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 1 BACKGROUND 

 

Glaciers are an important component of the hydrology in many high mountain areas and 

have impacts on the runoff generation and the utilization of water. There has been a growing 

interest in glacier hydrology over the latest decades due to the potential impacts of a 

warming climate on the glacier mass balance and how this will influence water for 

hydropower production, irrigation and water supply in the future. Glaciers and glacier runoff 

is also a component in the computations of design floods and for safety assessments of 

infrastructure in mountainous catchments. Glaciers are handled in many hydrological 

models, but not to the extent that the detailed glacier mass balance is included in the 

simulation to handle glacier retreat or advancement as an integral part of the model. The 

purpose of this thesis is to include are more detailed glacier model in the Excel based HBV 

model and to use this model to hindcast and forecast runoff and glacier development in a 

mountainous catchment.  

 

 
 2 MAIN QUESTIONS FOR THE THESIS 

  

1. Do a literature review on existing models of glacier dynamics and previous work 

integrating glaciers in hydrological models. The outcome of the literature review 

should be a glacier model that can be integrated with the Excel HBV. 

2. Decide on a mountainous study catchment in western Norway with a significant 

glacier percentage and available data on glacier dynamics. Collect the necessary 

runoff and climate data for setting up the model, perform data quality assessment 

and prepare the data for the HBV model. The necessary catchment data should also 

be collected and prepared. 

3. Implement the glacier model from task 1 into the Excel HBV and integrate it with the 

current model structure. 

4. Calibrate and validate the model for a recent period. Test the glacier model within the 

total hydrological model. Evaluate the results and potential uncertainties in data. 
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5. Simulate historical data to see if the model is able to reproduce observed glacier 

development and run long term forecasts based on scenarios of precipitation and 

temperature to investigate glacier development. Evaluate the impacts of changes in 

glacier volume on water resources. 

6. Document the new model and its data needs for future use. 
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Professor Knut Alfredsen will be the supervisor of the thesis work. 

 

Discussion with and input from colleagues and other research or engineering staff at NTNU, 

SINTEF, power companies or consultants are recommended. Significant inputs from others 

shall, however, be referenced in a convenient manner.  

 

The research and engineering work carried out by the candidate in connection with this 

thesis shall remain within an educational context. The candidate and the supervisors are 

therefore free to introduce assumptions and limitations, which may be considered unrealistic 

or inappropriate in a contract research or a professional engineering context. 

 

 
4 REPORT FORMAT AND REFERENCE STATEMENT 

 

The thesis report shall be in the format A4. It shall be typed by a word processor and figures, 

tables, photos etc. shall be of good report quality. The report shall include a summary, a 

table of content, lists of figures and tables, a list of literature and other relevant references 

and a signed statement where the candidate states that the presented work is his own and 

that significant outside input is identified.  

 

The report shall have a professional structure, assuming professional senior engineers (not 

in teaching or research) and decision makers as the main target group. 

 

The summary shall not contain more than 450 words it shall be prepared for electronic 

reporting to SIU. The entire thesis may be published on the Internet as full text publishing 
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seminar. The candidate shall provide a copy of the thesis (as complete as possible) on a CD 

in addition to the A4 paper report for printing.  

 

The thesis shall be submitted no later than 10
th
 of June 2015. 

 

 

Trondheim 10
th
 of January 2015 

 

 

___________________________ 

Knut Alfredsen 

Professor 

 



Hydrological forecasting in catchments with glaciers June 1, 2015 

i 

 

FOREWARD 

This master thesis “Hydrological forecasting in catchments with glaciers” has been 

accomplished under the supervision of Professor Knut Alfredsen, Department of Hydraulic 

and Environmental Engineering at the Norwegian University of Science and Technology, in 

Trondheim, Norway. 

The thesis started in January 2015 and was finished in June 2015. 

I hereby confirm that all the work accomplished in this thesis in my own and that all the 

substantial help received have been notified in the acknowledgement. 

 

 

Angèle Nahat 

June 2015 

Trondheim, Norway  



Hydrological forecasting in catchments with glaciers June 1, 2015 

ii 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

iii 

 

ACKNOWLEDGEMENT 

I would like to thank all the people who helped and supported me during the thesis. 

 

I would like to express full gratitude to my supervisor Professor Knut Alfredsen, Department 

of Hydraulic and Environmental Engineering, Norwegian University of Science and 

Technology, for all the remarks, advices, counselling and the commitment he showed during 

the achievement of this thesis. His guidance and expertise have been valuable assets to this 

work. 

Furthermore I extend my acknowledgement to Professor Ånunf Killingveit without whom I 

could not have handled the HBV-model. 

I thank all the people who helped me in the logistic part of the master especially Mrs. Varshita 

Venkatesh and students at Orakeltjenesten in Dragvoll. 

I also would like to say thank you to all my classmates for their help for the thesis and for all 

the good times we shared during this two years of master. 

 

I would like to continue this acknowledgment by thanking my loved ones, my parents and 

brother, who have never stopped encouraging me in the accomplishment of my studies, and 

all my family. 

I will not forget to have a thought for my friends of Norway and flatmates for all the priceless 

support they showed me during thesis period.  



Hydrological forecasting in catchments with glaciers June 1, 2015 

iv 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

v 

 

ABSTRACT 

The runoff forecast is crucial in Norway because the country bases most of its electricity from 

hydropower. The hydrological model has thus been improved for years in order to foresee the 

runoff in the best possible way. In Norway, there are many catchments with extensive water 

storage: glaciers. Those catchments represent a significant part of the catchments where 

hydropower is produced. Therefore knowing the right amount of outflow from a catchment 

with glaciers is essential but more challenging. 

The runoff forecast has been assessed on catchments where the glacier area is decisive for the 

runoff regime. The catchments chosen are located in Jostedalsbreen, the biggest glacier in 

Europe, in south Norway. The catchments have specific characteristics in slope, land types 

etc. which can test the robustness of the hydrological model used, HBV-model. This simple 

model is not specifically built for glacier behaviour analysis and thus does not include 

complex calculation on the glacier part. Hence, forecasting runoff with HBV-model for a 

catchment with glaciers is expected to be arduous. 

After several trials, two calibrations were done for the two purposes: one strictly hydrological 

runoff oriented and the other glaciers behaviour related. The simulations were realised in 

different catchments on a long period of fifty-two years. The concern about the accuracy of 

the HBV-model to generate a consistent runoff in the catchments selected proved to be 

unfounded. The first calibration gives so good results in term of runoff that an update of the 

model for catchments with higher portion with glaciers does not seem necessary. However, to 

get those results the model passes through calculations which do not fit with what happens in 

the physical system especially in climatological part and in the snow routine. So the second 

calibration was realised in order to have routines closer to the physical phenomena. 

The two different simulation results were then studied for their glacier changes. It appears that 

both calibrations give reversely extreme glacier mass balances. Therefore, it is difficult to 

conclude anything for glacier mass balance values in the catchment. 

After, the climate change in the region was studied to forecast the runoff in the next hundred 

years. Two different scenarios were evaluated. They give relatively close results in term of the 

runoff forecast. The glacier mass balances are also close to each other. The scenario A with 

the highest increase of temperature has stronger impact on the runoff and mass balance of the 

glaciers. However, it is difficult to conclude on the glacier state at the end of the period with 

the only two calibrations used, but they will eventually decrease.   



Hydrological forecasting in catchments with glaciers June 1, 2015 

vi 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

vii 

 

TABLE OF CONTENT 

FOREWARD ............................................................................................................................. I 

ACKNOWLEDGEMENT .................................................................................................... III 

ABSTRACT ............................................................................................................................. V 

TABLE OF CONTENT ....................................................................................................... VII 

LIST OF FIGURES ............................................................................................................ XIII 

LIST OF TABLES ............................................................................................................ XVII 

ABBREVIATIONS ............................................................................................................. XXI 

1 INTRODUCTION ............................................................................................................. 1 

1.1 BACKGROUND .............................................................................................................. 1 

1.2 OBJECTIVES OF THE PROJECT ........................................................................................ 2 

1.3 SCOPE OF THE PROJECT ................................................................................................. 2 

1.4 METHODOLOGY OF THE SUBJECT .................................................................................. 3 

1.5 STRUCTURE OF THE THESIS ........................................................................................... 3 

1.6 LIMITATIONS ................................................................................................................ 4 

2 INTRODUCTION TO THE CATCHMENTS’ CHARACTERISTICS ..................... 5 

2.1 SOURCES ...................................................................................................................... 5 

2.2 IDENTIFICATION OF THE STUDY AREA ........................................................................... 5 

2.2.1 Introduction .......................................................................................................... 5 

2.2.2 Studied area .......................................................................................................... 6 

2.2.3 Land type .............................................................................................................. 7 

2.2.4 Slope of the catchments ...................................................................................... 11 

2.2.5 Glaciers .............................................................................................................. 13 

2.2.6 Climate of the studied area ................................................................................ 14 

3 DATA ACQUISITION AND CONTROL .................................................................... 15 

3.1 ACQUISITION OF METEOROLOGICAL DATA .................................................................. 15 



Hydrological forecasting in catchments with glaciers June 1, 2015 

viii 

 

3.1.1 Precipitation data ............................................................................................... 16 

3.1.2 Temperature data ............................................................................................... 22 

3.1.3 Evapotranspiration data .................................................................................... 31 

3.2 ACQUISITION OF HYDROLOGICAL DATA ...................................................................... 32 

3.2.1 Runoff characteristics ........................................................................................ 32 

3.2.2 Runoff data collection ........................................................................................ 32 

3.2.3 Control of hydrological data .............................................................................. 33 

3.2.4 Hydrological data acquisition summery ............................................................ 34 

3.3 DISCUSSION AND CONCLUSION ON THE INPUT DATA ................................................... 36 

4 HBV-MODEL ................................................................................................................. 37 

4.1 BACKGROUND ON HYDROLOGICAL MODELLING ......................................................... 37 

4.2 HBV-MODEL .............................................................................................................. 39 

4.3 STRUCTURE OF THE MODEL ........................................................................................ 40 

4.3.1 Correction of the meteorological data ............................................................... 41 

4.3.2 The Snow Routine ............................................................................................... 42 

4.3.3 The Soil Moisture Routine .................................................................................. 45 

4.3.4 The Runoff Response Routine ............................................................................. 46 

4.4 PARAMETERS .............................................................................................................. 49 

4.4.1 Introduction ........................................................................................................ 49 

4.4.2 Free parameters ................................................................................................. 49 

4.4.3 Free parameters ranges and initial states.......................................................... 52 

5 CALIBRATION AND VALIDATION OF THE MODEL ......................................... 53 

5.1 MODEL SETUP ............................................................................................................. 53 

5.2 INPUT DATA PREPARATION ......................................................................................... 53 

5.2.1 Time series data ................................................................................................. 53 

5.2.2 Parameters ......................................................................................................... 54 



Hydrological forecasting in catchments with glaciers June 1, 2015 

ix 

 

5.2.3 Model initial states ............................................................................................. 57 

5.3 MODEL CALIBRATION ................................................................................................. 59 

5.3.1 Calibration process ............................................................................................ 59 

5.3.2 Calibration period .............................................................................................. 60 

5.4 FIRST CALIBRATION: FOCUS ON THE ANNUAL RUNOFF ................................................ 63 

5.4.1 Parameters and initial states .............................................................................. 63 

5.4.2 Objective function: criterion R
2
 ......................................................................... 65 

5.4.3 Average annual runoff ........................................................................................ 65 

5.4.4 Analysis of data for the first year 1985-1986 ..................................................... 66 

5.4.5 Hydrographs on the calibration period ............................................................. 74 

5.5 SECOND CALIBRATION: FOCUS ON THE SNOW ROUTINE ............................................... 77 

5.5.1 Parameters and initial states .............................................................................. 77 

5.5.2 Objective function: criterion R
2
 ......................................................................... 79 

5.5.3 Average annual runoff ........................................................................................ 80 

5.5.4 Analysis of data for the first year 1985-1986 ..................................................... 80 

5.5.5 Hydrographs ....................................................................................................... 83 

5.6 COMPARISON BETWEEN THE TWO SIMULATIONS ......................................................... 85 

5.7 VALIDATION ............................................................................................................... 85 

5.7.1 Period of validation ............................................................................................ 85 

5.7.2 First calibration ................................................................................................. 86 

5.7.3 Second calibration .............................................................................................. 88 

5.8 USE OF THE MODEL CALIBRATION FOR THE TWO OTHER CATCHMENTS ....................... 90 

5.8.1 Catchment: Loen ................................................................................................ 90 

5.8.2 Catchment: Stryn ................................................................................................ 91 

5.9 DISCUSSION AND CONCLUSION ................................................................................... 92 

6 GLACIER’S BEHAVIOUR: MASS BALANCE ......................................................... 93 



Hydrological forecasting in catchments with glaciers June 1, 2015 

x 

 

6.1 GLACIERS’ BEHAVIOUR .............................................................................................. 93 

6.2 GLACIERS STUDIES IN THE AREA ................................................................................. 97 

6.2.1 Glacier mass balance in the region .................................................................... 97 

6.2.2 Briksdalsbreen’s length ...................................................................................... 99 

6.2.3 Correlation between mass balance and length of a glacier ............................. 100 

6.3 CALCULATION OF THE MASS BALANCE FOR OLDEN: HYDROLOGICAL METHOD ......... 100 

6.3.1 Hydrological method ........................................................................................ 100 

6.3.2 Comparison between ice gain and ice melt. ..................................................... 103 

6.4 CALCULATION OF THE WATER EQUIVALENT IN THE GLACIER .................................... 105 

7 RUNOFF AND GLACIERS VOLUME FORECAST ............................................... 107 

7.1 FORECASTED CLIMATE CHANGE WITH HADLEY SCENARIO ....................................... 107 

7.1.1 Scenarios .......................................................................................................... 108 

7.1.2 Forecasted values ............................................................................................. 109 

7.2 RUNOFF FORECAST ................................................................................................... 112 

7.2.1 Calibration 1 .................................................................................................... 112 

7.2.2 Calibration 2 .................................................................................................... 114 

7.3 GLACIER MASS BALANCE FORECAST: ESTIMATION ................................................... 115 

7.3.1 Correlation glacier mass balance and parameters .......................................... 115 

7.3.2 Estimation of glacier mass balance: Ålfotsbreen and Nigardsbreen ............... 117 

7.4 GLACIER MASS BALANCE FORECAST: CALCULATION ................................................ 122 

7.4.1 Calibration 1 .................................................................................................... 122 

7.4.2 Calibration 2 .................................................................................................... 124 

7.4.3 Conclusion ........................................................................................................ 127 

8 CONCLUSION AND RECOMMENDATION .......................................................... 129 

8.1 CONCLUSION ............................................................................................................ 129 

8.2 RECOMMENDATIONS ................................................................................................ 131 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xi 

 

9 REFERENCES .............................................................................................................. 133 

10 APPENDIX ................................................................................................................ 135 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

xii 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

xiii 

 

LIST OF FIGURES 

Figure 2.2-1: South Norway – Regions ...................................................................................... 5 

Figure 2.2-2: Jostedalsbreen (Østrem et al., 1988) .................................................................... 5 

Figure 2.2-3: Catchments area land type (Statkart, 2015) .......................................................... 8 

Figure 2.2-4: Land types ............................................................................................................ 8 

Figure 2.2-5: Catchments' rivers ................................................................................................ 9 

Figure 2.2-6: Hypsographic curves .......................................................................................... 11 

Figure 3.1-1: Annual precipitation for the normal period 1961-1990 (Senorge, 2015) ........... 16 

Figure 3.1-2: Monthly precipitation over the normal period 1961-1990 for Briksdal station . 19 

Figure 3.1-3: Cumulated precipitation over the entire period of record for Briksdal station .. 19 

Figure 3.1-4: Map of normal annual precipitation for Olden catchment ................................. 20 

Figure 3.1-5: Annual precipitation for Briksdal station ........................................................... 21 

Figure 3.1-6: Annual temperature for the normal period 1961-1990 (Senorge.no, 2015) ....... 22 

Figure 3.1-7: Normal daily temperature for the three temperature stations selected ............... 24 

Figure 3.1-8: Correlation between Oppstryn and Olden-Vangberg stations on the overlapping 

period ........................................................................................................................................ 25 

Figure 3.1-9: Doublemass curve for Oppstryn - Olden-Vangberg stations ............................. 25 

Figure 3.1-10: Temperature completed for Oppstryn station over the period 1957-2013 ....... 27 

Figure 3.1-11: Average temperature over the normal period 1961-1990 ................................ 27 

Figure 3.1-12: Cumulated temperature with the new temperature data series over the entire 

period ........................................................................................................................................ 28 

Figure 3.1-13: Map of normal annual temperature in Olden catchment .................................. 29 

Figure 3.1-14: Annual temperature for Oppstryn station ......................................................... 30 

Figure 3.1-15: Evapotranspiration PET for the period calculated for Oppstryn station .......... 31 

Figure 3.2-1: Cumulated runoff for the three catchments ........................................................ 33 

Figure 3.2-2: Double mass curve for Olden - Loen ................................................................. 34 

Figure 3.2-3: Runoff in the three catchments ........................................................................... 34 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xiv 

 

Figure 3.2-4: Average monthly runoff [m3/s] in Olden catchment outlet ............................... 35 

Figure 4.1-1: A systems view of the hydrological cycle (adapted from (Chow et al., 1988)) . 37 

Figure 4.1-2: An watershed seen as a hydrological transformation operator (Killingtveit and 

Sælthun, 1995) ......................................................................................................................... 38 

Figure 4.1-3: Classification of hydrological models (adapted from (Chow et al., 1988)) ....... 39 

Figure 4.2-1: Main structure of the HBV-model (adapted from Bergstroem, 1975) ............... 40 

Figure 4.3-1: Olden - elevation zones ...................................................................................... 40 

Figure 4.3-2: Olden - hypsographic curve with zones ............................................................. 40 

Figure 4.3-3: HBV-model - snow routine ................................................................................ 43 

Figure 4.3-4: HBV-model - soil moisture routine .................................................................... 45 

Figure 4.3-5: HBV-model - upper zone routine ....................................................................... 46 

Figure 4.3-6: HBV-model - lower zone routine ....................................................................... 47 

Figure 4.4-1: HBV-parameters - temperature correction ......................................................... 49 

Figure 4.4-2: HBV-parameters - precipitation correction ........................................................ 50 

Figure 4.4-3: HBV-parameters - snow routine ......................................................................... 51 

Figure 5.2-1: Difference of snow water equivalent at the end and beginning of an hydrological 

year ........................................................................................................................................... 57 

Figure 5.3-1: Model calibration process (Killingtveit and Sælthun, 1995) ............................. 59 

Figure 5.3-2: HBV-setup - input data series for calibration ..................................................... 61 

Figure 5.4-1: HBV-calibration - R
2
 .......................................................................................... 65 

Figure 5.4-2: HBV-calibration - comparison observed and simulated Q ................................ 65 

Figure 5.4-3: Precipitation for Briksdal station (1985-1986) ................................................... 66 

Figure 5.4-4: Temperature for Oppstryn station (1985-1986) ................................................. 67 

Figure 5.4-5: HBV-calibration - comparison observed and simulated Q (1985-1986) ........... 67 

Figure 5.4-6: HBV-calibration - snow storage (1985-1986) .................................................... 69 

Figure 5.4-7: HBV-calibration - snow storage in each zone (1985-1986) ............................... 69 

Figure 5.4-8: HBV-calibration - soil moisture storage (1985-1986) ....................................... 71 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xv 

 

Figure 5.4-9: HBV-calibration - upper zone storage (1985-1986) ........................................... 71 

Figure 5.4-10: HBV-calibration - lower zone storage (1985-1986) ......................................... 72 

Figure 5.4-11: HBV-calibration – hydrograph ......................................................................... 74 

Figure 5.4-12: HBV-calibration - snow storage ....................................................................... 75 

Figure 5.4-13: HBV-calibration - snow storage in each elevation zone at the end of the years

 .................................................................................................................................................. 76 

Figure 5.5-1: HBV-calibration 2 - R
2
 ....................................................................................... 79 

Figure 5.5-2: HBV-calibration 2 - comparison observed and simulated Q ............................. 80 

Figure 5.5-3: HBV-calibration 2 - comparison observed and simulated Q (1985-1986) ........ 80 

Figure 5.5-4: HBV-calibration 2 - snow storage in each zone (1985-1986) ............................ 82 

Figure 5.5-5: HBV-calibration 2 – hydrograph ........................................................................ 83 

Figure 5.5-6: HBV-calibration 2 - snow storage ...................................................................... 83 

Figure 5.5-7: HBV-calibration - snow storage in each elevation zone at the end of the years 84 

Figure 5.7-1: HVB - validation - calibration 1 ......................................................................... 86 

Figure 5.7-2: HVB - validation - calibration 2 ......................................................................... 88 

Figure 5.8-1: HVB - validation - Loen calibration 1 ................................................................ 90 

Figure 5.8-2 : Figure 5.8-3: HVB - validation -Stryn calibration 1 ......................................... 91 

Figure 6.1-1: Cross-section of a typical valley glacier. Graphics: Rune Stubrud, NVE 

(Andreassen et al., 2012) .......................................................................................................... 93 

Figure 6.1-2: Definition of mass balance terms (Paterson, 1994) ............................................ 94 

Figure 6.2-1: Comparison between two mass balances ........................................................... 98 

Figure 6.2-2: Briksdal's cumulative length change between 1900 and 2014 (NVE, 2015) ..... 99 

Figure 6.2-3: Briksdalsbreen's area change (NVE, 2015) ........................................................ 99 

Figure 6.3-1: Glacier mass balance – method 1 ..................................................................... 101 

Figure 6.3-2: Comparison between mass balance in Nigardsbreen and Olden - cal.1 ........... 102 

Figure 6.3-3: Comparison between mass balance in Nigardsbreen and Olden - cal.1 ........... 102 

Figure 6.3-4: Glacier mass balance – method 2 – cal.1 ......................................................... 103 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xvi 

 

Figure 6.3-5: Glacier mass balance – method 2 – cal.2 ......................................................... 104 

Figure 7.1-1: Future temperature - scenario A2 ..................................................................... 110 

Figure 7.1-2: Future temperature - scenario B2 ..................................................................... 111 

Figure 7.2-1: Forecast - cal.1 - scenario A – runoff ............................................................... 112 

Figure 7.2-2: Forecast - cal.1 - scenario B2 – runoff ............................................................. 113 

