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Abstract
Different reproduction devices can have different sets of re-

producible colours. These sets are called gamuts. The process
of transforming colours from one device (or image) gamut to an-
other is called gamut mapping. Gamut mapping has many techni-
cal issues to be considered: the used colour space, direction and
magnitude of the mapping and whether and to which extent in-
gamut colours should be altered. Spatially invariant algorithms
treat all the pixels independently on their position in the image.
Spatially variant (local) algorithms allows a better rendition but
introduces the problem of artefacts and/or haloing in the result-
ing image. In this paper we propose a spatially variant gamut
mapping algorithm that creates virtually no artefacts nor haloing
in the resulting image. We start from an analysis of the Retinex
algorithm and devise proper functionals to build an algorithm
which tries to maintain spatial ratios in the image while map-
ping it into the gamut and, at the same time, avoids all drawbacks
of Retinex approaches. We suggest to perform the mapping in an
RGB colour space rather than one of the perceptually more ho-
mogeneous ones. Although less homogeneous, we experimentally
show that RGB colour spaces actually have better hue constancy
according to a certain criterion.

Introduction
Colour gamut mapping denotes the process of adjusting a

set of colour data – typically from an image – to fit the colour
gamut of a given destination device. Historically, gamut mapping
algorithms were pure colour mappings, i.e. functions between
colour spaces, independent of the content of the image to be re-
produced [1]. Such gamut mapping algorithms by now constitute
fairly mature technology, and the main work in this area is now
on standardising representations and algorithms [2].

Today, the research on gamut mapping focuses more on other
dimensions, such as the reproduction of high dynamic range im-
ages on conventional devices [3], multispectral images [4], and
even goniochromatic reproduction [5]. The most active area of re-
search on gamut mapping the later years has been the exploitation
of spatial properties of the image (see, e.g., [6]). In spatial gamut
mapping, there is no longer a one-to-one mapping of colours from
the input gamut to the output gamut. The local context of the im-
age is taken into account such that not only the colour, but simul-
taneously also the texture and the local contrast is reproduced as
accurately as possible. There are two main approaches to spatial
gamut mapping: In the first approach, information lost in the con-
ventional mapping process is added back to the image, either once
or iteratively [7]. In the second approach, a cost function measur-
ing the perceptual error between the gamut mapped image and the
original is minimised with respect to either the final image [8], or

the parameters of the gamut mapping algorithm [9].
It is an established fact that such spatial colour gamut map-

ping algorithms can be superior to the conventional algorithms
for many types of images [10]. However, the behaviour of the
algorithms is still somewhat unpredictable in that they can pro-
duce unwanted artefacts such as hue shifts and halos for certain
images. In a previous work [7], we introduced specific constrain-
ing function in order to reduce these artefacts. Here we propose
a new approach. First, we suggest to perform the mapping in
an RGB colour space rather than one of the perceptually more
homogeneous ones. Although less homogeneous, we argue that
RGB colour spaces actually have better hue constancy according
to a certain criterion. Secondly, we avoid haloing by introduc-
ing an iterative diffusion scheme motivated by retinex type algo-
rithms [11, 12] using a 1/r dependency of spatial distance in the
image.

On the Use of RGB Colour Spaces for Gamut
Mapping

Having unitary steps in a colour space that can represent
unitary perceived difference between colours is a very relevant
property of a colour space w.r.t. the gamut mapping main goal.
This property is named perceptual homogeneity. The studies of
McAdams have shown that, based on his experimental data, to
build a perceptually homogeneous colour space, the colour space
should have a dimension greater than 3, or the 3D space should
be curved. More than one attempt has been done to build Eu-
clidean 3D colour spaces that approximate perceptual homogene-
ity. Some example are CIELAB, CIELUV, OSA UCS L jg. These
colour spaces are extremely important and successful for practi-
cal use; however, they cannot be considered perfectly perceptual
homogeneous. In almost all the papers on gamut mapping, homo-
geneity is the property that is mandatory for the proposed methods
to work properly. The work in [13] by McCann is the most notable
exception.

To overcome the problem of having a perceptually homo-
geneous colour space for gamut mapping three ways can be fol-
lowed: (1) use differential geometry to build a real perceptually
homogeneous colour space with appropriate bijection to convert
colours from and back to CIEXYZ [14]; (2) assume that percep-
tual based colour spaces, like e.g. Munsell book, are perceptually
homogeneous and isotropic and then build the appropriate func-
tions or look up tables to convert from and back to CIEXYZ; (3)
design a gamut mapping algorithm that does not require a percep-
tually homogeneous colour space.

This work builds on the third strategy, proposing to perform
gamut mapping in linear RGB colour spaces. The main rea-
sons for choosing a linear RGB colour space against other colour
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spaces are:

1. The RGB colour space is the basis for ratio-based computa-
tional models of colour appearance, like e.g. Retinex [15].
In this case, we can modify ratios between values without
using perceptual unitary steps thus without needing a per-
ceptually homogeneous colour space.

