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Summary
Molecular simulations are the ideal tool to obtain detailed information at the molecular
scale which is often invisible to experiments. However, we are still far from a situation
in which industries and pharmaceutical laboratories effectively design new materials and
medicines based on molecular modeling. Present simulation techniques such as stand-
ard molecular dynamics can not reach time- and length-scales required to study complex
chemical and biological processes, or they are based on inaccurate and oversimplified
models which make them unreliable. Several methods have been proposed over the last
decades in order to overcome these problems. Many of those methods are able to provide
thermodynamic properties much faster than plain molecular dynamics does, but they
force the system in an unnatural way and, therefore, information about the unbiased dy-
namics is lost. The Transition Path Sampling (TPS) pioneered another approach showing
how one can harvest paths (short molecular trajectories) via a statistically sound Monte
Carlo approach. Based on this principle TPS also provided an algorithm for the determ-
ination of rate constants. Several aspects of this original algorithm were improved by the
Transition Interface Sampling (TIS) method. Another variation of TIS, Replica Exchange
TIS (RETIS), improved the algorithmic efficiency even further. TIS and RETIS divide
the phase space in subregions using interfaces and gather a collection of true dynamical
unbiased trajectories connecting the reactant and product states without a priori assump-
tion of the reaction coordinate. From these ensembles of pathways, reaction mechanisms
can be extracted and rate constants can be computed.

In this work, for the first time, we use a combination of the RETIS simulations with
Ab initio molecular dynamics to study two realistic and challenging reactions. These
reactions are autoionization of water and silicate oligomerization reactions. Although
these reactions have previously been studied experimentally and/or theoretically, the ex-
act mechanisms of reactions and rate constants are still under discussion. The autodisso-
ciation of a water molecule in pure water or an aqueous solution is a fundamental event
in acid-base chemistry and is an extremely rare event on the femtosecond time scale of
molecular motions. Silicate oligomerization is also a fundamental reaction that is at the
basis of sol-gel chemistry and the formation of nanoporous silicate materials. RETIS
provides a quantitative and deep qualitative analysis of these fundamental processes. In
addition to the RETIS simulations, we have tested a ReaxFF forcefield for the silicate
dimerization reactions and have examined this process with Ab initio molecular dynam-
ics simulations using the more conventional thermodynamic integration methods. With
these molecular dynamics simulations, we can study both dynamics properties and time
dependent kinetic phenomena. Finally, we introduce an approach to analyze collective
variables regarding their predictive power for a reaction. The method is based on already
available path sampling data produced by, for instance, transition interface sampling or
forward flux sampling.
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1.1 Background
Computational simulations can be used to find a reasonable starting point for a laboratory
synthesis process and to provide a strong direction for the experimental investigations.
Computational studies can also be carried out in order to achieve a better understanding
of the reaction mechanism and to explore the possible reaction pathways that are not
readily studied by the experimental means. In this work we use high-level computation
methods to explore reaction mechanisms and rate constants of the silicate oligomerization
reaction and the autoionization of water, which are two important reactions in many areas
of chemical and biological processes.

1.1.1 Silicate Oligomerization

A main motivation to study silicate oligomerization is a wish to better understand how
zeolites are formed. These materials have a tremendous importance for industrial applica-
tions. Hence, computational studies on the oligomerization process will shed light on the
initial stages of zeolite synthesis and ultimately would allow a better control in designing
novel and already known zeolitic materials in a more energy efficient or environmental-
friendly way.

Zeolites are hydrated aluminosilicate minerals with a microporous structure commonly
used as commercial adsorbents and catalysts in wide variety of the chemical and bio-
chemical industries. The materials were discovered in the year 1756 by Swedish miner-
alogist Axel Fredrik Cronstedt and named based on the Greeks names, "zein and lithos",
which simply mean "boiling water" [1]. These porous materials are formed in the nature
as minerals or can also be made synthetically in the laboratories. Currently, from 229
different zeolite structures, about 83 percent of them are synthetically made. In 1950s, a
new zeolite synthesis method led to the discovery of several different zeolites which were
used for the purification process in the chemical industry, but nowadays they have several
applications in the water purification, softening processes and petrochemical, agricultural
and oil and gas industries [2].

The open 3D crystalline framework of zeolites are made from interlinked tetrahedral of
alumina (AlO4) and silica (SiO4). The tetrahedral form, built by 4-coordinated atoms, is
one of the most important properties of zeolites which traps water or other small-sized
molecules inside the structure. The aluminosilicate framework structure usually contains
the regular arrays of cages, cavities and channels and its negatively charged nature attracts
the positive cations, such as metal ions, to drift into and out of the structure. This aspect
makes zeolites useful for several industrial applications such as ion exchange, reversible
dehydration and sorption.

All zeolites are aluminosilicate materials, however, the topology of the crystalline struc-
ture and the Si/Al ratio can differ tremendously among the different types of zeolites.
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Figure 1.1: (A) Part of the crystal structure with 5- and 10-membered rings representing the
vertical straight channels (B) Detail of the atomic structure, illustrating the interlinked tetrahedral
form.

These parameters highly influence the possible application of the material. Low-silica or
aluminium rich zeolites are highly selective for polar molecules such as water, while the
high-silica zeolites preferably adsorb the less or non-polar molecules. Figure 1.1 repres-
ents the micropore system of a high-silica zeolite, pentasil-zeolite (ZSM-5), commonly
used as a heterogeneous catalyst for the fluidized catalytic cracking (FCC) of petroleum.

Zeolites are resistant to high temperatures. They don’t dissolve in water or other inor-
ganic solvents. They also have a relatively high melting point that is above 1000 °C.
These unique properties make zeolites ideal for industrial applications. Therefore, a con-
tinuous research effort aims to develop more of these types of porous material with highly
specific chemical and physical aspects [3–5]. This development is, however, slow since
a fundamental understanding how these structures form is lacking.
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Figure 1.2: The silicate oligomerization reaction.

The process of hydrothermal zeolite synthesis has been broadly reviewed in several sci-
ence and technology books [1–3, 6]. Aluminosilicate zeolites are typically synthesized
under the hydrothermal conditions from an aluminate solution and a silicate solution
mixture in an alkaline media and at temperatures between about 80 and 200 °C [7].

The oligomerization process is a key elementary reaction in zeolite synthesis. Therefore,
understanding how the silicate and the aluminum oligomers grow is of the fundamental
scientific and technological importance. In this thesis, we study the first step in the silicate
oligomerization mechanism which is the formation of the SiO�Si linkage between the
reactants to form a five-coordinated silicate complex which is an essential intermediate in
the condensation reaction (figure 1.2). The intermediate can then either dissociate again
or its formation is followed up by a water removal step which leads to a stable negatively
charged product, the silicate dimer. In a consecutive step, the dimer can grow further by
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addition of other monomers to form trimers and larger oligomeric species including both
linear polymers and ring-structures.