Figure 7.3-1: Cumulative mass balance for Ålfotbreen ......................................................... 118 

Figure 7.3-2: Polynomial regression between mass balance in Ålfotbreen and snow storage in 

the zone 6 of Olden ................................................................................................................ 118 

Figure 7.3-3: Scenario A2 - cumulative mass balance for Ålfotbreen ................................... 119 

Figure 7.3-4: Scenario B2 - cumulative mass balance for Ålfotbreen ................................... 119 

Figure 7.3-5: Cumulative mass balance for Nigardsbreen ..................................................... 120 

Figure 7.3-6: Polynomial regression between mass balance in Nigardsbreen and snow storage 

in the zone 5 ........................................................................................................................... 120 

Figure 7.3-7: Scenario A2 - cumulative mass balance for Nigardsbreen ............................... 121 

Figure 7.3-8: Scenario B2 – cumulative mass balance for Nigardsbreen .............................. 121 

Figure 7.4-2: Forecast - cal.1 - scenario A2 - mass balance .................................................. 122 

Figure 7.4-3: Forecast - cal.1 - scenario A2 - cumulative mass balance ................................ 123 

Figure 7.4-5: Forecast - cal.1 - scenario B2 - mass balance ................................................... 123 

Figure 7.4-6: Forecast - cal.1 - scenario B2 - cumulative mass balance ................................ 124 

Figure 7.4-8: Forecast - cal.2 - scenario A2 - mass balance .................................................. 124 

Figure 7.4-9: Forecast - cal.2 - scenario A2 - cumulative mass balance ................................ 125 

Figure 7.4-11: Forecast - cal.2 - scenario B2 - mass balance ................................................. 125 

Figure 7.4-12: Forecast - cal.2 - scenario B2 - cumulative mass balance .............................. 126 

 

 

 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xvii 

 

LIST OF TABLES 

Table 2.2-1: Catchments' area .................................................................................................... 7 

Table 2.2-2: Land types (Lavvann, 2015) .................................................................................. 8 

Table 2.2-3: River length (Lavvan, 2015) ................................................................................ 10 

Table 2.2-4: Hypsographic data (Lavvann, 2015) .................................................................... 11 

Table 2.2-5: River gradients ..................................................................................................... 12 

Table 2.2-6: Glaciers characteristics for the 3 catchments (Breatlas, 1988) ............................ 13 

Table 2.2-7: Glaciers area in % from all sources ..................................................................... 13 

Table 3.1-1: Precipitation for the three catchments (Lavvann, 2015) ...................................... 16 

Table 3.1-2: Precipitation stations ............................................................................................ 17 

Table 3.1-3: Normal seasonal precipitation in Briksdal station ............................................... 20 

Table 3.1-4: Annual precipitation ranges for Olden catchment ............................................... 20 

Table 3.1-5: Air temperature in the three catchments outlets (Lavvann, 2015) ....................... 22 

Table 3.1-6: Temperature stations ............................................................................................ 23 

Table 3.1-7: Temperature stations selected .............................................................................. 24 

Table 3.1-8: Normal seasonal temperature for Oppstryn station ............................................. 28 

Table 3.1-9: Normal annual temperature ranges for Olden catchment .................................... 29 

Table 3.2-1: Specific runoff for the three catchments (Lavvann, 2015) .................................. 32 

Table 4.4-1: HBV-parameters – free parameters ranges (Killingtveit and Sælthun, 1995) ..... 52 

Table 5.2-1: HBV-setup - main parameters for the catchment ................................................ 54 

Table 5.2-2: HBV-setup - stations parameters ......................................................................... 55 

Table 5.2-3: HBV-setup - evaporation values given ................................................................ 55 

Table 5.2-4: HBV-setup – evaporation correction for the year ................................................ 55 

Table 5.2-5: HBV-setup - free parameters ............................................................................... 56 

Table 5.2-6: HBV-setup - melt increase factor ........................................................................ 56 

Table 5.2-7: HBV-setup - initial states ..................................................................................... 58 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xviii 

 

Table 5.3-1: Climatic characteristics of the years of calibration .............................................. 62 

Table 5.3-2: Classification of type of years ............................................................................. 62 

Table 5.4-1: HBV-calibration - free parameters values ........................................................... 63 

Table 5.4-2: HBV-calibration - CX .......................................................................................... 63 

Table 5.4-3: HBV-calibration - initial states ............................................................................ 64 

Table 5.4-4: HBV-calibration - R
2
 ........................................................................................... 65 

Table 5.4-5: HBV-calibration - comparison observed and simulated Q .................................. 65 

Table 5.4-6: HBV-calibration - precipitation and temperature corrected (1985-1986) ........... 73 

Table 5.4-7: Climatic characteristics of the years of calibration on the snow storage ............. 75 

Table 5.5-1: HBV-calibration 2 - free parameters values ........................................................ 78 

Table 5.5-2: HBV-calibration 2 – CX ...................................................................................... 78 

Table 5.5-3: HBV-calibration 2 - R
2
 ........................................................................................ 79 

Table 5.5-4: HBV-calibration 2 - comparison observed and simulated Q ............................... 80 

Table 5.5-5: HBV-calibration - precipitation and temperature corrected (1985-1986) ........... 81 

Table 5.6-1: Comparison of the climatological data between the two calibrations ................. 85 

Table 5.7-1: Comparison between the R
2
 in the different periods of temperature records ...... 87 

Table 5.7-2: Comparison between the R
2
 in the different periods of temperature records for 

the second calibration ............................................................................................................... 89 

Table 5.8-1: Comparison between the R2 in the different periods of temperature records in 

Loen catchment ........................................................................................................................ 90 

Table 6.1-1: Typical densities (kg.m
-3

) (Paterson, 1994) ......................................................... 94 

Table 6.2-1: Pearson's correlation between Nigardsbreen and Ålfotbreen mass balance ........ 97 

Table 6.2-2: Pearson’s correlation glacier mass balance and length of Briksdalsbreen ........ 100 

Table 6.3-1: Correlation between glacier mass balances ....................................................... 101 

Table 6.3-2: Correlation between glacier mass balances ....................................................... 104 

Table 6.3-3: Difference of the mass balances ........................................................................ 104 

Table 6.4-1: Estimated ice volume in glaciers (Østrem et al., 1988) ..................................... 105 



Hydrological forecasting in catchments with glaciers June 1, 2015 

xix 

 

Table 6.4-2: Estimated ice volume in glaciers ....................................................................... 105 

Table 6.4-3: Estimated water volume in glaciers ................................................................... 105 

Table 7.1-1: Climate change data ........................................................................................... 107 

Table 7.1-2 : Climate change - scenario A2 ........................................................................... 108 

Table 7.1-3: Climate change - scenario B2 ............................................................................ 108 

Table 7.1-4: Forecasted values used - scenario A2 ................................................................ 109 

Table 7.1-5: Forecasted values used - scenario B2 ................................................................ 110 

Table 7.1-6: Comparison between scenarios A and B ........................................................... 111 

Table 7.2-1: Forecast - cal.1 - scenario A2 - runoff differences ............................................ 112 

Table 7.2-2: Forecast - cal.1 - scenario B - runoff differences .............................................. 113 

Table 7.2-3: Forecast - cal.2 - scenario A2 - runoff differences ............................................ 114 

Table 7.2-4: Forecast - cal.2 - scenario B2 - runoff differences ............................................ 114 

Table 7.3-1: Olden: Pearson’s correlation between glacier states and parameters ................ 115 

Table 7.3-2: Olden calibration 2: Pearson’s correlation between glacier states and parameters

 ................................................................................................................................................ 116 

Table 7.2-5: Total mass balance ............................................................................................. 127 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

xx 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

xxi 

 

ABBREVIATIONS 

 

°C degree Celsius 

DEM Digital Elevation Model 

EPOT Potential evapotranspiration 

ESRI Environmental System Research Institute 

h hour 

HBV Hydrologiska Byråns Vattenbalansavdelning 

J, F, M, January, February, March etc. 

Jan., Feb. Etc. January, February etc. 

km² Kilometer square 

Lat. Latitude 

Long. Longitude 

m Meter 

m.a.s.l meter above sea level 

m.w.e. meter water equivalent 

m
3
/s Cubic meter per second 

min minutes 

Mm Millimetre 

NVE 
Norges Vassdrags- og Energidirektorat 

(Norwegian Water Resources and Energy Directorate) 

P, Precip. Precipitation 

Qo observed runoff 

Qs simulated runoff 

R2 Nash Sutcliffe coefficient 

S.o.F. Sogn of Fjordane 

T, Temp. Temperature 

UTM Universal Transverse Mercator 

 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

xxii 

 

 



Hydrological forecasting in catchments with glaciers June 1, 2015 

1 

 

1 INTRODUCTION 

1.1 BACKGROUND 

Glaciers represent approximately 75% of the world’s freshwater storage, hence their crucial 

importance in the water system (Khadka et al., 2014). Even though only 0.5 of the world’s 

glaciers are mountainous glaciers (Khadka et al., 2014), they can represent an important part 

in the hydrological phenomena in several catchments located in high mountain areas. 

The concerns raised by glaciers have been taking into consideration more seriously in the last 

years since a climate change, warmer climate, has been evaluated. In a scenario where 

constant warming conditions affect those areas with significant proportion of ice and snow 

storage, glaciers might have a crucial implication in the water availability in the future. 

Glaciers affect the water balance thus the water resources, especially through the runoff they 

can generate at high temperature in summer. The importance of glaciers becomes greater 

since they produce most water during hot, dry periods when precipitation is lacking (Jansson 

et al., 2003). 

In Norway, there are in total 2534 (3143 glacier units) glaciers covering 2692 km². 1252 of 

them are located in southern Norway, that to say 1282 situated in northern Norway. The 

glaciers in the south cover 1523 km² or 57% of the total glacier area. In addition to those 

glaciers, about 24 km² of land has been identified as “possible snow field”. In total, glaciers 

and perennials snow fields cover approximately 0.7% of the land area in Norway. 

(Andreassen et al., 2012). 

The discharge pattern in catchments with glaciers is affected by snow and glacier melt water 

(Engelhardt et al., 2014). Changes in the glacier mass and glaciers runoff would affect many 

water utilisations, water supply, irrigation, hydropower production but also flood forecasting, 

sediment transport, safety assessments of infrastructures etc. In Norway, 96.7% of the electric 

energy is generated by hydropower (Directorate, 2013). Of all the glaciers, 60% of the total 

glacier area (1610 km²) is located in catchments regulated for hydropower (Andreassen et al., 

2012). Therefore glaciers are fundamental for those hydropower productions (Andreassen et 

al., 2012). Hence, the best integration of glaciers in hydrological modelling has become more 

relevant. 

The Norwegian glaciers are monitored for many years. The length changes of the central flow 

line in some glaciers have been recorded for years. In addition to the length change, the mass 
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balance has also been monitored for few glaciers. The glacier mass is the accurate value to 

determine whether the glacier can or cannot produce more runoff. During the 1990s unlike the 

observations made in the rest of the world regarding the glaciers movement, many of the 

Norwegian glaciers advanced significantly. But after 2000, they follow the global pattern and 

retreat. 

 

1.2 OBJECTIVES OF THE PROJECT 

The thesis motivation lies in the combination of the forecast in a specific catchment with 

glaciers and the use of a hydrological model, the HBV-model. 

Glaciers appear in hydrological model HVB more as an unmovable entity than a fluctuant 

quantity with either glacier retreat or advancement. The purpose of the project was to include 

a more detailed glacier model that would take into account these internal changes in the 

glacier. The new model would then forecast retirement or growth of the glaciers to determine 

the glacier development in the future years and thus give a better fit for runoff during hindcast 

and forecast for catchments where glaciers are playing a decisive part. 

 

1.3 SCOPE OF THE PROJECT 

The scope of the project includes: 

 Literature review on existing hydrological models, glacier dynamics and climate 

 Choice of a catchment where the glacier percentage is important, 

 Collection of geographical data over the catchment area, 

 Collection of the meteorological data of the catchment area (precipitation and 

temperature), 

 Collection of the hydrological data of the catchment area (runoff), 

 HBV model set-up, calibration and validation for a recent period, 

 Evaluation of the results and the uncertainties, 

 Simulation of historical data, 

 Modification of the HBV model to improve the snow part, 
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 HBV model set-up, calibration and validation for a recent period, 

 Simulation of long term forecast and investigation of runoff and glacier development. 

 

1.4 METHODOLOGY OF THE SUBJECT 

The methodology of the subject includes: 

 Theory review, 

 Collection of input data: geographical, meteorological and hydrological, 

 Control of input data series, 

 Analysis of input data series, 

 HBV-model setup, 

 Hindcast on the past period after calibration, 

 Analysis of the glacier behaviour in the HBV-model, 

 Analysis of the forecasted climate change for input data, 

 Forecast runoff and glacier behaviour. 

 

1.5 STRUCTURE OF THE THESIS 

Chapter II will present the catchments’ characteristics: the catchments area, the land types, the 

topography, and the glaciers located in the area that has been chosen. 

Chapter III is a summary of the data acquisition and control. The data has been collected from 

several sources. And after collection, they have been corrected and completed to have a long 

period of recorded data. 

Chapter IV is the presentation of the HBV-model setup. 

Chapter V is the calibrations of the HBV-model. It has been done two different calibrations in 

order to fulfil two different expectations: the runoff forecast and the glacier behaviour 

forecast. 

Chapter VI focuses on the glacier behaviour in the HBV-model: how can the results from the 

model calibration help to determine the glacier changes. 
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Chapter VII is about the forecast in the region. 

Chapter VIII will summarize the conclusions and discussion and will propose some 

recommendation for further studies. 

 

1.6 LIMITATIONS 

The initial goal of the thesis was to update the HBV-model structure. But after consideration 

of the first results and given the complexity of the internal structure of the HBV-model, 

modification of the model has not been pursued. 

The input data of the catchments have been modified especially the temperature series. The 

accuracy of the results has thus to be handle carefully to some extent.  

The glaciers mass balanced in the selected catchment has not been monitored. So many 

assumptions have been in order to guess the glacier behaviour.  
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2 INTRODUCTION TO THE CATCHMENTS’ CHARACTERISTICS 

2.1 SOURCES 

The data were collected from different sources: Lavvann, Statkart, NVE and CryoClim: 

- The land use comes from Statkart and Lavvann: after comparison, the data from 

Lavvann has been used, 

- The glacier areas comes from NVE (Beatlas and CryoClim available on the website) 

and Lavvann: after comparison, the data from Lavvann has been used. 

 

2.2 IDENTIFICATION OF THE STUDY AREA 

2.2.1 Introduction 

Norway has several glaciers located both in south and north. 

See Appendix A: Norway and its glaciers 

The largest glacier, which is also the widest glacier in Europe, is Jostedalsbreen in southern 

Norway. This region has thus been selected for the study. 

 

Figure 2.2-1: South Norway – Regions 

 

Figure 2.2-2: Jostedalsbreen (Østrem et al., 1988) 
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The glacier Jostedalsbreen is situated in the region Sogn og Fjordane in south western 

Norway. The glacier has 81 glaciers units and covers an area bigger than 474 km
2
 

(Andreassen et al., 2012). It spreads on four different communes Jølster, Luster, Sognal and 

Stryn. Jostedalsbreen can be divided in nine main catchments (from north-east to north-west): 

Øvre Otta, Jostedalen, Veitastrondsdalen, Fjærlandsfjord, Jølster, Breimselv, Olden, Loen and 

Stryn (Østrem et al., 1988). The sides of the catchment are oriented north-east, south-east 

south-west and north-west. 

Three catchments in the north-west side of the glacier have been then selected: Olden, Loen 

and Stryn. This side is placed in the commune Stryn. 

 

Selection of the catchments: 

The selection has been made for several reasons. This side presents discharges station in each 

off the three lake outlets. The precipitation station is in the middle of the first catchment 

Olden, temperature stations are also on the catchments. The three catchments are relatively 

similar. They are subject to the same climatic effects and thus must share similar behaviour. 

Investigation on the glacier length has been made on glacier in Olden and mass balance 

review has been made for glacier in the surrounding area. Their selection will allow 

realisation of many different analyses.  

 

2.2.2 Studied area 

Olden, Loen and Stryn are three different catchments on the northwest side slope of the 

glacier Jostedalsbreen. They are quite similar, except Stryn which is twice bigger: 

- The percentage of glaciers in the catchment is great: around 40% for the first two, less 

than 20% for Stryn, 

- There is almost no urbanisation of the area, 

- The catchment shape is a U-shape valley: narrow valley with steep straight side. Stryn 

is different with a wider surface, 

- The outlet of the catchments is located downstream of large lakes, 

- The hypsography of the area shows steep catchments. 
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These characteristics made the catchments chosen particular and interesting to investigate. 

 

Table 2.2-1: Catchments' area 

Catchment Area [km
2
] 

Olden 202.12 

Loen 234.60 

Stryn 488.19 

 

Expected effects of the size and shape on the runoff: 

The basin size affects the runoff. Generally speaking, small catchments, Olden and Loen, give 

a fast response with sharp peak compared to bigger catchments, Stryn, which give slow 

response but long peak. The effect will be even limited by the shape of the catchments: Olden 

and Loen are relatively narrow which gives a larger time of travel while Stryn is wide. 

 

2.2.3 Land type 

The catchments have not been too much modified by humans. Most of the upstream areas of 

the catchments are protected area. Therefore, the area has remained natural to some extent. 

They are mostly mountainous, but have some forest downstream and glaciers upstream. Lakes 

represent also an important part of the catchment. 

 

See Appendix B: Lavvann catchment maps 

See Appendix C: land type maps 
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Figure 2.2-3: Catchments area land type (Statkart, 2015) 

 

Table 2.2-2: Land types (Lavvann, 2015) 

Area [%]  Olden Loen Stryn 

Mountain 32.8 40.2 53.7 

Cropland 1.7 0.2 1.5 

Lake 4.2 5.1 6.2 

Effective lake 3.3 4.5 4.8 

Swamp 0.0 0.0 0.0 

Forest 17.6 14.8 14.7 

Glacier 40.2 37.0 17.6 

Urban area 0.0 0.0 0.0 
 

 

Figure 2.2-4: Land types 
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For all the catchments, few observations can be made: 

- The proportion situated in the mountain is important: above 30 %, 

- The proportion of glaciers is also substantial: above 15% for Stryn and around 40% 

for Olden and Loen, 

- The lakes take a great part of the catchment: around 5%, 

- The area has not been urbanized or modified by human: 

o The croplands represent less than 2%, 

o The urban areas appear as negligible (Stryn is the most urbanized catchment 

with 0.01%). 

See Appendix D: Land type repartition 

 

Rivers 

 

Figure 2.2-5: Catchments' rivers 
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Table 2.2-3: River length (Lavvan, 2015) 

Catchment Olden Loen Stryn 

Area [km
2
] 202.12 234.60 488.19 

River length [km] 22.1 18.8 43.7 

Olden has a longer river length than Loen despite its smaller area. The river length is twice 

larger in Stryn than in Olden and Loen, which is not surprising considering that the catchment 

is twice bigger than the other two. 

 

Expected effects of the land type on the runoff: 

Upstream the glaciers delay the runoff. They prevent precipitation to run off immediately 

after the event (Jansson et al., 2003). The precipitation is stored in the winter season and 

released in the summer season. 

Forest and trees decrease the runoff mostly because of the evapotranspiration they produce in 

summer. However the area cover by forest is not so important compared to an average 

catchment. So it could not be observed a discernible impact of forest on the catchment’s 

answer to a precipitation event. 

The catchments are covered by rivers. Runoff travels more easily in the rivers where the 

outflow has usually a higher discharge rate. So the drainage would be higher in Olden than 

Loen and Stryn which have a lower ration river length – area. However, the surfaces are 

mostly bed rock, so the time of concentration will not be different for the rivers the 

catchments. 

Furthermore, downstream in the catchment the lake will temper the runoff. The presence of 

the lakes is important especially because they are located at the outlet. Their effectiveness is 

high because it impacts the major part of the catchment. Most of the runoff will pass through 

the lake. 

So, in a first analysis from the land type observed in the catchment, it could be expected that 

basin’s response will be delayed by glaciers on top, but finally tempered by lakes at the 

bottom. Because of the glacier, the runoff will have an alpine glacial runoff regime: peak in 

summer, low in winter.  

 



Hydrological forecasting in catchments with glaciers June 1, 2015 

11 

 

2.2.4 Slope of the catchments 

The topography of the catchment also affects the watershed’s response. 

The hypsographic curve of a catchment, also called elevation-area curve, describes the 

repartition of the elevations in the catchment. The curve is important for the model because all 

the input data corrections depend on it: precipitation and air temperature are calculated in 

each elevation zone. 

 

Table 2.2-4: Hypsographic data (Lavvann, 2015) 

Altitudes 

[m.a.s.l.]  
Zones Olden Loen Stryn 

Hmin 1: H> 33 52 29 

H10 2: H> 168 213 195 

H20 3: H> 530 616 550 

H30 4: H> 862 934 797 

H40 5: H> 1106 1176 989 

H50 6: H> 1305 1339 1130 

H60 7: H> 1444 1488 1251 

H70 8: H> 1560 1593 1379 

H80 9: H> 1645 1667 1498 

H90 10: H> 1742 1744 1595 

Hmax  1953 2076 1933 
 

 

Figure 2.2-6: Hypsographic curves 

Olden and Loen are really close. Between their highest elevations, around 2000 m and 1500 

m, Olden and Loen are relatively flat. Those parts located in this range represent an important 

portion of the catchments 40%. As there is around 40% of the area covered by glaciers in 

those catchments, it will be considered that those highest elevation zones are entirely covered 

by glacier in the HBV-model. Between 1000 m and the outlet, the catchments become steeper 

as with a difference of 250 m in 10% of the catchments’ area. 

Stryn has a similar pattern but the hypsographic curve got smoother after the third elevation 

zone (elevation higher that 800 m). Only 20% of the catchments are located above 1500 

m.a.s.l., in high mountains (40% for Olden and Loen). Those two highest elevation zones are 

glaciated. 
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See Appendix E: hypsographic curves 

 

Table 2.2-5: River gradients 

Catchment Olden Loen Stryn 

River gradient [m/km] 59.2 65.4 31.2 

The rivers gradients are high in Olden and Loen when it is half of their magnitude in Stryn 

which can be explained by the steepness of the catchments. 

 

Expected effects of the topography on the runoff: 

Precipitation and temperature are dependant of the elevation. With a steep watershed, 

precipitation in the model will increase quickly from the bottom to the top of the catchment. 