2. The RGB colour spaces have constant hue half-planes
that are mandatory for gamut mapping since one of the
paramount rules is to preserve hue. These half-planes are
not perfect, as for other colour spaces derived from XY Z;
nonetheless, they provide a good approximation.

The next subsection provides empirical evidence that linear
RGB constant hue half-planes are actually sufficiently good to be
used in a hue preserving mapping strategy.

Constant Hue Half-Planes in CIELAB, RGB and
CIECAM02

Our proposal needs a colour space that has half-planes that
represent constant hue colours. Since the majority of gamut
mapping algorithms work in the CIELAB colour space, and that
CIECAM02[16] is proposed as a colour appearance model with
potential applications to colour management[17], it is mandatory
to show that the RGB constant hue half planes are good enough or
better than constant hue half-planes of CIELAB and CIECAM02.

To this aim, the Munsell book can be considered an opti-
mal source for hue constancy data since it has been proved inde-
pendently in [18] and [19] that, when combined with a spatially
invariant gamut mapping algorithm, the Munsell book performs
better than other colour spaces.

We used the Newhall, Nickerson and Judd’s data of the Mun-
sell book, which has 40 pages that represent constant hue half-
planes. Assuming that these half-planes are correct, CIELAB,
RGB and CIECAM02 can be compared in a quantitative way.
The 2745 Munsell chips have been transformed to the correspond-
ing CIEXYZ values, then linear RGB triplets are obtained (using
sRGB primaries) by the following transformation: R

G
B

=

 3.240 −1.537 −0.498
−0.969 1.876 0.0415
0.0556 −0.204 1.057

 X
Y
Z

 (1)

Then, we removed the chips that are out of the RGB cube,
obtaining 1842 chips. Starting from RGB triplets, two chromatic
coordinates can be obtained as follows: (1) project RGB triplets
onto a plane P⊥ that is orthogonal to the gray axis ~g = [1,1,1];
(2) project these values to two orthogonal axis that belong to P⊥.
In this way, two chromatic coordinates (RGBa and RGBb) repre-
senting the hue of a colour in the RGB colour space are defined1.

The CIECAM02 chromaticity attributes a and b has been
calculated starting from CIEXYZ tristimulus following the paper
[16], without applying the chromatic adaptation2, with the follow-
ing parameters: LA = 100, Yb = 100, Yw = 100.

If we accept the Munsell book as the source of perfect hue
constant planes, we should expect that, for a given Munsell page

1These two chromatic coordinates, despite the name, are not correlated
with the CIE a∗ and b∗ coordinates

2Omitting this step of the CIECAM02 does not change the hue con-
stancy property.
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Figure 1. Angular hue error as a function of Munsell Hue Pages

and a Munsell value, a colour space with perfect hue half-planes
should place the Munsell chips on a line that points toward the
achromatic axis. The more the colours deviate from a perfect
straight line, the less suitable is a colour space for a gamut map-
ping that projects colours toward the achromatic axis. We use this
idea to measure how good are CIELAB, CIECAM02 and RGB.
For each Munsell page and Munsell value we compute the average
inter-colours angular difference in the three spaces.

For the sake of simplicity, then we averaged these numbers
for the same Munsell Hue. Figure 1 shows these numbers for
CIELAB, RGB and CIECAM02 on 40 Hue pages. The number-
ing of pages is from 1 (2.5R) to 40 (10RP) in steps of 2.5 Munsell
Hue. The dashed, full and dotted lines represent average angular
errors (in degrees) produced by CIELAB, RGB and CIECAM02
respectively, averaged on Munsell Value. The horizontal line rep-
resents the 9◦ limit, that is the resolution of the used Munsell
chips in terms of Hue. It can be noticed that RGB performs better
than both CIELAB and CIECAM02. In particular the CIELAB
curve slightly overcomes the 9◦ boundary for pages from 4 to 6
(10.0R to 2.5YR) and from 21 to 24 (2.5BG to 10.0BG). These
data confirm the well known hue shift of CIELAB in the regions
of red/orange and blue/purple. Results from CIECAM02 are sur-
prisingly not as good as both CIELAB and RGB.

Following this results, if a perceptually homogeneous colour
space is not necessary for the purposes of gamut mapping, RGB
performs better than both CIELAB and CIECAM02.

From Retinex to the Gamut Mapping Iterative
Ratios Diffusion Algorithm

In this paper we develop an algorithm that, taking inspiration
from Retinex-based colour appearance models, performs gamut
mapping in a novel way. The main idea we follow is that local ra-
tios between pixels values in the RGB colour space are important
features for image appearance, as Land demonstrated in his excel-
lent experimental investigation [15] [20]. This approach to gamut
mapping has, in our knowledge, only one important predecessor
[13].

