001) 

Grasselli named the sum of the area of all the triangles the potential contact area 𝐴𝑐. Using 

regression, he proposed the following expression for estimating𝐴𝑐: 
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  𝐴𝑐 = 𝐴𝑜  ∙  [

𝜃𝑚𝑎𝑥
∗ − 𝜃∗

𝜃𝑚𝑎𝑥∗
]
𝐶

 
 

(2.44) 

 

where 𝐴𝑜 is the maximum possible contact area against the sliding direction, 𝜃𝑚𝑎𝑥
∗  is the 

maximum dip angle, 𝜃∗ is the apparent dip angle and C is a roughness parameter describing 

the concavity of the 𝐴𝑐 − 𝜃
∗ curve. According to Grasselli (2001), the laboratory tests show 

𝜃𝑚𝑎𝑥
∗  varying from 20° to 90° for natural rock surfaces. 

Studying the test results, Grasselli argued that the tensile strength 𝜎𝑡 of the rock is more vital 

to the sliding capacity than the compressive strength, due to the nature of the failure 

mechanism. By using the results from his direct shear tests, he suggest the following equation 

for the peak shear strength of rock joints: 

  

 𝜏𝑝 = 𝜎𝑛 ∙ tan(ø𝑟
′ ) ∙ (1 + 𝑔) 

  

(2.45) 

 

where 𝜎𝑛 is the average normal stress and ø𝑟
′  is the residual friction angle. 𝑔 is an expression 

describing the surface morphology: 

 

 𝑔 =  𝑒
−𝜃𝑚𝑎𝑥

∗

9∙𝐴𝑜∙𝐶
∙
𝜎𝑛
𝜎𝑡  

 

(2.46) 

with parameters described earlier. 

To estimate the residual friction angle ø𝑟
′  ,Grasselli (2001) proposed an empirical formula 

including the basic friction angle ø𝑏: 

 
 ø𝑟
′ = ø𝑏 + (𝐶 ∙ 𝐴𝑜

1.5 ∙  𝜃𝑚𝑎𝑥
∗ ∙ (1 − 𝐴𝑜

1
𝐶⁄ ))

cos𝛼

 
 

(2.47) 

 

where α is the angle between the schistosity plane and the normal plane to the joint. If no 

schistosity plane exist α is set to zero. The other parameters are the same as described earlier. 

Johansson (2009) and Johansson and Stille (2014) came up with a conceptual model to 

describe the dilation angle or the asperity angle i for full sized joints. The model is based upon 

sliding over the asperities as the dominating and governing failure mode. Thus, the peak shear 

strength can be described by: 
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 𝜏 =  𝜎′𝑛 ∙ tan(ø𝑏 + 𝑖𝑛) 

 

(2.48) 

where 𝜎′𝑛 is the effective normal stress, ø𝑏 is the basic friction angle and 𝑖𝑛 is the dilation 

angle for a full sized joint. 

Johansson (2009) explained the shearing mechanism as followed 

“When shearing is initiated for a perfectly mated, unfilled and rough joint, subjected to a 

constant normal load, the asperities will first be deformed elastically. At the same time, the 

load at the initial contact points starts to increase and quickly reaches the yield strength of 

the material. At this point, the smallest asperities facing the shear direction will be crushed 

since the potential contact area for these asperities are too small to carry the total load.“ 

Furthermore, he stated that this process would continue successively until a critical number of 

the asperities are reached, and the potential contact area becomes the same as the true contact 

area. At this point, the measured dip angle 𝜃∗ of the contacting asperities can be set equal to 

the dilation angle of the joint surface at grain size i (Johansson and Stille 2014). 

From adhesion theory of friction, the true area of contact 𝐴𝑐,𝑟 can be expressed as the quotient 

between the effective normal stress and the yielding stress of the joint surface, 𝜎𝑐𝑖: 

 

 
𝐴𝑐,𝑟 = 

𝜎′𝑛
𝜎𝑐𝑖
  

 

(2.49) 

 

Furthermore, the potential contact area ratio 𝐴𝑐,𝑝 for a rough joint can be described 

empirically as proposed by Grasselli (2001): 

 

 
 𝐴𝑐,𝑝 = 𝐴𝑜  ∙  [

𝜃𝑚𝑎𝑥
∗ − 𝜃∗

𝜃𝑚𝑎𝑥∗
]
𝐶

 
 

(2.50) 

 

where 𝐴𝑜 is the maximum possible contact area against the sliding direction, 𝜃𝑚𝑎𝑥
∗  is the 

maximum dip angle measured on the sample and 𝜃∗ is the measured dip angle defined as the 

inclination of the asperities against the sliding direction. C is a roughness parameter. 

The following relationship between the asperity height ℎ𝑎𝑠𝑝 and base length of the asperities 

𝐿𝑎𝑠𝑝 was suggested: 
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ℎ𝑎𝑠𝑝 = 𝑎 ∙  𝐿𝑎𝑠𝑝

𝐻  
 

(2.51) 

where a is an amplitude constant and H is the Hurst exponent. Both of the factors are based 

on the base lengths of varying asperity orders. 

 

Johansson (2009) argued that for a constant normal stress and true contact area, the change in 

the number of contact points determines how the area of the average contacting asperities 

change. By assuming that the contact points are quadratic shaped on the joint wall surface, 

Johansson therefore expressed asperity base length for a full sized joint as:  

 
𝐿𝑎𝑠𝑝,𝑛 = 𝐿𝑎𝑠𝑝,𝑔  ∙  (

𝐿𝑛
𝐿𝑔
)

𝑘

  
 

(2.52) 

 

where L is the length of the sample, Lasp is the base length of the asperity and the subscripts 

(g) and (n) is defined as grain size and full sized joints, respectively. k is an empirical constant 

varying between 0 (fully mated) and 1 (zero matedness), describing the degree of matedness. 

By setting the potential contact area ratio 𝐴𝑐,𝑝 equal to the true area of contact 𝐴𝑐,𝑟, an 

equation for the measured dip angle 𝜃∗ can be found: 

 

𝜃∗ = 𝜃𝑚𝑎𝑥
∗ − 10

𝑙𝑜𝑔
𝜎𝑛′
𝜎𝑐𝑖
−𝑙𝑜𝑔𝐴0

𝐶 ∙ 𝜃𝑚𝑎𝑥
∗    

 

(2.53) 

 

 

The inclination i can be found through geometry considerations from figure 2.9: 

 

Figure 2.9: Geometry of an idealized asperity proposed by Johansson (2009). 

 
 𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

ℎ𝑎𝑠𝑝

0.5 ∙ 𝐿𝑎𝑠𝑝
) 

 

(2.54) 
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As equilibrium is reached, the measured dip angle 𝜃∗becomes equal to the inclination of the 

asperities i, at grain size.: 

 

𝑎𝑟𝑐𝑡𝑎𝑛 (
ℎ𝑎𝑠𝑝

0.5 ∙ 𝐿𝑎𝑠𝑝
)  =  𝜃𝑚𝑎𝑥

∗ − 10

𝑙𝑜𝑔
𝜎𝑛′
𝜎𝑐𝑖
−𝑙𝑜𝑔𝐴0

𝐶 ∙ 𝜃𝑚𝑎𝑥
∗  

 

(2.55) 

 

If equation (2.51) then is inserted into equation (2.55), an expression for the length of the 

asperities at grain size can be found: 

 

 𝐿𝑎𝑠𝑝,𝑔 = [
0.5

𝑎
[tan(𝜃𝑚𝑎𝑥

∗ − 10

𝑙𝑜𝑔
𝜎𝑛′
𝜎𝑐𝑖
−𝑙𝑜𝑔𝐴0

𝐶 ∙ 𝜃𝑚𝑎𝑥
∗ )]]

1
𝐻−1

 

 

(2.56) 

 

If then equation (2.51), (2.52) and (2.56) is inserted into equation (2.54) the following 

expression for the dilation angle for full sized joints is found: 

 

 𝑖𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛

(

 
 
2𝑎

(

 
 
[
0.5

𝑎
[tan(𝜃𝑚𝑎𝑥

∗ − 10

𝑙𝑜𝑔
𝜎𝑛′
𝜎𝑐𝑖
−𝑙𝑜𝑔𝐴0

𝐶 ∙ 𝜃𝑚𝑎𝑥
∗ )]]

1
𝐻−1

(
𝐿𝑛
𝐿𝑔
)

𝑘

 

)

 
 

𝐻−1

)

 
 

 

 

(2.57) 

 

Simplifying the equation above gives the following expression for the asperity inclination for 

full sized joints: 

 

 

  𝑖𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛 [𝑡𝑎𝑛(𝜃𝑚𝑎𝑥
∗ − 10

𝑙𝑜𝑔
𝜎𝑛′
𝜎𝑐𝑖
−𝑙𝑜𝑔𝐴0

𝐶 ∙ 𝜃𝑚𝑎𝑥
∗ )(

𝐿𝑛
𝐿𝑔
)

𝑘𝐻−𝑘

] 

 

(2.58) 

 

For convenience, the definition of the parameters from equation (2.58) is repeated below: 

𝜃𝑚𝑎𝑥
∗  = maximum measured dip angle on sample 

k = empirical constant describing matedness varying in the range 0-1 

H = the Hurst exponent 

𝜎𝑛′ = effective normal force on the joint 

𝜎𝑐𝑖= yielding strength of joint surface 



26 

 

C = roughness parameter 

𝐴0 = potential contact area 

𝐿𝑛 = length of the full sized joint 

𝐿𝑔 = length of grain size 

Using equation (2.58), Johansson (2009) managed to describe the conceptual behaviour of the 

dilation angle under varying scale levels: 

 

Figure 2.10: Conceptual behaviour of asperity angle with varying matedness and scale (From Johansson 2009). 