The orographic effect of the mountain participates to the precipitation formation since this 

side of the glacier faces the ocean. On the other side, temperature will decrease also rapidly. 

So on a large part of the catchment situated on high elevation, association between low 

temperature and high precipitation will give a massive amount of precipitation as snowfall. 

Steepness also participates in mechanical effect such as avalanches. The repartition of snow 

will then not depend only on the climatological factors that are precipitation and temperature 

as the HBV-model handles it. And this ablation of snow from the high elevations to the low 

ones where the temperature is higher enhances the melt of the average snow amount on the 

catchment. 

Concerning the runoff, the steepness of the sides accelerates the basin’s response as the 

gravity effect is more important. The rivers gradient which represents the hydrological 

steepness of the catchment indicates the velocity of water in the streams. It is sensitively the 

same in Olden and Loen, and smaller in Stryn. So the response of storm flow would be 

quicker on the first two catchments than on the bigger one. 

So the topography of the catchment would create much precipitation from the precipitation 

data station, especially snowfall with low temperature, and will accelerate the watershed 

response to an event. 
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2.2.5 Glaciers 

NVE provides the Breatlas which lists much information about the glaciers in Norway. There 

are two concerning the glacier in northern Norway and two in southern Norway where 

Jostedalsbreen is situated. The most recent one was done in 1988. 

 

Table 2.2-6: Glaciers characteristics for the 3 catchments (Breatlas, 1988) 

Catchment Olden Loen Stryn 

Drainage area [km²] not defined 234 493 

Number of glaciers 21 32 52 

Total glacier area [km²] 77.89 81.74 70.29 

Mean glacier elevation [m.a.s.l] 1433 1507 1457 

Estimated ice volume [km
3
] 5.65 5.88 5.42 

Estimated average ice thickness [m] 72.54 71.94 77.11 

 

Those data have been compared with data extracted from Lavvann and from Cryclim: 

Table 2.2-7: Glaciers area in % from all sources 

Catchments Olden Loen Stryn 

Lavvann 2015 40.20 37.00 17.60 

Cryoclim gao no 1955-1986 38.48 36.20 17.63 

Cryoclim gao no 1999-2006 35.45 32.80 14.71 

Statkart (no date) 34.31 31.56 14.31 

Breatlas 1969 37.53 33.28 25.15 

Breatlas 1988 38.53 34.83 14.39 

The percentage given by Lavvann is relatively close to the data in the CryoClim in 1955-

1986. Therefore the data from Lavvann has been selected and used thereafter. 

 

Expected effects of the glaciers on the runoff: 

In basin located in alpine area where there is a substantive portion covered by glaciers, the 

runoff has glacial regime: a regime led by glacier’s behaviour. It means a high outflow when 

the temperature is high, a unique peak in July-August when glacier ice and snow melt accur 

that to say in summer, and a very low discharge in winter. 
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2.2.6 Climate of the studied area 

The region Sogn og Fjordane is located in Eastern Norway which is situated in northern 

Europe on the west coast of the continent. 

 

The climate in this area is an oceanic climate. The climate is relatively cool in summer and 

colder in winter, but the temperature difference between summer and winter is not 

considerably significant. Though, the high elevation of the top of the catchments 

(approximately 2000 m) can give very low temperature. Precipitation is around a meter and 

half, 40% in summer and 60% in winter. 

Due the high latitude of Norway, the catchments (latitude of 62°) are affected by an important 

gradient of solar exposition between winter and summer: 5h 30 min of sun in December 

against 19h 30 in June. 

 

Expected effects of the climate on the runoff: 

Precipitation occurs mainly in winter when the temperature decrease. So if it can be observed 

high runoff in autumn when the precipitation increases, it will be reduced as the temperature 

falls below the threshold of rain/snow. A part of the potential runoff will be stocked until the 

temperature rises again. This would be consistent with a snow regime, which is based on the 

snow melt while glacial regime depends only on glacier ice melt. So the regime could be 

snow-glacial. 

The solar exposition has an effect on the evaporation therefore on the water balance of the 

area. It can be expected a great difference of the evaporation between winter and summer. 

This would reduce the runoff magnitude in summer. 
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3 DATA ACQUISITION AND CONTROL 

The data were collected from different sources: Lavvann, Senorge, Eklima and met.no: 

- The meteorological data, precipitation and air temperature, come from the website 

Eklima and Senorge: 

o Daily values from Eklima, 

o Maps from Senorge, 

- The discharge data have been provided by met.no. 

 

Then the data series have been completed when missing data were identified, and controlled 

in different ways to identify possible error in data series: 

- Visual inspection on curve, 

- Accumulation plot, 

- Double mass analysis. 

 

To assess the model goodness on the glacier part, the period covered by the data series needs 

to be relatively long so it can include periods with different glaciers behaviour change. 

See Appendix F: Map stations 

 

3.1 ACQUISITION OF METEOROLOGICAL DATA 

The daily meteorological data can be found on Eklima. The precipitation and air temperature 

stations in and around the catchments have been extracted. 

All the stations from Eklima giving data located in the commune Stryn and the bordering 

communes were considered. Then the stations of the east side of the glacier were removed, 

same as the stations which were too far from the catchments. 

See Appendix G: stations 
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3.1.1 Precipitation data 

3.1.1.1 Climate: precipitation 

Table 3.1-1: Precipitation for the three catchments (Lavvann, 2015) 

Precipitation 
Olden Loen Stryn 

[mm] % [mm] % [mm] % 

Year 1674 
 

1640 
 

1354 
 

Summer 606 36% 609 37% 465 34% 

Winter 1067 64% 1031 63% 889 66% 

According the Table 3.1-1, Olden is the catchment with the highest precipitation number, 

closely followed by Loen. Stryn receives less precipitation, both in summer and winter. The 

repartition of the precipitation along the year is sensitively the same for the three catchments. 

 

 

Figure 3.1-1: Annual precipitation for the normal period 1961-1990 (Senorge, 2015) 

 

As it can be expected the higher the elevation is, the higher the precipitation is. Big 

precipitation is located up in the mountain where the surface is covered by glaciers while the 

lakes downstream see less precipitation. Olden has a very high precipitation amount on its 

entire area except on the lake and its borders, and the precipitation on the south of the 

catchment is extreme. Precipitation on Loen is less important. For Stryn, precipitation 

covering the catchment area is not as high as in the other catchments. 
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3.1.1.2 Data collection 

There are many precipitation stations in and around the three catchments. 

Table 3.1-2: Precipitation stations 

Station n° Name Starts Ends Data Missing data 

15890 Grotli III 01.10.2008 31.12.2013 1918 0 0.0% 

57390 Skei I Jølster 01.07.1969 31.12.2013 16255 0 0.0% 

58120 Klakegg - Bolset 01.09.1985 31.05.2004 6817 0 0.0% 

58320 Myklebust i Breim 01.01.1900 31.12.2013 41638 0 0.0% 

58370 Utvik 01.06.1962 31.01.1969 2437 212 8.7% 

58390 Innvik - Heggdal 17.10.2005 31.12.2013 2997 0 0.0% 

58400 Innvik 01.01.1950 06.01.2006 20460 0 0.0% 

58430 Olden – Vangberg 02.07.1973 30.09.1992 7031 29 0.4% 

58480 Briksdal 01.01.1900 31.12.2013 41638 33 0.1% 

58500 Loen 01.04.1971 31.03.1988 6210 92 1.5% 

58700 Oppstryn 01.01.1900 31.01.1991 33268 467 1.4% 

58880 Sindre 01.01.1957 29.06.2005 17712 33 0.2% 

58900 Stryn - Kroken 02.05.2002 31.12.2013 4262 37 0.9% 

58960 Hornindal 01.01.1900 31.12.2013 41638 5 0.0% 

 

Despite the large amount of stations available in and around the area, their range of operation 

does not cover a long period and some have numerous missing data. So the only precipitation 

station that has been considered is Briksdal station where precipitation was recorded from 

1900 to 2013. 

Briksdal station is located in the middle of Olden catchment (Lat: 61°61’, Long: 6 °81’), at an 

altitude of 40 m next to the lake. 
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3.1.1.3 Fill in the missing data 

There are some missing data in the precipitation series. The missing data can be filled using 

three different equations: 

- Missing data as station average: 

   
 

 
∑  

 

   

 (1)  

- Normal ration method:  
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 (2)  

- Inverse distance: 
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With: 

- P: missing data 

- O: index of the station where the data is missing, 

- G: number of gauges, 

-   : precipitation in the gauge of the station i, 

-   : annual precipitation in the gauge of the station i, 

-   : annual precipitation in the gauge at the station 0 where the data is missing, 

-   : distance between the station i and the station 0, 

-  : coefficient taken as equal to 1. 

The different methods give close results. The formula used is the inverse distance method. 

 See Appendix H: Precipitation missing data 
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3.1.1.4 Control of the data from Briksdal station 

 

Figure 3.1-2: Monthly precipitation over the normal period 1961-1990 for Briksdal station 

 

The repartition of precipitation is consistent with the climate of the station location: highest 

precipitation in winter and lowest precipitation in summer.  

 

Figure 3.1-3: Cumulated precipitation over the entire period of record for Briksdal station 

 

The cumulated precipitation does not show a change in the gradient which mean that the 

precipitation record is consistent. 
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3.1.1.5 Precipitation on the normal period 

Table 3.1-3: Normal seasonal precipitation in Briksdal station 

Normal period 1961-1990 Hydrological year Winter season Summer season 

Annual precipitation [mm] 1356 1072 283.37 

The hydrological year A starts the 1
st
 of September of the year A and ends the 31

st
 of August 

of the year A+1. The winter of this hydrological year starts the 1
st
 of September and ends the 

31
st
 of April. The summer starts the 1

st
 of May and ends the 31

st
 of August. 

 

 

Figure 3.1-4: Map of normal annual precipitation for Olden catchment 

 

Table 3.1-4: Annual precipitation ranges for Olden catchment 

Zones  1 2 3 4 5 6 7 8 9 10 

Precipitation 

ranges (mm) 

1500 

2000 

2000 

3000 

2000 

3000 

2000 

3000 

3000 

4000 

3000 

4000 

3000 

4000 

3000 

4000 

3000 

4000 

3000 

and 

over 

So the areal precipitation for the catchment would be within the range 2550 -3500 mm. 
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3.1.1.6 Precipitation over the period 

 

Figure 3.1-5: Annual precipitation for Briksdal station 

The bold line represents the normal annual precipitation and the red line represents the 

tendency of the annual precipitation. 

 

There is no clear tendency of the annual precipitation to increase or decrease between 1900 

and 2012. Annual precipitation was high before 1930. Then it was lower between 1930 and 

1990 with some wet years. Then precipitation has been increasing slightly since 1990. 

See Appendix I: Precipitation record 
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3.1.2 Temperature data 

3.1.2.1 Climate: air temperature 

Table 3.1-5: Air temperature in the three catchments outlets (Lavvann, 2015) 

Temperature [° C.]  Olden Loen Stryn 

Year -0.4 -0.1 1.1 

Summer 4.5 4.4 5.2 

Winter -3.8 -3.3 -1.8 

 

According the Table 3.1-5, Olden is the colder catchment closely followed by Loen and Stryn 

is the warmest catchment. The difference in the annual temperature appears mainly because of 

the winter temperature which is 2°C warmer in Stryn than in Olden while the difference in 

summer between the two catchments is less than one. 

 

 

Figure 3.1-6: Annual temperature for the normal period 1961-1990 (Senorge.no, 2015) 

 

As it can be expected the coldest temperature is observed up in the mountain where the 

surface is covered by glaciers and the warmest is in downstream on the lake. The difference of 

temperature between the three catchments is also visible. Stryn has warmest values on its lake 

than the other two catchments. The glacier part in Olden is the coldest of all the glacier part. 

Unlike Stryn, Olden and Loen do not have many areas with intermediate range of temperature 

values (white on the map). The temperature changes within a catchment are consistent with 

their respective slope. 
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3.1.2.2 Data collection 

There are also several temperature stations around the area. 

Table 3.1-6: Temperature stations 

Station n° Name Starts Ends Data Missing data 

15890 Grotli III 01.10.2008 31.12.2013 1918 0 0.0% 

58370 Utvik 01.06.1962 31.01.1969 2437 212 8.7% 

58430 Olden – Vangberg 02.07.1973 30.09.1992 7031 28 0.4% 

58500 Loen 01.04.1971 31.03.1988 6210 92 1.5% 

58530 Rake 20.11.1974 05.05.1983 3089 359 11.6% 

58531 Rake II 20.11.1974 05.05.1983 3089 363 11.8% 

58532 Rake III 20.11.1974 11.04.1983 3065 358 11.7% 

58660 Flo 13.05.1983 31.08.1988 1938 189 9.8% 

58700 Oppstryn 01.01.1957 31.01.1991 12449 0 0.0% 

589 00 Stryn – Kroken 24.11.1993 31.12.2013 7343 635 8.65% 

 

Even though there are many stations, their range of operation does not cover all the same 

period as Briksdal station for precipitation and some of them have numerous missing data. So 

association and correction of data will be needed to get a record on a long period. The only 

temperature stations that have been kept for further study are Oppstryn, Olden-Vangberg and 

Stryn-Kroken. Only Oppstryn is in one of the catchments (Stryn), the two others are 

downstream of the catchments. 

 

3.1.2.3 Comparison of the three temperature stations 

With the three different stations that have been selected, it is possible to build a temperature 

series that covers the period 1957 to 2013. The temperature will be corrected to be used as it 

was temperature from only one station. The repartition is as following: 

- From 1957 to 1991: temperature from Oppstryn n°58700, 

- From 1991 to 1992: temperature from Olden- Vangberg n°58430, 

- From 1992 to 1993: normal temperature from Oppstryn n°58700, 

- From 1993 to 2013: temperature from Stryn-Kroken n°58900. 
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Table 3.1-7: Temperature stations selected 

Station n° Name 
Altitude 

[m.a.s.l.] 
Lat. Long. 

Annual normal 

temperature [°C] 

58430 Olden – Vangberg 78 61°86’ 6°76’ 5.892623 

58700 Oppstryn 201 61°93’ 7°23’ 5.722131 

58900 Stryn – Kroken 208 61°92’ 6°56’ 4.942896 

 

The stations Oppstryn and Olden-Vangberg do not have the same altitude but have a slight 

difference in their annual normal temperature (0.2°C), whereas the stations Oppstryn and 

Stryn-Kroken have a bigger difference in their annual normal temperature (0.8°C) but share 

an altitude in the same range (201 to 208 m.a.s.l.). 

 

 

Figure 3.1-7: Normal daily temperature for the three temperature stations selected 

 

See Appendix J: Comparison temperature data 

The temperature patterns are very similar on the Figure 3.1-7. So the temperature will be 

corrected as said previously. The results obtained will be controlled because the runoff might 

however show a difference between the periods due to those differences. 
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3.1.2.4 Fill in the missing data 

 First part: the temperature from Oppstryn station are selected 

                (4)  

The Oppstryn station does not have missing data in its period of record. 

See Appendix K: Oppstryn temperature 

 Second part: adding the Olden-Vangberg station temperature data 

 

Figure 3.1-8: Correlation between Oppstryn 

and Olden-Vangberg stations on the 

overlapping period 

 

Figure 3.1-9: Doublemass curve for Oppstryn - 

Olden-Vangberg stations 

 

The temperature series from Olden-Vangberg and Oppstryn are correlated with a good factor.  

The double mass analysis consists in evaluating if the data need correction, due to a possible 

change in the data record. It helps in checking if the consistency of a record is good enough to 

further use. The double mass plot shows that the two stations have consistent data recorded. 

So the use of this station is an acceptable choice. 

 

The temperature added to the final temperature data are calculated as flowing: 

             (                        ) (5)  
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 Third part: adding the normal values of temperature 

There is no data between the 30.09.1992, when Olden-Vangberg data series stops, and 

24.11.1993, when Stryn-Kroken data series starts. So the temperature taken is the normal 

temperature of Oppstryn. 

                       (6)  

This period will not give good results but it is used in order to have a complete series starting 

from 1957 to 2013. 

 

 Fourth part: adding the Stryn-Kroken’s temperature data 

Unlike Oppstryn and Olden temperature series, there are missing data in the Stryn-Kroken 

series in the period that will be used. The period with missing data should be filled in with 

shifted values from series with the best correlation with Stryn-Kroken. However as there is no 

other temperature data series that cover the same period as this station, the method cannot be 

used. So the missing data are replaced by the normal temperature of Stryn-Kroken: 

        {
                                 

                           
 (7)  

This method will also give bad results on the period where many consecutive data are 

missing. 

 

Then, the temperature for Stryn-Kroken is shifted before being added to the final temperature 

data: 

             (                        ) (8)  
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So the final temperature record is: 

 

Figure 3.1-10: Temperature completed for Oppstryn station over the period 1957-2013 

The years where there is blue data are the years where the calibration of the model cannot be 

proceed and where the results will not be considered for assessment and validation of the 

model. 

  

3.1.2.5 Control of the data from Oppstryn 

 

Figure 3.1-11: Average temperature over the normal period 1961-1990 

 

The average temperature in each month is consistent with location of the station Oppstryn: 

highest temperature in summer and lowest temperature in winter.  
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Figure 3.1-12: Cumulated temperature with the new temperature data series over the entire 

period 

The cumulated temperature shows a gradient change which increases. That gradient could be 

due to the climate change inducing an increase in the temperature. So no further correction 

has been made to the temperature data.  

 

3.1.2.6 Temperature over the normal period 

Table 3.1-8: Normal seasonal temperature for Oppstryn station 

Normal period 1961-1990 Hydrological year Winter season Summer season 

Temperature [°C] 5.72 2.55 11.94 
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Figure 3.1-13: Map of normal annual temperature in Olden catchment 

 

Table 3.1-9: Normal annual temperature ranges for Olden catchment 

Zones  1 2 3 4 5 6 7 8 9 10 

Temperature 

ranges (mm) 

4 

6 

2 

4 

0 

2 

0 

2 

-1 

0 

-1 

0 

-1 

0 

-2 

-1 

-2 

-1 

-3 

-2 

So the areal temperature for the catchment would be within the range -0.4 to 1 °C. 
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3.1.2.7 Temperature over the period 

The temperature finally covers the period 1957 to 2012. 

 

Figure 3.1-14: Annual temperature for Oppstryn station 

The bold line represents the normal annual temperature. The red line represents the tendency 

of the annual temperature calculated. 

 

There is a clear tendency of the annual precipitation to increase from 1957 to 2012. Between 

1987 and 2012, the average temperature dropped below the normal temperature only four 

times. This temperature change will seriously affect the glacier changes. 

See Appendix L: Temperature record 
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3.1.3 Evapotranspiration data 

There is no record of evapotranspiration. So it has been calculated with the Thornthwaite 

equation (1948): 

         
 

  
 
 

  
 (
     
 

)
 

 (9)  

With: 

- PET: estimated potential evapotranspiration (cm/month) 

- L: number of days in the month considered 

- N: average day length in hours for the month considered 

- Ta: average daily temperature in °C for the month considered (0 if negative) 

- I: heat index depending on the 12 monthly mean temperature Tai 

   ∑(
   
 
)
       

   

 (10)  

- α: coefficient 

 α =(6.75*10
-7

)*I
3
-(7.71*10

-5
)I

2
+(1.792*10

-2
)I+0.49239 (11)  

 

Figure 3.1-15: Evapotranspiration PET for the period calculated for Oppstryn station 

 

The evapotranspiration calculated seems very high for the region. A correction coefficient 

will be applied to it when running the HBV-model. 

See Appendix M: Evaporation data 
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3.2  ACQUISITION OF HYDROLOGICAL DATA 

3.2.1 Runoff characteristics 

Table 3.2-1: Specific runoff for the three catchments (Lavvann, 2015) 

Catchment Olden Loen Stryn 

Area [km
2
] 202.12 234.60 488.19 

Specific runoff [l/s/km
2
] 75.70 64.80 60.00 

Runoff expected [m
3
/s] 15.30 15.20 29.29 

 

Even though Olden has the smaller area than Loen, it has a little bit higher runoff because of 

the important specific runoff it has.  

 

3.2.2 Runoff data collection 

The hydrological data has been collected from the Norwegian Meteorological Instistue 

met.no. There are the discharge series from tree gauging stations, one in at the outlet of each 

catchment.  

 Gauging stations: 

 Catchment 1 Olden: station Nordre Oldevatn, no. 88.30.0 , 

 Catchment 2 Loen: station Lovatn, no 88.4.0, 

 Catchment 3 Stryn: station Strynsvatn, no 88.11.0. 

 

The hydrological data include discharge series from 1901 to 2013 but there are some 

interruptions in the measurements for Stryn. Finally, the data for the three gauging stations 

that has been taking into account are: 

- Olden: station Nordre Oldevatn 

o Data collection starts: 13.05.1902 

o Data collection ends: 31.12.2013 

- Loen: station Lovatn 

o Data collection starts: 20.03.1901 
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o Data collection ends: 31.12.2013 

- Stryn: station Strynsvatn, 

o First period: starts 12.05.1902 - ends: 30.11.1924, 

 Periods where discharge equals 0 which are not considered: 

 11.02.1922-23.02.1922 

 14.03.1923-22.03.1923, 

o Second period: starts: 01.08.1967 - ends: 24.02.1994, 

o Third period: starts 13.08.1994 - ends 02.11.1996, 

o Fourth period: starts 01.01.1997 - ends 30.12.2013. 

 

3.2.3 Control of hydrological data 

 

Figure 3.2-1: Cumulated runoff for the three catchments 

 

There is a significant gap in the data record for the station Strynsvatn between 1924 and 1967. 

The control of the hydrological data passed through a double mass analysis. The double mass 

analysis performed here is a double mass curve between the discharges collected in the 

gauging stations in each of the three catchments. 
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Figure 3.2-2: Double mass curve for Olden - Loen 

 

The double mass analysis performed between Nordre Oldevatn (Olden) and Lovatn (Loen) 

gives a curve showing that the data records are very similar and thus do not need further 

correction. There is a good correlation between Lovatn and Stryn in the period where the data 

were collected.  

 

 

3.2.4 Hydrological data acquisition summery 

 

Figure 3.2-3: Runoff in the three catchments 
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On the total period from 1901 to 2012, the runoff seems to follow a snow-glacial regime. The 

highest runoffs occur in the middle of summer in July for the three catchments. The base flow 

is around 4 m
3
/s for Olden and Loen, and 9 m

3
/s for Stryn. 

