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Abstract

Providing not only spatial information but also spectral measures as a function of
wavelength, hyperspectral imaging boasts a much greater accuracy than traditional
grayscale and color imaging. For this capability, hyperspectral imaging has been
employed increasingly for various applications such as quality control and inspec-
tion of materials. However, to fully exploit its potential, it is important to be able
to validly process the spectral image data as a measure. This induces the need
of metrology where accuracy, uncertainty, and bias are addressed and managed at
every level of the image processing.

Aiming at developing a metrological image processing framework for spectral
data, in this work we selected a nonlinear approach using the established mathem-
atical morphology framework. We have extended this framework to the spectral
domain by means of a distance-based ordering relation. Novel spectral distance
function and spectral ordering relations are proposed, as well as new spectral im-
age analysis tools using histograms of spectral differences.

To ensure the validity of the new spectral mathematical morphology framework,
rigorous theoretical validation and metrological assessment are carried out at each
stage of the development. Thus, new protocols for quality assessment of spectral
image processing tools are also developed. These protocols consist of artificial
datasets to validate the theoretical and metrological requirements, image datasets
of known characteristics to assess the robustness and stability, and datasets from
real cases to prove the usefulness of the framework in an applicative context. The
chosen application tasks are within the cultural heritage domain, where the ana-
lyzed images include pigments and paintings.
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Translations of The Abstract
The following translations of the abstract have been kindly provided by the super-
visors, Jon Hardeberg (Norwegian translation) and Noël Richard (French transla-
tion).

Sammendrag (Norwegian translation)
Hyperspektral avbildning muliggjør mye
mer nøyaktige målinger enn tradisjo-
nelle gråskala og fargebilder, gjennom
både høy romlig og spektral oppløsning
(funksjon av bølgelengde). På grunn av
dette har hyperspektral avbildning blitt
anvendt i økende grad ulike applika-
sjoner som kvalitetskontroll og inspek-
sjon av materialer. Men for å fullt ut
utnytte sitt potensiale, er det viktig å
være i stand til å behandle spektrale
bildedata som målinger på en gyldig
måte. Dette induserer behovet for me-
trologi, der nøyaktighet, usikkerhet og
skjevhet blir adressert og kontrollert på
alle nivå av bildebehandlingen.

Med sikte på å utvikle et metrologisk
rammeverk for spektral bildebehandling
valgte vi en ikke-lineær metodikk ba-
sert på det etablerte matematisk morfo-
logi-rammeverket. Vi har utvidet dette
rammeverket til det spektrale domenet
ved hjelp av en avstandsbasert sorte-
ringsrelasjon. En ny spektral avstands-
funksjon og nye spektrale sorteringsre-
lasjoner ble foreslått, samt nye verktøy
for spektral bildeanalyse basert på his-
togrammer av spektrale forskjeller.

For å sikre gyldigheten av det nye spekt-
rale rammeverket for matematisk mor-
fologi, har vi utført en grundig teore-
tisk validering og metrologisk vurde-

Résumé (French translation) En four-
nissant en plus de l’information spa-
tiale une mesure spectrale en fonction
des longueurs d’ondes, l’imagerie hy-
perspectrale s’enorgueillit d’atteindre
une précision bien plus importante que
l’imagerie en niveaux de gris et cou-
leur. Grace à cela, elle a été utilisée
en contrôle qualité, inspection de ma-
tériaux, etc. Cependant, pour exploiter
pleinement ce potentiel, il est impor-
tant de traiter la donnée spectrale
comme une mesure, d’où la nécessité
de la métrologie, pour laquelle exac-
titude, incertitude et biais doivent être
maitrisés à tous les niveaux de traite-
ment.

Face à cet objectif, nous avons choisi
de développer une approche non-liné-
aire, basée sur la morphologie mathé-
matique et de l’étendre au domaine spec-
tral par une relation d’ordre spectral ba-
sée sur les fonctions de distance. Une
nouvelle fonction de distance spectrale
et une nouvelle relation d’ordonnance-
ment sont ainsi proposées. Un nouvel
outil d’analyse des données spectrales
a été proposé à partir d’histogrames de
différences.

Afin d’assurer la validité des opérateurs,
une approche théorique rigoureuse et
une évaluation métrologique ont été
mises en œuvre à chaque étage de dé-
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ring på hvert trinn i utviklingen. Der-
med er og-så nye protokoller for kvali-
tetsvurdering av spektrale bildebehand-
lingsverktøy utviklet. Disse protokol-
lene består av kunstige datasett for å
validere de teoretiske måletekniske kra-
vene, bildedatasett med kjente egenska-
per for å vurdere robustheten og stabi-
liteten, og datasett fra reelle anvendel-
ser for å bevise nytten av rammeverket
i en anvendt sammenheng. De valgte
anvendelsene er innenfor kulturminne-
feltet, hvor de analyserte bildene er av
pigmenter og malerier.

veloppement. Des protocoles d’évalua-
tion de la qualité des traitements mor-
phologiques sont proposés, exploitant
des jeux de données artificielles pour
la validation théorique, des ensembles
de données dont certaines caractéris-
tiques sont connues pour évaluer la ro-
bustesse et la stabilité et des jeux de
données de cas réels pour prouver l’in-
térêt des approches en contexte appli-
catif. Les applications sont développées
dans le contexte du patrimoine cultu-
rel pour l’analyse de peintures et pig-
ments.
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Notations

Set, Image, and Spectral Functions Related Terms

λ Wavelength or spectral band, λ ∈ [λmin, λmax].
S Image value as a function of wavelength λ, where

S = {s(λ), λ ∈ [λmin, λmax]}.
I(x) = S Image function at spatial location x, x ∈ Z2, whose value is a

spectral function S. Sometimes I(i, j) notation is also used to
explicitly state the two spatial coordinates of an image, i, j ∈ Z.

Ĩ(x) = S Artificially generated image function at spatial location x.
Ig(x) = S Ground truth image function at spatial location x.
L(x) = y Labeled image in the context of image segmentation, y ∈ Z.

When used in the context of crack detection, y = {0, 1}, where
0 and 1 are used to represent non-crack and crack pixels, respect-
ively.

nI Numbers of pixels in an arbitrary image I .
SBk Theoretical equi-energetic black spectral function, where

sBk(λ) = 0, ∀λ ∈ [λmin, λmax].
SWh Theoretical equi-energetic white spectral function, where

sWh(λ) = 1, ∀λ ∈ [λmin, λmax].
Sref Spectral function employed as reference in the context of single

reference distance function.
C Spectral function associated with a crack signal.
N Spectral function associated with a noise signal.
S A set of spectral functions. When it is written as SI , it should be

read as a set of all spectral functions originating from image I .
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x NOTATIONS

t(S, θ) Transformation function modifying an arbitrary spectral function
S with parameter θ.

Distance and Ordering Relations

d(Sx, Sy) Distance between two arbitrary spectral functions Sx and Sy.
div(Sx, Sy) Dissimilarity between two arbitrary spectral functions Sx and Sy,

described in terms of divergence.
sim(Sx, Sy) Similarity between two arbitrary spectral functions Sx and Sy.
d̄ Normalized distance response.
D A set of distance values, D = {d(Sref , Si), ∀Si ∈ S}.
g(S) Ordering relation, with an arbitrary spectral function S as input.

Nonlinear Image Filtering

FW,r,g(Sx) Image filter function, with a predefined filter window W , rank r,
and ordering relation g. Takes a spectral function Sx as input.

r Selected rank in the context of rank order filters.
W Spatial neighborhood associated with x as the spatial coordinate

of its origin, over which a filter window is defined.
SW Set of spectral functions within filter window W .
nW Number of spectral functions in SW .
ci Cardinality, or number of elements, associated with spectral func-

tion Si.

Mathematical Morphology Terms

B Structuring element. Will sometimes be written as a subscript
of a morphological operator to explicitly state the use a particu-
lar structuring element. E.g., δB is to be read as "dilation with
structuring element B." The rest of the mathematical morpho-
logy terms follow or are adapted from the written expression of
Soille [159].

S−∞, S+∞ Spectral reference coordinates in CRA ordering relation, also re-
ferred to as minimum and maximum convergence coordinates.

ε, δ Erosion and dilation operators, respectively.
% Beucher’s gradient.
γ, φ Opening and closing operators, respectively.
BTH , WTH Black and white grayscale top-hat transforms, respectively.
TH−∞, TH+∞

Spectral top-hat transforms which retain objects whose spectral



NOTATIONS xi

function converge towards the minimum and maximum conver-
gence coordinates, respectively.

CTH Combined spectral top-hat transforms, obtained by superimposing
the results of TH−∞ and TH+∞ by a logical ’OR’ operation.

Other General Terms

Z, Zn Set of integers and n-dimensional discrete space, respectively.
R, Rn Set of real numbers and n-dimensional Euclidean space, respect-

ively.
µ, σ Average and standard deviation, respectively.
∧, ∨ Minimum and maximum operators, respectively.
∩, ∪ Set intersection and union, respectively.
•, ? Logical AND and OR, respectively.
∆ Absolute difference operator.
id Identity operator.
H Heavyside function.
R A random variable.
T An arbitrary threshold value.
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Abbreviations

ASF alternating sequential filters
BHSD bidimensional histogram of spectral differences
CCMM Convergent Color Mathematical Morphology
CDF cumulative distribution function
CLTR color transformation employing D65 illuminant and CMF

(Section 2.3)
CMF CIE 1931 Color Matching Function (2°standard observer)
CRA conditional ratio and angular distance ordering relation
CRA-SMF CRA-based spectral median filter
ECS Euclidean distance of cumulative spectrum
EMD earth mover’s distance
FIXED Fixed bands color visualization (Section 2.3)
GFC goodness-of-fit coefficient
GMC Geman-McClure function
HMT hit-or-miss transform
HSI hyperspectral imaging
IR infrared
Isomap isometric feature mapping
KL Kullback-Leibler divergence
KLPD spectral Kullback-Leibler pseudo-divergence
LLE Locally Linear Embedding
LWIR long-wave infrared
MCW marker-controlled watershed
MM mathematical morphology
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xiv ABBREVIATIONS

MSB most significant bit
MWIR medium-wave infrared
NIR near-infrared
OCCO open-close and close-open filters
PDF probability density function
RMS root mean square
ROF rank order filters
ROI region of interest
SAM spectral angle mapper
SCM spectral correlation mapper
SE structuring element
SID spectral information divergence
SWIR short-wave infrared
THSD tridimensional histogram of spectral differences
VMF Vector Median Filters
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Chapter 1

Introduction

1.1 Motivation
Spectral imaging, e.g., multispectral and hyperspectral, has been employed for
quality control and inspections or diagnostics of materials for several decades.
Originally developed for remote sensing tasks, nowadays it has found its place in
a broad range of application fields. In agriculture, hyperspectral imaging has been
employed for, e.g., quality assessment of fruits [71], grains and nuts [123, 158],
meat [113, 185], and seeds [67]. The use of spectral imaging in art conservation
was started in the early 90s [118], and has continued to develop ever since [58,81,
144]. In the medical field, hyperspectral imaging has been employed to develop
cancer detection algorithms [117, 135] and also to detect counterfeit drugs [184].
Other use of hyperspectral imaging can be found in aerial archeology [47], plastic
waste sorting [89], and oil spillage detection [7].

Despite the great potential of hyperspectral imaging, unfortunately, the image pro-
cessing side does not quite follow the advances of this imaging technology. Gen-
erally, due to the size of a hyperspectral image which poses a significant com-
putational burden, the image processing step is carried out after dimensionality
reduction or band selection procedures. Indeed, these approaches have their merit
and can be appropriate in certain cases, e.g., when diagnostic bands are known.
However, they do not allow to fully exploiting the gain of accuracy that hyper-
spectral imaging has to offer. Often times, dimensionality reduction is conducted
by assuming the existence of noise. However, this procedure will not only re-
move the noise but also important spectral variations within the data. And so, this
pre-processing step is done at the cost of losing the accuracy, by which argument
the expensive acquisition is carried out in the first place. In order to fully exploit
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the potential of hyperspectral imaging, we believe that hyperspectral image pro-
cessing must be carried out metrologically. By introducing metrology to image
processing, the following question will always be at the center of consideration,
i.e., how to manage accuracy, uncertainty, and bias at every step of the processing
chain. But in order to construct this metrological image processing framework, an
understanding of the physical properties of spectral data is required. This is be-
cause the framework will be developed based on the physical properties of spectral
data, rather than only considering them as numerical objects.

Spectral images should rather not be processed with linear image processing tech-
niques. This is because, in general, spectral images do not satisfy the widely used
hypotheses of Gaussianity and stationarity which are usually assumed to validate
linear models [122]. Furthermore, linear processing approach requires that there
is a valid addition and multiplication with a scalar for spectral data, see Fig. 1.1,
which is an erroneous assumption to make. But then again, it is also not only a
matter of whether the operations are available. Rather, both addition and multiplic-
ation with a scalar should be physically meaningful. And looking at the problem
from this point of view, such operations do not exist for spectral data. Thus, even
though the linear approach has been employed to solve image processing tasks for
spectral data, one must be conscious that this approach is not theoretically valid.
A valid spectral image processing can be obtained through the nonlinear approach.
In nonlinear image processing approach, only a complete lattice is required, which
will be enabled through ordering relation.

Figure 1.1 – Fundamental structures and requirements of linear and nonlinear im-
age processing approaches.

Mathematical morphology (MM) is a theory and full framework for the analysis
of spatial structures in an image. The theory was laid by the works of Math-



1.2. Mathematical Morphology, A State of The Art 3

eron [119, 120] and Serra [154, 156] on the fundamentals of ordering relations
and complete lattice theory. As an image processing framework, MM provides
tools such as image filtering, image segmentation, image measurements, etc. Mor-
phological filters cover application tasks such as non-uniform illumination correc-
tion [180], edge enhancement [153], and noise reduction [86, 108]. Watershed
algorithm is a morphological approach to image segmentation and it has been em-
ployed in, e.g., extracting features for content-based image retrieval [4] and ex-
tracting text-line features for document image analysis [133]. As a framework
for image measurements, MM provides tools for analysis of directions, texture
analysis, shape descriptors [159]. The popularity and success of MM are mainly
attributed to its rigorous mathematical foundation and ability to exploit spatial rela-
tionships of pixels, i.e., connected components, shape, size, and orientations. How-
ever, it should also be noted that the framework has only been fully developed for
binary and grayscale images. The extension of mathematical morphology frame-
work to the multivariate domain remains an open research question.

1.2 Mathematical Morphology, A State of The Art

1.2.1 Advanced Morphological Image Processing Tools

The scope of what MM framework can offer is extensive. At its basic level of
processing, erosion and dilation operators can be employed for tasks such as hole-
filling and the removal of noise or small objects in an image. These examples are,
however, a small fraction to the potential of the full MM framework. With the
purpose of describing the potential of the framework, in the following we present
two examples of advanced image processing tools which can be achieved by MM.

1.2.1.1 Morphological Gradients

The term gradient can be described as a slope, i.e., where there is change in mag-
nitude. In image processing, a gradient can be a useful identifier of region boundar-
ies or edges, in turn making it useful for segmentation algorithm such as watershed.
This is because pixels belonging to the same region typically have homogeneous
values. And, thus, an edge can be found when the magnitude of a gradient is high.
Or in other words, an edge occurs when there is a significant variation in the values
of neighboring pixels.

Computed based on the outputs of the basic morphological operators, i.e., erosion
and dilation, morphological gradients enhance local variations within an image.
Several morphological gradients have been proposed, which are essentially arith-
metic difference between either of the following combinations, i.e., dilation and
erosion, dilation and the original image, and the original image and erosion [159].
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Beucher’s gradient is an arithmetic difference between dilation and erosion. Other
morphological gradients are the half gradients [146], which consists of internal
gradient and external gradient. A morphological Laplace filter was also proposed
based on the arithmetic difference between external and internal gradients [173].
Then, there is also directional gradient, which is Beucher’s gradient obtained using
line structuring element [99].

The aforementioned morphological gradients were, however, limited to the gray-
scale domain. Challenges arise when the input image is multivariate, e.g., color
or spectral images. Many researchers approach the challenge by simplifying the
image. For example, the grayscale gradient would be applied on each individual
image channel, which would be followed by strategies combining the resulting
gradient images [32,62]. A color image is considered in a vectorial way through a
bit mixing paradigm, allowing the use of grayscale morphological gradient in the
context of watershed transformation [44].

1.2.1.2 Morphological Filters

Morphological opening and closing operators allow obtaining a set of morpho-
logical filters, e.g., open-close and close-open (OCCO) filters and alternating se-
quential filters (ASF) [155, 163]. OCCO filters are a set of filters which are com-
posed by a sequence of opening and closing operators, i.e., open-close, close-open,
close-open-close, and open-close-open filters1 This class of morphological filter-
ing is particularly suitable to filter an image which is disturbed by bright and dark
noisy structures [159]. ASF is also composed of sequential opening and closing
operators, but in this set of filters, the structuring element size is gradually in-
creased from 1 to n. This makes ASF particularly useful for a multiscale analysis.
ASF has been used for fractal analysis [29, 166], impulse noise removal [20], and
the segmentation of retinal images [157]. An extension of morphological filters to
the multivariate domain can be found in [43] using bit mixing approach. In this
article, results are provided for the case of ASF applied on color images.

1.2.2 Existing Color Mathematical Morphology

The main challenge of extending MM framework to the multivariate domain is in
identifying which ordering relation to employ, since there exist multitudes of mul-
tivariate ordering relation [12,23]. And this selection should be made by consider-
ing the nature of the image at hand and also the application goal. When it comes to
color images, color is not a valid Euclidean metric space [91]. As a consequence,
addition and multiplication with a scalar cannot be applied to color images. And,

1Open-close is to be read opening followed by closing operators.
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apart from the theoretical constraints to be satisfied, the nature of color images
makes not just any arbitrary vectorial ordering valid for color images.

Color images were initially processed by applying grayscale operations independ-
ently on its channels, which was inevitable due to technological constraints at the
time. Nevertheless, Pitas [138] argued that multichannel images had to be pro-
cessed with multichannel processes. Then, color image filters were developed us-
ing the marginal approach [96,136,182]. The same marginal ordering relation has
also been employed in a color mathematical morphology that is independent from
the choice of color space [66]. This morphology is applied on the reconstructed
spectral image of a given color image. Despite being more preferable than other
ordering relations due to its lower computational complexity [136], marginal or-
dering relation is not to be considered a suitable ordering relation for color images.
This is because it does not consider the correlation which exist between the chan-
nels of a color image, which in turn causes the generation of false colors. False
colors are values which do not exist in the initial image.

Then, there is a group of approaches which divide data into sub-groups, either
by employing the marginal properties of an image or reduction functions. The
ordering relation is then applied independently in each sub-group. Generally, the
challenge with this approach lies in the fact that there is no order between the
sub-groups. Two examples of this approach is ordering relations developed based
on random projection depth [177] and cost function incorporating distance and
color co-occurrences [45]. In [177], the existence of background and foreground
representations in an image is assumed. Even though the study was limited to color
images, it was claimed that the results were valid for any metric spaces. In [45],
to tackle the issue of having to compute too big of color co-occurrences, the input
image is clustered into a number of clusters, followed by a minimization algorithm.

Conditional ordering approach conducts ordering on the marginal components se-
quentially according to certain conditions or priorities. The marginal components
can be the original components of the data [9, 13, 15, 131] or ones obtained after
a preliminary coordinate transformation [110]. Also known as lexicographic or-
dering [23,177], it is particularly suitable where natural or artificial priorities exist
among the marginal components of the data, e.g. in color images [13]. How-
ever, there is a significant drawback, i.e. excessive prioritization of the first few
channels. This implies that the importance of the rest of the channels are almost
negligible and the inter-channel relation is not efficiently exploited.

Several strategies have been proposed to tackle the excessive prioritization issue
of the lexicographic approach. α-lexicographical ordering, originally developed
for the HSI (hue, saturation, and intensity) color space, was proposed to reduce
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the effect of excessive prioritization of the classical lexicographic ordering rela-
tion [131]. A factor α is introduced on the first cascade, i.e. I channel, allowing the
lexicographic approach to reach the subsequent marginal component. α-modulus
lexicographic ordering is an α-based approach which reduces the dynamic range
of the first channel and consequently allows reaching the second channel in the
ordering procedure [9]. Another approach that tries to shift prioritization from
the first channel is the α-trimmed lexicographical approach [12]. Then there are
quantization-based α-lexicographical ordering and marker-based lexicographical
ordering [13], which were developed to reduce the excessive prioritization issue in
an image with much larger channel count than the color images.

The notions of distance or similarity is one of the most common approach to ex-
tend mathematical morphology framework to the color domain [10,106,178,189].
In [10, 178], the order of a color is determined through its distance to a reference
color. In [106], two reference colors are employed, aiming to reach total ordering
property which is required by MM framework. In [189], the notion of similarity
is combined with a conditional ordering approach to develop a hybrid ordering
relation. Other approaches in extending mathematical morphology to the color
domain include graph-based approach [111], the bit-mixing paradigm [43], fuzzy
approaches [94, 107], probabilistic color morphology [51], and color morphology
based on Pareto-dominated hypervolume measure [93, 95].

1.3 Research Objectives
The main objective of this study is to develop a metrological image processing
framework for spectral data based on mathematical morphology. Thus, a mul-
tivariate ordering relation suitable for spectral data must be defined. Selecting to
base the ordering relation on the notion of distance, we claim that the metrological
constraints of the image processing framework to be developed can be maintained.

The first theoretical objective of this study is to identify the most suitable distance
function for spectral images, with the end goal of developing a distance-based
spectral mathematical morphology. In a previous research work, a distance-based
mathematical morphology for color images has been constructed [103]. Then,
in a more recent study, the potential of its extension to the multispectral domain
has also been explored [104]. To follow this direction, selection criteria which
comprises both theoretical and metrological constraints will be developed. Then,
based on the predefined criteria, a comprehensive evaluation will be carried out on
the existing distance functions. If none of the existing ones is found to be suitable
for spectral data, having identified the selection criteria, a suitable spectral distance
function will be constructed.
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Having identified a suitable spectral distance function, a distance-based spectral
ordering relation will be constructed. And this is the second theoretical objective
defined for the study. In addition to constructing a novel spectral ordering rela-
tion, existing approaches for the spectral domain will be considered and evaluated.
Thus, for this purpose, evaluation criteria consisting of both theoretical and met-
rological constraints will be developed.

After the theoretical developments of spectral distance function and spectral order-
ing relation, we will develop at the same time a set of tools for image analysis and
the fundamental operators for spectral MM framework. Given a hyperspectral im-
age, spectral distance function can be directly employed to construct tools useful
for the analysis of its spectral distribution. Then, having obtained spectral ordering
relation, rank order filters can be extended to the spectral domain and this will also
be carried out. Finally, as the main goal of the study, both spectral distance function
and spectral ordering relation will be employed to extend mathematical morpho-
logy framework to the spectral domain. Each of the aforementioned processing
tools will be assessed according to certain criteria, and employed to address tasks
in cultural heritage field, with datasets coming from paintings, manuscripts, etc.
To summarize, the main development stages in the study is as depicted in the first
column Fig. 1.2. In the second column are image processing operators which can
be obtained at the corresponding development stage. Then, related to this figure
is Fig. 1.3, providing the metrological criteria to assess at each stage of the image
processing framework development.

Figure 1.2 – Hierarchical organization of the scientific concepts leading to the
construction of distance-based spectral mathematical morphology framework. The
core development stages are depicted in the first column. In the second column are
operators which can be obtained at the corresponding level of development.
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Figure 1.3 – Metrological criteria associated to each level of spectral mathematical
morphology framework development shown in Fig. 1.2.

1.4 List of Published Articles
Throughout the span of this study, a number of articles have been published, see
the list below. The main topics of each article relative to the goals of the research
can be observed through Fig. 1.4.

Article A H. Deborah, N. Richard, and J. Y. Hardeberg. A comprehensive evalu-
ation of spectral distance functions and metrics for hyperspectral image pro-
cessing. Selected Topics in Applied Earth Observations and Remote Sensing,
IEEE Journal of, 8(6):3224–3234, Jun 2015

Article B H. Deborah, N. Richard, and J. Y. Hardeberg. On the quality evaluation
of spectral image processing algorithms. In Signal-Image Technology and
Internet-Based Systems (SITIS), 2014 Tenth International Conference on,
pages 133–140, Nov 2014

Article C H. Deborah, N. Richard, and J. Hardeberg. Spectral impulse noise
model for spectral image processing. In A. Trémeau, R. Schettini, and S.
Tominaga, editors, Computational Color Imaging, volume 9016 of Lecture
Notes in Computer Science, pages 171–180. Springer International Publish-
ing, Feb 2015

Article D H. Deborah, N. Richard, and J. Y. Hardeberg. Spectral ordering assess-
ment using spectral median filters. In J. A. Benediktsson, J. Chanussot, L.
Najman, and H. Talbot, editors, Mathematical Morphology and Its Applic-
ations to Signal and Image Processing, volume 9082 of Lecture Notes in
Computer Science, pages 387–397. Springer International Publishing, May
2015
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Article E H. Deborah, N. Richard, and J. Y. Hardeberg. Vector crack detection
for cultural heritage paintings. In Traitement et Analyse de l’Information
Méthodes et Applications (TAIMA), May 2015, Hammamet, Tunisia.

Article F H. Deborah, N. Richard, and J. Y. Hardeberg. Hyperspectral crack de-
tection in paintings. In Colour and Visual Computing Symposium (CVCS),
pages 1–6, Aug 2015, Gjøvik, Norway.

Figure 1.4 – Publication list in the context of thesis development. The main topics
of article A are spectral distance function and its quality assessment. Article B
and C proposed elements for the quality assessment of spectral image processing
tools. In article D, several multivariate ordering relations were assessed using a
proposed criterion. Article E and F provide applications of top-hat transforms
to crack detection task in cultural heritage domain. Note that all elements from
distance function to opening and closing are obtained prior to top-hat transforms.

1.5 Thesis Organization
The content of the thesis is organized around the flowchart shown in Fig. 1.5. Part
I of the thesis consists of 3 chapters. Background notions related to the digital con-
struction of a spectral image will be provided in Chapter 2. In the same chapter,
color visualization methods which will be used throughout the thesis will also be
elaborated. In Chapter 3, an extensive study is carried out considering the question
of spectral function definition, and consequently, which difference measure is the
most suitable for spectral data. A significant portion of this chapter has been pub-
lished in Article A, where a new measure has also been proposed. The study of
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spectral ordering relation is given in Chapter 4, where based on spectral difference
function defined in the preceding chapter, a new spectral ordering relation is pro-
posed. Quality assessment protocols used in this chapter are taken from elements
published in Article B and D.

Figure 1.5 – Thesis organization flowchart within the context of image processing
framework to be developed.

Part II of the thesis begins with Chapter 5, where graphical representations of spec-
tral differences are introduced as tools for hyperspectral image analysis. Since the
notion of reference is central to the computation of spectral differences, formula-
tion of reference selection is also provided in the chapter. Still in the same chapter,
noise and numerical problems are identified using the introduced graphical repres-
entations, which in turn allows adjusting the programming implementation accord-
ingly. Chapter 6 provides the construction and application of spectral rank order
filters, which are enabled by the spectral difference function and ordering relation
previously studied in Chapter 3 and 4, respectively. Parts of the quality assessment
protocols used in this chapter have been published in Article B, C, and D. The
construction of the first levels of a spectral mathematical morphology framework
can be found in Chapter 7. Basic morphological operators, i.e., erosion and dila-
tion, are defined which in turn allows the construction of spectral morphological
gradient. Using the constructed gradient, watershed segmentation algorithm will
be applied to spectral data. As a base for morphological filters, the extension of
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opening and closing can also be found in this chapter. One advanced morpholo-
gical filter is also extended to the spectral domain in this chapter, i.e., top-hat trans-
forms. As the final chapter of Part II, Chapter 8 provides a study centered around
an application task, i.e., crack detection for cultural heritage paintings. Differing
from its preceding chapters, the chapter will focus on the application and how the
morphological tools which have been developed so far can solve the problem. This
chapter is a complete version of the preliminary studies published in Article E and
F. Finally, the study will be concluded in Chapter 9.

In the final part of the dissertation, an exhaustive list of spectral distance functions
evaluated in Chapter 3, including their mathematical expressions, is provided in
Appendix A. In Appendix B, the hyperspectral image datasets employed through-
out the study will be described in more details.

1.6 Metrological Terms and Notions
The list of metrological terms and notions which will be employed throughout the
monograph can be found in Table 1.1. Measurement uncertainty and trueness will
be frequently used as for quality assessment in Chapter 4 and 6. The rest of the
terms are provided to avoid confusions of their definitions. Especially since they
are commonly used without reference to the vocabulary of metrology.

Table 1.1 – Definition of several qualitative terms used in metrology as seen
in [171].

measurand quantity intended to be measured

measurement
accuracy

closeness of agreement between a measured quantity
value and a true quantity value of a measurand

measurement
trueness

closeness of agreement between the average of an
infinite number of replicate measured quantity values
and a reference quantity value

measurement
precision

closeness of agreement between indications or
measured quantity values obtained by replicate
measurements on the same or similar objects under
specified conditions

measurement
uncertainty

non-negative parameter characterizing the dispersion of
the quantity values being attributed to a measurand,
based on the information used
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Chapter 2

From Surface To Spectral Images

Digital imaging works by recording electromagnetic radiation as it travels through
space and interacts with objects, e.g., absorbed or reflected. Based on the types of
electromagnetic radiation being captured, there are different modes of digital ima-
ging. For instance, given a scene or object, color imaging records visible electro-
magnetic radiation falling to its sensor, i.e., radiation ranging from approximately
380 to 780 nm. Computer tomography (CT) and radiography are digital imaging
technologies commonly used in the medical field. They capture X-rays, i.e., radi-
ation around 0.01 to 10 nm. Positron emission tomography (PET) is a functional
imaging technique that takes in gamma rays, i.e., electromagnetic radiation with
wavelengths less than 10 pm (or 10-11 meters). There are also digital imaging
modes which capture other types of waves, e.g., sound and radio waves. Regard-
ing this study, the focus is on electromagnetic radiation-based digital imaging,
mostly within the visible and a portion of near infrared spectral ranges. Through-
out the rest of this chapter, we provide necessary fundamental knowledge required
to understand digital images captured by a spectral imaging device.

2.1 Electromagnetic Radiation

2.1.1 Electromagnetic Waves

All matters with temperature above absolute zero emits electromagnetic radiation.
Not only that, matters also reflect radiations emitted by other matters. But what is
electromagnetic radiation? Electromagnetic radiation is energy which is propag-
ated through space as well as materials in the form of electromagnetic waves. Elec-
tromagnetic waves consist of two components, i.e., electric and magnetic compon-
ents. The electrical field (E) varies in magnitude in direction perpendicular to the

15
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propagation direction. The magnetic field (H) is propagated in phase with the
electrical field [35], see Fig. 2.1.

Different properties can be used to characterize electromagnetic energy. These
properties are wavelength, amplitude, frequency, and phase. In this study, we
will mainly use wavelength property. And as can be seen in the illustration in
Fig. 2.1, wavelength is the distance between crests of one wave and the next one.
When dealing with electromagnetic waves, this distance is actually really small.
In general we will use nanometer (nm) unit, i.e., 1 nm is equal to 10-9 meters.

Figure 2.1 – Illustration of an electromagnetic wave traveling through space in the
form of electric (E) and magnetic (H) fields, which are perpendicular to each other
and the direction of propagation. Shown illustration is derived from [35].

2.1.2 Divisions of the Electromagnetic Spectrum

The range of the electromagnetic spectrum can be divided into several groups
based on its wavelength, see Fig. 2.2. Note that such sharp breaks do not exist
in a full spectrum of solar energy. These divisions are established mainly for prac-
tical purposes and could be defined differently in different disciplines. Images
which will be employed throughout the study covers the visible and near-infrared
spectral ranges. The visible range is where light becomes visible to the human
visual system. From shorter to longer wavelengths, light is perceived as colors
from violet to red by the human eye. Characteristics of pigments within this range
have been found to be useful for pigment identification tasks [58]. The infrared
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(IR) range can be divided further into near-infrared (NIR), short-wave infrared
(SWIR), medium-wave infrared (MWIR), and long-wave infrared (LWIR) ranges.

Figure 2.2 – Principal divisions of the electromagnetic spectrum based on
wavelength. Illustration is derived from [183].

2.1.3 Radiometric and Spectral Quantities

Radiometry is the science of measuring electromagnetic radiation in any portion
of the electromagnetic spectrum. When it comes to visible light and human visual
system, photometry measures electromagnetic radiation whose units are weighted
according to the sensitivity of human visual system. Hyperspectral imaging, which
is the scope of this study, is concerned with radiometry rather than photometry.
Radiometric quantities, their units, and descriptions are provided in Table 2.1.
Quantities mentioned in the table are broadband quantities obtained from integ-
rating quantities over a wavelength range. The distribution of these quantities in
each wavelength is called spectral quantities. Spectral radiance is radiance as a
function of wavelength, with unit of (W m-2sr-1). Spectral reflectance is reflect-
ance as a function of wavelength. It is sometimes expressed as a ratio, with values
ranging from 0 to 1.
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Table 2.1 – List of radiometric quantities and their corresponding units and defini-
tions. Definitions are obtained from [169].

Radiometric
quantity

Unit Description

Radiant energy joule (J) The amount of energy carried out by
electromagnetic waves.

Radiant power watt (W) The radiant energy emitted, reflected,
transmitted, or received per unit time, also
known as radiant flux.

Radiant intensity W sr-1 The radiant power from a point source.
Radiance W m-2 sr-1 The amount of energy being emitted or

reflected from a particular area per unit
solid angle and per unit time.

Irradiance W m-2 The amount of incident energy on a
surface per unit area and per unit time.

Radiant exitance W m-2 The power emitted from a surface, also
known as radiant emittance.

Reflectance - The portion of the incident energy on a
surface that is reflected, usually expressed
as percentage or as value between 0 and 1.

Reflectance =
Observed brightness

Irradiance

2.2 Hyperspectral Images
Hyperspectral imaging is an imaging technology combining the power of digital
imaging and spectroscopy. An acquired hyperspectral image captures not only
spatial information, but also spectral measures that typically spans over hundreds
of contiguous spectral bands. In this study, in addition to the number of spectral
bands, we differentiate multispectral and hyperspectral imaging in that the multis-
pectral bands can overlap and their bandwidths are non-uniform. More detailed
explanations regarding hyperspectral imaging can be read from [36, 68].

2.2.1 Digital Image Formation

A grayscale image can be defined as a two-dimensional function I(i, j) where i, j
describes the spatial coordinates of the corresponding object or scene and I de-
scribes the intensity of light at any arbitrary pair of (i, j) coordinates. Such repres-
entation of a grayscale image means that the image is considered as a continuous
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object. However, when it comes to digital images, both the spatial coordinates
(i, j) and intensity I are of finite values and discrete quantities.

2.2.1.1 Image sampling and quantization

Image sampling is the digitization of continuous spatial dimension of the real
world into discrete coordinates (i, j). Then, digitization of the continuous intensity
values I into the discrete world is called image quantization. The two digitization
processes allow to express digital image as an approximation of a real world as
follows.

I(i, j) ≈


I(0, 0) I(0, 1) · · · I(0,M − 1)
I(1, 0) I(1, 1) · · · I(1,M − 1)

...
I(N − 1, 0) I(N − 1, 1) · · · I(N − 1,M − 1)


In the expression above, the continuous image I(i, j) is approximated by a digital
construction, which is anN×M array of equally spaced samples. Each individual
element of the array is called an image element, picture element, pel, or most
commonly known as pixel.

Digitizing the spatial continuity of an object into a discrete N ×M plane requires
decision about how big or small are theN andM , and subsequently the number of
intensity values nI which can be represented by a digital device. Resolution of a
digital image, i.e., degree of discernible details, depends strongly on the choice of
N , M , and nI parameters. If values of the parameters are increased, the obtained
digital image will be a closer approximation of the real scene it represents. Which,
of course, comes at the price of increasing the byte size of the image.

To observe the impact of various sampling and quantization choices to a color
image, see Fig. 2.3 and 2.4. With the scene shown in the image, we have a fixed
size of area in the real world which we want to represent as a digital image. A
pixel captures average information of the whole area it covers. Consequently, if it
covers a larger area, many details will be smoothed due to the averaging procedure.
By increasing the number of pixels an image can have, resolution of the image
will increase and more details can be perceived, see Fig. 2.3. Having a reduced
numbers of colors which can be represented by a digital device will make a digital
image look unrealistic, see Fig. 2.4. More importantly, colors belonging to the
same object tend to be more homogeneous. And due to this, object boundaries
will be harsher and more of a step function rather than a smooth ramp. However,
when this number is increased, there will be a certain point where the human visual
system will not be able to perceive the color differences anymore.
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(a) 512× 512 (b) 128× 128 (c) 32× 32

Figure 2.3 – Illustration of the impact of image sampling choices to a color im-
age. Reducing spatial resolution will cause a pixel to cover a larger area and,
consequently, smaller details in the scene are not captured.

(a) Initial number of colors (b) 128 colors (c) 8 colors

Figure 2.4 – Illustration of the impact of image quantization choices to a color im-
age. Reducing the numbers of colors which can be represented by a digital device
causes the image to look less realistic. The same object tends to have homogen-
eous colors and object boundaries will also be more of a step function rather than
a smooth ramp.

2.2.1.2 Spectral image sampling and image cube

When it comes to spectral images, sampling is not only carried out for the spa-
tial domain but also the spectral domain. Unlike a grayscale image whose smallest
unit is represented by a single value, one pixel in a spectral image is represented by
many values. The number of values representing a pixel is determined by the spec-
tral sampling interval ∆λ, or what is more commonly known as spectral band-
width, and the spectral range in which a camera operates ∆(λmax, λmin). Spectral
bandwidth specifies the spectral interval, typically in nanometer unit, which are
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used to record brightness as a function of wavelength [37]. Due to this, a digital
spectral image is represented by a three-dimensional matrix I(i, j, λ), which is
also called an image cube. See also illustration in Fig. 2.5.

Figure 2.5 – Illustration of a hyperspectral image cube using a cutout of
The Scream (1893) by Edvard Munch, which was hyperspectrally acquired in
2012 [81]. An image cube consists of three dimensions. Two of them capture
spatial coordinates. The other dimension captures spectral measures as a function
wavelength λ.

2.2.1.3 The impact of image sampling

Due to an averaging process which follows image sampling in the formation of a
digital image, the values of neighboring pixels are not independent. Moreover, the
closer two pixels are in the spatial arrangement of the image, the more correlated
they are. And this applies for all digital images, be it grayscale, color, or the
spectral ones. As a consequence, the color of a spatial region will be relatively
homogeneous as neighboring pixels only vary a little.

For spectral image sampling, in reality the spectral bandwidths do not define a dis-
crete limit in the spectral range captured by a camera sensor. And due to spectral
sensitivity of the sensor1, neighboring spectral channels in a hyperspectral image
are known to be highly correlated. In turn, these known characteristics of hyper-
spectral data will impact the discrimination of objects and regions in a spectral
image. Rather than having clear edge boundaries, spectral values along borders of
a region will be characterized by a mixture of spectral characteristics of the region
it belongs to and the neighboring ones.

1Read [37] for more explanations regarding spectral sensitivity of optical sensors.
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2.2.2 Spectral Values as Measures of Electromagnetic Radiation

As mentioned previously, every pixel in an image cube is represented by a series
of measures where each correspond to the amount of energy received for a specific
spectral band or wavelength λ. Due to this, spectral measures describing an image
pixel can be represented as a function of wavelength, or simply spectral function.
Then, rather than describing a spectral image with I(i, j, λ), the following expres-
sion will be employed throughout the monograph.

I(i, j) = S = {s(λ), λ ∈ [λmin, λmax]}

Looking at the spectral function S, it is composed of measured quantity values of
electromagnetic radiation which are obtained from a spectral acquisition. Then,
since in this case the measurand is energy, the measured quantity values are pos-
itive. Due to this, a spectral function can be mathematically defined as a measure,
i.e., a function which assigns a non-negative real number to a subset Σ ofX defined
on a σ-algebra2. For a spectral function s to be a measure from wavelength λ to
the extended real number line, it has to satisfy the following properties.

• Non-negativity, s(λ) ≥ 0, ∀λ ∈ [λmin, λmax]

• Null empty set, s(∅) = 0

• Countable additivity, for all countable collections {Ei}∞i=1 of pairwise dis-
join sets in Σ, Eq. 2.1 holds.

s

 λmax⋃
i=λmin

λi

 =

∞∑
k=1

s(Ek) (2.1)

2σ-algebra on a set X is a collection of Σ subsets of X , including ∅, which is closed under
complement and union/ intersection of countably infinite many subsets. The pair (X,Σ) of a set X
and its σ-algebra is called a measurable space [167].
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2.3 Color Visualization of Hyperspectral Images
A hyperspectral image typically consists of hundreds of channels. In order to
generate a color visualization of a hyperspectral image, it must be reduced to a
three-channel color image. In the following are three different color visualization
methods employed throughout the study.

FIXED visualization In this method, three spectral band images from a hyper-
spectral image are directly used as RGB channels. The band selection is
made according to information provided by each hyperspectral scanner, i.e.,
the spectral bands which correspond to peak-sensitivity band of the camera
sensor.

ENVI visualization Color images are generated using the default visualization
method of ENVI software platform [69].

CLTR visualization Color images generated by CLTR method, which is a short
for color transformation, are approximation of how the scene/ objects cap-
tured by the hyperspectral camera would be perceived by the human visual
system. Having a spectral reflectance function as a function of wavelength
s(λ), the first step of the color transformation is given in Eq. 2.2, where
sD65(λ) is the spectral power distribution of D65 illumination and the CIE
1931 Color Matching Function (2°standard observer) (CMF) is represen-
ted by x(λ), y(λ), and z(λ) [1]. Finally, the sRGB coordinate of spectral
function s(λ) is given by the matrix multiplication shown in Eq. 2.3. In the
case of a calibrated display, a more suitable XY Z → RGB matrix can be
employed in order to use the whole display gamut.

X =

∫ 780

380
s(λ) · sD65(λ) · x(λ) dλ

Y =

∫ 780

380
s(λ) · sD65(λ) · y(λ) dλ

Z =

∫ 780

380
s(λ) · sD65(λ) · z(λ) dλ

(2.2)

RG
B

 =

 3.2404542 −1.5371385 −0.4985314
−0.9692660 1.8760108 0.0415560
0.0556434 −0.2040259 1.0572252

XY
Z

 (2.3)
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Figure 2.6 – CIE 1931 Color Matching Functions (CMF), 2°standard observer.



Chapter 3

From Definition of Spectral
Function to Spectral Difference

3.1 Introduction
A spectral function is an n-dimensional measure. So does a color measure obtained
from a traditional color imaging, typically with three or four channels. In this re-
gard, the difference between a spectral and color measures lies solely in their num-
bers of channels. Should the two measures then have the same definition? Quantit-
ies obtained from different measurements can be combined into an n-dimensional

25
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feature vector. Both, a spectral function coming from a single spectral acquisi-
tion and a feature vector of different measurements, are essentially composed of
measured quantities. Then, should the two measures have the same definition?

In mathematics, there are several possible definitions for an n-dimensional meas-
ure. It is most commonly considered as a vector in the Euclidean space given that
the components are independent, which then implies that their order of arrange-
ment does not matter. On the other hand, if the components are correlated, the
notion of probability density function can be an alternative. When the order of
components must be maintained, the questioned measure could possibly be a se-
quence such as in DNA matching task, or similar to that of time series. Another
possible definition is to regard an n-dimensional measure as a sample in manifold.
While there are many possibilities to properly defining a spectral function, in this
study the aim is to find the most suitable definition for a spectral function for its
use in spectral difference.

The question of mathematical definition of a spectral function can be translated
into the question of spectral differences, e.g., distance, similarity, or divergence.
Such is because a difference function implicitly defines what a spectral function
is in its formulation. As a consequence, validating a difference function requires
to validate its inherent assumption of a spectral function. And thanks to this, the
validation of whether the spectral function definition is suitable can be carried out
through evaluating the response of the questioned difference function. Finally,
since both spectral function definition and spectral difference must be validated,
the necessity of objective criteria has become indispensable. Another point to
consider lies in the fact that a spectral function is not only a mathematical object,
but also a measure coming from a physical reality. Therefore, objective criteria to
define must incorporate both theoretical criteria and metrological criteria enabling
physical validity of the difference function.