 

According to the model propsed by Johansson (2009) and Johansson and Stille (2014) the 

scale effect in the dilation angle is highly influenced by the degree of matedness. For joints 

with low degrees of matedness, the scale effect can be quite significant, whereas for higher 

degrees of matedness the effect is less prominent. For a perfectly mated joint, there should be 

no scale effect at all, as the number of contact points increase proportionally to the area of the 

joint.  

The conceptual model have some weaknesses, however. For instance, the yield strength of the 

joint surface is assumed constant and independent of the scale. In addition, it is assumed that 

the normal stress is monotonically increasing, thus neglecting changes in the inclination angle 

due to cyclic stress changes. 
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2.3.2 Shear Strength for Bonded Concrete-Rock Joints 

  

In contrary to for unbonded rock joints there have not been a significant amount of studies on 

the sliding mechanisms governing the shear capacity for bonded rock-concrete interfaces. 

Most research on bonded concrete-rock foundations have traditionally been done by fitting 

Mohr-Coulomb failure envelopes, described by equation (2.59), to results from direct shear 

tests. 

 
𝜏 = 𝑐 + 𝜎𝑛  ∙ tan ø𝑖  

 

(2.59) 

 

c = cohesion, 𝜎𝑛 = normal stress, and ø𝑖 = internal friction angle of contact 

In 1960s, Rocha cast about 70 blocks of concrete blocks and performed in-situ tests at six 

different dam sites with varying rock types (cited in Ruggeri 2004). The friction angles and 

cohesion reported varied between 53° and 63° and 0.1 and 0.7 MPa, respectively. Weak rock 

masses, however, caused most of the failures to happen in parallel weakness joints in the rock 

foundation instead of the concrete-rock joint. Thus, the reported values somewhat 

underestimate the real concrete-rock strength. 

Link presented a widespread tabulation of measured rock and concrete-rock strengths in 1969 

(cited in Ruggeri 2004). After the results from soft marls, highly weathered rock or bedding 

planes were excluded  ø𝑖 was found to be in the range 45°-52° and c in the range 0.1 - 3.0 

MPa. 

The Electric Power Research Institute (EPRI) digested the results from direct shear tests on 

concrete-rock joints from 18 dams built between 1912 and 1965 (EPRI 1992). In total 65 

cores were tested, where 35 where intact, one was unbonded and 11 sawcut. The last 18 were 

rock cores with concrete cast on afterwards. For the best fit lines the peak friction angle varied 

from 54° to 68° and for most of the rocks the cohesion varied from 1.3 to 1.9 MPa. For shale 

the reported cohesion was as low as 0.1 MPa. 

ISMES performed shear tests on 16 large specimen to investigate the added bonding effect 

from interposing cement milk films in concrete-rock joints (cited in Ruggeri 2004).  Two 

different rock types were used: a mica schist and an orto-gneiss. The results showed that the 

peak strength was not very affected by rock type, whereas the residual strength was. 
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Furthermore, using the cement milk films increased the peak shear strength, while the residual 

strength remained the same. 

Saiang et al (2005) performed laboratory tests on shotcrete-rock joints in direct shear, tension 

and compression. The direct shear tests showed that for lower normal loads, typically less 

than 1 MPa, the shear strength of the cemented shotcrete-rock joint is primarily the bond 

strength. For the case of higher normal loads, the frictional resistance of the joint proved to be 

more dominant, whereas the cohesion became less important. 

Moradian et al (2011, 2012) did direct shear tests on concrete-rock interfaces with varying 

bonding, normal load and displacement rate. In addition, they used acoustic emission (AE) to 

monitor the energy released as the tests was running. The results showed that for fully bonded 

joints with low normal loads, the asperities did not seem to start contributing to the sliding 

resistance before after the bond was broken. For fully bonded joints with higher normal loads, 

on the other side, the asperities and the bonding broke simultaneously.  

The AE measurements showed no significant activity before reaching peak capacity and 

failure of the bond, thus suggesting that there was no asperity degradation before this point. 

Interestingly the increase in normal load from the initial 0.15 MPa to 0.65 MPa and to finally 

1.25 MPa gave no noteworthy effect on the peak shear strength; it remained almost the same. 

The authors argued that for bonded joints with less normal load than the bond strength, the 

shear capacity are determined by the bond strength alone. It should be noted, however, that 

the normal loads were very low compared to the shear strength. Even for the highest applied 

normal stress (1.25 MPa), the shear capacity was higher by a factor of four (5.06 MPa). The 

residual strength (post failure of the bond), in contrast, increased with higher normal loads. 

Furthermore, for the tests where the bonding rate was reduced, the brittle failure gradually 

transitioned into a softening failure due to the higher contribution from the asperities in joint 

failure. The reduction in bonding also led to a drop in the maximum shear strength from 4.13 

MPa for 100% bonding to 1.2 MPa for 10% bonding. Additionally, the reduction in bonding 

also led to a gradual reduction of the residual strength after the bond is broken.  

Tian et al (2014) examined the shear behaviour of bonded concrete-rock joints both 

experimentally and numerically. They conducted shear tests of concrete cast on smooth planar 

(JRC values below 2) rock samples to investigate the shear behaviour of well-bonded 

cohesive interfaces. The results are similar to the results of Saiaing et al (2005) and Moradian 

et al (2011, 2012); for low normal stress (0-2 MPa), the bond strength is dominating factor for 
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the peak capacity, resulting in a sudden drop in the failure curve when the bond is degraded. 

For higher normal loads (4-6 MPa), the failure of the bond was more gradual, and the friction 

played a bigger part for the overall sliding capacity. The authors estimated the internal friction 

angle ø𝑖 of the bonded joint to be 31°, which is significantly lower than the reported value 

from the studies described above.  

Krounis et al (2016) studied the shear capacity of partially bonded concrete rock joints. A 

series of 24 direct shear tests were performed with concrete-rock samples with varying 

bonding percentages. The purpose was to investigate the strain compatibility between the 

shear resistance of unbonded and bonded parts of an interface. 

In the paper, the authors presented two models to estimate the shear capacity of partially 

bonded concrete-rock interfaces. The first one is based on work done by Lo et al (cited in 

Krounis et al 2016) in 1990 and 1991, and describes the peak capacity 𝜏𝑝 as: 

 
𝜏𝑝 = 𝐴𝑏 ∙ (𝑐 + 𝜎𝑛

′ ∙ tan ø𝑖) + (1 − 𝐴𝑏) ∙  𝜎𝑛
′ ∙ tan(ø𝑏 + 𝑖)    

 

(2.60) 

where 𝐴𝑏 is the ratio of bonded area to total area, 𝜎𝑛
′  is the effective normal stress, and  𝑐 and 

ø𝑖 is the cohesion and the internal friction angle of the bonded contact, respectively. ø𝑏 and 𝑖 

is the basic friction angle and the mobilized roughness component, respectively. 

The second model is based on work presented by Dawson et al (cited in Krounis et al 2016) in 

1998 and is given by the following expression 

 
 𝜏𝑝 = 𝐴𝑏 ∙ (𝑐 + 𝜎𝑛

′ ∙ tan ø𝑖) + (1 − 𝐴𝑏) ∙  𝜎𝑛
′ ∙ tan ø𝑏    

 

(2.61) 

  

Both model estimates the shear capacity by adding up the total capacity for the bonded and 

the unbonded parts. The only difference is that the methodology developed by Dawson et al 

assumes that the roughness is not mobilized prior to failure of the bond, thus they neglect the 

roughness component 𝑖 from expression for the peak capacity. Figure 2.11 shows equation 

(2.60) and (2.61) plotted against various bonding rations 𝐴𝑏 for different roughness 

components 𝑖. 
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Figure 2.11: The peak shear capacity plotted against the bonding percentage for varying roughness components (From 

Krounis et al 2016) 

The figure shows that as the bonding percentage increases the difference between the two 

models becomes insignificant. For lower bonding percentages, on the other hand, the 

deviation is higher. The authors (Krounis et al 2016) thus argued “…that while assuming a 

complete mobilization of 𝑖 could result in an overestimation of  𝜏𝑝, excluding it could, in 

particular for rough interfaces, implies in a significant underestimation of the inferface 

resistance”. 

To estimate the cohesion, the fully bonded specimen was tested at varying levels of normal 

load. The best-fit Mohr-Coulomb envelope for the peak capacity exhibited a cohesion value 

of 2.97 MPa and a peak friction angle of 54.4°. The rest of the unbonded and partially bonded 

specimen were run with a constant normal stress σn = 0.8 MPa. The average basic friction 

angle ø𝑏 = 38.6° was found from the saw-cut plane test specimen, and the average inclination 
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angle i = 32.7° was then found from the difference between the basic and the peak friction 

angle for the rough unbonded joints.  