1.1.2 Autoionization of Water

Understanding the behavior of the aqueous solution is of fundamental importance in
many areas of the chemistry and biology. Water plays a crucial role as an universal
solvent for a wide range of the chemical processes. Water has the amphiprotic nature as
its molecules can act as either an acid or a base depending on the nature of other reactant.
Acids and bases can be defined in different ways. In 1884, the Swedish chemist Svante
Arrhenius proposed a basic definition for the acid-base reaction. According to this defin-
ition, an acid is a chemical substance which dissociates in the aqueous solution to form
hydrogen ions (H+), and a base is a chemical substance which dissociates in the aqueous
solution to form hydroxide ions (OH�). Later, two more practical and general theories
were proposed: Brønsted-Lowry theory and Lewis theory [8]. The Brønsted-Lowry the-
ory defines the acids and bases as the proton donors and acceptors. The Lewis theory of
acids and bases envisages acids as the acceptors and bases as the donors of the electron-
pair [8, 9]. However, there is no strict rule for choosing any of these definitions because
in a general perspective all three definitions are essentially equivalent.

Table 1.1: Definitions of Acids and Bases.

Acids Bases
Arrhenius H+ donor OH� donor
Brønsted-Lowery H+ donor H+ acceptor
Lewis electron-pair acceptor electron-pair donor

One of the most important chemical properties of water is its ability to act as either a
Brønsted acid or a Brønsted base. In pure water or aqueous solution, one water molecule
can deprotonate to become a hydroxide ion (OH�) and a hydrogen nucleus (H+). The
latter protonates another water molecule to create a hydronium ion (H3O+). This process
is called the autoionization of water (see figure 1.3) and it determines the pH of water.
Autoionization is greatly involved with the acid-base chemical equilibria. The process is

Figure 1.3: The autoionization of water.
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extremely rare and about two out of every 10

9 molecules is ionized at any given instant.
Therefore, a extremely small number of hydroxide ions and hydronium ions are present
at any particular time [10, 11].

The equilibrium constant Kc for this reaction is given by,

Kc =

⇥
H3O+

⇤ ⇥
OH�⇤

[H2O]

2 (1.1)

The concentrations [. . .] are given here in standard concentrations (mol/l). The concen-
tration of water, [H2O], remains essentially constant in pure water and aqueous solutions.
Thus, this expression can be simplified by excluding the concentration of water. The new
equilibrium constant expression can be written as

Kw = Kc [H2O]

2
=

⇥
H3O+

⇤ ⇥
OH�⇤ (1.2)

The concentration of hydroxide and hydronium ions presents in pure water at room tem-
perature (25 °C) are equal: [H3O+] = [OH�] = 1.003⇥ 10

�7. Hence,

Kw =

⇥
H3O+

⇤ ⇥
OH�⇤ ⇡ 1.0⇥ 10

�14 (1.3)

In the equation 1.3 the concentrations of hydronium and hydroxide ions are the acid and
base constants, respectively [12]. Thus, pH and pOH, can easily obtained by

pH = � log10

⇥
H3O+

⇤
= 7

pOH = � log10

⇥
OH�⇤

= 7

(1.4)

The sum of these two gives the equilibrium constant equation, pKw at (25 °C),

pKw = pH + pOH = 14 (1.5)

Although the amount of hydronium and hydroxide ions is extremely low in pure water,
still it leads to a very weak electrical conductivity of water [11]. In this work we use the
theory of quantum mechanics to investigate the mechanism and the rate of autoionization
of water.

1.2 Aim and Objective
The aim of this thesis is to perform unbiased mechanistic investigations on reactive chem-
ical reactions using a path sampling technique. The main objectives in this work are to
use a unique path sampling technique to tackle the time scale problem and to describe
true dynamical evolution of realistic and challenging processes. The processes are:
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• Silicate dimerization reactions: Molecular thermodynamics, mechanisms and rate
constants of the early stages of the silicate condensation process are investigated.
This is done by first studying the dissociation and association reactions of silicate
complex in the gas phase. The dissociation and water removal reactions of silicate
complex are also studied in the aqueous solution in the presence of sodium ion.

• Autoionization of water: With a proper implementation of the path sampling tech-
nique in combination with ab initio molecular dynamics simulations, a fully de-
tailed qualitative and quantitative study on the mechanism of autoionization pro-
cess in liquid water is presented.

To accomplish these goals we have used density functional theory (DFT), reactive force
field (ReaxFF), molecular dynamics (MD) and replica exchange transition interface sampling
(RETIS) combined with Born-Oppenheimer molecular dynamics (BOMD). Our path
sampling technique will improve the knowledge about the different aspect of the chem-
ical reactions involved in these processes.

1.3 Outline of the Thesis
A short theoretical background is given in Chapter 2 for the methods being used in the
thesis. Based on the results of this work, four manuscripts have been prepared, from
which two have been already published (Chapters 3, 5) and two have been submitted
(Chapter 4, 6).

In Chapter 3, DFT has been used to study the initial step of silicate dimerization reactions
in the gas and aqueous phase. Then, a comparison between DFT and ReaxFF calcula-
tions have been presented. The reactive force field was based on two different ReaxFF
parameter sets.

In Chapter 4, reaction mechanisms and rate constants of early stages in silicate condens-
ation reaction have been studied. We have performed RETIS combined with CP2K to
overcome the time scale challenges as well as to analyse the different possible reaction
mechanisms involved in the gas and aqueous phases.

In Chapter 5, a quantitative analysis method for identifying mechanisms and initiation
conditions for reactive chemical reactions is introduced. The analysis is performed on the
path sampling data that are already produced by path sampling simulations for computing
reaction rates.

In Chapter 6, dissociation of water molecules in pure water have been studied to reveal
molecular mechanism of autoionization process. The combination of RETIS and CP2K
have been used to describe the true dynamical pathways and to measure the rate constant
of water dissociation in this process.
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In Chapter 7, we have briefly discussed our ongoing projects on autodissociation of water
molecules in presence of chloride and sodium ions. This study will complement and
expand our work in Chapter 6 by addressing how the presence of ions can accelerate the
ionization process of water.

The final Chapter presents a short conclusion for the thesis and topics for future research.
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2.1 Density Functional Theory - DFT
Quantum Mechanics is a fundamental theory developed to describe the physics of micro-
scopic world and to provide information about the structure and the energy for a system
of atoms and protons. Quantum concepts are not easy to grasp because they are very
far from our classical intuition based on our experience of the macroscopic world. In
principle, most quantum chemical methods attempt to solve the steady-state Schrödinger
equation. The time-independent Schrödinger equation is given by

E =

ˆH (2.1)

where  is the wave function which defines the state of the system, and the term E
denotes the energy of the electrons and nuclei system. The term ˆH is defined as the
Hamiltonian operator corresponding to the total energy of the system acting on the overall
wave function. One dimensional Hamiltonian is given by,

ˆH = � ~2
2m

@2

@x2
+ V (x) (2.2)

where the first term is the operator associated with the kinetic energy and second term is
the potential energy of the system. The Hamiltonian operator ˆH for a system of particles
is generally very complex and computationally difficult to be solved [1, 2]. Therefore,
some approximations have been included to solve the equation 2.2 by using the approx-
imate methods like Hartree-Fock (HF) and Density functional theory (DFT) [3]. These
theories are designed to lighten the computational complexity.