In this chapter, after defining the objective criteria, various difference functions
are categorized based on their inherent definition of a spectral function and further
evaluated with the predefined objective criteria. Organization of the chapter is as
follows. Criteria used in evaluating spectral difference functions is provided in
Section 3.2. Then, various difference functions are grouped based on their defin-
ition of a spectral function, allowing their discussions and evaluations, as given
from Section 3.3 to 3.7. Finally, conclusions are drawn in Section 3.8. Note also
that mathematical expressions of each distance function that are not found in this
chapter will be provided in Appendix A. The core part of this chapter has been
published in Article A [56].
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3.2 Expected Properties of Distance Function

3.2.1 Theoretical Properties

The notion of difference is a general term used to describe dissimilarity between
two objects. And in mathematics, there are several ways in which differences
between two objects can be defined and quantified. Among the different ways
are, e.g., distance (or dissimilarity), similarity, and divergence. The notion of
metric is often encountered to describe object differences, but in this study its
definition is considered to be identical to that of distance1. Regardless of which
definition of difference is to be employed, we limit the choice to ones that satisfy
the properties of a measure, i.e., non-negativity, null empty set, and countable
additivity. See Section 2.2.2 for mathematical definition of a measure adapted to
the case of spectral function.

With the objective of identifying the most suitable difference function for spectral
data, a difference function on a set of spectral functions S is defined as

d : S × S → [0,∞),

where ∀Sx, Sy, Sz ∈ S the following holds:

• Reflexivity, d(Sx, Sx) = 0

• Non-negativity, d(Sx, Sy) ≥ 0

• Symmetry, d(Sx, Sy) = d(Sy, Sx)

• Identity of indiscernibles, d(Sx, Sy) = 0⇔ Sx = Sy

• Triangular inequality or subadditivity, d(Sx, Sy) ≤ d(Sx, Sz)+d(Sz, Sy)

Note that the properties above are expected properties of a distance function. When
it comes to similarity function, their main differences lie in the fact that a sim-
ilarity function is a distance function which is bounded by 1 from above, e.g.,
through transformation d = 1 − sim. Therefore a similarity function requires
sim(Sx, Sy) ≤ sim(Sx, Sx) with equality only in the case of Sx = Sy. Never-
theless, in the rest of this chapter a difference function will be strictly evaluated
based on the properties of a distance. In the rest of this chapter the term distance
will be used as to generally mean the difference between two spectral functions,
without adhering to whether it is strictly distance with respect to the above theor-
etical properties. The term difference will be used when distinction is necessary.

1Metric and distance are most often considered as identical, although different definitions can
also be found, e.g., as in [65].
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3.2.2 Simulated Spectral Functions for the Assessment of Theoretical
Properties of Distance

Distance between two arbitrary spectral functions can be described as the trans-
formation it requires to change one spectral function into another, see illustration
in Fig. 3.1. In the case of spectral functions Sx and Sy, their magnitudes are
identical but Sy can be considered as Sx that is right-shifted by the amount of θ1.
On the other hand, the shapes of Sx and Sz are identical but Sz can be regarded
as Sx multiplied by a factor of θ2. In this regard, the relationship between two
arbitrary spectral functions Sx and Sy can be expressed as

Sy = t(Sx, θ),

where t is a transformation function with parameter θ, whose evolution is given
by a function f(θ). Then, given a simulated spectral function S, transformation
function t, and parameter evolution f(θ), a set of simulated spectral functions S
with known characteristics can be generated, i.e.,

S = {t(S, θi), θi ∈ [θmin, θmax]}.

As the evolution within generated spectral set is controlled, we know that distance
between any two spectral functions within the set should be proportional to para-
meter evolution, i.e.,

d(S, t(S, θ)) ∝ f(θ).

Figure 3.1 – Illustration of distance function as the transformation it requires to
change a spectral function into another.

In the following, three transformations t are defined, i.e., magnitude change, trans-
lation, and standard deviation change. Magnitude and standard deviation changes
in the spectral domain can be considered as the simulation of intensity differ-
ences, while translation simulates hue changes in the color domain. Then, in order
to focus on the behavior of distance functions against these transformations, a
simple function must be used to simulate spectral function S. With such purpose,
Gaussian-like distribution function in the following is employed.
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s(λ) = e−
1
2(λ−µσ )

2

The Gaussian-like function is chosen instead of a pure Gaussian function due to
the following reasons. A pure Gaussian function is expressed as

ae−
1
2(λ−µσ )

2

, where a =
1

σ
√

2π
.

Due to normalization factor a, imposing a magnification factor in the Gaussian
function will not only modify the intensity of a spectral function. It will also
slightly modify the shape of a spectral functions since the standard deviation will
be modified. Eventually, this does not allow evaluating each individual transform-
ation t, which is only enabled when the normalization factor is removed. With re-
spect to this Gaussian-like function, the aforementioned transformations can now
be expressed as follows,

tm(S, θ) = θ · exp−1

2

(
x− µ
σ

)2

,

tt(S, θ) = exp−1

2

(
x− (µ+ θ)

σ

)2

, and

tstd(S, θ) = exp−1

2

(
x− µ
θ · σ

)2

,

where θ is given by a monotonically increasing f(θ). tm, tt, and tstd are trans-
formations corresponding to magnitude change, translation, and standard deviation
change, respectively. Their corresponding spectral sets Sm, St, and Sstd are as il-
lustrated in Fig. 3.2. Each of these generated spectral sets allows to evaluate the
behavior of a difference function with regards to theoretical constraints of distance.
Then, if the red-colored spectral function is chosen as the reference, regardless of
which set is employed, a questioned difference function is a suitable one if its
response is either of the ones shown in Fig. 3.3a. Note that even though in this il-
lustration the responses are symmetrical, the symmetry of response is not required.
Difference functions with behavior similar to those depicted in Fig. 3.3b are not
the suitable ones for spectral data. Detailed explanation behind the improperness
of ’Response 4’ in the figure will be given in the next subsection. As for ’Response
5’, such behavior demonstrates violation of identity of indiscernible property, since

d(Sref , Si) = 0, ∀Si ∈ S, Si 6= Sref .

This response can also be interpreted as the inability of a difference function to
detect any differences between two distinct spectral functions.
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(a) Magnitude change (b) Translation (c) Standard deviation change

Figure 3.2 – Gaussian-like functions (red curves) modified using 3 different trans-
formations, i.e., magnitude change, translation, and standard deviation change,
creating 3 spectral sets to be used in the evaluation of distance functions.

(a) Expected distance responses (b) Inadequate distance responses

Figure 3.3 – The behavior of a suitable spectral distance function must be in one
of the three forms shown in (a), with no strict requirement of the symmetry of
response. On the other hand, it is not suitable if the distance response matches
either of the two cases shown in (b), i.e., stationary or saturating responses.

3.2.3 On Strictly Monotonic Distance Function

Two required properties of a distance function, i.e., non-negativity and triangular
inequality, induce monotonicity property. Given a simulated spectral function S,
a transformation function t, and two arbitrary parameters θ1 and θ2, monotonicity
property can be described as

d(S, t(S, θi)) ≤ d(S, t(S, θj))⇔ θi ≤ θj .

As a consequence, not only behaviors depicted in Fig. 3.3a are acceptable, but also
those in Fig. 3.3b. However, recalling from the previous subsection, ’Response 5’
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in Fig. 3.3b is rejected by the identity of indiscernible property. Regarding ’Re-
sponse 4’, if a difference function demonstrates such behavior, it means that its
sensitivity has a limit. Given a spectral reference, if two distinct spectral functions
are ’farther’ than this limit, then they would be deemed as identical by the distance
function. In other words, after this certain limit, the difference between two spec-
tral functions saturates or can also be regarded as approaching infinity. In order
to avoid choosing a distance function which saturates, strict monotonicity property
below has to be imposed.

d(S, t(S, θi)) < d(S, t(S, θj))⇔ θi < θj

As will be discovered later in the evaluation of various distance functions, this sat-
uration phenomenon cannot always be avoided. Thus, rather than strictly requiring
a difference function to never saturate, it would be judged based on how soon the
phenomenon occurs.

3.2.4 Quality Assessment Using Pigment Spectral Sets

Simulating spectral functions by means of a Gaussian-like function and basic
mathematical transformations allows evaluating the theoretical behavior of a dis-
tance function in a wide range of cases. Albeit a useful protocol, its use cannot
imply for the users the validity and usefulness of the function in case of real spec-
tral data. This is because in the real case, a spectral function can rarely be described
as a simple Gaussian-like function, not to mention variations and noise that may
also occur. Instead, a spectral function can be modeled as a combination of several
Gaussian-like functions as well as their integrals.

Spectral reflectance functions originating from three pigment patches are shown in
Fig. 3.4, where none is composed of a single Gaussian-like function SG. Rather,
their spectral decompositions could be approximated by

SOrange = t(SS , θi),

SBlue = t
(
S
(1)
G , θi

)
+ t
(
S
(2)
G , θj

)
, and

SGreen = t
(
S
(1)
G , θi

)
+ t
(
S
(2)
G , θj

)
+ t(SS , θk),

where SS is the integral of SG. Spectral reflectance function of orange pigment
SOrange can be approximated by one integral of SG. On the other hand, decompos-
itions for SBlue and SGreen express that the mathematical transformations occur
in combination.

By employing pigment spectral reflectance sets shown in Fig. 3.4, validity and
usefulness of a distance function in a real case will be evaluated. For each spec-
tral set, spectral function originating from pixel located in the leftmost of each red
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horizontal line will serve as the spectral reference. Then, the expected distance
response will be a step function as illustrated in Fig. 3.5, where each step corres-
ponds to color group in the pigment patch. Since spectral variations exist within
the data, it follows that there will also be small fluctuations in the step function.
Finally, a better distance function will better separate the four groups of spectral
reflectance functions, i.e., interclass distance being larger than intraclass variation.

(a) Orange pigment (b) Blue pigment (c) Green pigment

Figure 3.4 – Three pigment patches and their corresponding spectral reflectance
functions obtained from pixels under the red horizontal lines. Each pigment patch
consists of 4 color groups.

Figure 3.5 – Illustration of an ideal response of a distance function when given
spectral reflectance sets shown in Fig. 3.4. Better distance function will give inter-
class distance which is larger than intraclass variation.
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3.3 Spectral Function as Vector in Euclidean Space

3.3.1 Hypothesis of Validity

In the Euclidean space, a vector is represented as n-tuples where each of the axes
or dimensions are independent. Therefore, if a spectral function is defined as such,
its spectral bands are assumed to be independent. This also implies that the order
in which the spectral bands are arranged have no significance. Thus, given any
two spectral functions, their distance will remain unchanged regardless of how the
spectral bands are arranged.

The aforementioned assumptions are, however, inaccurate. Spectral bands repres-
ent the wavelengths of an electromagnetic spectral function. Furthermore, neigh-
boring bands in a hyperspectral image are known to be highly correlated [147].
Finally, as a consequence, the use of a distance function which considers a spec-
tral function as vector in the Euclidean space will yield erroneous measurements.

3.3.2 Consequences on Possible Distance Functions

Many distance functions that fall within this category are derived from the Lp
norms (Eq. 3.1). By varying the order p, we obtain Manhattan (p=1), Euclidean
(p=2), and Chebyshev (p=∞) distance, which are also metrics. Another variation
is when p < 1, which was shown by Aggarwal, et al. [5] to significantly improve
the effectiveness of clustering algorithms for high dimensional data. However,
strictly speaking, these fractional variations are not distances since the triangular
inequality property is violated [84].

dLp(S1, S2) =

(∫ λmax

λmin

|s1(λ)− s2(λ)|p dλ
) 1
p

(3.1)

Other than varying the order p, other distance functions introduce different weight-
ing function, see equations in Appendix A.1. Such variations can be generalized
into, e.g., weighted Manhattan and weighted Euclidean. Examples of weighted
Manhattan distance are Canberra [101], Sørensen [161], Kulczynski [65], and
Lorentzian [65] distance functions. Root mean square (RMS) distance, Geman-
McClure [75], and 2 variations of χ2 functions are examples of weighted Euclidean
distance.

Besides the Lp variations, several other functions can be generalized into angular-
based functions, e.., cosine distance and spectral angle [97]. Both functions are
based on cosine similarity. Bounded by 1, the values of cosine distance range from
0 for identical spectral functions to 1 for completely different ones. For spectral
angle, its value is given in radians.
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3.3.3 Validation of Theoretical Behavior

3.3.3.1 The impact of magnitude change to distance measurements

With spectral set Sm as input, normalized responses of distance functions that
consider a spectral function as vector in the Euclidean space can be observed in
Fig. 3.6. Note that the normalization is carried out by the following formula:

d̄ =
d−min(D)

max(D)−min(D)
,

where d̄ and D are normalized distance response and the set of all distance re-
sponses, respectively. Lp norm-based distance functions differing only in order of

Figure 3.6 – Normalized responses of distance functions that consider a spectral
function as vector in the Euclidean space with regards to magnitude change. Re-
sponses of fractional Minkowski Lp, Manhattan, Euclidean, Chebyshev, and RMS
distance functions are identical and linear. Symmetric and nonlinear responses are
given by Lorentzian and Geman-McClure functions. Responses of Canberra and
Sørensen functions are identical, asymmetric, and nonlinear. χ2

1 and χ2
2 functions

are also asymmetric and nonlinear. Stationary zero responses are given by cosine
distance and spectral angle.

p yield symmetrical and linear response. The functions are Manhattan, Euclidean,
Chebyshev, and the two fractional Lp with p ∈ {0.5, 0.8}. Their differences
mainly lie in the dynamic ranges of distance values. And as observed in Table 3.1,
smaller p generates larger dynamic range. Symmetrical and linear response is also
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demonstrated by RMS, which is basically a Euclidean distance weighted by a con-
stant value. Angular-based functions return stationary zero responses. In other
words, they do not perceive any differences in 2 spectral functions having differ-
ent intensity. This is as expected since they are designed to account for shape
differences and to suppress magnitude variations.

Table 3.1 – Dynamic ranges of Lp norm-based distance functions. With identical
numbers of spectral channels, function of smaller pwill have larger dynamic range.

Distance functions p Dynamic range
Fractional Lp 0.5 4.26× 104

0.8 4.46× 102

Manhattan 1 1.02× 102

Euclidean 2 5.94× 100

Chebyshev ∞ 4.89× 10−1

Lorentzian and Geman-McClure functions yield symmetrical and nonlinear re-
sponses, see also Fig. 3.7. Lorentzian modifies the Manhattan distance formulation
with a natural logarithm, which explains the nonlinearity and symmetry of the re-
sponse. Geman-McClure is basically Euclidean distance normalized by itself plus
a constant value at each wavelength, and as such, the response is as expected.

Figure 3.7 – Responses of Lorentzian and Geman-McClure functions to magnitude
change, given in real and normalized values.

In Fig. 3.8, nonlinear and asymmetrical responses are presented by Canberra,
Sørensen, Kulczynski, χ2

1, and χ2
2 functions. Observing their formulations (see

details in Appendix A.1), these results are expected. This is because the func-
tions are either weighted Manhattan or Euclidean, with total intensity or region of
overlap between two functions as their weighting factors.



36 From Definition of Spectral Function to Spectral Difference

Figure 3.8 – Nonlinear and asymmetrical vector distance responses to magnitude
change obtained from Canberra, Sørensen, Kulczynski, χ2

1, and χ2
2 functions,

given in real and normalized values.

3.3.3.2 The impact of translation to distance measurements

Responses of vector distance functions with respect to translation are shown in
Fig. 3.9. As observed, all distance functions saturate, except for Kulczynski. The
observed behavior is caused by the calculation of area difference, see Fig. 3.10
where it is shown as the sum of two gray regions. All of the saturating distance
functions in Fig. 3.9, except for the angular ones, compute spectral difference by
measuring the area difference between two spectral functions S1 and S2 through
their different variations of | s1(λ)− s2(λ) |. And if we go back to the illustration,
this can be expressed as in Eq. 3.2.

d(S1, S2) ∝ | s1(λ)− s2(λ) | ∝ f(θ) (3.2)

In the case of Fig. 3.10a, Eq. 3.2 still holds true with θ = θ1. However, this
relationship is violated when two spectral functions does not overlap. Or as illus-
trated in Fig. 3.10b and 3.10c, the translation parameter θ becomes irrelevant as
f(θ2) = f(θ3) = k where k is a constant value.

For the angular functions, i.e., cosine distance and spectral angle, dot product has
the same saturating effect as area difference calculation. And finally, none of the
functions that have been discussed so far are strictly monotonic. For Kulczynski
function, the normalized response shown in Fig. 3.9 is caused by its weighting
factor that takes the element-wise minimum of two spectral functions. Then, as
the minimum value converges to 0, which would often be the case for spectral
reflectance values of dark objects, the distance value would reach infinity. And for
this exact reason, Kulczynski function would not be suitable for spectral data.
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Figure 3.9 – Normalized responses of distance functions which consider a spectral
function as vector in the Euclidean space with regards to translation. All distance
functions saturate, except for Kulczynski.

(a) (b) (c)

Figure 3.10 – Illustration explaining saturation phenomenon on functions that
compute spectral distance based on difference of area between two spectral func-
tions as what Lp norm does, i.e., the sum of two gray regions in each of the shown
cases. In (a), distance between S1 and S2 is proportional to the function of trans-
lation parameter f(θ1). In (b) and (c), translation parameters θ2 and θ3 become
irrelevant to the sum of gray regions.
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3.3.3.3 The impact of standard deviation change to distance measurements

Responses of difference functions that consider a spectral function as vector in
the Euclidean space is shown in Fig. 3.11. As observed in the figure, none of the
functions faces any particular challenge as in the previous case of translation. The
responses are nonlinear and asymmetric which, again, are due to distance calcula-
tion that is based on area difference. Nevertheless, the response is still proportional
to the function of parameter change, in the sense that distance magnitude increases
when parameter value increases.

Figure 3.11 – Normalized responses of distance functions which consider a spec-
tral function as vector in the Euclidean space with regards to standard deviation
change. Responses of Euclidean distance and RMS are identical. All distance
functions yield non-saturating, nonlinear, and asymmetric responses.

3.3.4 Quality Assessment Using Pigment Spectral Sets

Responses of distance functions to the 3 pigment spectral sets previously shown
Fig. 3.4 can be found in Fig. 3.12. As observed, in general these functions are
able to separate the four groups of color that exist in the pigment judging by four
steps in the responses. However, a closer observation in Fig. 3.13a shows that the
angular distances demonstrate poor performances. For the blue pigment, intra-
class variations produced by the two functions are significantly larger than their
interclass distances. Showing the responses in their real values, see Fig. 3.13b,
eventually all spectral functions under evaluation are considered as highly similar



3.3. Spectral Function as Vector in Euclidean Space 39

Figure 3.12 – Responses of vector distance functions to pigment spectral sets
shown in Fig. 3.4 where spectral function from the leftmost pixel is used as ref-
erence. Generally, distance functions in this category are able to separate the 4
groups of colors in each pigment patch, judging by the 4 steps in each distance
response.
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since their distance values are close to zero. Bearing in mind that variations in
the spectral sets are mainly governed by magnitude differences, the observed be-
haviors are as expected. Angular distances are sensitive to shape differences, e.g.,
translation, but not to magnitude differences.

Figure 3.13 – Responses of angular distance functions to the blue pigment, with
spectral function originating from the leftmost pixel as reference, shown in nor-
malized and real values.

To summarize, the theoretical properties of each distance functions that have been
discussed in this section are provided in Table 3.2. Among the evaluated difference
functions, only Manhattan, Euclidean, Chebyshev, and RMS functions that are
strictly distance functions. These distance functions, however, failed to satisfy
strict monotonicity property since they saturate in the case of translation. The only
function that is strictly monotonic is Kulczynski function, which however is not a
distance function since it violates the triangular inequality property.
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Table 3.2 – Summary of theoretical properties of difference functions
which consider a spectral function as vector in the Euclidean space. Among
the shown functions, only Manhattan, Euclidean, Chebyshev, and RMS are
strictly distance functions. However, they are not strictly monotonic.

Distance functions RF NN SY II TI SM
Lp norm-based functions

Fractional, p=0.5 3 3 3 3 5 5

Fractional, p=0.8 3 3 3 3 5 5

Manhattan 3 3 3 3 3 5

Euclidean 3 3 3 3 3 5

Chebyshev 3 3 3 3 3 5

Weighted Manhattan
Canberra 3 3 3 3 5 5

Sørensen 3 3 3 3 5 5

Kulczynski 3 3 3 3 5 3

Lorentzian 3 3 3 3 5 5

Weighted Euclidean
Root mean square (RMS) 3 3 3 3 3 5

χ2
1 3 3 3 3 5 5

χ2
2 3 3 3 3 5 5

Geman-McClure 3 3 3 3 5 5

Angular-based functions
Cosine 3 3 3 5 3 5

Spectral angle 3 3 3 5 3 5

RF–reflexivity, NN–non-negativity, SY–symmetry, II–identity of in-
discernible, TI–triangular inequality, SM–strict monotonicity

3.4 Spectral Function as N-Dimensional Data in Manifold

3.4.1 Hypothesis of Validity

While assuming that a spectral function is a vector in the Euclidean space is incor-
rect, it can possibly be assumed as an n-dimensional data whose spectral variations
form a manifold. In addition to the classical approach of directly measuring the
difference between two spectral functions, another approach considers a spectral
function within the entire deployment of spectral set in a graph. In this way, rather
than directly measuring distance between two spectral functions, the approach is
centered around the assessment of local distance between neighboring spectral
functions within the graph.
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3.4.2 Consequences on Possible Difference Functions

Goodness-of-fit coefficient (GFC) is one example of the straightforward distance
expressions in this category, which was originally used to test the accuracy of
reconstructed spectral functions of daylight [82]. If GFC is to be used with data
which is assumed to be vector in the Euclidean space, it will be equivalent to cosine
distance. See mathematical expression of GFC in Appendix A.2.

In parallel, Tenenbaum et al. [170] and Roweis et al. [148] proposed a new way to
consider a set of spectral functions, i.e., as manifolds where each spectral function
is represented by a node in a graph. With this new point of view, the dimension-
ality of spectral variations can be reduced using either of the proposed algorithms,
i.e., isometric feature mapping (Isomap) [170] and Locally Linear Embedding
(LLE) [148]. Several more advanced algorithms are Locally Linear Coordination
(LLC) [168] and manifold charting [31]. See mathematical expression of Isomap
in Appendix A.2.

The LLE algorithm considers that each spectral function is a weighted combina-
tion of a trusted set of nearest neighbors. It then computes the minimally distorting
low-dimensional barycentric embedding [31, 148]. The main idea behind LLE al-
gorithms is that the n-dimensional values mostly consist of noise or inaccurate
features and that the lattice or neighborhood structure is more important than data
values. In Isomap, a distance between two spectral functions can be expressed as
a sum of local distances between the two spectral functions and their immediate
neighbors in a trusted set of spectral functions; local distances are typically com-
puted with Euclidean distance or dot product. Isomap is considered as a global
method as it preserves the global geometric features of the initial spectral set. Sev-
eral applications of Isomap for hyperspectral images are available [31, 50]. In the
following evaluation, it is only the Isomap construction that is to be considered
as valid measure since it preserves the global structure of the spectral functions
lattice.

3.4.3 Validation of Theoretical Behavior

Responses of GFC when given the three basic transformations can be observed in
Fig. 3.14. GFC cannot detect differences in magnitude resulting in zero distance
despite the different spectral functions. This stationary zero response demonstrate
the inability of GFC to satisfy identity of indiscernibles property. Hence, GFC is
not a measure of distance. For translation, GFC saturates and violates strict mono-
tonicity. Its response to standard deviation change does not present any apparent
problem. In summary, the behavior of GFC is identical to that of cosine distance
and it is not a distance.
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Figure 3.14 – Responses of GFC to magnitude change, translation, and standard
deviation change. Vertical axes of all plots corresponds to distance response. Sta-
tionary zero response to magnitude change shows that GFC is not a distance meas-
ure since it violates the identity of indiscernible property. Its response to translation
saturates and violates strict monotonicity. Response to standard deviation change
does not present any apparent problem.

Regarding Isomap, distance between two spectral functions must be assessed in-
side a lattice structure. Thus, in order to evaluate its theoretical behavior, a lat-
tice structure as illustrated in Fig. 3.15 is constructed. Beginning with a spec-
tral function S, simulated spectral functions located in the same row as S, i.e.,
St1, St2, . . . , Stn, are S modified by increasing translation parameters given by
f(θt). Simulated spectral functions Sm1, Sm2, . . . , Smn which are located on the
same column as S are obtained by modifying S with increasing magnitude change
parameter given by f(θm). The rest of spectral functions in the lattice are obtained
by modifying S by both translation and magnitude change parameters. This lattice
is then passed onto Isomap, together with the numbers of neighbors and compon-
ents, for it to carry out dimensionality reduction. The number of neighbors dic-
tates how many adjacent spectral functions are allowed in the graph constructed
by Isomap, while number of components is the number of channels in the reduced
dimension. It is only after this dimensionality reduction that Isomap can compute
local distances between neighboring spectral functions.

Taking one row from the lattice shown in Fig. 3.15 as target and spectral function
located in the middle as reference, performance evaluation of Isomap with respect
to translation is obtained, see Fig. 3.16. Three distance functions are chosen arbit-
rarily to compute the local distances, i.e., Euclidean, Canberra, and GFC. In this
figure, distance responses obtained with varying numbers of neighbors and com-
ponents are also given. By observing each subfigure, we know that depending on
the chosen local distance function, the performance of Isomap will vary. However,
rather than the distance function, it is the lattice structure that bears more im-
portance in Isomap. Its significance can be seen by observing how much a curve
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Figure 3.15 – Lattice structure of simulated spectral functions constructed using
translation and magnitude change transformations. Spectral functions along the
same row as S are obtained by modifying S with increasing translation parameters
given by f(θt). For those located on the same column, they are obtained by modi-
fying S with increasing magnitude change parameter given by f(θm). The rest of
spectral functions in the lattice are obtained by modifying S by both translation
and magnitude change parameters.

produced by a single distance function changes when the number of neighbors or
components are modified. Due to this, the use of Isomap is not always appropriate.
It could potentially be a good choice when the distance between two spectral func-
tions are to be assessed, taking into consideration their pixel locations in a given
image. Furthermore, lattice density of the image in which these two spectral func-
tions are contained will also affect the accuracy of computed distance. When the
lattice is dense, the obtained local distances will be closely related to the chosen
local distance function. On the other hand, when lattice is sparse, computed dis-
tance will be more closely related to the Isomap algorithm itself. Finally, due to the
aforementioned considerations, theoretical properties of Isomap cannot always be
guaranteed and Isomap will not be further considered in the following evaluation.
Summary of theoretical properties of manifold distance functions is provided in
Table 3.3.
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Figure 3.16 – Normalized responses of Isomap combined with 3 distance functions
with respect to translation transformation, and with varying numbers of neighbors
components. All axes are with identical units and dynamic ranges.

Table 3.3 – Summary of theoretical properties of difference functions which con-
sider a spectral function as n-dimensional data in manifold. Despite Isomap-
Euclidean satisfying the properties of distance function, it is not suitable for spec-
tral data since the distance computation depends on the density of input lattice.

Distance functions RF NN SY II TI SM
GFC 3 3 3 5 3 5

Isomap-Euclidean 3 3 3 3 3 5

Isomap-Canberra 3 3 3 3 5 5

Isomap-GFC 3 3 3 5 3 5

RF–reflexivity, NN–non-negativity, SY–symmetry, II–identity of in-
discernible, TI–triangular inequality, SM–strict monotonicity
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3.4.4 Quality Assessment Using Pigment Spectral Sets

When given spectral sets coming from pigment patches in Fig. 3.4, GFC respond
as shown in Fig. 3.17. It can be observed that, generally, GFC manages to detect
the four different color shades existing in the spectral set. However, it is rather
challenged in one case of where blue pigment is the target. Observing the two
steps in the middle of response to the blue pigment, their intraclass variations are
larger than the interclass distance. Then, in a closer observation, values returned
by GFC are very reduced and close to zero. Considering the dynamic range of
GFC distance that would reach unity, these values are rendered insignificant. Nev-
ertheless, this behavior is in line with the purpose of GFC, i.e., to measure shape
rather than magnitude differences. And to recall, variations in the pigment spectral
set is mainly governed by magnitude differences.

Figure 3.17 – Responses of GFC to 3 spectral sets originating from pigment
patches shown in Fig. 3.4. Generally, GFC is able to detect the 4 different color
shades existing in the spectral set. However, the intraclass variations between the
two middle shades of the blue pigment are larger than the interclass distance. Then,
values returned by GFC are also significantly reduced and close to 0.
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3.5 Spectral Function as Distribution

3.5.1 Hypothesis of Validity

By assuming that a spectral function is a distribution, it is also assumed that
the spectral bands are ordered. Not only that, neighboring spectral bands are
considered to be more correlated than those which are further away. These as-
sumptions do agree with the common knowledge about spectral data, i.e., highly-
correlated neighboring spectral bands [147]. As distribution, a spectral function
could then be represented as probability density function (PDF), cumulative dis-
tribution function (CDF), or discrete probability distribution (or more commonly
known as histogram). However, note that neither spectral reflectance nor radiance
functions can be considered as PDF because their integrals are not 1.

3.5.2 Consequences on Possible Distance Functions

Spectral correlation, initially developed for spectral correlation mapper (SCM)
[54] in the remote sensing field, is a measure of similarity. Aiming to minimize the
effect of shading in the processing of remotely-sensed images, spectral correlation
was designed to not account for magnitude differences. Although this character-
istic is identical to that of spectral angle (see Section 3.3), spectral correlation was
claimed to be more accurate than spectral angle. Pearson χ2, or also known as χ2

statistics [142, 149], is a function that measures the likelihood of one distribution
to be drawn from population distribution as represented by the average.

Another way of computing distance between two PDFs or histograms is consider-
ing the area under curves. Generally there are two slightly different approaches to
measure the area under curves, see illustration in Fig. 3.18. In the first approach,
the difference between two spectral functions is calculated through the overlapping
area under the two curves, or minλ(S1, S2). See also illustration in Fig. 3.18a. An
example of such measure is Smith distance [165]. Then, the 2nd approach can be
generally considered as computing area difference between two curves as follows:

| S1 − S2 | = | s1(λ)− s2(λ) |, ∀λ ∈ [λmin, λmax]

See illustration in Fig. 3.18b. Manhattan distance and its variations (see Sec-
tion 3.3) can be considered as taking this approach, albeit with different assump-
tions of the definition of spectral function.

Then there is a family of difference measure, e.g., f -divergences. Strictly, these
functions are divergence and not distance functions. Many divergence measures
are not symmetrical, e.g., Kullback-Leibler (KL) divergence [98] and K-divergence,
and therefore will not be considered as a suitable difference function for spectral
data. The symmetric ones are, e.g., Jeffrey divergence [85], Jensen-Shannon di-
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(a) Overlapping area (b) Area difference

Figure 3.18 – Illustration of two different approaches in measuring spectral differ-
ences by means of area under curves.

vergence [112], and empirical Jeffrey-divergence which was initially developed
to deal with histogram bins [142]. Spectral information divergence (SID) [42],
which is essentially Jeffrey divergence, is a divergence measure commonly used
in the remote sensing field. Other difference functions include squared-chord dis-
tance [74, 132], earth mover’s distance (EMD) [149], and Combined EMD [104].
See mathematical expressions of the aforementioned functions in Appendix A.3.

3.5.3 First Proposal of Spectral Distance Function

After studying the behavior and limitation of distance functions that are based
on Lp norm, see illustration in Fig. 3.10, we know that the proper use of these
functions are when two spectral functions have similar shape. This similarity in
shape can further be described as having overlapping regions under the two spec-
tral curves. In order to overcome this limitation, we have an early proposal of a
suitable spectral distance function in which a spectral function is considered as a
CDF, i.e., Euclidean distance of cumulative spectrum (ECS) [56].

As seen in the mathematical expression of ECS in Eq. 3.3, each input spectral func-
tion is transformed into its cumulative version by

∫ λ
λmin

s(λ) dλ, in which the in-
tegration (or summation in discrete case) goes from shorter to longer wavelengths.
The distance computation will only be carried out after this transformation. As a
consequence, despite the fact that the distance function is still insensitive to shape
differences, we make sure that both shape and magnitude differences are integ-
rated in the transformed spectral function. Thanks to this, saturation phenomenon
suffered by the Lp norm based functions is no longer an issue in ECS.

dECS(S1, S2) =

(∫ λmax

λmin

(
s′1(λ)− s′2(λ)

)2
dλ

) 1
2

s′i(λc) =

∫ λc

λmin

si(λ) dλ

(3.3)
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To give better understanding, illustration is also provided in Fig. 3.19. Two pairs
of spectral functions, S1 and S2, are given where in each pair the two functions
have identical shape but different displacement. Ideally, the two pairs will yield
different distance values. But we know that this is not the case for Lp norm based
functions since the sum of area under the two spectral curves, as marked by green
color, are identical. Considering a spectral function by its cumulative or integrals
allows to diminish the limitation. Area under the two cumulative spectral curves
becomes different, as marked by the blue regions, and therefore properly reflecting
the real displacement in each pair of spectral functions.

(a) Spectral function pair, #1, in their (left) original and (right) cumulative forms.

(b) Spectral function pair, #2, in their (left) original and (right) cumulative form.

Figure 3.19 – Two pairs of spectral functions S1 and S2 with identical shape but
different displacement. Despite the different displacement, computing spectral
differences in the original form of the spectral functions yields identical distance,
as marked by the green area. However, the distance will differ if its computed in
the cumulative form of the spectral functions, as marked by the blue area.

Despite being superior to other distance functions due to its avoidance of satur-
ation phenomenon, ECS is not without limitation. Its integration that goes from
shorter to longer wavelengths inherently assumes more importance to the shorter
wavelengths. Or, if wavelength is expressed as a discrete sequence λ0, λ1, . . . , λn,
the importance of a wavelength λi would be equivalent to (n−i). Indeed, the integ-
ration can be flipped over such that it goes from longer to shorter wavelengths, giv-
ing more importance to the longer wavelengths. But the bigger issue lies on the pri-
oritization of the wavelengths. When integration goes from shorter wavelengths,
it means that shape differences in this spectral range is more important than those
on the other spectral ranges. This prioritization of certain spectral range can be
correct when priorities are known beforehand or when it can be correctly imposed
on the spectral data. In most cases, however, priorities over the wavelengths are
unknown therefore risking inaccurate distance measurements. Due to this inherent
prioritization, ECS is similar to lexicographic ordering relation in Section 4.3.3.
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3.5.4 Validation of Theoretical Behavior

3.5.4.1 The impact of magnitude change to distance measurements

Theoretical behaviors of distance functions in this category with respect to mag-
nitude change can be observed in Fig. 3.20. Functions that give zero responses
when given spectral set with magnitude variations violate identity of indiscern-
ible property. They are spectral correlation, Smith distance, Jeffrey divergence
(or SID), and Jensen-Shannon divergence. The desired responses areobtained by
Pearson χ2, ECS, squared-chord, and empirical Jeffrey divergence functions.

(a) Functions violating identity of indiscernible (b) Functions with expected behavior

Figure 3.20 – Normalized responses of distance functions that consider a spec-
tral function as distribution with regards to magnitude change. Spectral correla-
tion, Smith distance, Jeffrey divergence, and Jensen-Shannon divergence violate
the property of identity of indiscernible. Thus, they are not distance functions.

3.5.4.2 The impact of translation to distance measurements

The impact of translation to difference functions in this category can be observed
in Fig. 3.21. Note that only values in Fig. 3.21a that are normalized and the re-
sponse of Jeffrey divergence in Fig. 3.21b is scaled down with a factor of 100. All
difference functions found in Fig. 3.21a violates strict monotonicity property, and
finally only Jeffrey divergence and ECS do not saturate.

3.5.4.3 The impact of standard deviation change to distance measurements

Given a set of spectral functions with variations of standard deviation, the re-
sponses of distance functions under evaluation are as shown in Fig. 3.22. These
distance responses are given in normalized values. Upon observation, only Smith
distance does not give the desired behavior. Observed behavior is due to its use of
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(a) Functions violating strict monotonicity (b) Functions with expected behavior

Figure 3.21 – Normalized responses of distance functions that consider a spectral
function as distribution with regards to translation. Among the shown functions
only Jeffrey divergence and ECS satisfy the strict monotonicity property.

minimum function, see equation in Appendix A.3. And since in the spectral set that
corresponds to standard deviation change one spectral curve is always marginally
larger than the other, or s1(λ) ≤ s2(λ), ∀λ ∈ [λmin, λmax], Smith distance will
always return 0 distance for every pair of spectral functions. Finally, a summary
of theoretical properties of functions in this category can be found in Table 3.4.

(a) Distance/ similarity functions (b) Divergence functions

Figure 3.22 – Normalized responses of difference functions that consider a spec-
tral function as distribution in case of standard deviation change. Smith function
violates identity of indiscernible property due to its stationary zero response. The
other functions do not show apparent problem.
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Table 3.4 – Summary of theoretical properties of difference functions which con-
sider a spectral function as distribution. The proposed ECS is a distance function
and is strictly monotonic, making it a suitable choice for use with spectral data.

Distance functions RF NN SY II TI SM
Correlation-based functions

Spectral correlation 3 3 3 5 3 5

Pearson χ2 3 3 3 3 5 5

Measure of area under curves
Smith 3 3 3 5 3 5

ECS 3 3 3 3 3 3

f -divergences
Jeffrey divergence 3 3 3 5 5 5

Empirical Jeffrey 3 3 3 3 5 5

Jensen-Shannon divergence 3 3 3 5 3 5

Other functions
Squared chord 3 3 3 3 5 5

RF–reflexivity, NN–non-negativity, SY–symmetry, II–identity of in-
discernible, TI–triangular inequality, SM–strict monotonicity

3.5.4.4 On distance functions requiring optimization step

In this category of distance between two distributions, it has been previously men-
tioned that EMD and Combined EMD will be evaluated. What separates the two
functions from the others from this category is their use of an optimization loop
in finding the minimum necessary cost to transform one distribution to another.
The responses of these two functions in the three spectral sets can be observed in
Fig. 3.23. Note that for Combined EMD, the parameter α is set to 0.5, see equation
in Appendix A.3. In the cases of magnitude change and translation, there is no sig-
nificant problem as the growth of their distance values reflect the evolution within
the spectral sets, even though they are neither linear nor symmetric. Problems do
arise in the case of standard deviation change and this is due to the optimization
procedure that is required by EMD.

Generally, the challenge with requiring an optimization loop is in the risk of reach-
ing a local minimum. Thus, in addition to the actual constraints of the function to
be optimized, another stopping criteria is needed for when a local minimum is
reached, i.e., maximum number of iteration. Apart from the technical solutions
that could be implemented to avoid the local minimum, the risk of losing accuracy
is always apparent. Furthermore, it also induces that the theoretical properties of



3.5. Spectral Function as Distribution 53

Figure 3.23 – Normalized distance responses of EMD and Combined EMD to
spectral sets corresponding to magnitude change, translation, and standard devi-
ation change. Due to its optimization procedure, both distance functions become
unstable as demonstrated by the case of standard deviation change.

distance cannot always be guaranteed. For this reason, EMD and Combined EMD
will not be taken into further considerations.

3.5.5 Quality Assessment Using Pigment Spectral Sets

Given spectral reflectance sets as shown in Fig. 3.4, the responses of difference
functions in this category which are less sensitive to magnitude differences can
be observed in Fig. 3.24. In this figure, responses for all pigments are shown in
real values and normalized values. In figures providing responses in real values
(images in the first column), it can be observed that the responses are relatively
close to zero, demonstrating a reduced capability in detecting spectral differences
that are mainly governed by magnitude. Although there is also an exception, i.e.,
the response of spectral correlation with respect to the blue pigment. Also, note
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that for spectral correlation, the maximum value is 1. These responses are not
unexpected since it is exactly what is intended by their respective mathematical
expressions, i.e., to suppress the effect of magnitude differences. This is also the
main reason why the intraclass variations are generally larger than the interclass
distance, see images in the second column of Fig. 3.24. These kinds of difference
functions can generally find their use in the remote sensing field, where in many
cases the effect of shading are to be eliminated. Although, if among the four
functions one is to be selected for such purpose, Smith distance would be a better
candidate since in all shown cases it generally gives much closer responses to zero.

Difference functions with better capability in separating the four color shades in
the pigment spectral set shown in Fig. 3.4 are Pearson χ, ECS, squared-chord, and
empirical Jeffrey divergence. Their normalized distance responses can be observed
in Fig. 3.25. As for ECS, as previously mentioned, distance response would differ
depending on whether the integration goes from shorter to longer wavelengths or
vice versa. This effect can be observed in Fig. 3.26, in which spectral set of the
green pigment is employed.
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(c) (d)

(e) (f)

Figure 3.24 – Responses of spectral difference functions that are less sensitive
to magnitude differences to pigment spectral sets shown in Fig. 3.4. In the nor-
malized values, responses of Jeffrey and Jensen-Shannon divergence functions are
almost identical. Responses of Smith function is very close to 0. However, in the
normalized version, it can be observed that the response is rather noisy.



56 From Definition of Spectral Function to Spectral Difference

Figure 3.25 – Normalized responses of difference functions which are able to sep-
arate 4 color shades which exist within pigment spectral sets shown in Fig. 3.4.
Obtained intraclass variations are always smaller than interclass distance between
the color shades.

Figure 3.26 – ECS distance function would give different response depending on
whether integration goes from shorter to longer wavelengths or vice versa. The
shown graphs are obtained from the spectral set of green pigment given in Fig. 3.4.
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3.6 Spectral Function as Sequence

3.6.1 Hypothesis of Validity

This category is inspired by distance functions used in the task of matching DNA
sequences [83, 152]. If a spectral function is considered as a sequence, it means
that its spectral bands or channels are ordered by its position in the sequence. Its
other assumption is that the spectral function values come from a finite set. The
latter assumption is incorrect since spectral data is represented by real numbers
which is an infinite set of values.

3.6.2 Consequences on Possible Distance Functions

Distance functions that fall into this category come from those that are mainly
used for string matching. Hamming distance [80] measures differences between
two sequences based on the minimum number of character substitutions required
to transform one string into another. This distance is only applicable if the two
sequences are of the same length. In Levenshtein distance [109], instead of only
taking into account character substitution, it considers all single character edit,
i.e., insertion, deletion, and substitution. Levenshtein distance is therefore suitable
for spectral functions or sequences of unequal length. Damerau-Levenshtein [52]
adds another operation to those considered in Levenshtein, i.e., transposition of
two adjacent characters, with a justification saying that it corresponds to human
misspelling.

3.6.3 Validation of Theoretical Behavior

Theoretical behaviors of the three distance functions in this category with respect
to magnitude change, translation, and standard deviation change can be observed
in Fig. 3.27. Note that the unit and dynamic ranges of all Y-axes are identical. In
case of magnitude and standard deviation changes, all distance functions saturate
as soon as the target spectral function is different from the spectral reference. If
spectral reference and the target are considered as S and t(S, θ), and their values
as sets, the two transformations causes the two value sets to be

{s(λ)} ∩ {t(s(λ), θ)} = ∅, ∀λ ∈ [λmin, λmax].

To recall, distance functions in this category assume finite value set and repetition
of values. Finally, due to all these, distance responses to magnitude and standard
deviation changes saturates. For the case of translation, this transformation only
shifts the spectral values. This means that there are still common values between
the reference and the target, although their wavelength positions have changed.
Then, depending on how many values are shifted, the distance response will vary.
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The observed fluctuations, rather than the expected monotonicity, are due to op-
timization procedure that is embedded in Levenshtein and Damerau-Levenshtein
distance functions. Note that their responses are identical. More explanations of
distance functions requiring optimization loop can be read in Section 3.5.4.4. Fi-
nally, summary of theoretical properties of distance functions which consider a
spectral function as sequence is provided in Table 3.5.

Figure 3.27 – Theoretical behaviors of Hamming, Levenshtein, and Damerau-
Levenshtein distance functions with respect to magnitude change, translation,
and standard deviation change. Responses to magnitude and standard deviation
changes for all distance functions saturate as soon as a spectral function differ
from the reference. Fluctuations observed in the responses of Levenshtein and
Damerau-Levenshtein to translation are due to their uses of optimization loop.
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Table 3.5 – Summary of theoretical properties of difference functions which con-
sider a spectral function as sequence. Even though the evaluated functions are
strictly distance functions, they do not satisfy the property of strict monotonicity.

Distance functions RF NN SY II TI SM
Hamming 3 3 3 3 3 5

Levenshtein 3 3 3 3 3 5

Damerau-Levenshtein 3 3 3 3 3 5

RF–reflexivity, NN–non-negativity, SY–symmetry, II–identity of in-
discernible, TI–triangular inequality, SM–strict monotonicity

3.6.4 Quality Assessment Using Pigment Spectral Sets

Given pigment spectral reflectance sets described in Fig. 3.4 as inputs, responses
of three distance functions in this category can be found in Fig. 3.28. As expected,
their responses are identical to those of magnitude and standard deviation changes
in the previous subsection, i.e., saturation of distance values. The reason to this is
also the same, that there is no repetition of values between the spectral reference
and the target spectral functions.

Figure 3.28 – Responses of Hamming, Levenshtein, and Damerau-Levenshtein
distance functions to three spectral reflectance sets described in Fig. 3.4. Dynamic
ranges and vertical axes of all 3 plots are identical. Distance functions saturate
as soon as target spectral function is different from the reference. These results
demonstrate their inability to discriminate spectral functions in the real setting.