The average peak capacity was 3.20 MPa, 3.01 MPa and 3.65 MPa for bonding percentages 

of 75%, 50% and 25%, respectively. In comparison, the fully bonded specimen with a normal 

load of 0.8 MPa had an average shear capacity of 4.18 MPa, whereas the unbonded specimen 

had 2.58 MPa and 0.74 MPa for the rough and planar surfaces, respectively. The authors gave 

no direct explanation as to why the samples with 25% bonding exhibited a higher peak 

capacity than those with a higher degree of bonding, other than potential differences in 

individual surface roughness on the unbonded part of the samples. It might be that that the 

degree of bonding is not as significant for the peak capacity as the presence of bonding, 

however more tests on partially bonded joints are needed to draw any conclusions.  

Interestingly, the peak capacity was reached at almost the same horizontal displacement for 

the fully bonded, the partially bonded and the fully unbonded rough samples. See figure 2.12 

and 2.13 for typical stress-displacement curves for the different samples. 

 

 

 

 

Figure 2.12: Typical stress-displacement curve for unbonded samples with (a) rough and (b) planar rock surfaces. 
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Figure 2.13: Stress-displacement curve for samples with (a) 25%, (b) 50% and (c) 75% bonding percentages. 

Krounis et al (2016) consequently argued that it might be reasonable to assume that a great 

ratio of the roughness i actually can be mobilized before failure of the bond. This would 

favour using equation (2.60) over equation (2.61) as the former consider roughness, whereas 

the second does not. Plotting both models against the actual results, as done in figure 2.14, 

shows that equation (2.60) is a better fit than (2.59), especially as the bonding percentage 

decreases. The authors pointed out, however, that with a ratio of explained variance R2 = 

0.4243, neither of the models was very accurate.  

 

 

Figure 2.14: Comparison between test results and the two proposed strength models for partially bonded joints (From 

Krounis et al 2016). 
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2.3.3 Summary and Discussion 

 

Several failure criterions have been proposed to estimate the shear strength of concrete-rock 

foundations. Most of them is fully or partially based on Mohr-Coulomb failure theory. As the 

additional cohesive c in the “𝑐 + 𝜎𝑛 ∙ tan ø ”-Mohr-Coulomb strength envelope only is present 

for bonded concrete-rock joints, it is essential to distinguish between bonded and unbonded 

joints. 

For unbonded concrete-rock joints, the peak capacity can be estimating using models from 

rock mechanics, describing the shear strength of rough rock joints. Patton’s bilinear failure 

criterion is one of the most important ones. It is essentially a modified version of the Mohr-

Coulomb with an added dilatational component i, taking the roughness into account in the 

expression for the friction angle.  Patton recognized that as the normal load increases, the 

shear stress necessary to overcome the sliding resistance of the rough asperities exceeds the 

shear capacity of the rock, thus causing a shift in failure modes. This bilinear failure envelope 

is a better description of the real material behaviour than the linear Mohr-Coulomb envelope, 

but as Patton (1966) himself said: “…to facilitate an understanding of the failure mechanisms 

curved failure envelopes reflecting the multiple modes of shear failure appear to be a 

necessity.”.  

Ladanyi and Archambault (1969) developed a strength criterion with basis in energy 

considerations, however, due to the complexity of the equation, the limited experimental basis 

and the difficulty of defining the input parameters, the criterion did not gain wide acceptance 

(Donnelly and Rigbey 1998). Barton (1973) and Barton and Choubey (1977) came up with an 

empirical model to estimate the shear strength contribution from the joint roughness. The 

model take the gradual shift in failure mode into account through a dilatational expression that 

decreases as the normal load increases. Furthermore, the input parameters are based on 

numerous empirical data, and the values can be obtained from field tests. The biggest issue 

with this failure criterion is estimating the joint roughness coefficient accurately. Estimates 

from the visual comparison approach is somewhat subjective, whereas taking core samples on 

site and transporting them back to a laboratory for tilt tests is quite resource-demanding for 

quick estimations. 
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Grasselli (2001) used 3D-scanning to quantify the roughness of a rock profile and presented 

an empirical strength criterion based on the results from several shear tests. Johansson (2009) 

and Johansson and Stille (2014) used Grassellis scanning methodology to come up with a 

conceptual model for the peak capacity of unweathered rock joints based on adhesion and 

fractal theory. Both models make use of modern technology do accurately describe the 

surface roughness, however, they both rely on precise input parameters which can be hard to 

determine. Furthermore, they also depend on special scanning devices to map the joint 

morphology, which limits the use of the methodology for simple rough estimates.   

For bonded concrete-rock joints, the cohesive effect from the cementitious bond becomes 

important for the peak shear capacity. This is especially true for joints subjected to low 

normal loads, as the flat slab buttress dam, where the bond strength basically determines the 

capacity. For higher normal loads the failure mode tends to become more of a softening 

failure due to the increased impact from the frictional component.   

In general, it is believed that the cohesive bond is broken at small strains, whereas the 

dilatation and mobilization of the surface roughness require larger deformations. Hence, many 

authors aruge that it is not appropriate to assign a roughness contribution to the peak shear 

capacity of bonded joints.  Donnelly et al (2007), for instance, stated that: “It is also not 

theoretically possible for cohesion and the dilatational component to co-exist. Therefore 

roughness can not be combined with cohesive strength”. However, the reported internal 

friction angle for concrete cast on natural rock profiles with bonding typically lie in the range 

45°-65, whereas the basic friction angle (friction angle of a smooth surface) for concrete and 

rock alone is significantly lower, typically 30-40°. In addition, the test results from Tian et al 

(2014) with planar smooth bonded concrete-rock joints exhibited a peak friction angle of 31°, 

which is in the range of the expected basic friction angle. This indicates that the peak shear 

contribution from surfaces roughness is presented for bonded surfaces as well, but it is 

“concealed” in the internal friction angle of the contact ø𝑖. 

Furthermore, typical concrete-rock joints as dam foundations might have a spatially 

distributed bonding across the interface.  This was recognized by Krounis et al (2016), who 

performed shear tests to determine the strain-compatibility of the bonded and unbonded parts 

of concrete-rock samples. The results indicated that for a partially bonded joint, it might be 

reasonable to assume that the surface roughness component of the unbonded parts is 

mobilized at the same strain levels as failure of the bond.  
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 Sliding Stability Analysis of Kalhovd dam  
 

3.1 Introduction 

 
Kalhovd dam is a flat slab buttress dam located in Rjukan, Telemark. The dam was completed 

in 1948 and links the two river systems Gjøystvassdraget and Mårvassdraget to the jointed 

reservoir Kalhovdfjorden. The total crest length is 386m, where 140m is a free spillway. The 

height of the dam is 15m at the most.  

 

Figure 3.1: Kalhovd dam (Picture: Statkraft) 

 

Due to new requirements in the Norwegian guidelines for concrete dam, the dam face major 

rehabilitation in the future to be considered “stable”. However, if a cohesion value can be 

documented and used in the stability calculations, the theoretical safety factor of the dam 

might increase enough to prevent an expensive restoration project. In order to estimate the 

potential effect of adding cohesion in the calculations, a combined dam stability analysis with 

both FEM and hand-calculations on one of the most critical buttresses have been carried out. 
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3.2 General Dam Geometry 

 

The flat slab has a 1:0.8 inclination and rests on buttresses with a centre-centre distance of 

5.0m. It is 0.3m thick at the top with an increasing thickness of 30mm per vertical meter. The 

buttresses have a 1:0.33 inclination on the downstream side and are 0.3m thick at the top with 

an increasing thickness of 22mm per vertical meters. 

In addition, the dam has a vertical isolation wall on the downstream side. All of the buttresses 

have an opening on the inside of the isolation wall, making it possible to walk on the inside of 

the dam.  

The dam has a free spillway over 28 section (5m each), giving a gross spillway length of 

140m. The height of the walkway above the spillway is 1.12m. The abutment on both sides 

consists concrete gravity dams approximately 20m long.  

 

3.3 Geometry of the Analysed Buttress 
 

As the ice load usually become the design load for small flat slab buttress dams,  

one of the lowest buttresses with the lowest self-weight was chosen for the analysis. The 

relevant buttress is located below the spillway on the north side of the dam, and can be seen in 

figure 3.2. It is about 3.9m high with an approximated geometry as described in figure 3.3.  

To simplify the calculations the chosen buttress have nearly horizontal sliding plane.  
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Figure 3.2: Picture of the chosen buttress taken from inside the isolation wall. 

 

Figure 3.3: Approximated geometry and dimensions of the chosen buttress. 
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3.4 Finite Element Analysis 
 

A 2D finite element analysis of the buttress described in chapter 3.3 was concducted with the 

FE-software Abaqus 6.14-1 made by Dassault Systèmes. 

The combination of the flat slab and the buttress proved hard to model without producing 

artificial stress concentrations. Consequently, only the buttress was modelled and analysed. 

The loads applied on the buttress is equivalent to the loads transferred from a 5m long flat 

slab to the buttress.   