Hartree-Fock theory is based on a simplified expression in which the complicated many-
electron wave function is written as a single Slater determinant [4]. Density functional
theory is an alternative prescription of quantum mechanics, which allows one to replace
these complicated many-electron wave functions  , by much simpler electron density
⇢(r). This is a remarkable theory that can characterize an atom, a molecule, a radical
or several interactive molecules. The history of DFT begins with the works of Thomas
and Fermi [5,6] in the 1920s but the modern DFT is based on two fundamental theorems
introduced by Hohenberg and Kohn (HK) [7].

The first theorem states that for any many-electron system in an external potential, the
external potential is uniquely determined by the ground state density. Based on this
theorem, the total energy as a functional of the electron density can be written as:

E0[⇢] =

Z
⇢(r)⌫extdr + F [⇢] (2.3)

F [⇢] = T [⇢] + Vee[⇢] (2.4)



16 Theoretical Concepts

where ⌫ext is the external potential in which the interacting electrons are moving, F [⇢]
is the HK functional. This is a universal functional of the density and is completely
independent of the system and the external potential. Vee[⇢] is the electron-electron inter-
action energy and T ['] is the kinetic energy of electrons. The exact shape of the kinetic
energy and the electron interaction energy functionals are not known. Therefore, the
energy cannot be calculated.

The second theorem states that if F [⇢] would be known, the density ⇢0(r) which min-
imizes the functional E0[⇢] must correspond to the true density provided that the system
is in the electronic ground state. Although Hohenberg-Kohn theorems are potentially
powerful, in practice, they do not provide a way for computing the ground state density
of a system. In 1965, Kohn and Sham devised a practical method for finding the elec-
tron density and the energy of ground state. They suggested the following form of the
functional to approximate the unknown energy functional [8]:

E0[⇢] = Ts [⇢] +

Z
⇢(r)⌫extdr + EH [⇢] + Exc[⇢] (2.5)

where Ts [⇢] is the kinetic energy of a reference system s of n non-interacting electrons
given by

Ts[⇢] = �1

2

NX

i

h i | 52 |  ii (2.6)

and EH [⇢] is the Coulomb (or Hartree) energy,

EH [⇢] =
1

2

Z Z
⇢(r)⇢(r0)

r � r0
drdr0 (2.7)

and Exc[⇢] is the exchange-correlation energy which is the only unknown term. This is
the fundamental key element of the Kohn-Sham approach to DFT. The exchange correl-
ation functional corrects for the fact that an electron cannot repel itself, like the Hartree
energy functional suggests, and that the motion of electrons is not independent. The exact
value of the exchange-correlation energy is unknown, however it can be approximated.
Therefore, the accuracy of DFT concretely depends on the accuracy of the exchange-
correlation functionals. The simplest approximation is the local density approximation
(LDA) which is based on the results of the homogeneous electron gas. The local density
approximation assumes that the density can be treated locally as a homogeneous elec-
tron gas. It presumes that the exchange correlation energy per particle in a system is the
same as that of an uniform electron gas of the same density which can be computed by
quantum monte carlo [9].

ELDA
xc [⇢] =

Z
⇢(r)✏xc(⇢(r))dr (2.8)
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where ✏xc(⇢) is the exchange-correlation energy per particle of an uniform electron gas of
density ⇢. The LDA works well in many different applications as in the solid state phys-
ics. However, LDA leads to an overestimation in the calculated energies, in particular,
where the density experiences the rapid changes such as in molecules. Another class of
approximations for the exchange correlation functionals is the Generalized Gradient Ap-
proximation (GGA). The GGA such as Becke Lee Yang Parr (BLYP) [10] is still local but
also takes the gradient of the electron density into account. GGA functionals can be di-
vided into the exchange and the correlation part and treated individually. For example the
BLYP functional is obtained by adding the gradient corrections to the LDA method with
the exchange correction of Becke and the correlation function of Lee, Yang and Parr [10].
The BLYP functional has been widely used in the theoretical chemistry and gives very
good results for the molecular geometries and ground-state energies. Yet, a good de-
scription of the exchange part of the energy is very difficult. BLYP can be improved by
the hybrid functionals proposed by Becke. The hybrid functionals (such as B3LYP) are
usually constructed as a linear combination of the Hartree-Fock (HF) exchange (which
provides more accurate exchange energy) and the correlation (and/or exchange) energy
obtained from LDA theory [10, 11]. Ehyb

xc [⇢] is given by:

Ehyb
xc = ELDA

xc +a0(E
HF
x �ELDA

x )+ax(E
GGA
x �ELDA

x )+ac(E
GGA
c �ELDA

c ) (2.9)

where a0 = 0.20, ax = 0.72 and ac = 81 are the empirically fitted parameters.

Another important factor in the accuracy of DFT is the choice of basis set which is used
to approximate the actual wave function. A basis set in computational chemistry often
refers to a set of functions (called basis functions) which are combined in linear combin-
ations to build molecular orbitals. These functions are typically the atomic orbitals (but
can theoretically be any one-particle functions). Early, Slater-type orbitals (STOs) were
the most popular basis functions due to their similarity to atomic orbitals of the hydrogen
atom. However, STOs are computationally difficult and are not suitable for fast calcula-
tions of necessary two-electron integrals. That is why the Gaussian type orbitals (GTOs)
were introduced. One can approximate the shape of the Slater-type orbitals function by
summing up a number of Gaussian type orbitals. This leads to a huge computational
savings. GTOs allow a much faster calculation of the integrals than the calculations
involving STOs. However, unlike Slater type orbitals, the Gaussians orbitals cannot cap-
ture the cusp of the wave function nor the exponential decay which implies that one needs
more Gaussians for the given accuracy [12].