3.7 Spectral Function as Series

3.7.1 Spectral Kullback-Leibler Pseudo-Divergence

In a recent study, Richard et al. [145] proposed a new spectral difference func-
tion in which a spectral function is considered as a series or function, i.e., spectral
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Kullback-Leibler pseudo-divergence (KLPD). KLPD is only a pseudo-divergence
because spectral reflectance and radiance cannot be considered as probability dens-
ity function that is assumed by divergence functions. Unlike Euclidean distance of
cumulative spectrum (ECS) (Section 3.5.3) which integrates shape and intensity
differences in one measure, in KLPD the two measures are separate components,
see Eq. 3.4 and 3.5.

shape : k1 · KL(S̄1, S̄2) + k2 · KL(S̄2, S̄1) (3.4)

energy or intensity : (k1 − k2) log

(
k1
k2

)
(3.5)

Then, the complete mathematical expression of KLPD becomes as in Eq. 3.6,
where S̄, k, and KL are normalized spectral function, its corresponding normaliz-
ing factor, and Kullback-Leibler divergence function. See Appendix A.3 for how
to compute the three variables.

divKL’(S1, S2) = k1 · KL(S̄1, S̄2) + k2 · KL(S̄2, S̄1)+

(k1 − k2) log

(
k1
k2

)
(3.6)

3.7.2 Validation of Theoretical Behavior

Response of KLPD measure to three basic transformations can be observed in
Fig. 3.29. In all 3 cases of basic transformations, KLPD is strictly monotonic.
However, regarding its theoretical properties, it does not satisfy triangular inequal-
ity hence it is strictly not a distance function, see also Table 3.6.

Figure 3.29 – Behavior of spectral Kullback-Leibler pseudo-divergence (KLPD)
function to 3 basic transformations, i.e., magnitude change, translation, and stand-
ard deviation change. Scales of dynamic ranges from left to right are 102, 104, and
103. In all cases, KLPD is strictly monotonic.
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Table 3.6 – Theoretical properties of KLPD function. It is not a distance function
due to violation of the triangular inequality property. However, KLPD is a strictly
monotonic function.

Distance functions RF NN SY II TI SM
KLPD 3 3 3 3 5 3

RF–reflexivity, NN–non-negativity, SY–symmetry, II–identity of in-
discernible, TI–triangular inequality, SM–strict monotonicity

3.7.3 Quality Assessment Using Pigment Spectral Sets

The validity and usefulness of KLPD is also assessed using pigment spectral sets
described in Fig. 3.4. Its performance can be observed through Fig. 3.30, where in
all three cases it is successfully separating the four groups of colors.

Figure 3.30 – Behavior of KLPD function to three spectral reflectance sets shown
in Fig. 3.4. Scales of dynamic ranges from left to right are 102, 102, and 101. In all
cases, it is shown that KLPD successfully separates the 4 groups of colors within
each pigment patch.

3.8 Conclusions
Before it is a mathematical object, spectral data is a capture of electromagnetic
radiation reflected by a surface or emitted by a light source. Therefore, a spectral
data cannot be separated from its physical aspects. As a consequence, for a spectral
data to be processed correctly ensuring the accuracy and relevance of its results,
this physical aspect must be taken into account. And not only that, it has to be
considered in every step of the processing chain.

Spectral distance is at the core of many image processing tools. While there seems
to be plenty of distance functions to choose from, not every one of them is suit-
able for spectral data. This is because each distance function gives a mathematical
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definition to what a spectral function is. In various distance functions, a spectral
function is assumed to be either a vector in the Euclidean space, an n-dimensional
data in manifold, a distribution, a sequence, or a series. Additionally, many exist-
ing distance functions are only sensitive to shape or intensity differences, and not
the two together. After evaluating the existing distance functions with the proposed
protocol and criteria, a new distance function capable of measuring both shape and
intensity differences was constructed, i.e., Euclidean distance of cumulative spec-
trum (ECS). Although ECS has been shown to be suitable for spectral data, it is
not without limitation, i.e., its inherent prioritization over the spectral channels.

After our first proposal of spectral distance function, i.e., ECS, Richard et al. [145]
proposed a newer one, i.e., spectral Kullback-Leibler pseudo-divergence (KLPD)
function. Although strictly KLPD is not a distance function due to its violation
of triangle inequality property, it demonstrates strict monotonicity which is crucial
for the suitability of spectral distance function. Then, despite ECS is superior in
terms of the theoretical properties, KLPD has the advantage of not prioritizing
the spectral channels. Also, unlike ECS, KLPD separates the components which
measure shape and intensity differences.

Summary of Contributions.

X Evaluation protocol and criteria for selecting a suitable distance function for
spectral data.

X Categorization of various distance functions based on their inherent assumptions
of a spectral function.

X First proposal of a spectral distance function which integrates both shape and in-
tensity differences in one measure, i.e., Euclidean distance of cumulative spec-
trum (ECS).

X Comparison of spectral distance functions using color scales, i.e., pigment pat-
ches of varying shades, to assess their selectivity and/ or discrimination ability.



Chapter 4

Spectral Ordering Relation and
Its Expected Properties

4.1 The Sense of Ordering in Hyperspectral Data
Ordering relation is an important concept in digital image processing. It is a funda-
mental theory in which a significant part of nonlinear image processing tools, e.g.,
mathematical morphology and rank-order filters, is built upon. Understanding the
sense of order in the grayscale domain is trivial. If intensity level is to be repres-
ented by scalar values, large numbers would signify pixels with high energy and
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vice versa. This representation makes the ordering of grayscale values straightfor-
ward since the scalar domain is equipped with the concept of rank or order, i.e.,
the natural ’≤’ or ’less than or equal to’ relationship.

Ordering in the multivariate domain is not as trivial as in the scalar domain. It is
because ordering relation does not naturally exist in the multivariate domain [23,
27, 90]. An illustration is given in Fig. 4.1 for a two dimensional color space, i.e.,
CIE 1931 Chromaticity Diagram (2°Standard Observer). If any arbitrary colors are
taken from this space, we know that it is highly unlikely that rank or order is read-
ily available for the colors. This, however, does not mean that the concept of order
is entirely absent from the multivariate domain. A set of spectral reflectance func-
tions originating from a pigment patch is shown in Fig. 4.2. In the spectral set,
in addition to the highly similar spectral shape, there is a certain progression of
magnitude or intensity changes among the spectral functions. This observed pro-
gression allows us to see the set as an ordered list of spectral reflectance functions
from, e.g., darker to brighter ones. This example is a demonstration that order can
and do exist in the multivariate domain. Other examples of physical phenomena
that can induce order in the color and spectral domain are provided in Table 4.1.

Figure 4.1 – Several arbitrary colors with no apparent ranks or orders, shown in
two-dimensional CIE 1931 Chromaticity Diagram (2°Standard Observer).

The aforementioned instances of order in the color and spectral domains show us
that multivariate ordering relation does not have the same strict sense of ’less than
or equal to’ as in the scalar domain. Nevertheless, this pre-existing order equally
allows us to arrange values as a series or an ordered list, as in the scalar domain.
But rather than the order extending to infinity, in the multivariate domain an order-
ing relation is only valid within a certain range. Fig. 4.3 illustrates how an existing
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Figure 4.2 – A pigment patch and its spectral reflectance functions, as obtained
from pixels approximately located under the red dots. As observed, brightness
level in the pigment patch translates to variations in intensity and shape in the
spectral reflectance domain.

Table 4.1 – Several physical parameters and the impact of their modifications in
the perception of color and in the spectral reflectance space.

Parameters in
physical domain

Impact on
Color perception Spectral reflectance function

Paint layer thickness Opacity Mostly intensity variations
Pigment mixture Hue, lightness Variations in intensity and shape
Effect of shading in
remote sensing data

Brightness level Magnitude differences

order in the multivariate domain can be formulated. Given a set of colors C, color
ordering relation on the set can be expressed as a monotonic function of parameter
change applied to color C0, i.e., Ci = g(C0, θi), i ∈ [a, b] where θ is controlled
by a monotonic function f . Since f is defined over the range [a, b], it induces limit
to the ordering function g and allows to obtain colors at the extremities, i.e., Ca
and Cb. Finally, the ordering function g over the color set C allows defining the set
as a series or ordered list of colors that it produces.

Generally, given a set of multivariate data, determining order within the set is a
great challenge. In cases such that is shown in Fig. 4.2, the underlying order is
evident. But more often than not, this is not the case, leaving us with the task
of identifying a suitable ordering relation. However, note that arbitrary ordering
relations can be applied to the given set of data and each would generate a differ-
ent ordered list. But which one is the most suitable one and according to which
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Figure 4.3 – Illustration of an existing ordering relation given a set of colors in the
CIE 1931 Chromaticity Diagram (2°Standard Observer).

criteria? Setting out to find the most suitable ordering relation for developing a
metrological image processing framework for hyperspectral data, the rest of this
chapter is organized as follows. Definition and expected properties of the sought
after ordering relation is given in Section 4.2. The expected properties encompass
not only the theoretical properties of an ordering relation, but also requirements
imposed by metrology. Then, the state of the art of existing ordering relations that
have been used for hyperspectral data are provided in Section 4.3, using a categor-
ization formulated by Barnett [23]. It is then followed by a proposal of hyperspec-
tral ordering relation in Section 4.4. Employing criteria defined in Section 4.2,
metrological evaluations of existing and proposed ordering relations are carried
out in Section 4.5. Regarding total ordering constraint imposed by mathematical
morphology, discussions will be provided in Section 4.6. Finally, conclusions are
drawn in Section 4.7.

4.2 Spectral Ordering: Definition and Properties
Ordering relation is a mathematical construction allowing to describe a set of val-
ues as a series or an ordered list. Then, as it produces a series, the notion of extrema
is obtained since the series is bounded by minimum and maximum values. When
it comes to hyperspectral data, in addition to it being a series and not a vector (see
conclusion of Chapter 3), the accuracy of its processing results must be able to
justify the high cost and complexity of its acquisition. With this consideration, a
suitable spectral ordering relation is not only satisfying the required mathematical
properties but also the metrological ones, see Fig. 4.4.
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Figure 4.4 – Expected properties of a suitable hyperspectral ordering as imposed
by the different levels of processing.

4.2.1 Definition

Suppose that S is a set, an ordering relation is a binary relation defined over S,
providing definition for the statement "x precedes y" or "x is less than y" for
x, y ∈ S. In the scalar domain, this binary relation is automatically obtained
through operator "less than or equal to" ≤ or the stricter "less than" operator <.
Expressing it as a function g, an ordering relation in the scalar domain can be
expressed as in Eq. 4.1.

g(x) = x, ∀x ∈ R (4.1)

In the multivariate domain, an ordering relation g can be regarded as a function that
maps values from the multivariate to the scalar domain where ordering is direct,
see Eq. 4.2. Thus, any arbitrary function can be an ordering relation, given that the
theoretical properties in Section 4.2.2 are satisfied.

g : Rn → R (4.2)

Then, provided a multivariate ordering relation g, the order of two arbitrary mul-
tivariate values x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, x,y ∈ Rn are as
in Eq. 4.3.

x �g y⇔ g(x) ≤ g(y) (4.3)

In the hyperspectral domain, we are dealing with measures of energy, typically in
terms of spectral reflectance or radiance. And since this measure only comes in
positive values, hyperspectral ordering relation can be expressed as in Eq. 4.4.

g : (R+)n → R+ (4.4)

Finally, any two spectral functions S1 and S2 can be ordered through a function g,
as shown in Eq. 4.5.

S1 �g S2 ⇔ g(S1) ≤ g(S2), ∀S1, S2 ∈ S (4.5)
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4.2.2 Theoretical Requirements

Given any arbitrary spectral functions S1, S2, S3 ∈ S, the following are theoretical
requirements a function g has to satisfy in order for it to be an ordering relation.

• Reflexivity, S1 �g S1.

• Transitivity, if S1 �g S2 and S2 �g S3 then S1 �g S3.

• Anti-symmetry, if S1 �g S2 and S2 �g S1 then S1 = S2. In other words,
if S1 both precedes and succeeds S2 according to g, then S1 and S2 must be
identical spectral functions.

• Trichotomy [159] is where exactly one of the following holds:
S1 ≺g S2, S2 ≺g S1, or S1 =g S2.

Achieving reflexivity and transitivity allows a function to be a pre-order. When it
also satisfies anti-symmetry property, it becomes an ordering or, more precisely,
a partial ordering. Partial ordering relation enables the extraction of extrema,
however without ensuring their uniqueness. The uniqueness of an extremum is
guaranteed by trichotomy, which expresses that one of two spectra can always
be defined as the minimum (or maximum). When a function satisfies all four
requirements, it is called a total ordering.

Up to this point, spectral ordering relation has only been considered in terms of
its theoretical properties. As mentioned previously, mathematical properties are
insufficient since they do not regard the physical sense of spectral data, which can
only be ensured by metrological constraints. The first entry point to metrology is
the trichotomy property. With trichotomy, given any arbitrary pair of spectral func-
tions S1 and S2, an ordering relation will always be able to order the two. On the
other hand, when trichotomy is not satisfied, the order of the two spectral functions
will end up being random selection. And this random selection procedure does not
allow managing uncertainties as it is required by metrology.

4.2.3 Spectral Ordering Uncertainty

In the beginning of this chapter (Section 4.1), it has been mentioned that there
are cases where the underlying ordering relation in a given spectral set is evident.
Such cases can be employed to develop metrological tests for spectral ordering
relation. Ledoux et al. [105] developed ordering uncertainty test for color data by
generating ordered lists of colors. Further on, this ordered list will be referred to
as gradation. See Fig. 4.5 for the illustration of its procedure. Looking at the color
set shown in the figure, we can perceive a gradual change from green to yellow
and then to red. According to our perception, we know that there is an underlying
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order in this color set even though it is difficult to pinpoint exactly what they are.
Nevertheless, since it is a gradual change, the ordering response g(x) must behave
like either of the curves 1, 2, or 3.

Figure 4.5 – Illustration of ordering uncertainty using a set of colors. Knowing
that there is an underlying order in the color set according to our perception, the
behavior of a suitable color ordering relation must be either of the three curves. In
each curve, the global minimum is marked in a black circle.

The ordering uncertainty1 test can be extended to the spectral domain. This test is
formulated as in Eq. 4.6, where St is an ordered list or spectral gradation of p+ 1
unique spectral functions generated by a certain transformation t.

∃!Sm ∈ St | Sm =
∧
i:0...p

g(Si),

where g(Si−1) > g(Si), ∀i < m and g(Si+1) > g(Si), ∀i > m

(4.6)

Interpretation. In a given ordered list of spectral functions S, there exist a unique
global minimum spectral function Sm according to the ordering relation under evalu-
ation g. Then, g must order spectral functions whose location in the given list precede
and succeed Sm in a strictly monotonic progression.

In its original construction, color gradation is generated by selecting an arbitrary
initial color in a given color space and then the set is produced by varying, e.g., hue
or brightness of the initial color. To extend this construction to the spectral domain,
two considerations are to be taken. In the color domain, generating an arbitrary
color value within a specific color space means that this color does exist. In the
spectral domain, random generation of a spectral function does not always lead to a

1The notion of uncertainty is taken from metrology, i.e., measurement uncertainty in Section 1.6.
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meaningful representation of the physical domain. Any arbitrary spectral function
can be generated but it does not mean that the spectral function will have a physical
sense, other than it is a digital construction. Thus, the first constraint in extending
color gradation to the spectral domain lies in selecting an initial spectral function
which is representative of the real physical world. And rather than generating an
artificial one, it will be taken from images acquired by a spectral sensor.

Having defined the constraint for the initial spectral function, what remains in ob-
taining a spectral gradation is the transformation used to generate the gradation
itself. And the second constraint lies in having a transformation function which
is meaningful in the physical domain. An example in Fig. 4.2 demonstrates how
the perception of brightness translates to spectral reflectance functions varying in
their shapes and intensities. To simulate these spectral variations, as well as those
mentioned in Table 4.1, three basic transformations previously introduced in Sec-
tion 3.2.2 will be adapted to allow the modification of the initial spectral function.

Figure 4.6 – Spectral ordering uncertainty test flowchart. Spectral gradation is
generated based on a spectral function obtained from Pigment-56 dataset, see Ap-
pendix B.1, and t function. Depending on ordering relation under evaluation g, a
spectral reference Sref might be required.

Taking the aforementioned constraints into account, the design of spectral ordering
uncertainty test is as shown in Fig. 4.6. The initial spectral function S used in
generating gradation St in Eq. 4.7 is selected randomly from images of the pigment
patches in Pigment-56 dataset (Appendix B.1).

St = {t(S, θi), θ ∈ [θ0, θp]} (4.7)

Function t is also randomly selected from one of the following basic transforma-
tions, i.e., magnitude change, translation, and standard deviation change. Trans-
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lation is implemented by shifting S over its wavelength, while magnitude tm and
standard deviation tstd changes are implemented according to Eq. 4.8, where k
is a constant. Note that these t functions are not aimed at modeling the spectral
transformations, but rather to produce sequences of ordered spectral functions. See
examples of obtained spectral gradations in Fig. 4.7.

tm(S) = k

∫ λmax

λmin

s(λ) dλ, tstd(S) = k

∫ λmax

λmin

s(λ)2 dλ (4.8)

Finally, depending on the ordering relation under evaluation, a spectral reference
might be required. It can be one of the equi-energetic black and white spectral
functions, SBk and SWh, shown in Eq. 4.9. Another option would be by randomly
selecting a spectral function from the Pigment-56 as the reference.

SBk = {sBk(λ) = 0, ∀λ ∈ [λmin, λmax]}
SWh = {sWh(λ) = 1, ∀λ ∈ [λmin, λmax]}

(4.9)

Figure 4.7 – Examples of spectral gradation generated by three transformation
t, i.e., magnitude change, translation, and standard deviation change. Units and
dynamic ranges of all three plots are identical.

Procedure shown in Fig. 4.6 is for a single test. Later in Section 4.5, this test will
be carried out 500 times for each ordering relation under evaluation. Then, a table
will be produced where under each ordering relation there will be a percentage
number. This percentage number represents how many times out of 500, an initial
ordering is preserved after an ordering relation is applied to the spectral gradation.
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4.2.4 Trueness in Median Filtering

Rank order filters (ROF) is a set of filters which can be developed directly after
defining an ordering relation, see formal definition in Chapter 6. An ROF works
by iteratively sliding a filter window over the entire spatial dimension of an image,
each time replacing value at the origin with one that is associated with rank r.
Median filter is an example of ROF in which r = nW−1

2 , nW being the number of
pixels within filter window W .

Because ordering relation is the core of ROF, its properties will also impact the
performance and properties of the constructed ROF. Median filter is an instance
of ROF whose properties are well identified for the scalar domain [88, 172]. Aim-
ing to measure the indirect impact of an ordering relation g in its corresponding
g-based spectral median filter, a trueness2 test in median filtering is developed.
The test allows to obtain an estimate of the performance of various ordering re-
lations [59]. Given an image target, the test is essentially a comparison between
two images, before and after filtering. Target images to employ originate from the
Pigment-56 and Subsets-250 datasets, see Appendix B. In addition, as the notion
of truesness requires the existence of a reference (see definition in Section 1.6),
there has to be images that play the role of references. For that, target images
filtered by Vector Median Filters (VMF) [18] will be used as the references. VMF,
with cumulative distance as its ordering relation, has been shown to be the most
statistically robust multivariate median filter. Spectral Kullback-Leibler pseudo-
divergence (KLPD) function (Section 3.7.1), which has been concluded as the most
suitable spectral difference function in Chapter 3, is chosen to be the spectral dif-
ference function of VMF. The general procedure of this trueness test can also be
seen in Fig. 4.8. Ordering relation with smaller average pixel-by-pixel differences
is considered as a better one, as it provides a more similar performance to VMF as
the reference.

2The notion of trueness is taken from metrology, i.e., measurement trueness in Section 1.6.
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(a) Computation of average spectral difference between original image and its VMF-filtered image
which is considered as the reference.

(b) Computation of average spectral difference between g-based spectral median filtered images and
the references, i.e., VMF-filtered ones.

Figure 4.8 – Performance assessment of spectral ordering relation using trueness
in rank ordering test. With VMF-filtered images as references, g ordering relation
is considered to have a good performance if the average spectral difference to
reference image is reduced after the filtering process.

4.3 Existing Hyperspectral Ordering Relations
A comprehensive study of multivariate ordering was carried out in the 70s by
Barnett [23]. In his work, multivariate ordering relations were categorized into
four non-mutually exclusive categories based on their approaches in reducing n-
dimensional value into a single scalar. Following this classification, in the fol-
lowing are the state of the art of hyperspectral ordering relations, classified into
marginal, partial, conditional, and reduced approaches.

4.3.1 Marginal Ordering (M-Ordering)

M-ordering approach orders multivariate data channel-wise. Its main interest is in
taking an inference or summarizing the distribution of each data channel, and not
to represent characteristics of a multivariate data point [23]. Marginal ordering has
been employed in the color [66, 96, 136, 182] and multispectral [16] domain. Ad-
apting the approach to the continuous nature of spectral function, its mathematical
expression is rewritten as in Eq. 4.10.
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S1 �marg S2 ⇔ s1(λ) ≤ s2(λ), ∀λ ⊂ [λmin, λmax] (4.10)

Interpretation. Spectral function S1 precedes spectral function S2 if and only if all of
its elements are smaller than those of S2 at every wavelength λ.

According to Eq. 4.10, M-ordering requires binary relation ≤ to be satisfied in the
entire range of the data. This case is found in, e.g., one that is shown in Fig. 4.9a.
However, when the spectral functions are as shown in Fig. 4.9b, M-ordering will
not be able to determine which out of the two precedes the other. In such a case, S1
neither precedes nor succeeds S2. To be exact, S1 ⊀ S2, S1 � S2, and S1 6= S2.
Hence, marginal ordering only satisfies partial ordering property.

(a) Marginal minimum and maximum will be
obtained from the initial set

(b) Marginal minimum and maximum will be
false colors

Figure 4.9 – Two spectral sets demonstrating when marginal ordering relation
would (a) succeed and (b) fail in ordering the corresponding spectral function.
In (b), marginal ordering relation will generate false colors.

The previous challenge where marginal ordering cannot always order two spectral
functions by no means prevents its use. Marginal ordering finds the minimum
between two spectral functions by taking minimum values at each wavelength, see
Eq. 4.11. Going back to the example shown in Fig. 4.9b, the minimum spectral
function of the set would be a new spectral function that does not exist in the initial
set. This introduction of a new data is called false color problem.∧

marg

{S1, S2} =
∧
{s1(λ), s2(λ)}, ∀λ ∈ [λmin, λmax] (4.11)

False color problem is due to the fact that M-ordering approach assumes independ-
ent image channels, which we know is not true for hyperspectral images since their
neighboring spectral channels are highly correlated. Thus, the only way to cor-
rectly employing M-ordering approach is by ensuring to have independent image
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channels. And this can be done by decorrelating the data prior to ordering [12],
e.g., by maximum noise fraction transform (MNF) or principal component ana-
lysis (PCA). However, these preprocessing steps would require additional com-
putational resources which could be a burden in the case of hyperspectral images
with hundreds of channels. Not to mention whether the employed method has a
correct definition of a spectral function, e.g., not as a vector in the Euclidean space.

4.3.2 Partial Ordering (P-ordering)

P-ordering is a highly data-driven approach since it considers "the overall inter-
relational properties in the total deployment of the sample" [23]. P-ordering di-
vides input data into equivalence groups, either by employing marginal properties
or reduction functions, followed by independently applying ordering function to
each subgroup. Generally, this ordering approach is challenged by non-existent
order between the sub-groups, in which case the ordering relation is not total.

The main reason which hinders the use of P-ordering approach for spectral data
is in the precondition of having a certain number of equivalence groups. Such
equivalence groups can be of particular interest in cases where, e.g., background-
foreground [177] or pure-mixed pixels representations can be assumed. However,
obtaining background-foreground representations in an image of natural scene is
not a trivial matter. And even though pure-mixed pixels representations are com-
monly assumed in remotely-sensed images, it will still be a great challenge when
dealing with textured images. Or in the case of hyperspectrally acquired paintings,
the question of pigment mixtures become more difficult since chemical mixing has
to be taken into account [3, 58] in addition to the optical mixing model which is
commonly assumed in remote sensing images.

4.3.3 Conditional Ordering (C-Ordering)

C-ordering approach, also known as lexicographic ordering, orders multivariate
data sequentially on its marginal components according to certain conditions or
priorities. This approach can be applied to data in its original domain [8, 13–15,
131] or after a preliminary coordinate transformation [110]. In the lexicographical
sense, a spectral function S cannot be considered as a continuous function but
rather as a set of values, i.e., S = {sλi , i ∈ [0, nλ − 1]}. Thus, lexicographical
ordering can be expressed as in Eq. 4.12.

S1 �Lex S2 ⇔ ∃i ∈ [0, nλ − 1],

(∀j < i, s1,λj = s2,λj ) ∧ (s1,λi < s2,λi)
(4.12)

Interpretation. Spectral function S1 precedes spectral function S2 if and only if (1) its
values at the first j channels are equal to those of S2 and (2) its value at channel j + 1
is smaller than that of S2.
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Lexicographic ordering is popular for its total ordering property, which is achieved
when all image channels are used. This ordering approach is particularly suitable
in cases where priorities among the marginal components of the image are known,
e.g., in color images [15]. However, when this is not the case, the prioritization
concept can easily become a drawback, especially when dealing with data of a
much higher dimensionality.

When it comes to hyperspectral images, the use of lexicographical ordering sug-
gests that only very few spectral channels are of high importance, and the rest will
be considered negligible. This problem is demonstrated through an example in
Fig. 4.10. According to a lexicographical approach which gives more priorities
to shorter wavelengths, the black spectral function succeeds (is ’larger’ than) the
red one. This decision is made based on reflectance value obtained only from the
shortest wavelength (see Fig. 4.10b), rendering the rest of the spectral information
(see Fig. 4.10a) irrelevant. In addition to this excessive prioritization issue, lexico-
graphic approach often yield inefficient exploitation of inter-channel relations [15].

(a) Spectral functions in full spectral range (b) Portions of spectral functions shown in (a)

Figure 4.10 – Two spectral functions where S1 (in red) can be considered as ’lar-
ger’ than S2 (in black) due to their overall magnitudes, see (a). However, a lexico-
graphic ordering relation which prioritizes shorter wavelengths will say otherwise
since s1(λmin) < s2(λmin), see (b).

Strategies employed in surpassing the limitation of classical lexicographic ordering
are mainly in decreasing priority attributed to the first channel. Various attempts
were made for three-channel color domain [8, 13, 14, 131], which however would
not be of significant improvement for the hyperspectral domain due to its large
channel count. Other strategies that could be of interest for multivariate data in
general involves creating equivalence groups for the image channels and the use
of marker images in a preprocessing step [15].
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If lexicographic ordering is to be adapted to the most suitable definition of spectral
data, i.e., as a series, its formulation can be expressed as in Eq. 4.13, where f(λ)
is a prioritization function of the marginal components. Prioritization function of
the original lexicographical ordering can be defined as f(λ) = k(λmax−λ), k ∈ R.
With this expression, lexicographic ordering essentially belongs to the family of
R-ordering in Section 4.3.4.

S1 �Lex S2 ⇔ gLex(S1) < gLex(S2),

gLex(S) =

∫ λmax

λmin

f(λ) · s(λ) dλ
(4.13)

Interpretation. Lexicographic ordering relation as a form of ordering relation based on
prioritization function. The order of a spectral function S is determined by the function
of priorities over the wavelength f(λ).

To the best of our knowledge, the original construction of lexicographic ordering
has not been employed for hyperspectral image analysis. However, lexicograph-
ical cascade is still frequently used to resolve classification ties in supervised or-
dering [174] or to allow R-ordering approaches, which are generally only partial
orders, in reaching the total ordering property [59, 176].

4.3.4 Reduced Ordering (R-Ordering)

The main idea behind R-ordering approach is to reduce a multivariate data into a
scalar value by means of combining its components, aiming to imply a restricted
overall ordering on the data [23]. Various reduced ordering relations that have been
used in the spectral domain are given in the following.

Images in the grayscale domain can be considered as intensity images. If a spectral
function is regarded as energy, one function is larger than another if its total amount
of energy is bigger, see Eq. 4.14. Thus, as in the grayscale domain, a ’white’
spectral function always succeeds a ’black’ one [59].

gEsum(S) =

∫ λmax

λmin

s(λ) dλ (4.14)

Due to its energy point of view, the previous ordering relation assumes theoretical
equi-energetic black and white spectral functions as the extrema. Consequently,
its ability to process color information is very limited. This can be overcome by
using a distance function since it explicitly requires to define a reference point
Sref , see Eq. 4.15. If theoretical equi-energetic white spectral function is selected
as the reference point, the behavior of gd1 will be similar to gEsum [59]. This
approach has been employed in the color [10,178] and hyperspectral [179] domain.
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If Euclidean distance of cumulative spectrum (ECS) (Section 3.5.3) is employed
as the distance function, the obtained ordering relation will belong to the group
that is based on prioritization function, see Eq. 4.13.

gd1(S) = d(S, Sref ) (4.15)

Ordering relations in Eq. 4.14 and 4.15 are only pre-orders since they cannot en-
sure anti-symmetry. Furthermore, if the two relations are to be employed in a mor-
phological process, they do not allow to fully control the convergence of the value
set. One solution to this could be by employing two reference points. Conver-
gent Color Mathematical Morphology (CCMM) [106] employs the two references
separately for minimum and maximum values extraction. CCMM can be directly
extended to the hyperspectral domain, see Eq. 4.16 where S−∞ and S+∞ are the
spectral references for minimum and maximum extraction, respectively. Due to
this different use of references, if ordering relation of CCMM is used to determ-
ine any arbitrary rank r other than the extrema, essentially it will be reduced to
ordering relation gd1 in Eq. 4.15.

g−CCMM (S) = d(S, S−∞)

g+CCMM (S) = d(S, S+∞)
(4.16)

Median can be defined as the point where sum of its distance to all other points
in the neighborhood is minimum [19]. Vector Median Filters (VMF) [18] was de-
veloped using this notion, i.e., multivariate median as the point having minimum
aggregate distance. Considering that the pixels in a remote sensing image can
be characterized by their mixed nature, cumulative distance using spectral angle
distance was employed to extend the grayscale mathematical morphology to the
hyperspectral domain [139, 140]; although strictly they are median/ anti-median
filters [177]. Cumulative distance approach has also been used to construct math-
ematical morphology for hyperspectral data in [139], with spectral information
divergence (SID) and hidden Markov model-based information divergence (HM-
MID).

In bit mixing ordering approach [43], the value s(λ) of a spectral function S is
considered as a binary word that consists of p bits. The relation works by trans-
forming the multivariate value into a scalar of (∆λ × l) bits long. The ordering
function can be written as in Eq. 4.17.

gBM (S) =
l−1∑
j=0

{
2λmax−(l−1−j)

∫ λmax

λmin

2λmax−λ · s(λ){j} dλ

}
(4.17)
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Bit mixing approach can also be considered as ordering relation with a priorit-
ization concept. Although rather than only taking into account the wavelength
arrangement as the lexicographic approach, it also considers the bit arrangement.
The main challenge of its use for the hyperspectral domain lies in the number of
channels and bits a hyperspectral image might require. Let us assume a hyperspec-
tral image with 100 spectral channels where each value is represented by a 64-bit
floating point number. Applying bit mixing order in its original form would result
in each value having to be represented in 64 × 100 bits. Furthermore, taking also
into account the typical spatial dimension of a hyperspectral image, the use of the
original bit mixing approach is not feasible. Bearing this technological limitation
in mind, three different bit mixing implementations are constructed, i.e., BM4,
BM8, and BM16. Implementation details of each ordering relation is provided in
Table 4.2, where differences between the three bit mixing functions lie in the num-
ber of considered bands, the number of most significant bit (MSB), and the total
bits required to represent each value. Illustration of bit mixing procedure BM4 is
also provided in Fig. 4.11.

Table 4.2 – Implementation details of 3 ordering relations employing bit mixing
paradigm that are to be evaluated in this study. Implementation of each ordering
relation vary in the number of spectral bands to take into account, the number of
most significant bit (MSB), and the number of bits required to represent one value.

Ordering relation Considered bands Considered MSB Bits per value

BM4 [λmin, λmin+3] [0, 7] 32
BM8 [λmin, λmin+7] [0, 7] 64

BM16 [λmin, λmin+15] [0, 3] 64

4.3.5 Supervised Ordering Approaches

In addition to ordering relations that have been discussed in Section 4.3.4, there are
supervised R-ordering relations originally developed for classification purposes.
Similar to P-ordering approach, supervised ordering relations require the know-
ledge of sub-groups that exist within an image. Then, a preprocessing step would
be carried out to obtain a representation for each of the sub-groups. Given a spec-
tral function, its order will be determined by an R-ordering relation relative to the
sub-groups. This ordering approach will not be considered in our study since our
concern is order between spectral functions rather than order relative to a region or
class. Nevertheless, in the following are some ordering relations belonging in this
category of supervised reduced ordering approach.
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Figure 4.11 – Detailed implementation of bit mixing ordering relation BM4. For
BM8, first 8 wavelengths are taken into account and thus the output is of 8×8=64-
bit integer. For BM16, since 64-bit integer is the maximum, only the first 4 bits
are considered for each of the 16 wavelengths.

Assuming background-foreground representations in an image, supervised reduced
ordering were developed in [176]. Given a training set consisting of the background-
foreground pixels, in the study kriging interpolation and support vector machine
(SVM) were employed to learn the ordering. When background and foreground
sets are both unitary, the ordering relation becomes the difference between ker-
nelized distances, see Eq. 4.18. In this equation, Sb and Sf are spectral functions
corresponding to background and foreground pixels, respectively.

g{Sb,Sf}(S) =
K(Sf , S)−K(Sb, S)

K(S, S)−K(Sf , Sb)
(4.18)

The previous two-class construction was further developed into a multiclass su-
pervised ordering [175] as shown in Eq. 4.19, where g∗ is a normalized two-class
function, e.g., one-vs-all SVM evaluation function.

g{S}(S) = max
i
g∗(S;S−i,Si) (4.19)

Another supervised R-ordering was developed based on Lattice Auto-Associative
Memories (LAAM), incorporating Chebyshev distance function. In this frame-
work, lexicographic approach is employed to resolve cases of classification ties
[174]. Two other supervised ordering relations employ a marginal approach [49]
and where end-member ordering relation is developed based on the concept of
spectral purity [11].
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4.3.6 Ordering Relation on Reduced Spectral Data

Up to this point, discussions of various ordering relations have mostly been in the
context of full-band approach. In such ordering relations, a hyperspectral image is
taken as input in its entirety. Or it could also be after a decorrelating step if the em-
ployed ordering relation cannot take into account intercorrelated spectral channels,
e.g., marginal and lexicographic approaches. But nevertheless, the dimensionality
of data to be processed remains high.

Computational cost is often an important consideration when dealing with hyper-
spectral images. The large channel count of a hyperspectral image poses a chal-
lenge not only in terms of memory size but also computational time and complex-
ity. Thus, it is not uncommon to apply dimensionality reduction [143, 164, 188]
or band selection [187, 190] prior to ordering relation, or any image processing
tasks for that matter. However, if computational cost is the main reason to carrying
out the aforementioned data reduction steps, such approaches are easily out of our
consideration. Bearing in mind the metrological aspects of image processing we
are striving for, these approaches lose the interest of hyperspectral imaging (HSI).
With these data reduction purposes, a metrological image processing framework
cannot be achieved since the accuracy HSI has to offer will be lost during the data
reduction process.

4.4 Proposed Hyperspectral Ordering Relation
In the following, a hyperspectral ordering relation based on the notion of ratio of
distance is proposed, i.e., conditional ordering of ratio and angular ratio of dis-
tances. Further on, this ordering relation will be referred to as CRA. CRA ex-
presses minimum and maximum extractions separately, as respectively shown in
Eq. 4.20 and 4.21. Definitions of g−R , g+R , and gA are provided in Eq. 4.22, where
S−∞ and S+∞ are two spectral functions to serve as references.

S1 �CRA S2 ⇔
{

g−R(S1) > g−R(S2) or
g−R(S1) = g−R(S2) and gA(S1) < gA(S2)

(4.20)

Interpretation. Spectral function S1 precedes S2 if and only if its ratio of distance
according to g−R is larger than that of S2. In case where they are identical, angular ratio
of distance gA of S1 must be smaller than that of S2.

S1 �CRA S2 ⇔
{

g+R(S1) > g+R(S2) or
g+R(S1) = g+R(S2) and gA(S1) > gA(S2)

(4.21)

Interpretation. Spectral function S1 succeeds S2 if and only if its ratio of distance
according to g+R is larger than that of S2. In case where they are identical, angular ratio
of distance gA of S1 must be greater than that of S2.
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g−R(S) =
d(S, S+∞)

d(S, S−∞)
, g+R(S) =

d(S, S−∞)

d(S, S+∞)
,

gA(S) = 2 · d(S, S−∞)

d(S−∞, S+∞)

(4.22)

To understand the concept behind mathematical construction of ratio and angular
ratio of distance shown in Eq. 4.22, see illustration in Fig. 4.12 where the notion
of distance is expressed geometrically. Suppose there are two spectral references

Figure 4.12 – Illustration explaining the concept behind conditional ratio and an-
gular ratio of distance (CRA), where a distance function d and two references S−∞

and S+∞ are required.

S−∞ and S+∞, where each could be interpreted as convergence coordinates for
minus and plus infinity. Any arbitrary spectral function S1 can be considered as
smaller than S2 if its distance to plus infinity S+∞ is larger than that of S2. Or it
can also be expressed as S1 being closer to minus infinity S−∞ than S2. In either
case, whether S1 is closer to S−∞ or S+∞ can be determined by the ratio of dis-
tance of S1 to these two references. Indeed, minimum and maximum extractions
are given separate expressions in CRA, see Eq. 4.20 and 4.21. However, note that
relationship between the two ratio of distances can be written as follows.

g−R =
1

g+R

In Fig. 4.12, angular ratio of distance gA(S1) and gA(S2) are given in terms of α1

and α2, respectively. Note that this ratio of distance is not an angle, per se. Rather,
it is a measure that is proportional to angle. In the case illustrated in the figure,
gA computation is not needed since S1 ≺ S2 according to g−R . And in this case
the proposed ordering relation is only a reduced approach rather than conditional.
This, however, does not imply that gA is unnecessary. When it comes to ratio, for
any arbitrary scalar values x and y, there are x′ = c · x and y′ = c · y where the
following holds ∀c ∈ R.

x

y
=
x′

y′
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An illustration of such a case is given in Fig. 4.13, where S1 and S2 are aligned
in an axis that is perpendicular to S−∞S+∞. For this example, the first condition
of CRA will be identical, i.e., g−R(S1) = g−R(S2). Thus, the need of the second
condition of CRA emerges, where the ties in distance ratio can be solved since
α1 6= α2.

Figure 4.13 – Illustration for the necessity of the second component of CRA, i.e.,
angular ratio of distance.

4.5 Metrological Evaluation of Hyperspectral Ordering
Relations

In this section, metrological evaluations of all ordering relations introduced in the
previous section will be carried out. To recall, the proposed metrological tests
are spectral ordering uncertainty (Section 4.2.3) and trueness in median filtering
(Section 4.2.4). Also, note that evaluation and discussion will be carried out ac-
cording to the following categorization of ordering relation, i.e., energy-based and
marginal ordering relations (Section 4.5.1), ordering relations with prioritization
concept (Section 4.5.2), distance-based ordering relations employing a single ref-
erence point (Section 4.5.3), and various other distance-based ordering relations
(Section 4.5.4).

4.5.1 Energy-Based and Marginal Ordering Relations

An energy-based ordering relation can be found in Eq. 4.14, further on the order-
ing relation will be referred to as Esum. Given a spectral function S, Esum will
determine the order of S based on its total sum of energy. In this evaluation, Esum
will be compared to marginal ordering relation shown in Eq. 4.10.

4.5.1.1 Spectral ordering uncertainty

Results of ordering uncertainty test for Esum and marginal ordering relation are
provided in Table 4.3. For Esum, it returns 100% preservation rate. On the other
hand, marginal ordering relation can only preserve 65.6% out of 500 randomized
spectral gradations, while the remaining causes generation of false colors. Ex-
amples of marginally-preserved and false color inducing spectral gradations en-
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countered during the test can be observed in Fig. 4.14. By considering only this
metrological test, Esum is more favorable than marginal ordering relation since it
is order-preserving and does not generate false colors.

Table 4.3 – Results of ordering uncertainty tests for Esum and marginal ordering
relation, shown in unit of percentage. Esum successfully preserves order in all
the given spectral gradation. Marginal ordering relation cannot order a significant
amount of the given gradation, in which it has to resort to producing false colors.

Ordering relation Preserved order False color

Esum 100 -
Marginal 65.6 34.4

(a) Spectral gradation whose initial order can
be preserved

(b) Initial order cannot be preserved, hence
inducing false colors

Figure 4.14 – Two instances of spectral gradations encountered by marginal order-
ing relation in spectral ordering uncertainty test.

4.5.1.2 Trueness in median filtering

Performance of Esum and marginal ordering relations in trueness test employing
Pigment-56 and Subsets-250 datasets can be observed through Fig. 4.15. To recall,
the results were computed using VMF-filtered images as reference images. Thus,
lower values are better since it can be considered that the performance of order-
ing relation under evaluation is closer to that of VMF. Upon observing the figure,
comparing to the unfiltered images, both Esum and marginal ordering relations
were able to construct well-performing median filters. If the two median filters are
compared, marginal always outperforms Esum ordering relation. This, however,
is not unexpected. Marginal ordering relation selects marginal medians which ap-
proximate the average spectral function (or average value at every wavelength).
And VMF, with its statistical median, is also a good estimator of the average spec-
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tral function [18, 88]. Thus, marginal ordering relation will always lead to smaller
spectral differences to VMF-filtered images.

(a) Pigment-56, average (b) Pigment-56, standard deviation

(c) Subsets-250, average (d) Subsets-250, standard deviation

Figure 4.15 – Spectral differences computed between reference and target images,
in which VMF-filtered images are used as reference. As for the targets, they are
original (unfiltered) images, and those filtered by median filters based on Esum and
marginal ordering relations. Judging from how the average and standard deviation
of spectral differences to the references are reduced, Esum and marginal ordering
relation performs well in median filtering, with marginal as the most efficient.

4.5.1.3 Discussion

In the ordering uncertainty test, it was concluded that Esum is to be preferred rather
than marginal ordering relation. However, the opposite was concluded in trueness
in median filtering test. Marginal ordering relation performs median filtering better
than Esum. Then, which one is to be selected as a more suitable hyperspectral
ordering relation? None of them.

Esum only computes the total energy of a given spectral function. This entails that
its capability to account for shape information is very limited. Spectral functions of
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different shapes can have identical total energy, see example in Fig. 4.16. Despite
evident shape differences, Esum will deem the 3 spectral functions as identical.

(a) Spectral reflectance functions (b) Their spectral variations

Figure 4.16 – Three spectral reflectance functions of different shape but identical
total amount of energy. The shape difference is computed with KLPD-Shape with
equi-energetic black spectral function SBk as reference.

Despite its closeness to performance of VMF, the false color problem of marginal
ordering relation persists. For example, all pixels in a marginally-filtered FN1
shown in Fig. 4.17 are actually false-colored, despite the absence of apparent per-
ceptual distortion of the image. This might lead to a doubt whether false colors
is indeed a serious problem or if to some extent it can be acceptable. To better
understand the impact of false color, see illustration in Fig. 4.18. Five spectral
reflectance functions were randomly selected from Pigment-56 and marginal or-
dering relation was employed to obtain minimum, median, and maximum of the
given set. As observed in the figure, none of the spectral functions that are asso-
ciated to the ranks comes from the initial spectral set. Color difference between
ranked spectral functions and the initial set is also provided in Table 4.4.

Table 4.4 – Color differences between colors of the initial spectral set shown in
Fig. 4.18 and colors of spectral functions associated with the rank minimum, me-
dian, and maximum. The colors are obtained using CLTR method. CIELAB color
difference was employed to compute the differences. All ranked spectral functions
are false colors since no ∆Eab = 0.

∆Eab S1 S2 S3 S4 S5

Smin 36.40 26.23 39.05 26.27 12.85
Smedian 21.16 32.78 21.78 25.21 25.25
Smax 30.09 24.64 32.14 14.83 38.48
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(a) Reference, VMF-filtered (b) Filtered FN1, marginal (c) Filtered FN1, Esum

Figure 4.17 – Performance of marginal and Esum ordering relations in filtering
image FN1 as compared to the reference, i.e., VMF-filtered FN1. Note that despite
the absence of perceptual distortion, all pixels of the marginally filtered FN1 are
actually false colors.