In this section we start from the analysis of the Retinex algo-
rithm proposed by Provenzi et al. in [21, 11] to understand clearly
which properties of a Retinex algorithm are suited (or not) for the
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gamut mapping goals. Because of the technical depth and the
mathematical rigorous treating of these two papers, we can con-
sider the results they present as a milestone. The work in [21] pro-
vides proofs and experimental results on some expected Retinex
behaviours and proves some well known conjectures about the
Retinex algorithm. The work in [11] investigates the local be-
haviour of Retinex proposing a unified point of view to analyse
and exploit locality in perceptually inspired algorithms.

To avoid confusion, with the word Retinex we refer only to
algorithms that derive from the original Land approach in [15] and
not to other centre/surround Retinex (e.g. [22]) derived from the
idea proposed by Land in [23]. In this section, all the claims re-
garding Random Spray Retinex (RSR) are excerpted by the above
mentioned papers. To better understand the properties of RSR
we will state at least its mathematical formulation. Retinex al-
gorithms compute lightness of every single pixel i collecting data
potentially from the whole input image. The employed strategy to
sample pixels in the image can be very different from algorithm to
algorithm. RSR samples data from the image by using a Random
Spray centred in the pixel i. More formally, the spray is obtained
as follows (mainly excerpted from [11]).

We can describe a spray as a collection of pixels coordinates.
If (ix, iy) are the spatial coordinates of i, we can define the coor-
dinates of a generic pixel j ≡ ( jx, jy) belonging to the spray Sk(i)
in this way:{

jx = ix +ρ cos(θ)
jy = iy +ρ sin(θ)

(2)

where ρ ∈ RANDn[0,R], θ ∈ RANDn[0,2π). Here RANDn[0,x] is
a uniform pseudo-random generator of values in the interval [0,x]
and R is a constant that represents the maximum radius of the
Spray, which is set to the image diagonal length.

Generating N sprays for every pixel i, the RSR computation
can be described as:

Lc(i) =
1
N

N

∑
k=1

Ic(i)
Ic(xc,Hk )

(3)

where Ic represent the input intensity values of the image in the
channel c of the RGB colour space, Lc the respective computed
lightness image and xc,Hk is the pixel with highest intensity in the
spray Sk(i), for every k = 1, . . . ,N.

It can be noticed that the RSR algorithm essentially com-
putes the lightness of a pixel by taking the ratio of its intensity and
the intensity of the highest pixel in a neighbourhood described by
the spray geometry. The highest pixel is named local maximum.
The operation is repeated N times to reduce the noise due to ran-
dom distribution of the Spray.

Our goal here is to understand which properties of RSR are
potentially good for the goal of gamut mapping. Summarising, the
papers [21, 11] show (or in some cases demonstrate) the following
properties of Retinex and/or RSR:

A) Retinex and RSR computes lightness separately on the three
RGB colour channels.

B) Retinex and RSR computation never decreases pixel values.
It can be easily mathematically derived from the analysis of
Equation (3).

C) Multiple applications of RSR (the lightness output is used
as intensity input in the next application) reach quickly
(typically 10-20 applications) a convergence point in which
further applications do not change the image. The image
of convergence is characterised by heavy white speckling
noise.

D) Locality in Retinex can be exploited by 2D pixel spray. The
spray density in RSR decreases as 1/r, where r is the Eu-
clidean distance from the spray centre (see Equation 2). This
Spray radial distribution performs better respect to other
spray densities in terms of colour correction, contrast treat-
ment and detail enhancement [11]. The possible noise in-
troduced by RSR is mainly due to the randomness of the
2D sampling spray geometry. Another important source of
noise is the presence of flat areas (constant colour) in the
input image.

The following subsections discuss these properties and claim
the choice we took in developing the Gamut mapping Iterative
Ratios Diffusion Algorithm.

Retinex Independent RGB Computation
The first Retinex property is very well known since its defini-

tion [15]. This fact, together with other Retinex properties, gives
Retinex the ability to remove an over-imposed unknown colour
cast if present. This is a negative property for gamut mapping
since one of the most important goals of gamut mapping is to pre-
serve the input image hues. For this reason, we will treat the rela-
tive luminance and chrominance components of the colour sepa-
rately.

Retinex Never Decreases Values
The second property is good for gamut mapping, since the

gamut of a printer in the linear RGB colour space usually misses
dark tones while the triplet RGB = (1,1,1), working in rela-
tive colorimetry, always belongs to the printer gamut. Since we
decided to work separately on luminance and chrominance, the
Retinex “toward white” behaviour has to be modified in “toward
maximum luminance”. The fact that Retinex never decreases
pixel values means that they can be left unchanged in some cases.
This is unacceptable for gamut mapping, since final image colours
must be in gamut.