There are hundreds of different basis sets, and the choice of a basis set significantly im-
pacts the accuracy and speed of computer programs. The smallest of these basis sets are
called minimal basis sets, and they are usually formed of the minimum number of basis
functions required to represent all electrons. In such a minimum basis set each atomic
orbital is represented by a number of Gaussians that are chosen to mimic the behavior of
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the STO. Since the minimal basis sets typically give rough results, one may improve them
using two functions for each of the minimal basis functions (i.e. a double zeta basis set)
or three functions for each of the basis functions (i.e. a triple zeta basis set). Zeta symbol
(⇣) is often used to present the exponent of an STO basis function. Another factor to
improve the minimal basis set is the addition of polarization and diffusion functions. The
normal abbreviation for a double zeta basis set is DZ. The double-zeta basis set is very
important because it treats each orbital separately and each atomic orbital is expressed as
sum of two Slater type orbitals. The double zeta basis set for a 2s orbital is given by,

�

STO
2s (r) = �STO

2s (r1, ⇣1) + d�STO
2s (r2, ⇣2) (2.10)

where the constant d determines how much each STO will count towards the final orbital.
A more accurate one is QZ4P basis set developed by van Lenthe and Baerends [13]. It
can be described as a core triple zeta, valence quadruple zeta basis set, with four sets
of polarization functions which make it an accurate but expensive option for the calcu-
lations. In practice, you need to choose a basis set, among many different options, that
gives the best possible tradeoff between accuracy and efficiency for the system [14]. For
our research, we used the Amsterdam Density Functional (ADF) package to study our
systems in the gas phase using QZ4P STO basis set [15]. We also studied our systems in
the aqueous phase using Quickstep [16] which is a part of CP2K program package [17].
Quickstep is based on the Gaussian and plane waves method and its augmented exten-
sion. We used DZVP basis set, and plane waves as auxiliary basis to study the dynamics
of the systems.

2.2 (Ab initio) Molecular Dynamics - MD/AIMD
Molecular dynamics (MD) method traces the physical movements and the dynamical
evolution of the interacting particles by numerically solving the classical equations of
motion for a many-body system. Newton’s second law equations of motion are integrated
for all particles simultaneously and the forces between the particles are calculated from
the negative gradient of a particular potential function V (r1, ..., rN ).

mi
@2ri
@t2

= Fi = �5i V (r1, ..., rN ) (2.11)

The potential function is given as the sum of individual energy terms:

V = Vcovalent + Vnoncovalent (2.12)

Here, the covalent term is given by following summation:

Vcovalent = Vbond + Vangle + Vtorsion (2.13)
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where the first term on the right is the bond stretching energy, the second is the angle
bending energy and the third is the torsional or the dihedral energy. Likewise, the nonco-
valent contribution is given as

Vnoncovalent = VvdWaals + Velectrostatic (2.14)

where the first term on the right is the van der Waals interactions, typically modeled using
the Lennard-Jones potential, and the second term is the electrostatic term and of which
the basic functional form is the Coulomb potential.

All of these interaction energies combined together are known as a force field (FF) [18].
Many force fields have been developed and parameterized for different systems such as
AMBER [19], CHARMM [20], OPLS-AA [21], ReaxFF [22], etc. These force field are
parametrized by fitting experimental data and theoretical calculations results. Parameters
in each force field are supposed to be internally consistent, but these parameters are gen-
erally not transferable between different force fields [23]. The transferability implies that
the same force field parameters are used to describe a given functional group in differ-
ent molecules, state points, thermodynamic and structural properties [24]. Differences in
shape of force field functions, simplifying assumptions and combining rules are part of
the rationale for the often-repeated statement that different force fields are commonly not
transferable and compatible [23]. In this work, we have used the ReaxFF, a bond order
based force field, which is commonly used to model the chemical reactions.

However, in chemically complex situations, the parameterization of decent empirical po-
tentials is not always possible in practice. The limitations of classical MD are overcome
by using ab initio molecular dynamics (AIMD), where the forces are calculated from
a fully quantum mechanical description, usually using a plane-wave expansion of the
DFT orbitals. Direct trajectory calculations can be grouped into three main categories:
Ehrenfest MD [25], Car-Parrinello MD [26] and Born-Oppenheimer MD (BOMD) [27].

In this work, we have used the Born-Oppenheimer approach, which has been included
in the CP2K simulation package [28]. In the Born-Oppenheimer approximation, it is
assumed that the electronic and nuclear motions can be separated, and the wave function
of a molecule is adiabatically divided into its nuclear and electric components.

 total =  electronic + nuclear (2.15)

In the Born-Oppenheimer molecular dynamics, the wave function  is restricted to be
the ground state adiabatic wave function  0. The nuclei are propagating in time via
the classical molecular dynamics while the electronic part is treated through the time-
independent Schrödinger equation and is solved self-consistently at each BOMD step,
assuming that the nuclei are fixed in a certain configuration at that instant of time. The



20 Theoretical Concepts

equations of motion for the nuclei within the Born-Oppenheimer molecular dynamics
method is defined by [29]

MI
¨RI(t) = �rImin {h 0 | He |  0i} (2.16)

where for each BOMD step the minimum of electronic Hamiltonian h Hei has to be
reached.

The molecular dynamics can target a wide variety of molecules including the small mo-
lecules as well as large molecules containing thousands of atoms. In this work, we ap-
plied the classical molecular dynamics, ReaxFF MD, and ab initio molecular dynamics,
BOMD, and evaluated the qualitative behavior of these methods for a system of silicate-
water interactions.

2.3 Reactive Force Field - ReaxFF
The modern quantum chemistry methods are quite accurate and fast to predict the geo-
metries, atomic and vibrational energies for small molecules. In general, the quantum
chemical methods can be used for all chemical systems. However, these methods are
very expensive and the computational cost makes them impractical for studying the sys-
tems including large or many molecules. Therefore, it is desirable to have the accurate
force fields to evaluate the forces and other dynamical properties. As mentioned previ-
ously, a force field is a set of functionals and parameters used to compute the potential
energy of a system of atoms. The parameters of these energy functions can be derived
from the experimental work and the quantum mechanical calculations. Different force
fields are designed for different purposes. ReaxFF is a force field for modeling chem-
ical reactions with the atomistic potentials developed by van Duin and coworkers [22].
ReaxFF is a set of reactive potential functions to simulate the breaking and the forma-
tion of bonds in chemical reactions at molecular level. It is an empirical approach which
can mimic the quantum mechanical variation of bond order. The parameters have been
derived from small scale quantum mechanical calculations. In comparison with ab initio
MD, ReaxFF can reach much larger time scales (nanosecond scale) for a much larger
numbers of atoms(�1000). Still, its accuracy is claimed to be very close to that of
the quantum mechanics [30–32]. ReaxFF was developed to bridge the gap between the
quantum chemical and the empirical force fields based computational chemical methods.
Different ReaxFF parameter sets have been developed for a wide variety of chemical
environments, including hydrocarbons, proteins and many inorganic systems. Figure
2.1 represents the position of ReaxFF in the hierarchy of various computational meth-
ods considering the length and time scales for the simulation of a system of particles.
The quantum mechanical methods deal with the atomistic scale, continuum methods
like finite element analysis (FEA) deal with materials at a macroscopic length and time
scale [31]. ReaxFF deals with materials at the nanoscale.
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Figure 2.1: The hierarchy of various computational methods considering the length and time
scales for simulation of a system of particles.