(a) Spectral reflectance set randomly selected
from Pigment-56 dataset

(b) Spectral reflectance functions associated
with minimum, median, and maximum

(c) Colors of the initial spectral reflect-
ance set shown in (a)

(d) Colors of spectral functions associ-
ated with ranks as in (b)

Figure 4.18 – Given an (a) initial set of spectral reflectance functions, (b) three
spectral functions associated to minimum, median, and maximum are obtained
using the marginal approach. All spectral reflectance functions are converted to
the sRGB space and the colors are shown in (c) and (d).
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4.5.2 Ordering Relations with Prioritization Concept

Ordering relations to be evaluated in this category are the lexicographic and bit-
mixing approaches. Two different lexicographic ordering relations are considered,
i.e., with priorities given to shorter (Lex-λmin) and longer (Lex-λmax) wavelengths.
Then, in order to demonstrate the excessive prioritization problem of the approach,
the two will be contrasted with ordering relations that are only based on the shortest
(λmin) and longest (λmax) wavelengths, respectively. Other ordering relations to be
considered are the bit mixing approaches BM4, BM8, and BM16. Distance-based
ordering relation with ECS will also be evaluated. The aforementioned ordering
relations, except for ECS, assumes the equi-energetic black spectral function SBk
to be the global minimum of the value space. Thus, in order to be comparable,
SBk will be employed as reference for ECS. Further on, this last ordering relation
will be referred to as ECS-SBk.

4.5.2.1 Spectral ordering uncertainty

Five hundred ordering uncertainty tests were carried out for ordering relations with
prioritization concept and their results can be seen in Table 4.5. Lexicographic or-
dering relations Lex-λmin and Lex-λmax are both able to preserve existing order
in the given spectral gradations. And if compared to λmin and λmax, it shows
that more than one spectral band is employed by the lexicographic relations to
determine the order of a spectral function. Through this test, however, excess-
ive prioritization issue of the lexicographic approach cannot be demonstrated. For
bit mixing ordering relations, limitation of their approach becomes evident, espe-
cially since their rates of order preservation never reach 50%. ECS-SBk is able to
preserve the order of all given spectral gradations. Rather than the previous ap-
proaches where measures from all spectral bands are, in practice, not always used,
ECS-SBk incorporates all of them through its use of distance computation.

Table 4.5 – Order preservation rate (in unit of percentage) of various ordering
relations with prioritization concept, obtained from 500 ordering uncertainty tests.

Lex-λmin Lex-λmax λmin λmax BM4 BM8 BM16 ECS-SBk
100 100 60.2 60.2 39.2 44 17.6 100

4.5.2.2 Trueness in median filtering

Average and standard deviation of pixel-by-pixel differences for lexicographic or-
dering relations are shown in Fig. 4.19, in which they are compared to ordering
relations based on single band image. Between the lexicographic ordering rela-
tions Lex-λmin and Lex-λmax, it can be observed that in the case of these pigments
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datasets, higher priorities should be given to longer wavelengths rather than to
shorter ones. Incorrect function of prioritization would result in the filter introdu-
cing more errors (as compared to the curve associated to unfiltered images) rather
than reducing it. The two lexicographic ordering relations demonstrate how this
approach heavily relies on the correct prioritization function. In the color domain,
obtaining such priorities over the image channels is less of a challenge. Depending
on the image at hand, higher priority can be given to, e.g., hue or saturation chan-
nels. But when it comes to the hyperspectral domain, inferring priorities over the
hundreds of spectral bands might not always be possible, and in many cases such
information is not known beforehand.

Figure 4.19 – Average and standard deviation of spectral differences of Pigment-56
images before and after median filtering, with VMF-filtered images as the refer-
ence. Performances of Lex-λmin and Lex-λmax are almost identical to λmin and
λmax, respectively, showing the excessive prioritization problem of their approach.
Prioritizing shorter wavelengths is also not a good choice since it introduces more
errors in almost half of the images, as compared to curve of the original images.

λmin and λmax utilizes only the first and last spectral bands, respectively, when de-
termining the order of a given spectral function. As observed in Fig. 4.19, the two
are almost identical to Lex-λmin and Lex-λmax, respectively. These responses are
as expected. Unlike spectral functions employed in the ordering uncertainty test,
where no additional variations are added even in the smallest amounts, real spectral
functions are rich of small variations. But even the smallest variations would have
a great impact on lexicographic ordering. The almost identical response between
the pairs of lexicographic and single band image based ordering relations demon-
strate the excessive prioritization given by the traditional lexicographic ordering.
Hence, lexicographic ordering is not a suitable hyperspectral ordering relation as
it considers a significant number of band images as insignificant.
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Performances of the three different implementations of bit mixing approach is
shown in Fig. 4.20. Comparing the different implementations, including more
spectral bands seem to improve the performance. Nevertheless, if compared to
the curve corresponding to unfiltered images, in approximately half of the pig-
ment samples bit mixing approach introduces more errors rather than reducing
them. Similar conclusion to that of lexicographic ordering relation, this shows the
importance of knowing where the priorities actually exist or where optimum one
should be implied.

Figure 4.20 – Average and standard deviation of spectral differences of Pigment-
56 images before and after median filtering, with VMF-filtered images as the ref-
erence. Including more spectral bands seem to improve the performance of the
obtained median filters, e.g., BM16 is better than BM8. Although in almost half of
the pigment samples, more errors are introduced by all ordering relations (compare
to the curve which corresponds to original images).

Despite using different techniques, ECS-SBk, Lex-λmin, and BM8 ordering rela-
tions give more priorities to shorter wavelengths. In order to compare the three or-
dering relations, their performances are obtained in the context of trueness in rank
ordering tests, see Fig. 4.21. As observed in the figure, BM8 performs slightly bet-
ter than Lex-λmin. This is because BM8 incorporates more spectral bands rather
than Lex-λmin which, in practice, mostly considers only the first spectral band.
Considering ECS-SBk, it significantly outperforms the other two ordering rela-
tions. Also, it always reduces the spectral difference of the original image, in both,
average and standard deviation values. Finally, despite also having prioritization
concept, ECS-SBk do not perform poorly as Lex-λmin and BM8 do. And this is
because with a distance-based approach, in practice all spectral bands are taken
into account thus avoiding the excessive prioritization problem.
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Figure 4.21 – Average and standard deviation of spectral differences of Pigment-56
images before and after median filtering, with VMF-filtered images as the refer-
ence. Ordering relation used to construct the median filters are ECS-SBk, Lex-
λmin, and BM8, all giving higher priorities to the shorter wavelengths. ECS-SBk
is the best performing ordering relation since in all cases it improves spectral dif-
ferences to the reference images, i.e., VMF-filtered ones. This is because ECS
avoids the excessive prioritization problem by its distance approach.

In addition to Pigment-56, the test is also carried out for the Subsets-250 dataset.
Performances of ordering relations with prioritization concept in the context of this
dataset are provided in Fig. 4.22. As observed, the trend of performance with re-
gard to the Subsets-250 dataset remains highly similar to the previous dataset. Lex-
λmin and Lex-λmax are almost identical to λmin and λmax, respectively. Between
the bit mixing approaches there are almost no significant difference. Then, it can
also be inferred that in this dataset, more priorities should be given to longer rather
than shorter wavelengths. Nevertheless, prioritization using distance based ap-
proach ECS-SBk proves to be the best performing ordering relation out of the rest.
Fig. 4.23 allows side-by-side comparison of unfiltered, reference, and filtered im-
ages obtained from various ordering relations, example is shown for image NP1
from the dataset. Observing the figure, it is evident that the lexicographic and bit
mixing approaches introduce grainy artifacts to the filtered images. On the other
hand, it is only ECS-SBk which demonstrates perceptually similar performance to
that of VMF.

4.5.2.3 Discussion

From our analysis we may conclude that, generally, lexicographic ordering rela-
tions are not a suitable choice for hyperspectral image processing. This is because
they suffer from excessive prioritization problem, which has been demonstrated
through trueness in rank ordering test. In the test, their performances are almost
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Figure 4.22 – Average and standard deviation of spectral differences of Subsets-
250 images before and after median filtering, with VMF-filtered images as the
reference. The median filters are developed based on ordering relations with pri-
oritization concept. Among all ordering relation, ECS-SBk is the best performing
one as it avoids excessive prioritization problem by its distance approach.

identical to ordering relations which are based on only single band images. And
this shows that in many cases lexicographic ordering relation was essentially re-
duced to being a first-priority ordering relation, rendering the rest of the compon-
ents useless. Bit mixing approach is not significantly different from the lexico-
graphic one, in its excessive prioritization problem. Indeed, this problem was even
more magnified because the implementation only allows taking information from
very few spectral bands. But this is yet another reason why bit mixing approach
is not to be selected for full-band hyperspectral image processing. It is simply not
feasible considering size of a hyperspectral image, that is typically of hundreds of
spectral bands and large spatial dimension. Finally, the only remaining candid-
ate from this group of ordering relations is ECS-SBk. It reduces the prioritization
problem, while at the same time incorporates information from all spectral bands.
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Figure 4.23 – Side-by-side comparison of unfiltered NP1, its VMF-filtered refer-
ence, and its filtered images obtained from various ordering relations with prior-
itization concept. Compared to the reference, lexicographic and bit mixing ap-
proaches introduce grainy artifacts and only ECS-SBk seem to approach the per-
formance of VMF. Shown color images are produced using FIXED method.
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4.5.3 Single Reference Distance-Based Ordering Relations

The performance of a distance-based ordering relation will be partially influenced
by the distance function it employs. And despite having concluded the most suit-
able distance function for spectral data in Chapter 3, in the following we will
demonstrate the impact of several distance functions on distance-based ordering
relation which requires to define a reference point. The functions to evaluate are
Euclidean distance, spectral angle (SAM), ECS (Section 3.5.3), and KLPD (Sec-
tion 3.7.1).

4.5.3.1 Spectral ordering uncertainty

Performance comparison of 4 distance-based ordering relations in spectral order-
ing uncertainty test is given in Table 4.6, where the reference choice is varied (see
protocol in Section 4.2.3). Consistently lower performances are given by SAM,
which is as expected due to its suppression of magnitude differences. Other differ-
ence functions only perform slightly different in each case of reference choice.

Table 4.6 – Percentage rate of preserved order obtained by single reference
distance-based ordering relations, where the reference choice is varied.

Reference Euclidean SAM ECS KLPD

SBk 100 82.6 100 100
SWh 100 88.8 98.8 100
Randomized 99.0 88.6 99.4 98.2

4.5.3.2 Trueness in median filtering

Performances of the four distance-based ordering relations for trueness in median
filtering test can be seen in Fig. 4.24. Note that in this test, only one spectral ref-
erence is employed, i.e., equi-energetic black spectral function SBk. In agreement
with spectral ordering uncertainty test, among the four distance-based ordering re-
lations, SAM gives the lowest performance. As for the rest, if compared to the
curves which correspond to spectral differences between original and reference
images, they produce lower differences to VMF-filtered images. Furthermore, in
the context of Pigment-56 and Subsets-250 datasets, their performances are highly
similar, with only slight differences for Euclidean in the case of Pigment-56.

Performances of the considered ordering relations in the spatial dimension of target
images can be observed through a side-by-side comparison provided in Fig. 4.25.
Observing these images, it is evident that SAM is not a suitable ordering relation
for hyperspectral images, it introduces noise and artifacts to the filtered image.
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(a) Pigment-56, average (b) Pigment-56, standard deviation

(c) Subsets-250, average (d) Subsets-250, standard deviation

Figure 4.24 – Spectral differences of Pigment-56 and Subsets-250 images before
and after median filtering, with VMF-filtered images as the reference. Single refer-
ence ordering relations are employed, i.e., using Euclidean, spectral angle (SAM),
ECS, and KLPD functions. SBk is used as spectral reference.

On the other hand, the three other ordering relations perform as expected from a
median filter, i.e., gives smoothing effect without destroying edges in the image.

4.5.3.3 Discussion

To conclude, this subsection has been more of a validation for spectral distance
functions rather than spectral ordering relations. Nevertheless, it has shown the
impact a distance function has on the ordering relation. Euclidean, spectral angle,
ECS, and KLPD functions have been evaluated. Despite its popularity in remote
sensing field, it has been shown that spectral angle is not to be selected in hyper-
spectral image processing due to its inability to account for magnitude differences.
In addition to its reduced performance in detecting existing order in a spectral set,
it also introduces artifacts when it is employed to construct a spectral median filter.
For other difference functions, their performances were not significantly different.
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Figure 4.25 – Side-by-side comparison of unfiltered FN2, its VMF-filtered refer-
ence, and its filtered images obtained from various single reference distance-based
ordering relations. All distance-based ordering relations employ SBk as reference.
Among the evaluated ordering relations, worst performance is given by SAM as
grainy artifacts are introduced to the filtered image. Shown color images are pro-
duced using CLTR method.
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4.5.4 Various Distance-Based Ordering Relations

In addition to single reference distance-based ordering relations, there are various
other distance-based approaches. In the following, metrological evaluations will
be carried out for distance based ordering relations, including the new conditional
ratio and angular distance ordering relation (CRA) which has been proposed in
Section 4.4. Details regarding which ordering relations are to be evaluated can be
seen in each metrological test. KLPD function is chosen as the distance function
and SBk and SWh are employed as references.

4.5.4.1 Spectral ordering uncertainty

Ordering relations evaluated in this part are single reference distance-based (KLPD-
B and KLPD-W), ratio of distance (Ratio-BW)3, proposed CRA ordering relation
(CRA-BW), distance-based ordering relation originally found in CCMM construc-
tion [106] (CCMM-BW), and one that is based on cumulative or aggregate distance
(CumDist). Note that -B, -W, and -BW refer to spectral reference used, i.e., SBk,
SWh, and when both are used together, respectively.

Table 4.7 – Preservation rate of various distance-based ordering relations in spec-
tral ordering uncertainty tests. -B and -W denote the employed spectral reference,
i.e., SBk and SWh, respectively.

KLPD-B KLPD-W Ratio-BW CRA-BW CCMM-BW CumDist

100 100 100 100 100 98.6

Performances of the aforementioned ordering relations in spectral ordering uncer-
tainty tests can be seen in Table 4.7. As observed, five ordering relations provide
excellent performances with the given datasets. It is only the cumulative distance
approach CumDist which demonstrates a slightly worse performance than the rest.
This, however, is not surprising. CumDist approach, which is the ordering relation
behind VMF [18], cannot differentiate minimum and maximum since the two are
mixed together in the maximum value returned by CumDist; the minimum value
of CumDist relates to the median. But this does not entail that CumDist would
fail in this test, because its response would resemble curve 2 shown in Fig. 4.5.
CumDist would, however, fail when its assumption of data distribution [18] is not
met. On the other hand, rather than relying on a certain assumption of data distri-
bution, other distance-based ordering relations employ spectral references to imply
the order in a given dataset. And the selected references in this test have partially
contributed to the success of these ordering relations.

3It is ordering relation based on only the first part of proposed CRA ordering relation
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4.5.4.2 Trueness in median filtering

In this test, the evaluated ordering relations are KLPD-B, KLPD-W, Ratio-BW,
and CRA-BW. CCMM-BW cannot be evaluated due to its alternating use of refer-
ences which does not allow computation of median, see Eq. 4.16. As for CumDist,
it is not evaluated as the other but rather used as reference, i.e., VMF. Perform-
ances of the remaining distance-based ordering relations in this metrological test
are presented in Fig. 4.26. Comparing to the spectral differences between original
images and the references, i.e., VMF-filtered ones, all ordering relations are suc-
cessfully lowering the spectral differences after filtering. However, performances
of the four are almost identical. See also the side-by-side comparison of resulting
images in Fig. 4.27.

(a) Pigment-56, average (b) Pigment-56, standard deviation

(c) Subsets-250, average (d) Subsets-250, standard deviation

Figure 4.26 – Spectral differences of Pigment-56 and Subsets-250 images before
and after median filtering, with VMF-filtered images as the reference. Various
distance-based ordering relations are employed to construct the median filters. Per-
formances of all ordering relations are almost identical.
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Figure 4.27 – Side-by-side comparison of unfiltered FN2, its VMF-filtered refer-
ence, and its filtered images obtained from various distance-based ordering re-
lations. Performances of the evaluated ordering relations are almost identical.
Shown color images are produced using CLTR method.
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4.5.4.3 Discussion

Various distance-based ordering relations have been evaluated and none of them
are clearly superior to the others. In the ordering uncertainty test, CumDist or-
dering relation was slightly less performing than the other approaches due to its
assumption of data distribution that could not always be satisfied. In the trueness
in median filtering test, CumDist and CCMM were not evaluated for reasons that
have been described before. Then, for the rest of the ordering relations, their per-
formances were almost identical.

4.6 On Mathematical Morphology and Total Ordering Property
Mathematical morphology (MM) is a framework for the analysis of structures in
an image. Its foundation is laid upon the notion of a complete lattice, which can
be obtained by just having a partial ordering relation, see Section 4.2.2. However,
total ordering property is indispensable in the context of metrology. This is because
in partial ordering, there is a risk of extrema selection being a randomized process
since the employed ordering relation cannot decide the order between two inputs.

Marginal ordering approach can only satisfy partial ordering property. Lexico-
graphic approach is, by definition, total. However, the metrological tests in Sec-
tion 4.5.2 have shown how lexicographic ordering relations perform almost identic-
ally to those that are based on a single band image. As an impact of this excessive
prioritization problem, the ordering relation produces undesirable artifacts in the
median filtering results of spectral images. To further demonstrate the problem,
two images from Pigment-56 and Subsets-250 are filtered with a minimum filter
constructed using Lex-λmin ordering relation. With a 5×5 filter window, the rel-
ative use of each spectral band can be seen in Fig. 4.28. In this demonstration, it
is clearly shown that spectral bands associated with wavelength longer than 460
nm are never used. Therefore, despite being a theoretically valid ordering rela-
tion, lexicographic approach is not to be selected for further development of MM
framework.

Trichotomy property (Section 4.2.2) is generally satisfied by the distance-based
ordering relations. However, they are typically challenged by the anti-symmetry
property. This theoretical property requires that if (S1 ≤g S2) and (S2 ≤g S2)
then S1 and S2 must be identical spectral functions. In other words, anti-symmetry
demands for unique minimum and/ or maximum. However, due to mathematical
conjecture shown in Eq. 4.23, obtaining unique minimum and/ or maximum in the
hyperspectral domain is easier than in, e.g., three-channel color domain. Then,
due to the small spectral variations, the chance of two different spectral functions
having the same distance value to a specific reference is very reduced. Even if this
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Figure 4.28 – Percentage of the number of spectral bands (or wavelengths) being
used in a minimum filter of window size 5×5 pixels, when a Lex-λmin is employed
as the ordering relation of the filter. In each image, the first spectral channel is al-
most always the determining factor of the ordering of values within a filter window.
Spectral channels after 460 nm are never used in the ordering process.

condition is reached, the proposed CRA ordering relation will be able to differen-
tiate the two functions through its second condition, i.e., angular ratio of distance.
See construction of CRA ordering relation in Section 4.4. For cumulative distance
approach (CumDist) which is employed in VMF, it does not have the ability to
differentiate minimum and maximum. This is because CumDist only allows de-
tecting median and extrema. As for the CCMM construction, it can also reach total
ordering property due to its conditional ordering approach. However, this ordering
relation is not idempotent, which later in Chapter 7 will be shown as a necessary
requirement for reaching morphological filters.

prob

(
#
{ λk⋂
λmin

si(λ)
}
> 1

)
> prob

(
#
{ λl⋂
λmin

si(λ)
}
> 1

)
λk = λmin + n ·∆λ, λl = λmin + (n+ 1) ·∆λ,∀Si ∈ S

(4.23)

Interpretation. Given a set of spectral functions S = {S1, S2, . . . , Si}, the probab-
ility that in the set there are two spectral functions whose values are identical at every
wavelength is reduced as the number of spectral channels are increased. In other words,
the probability of obtaining unique spectral functions is increased as the number of
spectral channels increases.

To conclude, CRA ordering relation is the most suitable ordering relation for
spectral image processing. Despite being theoretically unable to satisfy the anti-
symmetry property, in the hyperspectral domain it is possible to reach due to the
large channel count which induces spectral uniqueness. The idempotency of this
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ordering relation, which makes it superior to CCMM construction, will be given
in Chapter 7.

4.7 Conclusion
The multivariate domain, such as that of hyperspectral images, is not naturally
equipped with the notion of order or rank. While this does not mean that order is
meaningless, hyperspectral ordering relation can only be constructed in a restric-
ted form, by summarizing or combining features of the spectral measure. In this
chapter, relevant existing and proposed multivariate ordering relations have been
evaluated regarding their suitability for use in hyperspectral image processing. In
addition to theoretical constraints, metrological tests have been proposed as evalu-
ation protocol.

The proposed metrological evaluations rejected several ordering relations, i.e.,
marginal, lexicographic, and bit mixing approaches. A reduced ordering approach
which is based on total amount of energy (Esum) was also evaluated. Even though
it performed well during the metrological tests, it has a significant drawback which
has also been demonstrated. Esum has a very reduced capability in taking into ac-
count spectral shape information. Various distance based ordering relations have
also been evaluated and they generally deliver good performances. A particular
note has to be made regarding cumulative distance based ordering relation. Its
obtained minimum and maximum corresponds the notion of median and extrema,
respectively. And due to that, it cannot distinguish minimum and maximum since
they are mixed as extrema.

Aiming to construct a metrological image processing framework, it entails that
total ordering property has to be satisfied. However, apart from the lexicographic
approach, none of the relevant ordering relations are theoretically total ordering.
Even for the lexicographic approach, it has been shown to be unable to satisfy the
metrological constraints. The evaluated distance-based ordering relations face a
challenge with the anti-symmetry property. Fortunately, as described by a math-
ematical conjecture, in the hyperspectral domain it is easier to obtain unique max-
imum and/ or minimum as demanded by the anti-symmetry property. The pro-
posed ordering relation, i.e., conditional ratio and angular distance ordering rela-
tion (CRA), better ensures the spectral uniqueness than other distance-based or-
dering relations due to its use of two different conditions.

Regarding distance based ordering relations, they are generally more advantage-
ous in application-driven image processing than other ordering approaches. In one
sense, they provide flexibility in deciding which spectral features are to be taken
into account and consequently a more suitable spectral distance function can be
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used. Distance-based ordering relations which require spectral references would
further allow expert users to define these references. Distance-based ordering rela-
tions requiring two references give even more flexibility, in the way that they allow
mathematical morphology with user-defined convergence coordinates rather than
assuming convergence to, e.g., black and white. However, this last point will be of
a latter discussion which can be found in Chapter 7.

Summary of Contributions.

X Two metrological criteria were proposed, i.e., spectral ordering uncertainty and
trueness in median filtering. These criteria are used to assess the performance
of ordering relation.

X A hyperspectral ordering relation was proposed, i.e., conditional ratio and an-
gular distance ordering relation (CRA). CRA is based on the ratio of distance
values relative to two spectral references. Its first component is ratio between
to distances, while its second is measure of ratio which is proportional to the
notion of angle.
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Hyperspectral Image Analysis and
Processing Tools
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Chapter 5

Hyperspectral Image Analysis
through Spectral Differences

5.1 Introduction
Hyperspectral imaging (HSI) technology is a good news for the field of image pro-
cessing since it offers a far greater potential than the traditional color imaging does.
In addition to its high spatial sampling, HSI provides a high spectral sampling. As
a spectral sampling increases, more data are obtained and color change assessment
can be carried out with more accuracy. With such gain in accuracy, we believe
that many image processing tasks can be addressed at a basic processing level.

107
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And unlike what have been carried out for color and multispectral images, many
hyperspectral image processing tasks would not need a complex classification or
learning systems. But this comes at the cost of processing hyperspectral images at
a metrological level.

Image analysis can be regarded as the first level of a complete image processing
chain. At this low level of processing, measures can be managed and process
quality and accuracy can be evaluated. Image analysis itself covers a broad range
of application field, e.g., pigment identification in paintings [3, 58], land cover
mapping [53,77], detection of melanoma from dermoscopic images [124,151], and
many more. But despite its extensive range of applications and algorithms, image
analysis tasks are generally addressed by means of classification and/ or unmixing
approaches. In image classification, the similarities of an unidentified pixel to a
set of well-identified spectral functions are computed. Then, the unknown pixel
will be determined as belonging to the class to which it is the most similar. In an
unmixing task, an unknown pixel is considered as a mixture of the known ones.
Estimations are then generated by employing a certain mixing model. Then, the
final concentration of the mixture is determined by an estimation which produces
the smallest error to the pixel in question. It can be seen that in the two different
approaches, the notion of similarity or distance plays a key role. It has been studied
in Chapter 3 that the existing distance functions have different properties. And as
a consequence, the choice of distance function will determine the quality of its
subsequent processing steps and, finally, the end results.

Limiting the scope of study to hyperspectral image analysis by means of spec-
tral differences, organization of the chapter is as follows. Section 5.2 introduces
a graphical representation where features of a spectral image are described by
means of spectral differences, i.e., bidimensional histogram of spectral differences
(BHSD). The notion of reference is central in the context of spectral differences.
Selecting an optimal reference is as important as selecting the correct distance
function. In Section 5.3, discussions and directions of how to select an optimal
spectral reference relative to the image at hand will be provided. Then, the combin-
ation of references allows to construct a higher dimensional graphical represent-
ation of spectral differences, i.e., tridimensional histogram of spectral differences
(THSD). This graphical representation will be introduced in Section 5.4, as well
as how to select the optimal combination of references. The previously introduced
BHSD is employed as a tool to identify noise in a spectral image in Section 5.5.
In the same section, numerical problems encountered in the calculation of spectral
differences and their impact on the quality of results will be discussed. Finally, the
chapter will be closed by a concluding perspectives in Section 5.6.
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5.2 Graphical Representation of Spectral Differences
Let us now consider a painting subset which is shown in Fig. 5.1. By visual in-
spection, the image seems to have four main groups of pigments which roughly
corresponds to the colors of blue, white, red, and yellow. But how should the spec-
tral diversity and complexity of the content of this image be represented? Working
with statistical distribution for each wavelength will not provide us with the differ-
ent color groups and variations that exist within the image. Three one-dimensional
histogram obtained from band images which roughly correspond to the red, green,
and blue wavelengths are shown in Fig. 5.2. And as previously mentioned, none
of the histogram is able to portray the complexity of image SCC01-1.

Figure 5.1 – Image SCC01-1 from Cracks-200 dataset. Shown color image was
generated using ENVI software platform.

(a) Band image #45, 614.52 nm (b) Band image #31, 563.63 nm (c) Band image #2, 458.24 nm

Figure 5.2 – One-dimensional histograms of spectral reflectance values obtained
from the band images of image SCC01-1. Horizontal axes of all plots are given in
the full dynamic range of spectral reflectance values, i.e., from 0 to 1. As for the
vertical axes, they are all of identical units, i.e., pixel count.
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Rather than analyzing the content of a spectral image through its individual band
images, we propose to employ spectral difference space as the feature space. In
Chapter 3, spectral Kullback-Leibler pseudo-divergence (KLPD) has been con-
cluded as the most suitable distance function for spectral data. Using SWh as the
reference for KLPD function, a one-dimensional histogram of spectral differences
of image SCC01-1 is obtained and shown in Fig. 5.3. However, this graphical
representation is still not able to valorize the rich content of the spectral image
in question. The obtained histogram shows two main color groups, despite there
being four main groups which can be visually identified.

Figure 5.3 – One-dimensional histogram of spectral differences of image SCC01-
1, obtained with KLPD and SWh as reference. Compared to the four color groups
which can be identified visually, the histogram provides two main groups of colors.

If we recall the conclusion of Chapter 3, one of the reason why KLPD was chosen
over Euclidean distance of cumulative spectrum (ECS)1 was because KLPD com-
bines as separate components the measures of shape and intensity differences. On
the contrary, in ECS, the two are integrated without the ability to perceive which
spectral variation is more predominant. And since KLPD combines measures of
shape and intensity differences through an addition operation, the one-dimensional
histogram shown in Fig. 5.3 can be easily expanded to a two-dimensional histo-
gram of spectral differences by splitting its two individual components. This two-
dimensional expansion of histogram of spectral differences can be seen in Fig. 5.4,
where the horizontal and vertical axes correspond to shape and intensity compon-
ents of KLPD function, respectively. Note that this graphical representation was
first proposed by Richard et al. [145] in the context of KLPD function construction

1ECS was the first proposal of a suitable spectral distance function whose limitation has been
identified since, and has been overcome by another development of spectral difference function, i.e.,
KLPD function.
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and will, further on, be referred to as bidimensional histogram of spectral differ-
ences (BHSD). Observing the obtained BHSD, it is evident that discrimination of
the spectral content of image SCC01-1 has improved since the pixels start to form
different clusters.

Figure 5.4 – Bidimensional histogram of spectral differences (BHSD) of image
SCC01-1, obtained using the shape and intensity components of KLPD function
and SWh as reference.

The one example provided in Fig. 5.4 demonstrates the great potential of using
spectral differences as a feature space for image analysis. However, apart from the
bidimensional representation, is KLPD construction superior than other spectral
difference functions which also measure shape and intensity differences?

Euclidean distance measures intensity differences, although by assuming that a
spectral function is a vector in the Euclidean space. Replacing KLPD-Intensity
axis with this distance measure, a BHSD in Fig. 5.5a is obtained. Comparing this
BHSD with the one shown in Fig. 5.4, it can be said that KLPD-Intensity is a bet-
ter measure of intensity differences than Euclidean distance. Spectral angle [97], a
popular measure in the remote sensing field, is capable of discounting the effect of
shading. Thus, spectral angle can be regarded as a measure of shape differences.
Replacing KLPD-Shape axis in Fig. 5.4 with spectral angle, Fig. 5.5b is obtained.
In this BHSD, a relatively good discrimination of the spectral content of image
SCC01-1 is demonstrated. Just as the one shown in Fig. 5.4, there are roughly
4 main clusters in the BHSD. However, KLPD-Shape is still superior to spectral
angle since it provides better determination of the clusters. In other words, distri-
bution of the pixels are closer to the center of each cluster than what is obtained by
spectral angle. Superior performances of the 2 components of KLPD function is
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(a) KLPD-Shape & Euclidean distance (b) Spectral angle & KLPD-Intensity

(c) Spectral angle & Euclidean distance

Figure 5.5 – BHSDs of image SCC01-1 obtained using various pairs of shape and
intensity difference measures, and SWh as reference. Compared to BHSD shown
in Fig. 5.4, none of the ones shown in this figure gives better discrimination.

as expected since KLPD function has a more suitable definition of what a spectral
function is. On the other hand, both Euclidean distance and spectral angle erro-
neously assume that a spectral function is a vector in the Euclidean space, causing
less performance in spectral content discrimination. In fact, if the two are em-
ployed to discriminate the content of image SCC01-1, significantly less discrimin-
ation power can be observed in Fig. 5.5c. Moreover, spectral angle and Euclidean
distance are not uncorrelated [145], unlike the two components of KLPD function.
Finally, after the previous results, we claim that many image processing tasks can
be solved at the level of image analysis without having to employ more advanced
image processing tools. And all of these potentials are enabled by employing the
most suitable measures of spectral differences, i.e., KLPD. Note that KLPD func-
tion will be employed for the rest of the chapter, unless stated otherwise.
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5.3 On Spectral Reference Selection
Defining a suitable distance function is one step toward a powerful hyperspectral
image analysis. But a distance function further requires to define a reference. And
depending on the choice of reference, image analysis results will differ.

Fig. 5.6 is generated to show the impact of reference selection to the discrimination
of content in image SCC01-1. Two spectral functions are randomly selected from
the target image and then used as references for KLPD. As observed, the use of
different references leads to different discrimination ability of the image content.
And if the two are further compared to the one shown in Fig. 5.4, it becomes
evident that SWh which is employed to obtain the latter BHSD is a better reference.
SWh allows the discrimination of four different groups of pixels rather than the
previous ones where there is no clear grouping of the pixels in their respective
BHSDs. In the following, we will show how an optimal spectral reference can be
selected such that the obtained BHSD provides a good discrimination capability of
the image content.

Figure 5.6 – BHSDs of image SCC01-1, obtained using KLPD function and
two spectral functions which are randomly selected from the initial set of image
SCC01-1 as references.

5.3.1 Selection Criteria

Distribution of spectral variations within a given image can be expressed in terms
of a convex hull. And the convex hull of this initial spectral set can be obtained
through a BHSD. See illustration given in Fig. 5.7. Suppose that in a given image,
the pixels can be grouped into 3 clusters, whose centers are A, B, and C. Together,
these clusters form a single convex hull. If we are to find a reference point such
that the three clusters are well-identified, then there are several options to explore.
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In the first case, see Fig. 5.7a, a reference point located far from the convex hull is
selected. In such a case, the employed distance function could potentially end up
’seeing’ the clusters as ’equally far’ since it becomes saturated2. As a consequence,
the different clusters are being perceived as a single cluster. Another option would
be choosing one of the centers (or any point which belong to the initial clusters) as
the reference. The risk of this selection is illustrated through Fig. 5.7b. Choosing
a reference from any of the initial clusters might well-identify the cluster in which
the reference belongs to. However, if the two other clusters are at considerably
equal distance to the reference cluster, they might be recognized as the same one.
Expected histogram of the illustrated case is represented by multimodal distribu-
tions, see the bottom row of Fig. 5.7b. This is to illustrate that differences between
cluster B and C might still be perceived by the distance function, although with
less discrimination. Similar discrimination ability will also be obtained if a refer-
ence point fall within the convex hull, even if it does not necessarily belong to any
of the initial clusters, see Fig. 5.7c.

(a) (b) (c)

Figure 5.7 – Illustrations of (top row) non-optimal reference selection in a two-
dimensional space and (bottom row) their corresponding expected distance histo-
grams. A, B, and C are 3 points belonging to 3 different clusters and are considered
as the centers. Together, the 3 clusters form a single convex hull. An optimal ref-
erence point should not be located ’far’ from or fall within the initial convex hull.

2The saturation of distance function can be regarded as a certain point where the obtained dis-
tance values start to reach infinity. See Section 3.3 for more explanation.
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An optimal selection of spectral reference is as illustrated in Fig. 5.8a. First, the
reference point should fall outside the convex hull. Then, in the distance plane, it
should be located ’close enough’ in terms of magnitude to the convex hull such
that it falls near the edge (or on the surface of a three-dimensional convex hull).
But since measure of distance is always positive, there is still a risk of multiple
clusters being recognized as one. Nevertheless, with this selection the distance
values will be better distributed across the entire dynamic range, allowing to obtain
a histogram as illustrated in Fig. 5.8b.

(a) Suggested selection of reference (b) Expected distance histogram of (a)

Figure 5.8 – Illustration of optimal reference selection in a two-dimensional space
and its expected distance histogram. The reference should be chosen from outside
the convex hull, considerably near to its edge. This will allow the distance of all
pixels to be well-distributed along the dynamic range of the distance values.

As illustrated in Section 5.2, one component of spectral differences is insufficient
to describe the complexity and diversity of the content of a spectral image. In
addition to intensity variations, BHSD also considers shape variations one of its
components. Thus, when considering a spectral reference, its shape variations
should also be taken into account. Illustrations of non-optimal reference selection
in an angular space can be observed in Fig. 5.9. As it is the case when using a
measure of distance, a good reference should not be located ’too far’ from the
convex hull of the initial spectral set. And this is to avoid the case illustrated in
Fig. 5.9a, where the employed measure of angle becomes insensitive to differences
between the clusters. Then, a good reference should also not come from the initial
spectral set because it will lead to what is illustrated in Fig. 5.9b. The optimal
selection of reference in an angular space is illustrated in Fig. 5.10, where the
reference is located ’close enough’ to the edge of the convex hull. And as observed,
the three different clusters of A, B, and C will be recognized correctly by the
angular measure.
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(a) Selected reference is far from the
convex hull of the initial spectral set

(b) Selected reference belongs to the
initial spectral set

Figure 5.9 – Illustrations of non-optimal reference selection in an angular space.
A, B, and C correspond to the centers of three clusters in the initial spectral set.

Figure 5.10 – Illustration of an optimal reference selection in an angular space. A
good reference is located near the edge of the convex hull of the initial spectral set.
A, B, and C are the centers of the three clusters.

To summarize, an optimal spectral reference which would allow a good discrimin-
ation of the spectral content of an image is one that does not fall within the convex
hull of the initial spectral set. Rather, it should be one which is located ’near’ the
edge of the convex hull, as measured in terms of intensity and shape variations
through a BHSD. The implementation of this concept in a real applications task
will be provided in the following section.
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5.3.2 Reference Selection in A Pigment Discrimination Task

To demonstrate the selection of an optimal spectral reference, image SCC01-2
from Cracks-200 dataset (see Appendix B.3) is employed, see Fig. 5.11a. Upon
visual observation, there are roughly five clusters of color pigments, i.e, white,
orange, brown, yellow, and red. For each cluster, one spectral reflectance function
whose location is indicated by a blue arrow is extracted and plotted, see Fig. 5.11b.

(a) Image SCC01-2 (b) Spectral reflectance functions

Figure 5.11 – Image SCC01-2 from Cracks-200 dataset (Appendix B.3) and 5
spectral reflectance functions originating from pixels indicated by the blue arrows.

Previously, it has been mentioned that the reference should not be taken from the
initial spectral set. To demonstrate the impact, two spectral reflectance functions
from Fig. 5.11b are employed as references, i.e., P-White and P-Orange. BHSDs
of image SCC01-2 with the two as references are shown in Fig. 5.12. When P-
White is employed as reference, the obtained BHSD in Fig. 5.12a gives a con-
siderably good discrimination of the image content. Through visual observation,
roughly 4 pigment clusters can be estimated. Then, since the reference is a white
colored pigment, the small group of pixels located around the origin of both axes of
the BHSD corresponds pixels of this color. For a reference which originates from
the initial dataset, P-White demonstrates a good performance. However, this is not
surprising. Comparing P-White with other spectral reflectance functions shown in
Fig. 5.11b, its shape is significantly different from the rest.

Let us now consider P-Orange as reference, whose shape is considerably similar
to the majority of spectral functions shown in Fig. 5.11b. Comparing its BHSD
which is shown in Fig. 5.12b to the one previously obtained by P-White, its dis-
crimination ability is significantly reduced. And through a visual observation, only
3 clusters of pigments can be identified. Moreover, among the three, 2 clusters are
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(a) P-White as reference, 4 pigment clusters are
roughly estimated

(b) P-Orange as reference, 3 pigment clusters
are roughly estimated

Figure 5.12 – BHSDs of image SCC01-2 obtained using 2 spectral references ori-
ginating from the image itself, i.e., P-White and P-Orange shown in Fig. 5.11b.
Pigment cluster estimation is carried out manually through visual observation.

of faint cyan colors. And this means that the clusters are only slightly formed, with
small portions of the entire pixels being concentrated around the center of these 2
clusters. Then, in terms of intensity variations, P-Orange is also considerably sim-
ilar to the majority of content in image SCC01-2, except for the white colored
pigments. Finally, the poor discrimination is due to P-Orange being too similar to
the majority of contents in both shape and intensity variations, see Fig. 5.11b.

It has been said that an optimal spectral reference must be located ’outside’ the
convex hull of the initial spectral set. In the context of a BHSD, this means a spec-
tral function whose shape and intensity features are different from the content of
image SCC01-2. With such considerations, 3 artificial spectral functions are gen-
erated, see Fig. 5.13. They are constructed such that their intensities fall outside
the dynamic range of the initial spectral set, i.e., for the spectral functions shown
in Fig. 5.11b to be bounded from above and below. As for the shapes of these arti-
ficial spectral functions, selections are made by considering the spectral functions
from the initial spectral set as combinations of Gaussian-like functions and their
integrals. For example, the shape of R1 is generated to resemble the parts of P-
Yellow and P-Red, see Fig. 5.13a. P-Yellow itself has a slight Gaussian-like shape
whose peak located around 540 nm. Then, a portion of P-Red from around 560
nm onward can be approximated by the integral of a Gaussian-like function whose
peak is located around 600 nm. By combining the two basic functions and modi-
fying the intensity of the combination, R1 is obtained. R2 and R3 in Fig. 5.13b are
generated as approximations of P-Brown and P-Yellow, respectively.
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(a) Spectral shape of R1 to resemble parts of
P-Yellow and P-Red

(b) Spectral shapes of R2 and R3 to resemble
P-Brown and P-Yellow, respectively

Figure 5.13 – Artificial spectral functions R1, R2, and R3, to be used as references
in discriminating the content of image SCC01-2. Their intensities are selected
such that they bound the spectral set from below and above.

Figure 5.14 – BHSD of SCC01-2 obtained using artificial spectral function R1
shown in Fig. 5.13 as reference. Five pigment clusters are manually estimated
through a visual observation.

Using the artificial spectral functions in Fig. 5.13 as references, BHSDs in Fig. 5.14
and 5.15 are obtained, where estimations of pigment clusters are carried out manu-
ally through visual observations. R1 and R2 demonstrate good performances in
discriminating the content of SCC01-2. Five pigment clusters can be estimated
through their corresponding BHSDs in Fig. 5.14 and 5.15a. Comparing these two
BHSDs, R1 is considered a better choice than R2 since more pixels are distributed



120 Hyperspectral Image Analysis through Spectral Differences

across the obtained dynamic ranges of both axes. Rather than in the BHSD of R2
where majority of pixels are located in half of the obtained dynamic ranges for
both intensity and shape axes. The intensity of R1 is larger enough in magnitude
than most of the spectral content of the image. On the other hand, R2 bounds the
initial spectral set from below with a smaller margin than R1 does bound from
above, see Fig. 5.13. And it seems that intensity differences between R2 and the
initial spectral set are not significant enough, resulting in a reduced discrimination
between the pigment clusters across the intensity axis, see Fig. 5.15a and 5.15b.
Due to similar reason, BHSD obtained by R3 also has a reduced discrimination
along the intensity axis, see Fig. 5.15c and 5.15d.

(a) R2 as reference (b) R2 as reference, a zoomed view

(c) R3 as reference (d) R3 as reference, a zoomed view

Figure 5.15 – BHSDs of SCC01-2 obtained using 2 of the artificial spectral func-
tions shown in Fig. 5.13 as references. The estimations of pigment clusters in each
BHSD is carried out manually by visual observation. Zoomed views of the BHSDs
are also provided without estimations of the pigment clusters.
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By observing Fig. 5.15, we can conclude that discrimination of the spectral con-
tent of image SCC01-2 is mostly due to shape differences. And comparing the
three choices of spectral references, agreeing with the previous discussion, R1 is a
better reference for the task. Albeit with a comparably reduced dynamic range, the
obtained shape differences are better distributed in the BHSD obtained by R1, see
Fig. 5.14. Comparing the performances of R2 and R3 in Fig. 5.15b and 5.15d, re-
spectively, R2 leads to a slightly better discrimination of the pigment clusters. The
observed performance is mainly due to the peak it has around 540 nm, which does
not exist in R3. Although it is only an insignificant portion of the entire spectral
range, it allows to better discriminate pigments which have similar shape around
this wavelength, e.g., the yellow and orange pigments.

5.4 Tridimensional Histogram of Spectral Differences
A BHSD is limited in the sense that it can only display spectral differences relative
to one spectral reference. In some cases, this might be sufficient provided that
the reference selection is carried out properly. An example of such a case can be
observed in Section 5.3.2. But in a case where the spectral content is more complex
and diverse, using a single reference may lead to inefficient exploitation of the
available information. By combining two spectral references, a tridimensional
histogram of spectral differences (THSD) can be obtained.

For a single reference, we know that it must be selected from outside around the
edge of the convex hull, see Section 5.3.1. But which two spectral functions are to
be combined to construct a THSD? Will any arbitrary spectral functions make an
optimal pair of references? To demonstrate how to select a good pair of spectral
references, image SCC01-1 in Fig. 5.16a will be employed as a target in the task
of pigment discrimination. By visual observation, 5 pigment clusters can be iden-
tified in the image, i.e., blue, white, red, yellow, and brown. Spectral reflectance
functions corresponding to the pigments are also provided in Fig. 5.16b.

An optimal reference can be determined by generating a spectral function whose
shape and intensity variations are considerably different from the content of im-
age SCC01-1. Spectral function R1 (Fig. 5.17a) is selected as one reference. Its
shape is made to resemble portions of P-Yellow until approximately 580 nm and
of P-Red from 580 nm onward. Its intensity is chosen to bound the other spectral
functions shown in Fig. 5.17a from above. The BHSD obtained by R1 can be seen
in Fig. 5.17b, where roughly 4 pigment clusters can be estimated.
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Figure 5.16 – Image SCC01-1 from Cracks-200 dataset and its spectral reflectance
functions obtained from locations indicated by the yellow arrows. Shown color
image is generated using ENVI software platform.

(a) Reference R1 (b) BHSD produced by R1

Figure 5.17 – Spectral function R1 shown relative to the content of image SCC01-
1 and the BHSD it produces. Roughly 4 pigment clusters can be estimated from
the obtained BHSD.