Convergence Point of Multiple Retinex Applica-
tions

As stated above, multiple applications of RSR generate an
image of convergence. This condition is reached when, separately
in the R, G and B colour channels, every random spray samples at
least one pixel with maximum intensity, namely Ic(xc,Hk )= 1. It is
easy to understand that, under this condition, the image has a lot
of white and/or maximum saturated red, green, and blue pixels.
This convergence image is unacceptable for gamut mapping.

Locality in Retinex
The fourth property gives us important hints on how to im-

plement the concept of local ratios. However, this point suggests
that using random sprays can raise the problem of enhancing high
frequency noise if present. In the algorithm we propose, ratios be-
tween pixels intensity are not computed directly as in the Retinex
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algorithm, but diffused isotropically.
The informal discussion in previous subsections shows some

important guidelines in developing a Retinex-inspired Gamut
Mapping algorithm. The next section will describe how these
guidelines have been formalised and implemented. Prior to this,
we briefly claim our final decisions:

• Sequential mapping: relative luminance first using ratios,
then clipping saturation.

• The direction of mapping is toward 1 during luminance
treatment, and toward the gray axis during saturation treat-
ment (on constant hue half-planes maintaining the previ-
ously computed luminance).

• Use of a diffusing function that decreases as 1/r, where r is
the Euclidean distance between pixels.

G-IRDA: The Gamut Mapping Iterative Ratios
Diffusion Algorithm

One of the important characteristics of the proposed method
is that a change to a pixel colour is propagated to its neighbour-
hood trying to preserve the ratios values. To this aim, we devel-
oped an iterative algorithm that changes pixels values according
both to the fact that they are out-of-gamut and that some neigh-
bourhood pixels values have been changed in the previous itera-
tion.

The main reason we change pixels values is that some pixels
colours are out of gamut. For this reason we need an operator that
discriminates in/out-of-gamut for every pixel in the image. The
following Q operator is designed to satisfy this requirement:

Qp(Ip(x,y)) =
{

0 if Ip(x,y) is in-gamut
1 if Ip(x,y) is out-of-gamut

(4)

where the index p indicates the iteration step and the pair (x,y) is
the discrete spatial coordinates in the image support I.

As stated before, we want that changes in the previous itera-
tion are diffused to neighbourhood pixels in the current iteration.
To obtain this we perform the convolution between the magnitude
of the changes applied in the previous iteration p and a convolving
function d:

Mp(Ip, Ip−1,d) = ‖Ip− Ip−1‖∗d (5)

where ‖ · ‖ is the L2 norm and ∗ denotes the two dimensional
convolution operator, and I1 is the input image. The norm ‖Ip−
Ip−1‖ represents the magnitude of the changes applied to every
pixel in the last iteration3.

It is now straightforward to understand the important role
that d plays in the computation, since the degree and shape of dif-
fusion depends on it. As stated above, we want to diffuse changes
in the neighbourhood with a function that decrease as 1/r where r
is the Euclidean distance between the origin (0,0) of the convolv-
ing function and a pixel coordinates (x,y). To keep the general
form of IRDA, we set d = dE , where dE is the following discrete
convolving function:

dE(x,y) =

{
0 if (x,y) = (0,0)

k−1
E

1√
x2+y2

if (x,y) 6= (0,0) (6)

3For p = 1, ‖I1− I0‖= 0 by definition, since I0 is not defined.

where kE is such that dE(x,y) has unitary integral. It is important
that dE(0,0) = 0 since a change to a pixel value has to be prop-
agated to the neighbourhood pixel but not to the pixel itself. If
not differently specified dE is the convolving function used by the
gamut mapping algorithm developed in the next section.

Now that we have the Q operator to identify in and out of
gamut pixels and the M operator that, by means of the convolving
function d, diffuses changes of previous iteration to neighbour-
hood pixels, we can state the iterative formula of our proposal,
called IRDA (Iterative Ratio Diffusion Algorithm), omitting the
spatial variables for clarity:

Ip+1 = Ip +αV
(
(1−β )Qp +β

Mp

α

)
(7)

where V is the direction of mapping,
(
(1−β )Qp +β

Mp
α

)
is the

magnitude of mapping for every pixel, scaled by the constant
value α ∈ (0,1]. We intentionally do not discuss the matrix V .
It will be done extensively later. Here β ∈ [0,1) is the algorithm
parameter that controls the diffusive behaviour of M. The setting
β = 1 must be avoided since it rules out the contribution of the
clipping, thus vanishing the gamut mapping component of the al-
gorithm. The division by α applied to M operator is important
since the quantities in M derive from the previous iteration that
was scaled in magnitude by α . Thus, the division by α here as-
sures that the quantities in Q and M are comparable, and thus the
β parameter in this case implements a convex linear combination
between Q and M since Q ∈ [0,1] and M ∈ [0,1]. Further discus-
sion on this point, showing it’s importance, will be provided later.
As it is stated, Equation (7) propagates magnitude difference and
not ratios. However, with a simple mathematical trick, magni-
tude of ratios changes can be propagated easily; as shown later in
Section .