As the shear strength of the rock-concrete interface highly depends on the stiffness assigned 

by the user, and no calibration data exist, it was decided that the finite element model only 

would be used to assess the stress distribution in the buttress, and not the sliding strength. The 

stress distribution is interesting because the shear strength of each point in the foundation 

interface is a function of the occurring normal stress. In addition, sufficient bonding between 

the concrete and the rock interface, and thus the presence of cohesion, can only be expected to 

occur where the tensile strength of the cement paste has not been exceeded.  

3.4.1 Geometry 

 

The geometry of the analysed buttress is approximately the same as the geometry given in 

3.3. Additionally, the corresponding dam foundation was given a total length of 15m and a 

depth of 5 m. As the thickness of the buttress varies with depth, an average plane stress 

thickness of 343 mm was used for the whole model.  
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Figure 3.4: The geometry of the finite element model (From Abaqus) 

 

The reinforcement was taken from the construction drawings provided by Statkraft (Appendix 

A) and embedded into the model using the constrain tool. Where the construction drawings 

where unclear, conservative amounts was assumed. An illustration of the amount of 

reinforcement used in the model can be seen in figure 3.5. 

 



40 

 

 

Figure 3.5: Embedded reinforcement (From Abaqus) 

 

 

3.4.2 Mesh  

 

The buttress and the rock foundation was meshed using an unstructured meshing technique 

with 8-node biquadratic plane stress elements and reduced integration. This element type is 

superior to the bilinear 4-node elements, as the quadratic shape functions can represent pure 

bending without displaying spurious strain and shear locking, whereas the linear cannot 

(Mathisen 2015). Combined, the dam and the rock foundation was modelled using 

approximately 30 000 elements. The reinforcement was modelled as 2D linear truss elements. 
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Figure 3.6: Mesh of dam and foundation (From Abaqus). 

 

3.4.3 Contact Interaction  

 

Abaqus differentiates between two contact formulations: node-to-surface and surface-to-

surface. The contact interaction between the buttress and the rock foundation was modelled 

using the surface-to-surface formulation. This formulation enforces contact in an average 

sense over areas close to slave nodes, whereas the node-to-surface only does this at individual 

slave nodes, not taking into account the element thickness (Dassault Systèmes 2014).  

Furthermore, the user is asked to choose between the two sliding formulations: “finite sliding” 

and “small sliding”. The “finite sliding” formulation accepts arbitrary separations, sliding and 

rotation of the surface, while for the “small sliding”, slave nodes should not slide more than 

one element length from the origin and still be in contact with their local tangent plane. As the 

main objective of the analysis was to assess the stress distribution in the buttress and not the 

sliding stability, “small sliding” was chosen as the sliding formulation. For surface-to-surface 

and “small sliding”, the penalty method is the default constraint enforcement method.  

Additionally, the interface have been modelled as a “hard” contact with an additional 

cohesive formulation included. This contact minimizes the slave penetration into the master 
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surface and allows contact pressure to transmit fully the surfaces as long as there is contact 

(Dassault Systèmes 2014).  

 

3.4.4 Material Models 

 

The concrete was modelled using the “Concrete Smeared Cracking” material model. This 

model is designed for concrete structures subjected to monotonic straining under low 

confining pressures, causing the material to either crack in tensile or crush in compression 

(Chaudhari and Chakrabarti, 2012). The tensile cracking is presumed to be the dominating 

failure behaviour and the cracks are irrecoverable, however, they may open or close (Dassault 

Systèmes 2014). These cracks are taken into consideration independently at different 

integration points through a change in stress and material stiffness. 

The material model uses a predefined tension-stiffening curve to describe the stress-strain 

behaviour after crack initiation, which allows the model to include the residual tension 

capacity in concrete after cracking have started. This residual capacity stems from the 

concrete zones laying in-between cracks and reinforcement bars still possessing some tensile 

strength due to their bond with the rebar. 

In Statkraft Grøners (2003) reassesment report a concrete strength class of C20/25 was 

assumed. Using the same concrete class, the average compressive and tensile strengths was 

found in Eurocode 2 (2004). Furthermore, an effective Young’s Modulus 20 000 MPa was 

assumed for the analysis.  

According to the Abaqus user manual (Dassault Systèmes 2014), for well-reinforced 

structures, the post-cracking tension stiffening allows strains up to 10 times the failure strain 

before the stress is reduced to zero. Hence, the tension strain giving zero stress was set to 10 

‰ in the material model. 

Combining this, the stress-strain behaviour used in the concrete material model is summarized 

in the bilinear model presented in figure 3.7. 
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Figure 3.7: Uniaxial stress-strain behaviour for the concrete material model. 

 

The reinforcement steel was assumed to behave elastic with Young’s modulus of 200 000 

MPa and perfectly plastic after the yield strength a yield strength of 220 (Statkraft Grøner 

2003). The rock material was assumed to behave linear elastic with Young’s modulus of 100 

000 MPa. 

3.4.5 Loads and Constraints 

 

As only the buttress was modelled the loads from the flat slab was subjected to the buttress 

directly. An illustration of the loading and constraints conditions assumed in the model is seen 

in figure 3.8.  
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Figure 3.8: Loading and constrain for the model (From Abaqus) 

The unit load of the concrete and the rock was set to 24 kN/m3 and 28 kN/m3, respectively. 

Due to limitations in load alternatives for an inclined surface, the self-weight of the slab flat 

was subjected to the buttress as seven vertical nodal loads on the upstream side.  

Uplift from pore pressure below the slab was taken into account by a reduction in the applied 

self-weight of the slab. Furthermore, the self-weight of the walkway above the spillway was 

found from construction drawings, and applied as a constant pressure load on the top of the 

buttress. The ice load was modelled as a 500 mm deep rigid block connected to the crest of 

the buttress, subjected to a horizontal pressure equivalent to 100 kN/m.  

The rock foundation was constrained against horizontal and vertical displacements at 12 of 

the exterior nodes.  
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3.4.6 Results 

 

In this chapter, illustrations of the simulated principle stressesin the buttress, as well as the 

normal stresses just above the concrete-rock interface are presented. 

The results from three different load cases are presented:  

- Self-weight only 

- Self-weight + hydrostatical load (HRWL) 

- Self-weight + hydrostatical load (HRWL) + ice load 
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Load case: Self-weight only 

 

 

Figure 3.9: Distribution and size of principal stresses (From Abaqus). 

 
Figure 3.10: Normal stress along the foundation interface. Positive values are tension, negative compression (From 
Abaqus). 
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Load case: Self-weight + hydrostatical load (HRWL) 

 

 

Figure 3.11: Distribution and size of principal stresses (From Abaqus). 

 

Figure 3.12: Normal stress along the foundation interface. Positive values are tension, negative compression (from 
Abaqus). 
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Load case: Self-weight + hydrostatical load (HRWL) + ice load 

 

 

Figure 3.13: Distribution and size of principal stresses (From Abaqus). 

 

Figure 3.14: Normal stress along the foundation interface. Positive values are tension, negative compression (From 
Abaqus). 
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3.4.6 Summary and Discussion 

 

A finite element analysis of one of the lowest buttresses on Kalhovd dam have been 

performed using the FE-software Abaqus, with the objective of investigating the stress 

distribution in the buttress. For comparison, three different load states was assessed: Self-

weight only, self-weight + hydrostatical load (HRWL) and self-weight + hydrostatical load 

(HRWL) + ice load. 

The results indicate a significant difference in the stress distribution depending on the 

occurring loads. For the case of self-weight only, most of the stress components is vertically 

oriented, distributing themselves on either side of the door opening. Furthermore, except for 

the area below the door opening, the whole section of the buttress is in compression in with 

normal stress ranging from 0.1 to 0.2 MPa.  

When the hydrostatical load was applied as well, the stress components oriented themselves 

slightly more horizontal. The average normal stress increased somewhat in most of the 

foundation. However, in the first 100 to 200 mm on the upstream side, there is a sudden shift 

to tension stress. This shift is most likely the result of the tension stress from the overturning 

moment as the concrete in the heel is starting to “stretch”. A similar peak in the stress can be 

seen on the downstream side where the concrete is “crushed” in compression.  

As seen in figure 3.13 and 3.14, the impact of the ice load is substantial. Suddenly, the major 

principal stresses in almost half of the buttress is in tension. The reinforcement stresses on this 

side increase significantly, as well. The compressive stresses on the downstream side also 

rises on both sides of the door opening. Furthermore, there is a clear streamline of the 

principal stresses from the impact area of the ice load, down into the dam toe. From the 

normal stress distribution in figure 3.14, it is seen that the compressive zone starts at around 

2.3 m from the upstream side, which is equivalent to about 55 % of the buttress. Most of the 

normal stresses in this area lies in the range from 0.5 to 1.5 MPa.  

From the results, it is clear that the normal stress along the bottom of the buttress is far from 

constant and the variation is highly nonlinear. The impact of gaps in the concrete, as for 

instance door openings, is also very influential for the stress distribution, especially for small 

buttresses. Additionally, the magnitude of the occurring normal stresses highly depend on the 

loads on the dam. Due to the overturning moment from the ice load, almost 50% of the 
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upstream foundation is in tension for this load case. This effect is, however, compensated for 

by a substantial increase in compression stresses on the downstream side of the dam.  