 

 

Figure 3.2-4: Average monthly runoff [m3/s] in Olden catchment outlet 

 

It can be seen on the Figure 3.2-4 that the base flow does not change from the normal period 

to the recent period. But the average runoff reaches highest peak in July and August. As said 

before the precipitation does not increase so much in the last year but the temperature has 

been increasing since 1985. This consequential rise can be attributed to the glacier melt due to 

the temperature increase. 

See Appendix N: Runoff data 
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3.3 DISCUSSION AND CONCLUSION ON THE INPUT DATA 

Precipitation: 

The precipitation data comes from Briksdal station, station located in the middle of Olden 

station. So the station is very well situated for the calibration of the HBV-model for the 

catchment. Furthermore, it covers a very long period from 1900 to 2012 and has very few 

missing data. So the Briksdal station is a very good for its use in the Olden calibration. 

The Oppstryn station could have been used to have the same station for precipitation and 

temperature but the period was not long enough and would have required correction and 

addition of data from other stations. So the choice of Briksdal station was the best for a 

calibration in Olden catchment. 

 

Temperature: 

The temperature data come from three different stations: Oppstryn, Olden-Vangberg and 

Stryn-Kroken. The stations are respectively in Stryn catchments and downstream the studied 

area. So the locations to the stations are not ideal. Even though the general overview of those 

three stations shows a good correlation, problems can appear in the results after a calibration 

specially if the calibration period uses data from one station. The years where normal 

temperature of Oppstryn station have be used to fill in the missing data will not be considered 

relevant to assess the goodness of the model in order to validate the calibration. The 

temperature data finally covers a period from 1957 to 2012. 

 

Runoff: 

The discharge for the two catchments Olden and Loen are similar. That can be explained by 

the numerous similarities between the two catchments’ characteristics: the catchment area, the 

hypsographic curve representing the catchment, and the repartition of the land type with a 

substantial proportion for glacier.  
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4 HBV-MODEL 

4.1 BACKGROUND ON HYDROLOGICAL MODELLING 

Hydrological modelling is the quantitative description of the movement of water: the 

hydrological response of the system. The environment where all hydrological phenomena 

occur is divided in different sub systems which describe a phenomenon while models embed 

the phenomenon’s mechanism. 

 

 

Figure 4.1-1: A systems view of the hydrological cycle (adapted from (Chow et al., 1988)) 

 

A hydrological model is a representation of the real physical hydrological system. The model 

must imitate the real system response. The hydrological models uses watershed as spatial unit 

for water system (Killingtveit and Sælthun, 1995). Therefore, hydrological models have been 

created to determine the behaviour of a catchment in response to an event (rain, snow, flood 

or drought). 
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The hydrological models include the following events that are on the land phase in a 

catchment.  

 Precipitation, rainfall and snowfall, on land 

 Storage of water in snow, ice, soil, rivers and lakes, 

 Evapotranspiration form land and plants back to the atmosphere, 

 Gravitational flow through soil and surface streams to the outlet. 

A catchment can be seen as a transformation operator in models, while precipitation is the 

input and runoff the output data. 

 

Figure 4.1-2: An watershed seen as a hydrological transformation operator (Killingtveit and 

Sælthun, 1995) 

 

Hydrological models can be based on two different kind of modelling concepts: they can be 

physical models and or they can be abstract models. In the physical models, nature is 

reproduced on a laboratory scale. In the abstract models, mathematical equations describe the 

physical system. These equations are ordered to give an algorithm which can be coded in a 

program. 

 

The hydrological models are classified following three criteria: 

 Randomness: deterministic (no randomness) or stochastic, 

 Spatial variation: lumped (homogeneous surface) or distributed, 

 Time variability: time independent or dependent. 
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Figure 4.1-3: Classification of hydrological models (adapted from (Chow et al., 1988)) 

 

The simplest model is thus a deterministic lumped time-independent model (Killingtveit and 

Sælthun, 1995) 

 

4.2 HBV-MODEL 

HBV-model stands for Hydroligiska Byråns Vattenbalansavdeling (SMIH, Sweden). HBV- 

model is a hydrological model and used for making of runoff/inflow forecasts. The HBV-

model is: 

- A deterministic model: no randomness, 

- A lumped precipitation-runoff model: homogeneous surface, 

- A conceptual model: only main physical elements of the real system are represented, 

- A linear model (to some extent): mostly linear equations describe the hydrological 

cycle, 

- A mathematical model that has to be calibrated. 

 

The scope of the HBV model is wide: runoff and flood forecasting, generation of runoff data 

series, filling missing runoff data, analysis of land use impacts, groundwater and soil 

moisture, water quality and climate change studies (Killingtveit and Sælthun, 1995).  
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Figure 4.2-1: Main structure of the HBV-model (adapted from Bergstroem, 1975) 

 

4.3 STRUCTURE OF THE MODEL 

The HBV model is divided into ten zones for the snow routine. 

This is the division for the Olden catchment: 

 

Figure 4.3-1: Olden - elevation zones 

 

Figure 4.3-2: Olden - hypsographic 

curve with zones 
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4.3.1 Correction of the meteorological data 

The model needs areal data which means one precipitation value and one temperature value 

for one surface at an elevation zone. So the model computes: 

- Areal precipitation Parea [mm], 

- Areal temperature Tarea [°C]. 

The model estimates those data from precipitation and temperature data Pobs and Tobs which 

come from station(s) at a certain elevation, elevation Hstation. Therefore those point 

measurements must be corrected to correspond to the data in each elevation zone Harea. 

 

4.3.1.1 Correction of temperature 

 If the day has no precipitation, Pobs<0: 

                   (
              

   
) (12)  

 If the day has precipitation, Pobs>0: 

                   (
              

   
) (13)  

 

Parameters: 

- TCGRAD: temperature lapse rate with elevation on clear days [˚C/100 meter], 

- TPGRAD: temperature lapse rate with elevation on cloudy days [˚C/100 meter]. 

 

4.3.1.2 Correction of precipitation: 

 If the temperature in the precipitation station is higher than temperature threshold 

rain/snow, precipitation is rain: 

                  (14)  
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 If the temperature in the precipitation station is lower than temperature threshold 

rain/snow, precipitation is snow: 

                        (15)  

Then 

            [        (
          

   
)] (16)  

 

Parameters: 

- PCORR: precipitation correction factors for rain, 

- SCORR: precipitation correction factors for snow, 

- PGRAD: precipitation increase coefficient with elevation [%/100 meter].  

 

4.3.2  The Snow Routine 

4.3.2.1 Snow 

In the snow routine are computed the snow accumulation and the snowmelt in the catchment 

based on the precipitation and temperature observed. The temperature gives the precipitation 

type – snow or rain – and is used to calculate the snowmelt from on the amount of snow 

already on the catchment or the accumulation of fresh snow to add the snow existing on the 

area. The water outflow is also calculated based on the rainfall and the snowmelt. 
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Figure 4.3-3: HBV-model - snow routine 

 

Precipitation type: precipitation can be rainfall or snowfall depending on the air temperature 

Ta: 

    {
                  
               

 (17)  

 

Phase changes in the snow: the snow can either melt or refreeze depending on the air 

temperature: 

 Snowmelt SM [mm]: 

    {
   (     )           
                                   

 (18)  

 Snow refreezing SR [mm]: 

    {
                                               
       (     )          

 (19)  
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Snow composition:  the snow cover is composed by dry snow and by the water it contains 

 Dry snow storage SN [mm]: 

                         (20)  

 Maximum free water content in snow ST [mm]: 

               (21)  

 Snow free water content SW [mm]: 

          {
                  
                                         

 (22)  

 

Snow routine outflow: water to soil moisture zone INSOIL [mm]: 

              {
        
                

 (23)  

 

Parameters: 

- Tx: temperature threshold between rain and snow [°C], 

- Ts: temperature threshold for snowmelt [°C], 

- CX: degree day factor, 

- CFR: degree day factor refreezing, 

- CPRO: maximum free water in snow (LWMAX). 

 

4.3.2.2 Glaciers 

The HBV-model includes a glacier routine assuming that in the area where there is glacier, 

glacier ice can melt if there is no snow on top and if the temperature is high enough. The 

model turns the snow leftover into ice. The ice melt will produce runoff. But the glacier area 

will not change in the time and growth or decrease of the glacier volume will not be 

computed.  
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4.3.3 The Soil Moisture Routine 

In the soil routine the input data can the precipitation or the water outflow from the snow 

routine. The water infiltrates the vadose zone (unsaturated zone) and is stored: soil moisture. 

The outputs from the vadose zone are evapotranspiration back to the atmosphere and the net 

precipitation to the upper zone. 

 

Figure 4.3-4: HBV-model - soil moisture routine 

 

Actual evaporation EA [mm]: 

    {
     (

  

  
)          

                           
  (24)  

 

Net precipitation, water going to the upper zone dUz [mm]: 

            (
  

  
)
 

 (25)  

 

Actual soil water storage SM [mm]: 

                         (26)  
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Parameters: 

- LP: threshold for evapotranspiration, 

- EPOT: potential evapotranspiration, 

-  : coefficient. 

 

4.3.4 The Runoff Response Routine 

4.3.4.1 Upper zone 

The net precipitation calculated in the soil moisture routine goes to the upper zone where the 

storage is (active groundwater storage) and where the “storm runoff” comes out. The quick, 

medium quick and slow surface runoffs are calculated. This outflow is strongly dependant of 

the precipitation event (rainfall or snow melt). A part of the groundwater storage percolates in 

the lower zone. 

 

Figure 4.3-5: HBV-model - upper zone routine 

 

Water storage in the upper zone UZ [mm]: 

                            (27)  

 

Fast runoff Q11 [mm]: 

        {
      (                ) 
                                                               

 (28)  



Hydrological forecasting in catchments with glaciers June 1, 2015 

47 

 

Slow runoff Q10 [mm]: 

        {
      (            ) 
                                          

 (29)  

 

Parameters: 

- UZ: water level in the upper zone [mm], 

- KUZ10: time constant, upper zone [1/t], 

- KUZ11: time constant, upper zone [1/t], 

- PERC: percolation [mm/day] 

 

4.3.4.2 Lower zone 

The percolation enters the lower zone. In the lower zone is located the storage of the deep 

groundwater and lakes. From the lakes’ surface evaporation occur. And from lakes and 

groundwater storage is computed the slow runoff “base flow”. This runoff is less dependent 

of the precipitation event; it will last longer after it occurred. 

 

 

Figure 4.3-6: HBV-model - lower zone routine 

 

Water storage in the lower zone LZ [mm]: 

                (      )         (30)  
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Base flow LW [mm]: 

            (31)  

 

Parameters: 

- P: precipitation [mm], 

- PERC: percolation [mm/day] 

- LZ: water level in the lower zone [mm], 

- KLZ: time constant, lower zone [1/t] 

- EPOT: potential evaporation [mm], 

- LA%: lake area [%]. 
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4.4 PARAMETERS 

4.4.1 Introduction 

The HBV-model requires three types of parameters. 

- The confined parameters: catchment characteristics, 

- Semi-confined parameters: regional hydro-meteorological values, and/or “stable or 

insensitive” parameters, 

- Unconfined parameters: process parameters and coefficients. 

The confined and semi-confined parameters are blocked on the model and will not change 

during the calibration of the model. The unconfined parameters are free and need to be 

determined through the calibration process. 

 

4.4.2 Free parameters 

Correction of meteorological data: 

- TCGRAD: temperature lapse rate with elevation on clear days [˚C/100 meter], 

- TPGRAD: temperature lapse rate with elevation on cloudy days [˚C/100 meter]. 

 

Figure 4.4-1: HBV-parameters - temperature correction 

 

The lowest the temperature lapse is, the lowest the temperature gradient is. A extreme 

temperature lapse rate will decrease the temperature too fast then, make the rain transformed 
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to snow at low elevation zones because the temperature will cross the threshold rain/snow 

while it should not have been snow. It will also generate snow to soon in high elevation zones 

where the precipitation should have been still rainfall and also reduce and delay the snow melt 

on low elevation zones because the temperature will cross the threshold snow melt/snow 

refreeze too late. Therefore, the runoff will be delay because of the production of storage that 

should not exist and its late emptying. 

If the temperature is good at the beginning (lowest elevation zones) and then drops too 

quickly in the elevation zone due to an excessive temperature lapse rate, the temperature lapse 

must be decreased because it creates many side effects affecting processes which all directly 

and indirectly depend on temperature. 

 

- PCORR: precipitation correction factor for rain, 

- SCORR: precipitation correction factor for snow, 

- PGRAD: precipitation increase coefficient with elevation [%/100 meter]. 

 

Figure 4.4-2: HBV-parameters - precipitation correction 

 

PCORR and SCORR increase the precipitation, as rain or snowfall on all catchment. If there 

is too much precipitation on all the elevation zones, the precipitation factors must be 

corrected. If the precipitation is too important on the top, it can be due to a high precipitation 

elevation coefficient with which rises the precipitation with the elevation. 
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Snow routine: 

- Tx: temperature threshold between rain and snow [°C], 

- Ts: temperature threshold for snowmelt [°C], 

- CX: degree day factor 

- CFR: degree day factor refreezing 

- CPRO: maximum free water in snow (LWMAX) 

 

Figure 4.4-3: HBV-parameters - snow routine 

 

If the rain turns into snow too early in the year, it could be because the threshold between rain 

and snow is too high: the temperature and precipitation could be accurate but threshold too 

high gives snow while it should still be rainfall. On this other side, disproportionate threshold 

for snow melt will maintain a big storage as snow and thus delay the snowmelt and runoff. 

The threshold affects the start of the snow production or snowmelt. Meanwhile the degree day 

factor affects the quantity of snowmelt produce when it has been started. A small degree day 

factor will not release the water quick enough (delay) whereas a big one will free the water 

too soon (advance). 
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4.4.3 Free parameters ranges and initial states 

The HBV-model presents usually free parameters in the ranges presented in the Table 4.4-1  

 

Table 4.4-1: HBV-parameters – free parameters ranges (Killingtveit and Sælthun, 1995) 

Name Meaning 
Value range Default 

value 
Unit 

Min Max 

PKORR Precipitation correction – rainfall 1.05 1.2 1.05  

SKORR Temperature correction – snowfall 1.15 1.5 1.2  

TTGRAD Temperature lapse rate for clear days -1 -0.6 -1 °C/100m 

TVGRAD 
Temperature lapse rate during 

precipitation 
-0.6 -0.4 -0.4 °C/100m 

PGRAD Precipitation lapse rate 1.0 1.10 1.05  

Cx Degree-day factor -3.0 6.0 4.0 mm/°C*Day 

Tx Threshold temperature rain/snow -1.0 2.0 1.0 °C 

Ts Threshold temperature for snowmelt -1.0 2.0 0.0 °C 

CFR Re-freezing efficiency in snow 0.00 0.01 0.005  

FC Field capacity in soil moisture zone 75 300 150 mm 

  Parameter in soil moisture routine 1.0 4.0 2.0  

LP 
Threshold value for potential 

evapotranspiration in soil moisture 
70 100 100 % of FC 

KUZ1 Recession constant in upper zone 0.1 0.5 0.3 1/day 

KUZ2 Recession constant in upper zone 0.05 0.15 0.1 1/day 

PERC Percolation from upper to lower zone 0.5 1.0 0.6 mm/day 

UZ1 
Threshold level for quick runoff in 

upper zone 
10 40 20 mm 

KLZ Recession constant for lower zone 0.002 0.100 0.002 1/day 

 

 

 

  



Hydrological forecasting in catchments with glaciers June 1, 2015 

53 

 

5 CALIBRATION AND VALIDATION OF THE MODEL 

5.1 MODEL SETUP 

The HBV-model used has been coded on developed by Killingtveit (1987). The interface that 

is seen form the user is on Excel files. The calculation and the calibration are done in a “black 

box” coded on C++. 

 

5.2 INPUT DATA PREPARATION 

The HBV model requires as input data: 

- Time series data: 

o Precipitation [mm], 

o Air temperature [°C], 

o Runoff [m
3
/s]. 

- Parameters values and 

- Initial states values. 

 

5.2.1 Time series data 

The series data HBV-model uses must be: 

- Series without any missing data, 

- Series starting the 1
st
 of September and ending the 31

st
 of August (hydrological years). 

So the series that could have been used – precipitation, temperature and runoff – start in 1957 

and end in 2012. However there is no data concerning glacier mass balance in the region, 

which start before 1961. So the final period considered covers only the years 1961 to 2012 

which is a long period (52 years). 
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5.2.2 Parameters 

5.2.2.1 Confined parameters 

All the parameters of the catchments’ behaviour are dependent on the area elevation 

distribution. In the HBV-model, depending on the zone, the catchment type can be either 

forest or mountainous. And it has a certain percentage of glaciers. 

 

Table 5.2-1: HBV-setup - main parameters for the catchment 

 

Note: in glacier, if the value is 1, the total area is glaciated (100% glaciers) 

 

Concerning the stations, their elevation is indicated. Several stations for precipitation or for 

temperature could have been used with a weight depending on their influence on the 

catchment. As said before, only one station for each parameter, precipitation and temperature, 

has been used. A single station can be used for the model because the catchment only 202.12 

km
2
 large. 

MAIN PARAMETERS FOR THE CATCHMENT: 

  Area 202.12  km2             

  Lake percentage 4.3  %             

  Catchment name: Olden               

                    

  Area-elevation distribution: Catchment type  Glacier model parameters   

Zone # % of total area     Forest Mountain Zone   % Glaciers   

1   10%   < 168  m.a.s.l. 1  0  168  m.a.s.l. 0.00    

2   20%   < 530  m.a.s.l. 1  0  530  m.a.s.l. 0.00    

3   30%   < 862  m.a.s.l. 0  1  862  m.a.s.l. 0.00    

4   40%   < 1106  m.a.s.l. 0  1  1106  m.a.s.l. 0.00    

5   50%   < 1305  m.a.s.l. 0  1  1305  m.a.s.l. 0.00    

6   60%   < 1444  m.a.s.l. 0  1  1444  m.a.s.l. 0.00    

7   70%   < 1560  m.a.s.l. 0  1  1560  m.a.s.l. 1.00    

8   80%   < 1645  m.a.s.l. 0  1  1645  m.a.s.l. 1.00    

9   90%   < 1742  m.a.s.l. 0  1  1742  m.a.s.l. 1.00    

10  100%   < 1953  m.a.s.l. 0  1  1953  m.a.s.l. 1.00    
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Table 5.2-2: HBV-setup - stations parameters 

 

 

The confined parameters are fixed during the simulation. 

 

5.2.2.2 Semi-confined parameters 

The semi-confined parameters are regional hydro-meteorological values, and/or “stable or 

insensitive” parameters. The evaporation of each month of the year is a semi-confined 

parameter. 

The evaporation has been calculated with the Thornthwaite equation that gives the 

evapotranspiration for each month. The HBV model gives an estimation of each day of the 

month and recalculates the monthly values. The model takes then the daily values for all the 

duration of the simulation. 

 

Table 5.2-3: HBV-setup - evaporation values given 

 

The evapotranspiration calculated are two high compared to the region so a correction factor 

has been applied in order to decrease the values. 

Table 5.2-4: HBV-setup – evaporation correction for the year 

 

The semi-confined parameters are also fixed during the simulation. 

Nr Name m.a.s.l. Weight

1 Briksdal 40 1

N/A 0

Precipitation stations Temperature  stations

Nr Name m.a.s.l. Weight

1 Oppstryn 201 1

N/A 0

Evaporation

Months Jan. Feb. Mars April Mai June July Aug. Sept. Oct. Nov. Dec.

Mean 0 0 8.3 32.7 85.7 116.9 123.3 101.5 61.5 36 9.8 0

Estimation 0 0.7 10.6 35.4 84 113 120.2 99.2 62.9 36 11.7 1.2

# days 31 28 31 30 31 30 31 31 30 31 30 31

Mean for whole observation period (mm/month)

Correction factor 0.75

Annual Pot. evap. 431 mm

Evaporation station(s)

Correction Factors (if needed)
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5.2.2.3 Free parameters 

The unconfined parameters or free parameters are process parameters and coefficients. They 

must be determined by the model calibration. 

 

Table 5.2-5: HBV-setup - free parameters 

 

 

Table 5.2-6: HBV-setup - melt increase factor 

Melt increase in Melt increase in 

mountain 1 glaciers 1.5 

CX-mount. 3 CX-Glacier 4.5 

Min 0.75 Min 1 

Max 1.5 Max 1.5 

 

The melt increase factor in glacier is set up higher than in the mountain because the ice melts 

faster than the snow (Khan et al., 2015). This gives a higher CX in the glacier part than in the 

rest of the catchment. 

Units

  

Min Max

PREC Rain - correction: PKORR 1.00 1.00 1.30

Snow - correction: SKORR 1.20 1.00 1.50

Elevation correction: HPKORR 5.0  % pr. 100 m 5.00 10.00

SNOW Degree-day factor: CX 4.00  mm/degree C./day 2.50 4.00

Threshold snow-melt: TS 0.13  Degree C. -1.00 1.00

Threshold rain/snow: TX 0.42  Degree C. -1.00 1.00

Liquid water: CPRO 9.90  % of dry snow 5.00 10.00

SOIL Field capacity: FC 150  mm 50 150

Beta: BETA 2.00 1.00 2.50

Threshold evaporation: LP% 100 % 60 100

UPPER ZONE Fast drainage coefficient: KUZ2 0.30  1/day 0.10 0.40

Slow drainage coefficient: KUZ1 0.10  1/day 0.01 0.10

Threshold: UZ1 20  mm 10 40

Percolation: PERC 0.60  mm/day 0.20 1.50

LOWER ZONE Drainage coefficient: KLZ 0.010  1/day 0.002 0.100

REFREEZE PRO 10.00  % of normal melt rate 10.00 10.00

  

Tlp -0.40 Degree C./100 m -0.40 -0.70

Tlo -1.00 Degree C./100 m -0.50 -1.00

Optimizer

Range

Temperature lapse rate:

At precipitation

No precipitation

PARAMETERS IN THE HBV-MODEL:
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All those parameters will be modified during the calibration within their ranges of values. 

 

5.2.3 Model initial states 

The model needs initial states data to start the simulation. The initial states are important for 

the first year of simulation but do not affect the following years. 

 

At the beginning of every hydrological year, the snow is converted to ice. That means that the 

snow depth will restart at zero every 1
st
 of September. In the physical model it would mean 

that snow that was on the glacier is converted into ice and that the snow that was on other 

surface has been removed. The conversion snow to ice glacier is a phenomenon that occurs. 