The direction of mapping is defined only by the matrix V ,
while the magnitude is decided by the Q and M operators through
β . The constant value α can be seen as the step ∆t of a numerical
approximation algorithm. In fact, high values of α correspond to
fast convergence but lower quality while small values give better
quality but slower convergence.

As every iterative (or recursive) algorithm, we need to set
the stop condition. In the case of gamut mapping we need that the
resulting image is completely in-gamut, thus the stop condition is

∀(x,y) ∈ I, Qp(x,y) = 0 (8)

It can be demonstrated (see Appendix ) that, under the following
conditions, the algorithm converges: the matrix V , defining the di-
rection of mapping, has to be devised such that the pixels colours
are directed toward the destination gamut, and, at the same time,
‖V‖ ≤ 1.

Being an iterative algorithm, the parameter α is very impor-
tant to the final result. Analysing Equation (7), it is possible to
note that the maximum magnitude of mapping during an iteration
is α times the norm of vector valued matrix ~V . We can impose
that the maximum magnitude at each iteration is fixed to a spe-
cific value. Since the maximum norm of V must be 1, the optimal
setting of α comes from the precision we ask the iterative algo-
rithm to work. Considering an image quantised with 2n steps, the
optimal value is α = 2−(n+1) so that the maximum change during
an iteration is less or equal than half the quantisation step. Thus,
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we can guarantee at least the sufficient precision before the final
re-quantisation of data prior to sending to printer or other devices.
Using RGB images with 8 bits per channel, the optimal value for
α is 0.0019531. Smaller values can provide even better results at
the cost of an higher number of iterations before convergence.

Sequential Gamut Mapping
We can now address more in detail the technical problems

of gamut mapping. As stated above, we perform gamut mapping
in two separate steps: first we treat relative luminance Y , then
saturation. This decision is important in our proposal for two rea-
sons: firstly it permits not to change the hue, even though we are
taking inspiration from Retinex, secondly it avoids the possible
inversion of lightness typical of the one step mappings directed
toward the centre of gamut. This second motivation is significant
since the luminance component is very important for details per-
ception and for the global contrast of the image. This problem
has been addressed by Farup et al. in [7] in Section VI.C. From
their analysis, we have to take a critical decision: either preserve
luminance gradients or preserve saturation gradients. We decide
to preserve luminance gradients since they are far more important
than saturation gradients.

Diffusing Relative Luminance Ratios
Figure 2 shows the first part of the G-IRDA algorithm. The

algorithm takes as input a sRGB coded input image~IsRGB and pro-
duces an intermediate linearly coded RGB image ~RRGB, where the
Y component has been treated by the IRDA algorithm to achieve
gamut mapping goals. To clearly describe and define all the de-
tails of the algorithm the following subsections describe every
block of the scheme in Figure 2.

We perform a standard gamma decoding assuming γ = 2.2.
The following projection is used to have CIE Y values from lin-
early encoded RGB values:

IY = 0.212IR +0.715IG +0.072IB (9)

where R, G and B index indicate the respective colour component
of image~IRGB.

The IRDA algorithm is based on differences and sums. A
way to treat Y ratios is to convert the data from linear to logarith-
mic and then use IRDA as it is. This is done using the follow-
ing property of the logarithm function: ln(a/b) = ln(a)− ln(b),
and exponentiating at the end of the IRDA computation. The two
blocks “Log” and “Exp” are computed by, respectively, l : [0,1] 7→
[−1,0] and e : [−1,0] 7→ [0,1]:

l(IY (x,y)) =
ln(IY (x,y)+ ε)− ln(K1)

K2
(10)

e(RlogY ) = K1e(K2RlogY )− ε (11)

where ε is a small value to avoid the logarithm of zero, K1 = 1+ε

and K2 =−ln(ε)+ ln(1+ε) are constants that depend only on ε .
These constants assure that e(l(z)) = z,∀z ∈ [0,1].

To clearly define the behaviour of the IRDA algorithm we
need to define VY , α and β . While α and β are constants that can
be tuned, VY has to be devised univocally. It is important to note
that, since IlogY is a scalar matrix, VY is a scalar matrix too. The
following formula states how to devise VY :

VY (x,y) = ln(1)− IlogY (x,y); (12)

Here, thanks to K2, IlogY (x,y) ∈ [−1,0] and consequently
VY (x,y) ∈ [0,1]. This ensures that |VY (x,y)| ≤ 1. The other con-
dition to have a convergent IRDA algorithm is that VY (x,y) is de-
vised to move pixels colours toward the destination gamut. In rel-
ative colorimetry, Y = 1 is in gamut, and thus the mapping toward
ln(1) = 0 as indicated in Equation (12) guarantees the second con-
vergence condition.