Similar to the empirical nonreactive force fields, the reactive force field partitioned the
system energy into the several partial energy contributions, introduced in equation,

Esystem = Ebond + Eover + Eunder + Elp + Eval + Epen + Ecoa+

EC2 + Etors + Econj + EH�bond + EvdWaals + ECoulomb

(2.17)

Bond Order (BO) and Bond Energy. ReaxFF uses a general relationship between bond
distance and bond order. Bond orders between a pair of atoms can be derived directly
from the interatomic distances. Bond orders are continuously updated in each iteration
[22]. This fundamental assumption allows the formation and the dissociation of bonds
during the simulation to have a smooth transition between nonbonded, single, double and
triple bonded systems. The bond energy (Ebond) is determined from the bond orders
BO0
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in which the three exponential terms describe the sigma-, the pi- and the double pi-bonds,
each depending on three fitted parameters (Pbo,1, Pbo,2, r�0 ), (Pbo,3, Pbo,4, r⇡0 ), and
(Pbo,5, Pbo,6, r⇡⇡0 ), respectively.
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However, the bond orders (BO0
ij) need to be corrected in order to avoid over coordina-

tions. The bond orders are typically corrected by removing the unrealistic weak bonds
and leaving the strong bonds intact.

ReaxFF energy function generally includes the bond energy, over and under coordination
energy, lone pair energy, angle strain, penalty energy, angle conjugation, C2 correction,
torsion energy, torsion conjugation, hydrogen bond terms. In addition to these terms,
ReaxFF includes the van der Waals and coulomb interaction terms, the crucial terms
often missing from other forcefields, to describe non-bonded interactions between all
atoms, irrespective of connectivity [22].

van der Waals Interactions. Van der Waals forces include attractions at long distances
due to dispersion and repulsions at short interatomic distances due to Pauli principle.
ReaxFF takes the van der Waals interactions into account by using a distance-corrected
Morse-potential (equation 2.19) including a shielded interaction (equation 2.20) to avoid
the excessive close-range non-bonded interactions:

EvdWaals = Dij
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where ↵ij , �w and �vdw are van der Waals parameters [22, 33].

Coulomb Interactions. As with the van der Waals interactions, the Coulomb interac-
tions are calculated between all atom pairs. ReaxFF applies geometry-dependent atomic
charge calculations using the charge equilibration method (EEM) [34] that accounts for
the polarization effects. A shielded potential is employed to adjust for the orbital overlap
between atoms at close distances which is given by

ECoulomb = C.
qi.qj

[r3ij + (1/�ij)3]1/3
(2.21)

where qi and qj are atomic charges and �ij is Coulomb parameter [22, 33].

Force Field Optimization Procedure. The forcefield is optimized using a quantum mech-
anics based database. The transferability of force field is supposed to be improved by
using a more extensive quantum mechanics database. However, despite a significant
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improvement regarding the global optimization algorithm, still, reactive force field para-
meter sets suffer from major unphysical behavior [35]. Therefore, a change in the force
field fitting procedures is required to make reactive force field a reliable predictive tool.

In this work, we performed a test on reactive force fields, using two parameterizations
of ReaxFF to study the silicate dimerization reactions in the gas and aqueous phase, and
compared the ReaxFF with the DFT calculations.

2.4 Calculation of Free Energy with Thermodynamic Integration
Free energy is a thermodynamic quantity that is equal to the difference between the in-
ternal energy of a system and the product of its temperature and entropy. It determines
whether a reaction is spontaneous or not spontaneous. There are different methods to
compute free energy differences from molecular simulations such as overlapping distri-
butions, umbrella sampling and thermodynamic integration (TI) [36,37]. The last method
has been used in this thesis and, therefore, we will consider thermodynamic integration
in more detail.

Thermodynamic integration is a conceptually simple technique to calculate the difference
in free energy between two stable states from molecular dynamics simulations. The free
energy difference is calculated by defining a continuous and reversible path between two
given states with potential energies UA and UB and integrating the potential functional
as a function of a coupling parameter � along the path.

U(�) = UA + �(UB � UA) (2.22)

� is defined as a coupling parameter which ranges from 0 (system A) to 1 (system B),
such that the potential energy as a function of � varies from the energy of system A and
system B. � is not necessarily dimensionless but can also be simply a distance or an
angle.

The canonical partition function of the system can be written as a general potential U(�),

Q(N,V, T,�) =
1

⇤
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Z
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Considering F = �kBT lnQ, the derivative of the free energy with respect to � can be
written by
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By integrating the equation, the free energy difference between states A and B is given
by

4F (�) = FB(�)� FA(�) =

Z �=1

�=0

⌧
@U(�)

@�

�

�

d� (2.25)

In this work, the constrained BOMD simulation is performed keeping the value of the
reaction coordinate constant. The free energy profile was obtained with TI method integ-
rating the averaged forces for a system of the silicate-oxygen interactions in water.

2.5 Simulating Rare Events
Molecular simulations are an ideal tool to obtain detailed information at the molecular
scale which is often invisible to experiments. However, we are still far from a situation
in which industries and pharmaceutical laboratories effectively design new materials and
medicines based on molecular modeling. Present simulations techniques such as stand-
ard molecular dynamics can not reach time- and length-scales required to study complex
chemical and biological processes, or they are based on inaccurate and oversimplified
models which make them unreliable. Most of chemical reactions are considered as rare
events. The straightforward molecular dynamics normally is not able to simulate these
reactions at the same conditions where one can estimate the rate of reaction experiment-
ally. In experiments, the rate constants for a system of billions of molecules, are determ-
ined by measuring the changes in the concentrations of reactants or products over a long
period of time. In contrast, MD simulations are restricted to the small systems of a few
hundreds atoms and to a short period of time. Therefore, the probability of observing a
single event in these short simulations is imperceptible. Therefore, it is critical to define
the simulation techniques that can selectively sample the special regions of the dynamical
space of a system in order to detect a single event in such short simulations. In this work,
we introduce the Transition interface sampling (TIS) and its improved version, Replica
exchange transition interface sampling (RETIS).