Selection of the other reference starts from the convex hull generated by R1, i.e.,
the BHSD it obtains. In Fig. 5.18, a modified BHSD is shown where each dot
corresponds to each pixel in the image, colored according to the pixel color given
in Fig. 5.16. Note that the limitation of this BHSD lies in the fact that entries
superpose each other. Thus, not all colors which exist in the image will be visible
in the modified BHSD. Nevertheless, this BHSD will help in determining the shape
and intensity variations the next reference should have. And by observing this
modified BHSD, we know that a dark blue spectral function would lie outside the
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convex hull. Aiming to resemble the shape of P-Blue in Fig. 5.17b and with a
slightly lower intensity level, an artificial spectral function R2 is generated, see
Fig. 5.19a. The location of R2 relative to the convex hull of image SCC01-1 as
obtained by R1 can also be observed in Fig. 5.18.

Figure 5.18 – The selection of reference R2, relative to the convex hull of im-
age SCC01-1 as obtained by a predetermined reference R1. Shown is a modified
BHSD, where each dot corresponds to each pixel in the image. Colors of the dots
are obtained from colors of each pixel in Fig. 5.16a.

(a) Reference R2 (b) BHSD produced by R2

Figure 5.19 – Spectral function R2 shown relative to the content of image SCC01-1
and the BHSD it produces.
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According to the previously formulated criteria of how to select an optimal spec-
tral reference in Section 5.3, R2 should provide a good discrimination for image
SCC01-1. But it does not seem to be the case if we observe its corresponding
BHSD in Fig. 5.19b. Not obtaining a good discrimination in the two-dimensional
representation of spectral differences, however, does not automatically eliminate
R2 as a reference candidate. Employing R2 in combination with R1 could poten-
tially improve the discrimination power R1 has to begin with.

Through Fig. 5.17b, we know that both spectral difference components obtained
by R1 are good features for discriminating the content of SCC01-1. Thus, the two
are selected as two axes in the THSD we are constructing. Then, in Fig. 5.19b, we
can see that R2 provides a good distribution along the shape axis. Thus, the shape
component of BHSD obtained by R2 will be chosen as the third axis of THSD.
The constructed THSDs can be observed in Fig. 5.20, where 4 different views are
provided. Note that the 4 views are constructed using the same references but
varying on the minimum histogram count to show.

All of the histogram entries are shown in Fig. 5.20a, where no pigment groups
are evident. Then, from Fig. 5.20b to 5.20d, the minimum histogram count to
show are increased in order to better observe pigment groups that are detected.
Choosing to show histogram entries with minimal count of 4, Fig. 5.20b allows
us to see that in this THSD there are two pigment clusters. The two clusters are
manually estimated and are marked in yellow and red dotted lines. Aiming to
better observe the centers of each pigment clusters, the minimum histogram count
is increased to 7 in Fig. 5.20c. With this visualization, we can see that there are
actually two smaller clusters inside the one marked inside yellow dotted line in
Fig. 5.20b. Then, we also start to see that there might also be smaller clusters
inside the one marked by red dotted line. Aiming to observe potential clusters, the
minimum histogram count is further increased to 12 and Fig. 5.20d is obtained.
Finally, in this visualization it is revealed that the pigment cluster within the red
dotted line indeed consists of 3 smaller pigment clusters. Therefore, according
to THSD obtained by R1 and R2, 5 pigments clusters are estimated within image
SCC01-1. And this agrees to what has been estimated through visually observing
its color image in Fig. 5.16a.
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(a) Minimum pixel count: 1,
included pixels: 100%

(b) Minimum pixel count: 4,
included pixels: 47.45%

(c) Minimum pixel count: 7,
included pixels: 23.05%

(d) Minimum pixel count: 12,
included pixels: 5.11%

Figure 5.20 – Tridimensional histograms of spectral differences (THSDs) of image
SCC01-1 obtained using R1 (Fig. 5.17a) and R2 (Fig. 5.19a) as references. The
different views are obtained by choosing different minimum histogram count to
show. Estimation of pigment clusters are carried out manually by visual observa-
tion. Initially, two pigment clusters are estimated in (b). Closer observations then
reveal that each of the clusters consists of several smaller ones, making in total 5
clusters of pigments.
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To contrast the previous selection of spectral reference pair where each of the artifi-
cial spectral functions lie outside the convex hull of image SCC01-1, two spectral
functions originating from the image will be employed as references. They are
P-Red and P-Blue, see Fig. 5.16b. Their corresponding THSDs can be observed
in Fig. 5.21. Showing all of the histogram entries, just as previously observed
in the R1-R2 generated THSDs, only one big pigment cluster can be observed in
Fig. 5.21a. Nevertheless, this visualization gives an idea of a three-dimensional
shape of the convex hull of image SCC01-1. By increasing the minimum histo-
gram count to 4, roughly 3 pigment clusters can be estimated in Fig. 5.21b. The
detected clusters are marked within the red, green, and yellow dotted lines. Aim-
ing to better observe the cluster within the red dotted line, the minimum histogram
count to show is further increased to 7 and Fig. 5.21c is obtained. This visualiz-
ation allows us to see that the cluster we are interested in consists of two smaller
pigment clusters. To see if yet another closer observation would lead to more de-
tection of pigment clusters, the minimum histogram count is increased to 12 in
Fig. 5.21d. And in this THSD, no new pigment cluster can be observed. Finally,
this selection of reference pair leads to an estimation of only 4 pigment clusters.

To conclude shortly on the hyperspectral image analysis by means of a BHSD and
THSD, even if the reference selection seems delicate, they are actually not com-
plicated and can be decided quickly. In majority of cases, a BHSD is sufficient to
observe pigment variations within a given image. Nevertheless, a THSD provides
a possibility to observe the content of a more complex image, such as those coming
from paintings.
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(a) Minimum pixel count: 1,
included pixels: 100%

(b) Minimum pixel count: 4,
included pixels: 44.69%

(c) Minimum pixel count: 7,
included pixels: 38.93%

(d) Minimum pixel count: 12,
included pixels: 19.22%

Figure 5.21 – THSDs of image SCC01-1 obtained using P-Red and P-Blue
(Fig. 5.16b) as references. The different views are obtained by choosing differ-
ent minimum histogram count to show. Estimation of pigment clusters are carried
out manually by visual observation. Initially, three clusters can be identified, i.e.,
those marked in red, green, and yellow dotted lines. Closer observations then re-
vealed that the cluster within the red dotted line is composed of two smaller ones,
making an estimated total of 4 pigment clusters.
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5.5 Implementation Notes and Noise Impact in
Spectral Differences

Note that programming language used in the following are Python. Nevertheless,
implementation considerations that are given are independent and can be adapted
to functions that are relevant to the chosen programming language.

5.5.1 Log of Zero in Spectral Kullback-Leibler Pseudo-Divergence

Inside the mathematical expression of KLPD function (see Eq. 3.6), there is a
logarithm function written as follows.

log

(
s1(λ)

s2(λ)

)
This expression could potentially induce numerical problems, especially when a
spectral function has zero values. When s2(λ) = 0, Python would return a runtime
error. But when it is s1(λ) who is 0, the logarithm function will become log(0),
which is yet another numerical problem. To recall, logarithm log(x) is only defined
for x > 0. In Python, instead of returning a runtime error, the interpreter would
return nan, short for ’not a number’. One potential workaround is by calling
numpy.nan_to_num() function after computing the spectral difference, which
would convert every nan it encounters to 0. But as a consequence, the shape
difference, in which the logarithmic expression is incorporated, of every spectral
function which contains zero values to the chosen reference will be zero. This case
is well illustrated in Fig. 5.22, where image NP2 and SCC01-1 and SWh reference
are employed. As observed in this figure, there is a significant amount of pixels
with zero shape differences to the reference, see areas circled in red. The employed
reference SWh is equi-energetic, or in other words, a flat spectral function. But
none of the spectral reflectance functions in the two images are equi-energetic.
Thus, this workaround is not to be chosen.

log(0) should be avoided prior to difference computation, rather than handling it
post-computation. And as explained previously, this issue is caused by spectral
functions having zero values. To avoid the problem, these zero values should be
replaced by a small constant value ε. The impact of ε selection to the BHSD of
NP2 and SCC01-1 can be observed in Fig. 5.23. After replacing the zero values,
zero-valued shape entries are completely removed. However, this strategy leads
to another numerical issue to tackle, i.e., the unrealistic periodical distribution of
shape differences. It can also be observed that as ε becomes smaller, more periodic
waves are introduced. Then, which ε value is to be selected? Zero reflectance
or radiance value can be interpreted as the absence of energy. Thus, the only
acceptable replacement value is one that respect similar physical meaning. This
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(a) Image NP2 (b) Image SCC01-1

(c) BHSD of NP2, unhandled log(0) (d) BHSD of SCC01-1, unhandled log(0)

Figure 5.22 – Two image targets having zero reflectance values and their corres-
ponding BHSDs obtained with SWh as the reference. Histogram entries circled in
red are caused by unhandled log(0) which results in zero shape differences.

means that ε must be significantly small compared to the general dynamic range
of the spectral functions. For this reason, in our implementation ε = 10−32 is
chosen. Discussion and implementation strategy regarding the observed periodics
in Fig. 5.23 will be provided in following section. In this later section, we will
discover that the periodic waves are not due to numerical artifacts related to the
log of zero, but rather due to sensor noise.
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(a) BHSDs of image NP2 (b) BHSDs of image SCC01-1

Figure 5.23 – Three BHSDs obtained for image NP2 and SCC01-1, in which SWh

are employed as spectral reference. From top to bottom, constant value ε replacing
zero values are 10-8, 10-16, and 10-32. Note that the periodic waves that appear in
all BHSDs are due to sensor noise and will be discussed in Section 5.5.2.
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5.5.2 Noise Identification using BHSD

Depending on the sensitivity of a hyperspectral sensor, an obtained hyperspectral
image might be noisy at certain wavelengths, typically at the extremities of the
spectral range3. While other types of noise can also be present, the existence of
the former type can be detected through the use of BHSD. It has been identified
that the hyperspectral scanner employed to capture datasets used in this study are
noisy at both extremities, i.e., around 400 and 1000 nm. Thus, several spectral
bands at these regions should be ignored during computation and thus introducing
the notion of band cutoff, i.e., numbers of ignored spectral bands at each extremity.

The impact of various band cutoffs on the BHSDs of image NP2 and SCC01-1
can be observed in Fig. 5.24 and 5.25. Shown BHSDs were obtained with KLPD,
SWh as reference, and zero value replacement ε = 10−32. As seen in the figure,
by gradually adding band cutoff, the periodical distribution is removed. However,
there is also a trade off with removing spectral bands at the extremities. Indeed,
noise can be removed, but at the same time information at the ignored bands are
also lost. Thus, the band cutoff should not be too big. Finally, with such consider-
ations, band cutoff of 10 is selected for processing all images in this study.

5.5.3 Other Implementation Notes

In the following are other implementation choices made to avoid numerical prob-
lems that could raise during computation.

Floating point representation Double instead single precision should be chosen.

Division in logarithm When there is a division operation within a computation
of logarithm, it is decomposed into subtraction as follows.

log
x

y
= log x− log y

Logarithm of reflectance values When a hyperspectral image is represented as
reflectance, its values range from 0 to 1. To avoid losing computation ac-
curacy as induced by the precision of these small reflectance values, each of
these values are multiplied by a factor c as follows.

log x = log
x · c

c
= log(x · c)− log c, c = 106

Value rounding in angular distances In angular distance, distance values of less
than 10-5 will be rounded as 0.

3Noise in the lower wavelengths can be caused by low energy of the used light source in this
particular spectral range. Noise in the higher ones is typically due to low sensitivity of the sensor.
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(a) BHSDs of image NP2 (b) BHSDs of image SCC01-1

Figure 5.24 – Three BHSDs for each image NP2 and SCC01-1, obtained using
KLPD function, SWh as spectral reference, ε=10-32, and 3 different band cutoffs.
From top to bottom the band cutoffs are 0, 5, and 10. The periodic waves disappear
when spectral bands at the extremities are removed.
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(a) BHSD of image NP2 (b) BHSD of image SCC01-1

Figure 5.25 – BHSDs of denoised image NP2 and SCC01-1 previously shown in
Fig. 5.24a and 5.24b, for band cutoff of 10, given in the scale of their respective
dynamic ranges.

5.6 Conclusions
Spectral distance enables many advanced image processing and analysis tools.
However, a spectral distance in itself is an analysis tool useful for various applica-
tions tasks. It has been demonstrated that by solely using different graphical rep-
resentations of spectral differences, an understanding of a given image by means
of its value distribution can be obtained. This distribution of pixel values will, in
turn, serve as an aid in deciding an algorithm or parameters in a classification task.

The question of reference is central in the context of spectral distance. It has a
significant impact in the calculation of spectral differences, and it can be demon-
strated using the aforementioned graphical representations. Thus, in this chapter it
has been formulated how an optimal spectral reference should be selected. After
criteria were proposed, their usefulness was also validated using a cutout of a paint-
ing in which several groups of color pigments could be identified. This experiment
has shown that by only selecting an optimal spectral reference, a more advanced
classification algorithm might not be needed. And it is because in the spectral
difference dimension, good discrimination of spectral content can already be ob-
tained.

While in this chapter the use of spectral difference has only been demonstrated
for bi- and tri-dimensional histograms of spectral differences, its potential does
not stop there. To recall, in the bidimensional case, only one spectral reference is
required. In the tridimensional one, two references are required but only two shape
and one intensity components are employed. And no criteria have been proposed
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in how to select which components are to be employed. But rather than limiting
spectral differences to the dimensionality of a graphical representation, they could
be used as a feature space. By employing n spectral references, a feature vector of
n × 2 elements can be obtained for each pixel in an image. In this n × 2 feature
vector, there will be n shape and n energy or intensity features, where each pair
comes from one spectral reference.

Summary of Contributions.

X Protocols of spectral reference selection for the use of KLPD function and spec-
tral distance in general, using the notion of convex hull.

X Demonstrations of the interest of bidimensional histogram of spectral differ-
ences (BHSD) which was first proposed in [145], with examples of use in pig-
ment discrimination and noise identification tasks.

X Extension of BHSD to the n-dimensional space, with application shown in a
three-dimensional case, i.e., tridimensional histogram of spectral differences
(THSD).

X Demonstration of spectral reference combination for pigment discrimination
task using a THSD.

X Identification of noisy spectral bands using BHSD.



Chapter 6

Spectral Rank Order Filters

6.1 Introduction
In digital image and signal processing, linear techniques have been extensively
used in a variety of applications. Their popularity is mainly due to the fact that
they provide simple mathematical expression and implementation. Examples of
such techniques are linear filters, whose main limitations are their low-pass char-
acteristics and inability to deal with nonlinearities such as impulse noise filtering,
non-linear image degradations, etc. Low-pass characteristic means that the filters
tend to remove edges, lines, and fine details in an image. Hence, such filters are not
suitable in the case where human vision is involved as it is highly sensitive to high

135
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frequency information [137,141]. Furthermore, as the linear filters of multivariate
images require multidimensional Fourier transform as Clifford-Fourier transform
uses hypercomplex number systems [30,38,63], managing data complexity presen-
ted in different phase planes is a critical yet difficult task.

The limitations of linear processing techniques are overcome by nonlinear ones,
e.g. mathematical morphology, order statistics filters, nonlinear image restoration,
etc. Rank order filters (ROF)1 is a set of filters based on ordering relation. It per-
forms well in the presence of additive white noise and impulse noise. Many of the
filters belonging to ROF are also capable of preserving edges. Median filter is the
most popular example of ROF. It is known to have good performance with long-
tailed noise distribution, which suggests that it is an efficient tool for the removal
of impulse noise [137]. Additionally, while removing impulse noise, median filter
also preserves edges unlike its linear processing counterpart, i.e., averaging filter.

Scalar ROF have been used in a wide variety of applications [72, 127] and more
advanced versions of them are also available [126, 160, 181]. Vector Median Fil-
ters (VMF) [18] is a multivariate median filter based on the notion of aggregate
distance. Based on VMF, color median filters were constructed varying on the
color spaces to use [26] and distance functions to employ [17, 18, 40]. As for the
hyperspectral domain, no ROF has been specifically designed for it, i.e., one which
considers both the mathematical and physical aspects of hyperspectral data.

Having identified the most suitable difference function and ordering relation for
spectral data in Chapter 3 and 4, respectively, a distance-based spectral ROF can be
obtained directly. However, metrological aspects of an image processing tool must
be enabled and validated at each level of processing. This means that the validity
of spectral difference function and spectral ordering relation does not imply the
validity of the obtained spectral nonlinear filters. At this level, metrology must be
enabled considering properties of the filters. Therefore, evaluation criteria must
be developed, which in turn would allow assessing the quality of a constructed
spectral nonlinear filter, or any image processing tool in general.

The chapter is organized as follows. A distance-based extension of ROF to the
spectral domain can be found in Section 6.2. Then, as mentioned previously, met-
rology demands quality assessment at each level of processing. Considering two
well-known properties of nonlinear filters, i.e., impulse noise suppression and edge
preservation, image quality assessment protocols are developed in Section 6.3. The
use of this quality assessment protocol are given in Section 6.4 for assessing the
quality of distance-based spectral median filters. The same section also provides

1Also known as order statistics or percentile filters [159].
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discussion regarding the complexity analysis of the spectral median filters. Finally,
the chapter is concluded in Section 6.5.

6.2 Spectral Rank Order Filters

6.2.1 Definition

Rank order filters (ROF) is a set of filters based on ordering relation. An ROF
works by iteratively sliding a filter window over the entire spatial dimension of an
image, each time replacing value at the origin with one that is associated with rank
r. Mathematically, ROF can be expressed as in Eq. 6.1 where the notion of rank r
is linked to cardinality cv, see also illustration in Fig. 6.1.

FW,r,g(Sx) =
∨
{Sv : cv ≤ r − 1, Sv ∈ SW } ,

cv = # {Si : g(Si) ≤ g(Sv), ∀Si ∈ SW } ,
SW = {Si = I(x+ b), ∀b ∈W}

(6.1)

Interpretation. A rank order filter F , with defined filter window W , rank r, and or-
dering relation g, takes spectral function at the origin Sx as input. Then, it finds as its
output a spectral function Sv from within the neighborhood W , whose cardinality cv is
less than or equal to the required rank r. Cardinality cv of a spectral function Sv is the
number of neighboring spectral functions which, according to g, is less than or equal to
Sv . In other words, spectral function associated with rank r is one that has at most r−1
’smaller’ spectral functions in the neighborhood.

(a) (b)

Figure 6.1 – Two ordered lists of values illustrating the relation between rank r
and cardinality cv as described in Eq. 6.1. Value associated with rank r = 5 is one
that has at most r − 1 = 4 smaller values within the neighborhood, and whose cv
is maximum among the qualified ones.
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By varying the rank r in Eq. 6.1, the following filters can be obtained.

Median filter The objective of this filter is to find in a set of values the closest
value to the average position of the set when its values are ordered, i.e. me-
dian. Conceptually, median is the value at the middle position when the set
of data is an ordered list. The rank of this filter is r = nW−1

2 . Grayscale
median filter is known for its capability to remove impulse noise while still
retaining edges sharp.

Minimum filter A minimum filter replaces the image value at the origin of filter
window with that of rank r = 0. It is closely related to morphological
erosion [115, 116].

Maximum filter This filter replaces image value at the origin of filter window
with an image value of rank r = nW − 1. It is closely related to morpholo-
gical dilation [115, 116].

6.2.2 Extension to The Spectral Domain

From the mathematical expression of ROF shown in Eq. 6.1, it is evident that the
difference between ROF in the grayscale or any multivariate domain only lies in
the definition of ordering relation g. In the grayscale domain,

g(x) = x, ∀x ∈ R.

In the multivariate domain, there are numerous existing multivariate ordering rela-
tions [12, 23]. As a consequence, there will be numerous different ways to define,
for instance, a multivariate median filter. Specifically talking about the spectral
domain, it has been concluded in Chapter 4 that conditional ratio and angular dis-
tance ordering relation (CRA) is the most suitable ordering relation. Thus, we can
construct a CRA-based ROF for spectral images.

Vector Median Filters (VMF) by Astola et al. [18] is a multivariate median filter
which employs a cumulative distance ordering relation in Eq. 6.2. However, by
construction it is a minimum filter since what is considered as a median is actually
a spectral function which corresponds to r = 0. Nevertheless, VMF can be directly
employed to process spectral images. In a later section, the performance of VMF
will be compared to that of CRA-based spectral median filter (CRA-SMF).

gCumDist(S) =
∑

d(S, Si), ∀Si ∈ SW (6.2)
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6.2.3 Properties of Rank Order Filters

One of the main advantages of nonlinear filters is their capability to deal with
nonlinearities which occur in an image. As for ROF, in the following are properties
of nonlinear filters it can potentially achieve. It is a potential since the properties
of nonlinear filters are not obtained automatically. On the contrary, they must be
enabled and validated.

6.2.3.1 Edge preservation

In a one-dimensional space, an edge is a simple step function defined by a threshold
T , see Fig. 6.2a. In the two-dimensional case, an edge means that within a neigh-
borhood W , on one side of W all pixels have common values a and the rest of the
pixels on the other side have common values b, a 6= b, see Fig. 6.2b.

Figure 6.2 – Illustrations of the concept of edge in one- and two-dimensional cases.

The reason to why edge preservation capability is not automatically obtained by an
ROF is because it is not induced by the employed ordering relation. Take median
filter as an example. For it to be edge-preserving, there are certain constraints to be
satisfied. Given a filter window W centered at its origin x, any edges found within
W will be preserved if W is symmetric and x is included in the computation of
median [88, 172].

6.2.3.2 Impulse noise suppression

Impulse noise is characterized by randomly distributed values which disturbs a
signal, resulting in speckled images. It has a uniform probability density function,
i.e., the noise random variable is independent and identically distributed over the
image. In salt-and-pepper noise, the impulse noise corresponds to very large pos-
itive and negative values, respectively. And due to this, the noise appears to be
white and black spots, hence the name salt-and-pepper. An example of a grayscale
image which is disturbed by salt-and-pepper noise and the removal of this noise
by median filter can be observed in Fig. 6.3.
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(a) Original image (b) Noisy image (c) Median filtered image

Figure 6.3 – Illustration of a grayscale image which is disturbed by salt-and-pepper
noise and the removal of this noise by a median filter.

Minimum filter can effectively remove salt noise in an image, but it tends to en-
hance the pepper noise. On the contrary, a maximum filter removes pepper noise
but at the same time worsen the salt noise. Median filter is known to be effective
in reducing both salt and pepper noise. Given a filter window W consisting of nW
pixels, median filter will considerably reduce impulse noise if the count of pixels
disturbed by this noise is less than or equal to (nW − 1)/2. Performance of a rank
order filter can potentially be improved by increasing nW , at the cost of increasing
signal distortion [79, 88].

6.2.3.3 Performance in the presence of white noise

In addition to impulse noise, median filter is also known as a tool to suppress white
noise. The performance of median filter in removing several noise distributions
can be found in [88]. Noise distributions mentioned in the work are, i.e., uniform,
normal, and double exponential distributions.

6.3 Quality Assessment Protocol of Spectral Rank Order
Filters

The quality of an image processing tool can be assessed through its resulting im-
ages. By knowing the expected properties and behaviors of an image processing
tool, a set of images of known properties can be employed as target. Fig. 6.4
provides two levels of quality assessment for spectral rank order filters, i.e., met-
rological validation and application. Aiming to assess noise suppression perform-
ance, images disturbed by theoretical noise signals can be generated and employed
as assessment target. At the level closer to the real case, edge preservation capab-
ility can be assessed by employing images which comes with references or ground
truths. At the highest application level, image processing quality assessment can
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be carried out aiming to reach a certain application goal, e.g., classification, etc.
At this level, however, ground truth images do not exist. In the following, two pro-
tocols for performance analysis of spectral rank order filters in noise suppression
and edge preservation tasks will be developed.

Figure 6.4 – Different levels of quality assessment for spectral rank order filters.

6.3.1 Performance Assessment in Impulse Noise Suppression

Image denoising or frequency-band decomposition are often employed to evaluate
the performance of filtering algorithms. In the case of nonlinear filters, the rela-
tionship between spatial frequency and filter parameters are not straightforward.
And due to that, given a certain model, the performance of nonlinear filters should
be assessed in the context of image denoising. Among the existing noise models,
impulse noise is one of the most often employed noise type [6,40,92]. It models or
approximates malfunctioning pixels in the sensor of a camera, transmission prob-
lems over a noisy channel, or faulty memory locations in data storage [41]. Fur-
thermore, despite the assumption of a calibrated imaging system, impulse noise is
said to be ubiquitous in spectral images [130]. In order develop a protocol for the
performance assessment of spectral nonlinear filters in image denoising, impulse
noise model must be extended to the spectral domain.

A simple additive noise model is given in Eq. 6.3, where a noise signal N is dis-
turbing an ideal image Ig(x), resulting in a noisy image Ĩ(x).

Ĩ(x) = Ig(x) +N (6.3)

In the case of impulse noise, the previous model can be rewritten as in Eq. 6.4,
where p is the probability of a pixel to be disturbed by impulse noise signals N1



142 Spectral Rank Order Filters

and N2 with T ∈ [0, 1]. Probability density function of the noise signal is as
illustrated in Fig. 6.5. Then, depending on how the noise signalsNi, i = 1, · · · , n
are obtained, varying types of spectral impulse noise can be obtained.

Ĩ(x) = Ig(x) +H(T − p)
(
N1 − Ig(x)

)
+H(p− 1 + T )

(
N2 − Ig(x)

)
(6.4)

Figure 6.5 – Probability range of an image value being disturbed by fixed impulse
noise signals N1 and N2.

6.3.1.1 Salt-and-pepper noise

In the grayscale domain, salt-and-pepper noise is characterized by its black and
white dots appearance. Extending salt-and-pepper noise from its initial sense, the
noise signals N1 and N2 can be represented by SBk and SWh in the reflectance
space, respectively. In Fig. 6.6, several images from Pigment-56 dataset which are
disturbed by spectral salt-and-pepper noise can be observed.

(a) (b) (c) (d)

Figure 6.6 – Several images from Pigment-56 dataset which are disturbed by salt-
and-pepper noise, with noise probability threshold T = 0.3. Shown images are
generated by FIXED visualization method.

6.3.1.2 Randomized impulse noise

The grayscale impulse noise model has been extended to the color domain by
a marginal approach [21, 125]. In other words, the impulse value is generated
at random and independently for each image channel, resulting in images being
disturbed by random colors. Extending this approach to the spectral domain is
straightforward since the only difference lies in the numbers of channels. This
randomized impulse noise model can be rewritten as in Eq. 6.5, with the noise
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signal N given in Eq. 6.6 for the spectral reflectance space. Examples of pigment
images disturbed with this impulse noise type can be observed in Fig. 6.7.

Ĩ(x) = Ig(x) + p · (N − Ig(x)) (6.5)

N = {s(λ) = y, y ∈ [0, 1]} (6.6)

(a) (b) (c) (d)

Figure 6.7 – Several images from Pigment-56 dataset which are disturbed by spec-
tral randomized impulse noise, with noise probability threshold T = 0.3. Shown
color images are generated by FIXED visualization method.

6.3.1.3 Performance assessment protocol

Having previously defined several impulse noise models, performance assessment
protocol of spectral nonlinear filters in removing impulse noise is constructed,
see Fig. 6.8. Images from Pigment-56 dataset (Appendix B) will be employed
as the target images. Both spectral salt-and-pepper and randomized impulse noise
types will be applied to the pigment images to obtained the noisy image datasets.
Noise probability threshold T = 0.3 are chosen for both noise types. Noisy im-
age datasets corresponding to those disturbed by salt-and-pepper and randomized
impulse noise will be referred to as SP-30 and RC-30, respectively. For the final
performance assessment which is shown in the red box in Fig. 6.8, average spectral
Kullback-Leibler pseudo-divergence (KLPD) in Eq. 6.7 will be employed as the
image difference measure, where nI is the number of pixels in an image. A better
performing filter will yield lower image difference.

Noise removal performance =
1

nI

nI−1∑
x=0

divKL′(I1(x), I2(x)) (6.7)

6.3.2 Performance Assessment in Edge Preservation

The protocol for edge preservation performance assessment of spectral nonlinear
filters is as depicted in Fig. 6.9, given for the case of spectral median filters. For
every case of nonlinear filters to be evaluated, a corresponding reference or bench-
mark filter needs to be identified. For the multivariate domain in general, Vector
Median Filters (VMF) [18] is known to be the most statistically robust estimator
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Figure 6.8 – Performance assessment protocol for spectral rank order filters in
impulse noise suppression task.

Figure 6.9 – Performance assessment protocol for spectral rank order filters in edge
preservation task, shown for the case of spectral median filters.

of multivariate median. Therefore, this filter will be employed as the benchmark
for spectral median filters performance assessment. Then, any arbitrary image
where edges are relatively prominent can be employed as target. Most hyperspec-
tral images used throughout this study, see Appendix B, can be employed except
for texture images such as PN1 and PN2 from Subsets-250 dataset.

To illustrate the line profile analysis shown in the red box of Fig. 6.9, a pigment
image is used as target for the assessment of spectral median filters. After perform-
ing the protocol, 3 images are obtained, i.e., original image (OI), an image filtered
by the benchmark filter (BFI), and an image filtered by the filter under evaluation
(FI). For each of the three images, a line profile will be extracted, i.e., distance
between pixels under the green line shown in Fig. 6.10a and an arbitrary refer-
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ence. In Fig. 6.10b, SWh is employed as reference to obtain line profiles from OI,
BFI, and FI. The filter under evaluation is said to be well-performing if it is able
to approximate the performance of benchmark filter. Note that this performance
assessment protocol has also been employed as a trueness in rank ordering test in
Chapter 4.

(a) Spatial coordinate or pixel
location where a line profile is
extracted from

(b) Line profiles obtained from the original image
shown in (a) and two of its corresponding filtered im-
ages. SWh is employed as reference.

Figure 6.10 – Illustration of line profile extraction in the assessment of spectral
median filters performances in edge preservation task. Lines profiles are given
for original image (OI), image filtered by the benchmark filter (BFI), and image
filtered by the filter under evaluation (FI).

6.4 Quality Assessment of Spectral Median Filters
In order to demonstrate the use of assessment protocols which have been defined
in Section 6.3, in the following are quality assessments of spectral median filters.
Furthermore, note that the aim of this section is not to construct the most efficient
median filters, per se.

6.4.1 Performance in Impulse Noise Suppression

6.4.1.1 The impact of spectral difference function in salt-and-pepper noise removal

To assess the impact of spectral difference function choice in CRA-based spectral
median filter (CRA-SMF) construction, several spectral difference functions are
to be evaluated, i.e., spectral angle (further on, will be referred to as SAM), Eu-
clidean distance, Euclidean distance of cumulative spectrum (ECS), and spectral
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Kullback-Leibler pseudo-divergence (KLPD). Then, SBk and SWh will be em-
ployed as references for the ordering relation.

The performances of 5×5 CRA-SMF with varying spectral difference functions in
suppressing salt-and-pepper noise in SP-30 dataset can be observed in Fig. 6.11,
where dynamic ranges of each function are not identical. According to this stat-
istical performance measure, the best performing spectral difference functions are
Euclidean and ECS distances, which provide identical performances. The two are
consecutively followed by SAM and KLPD function.

Figure 6.11 – The impact of spectral difference function choice in the performance
of CRA-SMF in suppressing salt-and-pepper noise. SBk and SWh are employed
as references and filter window is of size 5×5 pixels.

To better understand the previous statistical performance, filtered pigment images
from the employed dataset are also shown in Fig. 6.12. Observing these results,
it becomes more evident that indeed Euclidean and ECS distances are the most
performing ones compared to the other spectral difference functions, since both of
them manage to almost completely remove the salt-and-pepper noise. On the other,
SAM and KLPD functions retain some of the salt and pepper noises, respectively.

A 5×5 window from the unfiltered yellow pigment image previously shown in
Fig. 6.12 can be observed in Fig. 6.13. With a total of 25 pixels within the win-
dow, it can be observed that there are 5 black pixels and 8 white pixels, each
correspond to pepper and salt noises. This makes the total number of noisy pixels
exceeds half of the window size, causing the median filter to reach its limit, which
is also illustrated in Fig. 6.14. In the case of SAM and KLPD function, the median
computation encounters the case illustrated in Fig. 6.14a, i.e., both salt and pepper
noises are given the lowest ranks. One part of the reason is because the reference
pair and the noise signals are identical, i.e., SBk and SWh. Then, since SAM is a
measure of shape differences, the difference between SBk and SWh is 0 since they
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are both equi-energetic. For KLPD function, which measures both intensity and
shape differences, the zero shape difference between SBk and SWh is considered
as significant in the overall differences. Hence, the low ranks of the salt and pep-
per noises. On the other hand, Euclidean and ECS distances are able to reach the
case shown in Fig. 6.14b, since the noise signals have minimum and maximum
intensities. To recall from Chapter 3, Euclidean distance is a measure of intensity
differences and ECS distance is more sensitive to intensity than shape differences.
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Figure 6.12 – The impact of various spectral difference functions on the perform-
ance of CRA-SMF in salt-and-pepper noise suppression task, where the probability
of a pixel being disturbed by noise is T = 0.3. Shown color images are generated
using CLTR visualization method.
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Figure 6.13 – A 5×5 window of a yellow pigment image where CRA-SMF using
SAM and KLPD functions were not able to remove the salt-and-pepper noise (the
black and white pixels). With the total number of salt and pepper noises exceeding
half of the total number of pixels within the window, median filter reaches its limit.

(a) All noisy pixels are given the lower ranks
(or the higher ones)

(b) Noisy pixels are given ranks at the ex-
tremeties

Figure 6.14 – Illustrations of two cases of median computation when the total
amount of salt-and-pepper noise exceeds half of the total numbers of pixels within
the filter window.

6.4.1.2 The impact of spectral difference function in randomized impulse noise
removal

In the previous evaluation where salt-and-pepper noise are to be removed from
the target images, Euclidean and ECS distances performed better than SAM and
KLPD functions despite the limitation of median computation. In the following,
performances of the same spectral difference functions will be further assessed
by employed randomized impulse signals, SBk and SWh are again employed as
references. Several of the noisy images have been shown in Fig. 6.7.

The performances of 5×5 CRA-SMF with varying spectral difference functions
in suppressing randomized impulse noise in RC-30 dataset can be observed in
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Fig. 6.15. From this figure, it can be observed that none of the difference functions
except for KLPD function is able to remove the randomized impulse noise. The
results for three pigment images can also be observed in Fig. 6.17. Among the 4
spectral difference functions, SAM is the least performing one. As for Euclidean
and ECS distances, they retain the impulse noises only certain color shades in each
of the pigment images.

Figure 6.15 – The impact of spectral difference function choice in the perform-
ance of CRA-SMF in suppressing randomized impulse noise. The employed filter
window is of size 5×5 pixels.

(a) SAM (b) Euclidean distance (c) ECS distance

Figure 6.16 – Three instances from unfiltered images shown in Fig. 6.17, where
CRA-SMF embedding the corresponding function failed to remove the impulse
noise. Medians selected by each function are marked by the letter ’M’.

To have a closer observation of the impact of spectral difference functions, 5×5
window regions are extracted from three pigment images previously shown in
Fig. 6.17. The localized regions can be observed in Fig. 6.16, where the selec-
ted medians are marked with the letter ’M’ in each image. As observed, in all the
shown examples, the number of noisy pixels does not reach half of the total pixels
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in the window. Thus, in these cases, the median filters are expected to select pixels
which are undisturbed by noise. The failure of SAM is attributed to the use SBk
and SWh as references, which are identical in shape. Due to this, the values ob-
tained by CRA ordering relation for any arbitrary spectral functions Si will always
be unitary since

g−R(Si) =
d(Si, SWh)

d(Si, SBk)
=
y

y
= 1.
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Figure 6.17 – The impact of various spectral difference functions on the perform-
ance of CRA-SMF in randomized impulse noise suppression task, where the prob-
ability of a pixel being disturbed by noise is T = 0.3. Shown color images are
generated using FIXED visualization method.

For Euclidean and ECS distances, the choice of SBk and SWh references will
cause them to fail at the color shades whose intensity values are around half of
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the dynamic range of the value space. This is because the intensity differences
between the spectral functions to each of the references will be approximately the
same. Spectral functions which correspond to the localized filter windows shown
in Fig. 6.16b and 6.16c can be observed in Fig. 6.18a and 6.18b, respectively. The
impulse signals shown in the figures are clearly distinguishable in shape from the
image content. But since Euclidean distance is a measure of intensity differences,
the significant shape differences are not considered in the computation of median.
ECS, due to its cumulative spectrum approach, gives significantly more importance
to intensity rather than shape differences. And finally, ECS demonstrates similar
behavior than that of the Euclidean distance.

(a) Spectral functions from Fig. 6.16b (b) Spectral functions from Fig. 6.16c

Figure 6.18 – Spectral functions of two localized filter windows shown in Fig. 6.16,
where the impulse signals are distinguishable in terms of shape from the original
image content.

To summarize, among the 4 spectral difference functions, KLPD function gives the
best performance due to its sensitivity to both shape and intensity differences. In
the previous evaluation where salt-and-pepper noise model was employed, SAM
and KLPD functions were found to be unable to remove some of the salt and pep-
per noises, respectively. The observed performance was however due to the limit
of median computation rather than the spectral difference functions themselves.
The actual performances of the functions become evident when randomized im-
pulse noise model was employed. SAM and Euclidean distance which are exclus-
ively measures of shape and intensity differences, respectively, were not able to
remove the randomized impulse noise. And so does ECS distance even though it
is a measure of both shape and intensity differences. Its limitation was reached
due to its prioritization for intensity differences, as a cause of cumulative spectrum
approach. Finally, the best performance was delivered by KLPD function which is
equally sensitive to both shape and intensity differences.
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6.4.1.3 The impact of spectral ordering relation in randomized impulse noise
removal

VMF is a statistically robust multivariate median filter due to its aggregate dis-
tance ordering. With this approach, a median is considered as the pixel having
minimum total distance to the other pixels within the filter window, which makes
it essentially a minimum filter. On the other hand, in CRA-SMF a median is iden-
tified relative to the pair of references. Comparing the performance of the two
different approaches of multivariate median filters, RC-30 image dataset from the
previous subsection will be employed as target. Then, as KLPD has been found to
be the most performing spectral difference function, it will be embedded in both
VMF and CRA-SMF. SBk and SWh are employed as references for CRA-SMF,
and filter window size to use is 5×5 pixels.

The performance of VMF and CRA-SMF in suppressing randomized impulse
noise from RC-30 dataset can be observed in Fig. 6.19. Comparing the dynamic
range of this figure with the previous ones in Fig. 6.15, it can be said the perform-
ances of the two approaches do not differ significantly, with CRA-SMF performs
slightly better. And as can be observed through Fig. 6.20, both median filters are
able to completely remove the impulse noise signals. Finally, it can be observed
that differences depicted in Fig. 6.19 are mainly due to different medians being
selected from the image content, rather than different ability to remove impulse
noises.

Figure 6.19 – The impact of spectral ordering relation choice in the suppression of
randomized impulse noise. The employed filter window is of size 5×5 pixels.
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Figure 6.20 – The impact of spectral ordering relation choice in the suppression
of randomized impulse noise, where the probability of a pixel being disturbed by
noise is T = 0.3. Shown images are generated using FIXED visualization method.

6.4.2 Performance in Edge Preservation

In the following, the performance of CRA-SMF in edge preservation task will be
evaluated relative to the performance of VMF. Both median filters embed KLPD
function as their spectral difference functions and employ 7×7 filter window size.
Then, SBk and SWh are employed as references for CRA-SMF.

A pigment image from Pigment-56 dataset (Appendix B) is employed as filtering
target in Fig. 6.21, where the results of VMF and CRA-SMF are also provided. By
visual comparing Fig. 6.21c and 6.21d, CRA-SMF filtered image seems to have
sharper edges than the one filtered by VMF. To confirm the visual observation,
line profiles from the original and filtered images are provided in Fig. 6.21a. And
through this figure it becomes clearer that indeed VMF blurs the original image
more than CRA-SMF. The edge produced by CRA-SMF can approximate the ori-
ginal edge, while one produced by VMF is more inclined.
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(a) Line profiles obtained from pixels located under the
red line shown in (b) for all pigment images below

(b) Original image (c) VMF filtered image (d) CRA-SMF filtered image,
SBk and SWh as references

Figure 6.21 – The impact of VMF and CRA-SMF, both embedding KLPD function
and of filter window size 7×7 pixels, in the edge preservation of a green pigment
image. The line profiles are obtained by computing spectral differences to SWh

using KLPD function. CRA-SMF yields sharper edges compared to VMF.

The pigment image used previously does not have a complex structure since it con-
sists of only 4 homogeneous regions separated by 3 edges. In Fig. 6.22, the results
of applying VMF and CRA-SMF to two images from Subsets-250 dataset (Ap-
pendix B) are given. The two images can be considered as images which consist
of background and foreground parts. The background can be considered as homo-
geneous regions where no edges are present. Image structures become important
in the foreground regions. With this type of images, the result comparison of VMF
and CRA-SMF still agree with the previous result employing a simple pigment im-
age. Filtered images obtained by VMF are generally blurrier than those obtained
by CRA-SMF.

Performance of the two median filters is further assessed using an image with an
even more complex structure. In image FN2 from Subsets-250 dataset, various dif-
ferent objects compose the image and there is no region which can be considered
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Unfiltered VMF CRA-SMF
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Figure 6.22 – The impact of VMF and CRA-SMF, both embedding KLPD func-
tion and of filter window size 7×7 pixels, in preserving edges in two images from
Subsets-250 dataset (Appendix B). Results obtained by VMF are blurrier than
those obtained by CRA-SMF.

as background. Results obtained after applying 7×7 VMF and CRA-SMF can be
observed in Fig. 6.23, where the first and second rows give the full images and a
portion of them, respectively. From the full view of the images, again, the perform-
ance of CRA-SMF is better as it generates sharper images than VMF. However,
observing the images in smaller details through what are shown in the second row,
VMF filtered image does not suffer from grainy artifacts. In Fig. 6.24 we provide
an even closer zoom of image FN2, i.e., from the head region as indicated by the
blue arrow in Fig. 6.23. And it is in this region that we can observe an example of
where grainy artifacts are generated by CRA-SMF while VMF gives a blurry effect
without the artifacts. If we further observe the modified bidimensional histogram
of spectral differences (BHSD) of this image subset by using SWh as reference,
we know that distribution of spectral variation within this particular region is mul-
timodal, see Fig. 6.24. In this case the computation of median reaches its limit
and nothing ensures the stability of VMF. Thus, at this point we are not able to
determine which of VMF or CRA-SMF provides a better performance.
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Figure 6.23 – Comparison of the impact of VMF and CRA-SMF in the smaller
details of a portion of image FN2. Even though the image obtained by VMF is
generally blurrier than the one obtained by CRA-SMF, it does not suffer from
grainy artifacts as CRA-SMF filtered image does. A further zoom of location
indicated by the blue arrow can be seen in Fig. 6.24.

(a) A subset of FN2 (b) Spectral variation of image in (a)

Figure 6.24 – Subset of image FN2 as indicated by the blue arrow in Fig. 6.23
and its modified BHSD obtained using SWh as reference. Distribution of spectral
variation is multimodal, which is the limit of median computation.
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6.4.3 Complexity Analysis

VMF has been considered as the benchmark for multivariate median filter due to its
stability and robustness which is induced by the cumulative distance ordering [18,
88, 172]. However, its robustness comes with a great computational complexity
which has been analyzed in [25]. If it is to be compared to CRA-SMF, a significant
improvement of the complexity can be achieved.

A hyperspectral image consists of hundreds of spectral bands. With the same
spatial dimension as its color counterpart, a hyperspectral image will require a
significantly larger amount of memory due to its spectral dimension. Therefore,
when designing a median filter algorithm for a hyperspectral image, the trade-offs
are between memory or space and time. In the following, the computational cost of
both VMF and CRA-SMF will be analyzed for the two cases, i.e. space and time
complexity. Space complexity is relevant when memory is limited, while time
complexity is the case where memory is abundant and computation time matters.

6.4.3.1 Space complexity

Both VMF and CRA-SMF apply the median filter through a distance map that is
obtained from an input image. If there is sufficient memory available, computation
time that is required by either VMF and CRA-SMF will be significantly lower
since the computation of distance map can be done globally before the filtering
iteration. The space complexity for VMF and CRA-SMF are as shown in Table 6.1,
where nI × nλ is the spatial and spectral dimensions of an image, nW is the size
of the filter window, and p is the number of basic arithmetic operations required
by the distance function used. The complexity of VMF is larger by a factor of n2W
since the distance of a pixel to all its neighbors within the filter window has to be
computed. On the other hand, CRA-SMF only needs to compute the distance of
each pixel to two references. As an illustration, if a single value requires 4 bytes of
memory, an image of nI = 1000×1000 and nλ = 100, p = 4, and a filter window
of nW = 3× 3, VMF would require 129.6 GB of memory while CRA-SMF only
3.2 GB.