To clarify the behaviour induced by the definition of VY in
Equation (12), we can rewrite the IRDA Equation (7) substituting
the generic vector valued matrix ~V with the specific case of VY :

RlogY,p+1 = RlogY,p +αVY

(
(1−β )Qp +β

Mp

α

)
(13)

where RlogY,0 = IlogY . Substituting VY with its definition (see
Equation (12)) and assuming ((1− β )Qp + β

Mp
α
) = 1 for sim-

plicity, we obtain:

RlogY,p+1 = RlogY,p +α ln(1)−αIlogY (14)

Exponentiating both sides of this formula and using the prop-
erties of exponential function we have:

eRlogY,p+1 = eRlogY,p
eα ln(1)

eαIlogY
(15)

Here the index logY denotes quantities that are logarithmic en-
coded, thus we can rewrite the formula using the respective linear
quantities, adding spatial coordinates (xi,yi) of a generic pixel i:

RY,p+1(xi,yi) = RY,p(xi,yi)

(
1

IY (xi,yi)

)α

(16)

This formula clearly shows that during the IRDA computation, at
each iteration, every pixels value RY,p(xi,yi) is multiplied by the
constant quantity (1/IY (xi,yi))

α that depends only on IY (xi,yi)
and α . This quantity is always greater than one since IY (xi,yi) ∈
[0,1] and α > 0. This respects the Retinex property of never de-
creasing pixel values.

Moreover, this formula can be seen as an iterative version of
the Retinex formula in Equation (3) where the spray sampling has
been removed and IY (xi,yi) plays the role of the local maximum.
Thus, the locality of IRDA is devised using the diffusion opera-
tor instead of sampling the neighbourhood pixels. Moreover, the
spatially variant nature of IRDA is not present in formula (16) be-
cause, for simplicity, we removed the diffusion component in the
step between Equations (13) and (14) without loosing validity of
the mathematical explanation.

Once the grayscale gamut mapped image RY is obtained, we
need to re-add the chromaticity component of the input image.
Since the chromatic component is two dimensional we need to
extend to the RGB colour space the grayscale images RY and IY
as following:

~Rgray
RGB = RY~vR +RY~vG +RY~vB (17)

~Igray
RGB = IY~vR + IY~vG + IY~vB (18)

where ~vR, ~vG and ~vB are the unitary vectors representing respec-
tively the red, green and blue axis. Then, to re-add the chromatic-
ity we simply substitute the Y component of input image with the
new Y component of RY as follows:

~RRGB =~IRGB−~I
gray
RGB +~Rgray

RGB (19)
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Figure 2. A schematic view of the Y treatment of the G-IRDA algorithm.

Clipping Saturation
The second step of the algorithm modifies the saturation of

the image ~RRGB to achieve an in-gamut output image ~ORGB. As
stated above we want to modify saturation without changing both
the hue and the previously computed relative luminance RY . To
this aim we perform the clipping toward the achromatic axis, on
lines orthogonal to the Y axis. We called this clipping Y⊥. The
study performed in Section ensures that the hue will be modi-
fied less or as much as algorithms that employ constant hue lines
in CIELAB. However, depending on the shape of the destination
gamut, the Y⊥ can decrease the saturation too much, especially
for very dark colours. To favour saturation instead of intensity,
the clipping could be performed toward the gray axis on lines or-
thogonal to it; we name this clipping as G⊥. In the result section
we show some comparison between this two clipping strategies.

After the clipping, the output in-gamut image ~ORGB can then
be encoded in sRGB or alternatively linearly or non-linearly trans-
formed into a desired colour space.

Speed-Up via Multi-Resolution Processing
The computational cost of the proposed method is

O(KN log2(N)), where K is the required number of iterations and
N is the number of image pixels. The cost of each iteration is
dominated by the filtering, which is O(N log2(N)) since we use
the Fast Fourier Transform (FFT) to compute it. A way to speed
up the method is to increase the α value, which unfortunately
causes a degradation of the final result as demonstrated later in
Subsection . Instead, we use a classical multi-resolution approach
where the input image is subsampled 2S times and gamut mapped
using IRDA; subsequently, high-frequency content is added to the
upscaled mapped image and, again, mapped using IRDA. This
repeats until a full resolution image is obtained. We performed
various experiments4 with a set of 10Mpixels images and mea-
sured the speed up and degradation of results compared to the
single scale algorithm, measured in average ∆E∗ab error5; results
are summarised in Table 1.