However, removing the snow on the part where there is no glacier is physically incorrect and 

all the snow on glacier could not turn into ice. Yet, this solution is used on Senorge. 

  

Figure 5.2-1: Difference of snow water equivalent at the end and beginning of an hydrological 

year 

  

So the initial states are setup as zero for all the elevation zones. The upper and lower zone 

storages are defined to make the simulated runoff fit the observed runoff in the very 

beginning of the year. The initial soil water storage is 80 % of the soil water storage. 
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Table 5.2-7: HBV-setup - initial states 

MODEL STATES AT START: 

                

   Elevation-zone Snow pack (mm)   Free water content       

                  %         mm   

  168  m.a.s.l 0  mm 0 0   

  530  m.a.s.l 0  mm 0 0   

  862  m.a.s.l 0  mm 0 0   

  1106  m.a.s.l 0  mm 0 0   

  1305  m.a.s.l 0  mm 0 0   

  1444  m.a.s.l 0  mm 0 0   

  1560  m.a.s.l 0  mm 0 0   

  1645  m.a.s.l 0  mm 0 0   

  1742  m.a.s.l 0  mm 0 0   

  1953  m.a.s.l 0  mm 0 0   

                

  Mean values 0   mm 0 0   

                

  Soil water storage 120   mm Maximum: 150   

  Upper zone storage 40   mm Threshold: 13   

  Lower zone storage 10   mm       

  Runoff, computed:   m3/sec (at start)   

  Runoff, observed:   m3/sec (at start)   
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5.3 MODEL CALIBRATION 

5.3.1 Calibration process 

The calibration is made in order to determine the optimal value of all the free parameters of 

the model to have the best simulation results compared to the observed data.  

 

 

Figure 5.3-1: Model calibration process (Killingtveit and Sælthun, 1995) 

 

The calibration can be based on two different kinds of methods: 

- Subjective method or 

- Objective methods. 

The subjective method consists in looking at graphs where the simulated and observed runoffs 

are compared whereas objective methods use numerical criterion – an error function – which 

is derived from differences between the observed and the simulated runoff over the calibration 

period. In the model, the criterion for goodness of fit is the Nash-Sutcliffe criterion. 

 

The Nash-Sutcliffe efficiency criterion R
2
 is equal to: 

      
∑(     )

 

∑(     ̅̅ ̅̅ ) 
 (32)  
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With: 

- QS: daily simulated runoff, 

- QO: daily observed runoff, 

-   ̅̅ ̅̅ : average observed runoff (on the year) 

R
2
 can vary from 1 to - : the higher R

2 
is, the better the model fits with the physical system. 

R
2
=1 means that the model fit perfectly: the parameters calibrated give, with the observed 

input data, the same results in the model than the real system. Normal values during HBV-

model calibrations are within the range 0.6-0.9 (Killingtveit and Sælthun, 1995). 

 

5.3.2 Calibration period 

The HBV-model requires a period between 5 and 10 years to be calibrated. The model was 

meant to be calibrated for the period 1985-1989 which is the most recent period of the input 

data with the temperature coming from Oppstryn station only. The model was run a first time 

and then an automatic calibration was performed. 
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Figure 5.3-2: HBV-setup - input data series for calibration 

 

The calibration period covers two “cold” years (1985-1986) and three “warm” years (1987-

1989). Regarding the precipitation, 1985 and 1987 have less annual precipitation, 1987 is the 

driest year in the calibration period, while 1986 have more precipitation. 1988 and 1989 are 

two wet years. 
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Table 5.3-1: Climatic characteristics of the years of calibration 

Year 
Temperature Precipitation 

 Annual Winter Summer  Annual Winter Summer 

1985 Cold -- --- + Dry -- -- + 

1986 Cold -- -- -- Wet + + + 

1987 Warm +++ ++ ++++ Dry -- -- - 

1988 Warm ++ ++++ -- Wet +++++ ++++ + 

1989 Warm +++ ++++ + Wet +++++ +++++ + 

 

Table 5.3-2: Classification of type of years 

Code 
Temperature difference 

with the normal temperature [°C] 

Precipitation difference 

with the normal precipitation [mm] 

++++++ > 2.5   

+++++ > 2 > 800 

++++ > 1.5 > 600 

+++ > 1 > 400 

++ > 0.5 > 200 

+ > 0 > 0 

- > -0.5 > -200 

-- > 1 > -400 

--- < 1 > -600 

----   < -600 
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5.4 FIRST CALIBRATION: FOCUS ON THE ANNUAL RUNOFF 

5.4.1 Parameters and initial states 

Table 5.4-1: HBV-calibration - free parameters values 

 

 

Table 5.4-2: HBV-calibration - CX 

Melt increase in Melt increase in 

mountain 0.91 glaciers 1.5 

CX-mount. 3.6 CX-Glacier 4.5 

Min 0.75 Min 1 

Max 1.5 Max 1.5 

 

 

  

Units

  

Min Max

PREC Rain - correction: PKORR 1.30 1.00 1.30

Snow - correction: SKORR 1.50 1.00 1.50

Elevation correction: HPKORR 10  % pr. 100 m 5.00 10.00

SNOW Degree-day factor: CX 4.00  mm/degree C./day 2.50 4.00

Threshold snow-melt: TS 0.14  Degree C. -1.00 1.00

Threshold rain/snow: TX 0.53  Degree C. -1.00 1.00

Liquid water: CPRO 10  % of dry snow 5.00 10.00

SOIL Field capacity: FC 90  mm 50 150

Beta: BETA 1.12 1.00 2.50

Threshold evaporation: LP% 69 % 60 100

UPPER ZONE Fast drainage coefficient: KUZ2 0.19  1/day 0.10 0.40

Slow drainage coefficient: KUZ1 0.07  1/day 0.01 0.10

Threshold: UZ1 19  mm 10.00 40.00

Percolation: PERC 1.04  mm/day 0.20 1.50

LOWER ZONE Drainage coefficient: KLZ 0.080  1/day 0.002 0.100

REFREEZE PRO 10.00  % of normal melt rate 10.00 10.00

  

Tlp -0.675 Degree C./100 m -0.40 -0.70

Tlo -0.70 Degree C./100 m -0.50 -1.00

At precipitation

No precipitation

PARAMETERS IN THE HBV-MODEL: Optimizer

Range

Temperature lapse rate:
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Table 5.4-3: HBV-calibration - initial states 

MODEL STATES AT START: 

                

   Elevation-zone 
Snow pack 

(mm) 
  Free water content       

                  %         mm   

  168  m.a.s.l 0  mm 0 0   

  530  m.a.s.l 0  mm 0 0   

  862  m.a.s.l 0  mm 0 0   

  1106  m.a.s.l 0  mm 0 0   

  1305  m.a.s.l 0  mm 0 0   

  1444  m.a.s.l 0  mm 0 0   

  1560  m.a.s.l 0  mm 0 0   

  1645  m.a.s.l 0  mm 0 0   

  1742  m.a.s.l 0  mm 0 0   

  1953  m.a.s.l 0  mm 0 0   

                

  Mean values 0   mm 0 0   

                

  Soil water storage 72   mm Maximum: 90   

  Upper zone storage 65   mm Threshold: 19   

  Lower zone storage 60   mm       

  Runoff, computed:   m3/sec (at start)   

  Runoff, observed:   m3/sec (at start)   
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5.4.2 Objective function: criterion R
2 

 

Figure 5.4-1: HBV-calibration - R
2
 

 

Table 5.4-4: HBV-calibration - R
2
 

Year R
2 

1985 0.88 

1986 0.91 

1987 0.89 

1988 0.87 

1989 0.88 
 

Looking at the coefficient R
2
, the calibration gives very good results with values within the 

range 0.80 to 0.91. So the simulated runoffs are close to the observed data. The calibration 

does not have much different result regarding the climatologic state of the year (dry or wet 

year, cold or warm year) which shows that the calibration is good. 

 

5.4.3 Average annual runoff 

 

Figure 5.4-2: HBV-calibration - comparison 

observed and simulated Q 

 

Table 5.4-5: HBV-calibration - comparison 

observed and simulated Q 

Year R
2
 Obs. Q Sim. Q 

1985 0.88 15.58 13.91 

1986 0.91 13.27 12.58 

1987 0.89 16.28 14.26 

1988 0.87 18.53 17.36 

1989 0.88 18.66 18.97 
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It can be seen that the average annual runoff simulated is close to the observation for each 

year. In the four first years, the model underestimated the runoff, and overestimated the last 

year. 

The two years 1988 and 1989 are very wet years in the calibration. However the difference is 

that 1989 have much more precipitation in winter and little more precipitation in summer 

while 1988 have more precipitation in winter and summer. So the years which have lot of 

precipitation in winter could have an overestimated average runoff, while the other years have 

an underestimated runoff. The difference could also be due to the difference of temperature in 

summer (cold summer in 1988, warm in 1989) but it is relatively small. 

 

5.4.4 Analysis of data for the first year 1985-1986 

In 1985-1986, the precipitation and temperature records are: 

 

Figure 5.4-3: Precipitation for Briksdal station (1985-1986) 
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Figure 5.4-4: Temperature for Oppstryn station (1985-1986) 

 

Runoff comparison: 

For validation of the calibration of the model, the model’s hydrograph should recreate the 

same trend in the flow variation during the year. It means that it should have the same timing 

and magnitude of flood event and lack of runoff period. It should also give the same 

accumulated volume of runoff.  

 

Figure 5.4-5: HBV-calibration - comparison observed and simulated Q (1985-1986) 
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Like most of the hydrological simulation, the results after the calibration show: 

- Difficulties to match the observed runoff in magnitude (peak in October), 

- Difficulties to fit the observed runoff in timing (start the runoff increase in May). 

However the simulation trends are following the observed ones. 

 

Simulated runoff: 

In September the simulation values fit perfectly the observed values. 

In October the simulation managed to fit the time of the peak in a very good ways but does 

not reach its magnitude, gets close to it but delayed. And then it decreases a little bit too late 

and not quickly enough in the first part and too much and too soon for the second part. 

It could be caused by a small first time constant in the upper zone time constant in the upper 

zone which does not a peak in the runoff. Then it could be a big second time constant in the 

upper zone which gives too much runoff at the beginning and thus empty the storage too fast. 

The base flow runoff that is seen between January and April fit the observed data in a relative 

good way. 

 In May the simulated runoff increases too soon in comparison with the observed one but 

reach the peak. But then it is much bigger than the simulated until mid-June, fits until mid-

July and then is too low. It could be due the melt of the snow which happen to quickly at the 

beginning and empty the storage to soon which then cannot reach the outflow magnitude in 

late summer. 
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Snow routine 

 

Figure 5.4-6: HBV-calibration - snow storage (1985-1986) 

The snow storage increases from September to May. It decreases from May to August with 

the increase of temperature. The general pattern of the snow storage is consistent. However, in 

late May, beginning of June, the snow storage increases due to precipitation event while the 

temperature keeps increasing. So the temperature must still be to negative (compared to the 

temperature threshold snow-rain) on top of the catchment. 

 

 

Figure 5.4-7: HBV-calibration - snow storage in each zone (1985-1986) 
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For all the zones, the snow water equivalent reaches value twice higher to the one given by 

Senorge. 

Zone 1: the snow starts melting in March and from April till the end of the hydrological year 

and there is no snow on the area. This corresponds to the data from Senorge. 

Zones 2 to 5: the snow starts melting during May for all those zones and there is no snow 

after July for those areas. This pattern corresponds also to the data from Senorge. 

Zones 6 to 9: the snow starts melting during June for all those zones but at the end of August, 

there is still snow. According to Senorge, there is no more snow at the end of the year in the 

lowest zones and much less snow (less than 1000 mm) on the highest ones. And they see their 

snow storage increase at the beginning of June. This is probably due to the precipitation that 

has been turned into snow because of low temperature calculated on this upper part of the 

catchment. 

Zone 10: the snow starts melting during July but at the end of August, there is still snow with 

a water equivalent higher than 3000 mm. The snow melt starts at the same time on Senorge, 

however, there is little snow at the end of the year: less than 500 mm. 

See Appendix O: snow equivalent 

 

Form this snow repartition; it can be concluded that problems of the calibration parameters 

are potentially: 

- On the temperature lapse rates or/and 

- On the temperature threshold snowmelt or/and 

- On the melt increase on mountain/ degree day factor. 
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Soil moisture routine 

 

Figure 5.4-8: HBV-calibration - soil moisture storage (1985-1986) 

 

The field capacity is 90 mm. The soil moisture storage starts at 80% of its total capacity 72 

mm. But after the first day the soil moisture storage varies mostly between 75 and 87 mm. It 

has its higher rate in October when there was a massive precipitation event and between 

January and March when the temperature is negative and when there is no evapotranspiration. 

It increases with every precipitation event and decreases with the augmentation of the 

temperature thus the increase of evapotranspiration. This pattern is consistent. 

 

Runoff routine: 

 

Figure 5.4-9: HBV-calibration - upper zone storage (1985-1986) 
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The upper zone has two outlets for quick and medium quick runoff. The threshold for the fast 

runoff is 19 mm. Between January and March, the upper zone storage is close to zero: it 

correspond to negative temperature and weak precipitation. The storage can be related to the 

strongest precipitation event and will give the peak in the simulated runoff (peak in October). 

It increases with every precipitation event, especially when the lower zone storage is already 

high. But it does not increase if the lower zone is “empty” which happens at the end of 

November, January, February and April. This pattern is consistent. 

 

 

Figure 5.4-10: HBV-calibration - lower zone storage (1985-1986) 

 

The lower zone has one outlet for the slow runoff or base flow. The lower zone storage is 

always positive. It gives the runoff when the upper storage is zero. It increases during every 

precipitation event. It reaches the lowest values at the end of February: there is no rain, no 

snowmelt, the soil moisture is high and the upper zone is empty. This pattern is consistent. 
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Temperature and precipitation corrections 

Table 5.4-6: HBV-calibration - precipitation and temperature corrected (1985-1986) 

 

Elevation 

[m.a.s.l.] 

Annual 

temperature 

[°C] 

Temperature 

ranges 

[°C] 

Annual 

Precipitation 

[mm] 

Precipitation 

Ranges 

[mm] 

Observed  5.03 4 to 6 1101 1500 to 2000 

Zone 1 168 5.25 4 to 6 1666 1500 to 2000 

Zone 2 530 2.77 2  to 4 2201 2000 to 3000 

Zone 3 862 0.48 0 to 2 2692 2000 to 3000 

Zone 4 1106 -1.19 0 to 2 3052 2000 to 3000 

Zone 5 1305 -2.56 -1 to 0 3346 3000 to 4000 

Zone 6 1444 -3.51 -1 to 0 3552 3000 to 4000 

Zone 7 1560 -4.31 -1 to 0 3723 3000 to 4000 

Zone 8 1645 -4.89 -2 to -1 3849 3000 to 4000 

Zone 9 1742 -5.56 -2 to -1 3992 3000 to 4000 

Zone 10 1953 -7.01 -3 to -2 4304 3000 and over 

Catchment  -2.05 0.4 to 1 3238 2550 to 3500  + 

 

The annual temperature in 1985-1986 is below the normal which is 5.76°C. So the 

temperature expected for all the elevation zones should also situated on the lower part of the 

ranges. But the difference of magnitude between the annual temperature in each zone and 

their range of values is substantial, especially after the zone 3. This must be due to a too big 

temperature lapse rate. 

The annual precipitation in 1985-1986 is below the normal 1356 mm. So the precipitation 

expected for all the elevation zones is also on the lower part of the ranges. But in most of the 

zone, the annual precipitation is on the upper part of the ranges. This could be due to a too 

large precipitation correction factor – PCORR or SCORR - which produces a higher amount 

of precipitation. It could also be caused by HPCORR which is very high 10% and increase the 

precipitation with the elevation. 
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So the problem of the model is that too low temperature associated with too high precipitation 

makes the snow routine inconsistent for the high storage its reaches and it left at the end of the 

year. 

The problem could also be partially caused by the fact that HBV-model considers only one 

type of ablation which is the snowmelt. But what could happen is also that other types of 

ablation occur: avalanches, wind, glacier motion etc. which transport the snow at lower zones 

where the snow could melt more quickly. Yet it cannot explain the excess of precipitation 

generated. 

 

5.4.5 Hydrographs on the calibration period 

 

Figure 5.4-11: HBV-calibration – hydrograph 

 

Every year, the simulated runoff is close to the observed one. Problems of timing and 

magnitude appear regularly, but generally, it matches very well. 
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The snow routine is the main concern about the calibration. So its behaviour on the different 

years of the calibration has been investigated. 

 

Figure 5.4-12: HBV-calibration - snow storage 

 

Table 5.4-7: Climatic characteristics of the years of calibration on the snow storage 

Year 

Year Winter Summer 

T P Snow T P 
Snow 

formation 
T P Snowmelt 

1985 -- -- Little --- -- Soon + + Soon 

1986 -- + Much -- + Soon -- + Late, slowly 

1987 +++ --- 
Very 

little 
++ -- 

Soon, 

slowly 
++++ - Soon, quickly 

1988 ++ +++++ 
Much 

more 
++++ ++++ Late -- + 

Late, 

slowly 

1989 +++ +++++ 
Much 

more 
++++ +++++ 

Late, 

slowly 
+ + Soon, quickly 

 

So the temperature and precipitation affect the snow storage in a normal way. 

- Warm temperature in winter slows down the snow formation, 

- Much precipitation in winter increases the snow storage amount, 

- Cold temperature in summer decelerates the snowmelt. 
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The problem is only about the amplitude of the changes in the storage. 

 

Figure 5.4-13: HBV-calibration - snow storage in each elevation zone at the end of the years 

 

The snow storage on each zones are overestimated. This is a problem because even on the 

years where the mass balance is negative in the surrounding glaciers, there is snow remaining 

on the highest elevation zones of the catchment. So the mass balance for Olden would always 

be positive which seems unlikely. 

 

Other routines 

On all the calibration years, a similar regime in soil moisture, upper and lower zone storage 

can be observed. The differences can be explained with the variation of temperature and 

precipitation observed. 

See Appendix P: Calibration 1 
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5.5 SECOND CALIBRATION: FOCUS ON THE SNOW ROUTINE 

The second calibration has been made in order to get more consistent result for the snow part 

because it is difficult to forecast the snow part and the glacier mass balance when the 

precipitation is overestimated. 

As the first calibration gave the best results in term of runoff, the second one will give a 

worse fit in term of discharge. But this second calibration must maintain a good R
2
 in order to 

be used afterwards. 

The focus for this second calibration was on the temperature, precipitation corrector factors, 

the temperature thresholds snow/rain and snowmelt, the melt increase and degree-day factor. 

 

5.5.1 Parameters and initial states 

The modifications made were: 

- Decrease of the precipitation elevation correction which was very high in the first 

calibration (10% per 100 m) was modified to get less precipitation overall the all year, 

- Decrease of the temperature threshold snow-melt: the snow will melt at a temperature 

which is inferior. 

- Increase of the melt increase in mountain to accelerate the snowmelt. 

- Decrease of the temperature lapse rate to have less snow. 
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Table 5.5-1: HBV-calibration 2 - free parameters values 

 

The elevation correction has been decrease from 10 to 2% per 100m. So the increase of 

precipitation along the elevation will be much lesser. 

The temperature lapse rate has been decreased to have warmer temperature when there is 

precipitation. So the precipitation will be rain instead of snow more often, which will give 

less snow storage. 

 

Table 5.5-2: HBV-calibration 2 – CX 

Melt increase in Melt increase in 

mountain 1.5 glaciers 1.5 

CX-mount. 6 CX-Glacier 6 

Min 0.75 Min 1 

Max 1.5 Max 1.5 

The melt increase in mountain has been increased to accelerate the snow melt in the 

mountain. 

 

Units

  

Min Max

PREC Rain - correction: PKORR 1.30 1.00 1.30

Snow - correction: SKORR 1.50 1.00 1.50

Elevation correction: HPKORR 2  % pr. 100 m 5.00 10.00

SNOW Degree-day factor: CX 4.00  mm/degree C./day 2.50 4.00

Threshold snow-melt: TS 0.14  Degree C. -1.00 1.00

Threshold rain/snow: TX 0.53  Degree C. -1.00 1.00

Liquid water: CPRO 10  % of dry snow 5.00 10.00

SOIL Field capacity: FC 90  mm 50 150

Beta: BETA 1.12 1.00 2.50

Threshold evaporation: LP% 69 % 60 100

UPPER ZONE Fast drainage coefficient: KUZ2 0.19  1/day 0.10 0.40

Slow drainage coefficient: KUZ1 0.07  1/day 0.01 0.10

Threshold: UZ1 19  mm 10.00 40.00

Percolation: PERC 1.04  mm/day 0.20 1.50

LOWER ZONE Drainage coefficient: KLZ 0.080  1/day 0.002 0.100

REFREEZE PRO 10.00  % of normal melt rate 10.00 10.00

  

Tlp -0.60 Degree C./100 m -0.40 -0.70

Tlo -0.70 Degree C./100 m -0.50 -1.00No precipitation

PARAMETERS IN THE HBV-MODEL: Optimizer

Range

Temperature lapse rate:

At precipitation
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So the changes were made only on the precipitation elevation factor, temperature correction 

factor at precipitation, the melt increase factor. The first factor has been change to get less 

precipitation on the elevation zones, the second one to get less snow storage thanks to a 

warmer temperature and the third one to increase the snowmelt. 

 

5.5.2 Objective function: criterion R
2 

 

Figure 5.5-1: HBV-calibration 2 - R
2
 

 

Table 5.5-3: HBV-calibration 2 - R
2
 

Year 
Calibration 1 

R
2 

Calibration 2 

R
2
 

1985 0.88 0.76 

1986 0.91 0.78 

1987 0.89 0.75 

1988 0.87 0.72 

1989 0.88 0.74 
 

Looking at the coefficient R
2
, the calibration 2 still gives good results with values within the 

range 0.74 to 0.78. So the simulated runoffs are close to the observed data. 