2.6 Replica Exchange Transition Interface Sampling
One of the biggest drawbacks of molecular simulation is its limited time- and length-
scale. This makes the chance that a spontaneous reactive event can be observed in a MD
simulation negligible for almost all chemical and biological reactions that occur in nature
or laboratory experiments. To overcome this limitation, one needs to set-up a unique sys-
tematic computational methodology that is able to tackle the time scale problem. Since
the products of chemical reactions are often kinetically rather than thermodynamically
determined, a standard equilibrium sampling of the configuration space will not be suf-
ficient to make predictions about which products are formed and at which rate. On the
other hand, the timescales of activated processes make standard molecular dynamics un-
feasible. Over the last decades, several methods have been proposed in order to tackle
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the simulation timescale problem. For example, the parallel replica method [38] exploits
the power of parallel processing to increase the molecular simulation time. Temperature-
accelerated dynamics [39] accelerates rare events by increasing the temperature [40].
Thermodynamic integration [41] and umbrella sampling [36] enhance reactive events by
perturbing the actual dynamics [42]. Using reweighting schemes, based on the laws of
statistical physics, one can usually get exact results on statistics such as free energy bar-
riers, but important information on the spontaneous dynamical process is usually lost.
Moreover, free energies expressed as a low dimensional function of a set of reaction co-
ordinates can be very misleading [40, 42]. The height of free energy barriers depend
sensitively on the set of reaction coordinates that is chosen. As a result, Transition state
theory (TST) is insufficient to make predictions about reaction rates in complex systems.
The reactive flux method [37] is the standard approach to correct the TST expression.
It complements the free energy calculation along a single reaction coordinate with the
calculation of a dynamical transmission coefficient, by starting short trajectories from
the maximum of the free energy barrier [42]. However, in complex systems the correct
reaction coordinate can be exceedingly difficult to find. If the reaction coordinate does
not capture the molecular mechanism, the biased sampling methods will suffer from sub-
stantial hysteresis when following the system over the barrier. Moreover, even if the free
energy profile is obtained correctly for this particular (but wrong) reaction coordinate, the
corresponding transmission coefficient will be very low, making an accurate evaluation
problematic [42].

To overcome these difficulties, Chandler and coworkers developed the Transition path
sampling (TPS) method. This technique gathers a collection of true dynamical unbiased
trajectories connecting the stable states without any a priori assumption of the reaction
coordinate [40]. From the ensemble of pathways, rate constants can be calculated and
reaction mechanisms can be extracted [43].

The original TPS rate evaluation is based on the calculation of a time correlation function,

C(t) =
hhA(x0)hB(xt)i

hhA(x0)i
(2.26)

where hA(x) and hB(x) are the characteristic functions of the two stable states, the
product and the reactant state respectively, and hA(B)(t) = 1 if x 2 A(B) and 0 otherwise,
and x0 and xt are phase points at the time t = 0 and t.

In the TPS framework C(t) can be rewritten as an average in the path ensemble,

kTPS
AB (t) =

d
dt
C(t) =

h ˙hB(xt)iAB

hhB(xt0)iAB

C(t0) (2.27)
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where the subscript AB denotes an average in the ensemble of paths of length t that start
in A and visit B at least once. Time t must be chosen in the region of C(t) where it is
increasing linearly with time. Time t0 is an arbitrary time in the region where C(t) is
significantly different from zero. The function C(t0) can be computed in the TPS scheme
using the shooting algorithm in combination with umbrella sampling. Since t0 < t,
equation 2.27 reduces the time-window for which the correlation function needs to be
computed. Hence, the expensive umbrella sampling can be performed with shorter paths
of length t0.

TPS creates a large number of paths starting between two stable states A and B by using
Monte Carlo (MC) algorithm that employs the so called shooting move. This works as
follows. First an initial path is generated starting from the state A and reach to state B.
Then, one takes a random point along the existing path and makes a small displacement to
the all atomic momenta. The new path is obtained by integrating the equation of motion
forward and backward. This new path will then be accepted or rejected in order to have
the correct path probability. The procedure is iterated and the ensemble is gradually
sampled.

However, quantitative analysis using transition path sampling used to be very expensive
until the novel algorithms were developed by van Erp and coworkers. The main new
algorithm is transition interface sampling which has turned path sampling into a powerful
method to obtain quantitative results.

The TIS method is a powerful alternative to configuration space based approaches to
treat rare event processes. The latter become problematic when many degrees of freedom
participate in the reaction mechanism which is the case for many biological reactions,
chemical reactions in a solvent, and nucleation. For these systems, it is very difficult to
devise a good reaction coordinate which does not make the algorithms extremely ineffi-
cient [37]. In contrast, TIS is based on the sampling of dynamical MD trajectories using a
MC sampling which is much less sensitive to the choice of RC [44]. TIS has significantly
improved transition path sampling [43] by allowing variable path lengths and recasting
the computation of the rate constants into fluxes through interfaces dividing the reactant
and product state. In TIS, all path ensembles contain trajectories that start at the foot of
reaction barrier from the reactant side and end there as well or end at the product region.
In between start- and end-point the trajectory must have reached a certain threshold value
(interface) along the progress coordinate, which differs for each ensemble. The sampling
of trajectories is done using a TPS shooting algorithm, adapted for variable path lengths.
This is basically a Monte Carlo algorithm in which you randomly pick a point of an old
path, make a small random modification, and create a new trajectory by going forward
and backward in time until reaching the first interface (at the reactant side) or the last
interface (in the product region). The path is then accepted or rejected according to a
detailed balance relation to ensure the correct weighting of the trajectories. But if the
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trajectory does not fulfil the ensemble specific threshold condition, it is always rejec-
ted. In that case, the old trajectory is counted again and the procedure is repeated like
in standard MC. This approach ensures that we have a much higher chance to generate
a valid trajectory at each trial than if we would just start from a random point within the
reactant well. In each path-ensemble simulation the main property, that is calculated, is
the conditional crossing probability. This is the chance that, in case you reach a certain
threshold value along the progress coordinate, you make a little step further. The overall
reaction rate is obtained by the product of the different crossing probabilities and a flux
value. The nice feature of TIS is that it is exact: it will converge to the same result as an
infinitely long straight-forward MD simulation but orders of magnitude faster.

As mentioned before, the TIS method is based on a flux calculation. In order to formulate
a proper flux, one needs to redefine the correlation function dividing the all phase space
into two overall states A and B. Overall state A consists all phase space points inside the
stable state A, but also all phase points that visit A, before reaching B when the equations
of motion are integrated backward in time. Similarly, overall state B covers stable region
B and all phase points, coming directly from this region in the past, without having been
in A. The corresponding time correlation function is given by,

C(t) =
hhA(x0)hB(xt)i

hhA(x0)i
(2.28)

This correlation function is linear and the time derivative at t = 0 is given by,

kAB =
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(2.29)

The resulting expression is basically the effective positive flux (EPF) expression through
the interface �B . An effective positive crossing is defined as the first crossing on the
trajectory that transits from the stable state A to the stable state B. One can prove that
equation 2.29 is equivalent to the product of the initial flux times the overall probability,
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Figure 2.2: Graphical illustration of TIS trajectories on a free energy surface. The glassy plates
represent the TIS interfaces. The first type of simulation (left), is a straightforward MD simulation
which is required to calculate the flux fA through the first interface. The middle panel shows
the path-sampling simulation which generates pathways that start at �A and end at either �A or
�1 to obtain PA(�1|�0). The last panel shows the next path-sampling simulation to calculate
PA(�2|�1). It generates pathways that start at �A and cross �1 at least once. Picture taken from
Ref. 45.

kAB =

h ˙�(x0)�(�(x0)� �0)✓( ˙�(x0)i
hhA(x0)i

⇥ PA(�B|�A) = fA PA(�B|�A)