Discussion of the G-IRDA Algorithm
Estimation of Induced Ratio Errors

It is important to understand how and how much can the pro-
posed approach induce ratio errors between pixel values during
the computation. It has been already discussed that, for the pur-
pose of gamut mapping, it is impossible to preserve all the ratios
between Y values. To give an estimation on how the algorithm
induces ratios errors to the image and how the α parameter can
influence this error, the following proof, using a simplified nota-
tion, is presented.

4The algorithm is implemented in MATLAB. Experiments have been
conducted using a 2,3 GHz Intel Core i7. Using GPU-based FFT and/or a
more performing language, we suppose another order of magnitude speed-
up could be easily achieved.

5The JND (Just-Noticeable Difference) corresponds to ∆E∗ab ≈ 2.2

Let a0 and b0 be scalars representing Y values of two pixels
and δ0 = a0/b0 their initial ratio (here the subscript denotes the
iteration step p). After one iteration of the IRDA algorithm, as
described in Equation (16), and thus without the diffusion part, a1
and b1 will be:

a1 = a0

(
1
a0

)α

, b1 = b0

(
1
b0

)α

. (20)

The ratio at iteration p = 1 is:

δ1 =
a1

b1
=

(
a0

b0

)1−α

= δ
1−α

0 (21)

This shows that the smaller α the smaller the induced error during
an iteration step. This confirms the fact that smaller α results in
better images.

Effect of β Parameter
By a simple analysis of the main IRDA Equation (7), it can

be seen that β = 0 converts the proposed method into a spa-
tially invariant clipping. Increasing β ∈ [0,1), increases the dif-
fusion effect of IRDA and diminishes the clipping component of
the equation. This results in a more prominent Retinex-like be-
haviour. Figure 3 shows the result of G-IRDA while increasing
β .

As it can be seen, increasing β helps in improving visibil-
ity in dark areas at the cost of less saturated colours and over-
compression of the image gamut. It is also evident that for
β = 0.99 the algorithm tends to create “local whites” almost in
every image region.

G-IRDA Behaviour Using Alternative d(x,y) Func-
tions

The shape of function d(x,y) can heavily influence the result
since the diffusion depends directly on it. An alternative function
can be a modified Gaussian:

dG(x,y) =

 0 if (x,y) = (0,0)

k−1
G e
−
(

x2+y2

2σ2
G

)
if (x,y) 6= (0,0)

(22)

where where kG is such that dG(x,y) has unitary integral. After
some preliminary tests we noticed that dG induces the haloing ef-
fect in the final result. Moreover, the use of dG requires the tuning
of σG and thus increases the number of parameters without adding
improvements. In our experimentation we noticed that the “edge”
of the halo varies for different settings of σG. This observation
prompted us the following question.

The Gaussian function in Equation (22) has inflection points
when the radius r =

√
x2 + y2 is equal to σ . The change of sign

in the second order derivative at the inflection point makes the
Gaussian function decreasing quicker when r > σ than it does
when r ∈ [0,σ ]. This means that the diffusion action to pixels
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Speed-up ratio, average time of the multi-resolution algorithm, and ∆E∗ab error as a function of scales S. Uncertainty represents
standard deviations of values on the set of used images.

S 5 6 7 8
Speed-up 6.2±1.4 10.4±6.2 12.1±7.74 14.1±3.4
Time (sec) 382±76 267±104 235±97 170±43

∆E∗ab 1.66±0.49 1.72±0.56 1.9±0.69 1.7±0.69

β = 0 β = 0.25 β = 0.5 β = 0.75 β = 0.99

Figure 3. G-IRDA behaviour varying β .
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Figure 4. Scanlines of the result of IRDA using Euclidean and Gaussian

diffusion functions on a toy problem.

that are located outside the circle of radius r = σ is conspicuously
minor than the action applied to pixels inside this circle. Is the
haloing the visible “signature” of the presence of an inflection
point in the diffusion function?

To support this hypothesis we performed a preliminary test
with a toy image composed by a strong edge in which the lower
value is Yl = 0, and thus out of gamut, while the upper value is
Yh = 0.1614 (in-gamut). Figure 4 shows the scan-lines of the in-
put toy image and the results with different σ values plus the result
using the inverse Euclidean function of Equation (6). Using this
toy image and varying σ , we obtained that the Pearson’s linear
correlation coefficient between the inflection point of the Gaus-
sian function (σ ) and the point in which the derivative of scan-
lines reach the zero derivative, e.g. when the halo disappears, is
0.9989.

This discussion is not meant to be exhaustive, rather it wants
to raise a question that requires more investigation: is the Gaus-

sian function the only (or major) cause of haloing artefact during
isotropic diffusion or multi-level/scale computation?