The coefficient follows the same pattern which could means that the calibration goes through 

the same problems to make the simulation fit the observed data and thus must worsen the 

effects: for instance the overestimation of calibration 1 are even more overestimated in the 

calibration 2. 
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5.5.3 Average annual runoff 

 

Figure 5.5-2: HBV-calibration 2 - comparison 

observed and simulated Q 

 

Table 5.5-4: HBV-calibration 2 - comparison 

observed and simulated Q 

Year R
2
 Obs. Q 

Sim.1 

Q 

Sim.2 

Q 

1985 0.76 15.58 13.91 12.50 

1986 0.78 13.27 12.58 12.40 

1987 0.75 16.28 14.26 13.59 

1988 0.72 18.53 17.36 18.36 

1989 0.74 18.66 18.97 19.69 
 

It can be seen from Figure 5.5-2 that the average annual runoff simulated is worse than the 

previous calibration as expected from the criterion R
2
. It underestimated or overestimated the 

runoff even more than the calibration 1 did, except for the year 1988 where the result is better. 

The R
2
 was not better though so it means that the differences on the daily runoffs are worse 

but give a better average. 

 

5.5.4  Analysis of data for the first year 1985-1986 

 

Figure 5.5-3: HBV-calibration 2 - comparison observed and simulated Q (1985-1986) 
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So as expected from the results showed in the criterion of goodness, the calibration 2 

accentuates the problem already existing in the calibration 1. 

 

Temperature and precipitation correction 

Table 5.5-5: HBV-calibration - precipitation and temperature corrected (1985-1986) 

  Temperature [°C] Precipitation [mm] 

 
Elevation Cal. 1 Cal. 2 Ranges  Cal. 1 Cal. 2 Ranges  

Observed  5.03 5.03 4 to 6 1101 1101 1500 to 2000 

Zone 1 168 5.25 5.24 4 to 6 1666 1506 1500 to 2000 

Zone 2 530 2.77 2.89 2  to 4 2201 1613 2000 to 3000 

Zone 3 862 0.48 0.74 0 to 2 2692 1710 2000 to 3000 

Zone 4 1106 -1.19 -0.84 0 to 2 3052 1782 2000 to 3000 

Zone 5 1305 -2.56 -2.13 -1 to 0 3346 1840 3000 to 4000 

Zone 6 1444 -3.51 -3.03 -1 to 0 3552 1881 3000 to 4000 

Zone 7 1560 -4.31 -3.78 -1 to 0 3723 1915 3000 to 4000 

Zone 8 1645 -4.89 -4.33 -2 to -1 3849 1940 3000 to 4000 

Zone 9 1742 -5.56 -4.96 -2 to -1 3992 1969 3000 to 4000 

Zone 10 1953 -7.01 -6.32 -3 to -2 4304 2031 3000 and over 

Catchment  -2.05 -1.65 0.4 to 1 3238 1819 
2550 to 3500  

+ 

 

The purposes of the changes in the parameters were: 

- Increasing the temperatures and 

- Decreasing the precipitation. 

The temperature values increased in all the elevation zones. They still reach low annual 

temperature but it gets closer to the ranges. 

The precipitation values decreased in all the zones. They are now much lower than the ranges, 

which is consistent with the fact that the year 1985 was dry but the figures might be 

excessively low. 
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Snow routine 

 

Figure 5.5-4: HBV-calibration 2 - snow storage in each zone (1985-1986) 

For all the zones, the snow water equivalent is much lower along the year and fits better with 

Senorge values. 

Zones 1 to 5: they have the same pattern as in the simulation 1. 

Zones 6 to 9: the snow starts melting in May (instead of June). The snow storage increases for 

all those zones in late May (like simulation 1), and decreases to but at the end of August, there 

is no snow left. So this is a better fit with Senorge. 

Zone 10: the snow storage follows the same pattern but at the end, the snow storage is 

consistent with the one showed in Senorge. 

So the snow water equivalent is consistent with the snow that much remains on the catchment. 
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5.5.5 Hydrographs 

 

Figure 5.5-5: HBV-calibration 2 – hydrograph 

 

The difference between the two calibrations can be seen on the cumulated runoff. The gap 

widens when the calibration 1 underestimates the runoff and it decreases when it 

overestimates the runoff. At the end of the simulations, the cumulated runoff might be better 

but thought the year the daily runoff is usually worse. 

 

 

Figure 5.5-6: HBV-calibration 2 - snow storage 
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Figure 5.5-7: HBV-calibration - snow storage in each elevation zone at the end of the years 

 

The snow water equivalent is really low compared to the calibration 1. At the end of each 

year, fewer zones have remaining snow and the amount of snow is twice smaller. 

See Appendix Q: Calibration 2 
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5.6 COMPARISON BETWEEN THE TWO SIMULATIONS 

Table 5.6-1: Comparison of the climatological data between the two calibrations 

 
Simulation Difference 

 
Sim. 1 Sim. 2 [°C], [mm] or [m

3
/s]   [%] 

Runoff [m
3
/s]   15.02 14.47 -0.55 -4% 

Air temperature [°C] -1.06 -0.66 0.39 37% 

Precipitation  [mm] 4136 2312 -1824 -44% 

Rain [mm] 1081 791 -290 -27% 

Snow  [m.w.e.] 3055 1521 -1534 -50% 

 

The runoff generated by the two simulations is globally the same, but the climatological 

parameters from which the outflow was calculated are very different. With low temperature 

and high precipitation, the runoff obtained is about the same than with high temperature and 

low precipitation with the snowmelt. 

The difference between precipitations comes mainly from the difference in the snowfall and 

results in the very distinct snow routine. This difference in precipitation will create a very 

different pattern for the glaciers behaviour: the calibration 1 will produce a positive mass 

balance while the calibration 2 will engender a much lesser mass balance.  

 

5.7 VALIDATION 

5.7.1 Period of validation 
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5.7.2 First calibration 

The simulation has been run for the period from 1961 to 2012. 

 

Figure 5.7-1: HVB - validation - calibration 1 

 

The simulation shows good results. Most of the years have an underestimated runoff, some 

have an overestimated runoff. Unlike for the calibration period, it is not possible to conclude 

whether the runoff is overestimated or underestimated from the amount of precipitation 

compared to the normal annual precipitation (or winter precipitation). 
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Temperature extension 

Table 5.7-1: Comparison between the R
2
 in the different periods of temperature records 

Years Temperature Average: R
2
 

1961-1990 Oppstryn 0.876 

1991 Olden – Vangberg 0.881 

1992 Oppstryn normal -0.177 

1993-2012 Stryn – Kroken 0.828 

1961-2012  0.837 

 

So the average R
2
 for the period 1961-1990 is better than the one for the period 1993-2012. 

It might be to the fact the period of calibration was dependant only on the Oppstryn data and 

thus gives better fit than for the rest. To check this hypothesis, a calibration on a period where 

temperature depends on one station for some years and on a different one for the rest must be 

performed. This was not possible in this case because there is a year in between the two 

different stations records with no data (1992) where the temperature are filled in with normal 

temperature. It could also be due to the fact that during the normal period, the runoff was 

more dependent on the precipitation than after 1990 when the temperature increases and affect 

the glaciers which thus take a greater part in the water balance. However, except in the case of 

a big change of glacier area and depth, the simulation can produce more runoff from the 

glacier with an increase of temperature. The problem could appear on a longer term when 

there is no glacier whereas the model still generates ice melt. Nevertheless, the glaciers are 

usually covered by snow the all years with this calibration. So this might not be the main 

reason for this reduction of R
2
.  

However the difference is small enough to consider that the filling of missing data by 

correcting the data from these other stations was good. 

 It is not possible to conclude anything for the year 1991 as there is only one year of data 

where the temperature comes from Olden – Vangberg station. 

As expected, it is not possible to forecast the runoff with normal data: so the years 1992 and 

1995 are not taken into account. 
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Glacier effect 

The period is relatively long, 52 years, which could have shown a difference due to the glacier 

changes: shredding or expanding which are not included in the HBV-model. It could mean 

that the glaciers in Olden have not changed too much in 52 year, kept their general 

characteristics to maintain some continuity during the simulation. In this way the model 

cannot compute to much or not enough runoff from ice melt that would appear on the general 

average runoff. 

The calibration made it possible to estimate the right runoff using only climatological data: 

temperature and precipitation. 

 

Validation 

With an average of R
2
 of 0.837, the model calibration 1 is validated for the runoff forecast.  

 

5.7.3 Second calibration 

 

Figure 5.7-2: HVB - validation - calibration 2 
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Table 5.7-2: Comparison between the R
2
 in the different periods of temperature records for the 

second calibration 

Years Temperature Average: R
2
 

1961-1990 Oppstryn 0.776 

1991 Olden – Vangberg 0.518 

1992 Oppstryn normal -0.532 

1993-2012 Stryn – Kroken 0.716 

1961-2012  0.723 

 

The simulation on the long period from the calibration 2 brings the same conclusions as the 

simulation on the long period from the calibration 1: 

- Better fit with the first period 1961-1990, 

- No conclusion for 1992, 

- No viable result for the year 1992 and 1995. 

With this calibration, the difference of R
2
 between the first and the second period could be 

explained by the modification of the glaciers themselves more than with the first calibration: 

the glaciers are less often covered by snow with this calibration and participates more in the 

global runoff.  

 

Validation 

With an average of R
2
 of 0.723, the model calibration 1 is also validated for the runoff 

forecast. 
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5.8 USE OF THE MODEL CALIBRATION FOR THE TWO OTHER CATCHMENTS 

5.8.1 Catchment: Loen 

The exact same calibration parameters determined for the catchment Olden were used for 

Loen catchment. 

 

Figure 5.8-1: HVB - validation - Loen calibration 1 

 

Table 5.8-1: Comparison between the R2 in the different periods of temperature records in Loen 

catchment 

Years Temperature Average: R
2
 

1961-1990 Oppstryn 0.849 

1991 Olden – Vangberg 0.862 

1992 Oppstryn normal -0.256 

1993-2012 Stryn – Kroken 0.809 

1961-2012  0.812 

 

The HBV model calibrated for the catchment Olden gives very good results for the calibration 

period. Generally the model overestimates the average runoff. It could be due to the fact that 

the calibration was made for Olden which must have characteristics, land type, river which 

gives higher runoff. Even by changing the features of the catchment in the confined 

parameters, the free parameters keep track of the catchment for the one they have been 

calibrated. 
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However, the good results shows that the calibration done for a catchment can be transported 

to another catchment if they share numerous similarities their properties (area, shape, 

topography, land use, climatology etc.). 

 

5.8.2 Catchment: Stryn 

 

Figure 5.8-2 : Figure 5.8-3: HVB - validation -Stryn calibration 1 

 

The average 
R2 

is negative. So it is not possible to transport the model to a catchment if its 

features are really different from the catchment where the model has been calibrated. 

 

N. B.: The runoff data has not been completed so the years 1993 and 1996 cannot be 

calculated. 
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5.9 DISCUSSION AND CONCLUSION 

The calibrated model gives very good results for the runoff part. The calibration process is 

made in order to get the best runoff fit possible. So the inside routines can be wrong, if their 

impacts cancels each other giving a good final results, it will not be taking into account in the 

criterion of goodness R
2
. So the model would be easily used for the runoff forecast if there 

was project of implantation of a hydropower plant. 

The model shows that the correction of temperature data to get long period does not worsen 

the results, even though the calibration has been done using only one station. It is helpful to 

have this continuity of results considering that some stations record can be stopped and 

another one at a different location can be started. 

It is also an example of the utility of regional model with the good results of the transposition 

of the calibration on a simulation to a very similar catchment. 

 

There are numerous problems concerning the calibrations about the precipitation, 

temperature, snow and glacier routine: 

- Excess of precipitation: difficulties to assess glacier mass balance, 

- Wrong amount of snow: 

o the snow storage is too important which prevents ice glacier from melting, 

o Transformed all the snow into ice: overestimation of the mass gain (not really 

the case for the HBV model as it does not calculate the mass balance) 

 

The HBV-model is not detailed enough for the glacier because there is: 

- No information on the depth of the glacier which would show the glacier mass 

associated with the area, 

- No reports on the glacier melt states. 
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6 GLACIER’S BEHAVIOUR: MASS BALANCE 

6.1 GLACIERS’ BEHAVIOUR 

Description 

The glacier can be divided into two different zones: an accumulation area where there is 

addition of snow/ice and an ablation area where the glacier mass is removed. The boundary 

between those two zones where there is no mass change is called the equilibrium line 

(Paterson, 1994). The accumulation regroups all processes whereby material is added to the 

glaciers: it is usually snow which gradually turns to ice (Paterson, 1994). The ablation 

involves all processes whereby material is removed from the glacier: melting and runoff, 

evaporation etc. (Paterson, 1994). 

 

Figure 6.1-1: Cross-section of a typical valley glacier. Graphics: Rune Stubrud, NVE 

(Andreassen et al., 2012) 

 

Mass balance 

The annual mass balance is the combination of accumulation and ablation (Andreassen et al., 

2012). In the upper zone, the balance is positive: there is a great accumulation during winter, 

an accumulation which is less important in summer. In the lower zone, the balance is 

negative: a slight ablation occurs in winter, an ablation which increases considerably in 

summer. The net balance is positive in winter due to the high accumulation in the first area, 

and drops in summer due to the substantial ablation in the second area. The annual net 

balance can be either positive or negative at the end of the year. 
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Figure 6.1-2: Definition of mass balance terms (Paterson, 1994) 

 

Transformation of snow to ice 

The water in the HBV model is of two forms: liquid water and snow. In the glacier though, 

there are different kinds of water phases: snow, firn and ice. The “snow” is the snow as it is 

commonly defined that has not changed much since it fell (Paterson, 1994). The “firn” is 

wetted snow that has survived one summer without being transformed to ice (Paterson, 1994). 

The “firn” becomes glacier ice when there is no more air passages between the grains 

(Paterson, 1994). 

 

Table 6.1-1: Typical densities (kg.m
-3

) (Paterson, 1994) 

New snow (immediately after falling in calm) 

Damp new snow 

Settled snow 

Depth hoar 

Wind packed snow 

Firn 

Very wet snow and firn 

Glacier ice 

50-70 

100-200 

200-300 

100-300 

350-400 

400-830 

700-800 

830-917 
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In the HBV-model, the transformation from snow to ice is a punctual phenomenon which 

occurs at the end of the year before the 1
st
 of September of the next year. However the glacier 

as itself does not change along the years in the HBV-model. 

 

Snow melt 

In the HBV-model, the snow routine, melt and refreeze, is estimated with only one parameter: 

the temperature. But to get snow melt or snow refreeze, there are many more parameters that 

should be taken into account. The catchments with glacier have a runoff which is more 

“energy” dependant than “precipitation” related (Jansson et al., 2003). The reason is that most 

of the precipitation is stored and then release with the snowmelt. The snowmelt depends on 

the energy available (Paterson, 1994): 

                       (33)  

With: 

- Qm: energy available for melting snow [W/m2], 

- Qi: internal energy changes through heating or cooling of the snowpack [W/m2], 

- Qs: net shortwave radiation [W/m2]: depends of the day of the year, the latitude and 

the cloudiness, snow age, 

- Ql: net longwave radiation [W/m2]: depends in the temperature (air, surface) and on 

the cloudiness, 

- Qh: sensible heat [W/m2]: depends on the temperature gradient and wind, 

- Qe: latent heat [W/m2]: depends on vapour pressure, wind, 

- Qg: ground heat flux [W/m2]: depends on soil temperature, 

- Qr: heat from precipitation [W/m2]. 

 

In the HBV model, only the air temperature appears. The other parameters do not appear. 
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Calculation of the mass balance 

The hydrological way of calculating the glacier mass balance is (Paterson, 1994): 

         (34)  

With: 

- B: annual net mass balance, 

- P: precipitation over the basin, 

- R: runoff from the basin, 

- E: evaporation of the basin. 

Mass balances are expressed in equivalent volumes of water per unit area, or meter water 

equivalent [m.w.e.] (Paterson, 1994). 

 

Climate change 

In a simpler way, the mass balance of the glaciers can be seen as dependant of the climatic 

conditions in the area where they are located. High precipitation associated with low 

temperature could add ice on the accumulative season and while high temperature in the 

ablation season would reduce the summer mass balance. The combination of both phenomena 

will give the annual net mass balance. 

In the future higher temperature and higher precipitation are expected. With an increase of the 

air temperature, the glacier foot located in the lowest part of the catchment where the 

temperature are the highest will tend to melt which give a reduction of the glacier area and a 

fall of the water storage volume. But with an augmentation of the precipitation, at the top of 

the glacier the precipitation will create snow accumulation, snow that can turn to ice, which 

can increase the water storage volume. So the water balance might not be change if the 

increase of temperature and precipitation are two phenomena happening in parallel and on the 

right proportion. However, if the glacier mass is stored higher, it means that the runoff could 

still decrease because the melt will not happen so high in the mountain. 

Another phenomenon in the glaciers is not entirely linked to the climate but it is more a 

mechanical effect: glacier sliding. The glacier cap can go down in the valley which will 

enlarge the length of the glacier on its foot but decrease the depth. It does not affect the mass 

balance when it occurs but can have repercussion in the following years. 
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The volume of the glacier is not only proportional to its area it covers. This is the reason why 

the area or the length of a glacier is not the best way to estimate the glacier volume. The only 

parameter is the mass balance.  

 

6.2 GLACIERS STUDIES IN THE AREA 

6.2.1 Glacier mass balance in the region 

The mass balance of glaciers on the catchments Olden, Loen or Stryn has never been 

measured. But mass balance investigations have been carried out in other glaciers in the 

region: 

- Nigardsbreen which is on the other side of the glacier Jostedalsbreen and 

- Ålfotsbreen which is closer to the coast. 

 

Even though the two glaciers are not the same face of Jostedalsbreen, they present a good 

correlation for their mass balance: 

Table 6.2-1: Pearson's correlation between Nigardsbreen and Ålfotbreen mass balance 

Glaciers   Ålfotbreen 

  season year winter Summer 

Nigardsbreen 

year 0.868 0.756 0.555 

winter 0.728 0.848 0.196 

summer 0.713 0.402 0.734 

 

So it can be assumed that glaciers within the same region share common pattern in their mass 

balance. 
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Figure 6.2-1: Comparison between two mass balances 

 

The mass balances are following the same trends along the years. However the magnitudes of 

the glacier mass balance can vary widely. Generally the mass balances are much extreme, 

positively and negatively, on the coast, for Ålfotbreen which is subject to very high 

precipitation winter and high temperature in summer, than inland for Nigardsbreen which 

does not go through those high climatological aspects. 

So considering that Olden is located inland, the mass balance will have magnitudes close to 

Nigardsbreen. 

See Appendix R: Mass balances 
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6.2.2 Briksdalsbreen’s length 

 

Figure 6.2-2: Briksdal's cumulative length change between 1900 and 2014 (NVE, 2015) 

As can be seen on the Figure 6.2-2, Briksdalsbreen has seen its length moving during the last 

year. In the beginning of the 1900s, the glacier declined of several meters before growing in 

the rest of the 1900s and advanced up to 50 m more than it was in 1900. After a new fall of its 

length between 1910 and 1921, and a small recovery until 1930, the glacier lost surface with 

the collapse of its length for 20 years. After stagnation between 1950 and 1970 and two 

periods of increase in the 1980s and 1990s, the length collapsed again in the 21
st
 century. 

Between 1900 and 2014, Briksdalsbreen will have lost 1.2 km length. 

 

 

Figure 6.2-3: Briksdalsbreen's area change (NVE, 2015) 

 

See Appendix S: Briksdalsbreen evolution 
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6.2.3 Correlation between mass balance and length of a glacier 

The Norwegian glaciers have been monitored in two different ways: their length and/or their 

mass. Usually, loss of area or loss of length is associated with loss of glacier mass. But it is 

not possible to conclude whether a glacier is losing mass from the area it covers. 

Assuming that the glaciers within the same region must have a common pattern in their mass 

balance, the correlation between the mass balance of the glaciers Nigardsbreen and Ålfotbreen 

and the Briksdalsbreen length has been calculated. 

Table 6.2-2: Pearson’s correlation glacier mass balance and length of Briksdalsbreen 

 Nigardsbreen Ålfotbreen 

Year 0.220 0.240 

Winter 0.191 0.094 

Summer 0.178 0.302 

The From the Table 6.2-2, it can be seen that there is not a strong link between the length of a 

glacier and the mass balance of a glacier. This shows the impact of the “mechanical” 

phenomena that occur in a glacier that are not related to the climatic conditions. So in order to 

assess the glacier status, reference should be made on its mass not on its length. 

 

6.3 CALCULATION OF THE MASS BALANCE FOR OLDEN: HYDROLOGICAL METHOD 

6.3.1 Hydrological method 

The equation to estimate the glacier mass balance is: 

         (35)  

With: 

- B: annual net mass balance [m.w.e.], 

- P: precipitation over the basin: sum of 

o Rain [m], 

o Snow [m.w.e.], 

- R: runoff from the basin [m] 

- E: evaporation of the basin [m] 
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Calculation of Olden glaciers mass balance 

 

Figure 6.3-1: Glacier mass balance – method 1 

 

The glaciers in Olden have a very different mass balance if the calibration 1 or 2 is used. 

With the calibration 1, glaciers gained mass almost every year while with the calibration 2 

their mass balance is negative most of the years. The difference in the mass balance comes 

from the difference in precipitation observed in the comparison of the two simulations data: 

the simulation 1 which estimates a lot of precipitation gives a positive mass balance while the 

simulation which has low precipitation gives a negative mass balance. 

 

Table 6.3-1: Correlation between glacier mass balances 

Simulation Nigardsbreen  Ålfotsbreen 

Olden: sim.1 0.766 0.724 

Olden: sim.2 0.823 0.833 

 

Both simulations seem to give a very extreme glacier mass balance. However, when 

compared with the glacier mass balances from the region, the patterns appear be consistent. 

The tendency obtained from the simulation 2 is closer to the ones from the other glaciers 

though, which means that the calibration 2 should be used for the evaluation of the mass 

balance if similar behaviour for all the glaciers is expected. 
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Figure 6.3-2: Comparison between mass balance in Nigardsbreen and Olden - cal.1 

 

 

Figure 6.3-3: Comparison between mass balance in Nigardsbreen and Olden - cal.1 

 

Assuming that the mass balance of the Olden glacier must follow the trends from 

Nigardsbreen mass balance, the calibration 1 and 2 seem to be complementary. The first one 

managed somehow to estimate the positive mass balance while the second one managed to 

estimate the negative mas balance. 
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Olden is on the west side of the Jostedalsbreen like Ålfotsbreen, while Nigardsbreen is on the 

other side. So it was foreseen that the Olden glaciers behaviour would be closer the 

Ålfotsbreen behaviour because it is subject to the same conditions. However, the glacier mass 

balance is closer to Nigardsbreen when the calibration 1 is used. 