This means that likewise as the normal stress, the shear capacity varies significantly along the 

concrete-rock interface. Consequently, averaging the shear resistance along the interface 

using a constant normal stress, can lead to either an overestimation or an underestimation of 

the real safety factor. Furthermore, as mentioned introductorily, the presence of cohesion 

depends on intact bonding between the concrete and the rock foundation. However, with 

tension stress in a part of the dam foundation, the tensile capacity of the cement paste that 

binds the concrete and the rock together might have been exceeded. The result is crack 

propagating through the tensile zone and degradation of the bond. As the tensile strength of 

the cement mortar cannot be determined with high certainty, a conservative assumption is to 

neglect cohesion completely in the part of the dams experiencing tension during the most 

critical load combination.  
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3.5 Sliding Stability Analysis: Norwegian Guidelines 
 

3.5.1 Criterion and input parameters 

 

In order to assess the effect of using cohesion a sliding stability analysis have been carried out 

according to the stability criterion given in the Norwegian Guidelines for Concrete Dams 

(NVE 2005) produced the Norwegian Water and Energy Directory (NVE). The criterion is 

derived from the shear friction method combined with the Mohr-Coulomb criterion, and for a 

horizontal sliding plane, it has the following form: 

 

 
 𝐹𝑆 =  

𝑐 ∙ A 𝑐𝑜𝑚𝑝 + ∑𝑉 ∙ tan ø𝑖
∑𝐻

 
 

(3.1) 

 

where FS is the factor of safety, c is the cohesion, Acomp is the area of the dam in compression,  

∑𝑉 is the sum of the vertical forces including uplift, ∑𝐻 is the sum of the horizontal forces 

and ø𝑖 is the internal friction angle of the contact. 

Cohesion can only be used in the stability calculations if the value can be documented. 

Additionally, if cohesion is used in the calculations, a higher safety factor FS is required. A 

summary of the required safety factors is given in the table below: 

Table 3.1: The necessary factor of safety against sliding for flat-slab buttress dams according to the guidelines from NVE 
(2006). 

Load case Cohesion documented Factor of safety FS 

Design loads No 1.4 

Yes 2.5 

Accidental loads No 1.1 

Yes 1.5 

 

The guidelines allows the use of rock bolts in dam stability calculations for dam sections 

lower than 7 m. However, the maximum bolt stress should be set to 180 MPa and one of the 

rock bolts should be considered inactive in every section considered. Furthermore, according 

to an amendment to the guidelines (NVE 2012), if rock bolts are used in the stability 

calculations, an additional control of the stability must be performed for the load case with 
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design flood level (DFL), without including the contribution from rock bolts. For this case, 

the minimum safety factor should be set to 1.1. The construction drawings (see Appendix A) 

are unclear whether rock bolts are present, so the calculations have been done both with and 

without ø25 rock bolts, with a centre-to-centre distance of 1000mm, included in the bottom of 

the slab.  

The friction angle ø𝑖 has been set to 50°, which is the maximum allowable value given in the 

guidelines (NVE 2005) for hard rocks with rough surfaces and favourable cleavability in the 

concrete-rock interface. The guidelines further state that cohesion can only be included in the 

interface area experiencing compression, though, how the compressive zone should be found 

is not explained. The compressive zone of the foundation interface is therefore assumed to be 

55 % of the total area in accordance with the results from the FE-analysis in chapter 3.4. 

Furthermore, to simplify the calculations, an average buttress thickness of 343 mm have been 

assumed when calculating the self-weight of the buttress. The buttress was assumed to take up 

water, ice and self-load from a five-meter section of the flat-slab. 

3.5.2 Results 

 

The calculations have been done for three load combinations: 

- Highest regulated water level (HRWL) with an ice load of 100kN 

- Design flood level (DFL), which is 0.92m above the crest of the spillway. 

- Maximum flood level (MFL), which is 1.63m above the crest of the spillway (Accidental 

load). 
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Calculated safety factors both with and without rock bolts and cohesion included in the 

calculations: 

Table 3.2: Calculated safety factor for different load cases. 

                  Variables                   Calculated factor of safety FS 

Rock bolts Cohesion value 

c  [MPa] 

HRWL and ice 

load 

DFL Check: DFL 

without bolts 

MFL 

Not included Not included 0.85 1.60 - 1.44 

Not included 1.32 2.50 4.20 - 3.53 

Included Not included 1.33 2.35 OK 2.04 

Included 0.94 2.51 4.20 OK 3.53 

 

 

3.5.3 Discussion 

 

The results shows that all the calculated safety factors fulfils the requirements from NVE for 

all load cases expect for the load case with HRWL and ice load. For this load case the sliding 

capacity does not meet the necessary requirements given in the Norwegian guidelines for 

concrete dams, even with rock bolts included. For the instance with neither cohesion nor rock 

bolts included, the calculated safety factor was as low as 0.85. The necessary cohesion value 

to fulfil the requirements was 0.94 MPa if rock bolts were included in the calculations and 

1.32 MPa if they were not. This is within the cohesion values reported by for instance EPRI 

(1992), suggesting that being allowed to use cohesion in the stability calculations might bring 

the dam within the requirements from NVE.  

One problem that arises when applying cohesion in sliding stability calculations is that the 

guidelines only allows the engineer to assume a cohesive strength in the compressive zone of 

the dam. This is not a problem for concrete gravity dams, as the compressive strains usually 

are so small that linear elastic beam theory is valid, and thus a linearly varying normal stress 

distribution can be assumed (Guttormsen 2013). However, for flat-slab buttress dams with a 

higher utilization of the concrete compressive strength, linearity might not always be the case. 

Moreover, irregularities in the geometry, as for instance door openings, will also affect the 

stress distribution significantly, especially for small buttresses.  



54 

 

By assuming a linearly varying normal stress, the compressive zone was estimated to be 4.49 

m using simple hand calculations (see Appendix D). This is equivalent to 87 % of the total 

interface area, which is considerably more than the 55 % found from the FE-analysis in 

chapter 3.4. Consequently, using linearly varying normal stresses might overestimate the 

actual compressive zone extensively. Although very time consuming, finite element 

modelling seems like a more reliable tool for this purpose than old-fashioned hand 

calculations. One of the other advantages with using FE-analysis is that the results also gives 

the analyst a very clear overview of the general stress distribution in the dam.   

Another method to estimate the compression zone might be systematic core drilling along the 

length of several buttresses, to visually inspect where the concrete-rock interface no longer 

are bonded. This method is, however, quite time- and resource-demanding and could in worst-

case damage the buttresses 

 

 

3.6 Sliding Stability Analysis: JRC-JCS model  
  

3.6.1 Criterion and input parameters 

 

To investigate the effects from surface roughness, stability calculations have been done using 

the failure criterion introduced by Barton (1973) and Barton and Choubey (1977). In order to 

compare the results with the results from chapter 3.5.1 an expression for the factor of safety 

FS of the rock-concrete interface have been derived by combining the shear friction model 

and the JRC-JCS strength criteria (see Appendix B for derivation): 

 

 

 𝐹𝑆 =   
∑ 𝑉 ∙  tan (𝐽𝑅𝐶 ∙ 𝑙𝑜𝑔10 [

𝐽𝐶𝑆
𝜎𝑛′
] + ø𝑟)

∑𝐻
 

 

(3.2) 

 
 

 

where ∑𝑉 is the sum of the vertical forces, 𝐽𝑅𝐶 is the joint roughness coefficient, 𝐽𝐶𝑆 is joint 

wall compressive strength, 𝜎𝑛
′  is the effective normal stresses and ø𝑟 is the residual friction 

angle. 
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As the JRC-JCS model is based on the shear strength of non-intact rough rock joints, it is not 

appropriate to assign a cohesion contribution to the sliding resistance. Thus, the sliding model 

expressed by equation (3.2) assumes no bonding between concrete and rock, and that the 

shear capacity of the concrete-rock interface resembles the shear capacity of a rough rock-

rock interface. For most cases, the compressive strength of concrete is far lower than the 

compressive strength of rock. Hence, the concrete compressive strength becomes the critical 

parameter for the sliding failure, and the JCS-value should be determined accordingly. For 

this analysis, the JCS was set to 28 MPa, which is consistent with the average compressive 

strength given in Eurocode 2 (2004) for concrete class C20/25. 

During field inspections in February 2016 the bedrock of the dam foundation was found to be 

in overall good condition. The rock exhibited little to no signs of weathering. Consequently, it 

could an be assumed that the residual friction angle ø𝑟 is equivalent to the basic friction 

angle ø𝑏. According to the national bedrock database provided by the Geological Survey of 

Norway (Geo.ngu.no 2016) the rock type at the dam site is mylonite. However, finding 

tabulated values of ø𝑏 for this rock type proved difficult. Thus, a basic friction angle of 30° 

was assumed for the analysis. 

Furthermore, the investigations showed a substantially rough interface. A comparison of the 

in-situ roughness with the roughness profiles from Barton and Choubey (1977) can be seen in 

figure 3.15. From the comparison, a subjective JRC-value of 15 was chosen for the analysis.  