PA(�B|�A) = PA(�n|�0) =
n�1Y

i=0

PA(�i+1|�i) (2.30)

where the first term is the flux out of region A and can be calculated by standard molecular
dynamics. �A and �B are the boundaries of regions A and B, respectively. fA is the
escape flux through the first interface and PA(�B|�A) is the overall crossing probability
(see figure 2.2). This is the probability that whenever the system crosses �A, it will
cross �B before it crosses �A again. As �B is a surface at the other side of the barrier,
this probability will be very small and can not be calculated directly. However, this
probability is determined by a series of path sampling simulations using the factorization
given in the second line. PA(�i+1|�i) is a conditional crossing probability that can be
calculated efficiently via path sampling. This theoretical technique has paved the way
for several other related methods [46–48]. The efficiency of TIS is relatively insensitive
to the choice of reaction coordinate, which is very advantageous in complex condensed
systems where it is extremely difficult to find a proper reaction coordinate. A simple inter-
atomic distance for a bond that has to break, will work for TIS while the other methods
might need more complex reaction coordinates to describe the solvent rearrangement
in the process. TIS method and its derivatives have already been applied to a variety
of systems such as protein folding [49], nucleation [50], chemical reactions [51], and
biochemical networks [47].
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Figure 2.3: Illustration of the replica exchange move. The picture shows four possible paths on a
free energy surface corresponding to different path ensembles (called [0

�
], [0+], [1+], [2+] which

indicates which interface needs to be crossed (threshold condition) and in which direction they
go ). In the next step the swaps are performed simultaneously yielding four new paths. Note that
[1

+
] and [2

+
] both have moved to another reaction channel. Picture taken from Ref. 52.

In this work we used the replica exchange TIS (RETIS). It is a useful extension of the
TIS method based on the replica exchange method. RETIS is more efficient than TIS,
but has a somewhat more complicated implementation. It applies replica exchange moves
between the different path simulations which can significantly improve the TIS efficiency.
A crucial difference with the standard replica exchange is that instead of simulating sys-
tems at different temperatures, RETIS uses the different TIS path ensembles to attempt
swaps between them. It is based on the fact that some trajectories, generated for one
path ensemble, are also valid trajectories for another path ensemble. So if two simu-
lations generate simultaneously two paths that are valid for each others path ensemble,
these two paths can be swapped (figure 2.3). To this end, the initial MD simulation
was replaced by another path ensemble, called [0

�
], that consists of all path that start

at �0 = �A, then go in the opposite direction away from the barrier inside state A, and
finally end at �0 again. The flux is then obtained from the average path length of the
[0

�
] and [0

+
] ensembles [52, 53]. Since the dynamical process is now entirely defined

by path simulations with different interface-crossing conditions, the exchange of traject-
ories between them becomes highly efficient [53, 54]. RETIS methodology avoids the
need for additional simulations at elevated temperatures and even provides additional
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paths for free as for most swapping moves whole trajectories are being swapped. Only
when a swapping between the [0

�
] and [0

+
] ensembles are attempted, two phase points

are interchanged [53]. From the last point of the [0

�
] trajectory a new path in the [0

+
]

is generated. Reversely, the first point of the old [0

+
] path will serve to generate a new

path in the [0

�
] ensemble by integrating the equations of motion backward in time [53].

(figure 2.3). The swapping move does not only give two new trajectories for each path
ensemble for free, but also tremendously reduces the correlations between the shooting
moves. The correlation reduces sometimes by more than a factor of 150 as was found for
the case of DNA denaturation [52].

The RETIS has become a very efficient approach to calculate quantitative properties,
like reaction rates, and to analyze the complex reaction mechanism. In this work we
employed a new implementation of the RETIS method in combination of CP2K to get
a much more quantitative and deeper qualitative analysis of two fundamental processes:
autoionization of water and silicate oligomerization in aqueous solution.
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Abstract - We studied silicate dimerization reactions in the gas and aqueous phase by
density functional theory (DFT) and reactive force fields based on two parameterizations
of ReaxFF. For each method (both ReaxFF force fields and DFT) we performed con-
strained geometry optimizations, which were subsequently evaluated in single point en-
ergy calculations using the other two methods. Standard fitting procedures will typically
compare the force field energies and geometries with those from quantum mechanical
data after a geometry optimization. The initial configurations for the force field optim-
ization are usually the minimum energy structures of the ab initio database. Hence, the
ab initio method dictates which structures are being examined and force field paramet-
ers are being adjusted in order to minimize the differences with the ab initio data. As
a result, this approach will not exclude the possibility that the force field predicts stable
geometries or low transition states which are realistically very high in energy and, there-
fore, never considered by the ab initio method. Our analysis reveals the existence of
such unphysical geometries even at unreactive conditions where the distance between
the reactants is large. To test the effect of these discrepancies, we launched molecular
dynamics simulations using DFT and ReaxFF and observed spurious reactions for both
ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting
need to be improved by a mutual comparative method.

3.1 Introduction
The silicate oligomerization reaction is a key elementary reaction in sol-gel chemistry
and zeolite synthesis [1]. Therefore, understanding how the silicate oligomers grow is
of fundamental scientific and technological importance. The first step in the silicate oli-
gomerization mechanism is the formation of the SiO�Si linkage between the reactants
to form a five-coordinated silicon complex which is an essential intermediate in the con-
densation reaction. Numerous theoretical studies have investigated the mechanism of the
silicate-based reaction [2–5], where the quantum mechanical calculations rely mostly on
density functional theory (DFT) [6]. Quantum chemical calculations of chains, rings, and
the cubic cage were reported by Pereira et al. [7]. The mechanism of silicate oligomeriz-
ation reactions have been studied using the BLYP functional and a continuum solvation
model COSMO (Conductor-like Screening MO method) to mimic the methanol environ-
ment.

Tossell [8] reported on the energies of the dimerization reaction of monosilic acid, in the
gas-phase and aqueous solution, over a range of temperatures and dielectric constants,
using the BLYP and B3LYP functionals and the COSMO model to approximate hydration
energies in aqueous solution. In that study the free energy of reaction changes by varying
temperature and dielectric constants of the solvent. An ab initio study of the kinetics and
mechanisms of quartz dissolution in basic pH solutions is reported by Xiao and Lasaga
[9] at the MP2/HF/6-31G⇤ level of theory and the catalytic effect of OH� in promoting
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the dissolution process was specifically addressed. Trinh et al. performed a DFT study on
this reaction for both the gas phase complemented by a COSMO model and the silicate-
water interface using 6-31+G(d,p) and DZVP-MOLOPT basis sets respectively [1, 10].
They provided thermodynamics, kinetics, and mechanism of the reaction pathway for the
anionic bond formation of siliceous oligomers. Recently, a study on the conformational
dependence of the silicate oligomerization reaction routes has been reported by Hu et al.
[11] using the B3LYP functional and the 6-311++G(2d,2p)/aug-cc-pVT(+d)Z basis sets.
Conformational dependence of the dimerization reaction is proposed in view of hundreds
of conformations with various inter- and intramolecular hydrogen bonding patterns along
the reaction routes.