 

6.3.2 Comparison between ice gain and ice melt. 

The equation used in the hydrological method considers the entire catchment while it should 

only take into account the glacier part in the catchment because water is not only stored in the 

glacier but also in the soil moisture zone, the upper and the lower zones. 

So another equation was used to calculate the glacier mass balance to evaluate the impact of 

the other zones storage: 

       (36)  

With: 

- B: annual net mass balance [m.w.e.], 

- S: snow at the end of the year that is turned intto ice in the HBV-model [m.w.e.], 

- E: ice melt from the glacier [m.w.e.]. 

  

 

 

Figure 6.3-4: Glacier mass balance – method 2 – cal.1 
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Figure 6.3-5: Glacier mass balance – method 2 – cal.2 

 

Table 6.3-2: Correlation between glacier mass balances 

Method Ice difference: sim.1 Ice difference: sim.2 

Balance: sim.1 0.988  

Balance: sim.2  0.995 

From the Figures 6.3-2, 6.3-3 and the Table 6.3-2, the two difference methods very similar 

results 

 

But the ice difference gives higher mass balance than the hydrological method applied on the 

entire catchment. 

Table 6.3-3: Difference of the mass balances 

Mass [m.w.e.] Hydrological balance Ice difference Difference between the 2 methods  

Simulation 1 1.361 1.740 0.38 

Simulation 2 -0.377 -0.144 0.23 

The difference could be explained by the storage of this other zones of the catchment.  

 

Thereafter, only the hydrological method will be used. 
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6.4 CALCULATION OF THE WATER EQUIVALENT IN THE GLACIER 

The Breatlas (1988) provides estimated values of the glacier: 

Table 6.4-1: Estimated ice volume in glaciers (Østrem et al., 1988) 

Reference river basin Olden Loen Stryn 

Total glacier area [km²] 77.89 81.74 70.29 

Mean glacier elevation [m] 1433 1507 1457 

Estimated ice volume [km
3
] 5.65 5.88 5.42 

Estimated ice thickness [m] 72.54 71.94 77.11 

 

The values are corrected to match the values that have been used in the HBV-model. 

Table 6.4-2: Estimated ice volume in glaciers 

Reference river basin Olden Loen Stryn 

Drainage area [km²] 202.12 234.60 488.19 

Total glacier area [%] 40.2 37.0 17.6 

Total glacier area [km²] 81.25 86.80 85.92 

Estimated ice volume [km
3
] 5.89 6.24 6.63 

Estimated ice thickness [m] 72.54 71.94 77.11 

 

To estimate the water volume, the density of the ice glacier is taken equal to 0.85 g/cm
3
, (850 

kg/m
3
). 

Table 6.4-3: Estimated water volume in glaciers 

Reference river basin Olden Loen Stryn 

Estimated ice volume [km
3
] 5.89 6.24 6.63 

Estimated ice thickness [m] 72.54 71.94 77.11 

Estimated water volume equivalent [km
3
] 5.01 5.31 5.63 

Estimated thickness in meter water equivalent [m.w.e] 61.66 61.15 65.54 
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7 RUNOFF AND GLACIERS VOLUME FORECAST 

Overall the temperature on the earth increases everywhere. This phenomenon affects also 

Norway. This augmentation of temperature will result in modification of the water balance in 

the future. 

The climate change is likely to be the only modification that the catchments will experience. 

The land use will probably stay the same as the area is protected. 

 

7.1 FORECASTED CLIMATE CHANGE WITH HADLEY SCENARIO 

The data for temperature and precipitation changes come from the website NoSerC.met.no 

which provides data for the two scenarios A2 and B2.  

 

Table 7.1-1: Climate change data 

Scenario Climate model Data Period 

A2 HADAm3 Daily temperature  [°C] and precipitation [mm] 2071-2100 

B2 HADAm3 Daily temperature  [°C] and precipitation [mm] 2071-2100 

Control HADAm3 Daily temperature  [°C] and precipitation [mm] 1961-1990 

 

The scenarios are presented by the Intergovernmental Panel on Climate Change (IPCC) in the 

Special Report on Emissions Scenarios (SRES) published in 2000. The scenarios 2 are based 

on a heterogeneous world: a regionalisation of the change is calculated. The scenario A2 is 

more focused on the economy and estimates the change considering a “regionally oriented 

economic development” while the scenario B2 concentrates on the environment and considers 

“local environment sustainability”. 

The scenario A2 forecasts higher temperatures than the scenario B2.  

See Appendix T: Climate change map 
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7.1.1 Scenarios 

Table 7.1-2 : Climate change - scenario A2 

 Parameter Precipitation [mm] Temperature [°C] 

  1961-1990 2071-2100 
change 

[%] 
1961-1990 2071-2100 

change 

[%] 

January 118 120 1.90% -1.17 1.22 2.39 

February 92 86 -6.20% -1.09 0.87 1.96 

March 99 89 -9.40% 0.78 3.23 2.45 

April 53 57 7.40% 3.61 6.75 3.13 

May 41 48 16.50% 9.23 13.43 4.2 

June 53 50 -5.80% 12.38 14.81 2.43 

July 74 77 3.60% 13.45 15.68 2.23 

August 73 69 -5.40% 12.92 15.67 2.75 

September 130 111 -14.10% 9.32 13.68 4.36 

October 136 142 4.10% 6.49 10.46 3.97 

November 118 124 5.10% 1.99 6.75 4.76 

December 151 158 4.90% -0.3 3.23 3.53 

Year 1136 1130 0.22% 5.63 8.82 3.18 

 

Table 7.1-3: Climate change - scenario B2 

Parameter  Precipitation [mm] Temperature [°C] 

  1961-1990 2071-2100 
change 

[%] 
1961-1990 2071-2100 

change 

[%] 

January 117.6 120.4 2.30% -1.17 1.05 2.22 

February 91.8 92.7 0.90% -1.09 0.43 1.52 

March 98.5 67.9 -31.10% 0.78 2.91 2.13 

April 52.9 52 -1.70% 3.61 6.51 2.89 

May 41.1 50.6 22.90% 9.23 12.35 3.13 

June 52.6 61.4 16.70% 12.38 13.38 1 

July 73.9 82.6 11.70% 13.45 14.67 1.22 

August 73.2 63.5 -13.30% 12.92 15.48 2.56 

September 129.8 121.2 -6.60% 9.32 12.44 3.12 

October 135.9 159.2 17.10% 6.49 10.2 3.71 

November 117.9 138 17.10% 1.99 5.92 3.93 

December 150.6 160 6.30% -0.3 2.36 2.66 

Year 1136 1170 3.53% 5.63 8.14 2.51 
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7.1.2 Forecasted values 

The scenarios value come from the climate model HADAm3. They were downscaled to the 

station Oppstryn. So the changes are kept and applied on the original data. 

A linear change is assumed between 1961-1990 and 2071-2100 to get results for a continuous 

period that covers the years 1961 to 2116. 

 

Table 7.1-4: Forecasted values used - scenario A2 

Period From 2013 From 2065 

Climate change parameter Temp. Precip. Evap. Temp. Precip. Evap. 

Months °C % Mm °C % mm 

January 0.98 0.9 0.03 2.39 1.9 0.12 

February 1.22 -3.1 0.00 1.96 -6.2 0.11 

March 1.57 -4.7 0.17 2.45 -9.4 0.26 

April 2.10 3.7 0.17 3.13 7.4 0.30 

May 1.22 8.2 0.27 4.20 16.5 0.54 

June 1.12 -2.9 0.06 2.43 -5.8 0.14 

July 1.38 1.8 0.04 2.23 3.6 0.10 

August 2.18 -2.7 0.09 2.75 -5.4 0.19 

September 1.98 -7.1 0.21 4.36 -14.1 0.42 

October 2.38 2.1 0.14 3.97 4.1 0.28 

November 1.77 2.6 0.19 4.76 5.1 0.34 

December 0.00 2.4 0.15 3.53 4.9 0.24 

Year 1.49 0.107 46.0 3.18 0.213 92.3 
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Figure 7.1-1: Future temperature - scenario A2 

 

Table 7.1-5: Forecasted values used - scenario B2 

Period From 2013 From 2065 

Climate change parameter Temp. Precip. Evap. Temp. Precip. Evap. 

Months °C % Mm °C % mm 

January 1.11 1.2 0.02 2.22 2.3 0.12 

February 0.76 0.5 0.00 1.52 0.9 0.07 

March 1.07 -15.5 0.16 2.13 -31.1 0.27 

April 1.45 -0.9 0.19 2.89 -1.7 0.34 

May 1.56 11.5 0.19 3.13 22.9 0.38 

June 0.50 8.4 -0.07 1.00 16.7 -0.14 

July 0.61 5.9 -0.03 1.22 11.7 -0.06 

August 1.28 -6.7 0.12 2.56 -13.3 0.24 

September 1.56 -3.3 0.14 3.12 -6.6 0.28 

October 1.86 8.6 0.16 3.71 17.1 0.31 

November 1.97 8.5 0.17 3.93 17.1 0.30 

December 1.33 3.2 0.12 2.66 6.3 0.20 

Year 1.25 1.766 35.4 2.51 3.534 70.4 
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Figure 7.1-2: Future temperature - scenario B2 

 

Table 7.1-6: Comparison between scenarios A and B 

Period From 2065 From 2013 

Climate change parameter Temp. Precip. Evap. Temp. Precip. Evap. 

Scenario °C % mm °C % mm 

Scenario A2 1.49 0.107 46.0 3.18 0.213 92.3 

Scenario B2 1.25 1.766 35.4 2.51 3.534 70.4 

 

A said before, the scenario A2 foresees higher temperatures than the scenario B2, which 

induces more evaporation. 

 

See Appendix U: Climate change evaporation 
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7.2 RUNOFF FORECAST 

7.2.1 Calibration 1 

 

Figure 7.2-1: Forecast - cal.1 - scenario A – runoff 

 

Table 7.2-1: Forecast - cal.1 - scenario A2 - runoff differences 

Period Simulated runoff Simulated areal precipitation 

 [m
3
/s] Change [%] [mm] Change [%] 

1961-1990 14.01 
 

4037 
 

1991-2020 16.44 17.4% 3983 -1.3% 

2021-2050 18.58 32.7% 4156 3.0% 

2051-2080 21.25 51.7% 3886 -3.7% 

2071-2010 22.48 60.5% 4015 -0.5% 

2080-2110 23.75 69.5% 4103 1.6% 

 

The scenario A2 implies an increase of the runoff of 60.5% between 1961-1990 and 2071-

2010. This is an extremely large growth which must be explained by a diminution of the 

glaciers mass, hence an increase of the glacier runoff, because the precipitation did not rise. 
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Figure 7.2-2: Forecast - cal.1 - scenario B2 – runoff 

  

Table 7.2-2: Forecast - cal.1 - scenario B - runoff differences 

Period Simulated runoff Simulated areal precipitation 

 [m
3
/s] Change [%] [mm] Change [%] 

1961-1990 14.01 
 

4036.6 
 

1991-2020 16.12 15.1% 3998.8 -0.9% 

2021-2050 17.49 24.8% 4225.5 4.7% 

2051-2080 19.85 41.7% 4010.3 -0.7% 

2071-2010 20.80 48.5% 4185.9 3.7% 

2080-2110 22.01 57.1% 4271.9 5.8% 

 

The scenario B2 implies a smaller increase of the runoff of 48.5% between 1961-1990 and 

2071-2010 against 60.5% for the scenario A2. This is still an extremely large growth which 

cannot be explained only by the gain of precipitation but must be mainly due to a great 

diminution of the glaciers and the generation of ice melt runoff. 
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7.2.2 Calibration 2 

Table 7.2-3: Forecast - cal.2 - scenario A2 - runoff differences 

Period Simulated runoff Simulated areal precipitation 

 [m
3
/s] Change [%] [mm] Change [%] 

1961-1990 13.60  2274.71  

1991-2020 15.63 14.9% 2248.08 -1.2% 

2021-2050 17.33 27.4% 2345.33 3.1% 

2051-2080 19.78 45.4% 2193.58 -3.6% 

2071-2010 20.87 53.5% 2267.38 -0.3% 

2080-2110 22.09 62.4% 2316.68 1.8% 

 

Table 7.2-4: Forecast - cal.2 - scenario B2 - runoff differences 

Period Simulated runoff Simulated areal precipitation 

 [m
3
/s] Change [%] [mm] Change [%] 

1961-1990 13.60  2274.7  

1991-2020 15.35 12.8% 2257.4 -0.8% 

2021-2050 16.34 20.1% 2386.0 4.9% 

2051-2080 18.39 35.2% 2263.2 -0.5% 

2071-2010 19.13 40.7% 2362.3 3.8% 

2080-2110 20.31 49.3% 2411.2 6.0% 

 

In the same way of the calibration 1 did, the calibration 2 shows higher runoff expectations 

for the scenario A2: 53.5%, whereas the scenario foresee an increase of only 40.7%. The 

difference between the two scenarios is bigger with the calibration 2. 
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7.3 GLACIER MASS BALANCE FORECAST: ESTIMATION 

7.3.1 Correlation glacier mass balance and parameters 

The glacier mass balance is difficult to measure and both calibrations generate extreme 

scenarios for the mass balance.  

So the correlations between measured mass balances in the region and parameters for Olden 

catchments have been calculated for both calibrations. 

 

Table 7.3-1: Olden: Pearson’s correlation between glacier states and parameters 

 Mass balance Length 

Glacier Nigardsbreen Ålfotbreen Olden Briksdalsbreen 

Period y. w. s. y. w. s. y. y. 

Temp. y. 0.03 0.21 -0.17 -0.01 0.23 -0.34 -0.06 -0.11 

 
w. 0.41 0.42 0.27 0.31 0.43 -0.03 0.19 0.03 

 
s. -0.65 -0.31 -0.79 -0.58 -0.30 -0.65 -0.45 -0.27 

          

Precip. y. 0.68 0.76 0.39 0.70 0.76 0.25 0.80 0.01 

 
w. 0.62 0.75 0.29 0.69 0.78 0.20 0.76 0.03 

 
s. 0.38 0.21 0.44 0.20 0.09 0.24 0.33 -0.05 

         

Areal temp. -0.07 0.13 -0.24 -0.14 0.14 -0.44 0.02 -0.02 

Areal precip. 0.65 0.74 0.36 0.65 0.72 0.21 0.94 0.07 

          

Snow z. 1 NA NA NA NA NA NA NA NA 

State z. 2 NA NA NA NA NA NA NA NA 

 
z. 3 0.39 0.39 0.28 0.22 0.21 0.12 0.33 0.02 

 
z. 4 0.63 0.66 0.39 0.60 0.62 0.26 0.76 0.10 

 
z. 5 0.81 0.80 0.57 0.80 0.78 0.41 0.84 0.17 

 
z. 6 0.82 0.78 0.61 0.84 0.79 0.46 0.85 0.13 

 
z. 7 0.80 0.76 0.59 0.84 0.78 0.47 0.86 0.10 

 
z. 8 0.79 0.76 0.57 0.82 0.78 0.45 0.86 0.09 

 
z. 9 0.77 0.75 0.55 0.80 0.77 0.43 0.86 0.07 

 
z.10 0.76 0.75 0.54 0.79 0.76 0.41 0.86 0.04 

 
Catch. 0.80 0.77 0.57 0.82 0.78 0.44 0.87 0.10 
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Table 7.3-2: Olden calibration 2: Pearson’s correlation between glacier states and parameters 

 mass balance Length 

Correlation Nigardsbreen Ålfotbreen Olden Briksdalsbreen 

Period y. w. s. y. w. s. y. y. 

Temp. y. 0.03 0.21 -0.17 -0.01 0.23 -0.34 -0.24 -0.11 

 
w. 0.41 0.42 0.27 0.31 0.43 -0.03 0.16 0.03 

 
s. -0.65 -0.31 -0.79 -0.58 -0.30 -0.65 -0.75 -0.27 

          

Precip. y. 0.68 0.76 0.39 0.70 0.76 0.25 0.76 0.01 

 
w. 0.62 0.75 0.29 0.69 0.78 0.20 0.70 0.03 

 
s. 0.38 0.21 0.44 0.20 0.09 0.24 0.39 -0.05 

         

Areal temp. -0.068 0.10 0.27 -0.11 0.04 0.29 -0.31 -0.19 

Areal precip. 0.650 0.68 0.77 0.39 0.71 0.77 0.26 0.77 

          

Snow z. 1 NA NA NA NA NA NA NA NA 

State z. 2 NA NA NA NA NA NA NA NA 

 
z. 3 NA NA NA NA NA NA NA NA 

 
z. 4 0.08 -0.06 0.20 0.02 -0.14 0.21 0.19 0.00 

 
z. 5 0.09 -0.04 0.20 0.03 -0.13 0.22 0.18 0.00 

 
z. 6 0.41 0.38 0.31 0.22 0.17 0.17 0.31 0.02 

 
z. 7 0.56 0.54 0.40 0.43 0.42 0.22 0.53 0.04 

 
z. 8 0.68 0.64 0.50 0.56 0.52 0.33 0.76 0.12 

 
z. 9 0.74 0.67 0.58 0.67 0.59 0.42 0.87 0.15 

 
z.10 0.79 0.69 0.64 0.77 0.67 0.50 0.95 0.20 

 
Catch. 0.77 0.70 0.61 0.71 0.63 0.44 0.90 0.16 

 

So there is a good correlation between: 

- The winter mass balance and the winter precipitation, 

- The summer mass balance and the summer temperature, 

- The annual mass balance and the winter and annual precipitation. 

However, the best correlation appears with the snow states at the end of the year because the 

snow storage is a result of the precipitation and temperature during the year. 
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7.3.2 Estimation of glacier mass balance: Ålfotsbreen and Nigardsbreen 

A snow storage of zero means that there has been glacier ice melt but it is no apparent on the 

final states of the simulation. So unlike the first simulation, it is much more difficult to predict 

the glacier mass balance with the calibration 2 because there is a “limitation” in the glacier 

mass balance which corresponds to no snow storage. In the first one, a certain amount of 

snow would signify a glacier mass balance of 0 and less that this value would means a 

negative mass balance. 

It is not possible to rely only on the following estimations, but it gives a general overview of 

the potential tendency of the glacier behaviour. 
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7.3.2.1 Ålfotbreen 

 

Figure 7.3-1: Cumulative mass balance for Ålfotbreen 

 

 

Figure 7.3-2: Polynomial regression between mass balance in Ålfotbreen and snow storage in the 

zone 6 of Olden 
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Figure 7.3-3: Scenario A2 - cumulative mass balance for Ålfotbreen 

 

Figure 7.3-4: Scenario B2 - cumulative mass balance for Ålfotbreen 

 

In the scenario A2, Ålfotbreen reaches the same mass it had in 1961 in 2020 and then sees its 

mass decrease. In the scenario B2, the glacier loses the mass it gained from 1961, eight year 

later in 2028. The glacier loses its mass quickly with the scenario A2 than the scenario B2: 

difference of 40 m. 
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7.3.2.2 Nigardsbreen 

 

Figure 7.3-5: Cumulative mass balance for Nigardsbreen 

 

 

Figure 7.3-6: Polynomial regression between mass balance in Nigardsbreen and snow storage in 

the zone 5 
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Figure 7.3-7: Scenario A2 - cumulative mass balance for Nigardsbreen 

 

 

Figure 7.3-8: Scenario B2 – cumulative mass balance for Nigardsbreen 

 

Nigardsbreen follows the same trends than Ålfotbreen for both scenario but negative mass 

balance occurs much later than for Ålfotbreen. If the beginning of the mass loss (compared to 

1961) start with only eight years of difference for the two scenarios in Ålfotsbreen, the 

diference is much bigger for Nigardsbreen: thirty years. However the difference between the 

two final states of the glacier volume is only 20 m. 
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7.3.2.3 Conclusion 

The scenario A2 is the worst scenario for the conservation of glaciers. It forecasts a quicker 

and heavier loss in the glassier mass balance either on the coast or inland. However the inland 

glacier appeared to be in a safer place. 

 

7.4 GLACIER MASS BALANCE FORECAST: CALCULATION 

7.4.1 Calibration 1 

7.4.1.1 Scenario A 

 

Figure 7.4-1: Forecast - cal.1 - scenario A2 - mass balance 

 

With the increase of temperature and precipitation almost constant, the glaciers in Olden have 

more and more often negative masse balance. However, the cumulative mass balance of the 

glacier shows. 
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Figure 7.4-2: Forecast - cal.1 - scenario A2 - cumulative mass balance 

 

7.4.1.2 Scenario B 

 

Figure 7.4-3: Forecast - cal.1 - scenario B2 - mass balance 
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Figure 7.4-4: Forecast - cal.1 - scenario B2 - cumulative mass balance 

 

The cumulative mass balance gives a higher volume in the scenario B2 because the 

temperature rises less than with the scenario A2. 

 

7.4.2 Calibration 2 

7.4.2.1 Scenario A 

 

Figure 7.4-5: Forecast - cal.2 - scenario A2 - mass balance 
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Figure 7.4-6: Forecast - cal.2 - scenario A2 - cumulative mass balance 

 

7.4.2.2 Scenario B 

 

Figure 7.4-7: Forecast - cal.2 - scenario B2 - mass balance 
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Figure 7.4-8: Forecast - cal.2 - scenario B2 - cumulative mass balance 

 

In the same way of the calibration 1, the calibration 2 shows worse mass losses in the scenario 

A2 than in the scenario B2. 
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7.4.3 Conclusion 

It is more difficult to conclude about the glacier status because the mass balances calculated 

for each calibration of each scenario seemed too extreme. In both calibrations, the scenario 

A2 is the one which will show the lowest values (increase or decrease), which means that 

whatever the calibration used, the glaciers will disappear more rapidly with the scenario A2. 

 

If the mass balance was an average of the two mass balances calculated with each calibration, 

the final masse balance would be: 

Table 7.4-1: Total mass balance 

Scenario A2 B2 

Calibration 1: gain 90.87 127.71 

In 1988 38.45 38.45 

Total gain 52.41 89.26 

   Calibration 2: loss -155.34 -124.08 

In 1988 -8.12 -8.12 

Total loss -147.22 -115.96 

   Average between the two calibrations -94.81 -26.70 

 

The estimated thickness of the glacier water equivalent in 1988 is 61.66 m. 