 

Figure 3.15: Comparison of in-situ roughness with roughness profiles provided by Barton and Choubey (1977). 
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3.6.2 Results  

 

The calculations have been done for three load combinations: 

- Highest regulated water level (HRWL) with an ice load of 100kN 

- Design flood level (DFL), which is 0.92m above the crest of the spillway. 

- Maximum flood level (MFL), which is 1.63m above the crest of the spillway (Accidental 

load). 

 

Calculated safety factors using both with and without rock bolts included: 

Table 3.3: Calculated safety factors for different load cases using the JRC-JCS model. 

                  Variables                Calculated factor of safety FS 

Rock bolts Roughness 

contribution i [°] 

HRWL and 

ice load 

DFL Check: DFL 

without bolts 

MFL 

Not included 29 1.20 2.25        - 2.04 

Included 29 1.87 3.32       OK 2.89 

 

3.6.3 Discussion 

 

Likewise as the results from chapter 3.5.2, HRWL and ice load was the only critical load 

combination. The results shows that the calculated safety factor FS is sufficient if rock bolts 

are included in the calculations. For the case without rock bolts, the calculated factor of safety 

was 1.20, which is considerably higher than the one found from chapter 3.5.1 (FS = 0.85) 

without rock bolts and cohesion included. It should be pointed out, though, that the calculated 

safety factor highly depend on the initial assumptions made for the input parameters. 

Especially the subjectively selected joint roughness coefficient JRC have a high impact on the 

results. Nevertheless, it is interesting to see that another method considering the actual 

roughness of the dam site might give an adequate factor of safety, even when leaving out 

cohesion completely.  

It is in the author’s belief that if cohesion cannot be included in sliding stability calculations, 

the use of a higher friction angle should be allowed if it can be documented properly. The 

JRC-JCS model could be a good option for this, especially if the JRC-value and the friction 

angle is back calculated from tilt tests on core samples from site, and the JCS-value is found 

from compressive strength tests on concrete samples from the dam.  
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 Development of Test Methodology to Document 

Cohesion 

 

4.1 Introduction 

 

As mentioned in chapter 3, the Norwegian guidelines for concrete dams (2005) does not 

permit the use of cohesion in sliding stability assessments unless cohesion can be documented 

through tests. However, the guidelines give no explanation of how these tests can be 

performed, leaving many consultants and dam owners frustrated. The purpose of this chapter 

is to come up with a practical test methodology to estimate the cohesion value, primarily for 

flat-slab buttress dams casted on bedrock.  

 

4.2 Requirements 

 

In order for the methodology to implementable as a standardized routine for documenting 

cohesion, the test procedure should fulfil certain requirements. Firstly, the methodology must 

be able to represent the real conditions at the dam site of interest. Preferably, the actual 

roughness and strength of the bedrock should be taken into account. Secondly, it must be 

feasible to use at different dam sites without requiring rare and very expensive equipment. 

The method must be scientifically acceptable and represent the correct failure mechanisms 

behind a sliding failure. Artificially introduced stress and should be avoided or kept to a bare 

minimum. Furthermore, the results from the testing should be accurate and reliable enough to 

use in dam stability calculations. 

 

4.3 Preliminary Testing of a Methodology 
 

In order to propose a test methodology that is as practical and viable as possible, a 

preliminary method was developed and tested. The initial method was developed through 

discussions with senior engineer Odd Kristian Nerdahl at NTNUs structural lab, professor 

Leif Lia at the department of Hydraulic and Environmental Engineering, and Harald Andreas 

Simonsen and Rolv Guddal from Statkraft and Sira-Kvina, respectively.  
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4.3.1 Preparing the Samples 

 

In total six circular core samples of rock with a diameter of 150 mm were drilled at two 

different sites. Neither of them represent the rock quality at a given dam, but as the intention 

only was to test the methodology, any rock worked fine. 

 

Figure 4.1: Example of drilled core samples 

 

The samples were then transported to Trondheim, and cut into cubes approximately 

100x100x100 mm, at the Department of Geology and Mineral Resources Engineering, 

leaving the original surface intact. 

 

Figure 4.2: Cutting the core samples into cubes 

 

The samples were then placed pairwise into pre-cut formwork boxes, with the original 

surfaces facing each other, as shown in figure 4.3. Due to the limited accuracy of the rock 
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saw, the dimensions of the cubic samples was somewhat smaller than the dimensions of the 

formwork boxes (95x95 mm instead of 100x100), leaving a small gap between some of the 

rock samples and the sides. This problem was solved by putting a thin wood sheet in-between 

the test-specimen and one of the sides of the box. This was sufficient enough to cast the 

samples, but unfortunately it made some of the concrete surfaces slightly uneven. 

In order to ensure a sufficient early compressive strength after only 5 days of curing, a 

concrete mixture with a rather low water-cement ratio was chosen.  The chosen concrete 

mixture was taken from a table proposed by Kosmatka and Wilson (2011) for small jobs, and 

had water/cement-ratio of 0.4.  

 

Table 4.1: Concrete mixture recipe proposed by Kosmatka and Wilson (2011). 

Ingredient Quantity 

Cement  400 kg/m3 

Fine aggregate 670 kg/m3 

Coarse aggregate 1040 kg/m3 

Water 160 kg/m3 

 

 

 

Figure 4.3: Casting of test samples 
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In total three test-specimen were cast. After casting, the test samples were covered with a 

plastic sheet to prevent moisture loss and left to cure at a constant room temperature for five 

days. 

 

4.3.2 Testing the Samples 

 

The shear strength of the test-specimens were tested at one of the electromechanical testing 

rigs at the structural lab at NTNU. The rig is a high precision screw-driven testing machine 

with a maximum thrust force of 100kN. This machine was preferred over the larger hydraulic 

driven test rigs, which might be subjected to unstable loading conditions for brittle material 

failures.  

 

 

Figure 4.4: The electromechanical testing rig. 

 

The test specimen were placed on two steel plates, leaving only a gap for the concrete part to 

slide through. To limit the acting moment and thereby the bending effects, the plates were 

placed as close to the rock-concrete transition zone as possible. Furthermore, normal stress 

was applied by mounted two vertical steel plates on each of the short sides of the sample and 

connecting them with threaded bars and nuts. The normal stress was then continually logged 

by a load cell placed in-between one of the vertical steel plates and the test-specimen. A steel 

plate was placed at the top of the concrete section to transfer the load as evenly as possible 
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down into the concrete section. The test machine then recorded vertical force and 

displacement continually as the test was running. Figure 4.5 shows the setup of the shear tests. 

 

Figure 4.5: Setup of the shear test at the test rig. 

The samples were first preloaded until sufficient contact between the steel plate and the 

concrete was achieved. The tests was then run from this state as a reference point with a 

constant displacement of 0.20 mm/min until the end. 

Originally, the three tests were originally planned to run with a constant normal stress of 0.3, 

0.6 and 0.8. However, due to irregularities in the surface roughness, the normal load of the 

first test kept increasing as the vertical deformations became larger. Thus, it was evident that 

holding the normal stress constant would be difficult. Consequently, in an attempt to reduce 

the incurred normal load as much as possible, the next two tests were loaded enough to only 

keep the load cell tight.  
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4.3.3 Results 

 

Shear test I: 

 

 

Figure 4.6: Shear and normal stress plotted against displacement for test I. 

 

 

Figure 4.7: Test sample I after failure. 
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Shear test II: 

 

Figure 4.8: Shear and normal stress plotted against displacement for test II. 

 

 

Figure 4.9: Test sample II after failure. 
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Shear test III: 

 

 

Figure 4.10: Shear and normal stress plotted against displacement for test III 

 

 

Figure 4.11: Test sample III after failure. 
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4.3.4 Discussion 

 

Shear test number I was preloaded with a normal force of 3.06 kN, corresponding to a normal 

stress of approximately 3.33 MPa. The τ-σ-curve exhibits typical shear behaviour until a 

small peak is reached at a shear stress of roughly 1.9 MPa, before the shear stress increases 

again. This first peak is believed to be caused by a defect in the rock surface reaching its 

capacity. Visual inspections afterwards supports this theory, indicating a small popout on one 

of the rock surfaces, as seen in figure 4.12. The second peak and maximum capacity is 

reached at a shear stress τ = 2.74 MPa. Here there is a significant reduction in capacity, 

typically associated with a complete failure of the bond.  

 

Figure 4.12: Rock defect in shear test I 

The normal stress was practically constant until the first peak of the curve is reached, giving a 

sudden increase from about 0.40 to 0.55 MPa. After this, σ increased slowly to roughly 0.76 

MPa at the second peak, before suddenly leaping up to 0.86 MPa after the bond failed. This 

sudden increase in normal stress at the peaks is believed to be triggered by the brittle failure 

mechanism when the bond is degraded, which causes a small slip and mobilization of the 

surface roughness in friction. This is in line with the findings by Moradian et al (2011, 2012) 

suggesting that for low normal loads, the roughness of the asperities are not utilized before 

after the bond has failed. 