6.4.3.2 Time complexity

For a hyperspectral image with several hundreds of rows and columns, memory
availability is already a great challenge, as the numbers above have illustrated.
Therefore, each of the operations from loading the image pixels to sorting the
distance values needs to be carried out locally at each filter window iteration.
Table 6.2 provides the analysis of time complexity for VMF and CRA-SMF when
we face a lack of memory. CRA-SMF outperforms VMF by a factor of filter win-
dow size nW through its direct distance computation. If, as previously, we have an



158 Spectral Rank Order Filters

image of nI = 1000× 1000 and B = 100, nW = 3× 3, p = 4, and that a single
element operation requires in average 1 µs, VMF would need 9 hours to process
while CRA-SMF only an hour. However, note that for the spatial dimension nI
that is thousands by thousands of pixels, we generally cannot use a small nW as
it has to grow together with nI in order to be able to work with the details in the
image. If for the same image size we have a filter window of size nW = 20× 20,
the time required to process VMF would be around 740 days, while only less than
2 days for CRA-SMF. Certainly there is scope for optimization for both VMF and
CRA-SMF. But by comparing the two of them in this manner, i.e. using the same
distance function, we are allowed to see how big is the differences in time, as well
as memory, complexity of the two filters.

Table 6.1 – Space complexity analysis of VMF and CRA-SMF. nI × nλ, nW , and
p are the spatial and spectral sizes of image input, the size of filter window, and the
number of basic arithmetic operations required by the selected distance function,
respectively.

Operations # of elements
VMF CRA-SMF

Image load nI × nλ nI × nλ
Filter window nW nW
Distance map nI × n2W × nλ × p nI × nλ × p× 2
Cumulative distance nI × nλ -
Ratio & angular distance (CRA) - nI × nλ × 2
Quicksort (space complexity) log nW log nW
Complexity O(nI · n2W · nλ · p) O(nI · nλ · p)

Table 6.2 – Time complexity analysis of VMF and CRA-SMF.

Operations # of elements per window iteration
VMF CRA-SMF

Image load nW × nλ nW × nλ
Distance map n2W × nλ × p nW × nλ × p
Cumulative distance nW × nλ -
Ratio & angular distance (CRA) - nW × 2
Quicksort (time complexity) nW log nW nW log nW
Complexity O(nI · n2W · nλ · p) O(nI · nW · nλ · p)
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6.5 Conclusion
In this chapter, we have designed our first metrological image processing tools for
spectral images, i.e., spectral rank order filters (ROF). Comparing it with the state
of the art multivariate median filters, i.e., Vector Median Filters (VMF) by Astola
et al. [18], we have shown that our spectral median filters construction using con-
ditional ratio and angular distance ordering relation (CRA) is significantly more
efficient in time and memory. In turn, this will give a more attractive solution for
more advanced spectral nonlinear filters.

In designing the metrological validation for spectral ROF, we encountered a dif-
ficulty in defining a realistic spectral noise model useful for performance assess-
ment in noise removal. Our first approach was by using the salt-and-pepper noise,
where the salt and pepper signals are replaced by equi-energetic black and white
spectral functions. In the second approach, where the noise model is not signific-
antly better, we use impulse noise model with randomized spectral function as the
noise signal. Nevertheless, using the two noise models we have been able to show
the limit and advantage of our construction of spectral ROF using CRA ordering
relation and spectral Kullback-Leibler pseudo-divergence (KLPD) function. The
second metrological validation was developed with VMF as reference. However,
in the real case using complex images we have shown that our CRA-based spec-
tral median filter (CRA-SMF) provides better edge preservation capability. While
VMF generally blurs the input image, edges in CRA-SMF filtered images remain
sharp. On the other hand, CRA-SMF also generates grainy artifacts, which do not
appear in the blurrier VMF-filtered images.

Summary of Contributions.

X Extension of rank order filters (ROF) to the spectral domain by means of a dis-
tance based ordering relation, i.e., conditional ratio and angular distance order-
ing relation (CRA).

X Quality assessment protocols for spectral rank order filters and the performance
assessment itself for spectral median filters.

X Application and performance comparison of Vector Median Filters (VMF) and
CRA-based spectral median filter (CRA-SMF) to hyperspectral images.

X Time and space complexity analyses of VMF and CRA-SMF.
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Chapter 7

First Levels of Spectral
Mathematical Morphology

7.1 Introduction
In the previous chapters, a significant amount of work has been carried out at the
theoretical level. Various distance functions have been studied, evaluated, and val-
idated in the pursuit of finding the most suitable one for spectral data in Chapter 3.
It was then followed by an entire chapter dedicated to the study of multivariate
ordering relation in Chapter 4, again in the pursuit of finding the most suitable one
for spectral image processing. In both chapters, the focus has been theoretical val-
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idation using artificial datasets or ones derived from a real dataset but nevertheless
were in a controlled condition. But one might wonder if such extensive efforts are
needed to construct a spectral image processing framework. And eventually, what
will be the gain of it in the real case, where theoretical assumptions are rarely met
or satisfied.

Theoretical validation ensures a stable performance. And thus, being able to assess
the theoretical properties of image processing tools will, in turn, allow predict-
ing and understanding the image processing results. Furthermore, with the added
metrological constraints, the obtained functions and/ or operations will be able
to manage accuracy, uncertainty, and bias throughout the following image pro-
cessing chain. Looking at the above diagram, it is evident that after having defined
spectral distance function and ordering relation, spectral mathematical morpho-
logy framework is what follows. And thus, in this chapter, it will be shown how
the framework and its components can be developed and used for real images.

The rest of the chapter is organized as follows. The definition and extension of
erosion, dilation and Beucher’s gradient to the spectral domain will be provided
in Section 7.2. In the same section, the extended operators will be applied to
several hyperspectral images and results will be explained and discussed. Having
defined Beucher’s gradient, watershed segmentation algorithm can be developed
and it will be given in Section 7.3. Having opening and closing operators allow
defining an entire class of morphological filters. Grayscale opening and closing
are extended to the spectral domain in Section 7.4 and they will be employed to
construct a morphological filter, i.e., top-hat transforms. Finally, this chapter will
be concluded in Section 7.5.

7.2 Erosion, Dilation, and Beucher’s Gradient

7.2.1 Definition

Definitions and mathematical expressions provided in the following are of the
grayscale domain and taken from Soille [159].

7.2.1.1 Structuring element

Mathematical morphology (MM) analyses and processes the structure of a given
image by probing the said image with a structuring element (SE) of a certain shape
and size. An SE is realized by a small image whose values can be binary, gray-
scale, or n-dimensional. Throughout this chapter, only binary (or flat) SE will be
considered. Example of possible SEs of radius 1 pixel are provided in Fig. 7.1,
where all SE has its origin at the center of the 3×3 pixels region. Origin of an SE
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allows the positioning of this SE at a particular location in the given image. If an
SE is said to be at location x, it means its origin coincides with x.

(a) 0°line (b) 45°line (c) Cross (d) Square

Figure 7.1 – Several possible SEs of radius 1 pixel or of size 3×3 pixels, each
having its origin at the center.

The shape and size of an SE must be chosen such that it matches the relevant
structure within the given image. For example, horizontal line SE is suitable to
detect horizontal lines. In the rest of this chapter, SE having a shape of a disk will
be used. Digital approximations of this particular shape are shown in Fig. 7.2 for
4 different radii.

(a) 1 pixel (b) 2 pixels (c) 3 pixels (d) 4 pixels

Figure 7.2 – Digital approximations of disk SEs with various radii.

7.2.1.2 Erosion and dilation

Eroding an image with an SE can be regarded as trying to find where this particular
shape of the SE would fit into structures which exist in the image. As for dilation,
it will find structures in the image where the origin of the SE would always hit.
Illustration of erosion and dilation with disk SE is provided in Fig. 7.3, where both
target image and SE are considered as sets. This set erosion ε and dilation δ can
also be expressed as in Eq. 7.1.

εB(I) =
⋂
b∈B

I−b, δB(I) =
⋃
b∈B

I−b (7.1)
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Extending the set definition to work for binary and grayscale images, the afore-
mentioned expressions are modified into Eq. 7.2.

εB(I) =
∧
b∈B

I−b, δB(I) =
∨
b∈B

I−b (7.2)

Figure 7.3 – Illustrations of erosion and dilation of a set I by an SE . Erosion re-
duces the initial set into εB(I) while dilation connects the initially separate objects
into δB(I).

7.2.1.3 Beucher’s gradient

The basic gradient operator of the MM framework is called Beucher’s gradi-
ent [146]. It is defined as the arithmetic difference between the dilation and erosion
of the input image, or as expressed in Eq. 7.3.

%B = δB − εB (7.3)

Note that, by definition, morphological gradients are non-negative. But this can
only be guaranteed if the dilation and erosion are extensive and anti-extensive, re-
spectively, see Eq. 7.4. Also note that the non-negativity of morphological gradi-
ents demands the use of symmetrical structuring elements.

δ is extensive⇔ id ≤ δ
ε is anti-extensive⇔ ε ≤ id

(7.4)

Finally, Fig. 7.4 is provided to allow readers to see the impact of applying the afore-
mentioned morphological operators to a grayscale image. Eroding and dilating a
grayscale image will cause the dark and bright regions, respectively, to expand.
Using a Beucher’s gradient, edges found in the original image are extracted.
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(a) Original image (b) Eroded image

(c) Dilated image (d) Beucher’s gradient

Figure 7.4 – The impact of basic grayscale morphological operators to an input
image, using 3 pixels radius disk SE. Erosion and dilation expand dark and bright
regions, respectively. Beucher’s gradient extracts edges from the original image.

7.2.2 Extension to the Spectral Domain

The mathematical expressions of grayscale erosion and dilation do not need an ex-
plicit definition of ordering relation. This is because in the scalar domain, the no-
tion of ordering is automatically obtained. Thus, extending the grayscale operators
to the spectral domain requires rewriting them by including the spectral ordering
relation. From Chapter 4, conditional ratio and angular distance ordering relation
(CRA) has been concluded to be the most suitable spectral ordering relation. To
recall, it is a distance-based function, hence requiring to define a suitable spectral
distance function. As a conclusion of Chapter 3, spectral Kullback-Leibler pseudo-
divergence (KLPD) was said to be the most suitable spectral difference function
which consists of two independent components measuring shape and intensity dif-
ferences. With these spectral ordering relation and spectral difference function,
the mathematical definitions of erosion ε, dilation δ, and Beucher’s gradient % are
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expressed as in Eq. 7.5.

εB(I) =
∧
b∈B

gCRA(I−b),

δB(I) =
∨
b∈B

gCRA(I−b),

%B(I) = dKLPD(δB(I), εB(I))

(7.5)

7.2.3 Subjective Assessment of Ordering Relation Impact

Aiming to subjectively assess the impact of ordering relation to basic morpholo-
gical operators, image FN1 from Subsets-250 dataset (Appendix B) is employed
as target image. Three objects as depicted in Fig. 7.5 are chosen as ROIs, i.e.,
tower, roof, and the three windows. In the following, in addition to CRA, the im-
pact of lexicographic and marginal ordering relations will also be evaluated. To
recall, it has been concluded in Chapter 4 that CRA is currently the most suitable
ordering relation for spectral image processing. Read the chapter for evaluation
and discussion surrounding other multivariate ordering relations. Then, as CRA
is a distance-based approach, it follows that a spectral distance function must be
embedded. From Chapter 3, KLPD has been concluded as the most suitable one to
date. Thus, in the following, it is KLPD function which will be embedded by CRA.
It is also employed as the difference function in Beucher’s gradient computation.

Figure 7.5 – Image FN1 an input for spectral erosion, dilation, and Beucher’s gradi-
ent. The relevant ROIs are (1) tower, (2) roof, and (3) three windows.

With a disk SE of 2 pixel radius, CRA-based morphological operators are applied
to image FN1. In this experiment, CRA employs spectral references SBk and SWh.
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All resulting images can be observed in Fig. 7.6. In the grayscale domain, erosion
will expand image regions having lower intensity values. While for dilation, it
is the higher intensity regions that will be expanded. Due to the use of SBk and
SWh as references in CRA, similar behavior to that of grayscale morphology are
obtained. As an example, the tower object whose spectral functions are of lower
intensity has its region expanded. And so have the three windows located next to
the tower. These objects then shrink when image FN1 is dilated. And the shrinking
of lower-intensity regions occurs together with the expansion of higher-intensity
ones, e.g., roof. If eroded and dilated images are compared, it can be observed
that background of the dilated image is generally of higher intensity than that of
the eroded image. This also agrees with the behavior of grayscale erosion and
dilation, but particularly so due to the chosen spectral references. Dilation with
CRA would cause spectral functions which are ’closer’ to SWh to remain in the
dilated image. And since SWh is equi-energetic, spectral functions with higher
intensity would be chosen as the maximum, regardless of their shapes. The use of
an equi-energetic spectral reference would reduce the impact of shape differences
in distance computation. The obtained Beucher’s gradient image is as expected,
i.e., showing region boundaries within FN1.

Lexicographic and marginal ordering relations do not respect the physical prop-
erties of spectral data, making them unsuitable choices for spectral image pro-
cessing. And this is despite them being full-band approaches, see complete discus-
sion in Chapter 4. But in Fig. 7.7 their impact on erosion, dilation, and Beucher’s
gradient can be observed through image FN1. The used SE is disk of size 3×3
pixels. Observing the eroded and dilated images, the global impacts remain the
same. Erosion expands darker objects, i.e., tower and windows, and dilation
shrinks them. In the dilated images, roof objects are expanded and the background
is also of higher intensity than in the eroded images. Comparing the results of
lexicographic- and marginal-based morphological operations, images yield by lex-
icographic ordering relation seem to suffer from grainy artifacts.
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Original image Eroded image

Dilated image Beucher’s gradient image

Figure 7.6 – Image FN1, eroded and dilated with disk SE of 2 pixel radius. CRA
ordering relation is employed, embedding KLPD function and spectral references
SBk and SWh. Beucher’s gradient image is obtained using KLPD function.
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Figure 7.7 – Comparison of the impact of lexicographic and marginal ordering
relations in erosion, dilation, and Beucher’s gradient. The input is image FN1, SE
is disk of radius 2 pixels, and subtraction operation in the gradient computation
is replaced by KLPD function. Images generated by lexicographic ordering based
morphological operators suffer from grainy artifacts, which is also emphasized by
the gradient image. Marginal ordering relation produces smoother images.
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The choice of SE size 3×3 pixels induces that the differences of ordering relation
impact would be more evident in small details of the image, especially in the pres-
ence of edges. Detailed portions of eroded, dilated, and gradient images previously
shown in Fig. 7.6 and 7.7 are now shown in Fig. 7.8, allowing a closer observation.
Among the three ordering relations, lexicographic approach is the least perform-
ing one. Edges in its dilated and eroded images are not maintained, unlike those in
CRA- and marginal-based operations. A clearer demonstration of the limitation of
lexicographic approach in presence of edges can be observed through the gradient
images. Edges obtained by CRA and marginal ordering relations are more solid
than that of lexicographic one which suffer from grainy artifacts.

Comparing performances of CRA- and marginal-based operations, there are per-
ceptible differences in the resulting images, see Fig. 7.8. But none of the ap-
proaches seem to be completely superior than other. Edges shown in the gradient
images are also not significantly different.

To recall, marginal ordering relation is an unsuitable choice for spectral image
processing since it suffers from false spectral function problem, see illustration in
Fig. 4.18 in Chapter 4. In other words, marginal processing will generate spectral
functions which do not exist in the initial spectral set. In a small SE, this problem
might be less severe since there is a higher chance of the region being homogen-
eous. Increasing the size of SE into 7 pixel radius, results of CRA- and marginal-
based erosion and dilation using FN1 as target can be observed in Fig. 7.9. Even
though the SE has been increased in size so as to have sufficiently non-uniform re-
gion, marginal approach still seem to be a well-performing ordering relation. But
this behavior is not unexpected. First of all, reducing a spectral image to a color
domain reduces the ability to perceive differences. Thus, rather than assessing or-
dering relations in the color domain, they must be assessed in the spectral domain.
Secondly, the good performance of marginal ordering relation must be attributed
to the employed image target rather than the ordering relation itself. False spec-
tral function problem still exist in this image, but nevertheless are significantly
reduced. On the other hand, the problem will become evident when a texture im-
age is considered. Performance assessment using a texture image can be found
later in Section 7.2.4.
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Figure 7.8 – Performances of CRA, lexicographic, and marginal ordering relations
in erosion, dilation, and Beucher’s gradient shown for a smaller portion of image
FN1. Differences in ordering relation impact are better emphasized in the gradient
images. Compared to CRA and marginal ordering relations, the lexicographic one
produces images with grainy artifacts and a gradient image of less solid edges.
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Figure 7.9 – Comparison of the performance of CRA and marginal ordering rela-
tions in the erosion and dilation of image FN1 from Subsets-250 dataset, with a
disk SE of radius 7 pixels. No significant differences are perceived in the results.
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7.2.4 Metrological Assessment of Ordering Relation Impact

Aiming to develop a metrological image processing framework demands for the
performance evaluation to be carried out metrologically. Within this context, the
use of visual observation in the previous subsection is found to be very limiting.
Thus, in the following, assessment will be carried out statistically showing distri-
bution of spectral functions within an image and spectrally through showing the
resulting spectral functions. In addition, a texture image will be employed as target
in order to better demonstrate the impact of marginal ordering relation.

7.2.4.1 Understanding the results

CRA and marginal ordering relations will be used to construct erosion and dilation,
which will be applied to a texture image from Subsets-250 dataset, see Fig. 7.10.
Using a disk SE of 7 pixel radius, the impact of erosion and dilation will be ob-
served with a focus on region within the red square. However, note that this par-
ticular region is not only impacted by pixels within itself but also its surrounding
neighbors depending on the SE size. Neighboring pixels which will contribute
to the result of erosion and dilation within the red square includes those located
within the blue square.

Figure 7.10 – Image PN1 from Subsets-250 dataset and its subset, as marked in red,
where impact of CRA and marginal ordering relation would be observed. Note that
due to the SE size, all pixels within the blue square will affect results of erosion
and dilation within the red square region.

The impact of ordering relation within the said region will be assessed by means of
spectral value distribution using bidimensional histogram of spectral differences
(BHSD). But rather than using BHSD in its original form, each dot in the plot
corresponds to one spectral function within the considered image region. Spec-
tral value distribution within the blue square shown in Fig. 7.10 can be observed
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in Fig. 7.11. This BHSD was computed with SWh as the spectral reference. In
addition to evaluating through spectral value distribution, evaluation will also be
carried out showing the impact of ordering relation at an obtained maximum/ min-
imum spectral function.

7.2.4.2 Expected results of erosion and dilation

Erosion and dilation will replace spectral function at the origin with the minimum
and maximum spectral functions, respectively, of pixels within the used SE. As a
consequence, distribution of spectral values in the eroded and dilated images would
converge towards −∞ and +∞, respectively. In marginal ordering relation, these
convergence coordinates are assumed to be SBk and SWh for spectral reflectance
space. In case of spectral radiance space, SWh would be replaced by a spectral
function having maximum possible energy at each wavelength. Using spectral
value distribution shown in Fig. 7.11, the convergence direction of marginal or-
dering relation is as depicted in Fig. 7.12a. In CRA ordering relation, the pair of
convergence coordinates must be defined explicitly through the choice of spectral
references. Due to this, the convergence of CRA-based erosion and dilation could
be any of any arbitrary direction. Three different directions of convergence for
CRA are illustrated in Fig. 7.12b.

Figure 7.11 – Spectral value distribution of all pixels within the blue square re-
gion indicated in Fig. 7.10, obtained with SWh as reference. Color of each dot
in the figure corresponds to color of the spectral function, as obtained by CLTR
visualization method.
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(a) Fixed pair of convergence coordinates in marginal ordering relation

(b) Variable pairs of convergence coordinates in CRA ordering relation

Figure 7.12 – Illustrations of the convergence coordinates of marginal and CRA
ordering relations. Shown BHSDs are obtained using SWh as reference. Marginal
ordering relation implicitly assumes a pair of convergence coordinates, i.e., SBk
and SWh for the reflectance space. On the other hand, with CRA ordering relation,
we are required to explicitly define a pair of convergence coordinates by selecting
two spectral functions.
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7.2.4.3 Performance assessment of erosion and dilation

The impact of CRA- and marginal-based erosion and dilation on image PN1 can
be observed in Fig. 7.13, where there is no evident differences between the two
approaches. Differences start to become perceptible in Fig. 7.14, when observation
is carried out for subset of PN1 which was depicted in Fig. 7.10. Especially for
dilation result, marginal ordering relation generates purplish colors which do not
exist in the initial spectral set.

CRA Marginal
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Figure 7.13 – Image PN1, dilated and eroded with disk SE of 7 pixel radius. Both
operators are constructed based on CRA and marginal ordering relations.

False spectral function generated by marginal processing can be described as due
to marginal mixing procedure. A 3×3 pixel region is obtained from image PN1
where two main colors exist, i.e., brownish and bluish ones. Spectral functions
from the said region are plotted in Fig. 7.15a. Given a task to obtain a maximum
spectral function from this initial set, marginal ordering relation takes maximum
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Figure 7.14 – The impact of CRA- and marginal-based erosion and dilation on
subset of PN1, as compared to original image prior to processing. False spec-
tral function issue suffered by marginal processing is evident in its dilated image.
Purplish colors which do not exist originally appear in the dilated image.

value at each wavelength resulting in a spectral function shown in Fig. 7.15b. The
obtained marginal maximum is shown in boxes. Each box corresponds to spec-
tral function of the same color in the initial set where the portion is taken from.
And thus, this procedure can be seen as a mixing procedure. But neither optical
nor chemical mixing proceeds in this regard. Therefore, the obtained maximum
spectral function does not have a physical sense and, ultimately, violates the met-
rological constraint imposed on the image processing framework.

To further demonstrate the unsuitability of marginal ordering relation, in the fol-
lowing analysis will be carried out with regards to spectral value distribution within
subset of PN1 which was depicted in Fig. 7.10. The impact of CRA- and marginal-
based erosion to spectral value distribution can be observed in Fig. 7.16, where the
BHSD is obtained using SWh as reference. Note that distribution of the initial
spectral set, which was previously shown in color in Fig. 7.11, are now repres-
ented by the white circles. CRA and marginally obtained spectral functions are
represented by blue and red dots, respectively. As observed, marginal ordering re-
lation converges faster than CRA. But in a closer observation, it is shown that none
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of the marginally obtained spectral functions originate from the initial set, unlike
those obtained by CRA. Finally, this explains the convergence speed of marginal
ordering relation. In a local neighborhood of n pixels, CRA only has n poten-
tial solutions. On the other hand, marginal ordering relation is not limited by this
number since it considers the solution separately for each wavelength. Hence, the
false spectral functions. Spectral value distribution prior to and post-dilation op-
eration can also be observed in Fig. 7.17. Similar behavior is obtained for both
CRA and marginal ordering relations. CRA-obtained maximum does exist in the
initial spectral set, but not in the case of marginally obtained maximum spectral
functions. Finally, these plots show the risk and danger of using marginal ordering
relation for spectral image processing. If a spectral image is processed margin-
ally, its result will only be digital results without any physical meaning. And since
metrological aspects of the data cannot be ensured, neither results analysis nor
interpretation will be accurate and of high relevance.

Figure 7.15 – Initial spectral set from a 3×3 pixels region and its correspond-
ing maximum spectral function obtained by marginal ordering relation. Marginal
ordering relation computes maximum value independently for each channel. As
a consequence, parts of the marginal maximum is taken from different spectral
functions. The origin of these parts are spectral functions having the same color
coding with the colors of the square.
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(a) Full view of spectral distribution (b) A zoom of distribution in (a)

Figure 7.16 – Spectral value distribution of a subset of image PN1 which was
shown in Fig. 7.10, for before and after erosion operation. Distribution of spectral
values prior to erosion is represented by white circles. Red and blue circles are
used to represent spectral values post-erosion. Marginally generated values do not
exist in the original image since they are not encircled by the white ones.

(a) Full view of distribution (b) A zoom of distribution in (a)

Figure 7.17 – Spectral value distribution of a subset of image PN1 which was
shown in Fig. 7.10, for before and after dilation operation. Distribution of spectral
values prior to dilation is represented by white circles. Red and blue circles are
used to represent spectral values post-dilation. Marginally generated values do not
exist in the original image since they are not encircled by the white ones.
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7.2.5 The Impact of Spectral Reference Selection

In the previous subsection, a black and white spectral functions SBk, SWh have
been employed as references, which is analogous to the implicit convergence co-
ordinates of the grayscale domain. But CRA ordering relation is not limited to this
choice. Reference selection can be made according to application goal at hand.
And this choice will, in turn, allows controlling the convergence of erosion and
dilation operators.

As a first demonstration, image NP1 from Subsets-250 dataset (Appendix B) will
be employed as target. The said image target is shown in two different color visu-
alizations in Fig. 7.18. Five main colors can be observed in this image target.
According to their numbers, the colors are (1) dark green of the flower stem, (2)
white of the background, and (3-5) different shades of red of the flower petals
and pollen. Spectral reflectance functions for each color are obtained from 3×3
homogeneous pixel regions and can be observed in Fig. 7.19. Spectral value dis-
tribution of the initial spectral set of image NP1 can also be observed in Fig. 7.20,
where SWh is employed as reference in the KLPD function computation. Note
that this particular image is processed with zero replacement value of 10-6, see
Section 5.5.1.

(a) ROIs 1 and 2, in CLTR visualization (b) ROIs 3–5, in FIXED visualization

Figure 7.18 – Image NP1 from Subsets-250 dataset and its two color visualizations,
where the relevant ROIs are marked.

Given an image whose spectral values can be described as a convex hull, any ar-
bitrary spectral function is said to be an optimal spectral reference if it lies outside
the convex hull of the initial spectral set, see Section 5.3. Additionally, it should
not lie too far from the periphery of the convex hull. As for image NP1, its convex
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Figure 7.19 – Spectral reflectance functions for each ROI shown in Fig. 7.18, ob-
tained by averaging 3×3 homogeneous pixel region from each ROI. Colors for
each spectral function are obtained by CLTR visualization.

Figure 7.20 – Spectral value distribution of image NP1, obtained using KLPD
function and SWh as reference.

hull can be described through BHSD shown in Fig. 7.20. As observed, in NP1,
hue differences hold more importance than intensity differences. In fact, intensity
differences are mainly due to the shades of red coming from regions numbered 3 to
5, see Fig. 7.18. Based on these observations, in the following are two application
goals and their corresponding reference choices.

SBk–SWh reference pair Both SBk and SWh are equi-energetic spectral func-
tions. Selecting the two as references entail that the convergence of erosion
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and dilation will lie at both ends of the intensity axis. Or in the case of BHSD
using KLPD function, erosion and dilation will move towards either ends of
KLPD-Intensity axis. Due to this, erosion will expand regions correspond-
ing to those numbered with 1, 3, and 4, since they are of lower intensity
values. On the other hand, dilation will expand regions with the lighter red
color and also the background.

Simulated red (SR) and green (SG) reference pair The pair is selected aiming
to control the convergence of erosion and dilation along the shape axis. See
the two spectral functions in Fig. 7.21a. SG is chosen knowing that most
likely there is only one type of green within image NP1. This selection will
allow distinguishing green with other colors in the image. Then, the intensity
of SG must be considerably different than the greens which actually exist
within the image, such that SG does not fall inside the convex hull of NP1.
SR spectral function is selected through observing the convex hull of NP1
obtained by using SG as reference, see Fig. 7.21b. Intensities of the two
spectral functions should be rather similar such that intensity differences do
not have a significant impact on the convergence of erosion and dilation.

(a) Selected spectral references with respect to
samples from the initial spectral set

(b) Spectral value distribution of the initial set,
with respect to SG shown in (a)

Figure 7.21 – Spectral variation of the chosen spectral references with respect to
variation within the initial spectral set of image NP1. Shown BHSD is generated
KLPD function, with simulated green (SG) as reference.

Erosion and dilation results of NP1 using the two aforementioned pairs of spec-
tral references can be observed in Fig. 7.22, disk SE of radius 7 pixels (or of size
15×15) is employed. SBk causes erosion to converge towards darker spectral func-
tions. And as a consequence, erosion operator will be in favor of spectral functions
with lower intensity values, hence the expansion of regions corresponding to stem
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Original image SBk–SWh SR–SG
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Figure 7.22 – Erosion and dilation results of image NP1 (in FIXED visualization),
obtained with two different pairs of spectral references, i.e., SBk–SWh and simu-
lated red (SR)–simulated green (SG). Disk SE of radius 7 pixels is employed. SBk
causes erosion to converge toward darker spectral functions and SR toward the
reddish ones. The different impacts are especially evident in ROI 3. SWh causes
dilation to enlarge regions having higher intensities, while SG causes dilation to
favor greenish spectral functions. Differences can be perceived in ROIs 1 and 3.

and pollen of the flower. Regarding regions which correspond to flower petals, in
each local neighborhood of size 15×15 pixels, most likely there will only be spec-
tral functions of the white background and the lighter and darker red of the petals.
In such a case, evidently spectral functions of darker red ones will be replacing the
other two. Therefore, edges of the flower petals are now more defined and comes
with darker red color. In the case of dilation which converges toward SWh, the
result is also as expected. Darker regions such as those corresponding to the stem
and pollen of the flowers are shrinking. Then, at the same time, the effect is almost
like removing flower petals from the image. This is because dilation will be in fa-
vor of those of more similar intensity than SWh, hence the domination of spectral
functions corresponding to the background region. Erosion operator which con-
verges toward SR, see Fig. 7.21a, will cause regions initially having the reddish
hue to be expanded. Then, since SR is of lower intensity value, erosion will be
favoring brighter than the darker spectral functions. As a consequence, regions in
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the image corresponding to pollen of the flower will become brighter compared
to the image prior to dilation. Lastly, dilation which converges to SG will tend to
remove the reddish spectral functions. This is because shapes of SG and SR are
located at the extreme ends of the initial convex hull, see Fig. 7.21b. On the other
hand, spectral functions of the background are more similar to SG in terms of their
shapes. Hence, the reddish regions are replaced with spectral functions originating
from the background. Despite having SG as maximum convergence coordinate,
greenish regions are shrinking instead of expanding in the dilated image. This is,
however, not surprising. It is caused by the different intensity levels of SG and
the greens of the original image. If we observe Fig. 7.21b, dynamic ranges of
KLPD-Intensity of the green spectral functions are almost twice of those corres-
ponding to the beige colors of the background. The greens go from 0 to almost
100, while the beige ones roughly from 0 to almost 50. Due to this, if a dark green
is competing against ones coming from the background, dilation will always select
the latter. This decision is made based on intensity variations because shape dif-
ferences between the greenish and beige spectral functions are very reduced, see
Fig. 7.21b.

The impact of reference selection to erosion and dilation is also observed through
employing a texture image, i.e., image PN1 shown in Fig. 7.23. Five ROIs are de-
termined within PN1, numbered from 1 to 5. Their corresponding colors/ regions
are (1) blue, (2) yellow, (3) dark grayish outline, (4) brown, and (5) beige color,
possibly of paper. Spectral reflectance functions representing each color group
are obtained by averaging 3×3 considerably homogeneous regions, see Fig. 7.24a.
Using SWh as reference, spectral value distribution of PN1 can also be observed
in Fig. 7.24b. And as seen in the distribution, despite being dominated by brown
colors, there are also some blue, yellow, dark grayish color, and beige.

Figure 7.23 – Image PN1 (in CLTR visualization) and its relevant ROIs.



7.2. Erosion, Dilation, and Beucher’s Gradient 185

(a) Spectral functions of the 5 ROIs in Fig. 7.23 (b) Spectral value distribution using BHSD

Figure 7.24 – Spectral reflectance functions and value distribution of image PN1.
Spectral reflectance functions are obtained by averaging 3×3 homogeneous re-
gions in each ROI. Spectral value distribution is obtained using SWh as reference.

Upon observing the content of the initial spectral set of PN1, in the following are
two pairs of spectral references and the application goal they were considered for.

Simulated yellow (SY) and blue (SB) First of all, this pair was selected such that
the convergence of erosion and dilation moves along the intensity axis. How-
ever, instead of completely ignoring shape differences like SBk–SWh choice,
the minimum and maximum convergence are to have different spectral shape,
see Fig. 7.25a. Spectral value distribution of the initial spectral set of PN1
obtained using SB as reference is also provided in Fig. 7.25b. As observed,
dynamic range of the intensity axis is almost three times that of the shape
axis. It can also be observed that variations within the blue and yellow col-
ors are almost exclusively dominated by intensity and shape differences,
respectively. Due to this, despite erosion being controlled by a dark yellow
convergence coordinate, erosion will be in favor of dark blue spectral func-
tions since the yellow spectral functions are of considerably highter intensity
values. As for dilation, the dilated image will generally be of higher intens-
ity values than that of the eroded one. Additionally, darker blue ones will be
favored than other dark colors such as brown.

Simulated brown (SBr) and yellow-2 (SY2) This second pair is chosen such that
shape differences will have greater impact to erosion and dilation than if the
previous reference pair is employed. As seen in Fig. 7.26a, intensity differ-
ences between SBr and SY2 are not significant. And if they are observed
within the context of spectral value distribution of the initial spectral set, see
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Fig. 7.26b, differences in dynamic ranges of shape and intensity axes have
become reduced. Then, the yellow and beige colors are now equally distrib-
uted along the origin of both axes. Blue colors can be seen as having higher
intensity and shape differences relative to SY2. With this reference pair,
eroded images will still be darker than the dilated ones. However, due to the
spectral value distribution it generates, beige colored spectral functions will
be selected when there is a competition with the blue ones.

(a) Spectral reflectance plot (b) Spectral value distribution using BHSD

Figure 7.25 – Spectral variation of spectral reference pair simulated yellow (SY)
and simulated blue (SB) with respect to variation within the initial spectral set of
image PN1. Spectral value distribution is generated using SB as reference.

(a) Spectral reference plot (b) Spectral value distribution using BHSD

Figure 7.26 – Spectral variation of reference pair simulated brown (SBr) and sim-
ulated yellow-2 (SY2) with respect to variation within the initial spectral set of
image PN1. Spectral value distribution is generated using SY2 as reference.
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Erosion and dilation results of image PN1 using the two different pairs of spec-
tral references can be observed in Fig. 7.27. As expected, intensities of pixels
belonging to ROI 4 previously described in Fig. 7.23 have now become lower and
higher for erosion and dilation, respectively. The same can be observed not only
for the pair SY–SB, but also SBr–SY2. For ROIs 1 and 3, slight differences are
obtained by the different reference pairs. Significant differences can be observed
in the eroded images of ROIs 2 and 5. For SY–SB pair, since intensity differences
between the references are important, the erosion operator will tend to select darker
spectral functions in the local neighborhood. On the other hand, it will not be the
case for the latter reference pair, since the intensity difference between SBr and
SY2 are reduced. This will allow the erosion operation to consider the minimum
spectral function not only in terms of intensity but also shape differences. As a
result, the erosion will not necessarily select a darker spectral function. And as ob-
served in the figure, erosion using SBr–SY2 reference pair selects lighter spectral
functions as being the minima in ROI 5. The light beige color spectral functions
are selected over the darker blue or gray colored ones, unlike eroded images ob-
tained by the previous reference pair which selects the latter.

Original image SY–SB SBr–SY2
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Figure 7.27 – Erosion and dilation results of image PN1, obtained with two differ-
ent pairs of spectral references, i.e., SY–SB and SBr–SY2 pairs. Disk SE of radius
7 pixels was employed. Images are visualized using CLTR method.
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7.3 Watershed Transformation

7.3.1 Brief Introduction of Segmentation Using Watershed

Image segmentation is the partition of an image into regions, each having certain
properties [159]. By representing an image by groups of pixels forming objects,
more advanced processing and understanding of the image are made possible.
Within the context of grayscale segmentation, an image is assumed as connected
regions which have small grayscale variations. Consequently, when two adjacent
pixels have significant grayscale differences, it means that they belong to different
regions or objects. When the image at hand is a color image, more information is
available allowing to quantify the variations not only in terms of intensity but also
color, e.g., hue and saturation. As a result, the segmentation result can be more
accurate. A significant gain in accuracy can be obtained in the spectral domain,
since spectral resolution of the data is significantly higher and different materials
may greatly differ in their spectral properties. But the desired level of accuracy
cannot be obtained automatically. A full-band segmentation which will be able to
extract meaningful information from the big amount of data is required. And in
Chapter 5, it has been demonstrated how spectral variations within an image can
be described by means of spectral differences.

Watershed transformation is a morphological approach to image segmentation. In
the concept of watershed, an image is regarded as a topographic surface. For a
two-dimensional grayscale image, in addition to its spatial dimension, its intensity
values will be considered as another dimension which represents the depth of the
topographic surface. In this regard, the segmentation approach can be described
using the analogy of flooding simulation. If the surface is slowly immerged into
water, catchment basins will be filled with water. Then, as the flooding progresses,
smaller water dams (which correspond to local minima) will be merged into a
single dam. The watershed itself corresponds to the entire set of the obtained
dams, which provide the partitions of an image into its catchment basins [159].
More detailed explanation regarding the theoretical foundation and computation
of morphological watershed can be found in [79, 159].

7.3.2 Spectral Gradient: Shape, Intensity, and Total Differences

Watershed transformation takes a gradient image as input. In the previous section,
Beucher’s gradient for a spectral image has been defined as the spectral differences
between its dilated and eroded images, computed using KLPD function. However,
depending on the composition of a spectral image, one spectral variation might
be of more importance than another. Thus, in order to obtain an optimal result,
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the selection of spectral difference function must take into consideration which
spectral variation is more prominent in a given image.

KLPD function itself is composed of two independent components, i.e., one meas-
ure of shape differences and one of intensity differences. Due to this, KLPD func-
tion allows to determine which spectral variation holds more importance in a given
image, whether shape, intensity, or both are equally important. As a consequence
for spectral Beucher’s gradient, its difference function can be adjusted depending
on which spectral variation is of greater importance. The gradients will further be
addressed as total, shape, and intensity gradients if the used functions are KLPD,
KLPD-Shape, and KLPD-Intensity, respectively.

7.3.2.1 Understanding the results

In the following, spectral gradient of several images from Subsets-250 dataset (Ap-
pendix B) will be presented. Erosion and dilation of these images are implemented
with CRA ordering relation embedding KLPD function, disk SE of radius 4 pixels,
and spectral references SBk and SWh. Total and intensity gradient images will be
shown in inverted grayscale values, see Fig. 7.28a. Shape gradient images will
be presented using the color map shown in Fig. 7.28b. In this color map, the sig-
nificance of a shape difference increases from left to right. Homogeneous region
will be color coded with purplish white. Slight shape variations will be colored by
shades of purple, and as shape variations increase the color code will go from red
to dark blue as depicted in the color map.

(a) Color map for total and intensity gradients

(b) Color map for shape gradient

Figure 7.28 – Color maps employed to visualize the different spectral gradient
images. From left to right are low to high gradient values.
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7.3.2.2 Performance assessment of spectral gradients

Gradient images of NP1, FN1, and PN2 are computed and shown in Fig. 7.29. If
variations within a given spectral image are dominated by intensity differences,
the resulting intensity and total gradient images will be highly similar. And among
the three target images, this can be observed for image FN1. Faint shape gradient
image of FN1 suggests that shape differences have limited importance in the im-
age. Image structures extracted by the shape gradient also present in the intensity
gradient, albeit in a significantly lesser magnitude. This can also be interpreted as
the image being composed of few color pigments. In case of image NP1, it can be
observed that both shape and intensity differences have a considerable contribution
to the total gradient image. Significant intensity changes can be found among the
stem and pollen objects. This intensity gradient image allows to deduce that spec-
tral functions belonging to these regions are significantly lower in intensity than
those originating from the background or petals of the flower. Then, compared
to the high intensity differences found within the previous objects, intensity dif-
ferences between the background and flower petals becomes insignificant. But by
observing the shape gradient image, it becomes evident that it is shape differences
which are the more prominent spectral variations.

The notion of gradient has limited use in case of texture images, e.g., image PN2
in Fig. 7.29. This is because the assumption of reduced local variations are gener-
ally not met. In a texture image, local variations could potentially be higher than
variations occurring at region boundaries. In fact, there might not even be clear re-
gion boundaries within the image. Nevertheless, gradient images of PN2 can still
provide a useful information. Observing the intensity and total gradient images
of PN2, it can be said that they are not significantly different. The total gradient
is only slightly darker than the intensity one. However, contribution of the shape
gradient image to the total one cannot be ignored. This is because different de-
tails of the image are found by the shape gradient, which are not evident neither
in intensity nor total gradient images. See red dots in the shape gradient image
which correspond to yellow strokes in the original image of PN2. Finally, despite
PN2 being composed of seemingly homogeneous regions of very few colors, the
gradient images suggest that this image is in fact highly textured. Moreover, there
might be four different colors that exist within the image according to structures
extracted by the individual gradient images.
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Figure 7.29 – Gradient images of NP1, FN1, and PN2 from Subsets-250 dataset,
as obtained by disk SE of 4 pixel radius. Shape and intensity gradient images are
obtained by the individual components of KLPD function, while the total one is
by KLPD function as a whole.
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7.3.3 Marker-Controlled Watershed using Spectral Gradients

Gradient is particularly useful for segmentation and texture analysis. We have
previously defined three spectral morphological gradients. In the following, we
will use them in spectral image segmentation using marker-controlled watershed
(MCW) [121]. Further explanations and details can be read in [28, 159].

Image processing steps required to reach MCW are depicted in Fig. 7.30. Para-
meter choice at the level of erosion and dilation steps are provided in Table 7.1.
As seen in the figure, MCW takes two images as input, i.e., local gradient and
marker images. Local gradient image should be able to capture structures and fine
details in the original image. Hence, a small size SE is employed. Marker image
is required at the initialization of watershed transformation, acting as local minima
where flooding process of the catchment basins starts from. Representing homo-
geneous regions, the local minima are gradient of low magnitudes. Then, in order
to reduce the impact of noise and small variations within a local neighborhood,
generally a larger SE is employed to obtain the marker image. After gradient com-
putation, marker image is obtained by thresholding and labeling the previously
obtained gradient. Final segmentation results will also depend on selected marker
threshold T .

Figure 7.30 – Image processing steps required to reach segmentation using marker-
controlled watershed (MCW) transformation. Note that SE size required to com-
pute marker image is larger than that of local gradient image.

Table 7.1 – Parameter choice for erosion and dilation steps in the context of MCW
shown in Fig. 7.30. Local gradient and marker images are obtained using disk SE
of radius 2 and 4 pixels, respectively.

Use of gradient
in watershed

Erosion and dilation parameters
Ord. relation Diff. function Ref. pair SE radius

Local gradient
CRA KLPD SBk, SWh

2

Marker 4
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7.3.3.1 Observing the impact of spectral gradients

From Fig. 7.29, it can be observed that both intensity and shape gradients of image
NP1 contribute to the total one. Aiming to observe the impact of different spectral
gradients on the results of MCW, the three gradients of image NP1 are employed
to segment the image, whose relevant ROIs are marked in Fig. 7.31. The results
of MCW where identical marker threshold T = 1 is employed can be observed in
Fig. 7.32. Among the three results, better segmentation result for ROI 1 is obtained
by the shape gradient, where the stem region is segmented as a single region. Using
the two other spectral gradients, ROI 1 is segmented into smaller different parts.
Shape gradient also provides better separation between ROIs 3 and 4, compared to
intensity and total gradients. But this is as expected since spectral variations within
these regions are dominated by shape differences, see Fig. 7.29. On the other hand,
intensity gradient captures more information from ROI 2. Consequently, it better
segments this ROI. The contours of segmented pollen regions are more similar to
those in the original image. Then, when total gradient is employed to segment
image NP1, the result cannot be considered as superior from the two previous
results. This is despite total gradient being the total sum of shape and intensity
differences. It can be observed that separation between ROIs 3 and 4 are not as
optimal compared to when shape gradient is used. Segmentation of ROI is also
not as good compared to when intensity gradient is used. This, however, is as
expected. Combining both shape and intensity differences through a sum operation
may reduce the sensitivity of gradient compared to when used individually. Finally,
these results have demonstrated that the choice of spectral gradient should consider
the relevant spectral variations in an image. Then, decisions can be made according
to a specific application goal. For example, if we are interested in segmenting the
pollens in image PN1, then intensity gradient should be selected among others.

Figure 7.31 – Image NP1 and its relevant ROIs, i.e., (1) stem, (2) pollens, (3)
petals, and (4) background parts. Shown image is produced using CLTR method.