A forecast climate following the scenario A2 would mean a total disappearance of the glaciers 

in Olden, while the scenario B2 would induce the disappearance of more than 40% of the 

glacier mass balance. 
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8 CONCLUSION AND RECOMMENDATION 

8.1 CONCLUSION 

The HBV-model focus is mainly on the runoff. It is not a glacier model. Therefore, the glacier 

part is simplified. The glacier area is notified, its melt factor appears and it can lose mass. 

However, it is not enough, especially on a long period of simulation. The limitations of the 

HBV-model concerning the glacier part come from the fact that the glacier does not evolve 

each year. The glacier area stays constant so there is not shredding or spreading considered. 

The glacier ice melt happens however there is no indication of the depth of the glacier. So the 

glacier could melt entirely but still be present in the model. It could also extend with growing 

in the model. 

Despite all those limitations, the calibrated HBV-model succeeded very well in reproducing 

the runoff in Olden catchment, which is covered at 40% by glaciers, on a long period of 52 

years. So even though the model does not do many computations on the glacier itself, it found 

a way to handle the input data, precipitation and temperature, to forecast the runoff. This 

shows the robustness of the HBV-model. 

Two calibrations have been made in order to fulfil two different objectives: runoff forecasting 

and glacier forecasting. The two calibrations give good results for the runoff forecast. 

However, the first calibration overestimates the snow storage and it is not possible to reduce it 

without decrease the runoff forecast. The second calibration is a compromise between runoff 

forecast and consistency in the snow routine of the model. The results concerning the glacier 

behaviour are more realistic in the second calibration. There is a need to find a third 

calibration which would be a compromise between the two calibrations to get net mass 

balances that are coherent with the glacier mass balances of the area. 

The same calibrated free parameters have been used for forecasting the runoff in two very 

similar catchments Olden and Loen. The HBV-model gives good results for the second 

catchment Loen with the calibrated parameters for the first catchment Olden. So, after a 

calibration of Loen, the two set of parameters could be associated to give a third set of free 

parameters in order to forecast both catchments runoff with high accuracy. With the same 

parameters, it is possible to forecast two different catchments which share numerous features 

like Olden and Loen do. This shows the utility of the regional model. 
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The glacier mass balance is difficult to estimate with a model that is not made for this specific 

purpose. It is possible though to see the trends of the mass balance of the glaciers in the 

catchment. The magnitude is the most challenging part of the estimation. The catchments that 

were studied did not have any mass balance record. So it was not possible to calibrate the 

model to get consistent results with observed data. In that case, the studies on the mass 

balance are usually made considering glaciers in the surrounding area where those 

investigations have been carried out. The glaciers in the area, one facing the same side, 

oriented to the sea, Ålfotbreen and one sharing very close location inland Nigardsbreen, had 

been selected. Those two glaciers have roughly the same pattern but the values differ 

considerably. The difference comes from the climate of the region: the glacier located on the 

coast is subject to “extem” event such has very high precipitation and very high temperature 

while the second one inland does not encounter the same high event. Located inland but 

facing the sea, Olden must have the same trends as Ålfotbreen but the similar values as 

Nigardsbreen. The two calibrations give extreme opposite tendency in the mass balance. The 

first calibration which creates a lot of precipitation presents a balance almost always positive 

while the second one which generates much less precipitation produces a balance almost 

always negative. Assuming the same trend as the other glaciers, there is a need to find a third 

calibration which would be a compromise between the two calibrations to get net mass 

balances that are more coherent with the glacier mass balances of the area.  

The best parameter to foresee the glacier mass balance is the snow state at the end of the year 

because it is a result of precipitation (mostly winter precipitation) and temperature (summer 

temperature). On the other hand, the length of a glacier is not correlated with any of those 

parameters. This shows the limit of the climatological effects, precipitation and temperature, 

on the glacier length and area. The area cannot constitute the only way to assess the glacier 

volume increase or decrease. 

Catchments with an extensive part covered by glaciers did not seem to be easily handled by a 

simple hydrological model like HBV-model. However the model is very robust and gives 

consistent results for the runoff forecast and workable results for glacier behaviour.   
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8.2 RECOMMENDATIONS 

The study area has been chosen for reason that offers analyses on different topics: runoff 

forecast on catchment with glaciers was the main goal but it was also possible with these 

catchments to assess the utility of regional calibrated models, glacier mass balances and 

glacier length behaviour. 

However in order to focus more on the glacier mass balance, a catchment where 

investigations have been implemented would be better to calibrated the model to get 

consistent results for both runoff and glacier behaviour with the same calibration. 

For further research on glacier with utilisation of HBV-model, the glacier part of the HBV-

model can be improved in a simpler way with a more exhaustive writing of results. To help 

the analysis for the glacier part, it would be an improvement to add in the result file: 

- Exportation of the snow fall and rain fall, 

- Exportation of the ice glacier melt, 

- Exportation of the areal temperature. 
 

The model can also be improved in order to add yearly glacier modifications in change the 

computation process: 

- Modification of the parameters: 

o Addition of the water volume of the glacier, 

o Addition of the depth of the glacier in each elevation zone, 

- Modification of the routine: 

o Recalculation of the glacier depth every year, 

 

The phenomena that occur in a glacier are complex. Many assumptions and simplification 

have been made during the thesis. However many conclusions have been drawn. 
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10 APPENDIX 



A. NORWAY AND ITS BIGGEST GLACIERS 

 

The 40 largest glaciers in Norway. The glaciers are shaded in green. Numbers 1-40 mark the 

glaciers, number 1 Jostedalsbreen is the largest glacier in Norway 

  



  



B. LAVVANN CATCHMENT MAPS 

a) Olden 

b) Loen 

c) Stryn 
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C. LAND TYPE: MAP 

a) Region 

b) Olden and Olden glaciers 

c) Loen and Loen glaciers 

d) Stryn and Stryn glaciers 
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E. HYPSOGRAPHIC CURVES 

 

 

  



  



F. MAP STATIONS 

a) Precipitation and temperature stations 

b) Precipitation stations 

c) Temperature stations 
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G. STATIONS 

Stnr Name Operates from Operates until Altitude Latitude Longitude Municipality County T P 

15890 Grotli III 01.10.2008 31.12.2013 872 62.02 7.66 Skjåk Oppland   

57390 Skei i jolster 01.07.1969 31.12.2013 205 61.58 6.49 Jølster S.o.F.   

58120 Klakegg – Bolset 01.09.1985 30.11.2005 187 61.60 6.51 Jølster S.o.F.   

58320 Myklebust i Breim 01.01.1900 31.12.2013 315 61.71 6.62 Gloppen S.o.F.   

58370 Utvik 01.06.1962 31.01.1969 4 61.80 6.50 Stryn S.o.F.   

58390 Innvik - Heggdal 17.10.2005 31.12.2013 70 61.84 6.60 Stryn S.o.F.   

58400 Innvik 01.01.1950 06.01.2006 32 61.85 6.63 Stryn S.o.F.   

58430 Olden – Vangberg 01.07.1973 31.12.1992 78 61.86 6.76 Stryn S.o.F.   

58480 Briksdal 01.01.1900 31.12.2013 40 61.69 6.81 Stryn S.o.F.   

58500 Loen 01.04.1971 31.03.1988 39 61.87 6.86 Stryn S.o.F.   

58530 Rake 01.11.1974 31.05.1983 35 61.87 6.80 Stryn S.o.F.   

58531 Rake II 01.11.1974 31.05.1983 2 61.87 6.80 Stryn S.o.F.   

58532 Rake III 01.11.1974 30.04.1983 62 61.87 6.80 Stryn S.o.F.   

58660 Flo 13.05.1983 31.08.1988 40 61.93 7.02 Stryn S.o.F.   

58700 Oppstryn 01.01.1900 31.01.1991 201 61.93 7.23 Stryn S.o.F.   

58880 Sindre 01.01.1957 30.06.2005 118 61.92 6.54 Stryn S.o.F.   

58900 Stryn - Kroken 24.11.1993 31.12.2013 208 61.92 6.56 Stryn S.o.F.   

58960 Hornindal 01.01.1900 31.12.2013 349 62.00 6.65 Hornindal S.o.F.   



  



H. PRECIPITATION: MISSING DATA 

 

Station n° 15890 57390 58120 58320 58370 58390 58400 58430 58500 58700 58880 58900_P 58960 
Station 

average 

Normal 

ratio 

method 

Inverse 

distance 

Distance to 

Briksdal 
57674.2 21484.3 18574.3 10476.3 20177.2 19527.7 NA 18738.1 20136.9 3465.3 29279.0 28063.4 35540.0 NA NA NA 

Annual 

precipitation 
723.5 1839.9 1999.9 1549.4 1042.1 1248.7 1111.0 1365.5 1096.7 1059.5 1597.5 1668.0 1792.1 NA NA NA 

31.07.1908 NA NA NA 13.5 NA NA NA NA NA 9.5 NA NA 12.3 11.8 11.6 10.6 

05.06.1912 NA NA NA 0.0 NA NA NA NA NA 0.0 NA NA 0.0 0.0 0.0 0.0 

29.03.1921 NA NA NA 0.0 NA NA NA NA NA 0.0 NA NA 1.0 0.3 0.3 0.1 

19.05.1927 NA NA NA 0.0 NA NA NA NA NA 0.0 NA NA 0.5 0.2 0.1 0.0 

21.05.1927 NA NA NA 0.0 NA NA NA NA NA 0.0 NA NA 0.3 0.1 0.1 0.0 

09.12.1999 NA 2.0 2.9 2.5 NA NA 3.9 NA NA NA 2.6 NA 0.0 2.3 2.2 2.2 

22.10.2004 NA 0.1 NA 1.6 NA NA 3.0 NA NA NA 4.6 4.5 3.5 2.9 2.7 2.4 

27.10.2004 NA 5.4 NA 1.3 NA NA 1.2 NA NA NA 1.1 1.6 2.0 2.1 1.8 2.2 

03.11.2004 NA 0.2 NA 0.1 NA NA 0.3 NA NA NA 0.2 0.0 0.0 0.1 0.1 0.1 

07.11.2004 NA 0.4 NA 0.0 NA NA 0.2 NA NA NA 0.1 3.0 0.0 0.6 0.5 0.5 

25.11.2004 NA 24.5 NA 13.0 NA NA 10.0 NA NA NA 19.6 21.8 22.1 18.5 16.1 18.5 

08.12.2004 NA 12.1 NA 28.2 NA NA 9.1 NA NA NA NA 20.5 13.8 16.7 15.0 21.3 

28.05.2005 NA 6.0 NA 3.8 NA NA 0.2 NA NA NA 1.6 1.6 3.6 2.8 2.3 3.6 

30.05.2005 NA 6.0 NA 5.8 NA NA 13.0 NA NA NA 6.6 4.8 11.8 8.0 7.6 6.5 

04.06.2005 NA 4.0 NA 0.0 NA NA 3.0 NA NA NA 6.1 1.2 5.6 3.3 3.0 2.5 

05.06.2005 NA 2.2 NA 1.8 NA NA 1.7 NA NA NA 0.3 1.7 1.5 1.5 1.4 1.6 

18.06.2005 NA 0.3 NA 12.2 NA NA 4.0 NA NA NA 1.5 3.1 5.7 4.5 4.2 6.3 

19.06.2005 NA 0.0 NA 0.0 NA NA 0.0 NA NA NA 0.1 0.0 3.5 0.6 0.5 0.4 

24.06.2005 NA 14.6 NA 7.0 NA NA 2.4 NA NA NA 3.6 4.3 6.4 6.4 5.4 7.5 

25.06.2005 NA 1.0 NA 4.8 NA NA 0.0 NA NA NA 0.3 0.0 0.5 1.1 1.0 2.2 

26.06.2005 NA 1.2 NA 1.8 NA NA 1.1 NA NA NA 1.3 1.0 2.4 1.5 1.3 1.6 

27.06.2005 NA 7.7 NA 4.3 NA NA 1.5 NA NA NA 2.4 1.4 4.5 3.6 3.1 4.3 

28.06.2005 NA 4.1 NA 4.0 NA NA 1.8 NA NA NA 1.0 0.4 6.2 2.9 2.5 3.3 

02.08.2005 NA 0.0 NA 0.0 NA NA 0.0 NA NA NA NA 0.0 0.0 0.0 0.0 0.0 

05.08.2005 NA 31.3 NA 20.0 NA NA 8.4 NA NA NA NA 15.4 12.5 17.5 15.2 20.7 

07.08.2005 NA 2.0 NA 4.9 NA NA 0.5 NA NA NA NA 0.7 0.6 1.7 1.5 2.9 

09.08.2005 NA 0.0 NA 0.0 NA NA 0.2 NA NA NA NA 0.0 0.1 0.1 0.1 0.0 

11.08.2005 NA 0.0 NA 0.6 NA NA 0.2 NA NA NA NA 0.0 0.9 0.3 0.3 0.4 

14.08.2005 NA 0.0 NA 0.0 NA NA 0.2 NA NA NA NA 0.0 0.0 0.0 0.1 0.0 

16.08.2005 NA 9.2 NA 3.4 NA NA 6.0 NA NA NA NA 4.4 5.6 5.7 5.2 5.2 

19.08.2005 NA 0.0 NA 0.0 NA NA 0.1 NA NA NA NA 0.0 0.0 0.0 0.0 0.0 

22.08.2005 NA 0.0 NA 0.0 NA NA 0.0 NA NA NA NA 0.0 0.0 0.0 0.0 0.0 

23.07.2013 0.1 0.0 NA 0.1 NA 0.0 NA NA NA NA NA 0.0 0.0 0.0 0.0 0.0 

 



  



I. PRECIPITATION RECORD 

 

 

Monthly precipitation over the period of record for Briksdal station 

 

 Monthly precipitation 

 Period Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

1900- 

2012 
159 122 106 66 58 74 82 99 167 174 154 156 

1961- 

1990 
135 91 111 50 48 70 83 88 185 179 158 174 

1971- 

2000 
166 123 114 65 51 70 75 88 161 166 168 187 

2001- 

2012 
157 113 108 60 71 70 74 94 180 151 182 167 

 



  



 

 Period Annual precipitation 

1900-2012 1417 

1961-1990 1372 

1971-2000 1434 

2001-2012 1426 

 

 

 

 

 



  



J. COMPARISON BETWEEN NORMAL TEMPERATURE 

 

 

  



  



K. OPPSTRYN TEMPERATURE 

 

 

 

 

 

Average temperature over period of record 

 



  



 

L. TEMPERATURE RECORD 

 

 

  



  



M. EVAPOTRANSPIRATION DATA 

 

 

 

Fordampning Middel for hele obs.perioden (mm/dag) 
 

Dag nr Januar Februar Mars April Mai Juni Juli August September Oktober November Desember 
 

1 0.0 0.0 0.1 0.7 2.0 3.4 3.9 3.6 2.6 1.6 0.7 0.2 
 

2 0.0 0.0 0.1 0.7 2.0 3.4 3.9 3.6 2.6 1.6 0.7 0.1 
 

3 0.0 0.0 0.2 0.8 2.1 3.4 3.9 3.6 2.6 1.5 0.7 0.1 
 

4 0.0 0.0 0.2 0.8 2.1 3.5 3.9 3.5 2.5 1.5 0.6 0.1 
 

5 0.0 0.0 0.2 0.8 2.2 3.5 4.0 3.5 2.5 1.5 0.6 0.1 
 

6 0.0 0.0 0.2 0.8 2.2 3.5 4.0 3.5 2.4 1.4 0.6 0.1 
 

7 0.0 0.0 0.2 0.9 2.3 3.6 4.0 3.5 2.4 1.4 0.6 0.1 
 

8 0.0 0.0 0.2 0.9 2.4 3.6 4.0 3.4 2.3 1.4 0.5 0.1 
 

9 0.0 0.0 0.2 0.9 2.4 3.7 4.0 3.4 2.3 1.4 0.5 0.1 
 

10 0.0 0.0 0.2 0.9 2.5 3.7 4.0 3.4 2.3 1.3 0.5 0.1 
 

11 0.0 0.0 0.2 1.0 2.5 3.7 4.0 3.4 2.2 1.3 0.4 0.0 
 

12 0.0 0.0 0.2 1.0 2.6 3.8 4.0 3.4 2.2 1.3 0.4 0.0 
 

13 0.0 0.0 0.2 1.0 2.6 3.8 4.0 3.3 2.1 1.2 0.4 0.0 
 

14 0.0 0.0 0.3 1.0 2.7 3.8 4.0 3.3 2.1 1.2 0.4 0.0 
 

15 0.0 0.0 0.3 1.1 2.7 3.9 4.0 3.3 2.1 1.2 0.3 0.0 
 

16 0.0 0.0 0.3 1.1 2.8 3.9 4.0 3.3 2.0 1.2 0.3 0.0 
 

17 0.0 0.0 0.3 1.1 2.8 3.9 4.0 3.2 2.0 1.1 0.3 0.0 
 

18 0.0 0.0 0.3 1.2 2.8 3.9 3.9 3.2 2.0 1.1 0.3 0.0 
 

19 0.0 0.0 0.3 1.3 2.9 3.9 3.9 3.2 2.0 1.1 0.3 0.0 
 

20 0.0 0.0 0.4 1.3 2.9 3.9 3.9 3.1 1.9 1.1 0.3 0.0 
 

21 0.0 0.0 0.4 1.4 3.0 3.9 3.9 3.1 1.9 1.0 0.3 0.0 
 

22 0.0 0.1 0.4 1.4 3.0 3.9 3.8 3.0 1.9 1.0 0.3 0.0 
 

23 0.0 0.1 0.5 1.5 3.0 3.9 3.8 3.0 1.8 1.0 0.3 0.0 
 

24 0.0 0.1 0.5 1.5 3.1 3.9 3.8 3.0 1.8 0.9 0.2 0.0 
 

25 0.0 0.1 0.5 1.6 3.1 3.9 3.8 2.9 1.8 0.9 0.2 0.0 
 

26 0.0 0.1 0.5 1.6 3.1 3.9 3.7 2.9 1.8 0.9 0.2 0.0 
 

27 0.0 0.1 0.6 1.7 3.2 3.9 3.7 2.8 1.7 0.9 0.2 0.0 
 

28 0.0 0.1 0.6 1.7 3.2 3.9 3.7 2.8 1.7 0.8 0.2 0.0 
 

29 0.0 
 

0.6 1.8 3.2 3.9 3.7 2.8 1.7 0.8 0.2 0.0 
 

30 0.0 
 

0.6 1.9 3.3 3.9 3.7 2.7 1.6 0.8 0.2 0.0 
 

31 0.0 
 

0.7 
 

3.3 
 

3.6 2.7 
 

0.8 
 

0.0 
 

              



  



N. RUNOFF 

 

Olden January February March April May June July August September Octobrer November December 

1900-2013 3.99 3.44 3.18 4.01 9.93 24.67 42.54 40.52 25.94 14.38 6.87 5.00 

1961-1990 4.49 3.34 3.33 3.83 10.17 26.95 37.29 36.68 25.31 15.32 8.08 5.56 

1991-2013 3.91 3.50 3.19 4.54 10.33 24.00 44.65 44.00 28.25 12.85 7.59 5.07 

 

Loen January February March April May June July August September Octobrer November December 

1900-2013 3.42 2.93 2.85 4.18 11.59 27.53 46.97 43.03 26.20 13.81 6.07 4.30 

1961-1990 3.53 2.63 2.67 3.70 11.94 29.16 39.41 37.44 24.47 14.46 6.66 4.31 

1991-2013 3.81 3.51 3.38 5.59 13.56 27.72 47.89 46.18 29.59 13.64 7.66 5.01 

 

Stryn January February March April May June July August September Octobrer November December 

1900-2013 9.57 8.41 7.40 11.32 35.10 66.95 75.76 60.19 43.08 29.30 16.31 11.57 

1961-1990 9.75 6.70 5.90 8.82 33.87 66.84 67.71 53.54 40.79 30.26 17.39 11.30 

1991-2013 9.04 8.49 8.01 13.58 36.30 64.93 74.68 60.04 44.30 25.81 17.73 12.09 

 

 



  



Loen 

 

Stryn 

 

 

 



  



O. SNOW EQUIVALENT IN 1985-1986 

   

   

   

  



  



   

   

  

 

  



  



  



 

  



P. CALIBRATION 1 

 

 

 



  



Q. CALIBRATION 2 

 

 

  



  



 

 

 

  



  



 



  



R. MASS BALANCES 

 

 

 

  



  



 

S. BRIKSDALBREEN EVOLUTION 

 

 

Briksdalsbreen in 1989 and 2009. The glacier has retreated 0.9 km between 1900 and 2012 Photos: Stefan Winkler and Hinrich Bernard Basemann 



  



T. CLIMATE CHANGE: MAP 

  

HadM3H, A2 

  

HadM3H, B2 

 

  



  



 

ECHAM4/OPYC3, IPCC SRES scenario B2 

 

 

ECHAM4/OPYC3, IPCC SRES scenario B2 

  



  



U. CLIMATE CHANGE: EVAPORATION 

 

 

EPOT Base Scenario A2 Scenario B2 

Months 1961 
2016 2071 2016 2071 

[mm] Increase  [mm] Increase  [mm] Increase  [mm] Increase  

January 0 0.80 +0.80 3.59 +3.59 0.53 +0.53 3.65 +3.65 

February 0 0 +0.00 3.10 +3.10 0 +0.00 2.02 +2.02 

March 8.33 13.47 +5.14 16.47 +8.13 13.32 +4.99 16.59 +8.25 

April 32.65 37.73 +5.07 41.59 +8.94 38.34 +5.69 42.97 +10.31 

May 85.71 93.94 +8.23 102.41 +16.70 91.70 +5.99 97.63 +11.93 

June 116.93 118.79 +1.86 121.07 +4.14 114.91 -2.03 112.82 -4.12 

July 123.32 124.62 +1.30 126.40 +3.09 122.39 -0.93 121.52 -1.80 

August 101.45 104.19 +2.74 107.45 +5.99 105.03 +3.58 108.92 +7.47 

September 61.45 67.67 +6.23 74.13 +12.68 65.63 +4.18 69.79 +8.35 

October 36.01 40.44 +4.43 44.55 +8.53 40.95 +4.93 45.53 +9.52 

November 9.76 15.53 +5.77 19.95 +10.19 14.84 +5.08 18.84 +9.08 

December 0 4.62 +4.62 7.45 +7.45 3.68 +3.68 6.14 +6.14 

Year 576 622 +46 668 +93 611 +36 646 +71 

 

 

  



  



   

 

 

 

  



  



 

Forecast - cal.2 - scenario A2 – runoff 

 

Forecast - cal.2 - scenario B2 – runoff 

 