It is believed that as soon as the rock defect fails, the lower part of the interface is mobilized 

in friction, leading to the small increase in normal stress between the peaks. After the bond is 

completely degraded at the second peak, both interface is mobilized in pure friction. As the 

deformations increase, more of the roughness is mobilized, thus increasing the normal stress 

even more. It is this rise in normal stress, which leads to the seemingly increase in residual 

capacity after degradation of the bond. In addition, as figure 4.7 shows, both joints tend to 
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incline somewhat to one of the sides. This effect most likely intensified the rise in the normal 

force even more.  

Shear test number II was preloaded with a normal stress of roughly 0.18 MPa. In contrast to 

the results from test I, the normal stress started to increase simultaneously with the shear 

stress. Consequently, the normal stress was almost the same as the shear stress at the point of 

failure, resulting in a gradually frictional failure instead of the more brittle bond failure. The 

reason for this peculiar shear behaviour is believed to stem from the preparation of the 

samples. Due to limitations on the accuracy on the cutting machine, the rock samples was not 

completely identical, resulting in sides that were not aligned entirely perfect. Hence, 

significant bending action had to be introduced, before both of the bottom sides were in fully 

contact with the underlying steel plates, and shear deformations could start. This effect is 

demonstrated in figure 4.13, which shows the mounting of test sample II before and after the 

shear test was carried out. Therefore, it is reasonable to assume that the introduction of 

bending stress contribute significantly to the early rise in normal stress seen in figure 4.8. 

 

Figure 4.13: Mounting of test sample II before (over) and after (below) the shear test. 

 

In the end, test number II reached a peak shear capacity of 4.81 MPa with a normal stress of 

3.72 MPa. However, the introduction of artificial bending stress makes the result highly 

questionable.  

Shear test number III was given an initial normal stress of around 0.1 MPa. This normal stress 

remained nearly the same until failure of the bond at τ = 1.32 MPa, which triggered a sudden 

rise similar to test I. For this test, however, only the lower part on one of the joints failed. The 

reason for this is most likely the somewhat uneven loading surface on the concrete of this 
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specimen seen in figure 4.11, which failed to distribute the stress evenly. After the brittle 

failure on the lower part, the crack started propagating into the concrete section. This further 

indicates that the outer part of the loading plate probably was not in sufficient contact with the 

concrete to the transfer load properly.  

Interestingly, the normal stress for this test behaved similarly to the normal stress in test I; it 

remained stable until failure of bond, where it started to rise. This further strengthens the 

theory that the roughness is not utilized before after degradation of the bond. Nonetheless, the 

irregular failure mechanism of this test-specimen makes it difficult to draw any certain 

conclusion from the results, other than a general underlining of the importance of using well-

prepared test-specimen. 

 

4.4 Proposed Test Methodology 
 

The proposed test methodology is mainly based on the methodology given in the section 

before. Some adjustments have been made after studying the results from the preliminary 

testing and discussing with engineer Steinar Seehuus at the structural lab. 

 

4.4.1 Verifying Bonding 

 

In order for a concrete dam to have a cohesive sliding resistance, a sufficient bond between 

the concrete and the rock foundation must be present. Before any cohesion tests are carried 

out, bonding should be verified in an adequate number of buttresses. In a meeting 27.01.2016 

between Harald Andreas Simonsen (Statkraft), Ronald Andersen (NVE) and Rune Engesæter 

(NVE) it was mentioned that checking 10 % of the buttresses of a dam would be acceptable 

for this matter (Simonsen H.A., Personal Communication, 07.06.2016). The bonding can be 

verified by core drilling through the buttresses on the downstream side of the dam and 

visually inspecting the concrete-rock interface on the drilled samples.  
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4.4.2 Extraction and Preparation of Test Specimen 

 

Circular core samples with a dimeter of 150 mm are extracted at dam the site. The samples 

should be approximately 120-150 mm long and the surface roughness of the samples should 

be representable for the surface roughness of the dam foundation. Furthermore, to minimize 

the incurred normal stress during testing, the samples should be extracted from an area with as 

low inclination as possible. Alternatively, if no flat areas are accessible, the drilled core 

should be taken 90 degrees on the surface. As two core samples are needed for each shear test, 

the core samples should be taken pairwise with the two corresponding samples next to each 

other. To gain trustworthy results, at least four shear tests should be carried out, preferably 

more. This means that the number of necessary core samples is eight or more.  

The samples are then cut, using special rock saws, into approximately 100x100x100 mm 

cubes, with the original surface roughness still intact. Additionally, the samples should be 

pairwise surface grinded, so the saw-cut sides of both corresponding cubes are identical and 

their top sections aligned.  

Formwork are then built afterwards and adjusted to fit the size of the rock samples. The two 

corresponding samples should be placed as shown in figure 4.3, with the natural surfaces 

facing each other. In order for the load plate to fit all of the test-specimens, the distance 

between the rock cubes should be as close to 100 mm as possible. The formwork should be 

made out of plywood or a similar material giving a smooth surface.   

The two rock surfaces in contact with the concrete should be adequately rinsed, removing all 

potential sand and dust particles. Concrete with mixture equal to the dam of interest are then 

cast in between the samples. If the mixture design for the dam is lacking, typical mixture 

designs for dams built in the same decade should be used. After the concrete is poured, 

measures should be taken to level the top section of the concrete with the corresponding rock 

surfaces. The test specimen should then be left to cure at constant room temperature. In order 

to achieve sufficient compressive strength, the concrete should be allowed to cure for at least 

seven days. 
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4.4.3 Testing of Shear Strength 

 

The shear capacity of the test specimen are tested by applying a driving force on the concrete 

part while both the rock parts are supported and held still on the opposite side. A theoretical 

setup of the shear tests can be seen in figure 4.14.  

. 

 

Figure 4.14: Theoretical setup of shear tests. 

Both the driving force and the support forces should be equally distributed over the surfaces 

by using load plates of steel or similar material. To minimize any moment action, the plates 

should cover the surfaces as completely as possible, while at the same time not overstepping 

the transition zone between concrete and rock. Clamps can be used to clench the far sides of 

the rock parts to the steel plates below, as an additional measure to reduce the bending effects  

The driving force should be applied on the most even of the concrete surfaces, presumably 

one of the surfaces that faced the sidewalls of the formwork during the casting process. The 

test machine should have a minimum capacity of at least 80-100kN, preferably more. 

Furthermore, the machine should be able to run the tests at a constant shear velocity and log 

the vertical displacement and driving force continually and accurate. Electromechanical test 

machines are preferred over the hydraulically driven ones. The reason for this is the somewhat 

brittle failure mechanism associated with shear failures, which might lead to a small pullback 

of the loading mechanism for hydraulic machines.  

Appropriate normal stress should be applied before the tests are run. The normal load can be 

applied by mounting two vertical steel plates at both sides of the rock samples, and 
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connecting the plates using threaded bars and nuts. To measure the normal force, a load cell 

should be placed in-between the vertical steel plate and the rock at one of the sides. Figure 

4.15 shows an example of how the setup of the shear tests can be done. 

 

  

Figure 4.15: Example of setup at testing rig. 

 

Which normal stress levels that is appropriate for the testing depends on the stress levels for 

the dam of interest. In order to extrapolate out a cohesion value from the test results, the 

normal stress when the bond fails at peak capacity must vary to some degree. The results from 

test number I and III from chapter 4.3 indicate that normal stress might remain almost 

constant until peak capacity of the bond is reached and roughness is mobilized, yet more tests 

is needed to verify this. Consequently, the preloaded normal stress should be decided from 

test to test, with the intention of achieving some variance as the bond fails. 

The shear test should be run with a consant shear velocity. Typcial shear velocities used in 

litterature lies in the range of 0.05 to 0.5 mm/min. For the preliminary testing a shear velocity 

of 0.20 mm/min was used with success.  
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4.4.4 Interpretation of Test Results 

 

After all the tests have been run, a thorough examination of the test specimen and the 

gathered test data should be performed. Tests that exhibit anomalous shear behaviour and 

results, or in any other way fail to represent the actual failure mechanisms of the sliding 

problem, should be excluded from the analysis.  

To estimate the cohesion value, the peak shear stress as the bond is broken and the 

corresponding normal stress should be found for all the tests. Then by plotting the shear stress 

against the normal stress for all the cases, and then fitting a linear interpolation function a la 

Mohr-Coulomb to the data points, the cohesion can be estimated as the point where the 

interpolation function meet the y-axis and the normal stress is zero. An illustration of how this 

is done for three hypothetical shear tests is shown in figure 4.16. The average internal friction 

angle øi of the concrete-rock contact can also be estimated by simply finding the slope of the 

interpolation line. 

 

 

Figure 4.16: Illustration of how the cohesion value can be extrapolated the from test results 
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4.5 Summary and Discussion 
 

A thorough test methodology for estimating the cohesion between a rock and a concrete 

surface have been developed and tested. The methodology is based on core samples taken 

from the dam site, thus taking into account the actual surface roughness and rock strength of 

the dam foundation. Furthermore, new concrete is cast between the natural surfaces of two 

rock samples, and three-point shear tests decide the shear capacity. By plotting the shear 

stress against the normal stress when the bonding fails, the cohesion can be extrapolated 

through linear regression.  