194 First Levels of Spectral Mathematical Morphology

Marker images Segmented images
Sh

ap
e

gr
ad

ie
nt

In
te

ns
ity

gr
ad

ie
nt

To
ta

lg
ra

di
en

t

Figure 7.32 – Results of marker-controlled watershed segmentation (MCW) ap-
plied on image NP1, using three different spectral gradients, i.e., shape, intensity,
and total. For each of them identical marker threshold is employed, i.e., T = 1.
Parameters required by operations preceding MCW are provided in Table 7.1.
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7.3.3.2 Observing the impact of marker threshold

Another parameter which impact the result of MCW segmentation is the marker
threshold T . To observe its impact, MCW is applied to image FN1, whose ROIs
are marked in Fig. 7.33a. According to Fig. 7.29, intensity differences is the prom-
inent spectral variation in this image. Then, since the intensity and total gradient
images are almost identical, total gradient using KLPD function is chosen to seg-
ment image FN1, see Fig. 7.33b. Three segmentation results obtained by varying
the marker threshold T = {2, 4, 5} can be observed in Fig. 7.34. Starting with
marker threshold T = 2, the total gradient can already separate foreground ob-
jects in the image from the background. Several objects are also well-segmented,
e.g., ROI 1. Increasing the threshold to 4, segmentation for ROIs 2 and 3 is im-
proving. Especially for ROI 3, the two trees are now separated by background
pixels. With marker threshold T = 5, two out of three windows from ROI 4 are
recognized. Nevertheless, it can be observed that giving a low T may lead to over-
segmentation. On the other hand, when T value is increased, it also increases the
chance for regions to be merged. Then, at a certain T value, the algorithm will
not be able to detect regions anymore and instead considering the entire image as
a single object.

Figure 7.33 – The relevant ROIs and local gradient of image FN1. The ROIs
correspond to (1) tower, (2) house, (3) two trees, and (4) three windows. The local
gradient is obtained using total gradient.



196 First Levels of Spectral Mathematical Morphology

Marker images Segmented images
T

=
2

T
=

4
M

ar
ke

r
th

re
sh

ol
d
T

=
5

Figure 7.34 – Results of marker-controlled watershed (MCW) segmentation ap-
plied on image FN1, shown for 3 different marker thresholds. Parameters required
by operations preceding MCW can be seen in Table 7.1.
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7.3.4 Quality Assessment of Spectral Gradients in Watershed,
A Preliminary Development

In the previous section, MCW has been employed to segment several real im-
ages, allowing to observe the impact of its parameters. However, those examples
only demonstrate that MCW using the proposed spectral gradients can provide a
sensible segmentation results. In order to obtain a segmentation algorithm which
respect the constraints of metrology, a protocol for its quality assessment must be
developed. Aiming to do so, in the following is a preliminary stage of the assess-
ment protocol development.

In each pigment image coming from Pigment-56 dataset (Appendix B), there are
4 stripes of homogeneous color shades. Therefore, by using these images as the
segmentation target, the number of expected segments NO are known. In turn, use
of the said images will allow assessing the stability of spectral gradients within
the context of MCW segmentation, see Fig. 7.35. Small variations which exist
within a homogeneous area may lead to detections of smaller regions by MCW.
Therefore, to avoid counting all the obtained segments, in this evaluation only
the major ones will be counted, see Eq. 7.6. The number of major segments NL

are obtained by counting the number of labels in the labeled image L(x) which
has certain minimum numbers of pixels belonging to it. And in the case of these
pigment images it is chosen to be 10% of the total numbers of pixels in the image,
i.e., c · nI = 0.1 · nI .

NL = # {yi : #{L(x) = yi} ≥ (c · nI), ∀y ∈ Z} (7.6)

Figure 7.35 – Preliminary assessment protocol of the stability of spectral gradients
in watershed segmentation.

As a first experiment, 5 pigment images from the dataset are employed as tar-
get where total gradient is employed to compute the local gradient and marker
images. Parameters of the erosion and dilation operations which precede MCW
can be found in Table 7.1. Results of three of the pigment images are shown in
Fig. 7.36, where marker threshold T = 2 is employed. As observed in the local
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gradient images, there are variations within each homogeneous regions of a pig-
ment image. The presence of these small variations is more evident in the brown
and blue pigment images. Nevertheless, by arbitrarily choosing T = 2, all of the
shown pigment images are correctly segmented into 4 regions.

Pigment 21110 23585 45040
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Figure 7.36 – MCW results of 3 pigment images, with marker threshold T = 2
and total gradient to compute the local gradient and marker images. Parameters of
erosion and dilation preceding MCW can be found in Table 7.1.

The performance of total gradient in MCW with varying marker thresholds T are
provided in Table 7.2. Marker threshold T = 2 is found to be the optimal threshold
for all 5 pigment images. Then, as T is increased, the number of major segments
decreases until MCW is finally unable to differentiate homogeneous regions in
all pigment images at T = 12. From this table, it also becomes evident that the
threshold must be adapted for individual images. To investigate how T impacts the
watershed results, line profiles of marker images of pigment 21110 and 44450 are
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plotted in Fig. 7.37. From each line profile three significant peaks can be observed,
which correspond to edges between the homogeneous regions. For pigment 21110,
whose NL declines the fastest in Table 7.2, it can be observed that the difference
between regions on the left and right of gradient 1 in Fig. 7.37a is not significant.
In fact, the magnitude of gradient 1 which is just above 4 also corresponds to 8.06
CIELAB color difference. Color differences for gradient 2 and 3 are 10.60 and
15.19, respectively. This is why when T = 4, the two regions merge resulting in
NL = 3. As for pigment 44450, differences between two adjacent homogeneous
regions are almost equally significant, see Fig. 7.37b. Its gradients from 1 to 3
correspond to color differences of 16.27, 14.92, and 14.67. Due to this, it is only
when T = 8 that the NL of pigment 44450 starts to decline.

To summarize, in this section we have addressed one of the most complex question
in image processing, i.e., segmentation. Our purpose was to assess the quality of
our spectral gradients within this context using the watershed approach. First, we
have shown that without pre- and post-processing steps, the results were highly
encouraging. Then, we have shown that the segmentation parameter choice, i.e.,
marker threshold, is directly related to the gradient magnitude. Finally, just as
in the previous sections and chapters, the results we obtain also depend on the
reference selection. But, in this case, selecting a more suitable spectral reference
will be a chance to improve the final segmentation results.

Table 7.2 – The number of major segments NL in 5 pigment images as obtained
by MCW of varying marker thresholds T . Expected number of segments is NO =
4, correct segmentation results are marked in green. Total gradient images were
employed to obtain the watershed results.

Pigment
image

Marker threshold (T )
2 4 6 8 10 12

21110 4 3 3 2 2 1
23585 4 4 4 2 1 1
23610 4 4 4 3 2 1
44450 4 4 4 4 2 1
45040 4 4 4 2 1 1
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(a) Pigment 21110 (b) Pigment 44450

Figure 7.37 – (Top) Marker images and (bottom) their corresponding line profiles
obtained from locations under the dashed blue lines. Parameters used to obtain the
marker images can be seen in Table 7.1. Three peaks are obtained, each corres-
ponding to the edge between two adjacent homogeneous regions in the image.

7.4 Towards Spectral Morphological Filters
Morphological filters are useful for noise filtering and selective removal of im-
age objects [159]. They can be obtained by combining elementary morphological
filters, i.e., openings and closings. First results of spectral morphological open-
ing and closing are provided in the following. Then, an advanced morphological
transform will also be extended to the spectral domain.

7.4.1 Opening and Closing

7.4.1.1 Definition and extension to the spectral domain

Morphological opening is defined by applying erosion followed by dilation opera-
tions to an image, see Eq. 7.7. In the grayscale domain, opening impacts an image
in the way it smooths object contours, breaks narrow straits, and removes thin pro-
trusions. Morphological closing, which is defined by dilation followed by erosion
(Eq. 7.8), also tends to smooth object contours. However, as opposed to opening,
it will also fill gaps, merge narrow breaks and long thin gulfs, and remove small
holes. The impact of opening and closing to a grayscale image is demonstrated
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in Fig. 7.38. More detailed explanation and illustration of grayscale opening and
closing can be found in [79, 159].

γB(I) = δB(εB(I)) (7.7)

φB(I) = εB(δB(I)) (7.8)

Since opening and closing are defined by consecutive erosion-dilation and dilation-
erosion, respectively, their extensions to the spectral domain only require spectral
erosion and dilation. And in Section 7.2.2, the two have been obtained by means
of defining a spectral ordering relation, i.e., CRA ordering relation.

(a) Original image (b) Eroded image (c) Dilated image

(d) Opened image (e) Closed image

Figure 7.38 – The impact of grayscale morphological opening and closing to an
input image, with a disk SE of radius 4 pixels. Opening removes the bright letters.
It also expands and merges regions of the dark letters. Closing operation has the
opposite impact of opening. In addition, 6 black dots originally located at the top
right of the original image are eliminated.
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7.4.1.2 On the idempotency of CRA ordering relation

Morphological opening and closing are required to satisfy the idempotency prop-
erty, see Eq. 7.9. If it is satisfied, further application of the same operation will not
further modify the image target. Idempotency is a necessary property allowing to
enable the whole class of morphological filters.

γ(I) = γ(γ(I)), φ(I) = φ(φ(I)) (7.9)

Idempotency can be reached if the behavior of erosion and dilation are as illus-
trated in Fig. 7.39, i.e., the local extrema are always switched between two values.
In other words, the local minimum and maximum obtained by ordering functions
employed for dilation and erosion are identical. In the grayscale domain, idem-
potency property is automatically obtained because the scalar values are naturally
ordered. The minima obtained by ordering relation ≤ and ≥ are always identical,
and so are the maxima they obtain.

Figure 7.39 – Illustration of the behavior of idempotent opening and closing in the
value set of a local neighborhood. If the blue dot represents value at the origin
of an SE, erosion and dilation will replace this value with the local minimum and
maximum, respectively. Thus, in an opening, the blue dot will first get replaced by
the local minimum and then local maximum, and vice versa for closing operation.
If an opening is applied one more time, the current value at the origin will not
change and remain to be the local maximum.

In the multivariate domain, idempotency property must be enabled. The ordering
relation of Convergent Color Mathematical Morphology (CCMM) [106] which
can be directly extended to the spectral domain, see Eq. 7.10, is not idempotent.
The ordering functions it uses to obtain minimum and maximum are not related
because they employ different reference points. Consequently, the case illustrated
in Fig. 7.40 will occur, i.e., different local extrema are obtained by g−CCMM and
g+CCMM .

g−CCMM (S) = d(S, S−∞), g+CCMM (S) = d(S, S+∞) (7.10)
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On the other hand, given a local value set, CRA ordering relation computes min-
imum and maximum values relative to both of the reference points, see Eq. 7.11.
The relationship between g−R and g+R ensures that the local extrema obtained by
both functions are identical.

g−R(S) =
1

g+R(S)
, g+R(S) =

d(S, S−∞)

d(S, S+∞)
(7.11)

As a numerical demonstration, we have tested whether the results of applying
opening once and twice to images from the Subsets-250 dataset (Appendix B) give
identical results. The same test is also carried out in the case of closing operation
and the results are provided in Table 7.3.

Figure 7.40 – Illustration of the impact of spectral ordering relation which is dir-
ectly extended from the CCMM construction in [106]. Since the functions which
are employed to obtain minimum and maximum use different reference points, the
idempotency property is not satisfied. Local minima obtained by S−∞ and S+∞

are not identical.

Table 7.3 – Idempotency test applied to images from Subsets-250 dataset (Ap-
pendix B) using a 2 pixel radius disk SE. In all cases, idempotency property are
reached, i.e., resulting images obtained after applying an opening once and twice
are identical. Identical resulting images are also obtained in the case of closing.

Image Idempotency Image Idempotency
FN1 X PN1 X
FN2 X PN2 X
NP1 X SC1 X
NP2 X SC2 X

7.4.2 First Results of Spectral Opening and Closing

Image NP1 from Subsets-250 dataset, see Appendix B, is employed as target for
CRA-based openings and closings. The relevant ROIs which will be our observa-
tion focus can be seen in Fig. 7.41. ROI 1 corresponds to purple structures which
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make up the petals of the flower. ROI 2 corresponds to the dark circles in the center
of the image, which will also be referred to as the pollens.

Figure 7.41 – Image NP1 as target for CRA-based opening and closing. Relevant
ROIs, i.e., flower petals and pollens, are respectively numbered 1 and 2. Shown
image and its latter processing results are visualized using CMF method.

Resulting images of applying CRA-based openings and closings of increasing disk
SE size can be observed in Fig. 7.42. These results are obtained using SBk and
SWh as references, and KLPD function as the embedded spectral difference meas-
ure. As observed, with the increasing radius of SE, opening gradually fills bright
gaps within the dark circles in ROI 2. Fine structures of the flower petals in ROI
1 are also gradually connected as the SE radius grows. For closing, the opposite
effects are obtained. Dark colored structures whose sizes are smaller than the em-
ployed SE are gradually removed, e.g., flower petals corresponding to ROI 1. As
for structures found in ROI 2, they are retained but their colors are getting lighter
as brighter spectral functions are replacing darker ones.

With the reference pair previously used in erosion and dilation, see Fig. 7.21a,
opening and closing are applied to the same target image. Results obtained by
varying the radius of disk SE can be observed in Fig. 7.43. Due to the use of
a simulated red (SR) spectral function as the minimum convergence coordinate,
erosion will favor reddish spectral functions than other colors despite their intens-
ity differences. As a consequence, it can be observed in the figure that reddish
spectral functions originating from ROI 1 start to dominate the image as SE radius
increases. Due to the use of a simulated green spectral function (SG), any green-
ish structures in the image will remain. On the other hand, other colors will be
replaced with spectral functions which are more similar to SG.
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Figure 7.42 – The impact of CRA-based openings and closings of increasing disk
SE radius to image shown in Fig. 7.41. SBk and SWh are employed as references
and KLPD as spectral difference function. Opening is expected to connect and fill
the gaps in ROIs 1 and 2 whose size is smaller than the SE. Closing is seen as
gradually removing objects which correspond to ROI 1. For objects in ROI 2, their
sizes are larger than the employed SEs. Consequently, most of them are retained
but with lighter colors.
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Figure 7.43 – The impact of CRA-based openings and closings of increasing disk
SE radius to image NP1. Simulated red (SR) and green (SG) from Fig. 7.21a are
employed as references for KLPD function. Since SR is employed as the min-
imum convergence, opening the image with an increasing radius causes the red-
dish spectral functions originating from ROI 1 to dominate the image. With SG as
the maximum convergence, existing green spectral functions remain in the image,
while other colors get replaced depending on their differences to SG.
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7.4.3 Top-Hat Transformations

7.4.3.1 Definition

Top-hat transformations consist of two operations, i.e., black and white top-hats1.
The black top-hat is defined by subtracting the result of closing an image by its
original image, see Eq. 7.12. As for the white top-hat, it subtracts the original
image by its opening result, see Eq. 7.13.

BTH(I) = φ(I)− I (7.12)

WTH(I) = I − γ(I) (7.13)

In opening and closing, objects whose shape do not match the SE shape and size
will be removed. The interest of top-hat is in recovering the removed objects.
White top-hat will recover objects with bright contrasts, i.e., bright objects on a
dark background. As for black top-hat, it recovers objects with dark contrasts, i.e.,
dark objects on a bright background. Fig. 7.44 is given to demonstrate the impact
of both top-hat transforms on the grayscale image previously shown in Fig. 7.38a.
Black top-hat extracts dark letters whose surrounding are of higher intensities, e.g.,
’COLORING BOOK’ and ’WITCHES ABROAD’. In addition, it also obtains the
periphery of letters having higher intensities, e.g., ’LORDS AND LADIES’. On
the other hand, letters having bright contrasts are recovered by white top-hat, e.g.,
’SASS & SORCERY’. Then, the transform also recovers the periphery of letters
having lower intensity values, e.g., ’MINDFULNESS’.

7.4.3.2 Extension to the spectral domain

As seen from Eq. 7.12 and 7.13, top-hat transforms require opening, closing, and
subtraction operation. From Section 7.4.1, spectral opening and closing have been
obtained. In order to adapt the scalar subtraction to the spectral domain, the im-
age difference will be carried out by means of spectral difference measures, i.e.,
KLPD function. Then, the notions of ’black’ and ’white’ top-hat transforms were
originally given for their uses in retaining dark/ bright objects on bright/ dark back-
grounds, respectively. In the spectral domain, referring to them with the notion of
’black’ and ’white’ has a very limited sense. This is because the grayscale black
and white top-hat transforms are analogous to CRA-based top-hat transforms when
SBk and SWh are employed as references. And as we know, in CRA ordering rela-
tion, the reference pair can be chosen arbitrarily. Thus, the black and white top-hat
transforms are now denoted by TH− and TH+, respectively. The spectral top-hat
TH− and TH+ will retain objects whose spectral functions converge toward the

1In other works, e.g., in [79], top-hat transform is used to specifically refer to white top-hat
transform. In this case, black top-hat transform will be referred to as bottom-hat transform.
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(a) Original image (b) Opened image (c) Closed image

(d) Black top-hat image (e) White top-hat image

Figure 7.44 – The impact of applying top-hat transforms to a grayscale image, with
a 4 pixels radius disk SE. Black top-hat obtains dark letters and peripheries of the
bright ones. White top-hat extracts bright letters and peripheries of the dark ones.

minimum and maximum convergence coordinates, respectively. Their final math-
ematical expressions are provided in Eq. 7.14 and 7.15.

TH− = dKLPD(φ(I), I) (7.14)

TH+ = dKLPD(I, γ(I)) (7.15)

The impact of applying the two top-hat transforms using a 2 pixel radius disk SE to
images NP1 and NP2 from Subsets-250 dataset (Appendix B) can be observed in
Fig. 7.45. And as observed they detect different edge structures from the original
images. More complete application of the spectral top-hat transforms will be given
in Chapter 8. In the chapter, focus will be given to the application task rather than
the morphological tool itself.
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Figure 7.45 – The impact of applying CRA-based top-hat transforms of 2 pixel
radius disk SE to images NP1 and NP2 from Subsets-250 dataset. KLPD func-
tion embedded in CRA employs SBk and SWh as references. The two top-hat
transforms detect different edge structures from the original images.



210 First Levels of Spectral Mathematical Morphology

7.5 Conclusion
Based on the spectral difference function and spectral ordering relation obtained
in Chapter 3 and 4, the extension of elementary morphological operators and tools
to the spectral domain have been provided in this chapter. These operators and
tools are erosion, dilation, gradient, opening, closing, and top-hat transforms. In
addition to the extension using KLPD function and CRA ordering relation, various
protocols for the quality assessment of these morphological tools have also been
developed.

But more than merely extending the operators to the spectral domain, in this
chapter we have proven the interest of our full-band spectral approach. In particu-
lar, we have extensively used the bidimensional histogram of spectral differences
(BHSD) previously introduced in Chapter 5 to analyze the distribution of spec-
tral variations within an image; a modified BHSD has also been introduced. And
through this BHSD we have been able to assess the performances of our morpholo-
gical tools. Then, given a specific application goal, we have also demonstrated the
selection of spectral references and their impacts in the case of erosion, dilation,
opening, and closing.

One of the novelties which can be found in this chapter is the construction of new
spectral morphological gradients using spectral Kullback-Leibler pseudo-divergen-
ce (KLPD) function, i.e., shape, intensity, and total gradients. Then, to show the in-
terest and usefulness of these new gradients, we have used them for spectral image
segmentation using morphological watershed approach. Along the way, we have
also provided the elements useful for choosing the proper spectral gradient given
a certain spectral variation in an image. Even though we have not fully developed
a metrological assessment protocol for the tools, we have shown that without any
pre- or post-processing steps we were able to obtain highly encouraging results.
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Summary of Contributions.

X Extension of elementary morphological operators and tools to the spectral do-
main, i.e., erosion, dilation, gradient, opening, closing, and top-hat transforms.

X Proof of interest of full-band processing which respects metrological constraints.
In particular, the use of bidimensional histogram of spectral differences (BHSD)
to explore the spectral distribution of an image.

X Proof of validity of metrological processing, that it does not produce false colors
even when given a real image coming from spectral acquisitions.

X Protocol of how to select spectral reference when given a specific application
goal.

X Definition of new spectral morphological gradients using spectral Kullback-
Leibler pseudo-divergence (KLPD) and conditional ratio and angular distance
ordering relation (CRA) which have been previously validated under metrolo-
gical constraints.

X Proposal of a gradient based segmentation using morphological watershed al-
gorithm
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Chapter 8

Crack Detection for
Cultural Heritage Paintings

8.1 Introduction
Due to its age, cultural heritage paintings suffer from cracks, i.e., the breaking of
the paint or pigment, varnish, or substrate layers of the painting. As a painting
ages, the canvas or wood support could suffer non-uniform contraction which in
turn stresses the paint layers. In addition to age-induced cracks, other factors that
could potentially inflict such damage are drying and mechanical factors. Drying
cracks are caused by evaporation of volatile paint components, causing shrinkage

213
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of the paint layer. Cracks could also occur due to vibrations and impacts, e.g.,
during its transportation [78].

Different opinions exist regarding whether cracks, or also known as craquelure,
are undesirable patterns. If they do, then the painting should be restored by filling
out the cracks with new paint layers. The other side of the argument, however,
says that cracks are part of the painting and are actually considered as adding the
age value. One study stated that cracks deteriorate the perceived image quality of
a painting [78]. But an even earlier study suggested that human subconsciously
filters the cracks, since they are seen as irrelevant with what the artist had intended
to depict in his painting [33]. Note that this study was carried out only to cracks
that formed slowly by brittle failure of dry paint.

Despite the ongoing discussion and study of the aesthetic value of cracks, there are
other motivations supporting the necessity and importance of crack detection. Vir-
tual restoration of cracks can be carried out without altering the original painting,
and it can be made possible after a crack detection procedure. A virtually restored
painting will, in turn, provide clues to historians, curators, and general public of its
initial state, before all the inflicted damages [78]. Cracks can also be considered as
the signature of a painting, since no two paintings have identical cracks. Serving
its purpose as a signature, it can be employed as, e.g., a mean to judge authenti-
city in case of forgery. It is also useful for preservation purposes. Given an initial
state of the cracks, its current state could provide an indication of certain type of
degradation a painting is going through. This knowledge would aid conservators
in their decisions. Yet another potential of cracks is as an identification tool for
the origin of a painting. Paintings were classified into four categories, i.e., Italian,
Flemish, Dutch, and French, based on its photographed crack patterns [34]. This
study has shown that each of the categories has its typical crack patterns.

Crack detection task for cultural heritage paintings could be related to similar
studies in other fields. For example, crack detection has gained a lot of interest
in studies of concrete structures, mainly for its use in automatic structural health
monitoring of concrete surfaces [46, 134, 191]. Not only that, its advantages is
also perceived in, e.g., egg processing industry [70], steelmaking [102], and glass
production [186]. One similar topic is the detection and removal of line scratches
and other artifacts from motion picture films [87]. This last topic is, however, not
directly applicable to the crack detection of paintings since it relies on information
obtained over several adjacent frames.

Spectral imaging has been employed in the acquisitions of cultural heritage paint-
ings since the 1990s [39, 118, 144]. The high cost and complexity of such acquis-
ition are justified due to the significance and importance of these cultural heritage



8.1. Introduction 215

objects to the society. Unfortunately, the improvement of accuracy in the acquisi-
tion stage has not been met with similar level of accuracy in the processing stage.
The state of the art of crack detection methods for cultural heritage paintings, as
well as from other related fields, is summarized in Table 8.1. And as observed,
even though in several cases the inputs are multivariate images, these crack de-
tection methods remain in the scalar domain where grayscale images are used as
input to the methods, or by marginal approach.

Table 8.1 – Summary of the state of the art of crack detection algorithms employed
in various fields.

Method Input image Detailed approach

Grayscale top-
hat transforms,
generally
followed by
thresholding

Grayscale [64, 70, 191]
Color Applied on luminance channel [73,78,162],

on one color channel of RGB image provid-
ing the highest contrast between cracks and
non-cracks [150]

Multispectral Applied on each spectral channel, resulting
crack maps are superimposed [48]

Crack tracking Color Applied on one color channel, traces crack
in 8-neighborhood pixels based on an ad-
aptive threshold [24]

Gabor filters X-radiographs Multi-oriented, applied on grayscale x-ray
images [2]

Sobel edge de-
tector

Grayscale Followed by morphological processes [46]

Focusing on addressing the task of crack detection for paintings rather than the
image processing tools as in the previous chapters, this chapter is organized as fol-
lows. Using several multivariate ordering relations, crack detection algorithm is
extended to the hyperspectral domain in Section 8.2. Then, protocol for the qual-
ity assessment of crack detection methods is developed in Section 8.3. Section 8.4
follows by assessing the quality of previously obtained spectral crack detection
methods using the developed protocol. In this section, in addition to selecting the
most suitable crack detection approach, optimum parameters for the said approach
is also obtained. Having the method and parameters set, application to real data
coming from cracking layers of a painting is carried out in Section 8.5. Before to
conclude the chapter in Section 8.7, a discussion is provided regarding the compu-
tational complexity of the full-band crack detection algorithm in Section 8.6.
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8.2 Hyperspectral Crack Detection Approaches

8.2.1 Defining Cracks in Hyperspectral Images

In the context of hyperspectral imaging, image pixels are generally represented
in terms of radiance or reflectance. The former representation corresponds to
the amount of energy reflected by the object of interest that is captured by the
sensor. Thus, in a radiance value, both information from surface and light source
are mixed. Reflectance, on the other hand, is a surface property describing the
ability to reflect incoming light in the direction of the hyperspectral sensor. In both
cases of radiance and reflectance, the spectral values are considered to be continu-
ous over the wavelength range of the sensor, i.e., between λmin and λmax. Each
pixel in a hyperspectral image associated with spatial coordinate x can therefore
be expressed as in Eq. 8.1. Note that in the rest of this chapter, images will be
considered in terms of spectral reflectance.

I(x) = S = {s(λ), ∀λ ∈ [λmin, λmax], s(λ) ≥ 0} (8.1)

In the grayscale or color domain, cracks are generally defined as having elongated
structures with, generally, low luminance values [78]. In the hyperspectral domain,
these definitions can be improved. When there is a crack in a paint layer, it means a
break in the continuity of the spectral reflectance functions of the pigments. Spec-
tral reflectance function of the crack itself could be of low intensity values close to
an equi-energetic black SBk or of any layer beneath the cracking paint layer. In the
latter case, a crack pixel might have the reflectance of a pigment or the substrate
of the painting.

8.2.2 Hyperspectral Top-Hat Transforms

As summarized in Table 8.1, crack detection is a labeling process employing vari-
ous image processing techniques, e.g., filtering, morphological tools, etc. The
state of the art, however, is grayscale top-hat transforms. Following this direction,
the image processing chain of crack detection algorithm is as depicted in Fig. 8.1.
Depending on the contrast of the crack pixels, black or white grayscale top-hat
transforms should be employed. Black top-hat transform (Eq. 8.2) will detect dark
colored cracks surrounded by brighter background, and the converse for white top-
hat transform (Eq. 8.3).

TH−∞(I) = φB(I)− I (8.2)

TH+∞(I) = I − γB(I) (8.3)

However, the use of grayscale top-hat transforms demands for hyperspectral im-
ages, or any multivariate images for that matter, to be reduced to the grayscale
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Figure 8.1 – Image processing chain for crack detection algorithm using morpho-
logical top-hat transforms.

domain. And in this manner, information and accuracy offered by hyperspectral
images will be lost during the reduction process. Thus, it should rather be the
top-hat transforms that are extended to the spectral domain.

Extending the grayscale morphological top-hat transforms to the spectral domain
requires two things. First, there needs to be a suitable multivariate ordering relation
for spectral data. Then, subtraction operation found in the expression of top-hat
transforms must also be adapted, such that a grayscale crack map can be obtained.
In the following are two possible approaches obtained by directly translating the
concept behind the grayscale methods to the hyperspectral domain.

8.2.2.1 Energy-based approach

Grayscale images can be regarded as intensity images. Grayscale top-hat trans-
forms have also been applied to luminance channel when the input are color im-
ages. Luminance images can also be regarded as intensity images. In this regard, a
hyperspectral ordering relation can be developed based on total amount of energy
at every pixel, see Eq. 8.4.

gesum(S) =

λmax∫
λmin

s(λ) dλ (8.4)

Following the same concept, subtraction operation in top-hat transforms then be-
come the difference of total energy as shown in Eq. 8.5 and 8.6.

TH−∞esum(I) = gesum(φB(I))− gesum(I) (8.5)

TH+∞
esum(I) = gesum(I)− gesum(γB(I)) (8.6)
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8.2.2.2 Marginal approach

Another strategy allowing to employ grayscale top-hat transforms for multivariate
images is by applying them on each image channels separately. Given a spec-
tral image with n channels, n top-hat images will be obtained, which will further
be superimposed to create a single top-hat image. This approach can be directly
translated to the hyperspectral domain through marginal ordering relation, which
computes rank separately at each image channel. The superimposing of different
resulting images is expressed through logical operator OR or arithmetic maximum.
Mathematical expressions for marginal top-hat transforms are provided in Eq. 8.7
and 8.8.

TH−∞marg(I) =
∨
λ

TH−∞(Iλ) (8.7)

TH+∞
marg(I) =

∨
λ

TH+∞(Iλ) (8.8)

8.2.3 Proposed Distance-Based Top-Hat Transforms

Based on the conclusion of Chapter 4, conditional ratio and angular distance or-
dering relation (CRA) is the most suitable ordering relation for spectral data. To
recall, its mathematical expressions are provided in Eq. 8.9, where for minimum
and maximum extractions Eq. 8.10 and 8.11 shall be employed, respectively.

g−R(S) =
d(S, S+∞)

d(S, S−∞)
, g+R(S) =

d(S, S−∞)

d(S, S+∞)
,

gA(S) = 2 · d(S, S−∞)

d(S−∞, S+∞)

(8.9)

S1 �CRA S2 ⇔
{

g−R(S1) > g−R(S2) or
g−R(S1) = g−R(S2) and gA(S1) < gA(S2)

(8.10)

Interpretation. Spectral function S1 precedes S2 if and only if its ratio of distance
according to g−R is larger than that of S2. In case where they are identical, angular ratio
of distance gA of S1 must be smaller than that of S2.

S1 �CRA S2 ⇔
{

g+R(S1) > g+R(S2) or
g+R(S1) = g+R(S2) and gA(S1) > gA(S2)

(8.11)

Interpretation. Spectral function S1 succeeds S2 if and only if its ratio of distance
according to g+R is larger than that of S2. In case where they are identical, angular ratio
of distance gA of S1 must be greater than that of S2.
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Then, in order to adapt the subtraction operation in top-hat expressions, a distance
function will be employed. CRA-based top-hat transforms can therefore be written
as in Eq. 8.12 and 8.13.

TH−∞CRA(I) = d(φB(I), I) (8.12)

TH+∞
CRA(I) = d(I, γB(I)) (8.13)

Since CRA is based on distance function, there is a question of which distance
function to use. In the following are four distance and divergence functions to
be evaluated within this chapter. Their mathematical expressions can be found in
Chapter 3 as well as in Appendix A.

Spectral angle is a similarity function initially developed in remote sensing field
[97]. Spectral angle, further on will be referred to as SAM, is insensitive
to magnitude differences. This induces a capability to suppress the effect of
shading in remote sensing data, which is the reason for its popularity in the
field.

Euclidean distance is a classical distance function in the Euclidean vector space.
It is more sensitive to magnitude differences rather than shape differences.

Euclidean distance of cumulative spectrum (ECS) was originally developed to
measure distance between two spectral functions coming from hyperspec-
tral imaging setting where the spectral channels are contiguous, see Sec-
tion 3.5.3. Unlike SAM and Euclidean distance which are only sensitive to
shape and magnitude differences, respectively, ECS detects and incorporates
both differences.

Spectral Kullback-Leibler pseudo-divergence (KLPD) was developed for hy-
perspectral data, considering a spectral function as a series [145]. Based on
Kullback-Leibler divergence, KLPD function is composed of two compon-
ents, i.e., measures of shape and intensity differences. In Chapter 3, KLPD
has been concluded as the most suitable spectral difference function.

8.3 Quality Assessment Protocol of Crack Detection Methods
Protocol for the quality assessment of crack detection methods is as provided in
Fig. 8.2. Ground truth and target images are obtained by tampering pigment im-
ages from Pigment-56 dataset (Appendix B) by artificial crack signals. In the fol-
lowing are details regarding the generation of artificial crack images and the final
performance assessment.
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Figure 8.2 – Protocol for the quality assessment of crack detection methods using
artificial crack images.

8.3.1 Artificial Crack Images for Accuracy Assessment

Employing 11 images from the Pigment-56 dataset in Appendix B and a crack
model shown in Eq. 8.14, a dataset of artificially cracked pigment layer can be
generated. Four of the employed pigment images can be observed in Fig. 8.3.
Regarding the crack model, there are two parameters to vary, i.e., crack probability
α and spectral function associated to the crack C.

Ĩ(x) = (1− α) · Ig(x) + α · C (8.14)

Figure 8.3 – Four instances of pigment images from Pigment-56 dataset used to
generate artificial crack dataset. Shown color images are produced using FIXED
visualization method.

8.3.1.1 Binary-Black (BB) dataset

To simulate thin cracks, which reflect almost no light, black crack spectral re-
flectance function is chosen, i.e., C =SBk. Then, this dark crack is chosen to
be identical for the entire image, hence α ∈ {0, 1}. Examples of images in this
dataset is shown in Fig. 8.4.
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Figure 8.4 – Examples of pigment images in Binary-Black (BB) dataset, with 1
pixel wide crack. Shown color images are generated using FIXED method.

8.3.1.2 Probabilistic-Black (PB) dataset

Binary probability in BB crack dataset is far from realistic case. Therefore, using
the same black reflectance function SBk, α is treated as a probability of having a
crack pixel. α is a uniformly distributed random value between [0, 1]. With this α,
spectral reflectance function of a crack pixel will be a linear mixture between the
original reflectance and SBk. See example images in Fig. 8.5.

Figure 8.5 – Example of pigment images in Probabilistic-Black (PB) dataset, with
1 pixel wide crack. Shown color images are generated using FIXED method.

8.3.1.3 Probabilistic-Colored (PC) dataset

Considering that a crack does not always appear dark, this dataset serves to simu-
late cracks which shows layer beneath the cracking one. In reality, revealed layer
could be of another paint layer or substrate of the painting. Still using crack prob-
ability α ∈ [0, 1], spectral reflectance functions to be associated with the cracks
are chosen randomly from pixels in all pigment images in Pigment-56 dataset, i.e.,
C = {Sk}. With colored crack signal, we are simulating revealed layer being
another paint layer. See some of the generated images in Fig. 8.6.

Figure 8.6 – Example of pigment patches in Probabilistic-Colored (PC) dataset,
with 1 pixel wide crack. Shown color images are generated using FIXED method.
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8.3.2 Evaluation Criteria

The final step of a crack detection method is a thresholding and labeling processes.
In a black grayscale top-hat TH−∞, for example, a pixel is determined as crack
if the difference between its initial value and after a closing operation is above a
certain threshold T . The labeling itself can therefore be modeled as in Eq. 8.15,
where • and ? are logical AND and OR operations, respectively.

L =
(
I • (TH−∞(I) ≤ T )

)
?
(
C • (TH−∞(I) > T )

)
(8.15)

Generated datasets described in the previous subsection allow to have ground truth
in the form of pixel count of the cracks nC , see Eq. 8.16. With this ground truth
information, performance of a top-hat transform will be evaluated based on the
error of detected crack count EC , see Eq. 8.17 where ∆ is an absolute difference.

nC = #{x, ∆(Ig(x), Ĩ(x)) > 0} (8.16)

EC = ∆
(
nC , #{TH−∞(Ĩ) > T}

)
(8.17)

The various ordering relations generate values in different dynamic ranges. Due to
this, the threshold value T cannot be selected independently of the corresponding
ordering relation embedded in the crack detection method in question. Hence, T
will be adaptively selected for each ordering relation with the criteria of minimiz-
ing µEC , i.e., average crack detection error for all image targets.

8.4 Quality Assessment and Parameter Selection
In the following top-hat transforms based on 6 hyperspectral ordering relations are
to be evaluated, i.e., marginal, energy-based, and CRA with 4 spectral difference
functions. In order for CRA-based top-hat transforms to be comparable to the
marginal and energy-based approach, when relevant black SBk and white SWh

spectral reflectance functions will be employed as the references, see Eq. 8.18.
Then, 3 pixel radius disk structuring element (SE) is selected such that the 1 pixel
width crack becomes irrelevant to the opening γ or closing φ, allowing top-hat
transforms to detect the residual. See also Section 7.4.3.

S−∞ = SBk = {s(λ) = 0, ∀λ ∈ [λmin, λmax]}
S+∞ = SWh = {s(λ) = 1, ∀λ ∈ [λmin, λmax]}

(8.18)

Additionally, performance of combined top-hat transformsCTH will also be eval-
uated, see Eq. 8.19 where ? is a logical OR operation. This combination allows
recovering different image structures which are separately identified by both top-
hat transforms.

CTH = TH−∞(Ĩ) ? TH+∞(Ĩ) (8.19)
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8.4.1 Binary-Black (BB) and Probabilistic-Black (PB) Datasets

Using BB and PB datasets, top-hat transforms TH−∞ based on 6 hyperspectral
ordering relations are evaluated. Optimum threshold T and its corresponding av-
erage crack count error µEC of each approach can be found in Table 8.2. In case
of BB dataset, minimum average crack detection error µEC of all ordering rela-
tions are very reduced, except for CRA ordering relation employing SAM function.
First of all, the reduced average error is mainly due to the use of identical black
spectral reflectance function throughout the entire image targets. It is also this use
of black reflectance which causes CRA-SAM to fail. If we recall, SAM considers
shape difference and significantly suppresses magnitude difference. Thus, accord-
ing to SAM, the employed references SBk, SWh and the crack signal SBk are all
identical rendering it to fail at the task.

Table 8.2 – Performance of top-hat transforms TH−∞ employing 6 ordering ap-
proaches in BB and PB datasets. SBk and SWh are employed as references in
the CRA-based top-hat transforms. T is optimum threshold minimizing µEC , i.e.,
average crack detection error for all images in each dataset. Best performance in
each dataset is highlighted in green.

Ordering approach BB dataset PB dataset
T µEC T µEC

Marginal 73 5 62 241
Energy 59 5 30 124
CRA-SAM 125 511 125 538
CRA-Euclidean 59 6 29 121
CRA-ECS 57 8 29 114
CRA-KLPD 58 6 3 186

The use of PB dataset allows to evaluate the different top-hat transforms in a more
realistic case, where the cracks do not have identical reflectance function. Con-
sequently, the perceived performance is reduced compared to when BB dataset is
employed. Observing µEC obtained for the optimum T of each top-hat transform,
the best and worst performance are given by CRA-ECS and CRA-SAM, respect-
ively. See Fig. 8.7 to assess performance of the top-hat transforms in the spatial
structure of one target image. All top-hat transforms except for one that is based
on CRA-SAM ordering relation performs well. Again, the failure of CRA-SAM
is due to the use of SBk and SWh as references which reduces its ability to dif-
ferentiate spectral functions. For other ordering relations, their performances are
comparable. False identification of crack does not seem to occur CRA-KLPD,
which is obtained at the cost of reduced number of identifications.
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(a) Artificial crack image (PB) (b) Original crack pattern

(c) Marginal (d) Energy-based

(e) CRA-SAM (f) CRA-Euclidean

(g) CRA-ECS (h) CRA-KLPD

Figure 8.7 – Crack detection results of a pigment patch which are tampered by
probabilistic-black crack. This image comes from PB dataset. Shown crack maps
are obtained after the thresholding of top-hat transform TH−∞. Among the 6
ordering relations, the least performing one is CRA-SAM as it detects local vari-
ations in the image target rather than the crack pattern. The rest of the ordering
relations are comparable, with CRA-KLPD being the one which does not falsely
recognize local variations in the image as crack pixels, at the cost of reduced num-
bers of crack pixels that are detected.
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8.4.2 Probabilistic-Colored (PC) Dataset with SBk–SWh as References

In the previous evaluation, where BB and PB datasets were employed, the contrast
of performance between the different top-hat transforms were not significant. It
is mainly due to the choice of SBk as the crack signal, whose shape and intensity
differences with the image content are significant. Crack detection becomes more
challenging in case of PC dataset where a crack value is chosen randomly from
an existing spectral database of pigments. In this case, both magnitude and shape
difference between the cracks and initial content of the image might be reduced.

Performances of top-hat transforms of varying spectral ordering relation in the
crack detection of PC dataset can be found in Table 8.3. Marginal ordering rela-
tion yields the worst and best performances for TH−∞ and TH+∞, respectively.
Compared to those based on other ordering relations, differences between the mar-
ginal TH−∞ and TH+∞ are highly significant. But it is not surprising since its
morphological processes obtain maximum and minimum independently for each
channel. This approach is erroneous since neighboring spectral channels are not
independent and, thus, are not to be treated separately. On the other hand, top-
hat transforms which based on the other 5 ordering relations are more stable, in
the sense that µEC of the TH−∞ and TH+∞ are not significantly different. And
such results are due to the full-band approaches of the ordering relations, consider-
ing a spectral function as a whole in its entire spectral range. In addition to TH−∞

and TH+∞, Table 8.3 also provides performances of CTH . For this transform,
CRA-KLPD ordering relation provides the best performance, although with only
slight differences than the other ordering relations.

Table 8.3 – Performance of TH−∞, TH+∞, and CTH employing 6 ordering
relations in the crack detection of PC dataset. SBk and SWh are employed as
references for the CRA-based top-hat transforms. T is optimum threshold minim-
izing the average crack count error µEC and is computed independently for each
ordering relation. Best performances are highlighted in green.

Ordering approach TH−∞ TH+∞ CTH
T µEC T µEC T µEC

Marginal 67 1432 103 206 120 229
Energy 54 457 51 521 61 255
CRA-SAM 65 402 63 415 79 239
CRA-Euclidean 40 335 45 436 56 189
CRA-ECS 45 386 47 471 62 207
CRA-KLPD 7 334 6 357 13 193
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CTH-obtained crack maps for artificial crack image using pigment 44450 are
also provided in Fig. 8.8 to allow visual observation of the spatial structures of the
crack. From this figure, it is evident that marginal approach misses a significant
portion of the crack lines. For the energy-based approach, in addition to undetected
crack lines, there are a significant number of false detections. CRA-SAM, which
failed in the crack detection of BB and PB datasets, now provides a good perform-
ance relative to the other CRA ordering relations. But to recall, in the previous
datasets, the failures were due to the use of SBk as both reference and crack sig-
nal, which is not the case with PC dataset. Finally, from this visual observation, we
have a better idea of performances of the different top-hat transforms. And further
on, only CRA-based top-hat transforms will be considered.

8.4.3 Probabilistic-Colored (PC) Dataset with Varying References

The main advantage of CRA-based top-hat transforms lies in the ability to select
the references. When the crack signal in an image is known, such flexibility will
allow obtaining more accurate crack maps. In this evaluation, the references are
selected according to Eq. 8.20.

S−∞ = C, S+∞ =
∨
{d(Sk, Si)}, ∀Si ∈ SI (8.20)

Interpretation. Spectral function associated with the crack signal C is selected to be
reference S−∞. Then, reference S+∞ is one originating from the same crack image,
with the biggest differences to reference S−∞.

Performances of the 4 CRA-based top-hat transforms are provided in Table 8.4.
As observed, the best performance is given by CRA-KLPD for both TH−∞ and
TH+∞, followed by the CRA-Euclidean top-hat transforms. CRA-SAM is the
least performing top-hat transforms in all three cases, i.e., TH−∞, TH+∞, and
CTH . Then, CTH is found to be improving performances of the individual top-
hat transforms TH−∞ and TH+∞, which can be observed for all ordering rela-
tions. Best performing CTH is the CRA-Euclidean based transform.

To supplement statistical results shown in Table 8.4, visual observation of the res-
ults of CTH can also be carried out through Fig. 8.9. In all cases of CRA ordering
relations shown in the figure, obtained crack maps generally overestimate the num-
ber of crack pixels, especially at the joint of two or more crack lines. The worst
performance is given by CRA-ECS, where spectral variations which exist on the
left most color shade of the pigment are considered as crack pixels. Nevertheless,
from this visual observation and the previous statistical results given in Table 8.4,
none of the CRA variations is entirely superior from the other. Thus, CRA or-
dering relations with the 4 spectral difference functions will be employed in the
coming section to detect cracks in a hyperspectral capture of a painting.
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(a) Artificial crack image (PC) (b) Original crack pattern

(c) Marginal (d) Energy-based

(e) CRA-SAM (f) CRA-Euclidean

(g) CRA-ECS (h) CRA-KLPD

Figure 8.8 – Crack detection results of a pigment patch which are tampered by
probabilistic-colored crack. This image comes from PC dataset. Shown crack
maps are obtained after the thresholding of combined top-hat transform CTH .
Top-hat transform based on marginal ordering relation misses many of the crack
lines. The energy-based one is able to detect most of the crack lines, but also
with considerable amount of falsely detected crack pixels. CRA-based top-hat
transforms of varying spectral difference functions performs well but also with
several misidentifications, especially pixels at the joint of several crack lines.
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Table 8.4 – Performance of TH−∞, TH+∞, and CTH employing 4 CRA-based
ordering relations in the crack detection of PC dataset. Reference selection is
made according to criteria shown in Eq. 8.20. Best performances are highlighted
in green.