Results and Comparison
Figure 5 shows the result of gamut mapping the five images

shown in the leftmost column to the ISO uncoated gamut using
three existing spatially variant gamut mapping algorithms, and
two versions of G-IRDA proposed here. The images in the second
column are gamut mapped by the Retinex-based algorithm by Mc-
Cann [13]. The third column shows the results of the multi-scale
approach by Farup et al. [7], which encompasses the Morovic [24]
approach and moreover solves some of the drawbacks and also re-
duces the haloing effect. The parameter settings proposed in the
paper are used as is. The fourth column shows the results of the
approach presented by Zolliker et al. [25] in which the method by
Bala et al. [26] has been modified with a bilateral filter to reduce
the haloing effect. The two rightmost columns show the results of
the G-IRDA algorithm with β = 0.5 (α = 1/512) with both the
Y⊥ and G⊥ saturation clipping strategies, respectively.

The topmost image is a toy image that was created by the
authors in order to exaggerate some of the problems commonly
encountered in spatially variant gamut mapping algorithms – hue
shifts and halos [7]. These types of artefacts are very clearly seen
for the McCann approach. For the Farup algorithm the hue shift
are removed, but the halos are still visible. In the Zolliker re-
production and the two G-IRDA ones, these artefacts are more or
less completely eliminated. There are other obvious differences
between the results of these three algorithms also, in particular
when it comes to relative and absolute saturation and lightness.
This can be seen by comparing the red, green, blue and yellow
central patches, and their relative contrast with the central gray
patches.

For the camera image, all algorithms but McCann perform
fairly well. The other ones mainly differ in how well they repro-
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duce the details of the tripod in the lower left part, and also in how
they reproduce the red and blue colours of the camera bag. For
the G-IRDA approaches, the behaviour with respect to details can
be tuned by changing the β parameter, as already discussed.

Looking at the picnic image, the importance of the choice of
colour space becomes particularly apparent. Where the colour of
the sky gets a hint of purple by the Farup algorithm and slightly so
also by the Zolliker algorithm that both use the CIELAB space, it
is much better rendered by G-IRDA. The direction of the mapping
clearly affects the rendering of the sky for the two versions of the
G-IRDA approach, where the luminance contrast of the clouds be-
comes much more apparent in the Y⊥ vs. the G⊥ strategy. Finally,
the details of the grass are clearly best rendered by G-IRDA.

The final image is different in that it contains large homo-
geneous areas with low gradients and almost no texture. Such
images often do quite well with spatially invariant gamut map-
ping, whereas spatially variant algorithms tend to introduce evi-
dent artefacts and haloing. Artefacts are clearly seen for the Mc-
Cann algorithms, and halos are also visible in the Farup approach.
For G-IRDA and Zolliker, it is not possible to identify any such
artefacts for this image. When it comes to overall lightness con-
trast and rendering, the two G-IRDA versions are clearly the best
performing ones.

Conclusion
In this paper we introduced a simple yet effective spatially

variant gamut mapping algorithm that does not generate visible
artefacts and/or haloing. We argue that this behaviour is mainly
due to the use of a diffusion function that has no inflection point.
Additionally, we show that RGB spaces could be appropriate for
gamut mapping due to good hue constant half-planes. The pro-
posed algorithm has only one free parameter (β ), which regulates
the behaviour of the algorithm from pure clipping to a Retinex-
like enhancement. This is a clear advantage with respect to state-
of-the-art methods, which usually requires more parameters, fre-
quently not directly related to gamut mapping aspects. We shown
that the proposed algorithm can be incorporated into a multi-
resolution scheme to speed it up consistently, making it suitable
for very large images.

Appendix: Convergence of IRDA
To demonstrate that the iterative algorithm of Equation (7)

converges we have to demonstrate that:

lim
p→∞

αV
(
(1−β )Qp +β

Mp

α

)
= 0 (23)

i.e. for all the pixels (x,y) ∈ I, the magnitude of the change tends
to zero while the number of iteration tends to infinity. The first
thing we have to guarantee is that the matrix V is designed cor-
rectly to force the pixels colour to progressively move into the
destination gamut; in this way the Q operator must assume the
zero value for all the pixels after a certain iteration Pc that de-
pends on the destination gamut, input image, and on V . Thus, if
V is properly defined we can rewrite the limit as:

lim
p→∞

αV
(

β
Mp

α

)
= 0 (24)

i.e. for all the positions (x,y), Mp has to reach the zero value. Now
it’s easy to substitute Mp using its definition (see Equation (5)),

simplify α , obtaining the following equation:

lim
p→∞

V (β‖Ip− Ip−1‖∗d) = 0 (25)

Now, since the convolving function d has an integral normalisa-
tion, this quantity is forced to decrease if βV < 1. Since β ∈ [0,1)
the constraint we should respect is that ‖V‖ ≤ 1 for all the coordi-
nates (x,y). This is sufficient to have an algorithm that converge
to a solution.
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