All three test samples from the preliminary testing failed completely or partly in shear in the 

concrete-rock interface. However, bending action is believed to have contributed significantly 

on at least two of the tests. It was found that the preparation of the samples is key to precise 

and trustworthy results. The rock cubes should for instance be pairwise surface grinded and 

the corresponding couple should be perfectly aligned when put next to each other. This will 

help to distribute the load evenly, and reduce the introduced bending action. It should be 

emphasized, however, that removing all bending completely is impossible due to the self-

weight of the concrete. Nonetheless, refining the geometry of the test specimen will help 

minimize the contribution significantly. Ideally, the tests would be run in horizontal shear 

boxes, but as far as the author knows, there is no shear box affiliated with the research 

communities at NTNU with high enough capacity to drive bonded concrete-rock specimen to 

failure. There is a suitable shear box at the Luleå University of Technology (LTU), however, 

having to transport all the test specimen to the northern part of Sweden for testing is 

inconvenient as a standardized method of testing cohesion on Norwegian dams.  

In order to estimate the cohesion, the normal stress when the bond fails must be known. It is 

believed that if the test specimen is well prepared and the contribution from bending is 

minimal, the normal stress will remain practically constant until the peak capacity of the bond 

is reached and the roughness is mobilized in friction. However, to control that no additional 

induced normal stress is introduced until bond failure, a continuous logging of the stress is 

necessary. Furthermore, due to the curvilinear failure envelope of the problem, it is vital that 

the normal load for the test specimen is in the same range as the expected normal loads of the 

dam. If the normal stress is too high, fitting a linear Mohr-Coulomb envelope to the test 

results might exaggerate the actual cohesion and underestimate the friction angle, as 

illustrated in figure 4.17. 
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Figure 4.17: Fitting Mohr-Coulomb envelopes to test results using different ranges of normal stress. 

 

One of the weaknesses with the methodology is that the cohesion value found stems from the 

cementitious bond for new concrete cast on the rock surface, whereas the occurring cohesion 

between the actual dam and the rock surface remain uncertain. This occurring cohesion is 

influenced by other factors than the rock quality and roughness alone. For instance, due to the 

continuous hydration process, a dam will, all else equal, most likely have a higher bond 

strength than a test-specimen tested with its 7- or 14-day strength. However, leakages and 

other degradation processes an old dam often experiences might reduce the bond strength 

(Wilde and Johansson 2013). Furthermore, the cleanness of the rock surface prior to pouring 

would also have a big impact on the occurring cohesive strength.  

In addition, scale effects might be presented when comparing the test results with real sized 

structures. However, concrete cast on bedrock will, at least in the compressive zone of a dam, 

have a high degree of matedness (if not perfectly mated). According to the conceptual model 

introduced by Johansson (2009), the scale effects should therefore be either non-existent or 

very small.  

Nonetheless, it is in the author’s belief that the testing procedure will give a good estimate of 

the expectable cohesive strength of the dam. A lot of the uncertainty concerning the cohesion 

value is also taken into account by the significantly higher safety factor necessary (2.5 in the 

Norwegian guidelines). Considering this, it does not seem unreasonable nor unsafe to be 

allowed to apply a cohesion value obtained from the proposed test methodology to get the 

sliding stability calculations within NVEs requirements, especially for dams that historically 

have proven themselves stable.  
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 Conclusion 
 

Based on experimental testing, a general method to estimate cohesion in the concrete-rock 

sliding interface of a flat-slab buttress dam have been proposed. The procedure proposed 

consists of the following main steps (in chronological order): 

- Bonding is verified by core drilling through 10 % of the buttresses of the dam. 

- Several core samples of the bedrock at the dam site are taken pairwise.  

- The samples are cut into cubes, leaving the original surface intact, and surface grinded 

to have sides that are perfectly aligned.  

- Concrete replicating the concrete of the dam are cast between the natural surfaces of 

the sample pairs. 

- A three-point shear test is carried out to estimate the shear capacity of the concrete-

rock interface. 

- The value of the cohesion is found by plotting the τ-σ values and examining where the 

linear regression line meets the τ-axis. 

The preliminary testing revealed that the preparation phase is essential for receiving accurate 

and reliable results. To minimize the introduced bending stress, the rock cubes should have 

straight and identical sides and measures should be taken to make the concrete surfaces 

smooth and in alignment with the rock cubes  

Some uncertainty exist regarding the cohesive strength of new concrete-rock interfaces versus 

old ones, that might have experienced weathering and other impairing effects during the 

years. However, due to the continuous hydration process, the bond strength might as well be 

greater in old dams, especially if the shear tests are carried out before the 28-day strength is 

reached for the test-specimen. Nevertheless, by using a higher required safety factor a lot of 

the uncertainty is accounted for.  

It should also be pointed out that even though the methodology primarily have been created 

with flat-slab buttress dams in mind, with some adjustments it should be applicable to 

estimate cohesion for other concrete structures cast on bedrock, as for instance concrete 

gravity dams or bridge abutments.   

To investigate the effect of including cohesion in dam stability calculations, the sliding 

capacity of a flat-slab buttress dam, Kalhovd dam, have also been carried out. The results 

showed that the dam is unstable against the load combination with highest regulated water 
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level and ice load. However, by applying reasonable values for the cohesion in the dam in the 

calculations, it is possible to get the dam within the required safety factors set by NVE.    

Additionally, when including cohesion in the calculations, the guidelines from NVE states 

that the cohesive strength can only be the added to the compressive area of the concrete-rock 

joint.  How this area can be found, though, is not obvious.  Using linear elastic beam theory 

and assuming a linear varying normal stress distribution seemed to overestimate the 

compressive zone, compared to the stress distribution found from the finite element analysis. 

Carrying out an FE-analysis is time consuming, however, and the reliability of the results 

highly depend on the input parameters and assumptions made by the analyst. Ideally, the area 

of bonded zone is found in-situ using non-destructive testing tools, however, finding suitable 

tools for this is out of the scope for this thesis. 

For future work, the author recommends further testing and development of the test 

methodology. Additionally, it would be interesting to compare the cohesive strength of old 

concrete structures cast on bedrock versus the cohesive strength of new concrete cast on the 

same bedrock. Investigating different non-destructive tools to assess the bonding conditions 

beneath concrete buttresses could also be very benefitting.   
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Digital Appendix 

 

Files delivered in the digital appendix at daim is: 

 

dam.cae 

dam.jnl 

Damcalculations.ods 

Sheartests.xlsx  
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Appendix A - Construction drawing from Kalhovd dam 
 

Provided by Statkraft. 
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Appendix B – Derivation of safety factor 
 

 

The safety factor as defined by the shear friction method: 

 

 
𝐹𝑆 =

𝑆

𝑃
 

 

(B.1) 

 

where S is the total shear capacity of the plane and P is the total driving horizontal forces.  

The shear capacity for a rough rock joint with uplift pressure, according the JRC-JCS model: 

 

 
𝜏 = 𝜎𝑛

′ ∙ tan[𝐽𝑅𝐶 ∙ log10(
𝐽𝐶𝑆

𝜎𝑛′
) + ø𝑟] 

 

(B.2) 

 

Setting S = τ ∙ A, where A is the total interface area, and P = ∑𝐻 gives the following 

expression for the shear capacity: 

 

 

𝐹𝑆 =  
𝐴 ∙  𝜎𝑛

′ ∙ tan[𝐽𝑅𝐶 ∙ log10(
𝐽𝐶𝑆
𝜎𝑛′
) + ø𝑟] 

∑𝐻 
  

 

(B.3) 

 

 𝐴 ∙  𝜎𝑛
′  can also be expressed as the sum of the vertical forces ∑𝑉, giving the following 

expression for the factor of safety FS: 

 

𝐹𝑆 =  
∑𝑉 ∙ tan[𝐽𝑅𝐶 ∙ log10(

𝐽𝐶𝑆
𝜎𝑛′
) + ø𝑟] 

∑𝐻 
  

 

(B.4) 
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Appendix C – Photos of test specimen 
 

Side one of test specimen I after failure: 

 

 

Side two of test specimen I after failure: 

 

 

Side one of test specimen II after failure: 
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Side two of test specimen II after failure: 
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Test specimen III after failure: 
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Appendix D – Estimating compressive zone 
 

 

  V [kN] a [m] M [kNm] 

Weight damtoe W1 7.8 0.37 2.93 

Weight midsection W2 37.0 1.31 48.42 

Weight frontsection W3 88.9 2.98 264.72 

Weight slab W4 179.8 3.62 650.88 

Weight walkway W5 96.9 1.31 126.92 

Vertical water pressure Pwv 304.2 4.14 1259.39 

Groundwater pressure Pgw -87.8 5.40 -473.85 

Force rock bolts Pbolt 353.4 5.40 1908.52 

   Vtot [kN]  
 Mstab 

[kNm] 

 Sum 980.30   3787.92 

     

  H [kN] a [m] M [kNm] 

Horizontal water pressure Pwh 380.25 1.3 494.325 

Iceload Pice 500 3.65 1825 

  Htot [kN]  
 Mdriv 

[kNm] 

 Sum 880.25   2319.325 

     

Moment arm amom 1.50   

Length of compression zone 
Lcomp = 

3*amom 4.49   

 

 

 

 

 

 

 

 

  