Ordering approach TH−∞ TH+∞ CTH
T µEC T µEC T µEC

CRA-SAM 69 339 76 518 84 228
CRA-Euclidean 37 269 38 449 55 160
CRA-ECS 46 337 42 482 58 194
CRA-KLPD 8 247 6 420 14 190

(a) Artificial crack image (PC) (b) Original crack pattern

(c) CRA-SAM (d) CRA-Euclidean

(e) CRA-ECS (f) CRA-KLPD

Figure 8.9 – Crack detection results of a pigment patch tampered by probabilistic-
colored crack obtained by CTH . The image comes from PC dataset. Relatively
cleaner crack map is given by CRA-SAM, followed by CRA-KLPD. In addition
to missing several crack lines, CRA-ECS misidentifies local variation in the image
as being crack pixels.
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8.5 Application to Cracking Layers of A Painting
Based on quality assessment of various hyperspectral top-hat transforms in the pre-
vious section, in the following are the applications of the obtained top-hat trans-
forms and their optimum parameters. To summarize, the parameters are provided
in Table 8.5. The final crack map is obtained byCTH , which is the superimposing
of crack maps obtained by the individual top-hat transforms TH−∞ and TH+∞.
Thresholds for each ordering relation will be using the ones provided in Table 8.4.

Table 8.5 – Parameters of hyperspectral crack detection algorithm applied to target
images coming Cracks-200 dataset (Appendix B).

Parameter Value
Ordering relation CRA
Difference function SAM, Euclidean, ECS, KLPD
SE shape and size disk, 5×5 (radius 3 pixels)
Reference pair SBk and SWh

Crack map generation Combined top-hat (CTH)

8.5.1 Comparison of Spectral Difference Functions

As a first experiment, performances of CRA ordering relation when combined with
the 4 spectral difference functions shown in Table 8.5 will be compared. Crack
maps obtained for image SCC01-1 for CRA ordering relation of varying spectral
difference functions can be observed in Fig. 8.10. Note that shown crack maps
are prior to thresholding operation. From these crack maps, we can see that the
least performing pair of ordering relation and spectral difference function is CRA-
SAM. The crack map it obtains detects the cracks and other structures in the image
at relatively the same magnitude, resulting in the crack structures being very faint
even compared to other structures in the image. With a quick observation, it could
be said that CRA-Euclidean and CRA-ECS have almost identical performances.
Then, the two approaches also detect other local variations within the image. As
for CRA-KLPD based top-hat transforms, it successfully extracts the main crack
lines in image SCC01-1. Additionally, this ordering relation gives more significant
differences between the cracks and non-crack structures in the image. Employing
thresholds given in CTH column in Table 8.4, final crack maps for the input im-
ages is obtained and shown in Fig. 8.11. Since crack map obtained by CRA-SAM
is already poor to begin with, there is few the thresholded image can improve on.
Comparing CRA-Euclidean and CRA-ECS, crack map obtained by the latter is
cleaner but also detects less of the finer cracks, e.g., compare regions circled in
red. Then, compared to CRA-ECS, CRA-KLPD is able to extract the main crack
lines and also with better contrast between the cracks and non-crack structures.
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Figure 8.10 – Crack maps obtained by CTH and prior to thresholding. CRA-
SAM is the least performing one. Its extracted cracks are very faint compared
to the other ones. Result obtained by CRA-Euclidean is almost identical to that
of CRA-ECS. The main crack lines are obtained by CRA-KLPD but with more
significant differences to other image structures compared to the results of the last
two ordering relations.
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Figure 8.11 – Crack maps obtained after thresholding. Threshold value T for each
ordering relation can be found in Table 8.4. CRA-SAM does not extract majority
of the crack lines. CRA-ECS provides a cleaner crack map than CRA-Euclidean,
but also detects less cracks, e.g., compare regions circled in red. Result of CRA-
KLPD is more similar to CRA-ECS.
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8.5.2 The Impact of Reference Selection

With the previous image target, i.e., SCC01-1, the cracks are generally wider mak-
ing it a relatively easier target image to process. Moreover, the crack signals are
generally dark and almost black. However, cracking layers in a painting is not
always as wide and evident as the cracks in SCC01-1, e.g., in image SCC03-4 also
from Cracks-200 dataset. Using this image whose cracks are finer and narrower,
we want to compare the performance of CRA ordering relation when paired with
Euclidean distance and KLPD function. Euclidean distance is selected based on its
ability to detect finer cracks in image SCC01-1. As for KLPD function, it provides
more contrast between the cracks and other image structures, see Fig. 8.10.

Crack maps of image SCC03-4 as obtained by CTH , pre- and post-thresholding,
can be observed in Fig. 8.12. Comparing crack maps obtained prior to threshold-
ing operation, crack lines extracted by CRA-Euclidean seem to be more promin-
ent than those obtained by CRA-KLPD. However, the crack lines also appear in
relatively similar magnitude as other image structures detected by the algorithm.
Looking back to the original image, many of the structures seem to be caused by
variations of pigments in the paint layer, and not necessarily due to actual cracks.
With CRA-KLPD, even though the crack lines are less prominent, better contrast is
obtained. Many non-crack structures are not falsely recognized as cracks. To im-
prove visibility of the cracks, thresholding operation is applied onCTH-generated
crack maps and the results can be observed in the last row of Fig. 8.12. Between
the two thresholded crack maps, no significant difference is perceived.

For this particular image, rather than using SBk and SWh as references, we want
to adapt the references to the image content. Artificial spectral functions are gen-
erated mimicking a dark and vivid blue pigments pointed by the green and red
arrows, respectively, in Fig. 8.13. The simulated dark blue (DB) one will act as
the minimum convergence coordinate S−∞, and simulated vivid blue (VB) as the
maximum one S+∞. Then, the SE radius is also reduced into 2 pixels. The ob-
tained crack maps prior to and post-thresholding operation can be observed in
Fig. 8.13. As expected, CRA-KLPD always provide better contrast in the CTH-
generated crack map compared to CRA-Euclidean. And due to this, the threshol-
ded map of CRA-KLPD is able to extract crack lines occurring in image SCC03-4,
but not CRA-Euclidean.

8.5.3 More Results employing SBk–SWh References

Employing the same top-hat parameters as in Table 8.5, more crack maps obtained
for other images in Cracks-200 dataset are provided. Brief comments for each
result are also provided in the corresponding figure.
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Figure 8.12 – Crack maps of image SCC03-4 from Cracks-200 dataset as obtained
by CTH . Crack maps pre- and post-thresholding operation are both provided.
Comparing the pre-thresholding maps, crack lines obtained by CRA-ECS seem to
be more prominent than those obtained by CRA-KLPD.
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Figure 8.13 – Crack maps of image SCC03-4 from Cracks-200 dataset as obtained
by CTH . Artificial spectral functions mimicking dark blue (green arrow) and
vivid blue (red arrow) in the original image are employed as references. Using
the same threshold as previously, CRA-KLPD successfully extracts most of the
cracks unlike CRA-Euclidean. This is due to the high contrast between cracks and
non-crack structures provided by CRA-KLPD.
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Figure 8.14 – Crack detection results of SCC01-2 and SCC01-5. Wide cracks
which appear in each image are detected. Crack maps are obtained by CTH em-
ploying CRA-KLPD ordering relation with SBk and SWh as references. SE is disk
of shape 3×3 pixels and threshold value T is 14. Results shown after this figure
are also obtained using the same parameters.
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Figure 8.15 – Crack detection results of image SCC01-6 and SCC01-9. Wide
cracks in both images are detected. Finer cracks at the lower left corner of SCC01-
9 are not detected.



8.5. Application to Cracking Layers of A Painting 237

SCC02-2 SCC02-5

O
ri

gi
na

li
m

ag
e

C
T
H

cr
ac

k
m

ap
C
T
H

m
ap

,t
hr

es
ho

ld
ed

Figure 8.16 – Crack detection results of image SCC02-2 and SCc02-5. Wider
cracks in image SCC02-2 are relatively well identified. Cracks in image SCC02-5
are very faint in the pre-thresholding map, due to the contrast of a white splotch
at the middle right of the image. As a result, the final crack map obtains no crack
line. Further treatment requires suitable reference selection.



238 Crack Detection for Cultural Heritage Paintings

SCC02-8 SCC02-9
O

ri
gi

na
li

m
ag

e
C
T
H

cr
ac

k
m

ap
C
T
H

m
ap

,t
hr

es
ho

ld
ed

Figure 8.17 – Crack detection results of image SCC02-8 and SCC02-9. Crack lines
are found in SCC02-8, but due to the used threshold, these lines are not recovered
in the final crack map. The wider cracks in image SCC02-9 are relatively well
identified. Finer cracks are also detected, but it is difficult to judge the quality
through visual assessment.
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Figure 8.18 – Crack detection results of image SCC02-11 and SCC02-15. Wider
cracks in both images, be it black or yellow, are well identified in the crack maps.
Improvement can be done for the finer cracks by, e.g., selecting more suitable
references.
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Figure 8.19 – Crack detection results of image SCC03-5 and SCC03-6. It can be
said that cracks are generally well identified in the pre-thresholding images. How-
ever, thresholding operation does not seem to improve the visibility since many
non-crack structures are falsely identified as cracks.
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8.6 Computational Complexity
Computational complexity is a major concern when it comes to hyperspectral im-
age processing, due to the size of the image at hand. And apart from the challenge
of extending a grayscale technique to the spectral domain, computational burden
is another reason why band selection and dimensionality reduction are common
strategies in the processing of hyperspectral images. Thus, after being presented
with good results obtained from the proposed full-band approach for crack detec-
tion, one might still think whether these results worth the required computational
time and resources.

Let nI , nλ, nB , and p be the number of pixels in image I , number of spectral
channels, number of pixels included in SE B, and a constant value representing
the number of primitive operations required for certain processing, respectively.
Then, time complexity of CRA-based crack detection algorithm is as provided in
Table 8.6, i.e., linear following image and SE sizes. Then, regarding crack de-
tection, typically the crack width remains small and do not follow the size of an
entire image. Thus, the SE size can remain small further reducing the computa-
tional time.

Table 8.6 – Computational complexity of CRA-based crack detection algorithm,
i.e., linear complexity following the image and SE sizes. nI , nλ, nB , and p be
the number of pixels in image I , number of spectral channels, number of pixels
included in SE B, and a constant value representing the number of primitive oper-
ations required for certain processing, respectively.

Processing steps # of primitive
operations Notes

Distance computation
(KLPD function)

2× nI × nλ × pKLPD 2 is for distance to 2
references

CRA ordering relation 2× nI × nλ × pCRA 2 is for the two conditions
in CRA

Morphological
processing

4× nI × nλ × nB 4 is for erosion, dilation,
opening, and closing

Top-hats (KLPD
function)

2× nI × nλ × pKLPD 2 is for both top-hats
TH−∞ and TH+∞

CTH (logical OR) nI × nλ
Complexity nI × nλ × nB Linear time



242 Crack Detection for Cultural Heritage Paintings

8.7 Conclusion
In literature, crack detection task has been addressed by means of grayscale top-hat
transforms, despite the availability of color or spectral images. This approach is
then followed by a series of advanced processing methods in order to obtain a good
enough crack maps. In this chapter, rather than reducing the spectral image at hand
such that it can be processed by a grayscale approach, we have extended top-hat
transforms into a full-band spectral approach. By using a full-band approach, we
will be able to fully exploit the obtained spectral measure.

Several extension approaches of top-hat transforms are demonstrated. Our pro-
posed extension employs a distance-based ordering relation, i.e., conditional ratio
and angular distance ordering relation (CRA). In order to evaluate the quality of
these spectral top-hat transforms, assessment criteria have also been developed us-
ing artificially generated crack images. Assessment carried out for each approach
not only determines their quality, but also their corresponding optimum paramet-
ers, especially the threshold required to obtain the final crack map. Finally, after
evaluation and parameter selection, the obtained top-hat transforms are applied to
a real case where the images come from hyperspectral captures of cracking lay-
ers of a cultural heritage painting. Results show that clear crack maps can be
obtained after top-hat transforms, without having to conduct more advanced pro-
cessing techniques.

During the application of CRA-based top-hat transforms to the real images, per-
formances 4 spectral difference functions were also evaluated. The considered
functions were spectral angle, Euclidean distance, Euclidean distance of cumu-
lative spectrum (ECS), and spectral Kullback-Leibler pseudo-divergence (KLPD)
function. And among these functions, KLPD demonstrated a better performance
since it creates a larger contrast between crack and non-crack structures found in
the image. This has, in turn, provided better crack maps with less false identifica-
tion. It has also been demonstrated that reference selection can be made according
to the image content. And by doing so, the resulting crack maps will be improved.
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Summary of Contributions.

X Extension of grayscale top-hat transforms to the spectral domain for solving
crack detection task. The full-band approach is enabled through the use of con-
ditional ratio and angular distance ordering relation (CRA).

X Quality assessment protocol for crack detection algorithms using artificially
generated crack images.

X Efficient spectral top-hat transforms which run in linear time and are able to
produce good results without pre- and post-processing steps.
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Chapter 9

Conclusion

9.1 Summary of Contributions
Hyperspectral imaging has been increasingly employed for various application
tasks such as quality control and inspection of materials. The cultural heritage
domain is one of the many fields which has also been exploring the potential of
this imaging technology. The high spatial and spectral resolutions of a hyper-
spectral image are expected to provide the field with more advanced and accurate
analyses of cultural heritage objects. And, in turn, this will aid conservation and/
or restoration works of the objects. However, with the existing image processing
approaches, exploitation of the information rich images cannot reach its full po-
tential. In order to do so, we have identified a need for a metrological spectral
image processing framework, where accuracy, uncertainty, and bias are addressed
and managed at every step of the processing chain.

One of the application tasks we have addressed in this study is the crack detection
of cultural heritage paintings. In literature, despite the availability of color and
spectral images, the image processing typically remains in the grayscale domain.
And if we are to use grayscale image processing tools, the hyperspectral images
we have at hand must be reduced to the grayscale domain. However, we believe
that such practice defeats the purpose of conducting a hyperspectral acquisition
whose cost and complexity are high. This is because accuracy will be lost during
the reduction process. With this consideration, we have extended the state of the
art crack detection method, i.e., morphological top-hat transforms, to the spectral
domain. A quality assessment protocol has also been proposed for validating the
extended crack detection method. Results of applying the spectral top-hat trans-
forms to real crack images have shown that our approach is able to obtain good

247



248 Conclusion

crack maps. Furthermore, the spectral top-hat transforms are shown to be effective
since they do not require any pre- or post-processing steps to obtain the afore-
mentioned results. All this work can be found in Chapter 8 Crack Detection for
Cultural Heritage Paintings.

The aforementioned crack detection method has been made possible through the
development of a distance-based spectral image processing framework, specific-
ally using the well-established mathematical morphology (MM) framework. At
the first step of the development, we set out to identify the most suitable mathem-
atical definition of a spectral function. The search for a correct definition has been
motivated by the aspects of metrology which regards a spectral image as a measure
and not only a digital or mathematical object. The definition of a spectral function
is inherent in the construction of a spectral distance function. Thus, in Chapter 3
From Definition of Spectral Function to Spectral Difference, we have classified
the existing distance, similarity, and divergence functions based on their inherent
assumptions of what a spectral function is. Following this classification, we have
formulated assessment protocols which encompass both theoretical requirements
of a distance function and the metrological constraints. Then the protocols are em-
ployed to evaluate the existing distance functions we have previously classified.
Our first proposal of a suitable spectral distance function can also be found in this
chapter, i.e., Euclidean distance of cumulative spectrum (ECS). However, since
this first proposal, a more suitable spectral difference measure has been introduced
by Richard et al. [145], i.e., spectral Kullback-Leibler pseudo-divergence (KLPD)
function. In order to follow this latest development of a spectral distance function,
all of the following image processing and analysis tools have been implemented
using the KLPD function.

The notion of distance is almost inseparable to the question of reference. We
cannot compute the distance of a spectral function without having to define a ref-
erence point. To address this question, in Chapter 5 Hyperspectral Image Analysis
through Spectral Differences we have provided the protocol for spectral reference
selection, which will be useful for various distance-based image processing and
analysis tools. We have also further demonstrated the use and implementation of
this protocol in the context of pigment discrimination for a given image. Through-
out the study, this question of reference have always emerged. Thus, we have not
only addressed the question in Chapter 5, but also in other chapters. In Chapter
7 First Levels of Spectral Mathematical Morphology, we have shown how to se-
lect spectral reference pair for erosion, dilation, opening, and closing when given
certain applications goals. We have also briefly demonstrated the impact of refer-
ence selection to crack detection results in Chapter 8 Crack Detection for Cultural
Heritage Paintings.
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The next step in the development of the distance-based spectral mathematical mor-
phology framework is to define a suitable spectral ordering relation. And just as
what has been carried out for the identification of spectral distance function, in
Chapter 4 Spectral Ordering Relation and Its Expected Properties we have for-
mulated metrological tests in addition to the known theoretical requirements of an
ordering relation. Prior to using these evaluation protocols, we have studied the ex-
isting multivariate ordering relations and selected the ones which are relevant for
the spectral domain. After the theoretical and metrological evaluations, the novel
conditional ratio and angular distance ordering relation (CRA), which we proposed
in this chapter was found to be the most suitable spectral ordering relation.

MM is a nonlinear image processing framework useful for the analysis of spa-
tial structures in an image. And while this framework has matured for the binary
and grayscale images, its extension to the multivariate domain remains an open
research question. Due to the preceding works in Chapter 3 and 4, we have been
able to extend the framework to the spectral domain using the distance-based spec-
tral ordering relation. The extensions of basic morphological operators erosion,
dilation, opening, and closing are relatively straightforward and can be found in
Chapter 7 First Levels of Spectral Mathematical Morphology. But more than only
extending the framework to the spectral domain, we have also assessed and valid-
ated the obtained tools according to various theoretical and metrological criteria.
In this chapter, we have also demonstrated how to use the operators for specific
application goals, at the same time proving the interests of a full-band approach to
spectral image processing.

Three new distance-based spectral morphological gradients have been defined in
Chapter 7 First Levels of Spectral Mathematical Morphology. The developed
gradients were further used as an entry point to a full-band approach of spec-
tral segmentation using morphological watershed transformation. Given a specific
image, we have also demonstrated how to select a spectral gradient among the
three, which will maximize the relevance of watershed segmentation results. In
this chapter, we have not been able to fully develop a metrological assessment pro-
tocol for the use of spectral gradients in watershed segmentation. Nevertheless,
we have begun a preliminary work in assessing the stability spectral gradients in
watershed segmentation. Still in the same chapter, we have extended the grayscale
top-hat transforms to the spectral domain, using a distance-based approach. And
it is this extension which has been used as to solve the crack detection task in
Chapter 8 Crack Detection for Cultural Heritage Paintings.

During the development stages leading up to the spectral MM framework, we
have been able to develop other powerful spectral image processing and analysis
tools. Based on spectral difference function we defined in Chapter 3, new graphical
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representations of spectral differences have been introduced in Chapter 5 Hyper-
spectral Image Analysis through Spectral Differences. A bidimensional histogram
of spectral differences (BHSD) given in the chapter had been first introduced by
Richard et al. [145]. Then, we have extended this BHSD into the n-dimensional
space, with demonstration given for a three-dimensional one, i.e., the tridimen-
sional histogram of spectral differences (THSD). A modified BHSD can also be
found in Chapter 7 First Levels of Spectral Mathematical Morphology where it
was first introduced and employed to analyze the impact of our distance-based
erosion and dilation operators. Going back to the context of Chapter 5, the useful-
ness and interests of these graphical representations have been demonstrated in two
application tasks, i.e., pigment discrimination in a painting image and the identi-
fication of noisy spectral bands in a given spectral image. Finally, these graphical
representations offer perhaps the first solution to the analysis of spectral distribu-
tions, allowing to identify existing spectral groups within an image. And together
with the reference selection protocol, an operational analysis tool for the cultural
heritage domain has been obtained.

In Chapter 6 Spectral Rank Order Filters another family of spectral image pro-
cessing tools is introduced. We have been able to extend rank order filters (ROF)
to the spectral domain using our distance-based CRA ordering relation. To en-
sure that the obtained spectral ROF satisfy the aspects of metrology, we have also
developed protocols for assessing the tools. The first metrological validation eval-
uates spectral ROF in their ability to suppress impulse noise. In the second val-
idation, we employed Vector Median Filters (VMF) by Astola et al. [18] as the
reference filter for the case of edge preservation capability. Through these series
of tests, we have been able to identify the limitations and advantages of our new
approach. Then, we have also discovered that the state of the art of multivari-
ate median filter, i.e., VMF, is not always superior to our approach. While VMF
generally blurs an input image, in our approach the edges are better preserved.
However, there are also certain cases where our approach produces grainy artifacts
in the filtered images, and VMF does not. The chapter was closed by comparing
the time and space complexities of our approach to the reference filter, i.e., VMF.
Through this analysis, we have shown that our approach provides a significantly
lower computational complexity than VMF. And in turn, this would be an attract-
ive solution for more advanced spectral ROF.

9.2 Discussions and Perspectives
By the end of this study, KLPD function [145] has been found to be the most suit-
able spectral difference function. However, we have also encountered challenges
when using this function. In particular, the use of logarithmic function in KLPD
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could potentially cause numerical artifacts, especially when used with reflectance
images whose value range from 0 to 1. Despite having addressed the issue with
several implementation strategies, this clearly shows that there is room for improv-
ing the current spectral difference function.

In Chapter 4 Spectral Ordering Relation and Its Expected Properties we were able
to define a dataset which would allow assessing the performance of multivariate
ordering relations with regards to two spectral transformations we had previously
identified, i.e., magnitude change and standard deviation change. The datasets
were composed of color scales found in a pigment image datasets. Nevertheless,
the assessment protocol can be improved by adding another dataset which would
enable the assessment of multivariate ordering relations with respect to translation,
which is a spectral transformation corresponding to hue shift in the color domain.

In Chapter 6 Spectral Rank Order Filters, we have extended impulse noise model to
the spectral domain for assessing the performance of spectral ROF. And while this
has allowed us to identify the limitations and advantages of our approach, a more
realistic noise model would certainly give us a better idea of the performance of
our approach in a real case. Then, despite having defined the protocol for reference
selection in Chapter 5 Hyperspectral Image Analysis through Spectral Differences,
we have not applied this to spectral ROF. Nevertheless, with a better reference
selection following a specific goal, the results of spectral ROF can certainly be
improved.

We have defined new spectral morphological gradients and used them for gradient-
based watershed segmentation in Chapter 7 First Levels of Spectral Mathematical
Morphology. However, the work we conducted here was only at a preliminary
stage. Assessment protocols need to be defined, addressing both theoretical and
metrological constraints. Additionally, to take fully into account the potential of
the distance-based spectral morphological gradients, several models of gradient
combination can be formulated to improve the final results of spectral image seg-
mentation.

In Chapter 8 Crack Detection for Cultural Heritage Paintings, we have developed
a full-band approach to spectral crack detection which was shown to be efficient.
However, there are still plenty of rooms for improvements. First of all, the crack
model can be improved such that it better represents a real case of cracking paint
layer. For example, the crack width can be made non-uniform. Then, as for the
method itself, more advanced morphological filters can be employed to improve
the crack detection results. As of now we have only used top-hat transforms which
are limited in the sense that it only works in a single scale. But in a real case,
cracks do vary is their sizes. Thus, a multiscale morphological approach such as



252 Conclusion

the Multiple Objects Matching using Probing (MOMP) which was first introduced
by Barat et al. [22] should certainly be employed. And having defined the spectral
difference function and ordering relation, the extension of MOMP to the spectral
domain will be straightforward.

The spectral MM framework we have obtained by the end of this study is by no
means finished. We have only given the basic morphological tools from erosion
and dilation to top-hat transforms. And as depicted in Fig. 9.1, there are a lot more
tools to be developed. Various morphological filters can be obtained, allowing
multiscale analysis of shape in an image. Fractal and texture analyses, classific-
ation purposes, pattern spectrum, they all can be further achieved and developed.
And in addition to this spectral MM framework, the obtained spectral ROF will
also lead to further developments of more advanced spectral nonlinear filters.

Figure 9.1 – Flowchart of the possible spectral image processing tools after the
basic morphological tools.

Last but not least, the graphical representations of spectral differences we have in-
troduced in Chapter 5 Hyperspectral Image Analysis through Spectral Differences
can be further developed and used in classification purposes. Despite having only
demonstrated them up to a three-dimensional case, by employing more spectral
references we can obtain an n-dimensional feature space for a given image. And,
ultimately, this feature space can be used in more advanced classification purposes.
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9.3 Concluding Remarks
This study had been started with a believe that we need a hyperspectral image
processing framework which respects the metrological aspects of a hyperspectral
image, that it is a measure instead of only a mathematical or digital objects. This
entails that one of the most common ways to deal with a hyperspectral image,
i.e., through dimensionality reduction or band selection, cannot be considered as a
solution. This is because the process will throw away the high resolution measures,
at the same time losing accuracy. Thus, throughout the study, we have striven for
a full-band spectral approach by means of a distance function.

Aiming to obtain a metrological framework, we have claimed that being mathem-
atically valid is insufficient. Following the claim, in all stages of our image pro-
cessing framework, we have assessment protocols for both theoretical and metro-
logical constraints. These steps were usually followed by validation of usefulness
in a real application task.

Through the different tools and their corresponding results, we have shown that
imposing metrology to image processing is possible. And the rigorous validation
works, starting from theoretical images to images from a real case where neither
ground truth nor reference images are available, in the end has provided us with
reliable image processing tools. And with such tools, we know what to expect
and we can be sure of the relevance of our image processing results. It is such
framework that we want to use for, e.g., quality control purposes.

Finally, the novel tools and operators we have developed might become obsolete
in the future as research continues to progress. Nevertheless, one of the valu-
able contributions we have made lies in the quality assessment protocols we have
formulated and developed. And the protocols, even though they can certainly be
improved, has provided standards for hyperspectral image processing framework
to develop in the future.
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Appendix A

Comprehensive State of the Art
of Spectral Difference Functions

Mathematical expressions for spectral distance functions included in Chapter 3 are
provided in this appendix. However, note that spectral distance functions that were
mentioned but did not come with mathematical formula will be excluded from the
discussion in this appendix.

A.1 Vector Distance in the Euclidean Space
Many distance functions in this category can be generalized as the variations of Lp
norms below.

dLp(S1, S2) =

(∫ λmax

λmin

|s1(λ)− s2(λ)|p dλ
) 1
p

Varying the order p will give us fractional Minkowski (p < 1) [5], Manhattan
(p=1), Euclidean (p=2), and Chebyshev (p=∞) distance functions. Chebyshev
distance can also be written as

dChe(S1, S2) = max
λ

(|s1(λ)− s2(λ)|).

A.1.1 Weighted Manhattan Distance

Canberra distance [101], just as Manhattan distance, calculates energy or intens-
ity difference but normalized by the total energy. It is written as

dCan(S1, S2) =

∫ λmax

λmin

|s1(λ)− s2(λ)|
|s1(λ)|+ |s2(λ)|

dλ.
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Sørensen distance [161], or also known as Bray-Curtis distance, uses cumulative
energy over the entire spectrum as its weighting function. Note that Bray-Curtis
distance is not to be confused with Bray-Curtis similarity. The distance formula is

dSor(S1, S2) =

∫ λmax

λmin
|s1(λ)− s2(λ)| dλ∫ λmax

λmin
(s1(λ) + s2(λ)) dλ

.

Kulczynski distance [65] whose expression is as follows, normalizes intensity
difference by the integral of overlapping region between two spectral functions,

dKul(S1, S2) =

∫ λmax

λmin
|s1(λ)− s2(λ)| dλ∫ λmax

λmin
min{s1(λ), s2(λ)} dλ

.

Lorentzian distance [65] can be regarded as Manhattan distance with logarithmic
weight given to the intensity difference, see the formulation below. This weight
is given such that the big differences do not have a greater significance than the
smaller or median ones in the integration process.

dLor(S1, S2) =

∫ λmax

λmin

ln(1 + |s1(λ)− s2(λ)|) dλ.

A.1.2 Weighted Euclidean Distance

An example of weighted Euclidean distance are root mean square (RMS) dis-
tance. Originally RMS is expressed as follows,

dRMS(S1, S2) =

(
1

n

n−1∑
i=0

| s1(λi)− s2(λi) |2
) 1

2

where a spectral function is expressed as a discrete array instead of a continuous
function. Adapting the expression to a continuous definition, formula below is
obtained. Note that the averaging factor n in the initial formula is modified into
the range of spectral functions in use, i.e., λmax − λmin. This is because in the
continuous form, spectral channel count n is no more defined.

dRMS(S1, S2) =

(
1

λmax − λmin

∫ λmax

λmin

|s1(λ)− s2(λ)|2 dλ
) 1

2

There are also the two χ2 distances whose formula are as follows. Per band in-
tensity differences in χ2

1 and χ2
2 are normalized by squared total intensity and total
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intensity, respectively.

dχ2
1
(S1, S2) =

∫ λmax

λmin

(s1(λ)− s2(λ))2

(s1(λ) + s2(λ))2
dλ

dχ2
2
(S1, S2) =

1

2

∫ λmax

λmin

(s1(λ)− s2(λ))2

s1(λ) + s2(λ)
dλ

Geman-McClure function [75] can be considered as squared Euclidean distance
but normalized per spectral band with squared intensity difference. The formula is

dGMC(S1, S2) =

∫ λmax

λmin

(s1(λ)− s2(λ))2

1 + (s1(λ)− s2(λ))2
dλ.

A.1.3 Angular Distance

Distance functions that consider angular distance are, e.g., cosine distance

dcos(S1, S2) = 1− simcos(S1, S2)

and spectral angle, which was originally developed in the context of Spectral
Angle Mapper [97].

dSAM (S1, S2) = cos−1(simcos(S1, S2)).

As can be seen, the two functions are based on the calculation of cosine similarity
between two spectra S1 and S2. The similarity function is written as

simcos(S1, S2) =

∫ λmax

λmin
(s1(λ) · s2(λ)) dλ(∫ λmax

λmin
s1(λ)2 dλ

) 1
2
(∫ λmax

λmin
s2(λ)2 dλ

) 1
2

.

A.2 Distance in N-Dimensional Manifold
Goodness-of-fit coefficient (GFC) [82] is developed based on Schwartz’s inequal-
ity. In the Euclidean space, it is basically the cosine distance. Since GFC is origin-
ally a similarity function, the distance formulation is as follows,

dGFC(S1, S2) = 1−

∣∣∣∫ λmax

λmin
s1(λ) · s2(λ) dλ

∣∣∣√∣∣∣∫ λmax

λmin
s1(λ)2 dλ

∣∣∣√∣∣∣∫ λmax

λmin
s2(λ)2 dλ

∣∣∣ .
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Let S = {Si, i = [0, L − 1]} be a set of spectral functions, distance between two
spectral functions Sa and Sb is expressed by isometric feature mapping (Iso-
map) [170] as the sum of local distances dlocal between Si and Sj , where the list
of Si forms the shortest path P between Sa and Sb. In other words, the shortest
path between Sa and Sb is formed by a chain of P spectra, see equation below
where S0 = Sa, SL = Sb, P ≤ L, and Si 6= Sj ,∀i 6= j. dlocal is typically
Euclidean distance or dot product.

disomap(Sa, Sb) = min

(
P−1∑
i=0

dlocal(Si, Si+1)

)

A.3 Distance between Distributions
Distance measures in this category consider a spectral function either as probabil-
ity distribution function (PDF), cumulative distribution function (CDF), or discrete
probability distribution (most commonly known as histogram). Then, depending
on which definition is assumed, the following terms and expressions will be incor-
porated in the distance measures.

Total energy k and average energy m of a spectral function

k =

∫ λmax

λmin

s(λ) dλ and m =
k

λmax − λmin

Average spectral function Sm

Sm =
S1 + S2

2
=

{
sm(λ) =

s1(λ) + s2(λ)

2
, ∀λ ∈ [λmin, λmax]

}
Standardized spectral function Ŝ

Ŝ = {ŝ(λ) = s(λ)−m, ∀λ ∈ [λmin, λmax]}

Normalized spectral function S̄

S̄ =

{
s̄(λ) =

s(λ)

k
, ∀λ ∈ [λmin, λmax]

}
Average-normalized spectral function S̄m

S̄m =
S̄1 + S̄2

2
=

{
s̄m(λ) =

s̄1(λ) + s̄2(λ)

2
, ∀λ ∈ [λmin, λmax]

}
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A.3.1 Correlation-Based

Spectral correlation [54], originally a measure of similarity, is defined as follows.

R(S1, S2) =

∫ λmax

λmin
ŝ1(λ) · ŝ2(λ) dλ(∫ λmax

λmin
ŝ1(λ)2 dλ

) 1
2
(∫ λmax

λmin
ŝ2(λ)2 dλ

) 1
2

Then, to fit our context of distance, the mathematical formulation of spectral cor-
relation is modified into the equation below. Spectral correlation was said to be an
improvement of spectral angle [54] for its capability to detect false positives.

dCor(S1, S2) = 1− 1 +R(S1, S2)

2

Pearson’s χ2, defined by the equation below, is a measure of how unlikely one
distribution (or spectral function) was drawn from the population distribution (or
spectral set) as represented by the average Sm. This measure is also known as χ2

statistic [142, 149].

dPea(S1, S2) =

∫ λmax

λmin

(s1(λ)− sm(λ))2

sm(λ)

A.3.2 Measure of Area Under Curves

Smith distance measures the amount of intersection between two PDFs or his-
tograms. Then it uses the minimum of total energy as normalizing factor. The
function is formalized as the following.

dSmi(S1, S2) = 1−
∫ λmax

λmin
min(s1(λ), s2(λ)) dλ

min
(∫ λmax

λmin
s1(λ) dλ,

∫ λmax

λmin
s2(λ) dλ

)
Manhattan distance and its variations in Appendix A.1 can also be regarded as
measures for area under curves, albeit with different assumptions of spectral func-
tion definition.

A.3.3 f -divergences

Given two spectral functions S1 and S2, f -divergence is defined as

div(S̄1, S̄2) =

∫ λmax

λmin

S̄1(λ) · f
(
S̄1(λ)

S̄2(λ)

)
dλ,

where the normalized spectral functions are used instead of the initial ones.
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Kullback-Leibler divergence [98], or shortly KL-divergence, is f -divergence
functions employing ln. Although non-negative, as seen in the equation below,
KL-divergence is not symmetric since KL(S̄1, S̄2) 6= KL(S̄2, S̄1).

KL(S̄1, S̄2) =

∫ λmax

λmin

S̄1(λ) · ln S̄1(λ)

S̄2(λ)
dλ

Jeffrey divergence or J-divergence [85] was constructed to obtain a symmetric
divergence. It is defined by

dJEF (S1, S2) = divJ(S̄1, S̄2) = KL(S̄1, S̄2) +KL(S̄2, S̄1).

Spectral Information Divergence (SID) [42] is a measure commonly used in
remote sensing field. Looking at its mathematical formulation, this measure is
essentially a J-divergence.

K-divergence [112] is yet another directed divergence as KL-divergence. It is
defined by

K(S̄1, S̄2) = KL(S̄1, S̄m) =

∫ λmax

λmin

S̄1(λ) · ln S̄1(λ)

S̄m(λ)
dλ.

As can be observed from the equation above, K-divergence is also not symmet-
ric. Using Jeffrey’s symmetrization, Jensen-Shannon divergence [112] or JS-
divergence is obtained. Its formula is as follows.

dJS(S1, S2) = divJS(S̄1, S̄2)

=
1

2

(
K(S̄1, S̄2) +K(S̄2, S̄1)

)
=

1

2

(
KL(S̄1, S̄m) +KL(S̄2, S̄m)

)
It should also be noted that several studies [114, 142, 149] uses empirical Jeffrey
divergence to deal with histogram values. This empirically-derived J-divergence
is said to be numerically stable, symmetric, and robust with respect to noise and
the size of histogram bins [142]. See the mathematical expression below.

dEJ(S1, S2) = 2 · (KL(S1, Sm) +KL(S2, Sm))

A.3.4 Other Distance Functions

Other distance functions include, e.g.,Squared chord distance [132]

dSqC(S1, S2) =

∫ λmax

λmin

(√
s1(λ)−

√
s2(λ)

)2
,
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and the transformation-cost based distance, i.e., Earth mover’s distance (EMD)
[149]. EMD computes the necessary minimal cost to transform one distribution to
another. The first step is to find a flow F = [fij ] which minimizes the overall cost
EMD(S1, S2, F ) below. Then, EMD distance dEMD is a normalized version of
EMD cost. More details of EMD distance implementation and constraints can be
found in [149].

EMD(S1, S2, F ) =
m∑
i=1

n∑
j=1

dij · fij

dEMD(S1, S2) =
EMD(S1, S2, f)

m∑
i=1

n∑
j=1

fij

In order to embed intensity differences in the distance measure, EMD distance was
further developed into a Combined EMD [104] as follows,

dCEMD
(S1, S2) =

1

α
· dEMD(S1, S2) +

1

β
· (‖S1‖ − ‖S2‖)

where α and β are two parameters required to manage the importance of each part
of the distance function. In our implementation, we modify β = 1− α.
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Appendix B

Hyperspectral Image Datasets

In the following, hyperspectral image dataset employed throughout the study will
be described. Visualization methods used to generate the color images can be seen
in Chapter 2. Also, note that due to considerations which have been elaborated in
Chapter 5, the first and last 10 bands from the spectral images are never taken into
account in computation. The number of spectral bands mentioned in the following
are numbers of acquired spectral bands, prior to the removal of 10 bands at each
of the extremities.

B.1 Pigment-56
Several pigment charts were acquired by hyperspectral scanner A (see Section B.5)
and their reflectance signals were obtained (see Section B.6). Each acquired im-
ages consist of 160 spectral bands, from 414.62 to 992.50 nm, in 3.63 nm interval.
An example of the pigment charts is shown in Fig. B.1. As seen in the figure, a
pigment chart contains several pigment patches. Pigment-56 dataset is composed
of 56 isolated pigment patches, each of different hues. Examples of the isolated
pigment patches can be seen in Fig. B.2. Then, since each pigment patch consists
of four different brightness levels, in the dataset there are a total of 56 × 4 differ-
ent color patches. Example spectral reflectance functions taken from two pigment
patches, each with 4 different brightness levels, can be seen in Fig. B.3.
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Figure B.1 – An example of hyperspectrally acquired pigment chart, which is the
origin of Pigment-56 dataset.

Figure B.2 – Several isolated pigment patches in the Pigment-56 dataset. Shown
color images were generated using CLTR visualization method.
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Figure B.3 – Spectral reflectance functions obtained from two pigment patches.

Using an equi-energetic black and white spectral reflectance functions SBk and
SWh as references, distributions of spectral difference values of these colors in
a bidimensional histogram of spectral differences (BHSD) can be observed in
Fig. B.4. Note that the 56 colors shown in the BHSDs are obtained at random
from their corresponding color patches. From the two BHSDs we can observe that
spectral variations which exist in the dataset are dominated by intensity rather than
shape differences. To further observe distribution of spectral differences within
each individual pigment patches, BHSDs obtained using SWh as reference from
some of the patches are shown in Fig. B.5.

(a) BHSD relative to SBk (b) BHSD relative to SWh

Figure B.4 – Distribution of spectral differences of spectral functions found in
Pigment-56, shown in BHSDs obtained using two references, i.e., equi-energetic
black SBk and white SWh.
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(a) Pigment 21010 (b) Pigment 23720

(c) Pigment 45080 (d) Pigment 44500

Figure B.5 – BHSDs of several pigment patches, obtained by employing an equi-
energetic white spectral function SWh as reference. Horizontal and vertical axes
of all BHSDs are KLPD-Shape and KLPD-Intensity, respectively.
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B.2 Subsets-250
In Subsets-250 dataset, in total there are 8 images originating from various hy-
perspectrally acquired objects, see Fig. B.6, each represented in terms of spectral
reflectance and of spatial dimension 250× 250 pixels. Detailed description of the
images are provided in the following.

FN1, FN2 These two images are subsets of a painting by Fritz Thaulow, i.e., The
Old Factory, Akerselva (1901). The painting itself is owned/ exhibited at
the Lillehammer Kunstmuseum in Lillehammer, Norway. The hyperspec-
tral image is originally of 160 spectral bands, i.e., within spectral range of
414.20 and 993.67 nm, in 3.64 nm interval. They were acquired using scan-
ner A (Section B.5). The maximum reflectance value of the original image
exceeds 1. And since the implementation of framework developed in this
study requires value range between 0 and 1, each subset image SI is nor-
malized according to the following formula.

Ĩ(x) =
I(x)−min(SI)

max(SI)−min(SI)

NP1, NP2 The two images are subsets of two documents provided by the Nor-
wegian National Library, acquired using scanner A (Section B.5). NP1 and
NP2 are of identical spectral resolution to FN1 and FN2.

PN1, PN2 The two images are subsets of a pastel painting of unknown painter,
originating from a private collection. The acquired hyperspectral image was
of 182 spectral bands, from 412.45 to 989.77 nm, in 3.19 nm interval. They
were acquired using scanner B (Section B.5). The original reflectance im-
age has a maximum value which exceeds 1. Therefore, the two subsets are
normalized/ scaled using the same procedure as FN1 and FN2.

SC1, SC2 The two image are subsets of The Scream (1893) painting by Edvard
Munch, taken from the front side (recto) of the painting. The Scream (1893)
itself is located in the National Gallery, Oslo, Norway. The original hyper-
spectral image is of 160 spectral bands, from 414.62 to 992.50 nm, in 3.63
nm interval. They were acquired using scanner A (Section B.5).
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FN
1

FN
2

N
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2

SC
1
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Figure B.6 – All 8 images in the Subsets-250 dataset. Shown color images were
generated using CLTR visualization method.
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B.3 Cracks-200
Cracks-200 dataset consists of subsets of The Scream (1893) painting by Edvard
Munch, where each image subset has the spatial dimension of 200 × 200 pixels.
In total, there are 15 subset images, taken from various locations of the front side
(recto) of the painting where cracks occur. All of the images are shown in Fig. B.7
and B.8. Shown color images are generated using ENVI software platform [69].

SCC01-1 SCC01-2 SCC01-5

SCC01-6 SCC01-9 SCC02-2

Figure B.7 – Six out of 15 images from the Cracks-200 dataset. Shown color
images are generated using ENVI software platform.
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SCC02-5 SCC02-8 SCC02-9

SCC02-11 SCC02-15 SCC03-1

SCC03-4 SCC03-5 SCC03-6

Figure B.8 – Nine out 15 images from the Cracks-200 dataset. Shown color images
are generated using ENVI software platform.
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B.4 Image Naming Convention
In the following are consensus used to name each figure from all datasets in the
previous sections.

Pigment-56 The number 56 in Pigment-56 is to state that there are 56 pigment
images in the dataset. Then, each pigment patch is named with a 5-digit
number, e.g., 21010, which corresponds to its pigment number which can
be found in the corresponding pigment chart, see Fig. B.1.

Subsets-250 Name of the dataset is derived from the fact that images in this data-
set are subsets of larger images and they are of size 250×250 pixels. FN
and PN are abbreviations of Fritz Normalized and Pastel Normalized, re-
spectively. FN images are from a painting by Fritz Thaulow. PN images
come from a pastel painting. NP is an abbreviation of Natural Printing,
which is the original filename of the larger images where NP1 and NP2 are
extracted from. SC images are subsets from The Scream painting.

Cracks-200 Name of the dataset was given to describe that images in this dataset
came from cracking layers of a painting, i.e., The Scream (1896) by Edvard
Munch, and that each image is of size 200×200 pixels. Images in this dataset
are named SCC to stand for Scream, Cracks. The two digits following
SCC, e.g., SCC01, is used to identify the different regions of interests (ROIs)
in the original painting where crack occurs. Then, the rest of the digits are
to indicate the number of partition in each ROI.

B.5 Specifications of Hyperspectral Scanners
In the following are two hyperspectral scanners employed to capture all the afore-
mentioned hyperspectral images.

Scanner A is a hyperspectral line scanner HySpex VNIR-1600 manufactured by
NEO. It captures images in the visible and near infrared spectral range, from
400 to 1000 nm with 160 spectral bands. The VNIR-1600 has a spectral
sampling of 3.6 nm and captures 1600 spatial pixels across the field of view.
Detailed specification of HySpex VNIR-1600 can be found in [128].

Scanner B is a hyperspectral line scanner HySpex VNIR-1800 manufactured by
NEO. It operates in the visible and the near infrared (VNIR) region of the
electromagnetic spectrum, between 400 and 1000 nanometer, with a spectral
sampling interval of 3.26 nm and captures 182 bands. Detailed specification
of HySpex VNIR-1800 can be found in [129].
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B.6 Reflectance Estimation Procedure
In each hyperspectral acquisition, the object of interest is captured together with
a calibration target, e.g., Spectralon® Diffuse Reflectance Standards [100]. Since
the spectral reflectance measures of this target is known, spectral power distri-
bution (SPD) of the light source used at the acquisition can be retrieved by the
following equation, where "observed radiance" is the amount of light recorded by
the hyperspectral scanner.

light source SPD =
observed radiance

spectralon reflectance

Then, reflectance of the captured object or scene can be obtained by the following
equation.

object reflectance =
observed radiance
light source SPD
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