Figure 3.1: The anionic mechanism of silicate dimerization reaction. We focus on the formation
of of five-coordinated silicate complex in this work.

Whereas calculations on the quantum level provide useful insight and quantitative data
for the energy barriers for the elementary steps, the simulations of sol-gel chemistry or
zeolite synthesis requires a series of such elementary reactions. To simulate such complex
reaction networks one can either rely on kinetic Monte Carlo approaches [1], in which
rate constants from quantum calculations are the main input, or use atomistic molecular
dynamics (MD) simulations. In MD simulations one can either rely on calculating the in-
teratomic forces by DFT methods, e.g. in the Car-Parrinello approach [12], or by a force
field (classical MD). Due to the computational expense, DFT-based MD is limited to a
few hundred of atoms which can be simulated for several picoseconds whereas classical
MD simulations can treat millions of atoms upto the millisecond timescale [13, 14].

For the system studied here involving chemical reactions, however, a reactive force field
would be required. Reactive force fields are computationally more expensive than non-
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reactive force fields and also their accuracy is not yet at the same level. It requires a
non-trivial design of appropriate interaction functions with adjustable parameters fol-
lowed by fitting procedures to quantum mechanical or experimental data. Still, molecular
simulations based on reactive force fields could in principle give a much more detailed
molecular description of the complex oligomerization process than kinetic Monte Carlo.
Among the different types of reactive force fields, we have the empirical valence bond
(EVB) method [15,16], as well as a variety of methods based on conserving the molecular
bond order including the Tersoff potential [17], the Brenner potential [18] with the sub-
sequent reactive empirical bond-order (REBO) potential [19], the bond-order potential
(BOP) by Pettifor and coworkers [20], and the bond-order conservation/Morse poten-
tial (BOC-MP) [21] rephrased as the unity bond-index/quadratic exponential potential
(UBI-QEP) method [22].

For silicon, the reactive Stillinger-Weber force includes both two-body and three-body
terms to account for the rearrangement of Si�Si bonds [23] and it has for example been
applied to fluorine [24] and hydrogen [25] interactions on a Si surface. Subsequently, the
Tersoff potential was originally developed for Si [17] and the Brennner force field has
been extended to include Si�C�H interactions [26, 27] as well as Si�F/Cl interactions
[28].

The ReaxFF [29] combines the bond-order approach with a charge-equilibration method
[30] to include also electrostatics in the force field, and it has been applied to a wide range
of different types of chemical reactions [31–35]. Its accuracy is claimed to be very close
to that of quantum mechanics predictions [36], though there is not a unique parameter
set. For instance, van Duin et al. fitted the ReaxFFSiO reactive force field parameter set
to simulate the silicon and silicon oxide systems [37, 38]. Fogarty et al. [39] used these
force fields in reactive molecular dynamics (MD) simulations to analyze the changing
of chemical composition for the Si/SiO/SiN interactions with water and Na+ (ReaxFF1).
Larsson et al. [40] improved the parameter fitting procedure using genetic algorithms
leading to the SiOH ReaxFF force field (ReaxFF2).

The fitting of a force field is in general a non-trivial task, exemplified by the paramet-
rization of atomic charges in an electronegativity equalization scheme [41]. In quantum
chemistry, unphysical chemical structures are avoided efficiently by the Pauli exclusion
principle, but for a reactive force field also in practice non-existing oxidation states and
chemical bonds have to be included in the parametrization, which is a formidable task.
Hereby, a reliable procedure for validation of a reactive force field is essential.

Here, we perform an alternative test of the reactive force fields parameter sets based on
mutual single-point energy calculations. As benchmark system we took the initial step of
silicate oligomerization reaction which involves the formation of five-coordinated silic-
ate complex (see figure 3.1). For all our gas phase geometries we enforced the reaction
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by constraining the intermolecular distance between the anion oxygen and the silicon be-
longing to the opposite molecule. In our analysis, the reference geometries are generated
both from DFT optimization and from the reactive force fields. The rational behind this
approach is that it is directly related to hybrid classical-QM methodologies such as the
Li and Yang approach [42] and the QuanTIS method [43]. These methods are exact, re-
gardless the accuracy of the classical force field, but discrepancies between the energies
of single point evaluations will affect the efficiency of these methodologies.

Since the energetic differences have been found to be rather high, we also evaluated the
qualitative behavior of the two force fields by comparing DFT-based MD and simulations
based on the two ReaxFF force fields. Both reactive force fields simulations show spuri-
ous chemical reactions. We will discuss these results in detail and propose a paradigmatic
change for parameter fitting to develop more reliable reactive force fields.

3.2 Computational Details
3.2.1 Gas Phase

Here we briefly summarize the computational chemistry techniques used to study the di-
mer formation from one silicic acid Si(OH)4 and its deprotonated form Si(OH)3O�. All
DFT and ReaxFF calculations were performed using the Amsterdam Density Functional
(ADF) package [44]. For the DFT calculations we applied the exchange-correlation func-
tional by Becke, Lee, Yang and Parr (BLYP) [45] and the three-parameter version of this
functional B3LYP [46]. The latter mixes the BLYP functional with exact exchange from
Hartree-Fock which has shown to improve the descriptions of the reaction profiles and
especially of geometries, activation energies, heats of reaction, and vibrational properties
of various molecules [47]. Grimme’s dispersion correction (DFT-D3-BJ) [48] provided
a further refinement upon our DFT calculations as it gives an effective way to incorpor-
ate dispersion interactions. It should be noted that dispersive corrections were absent
in the DFT dataset used for the ReaxFF1 and ReaxFF2 parametrizations. However, the
dispersion energies are relatively small. Two Slater Type Orbital (STO) basis sets, TZ2P
and QZ4P [49–52] were used. Slater-type functions are considerably more diffuse than a
corresponding Gaussian basis set and give consistent and rapidly converging results [53].

To investigate the energy barrier of the dimerization reaction, we changed the distance
between the anion oxygen and the silicon of the other molecule stepwise with interval
of 0.2 Å from 3.3 Å to 1.8 Å. For each value we performed an energy minimization
while keeping the silicon-oxygen distance fixed. The anion oxygen at larger silicate
separation determined the target oxygen defining the reaction coordinate as the |Si�O|
distance. At smaller distances we occasionally observed proton transfer from a nearby
oxygen to the target oxygen, basically changing the ionic character of the oxygens. The
reaction coordinate remained, however, based on the original target atoms assigned at
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large separation distance.

In our constrained minimization procedure, each configuration with a fixed value of the
|Si�O| distance was obtained from the previous optimized geometry with the reaction
coordinate being 0.2 Å larger. However, whenever we observed discontinuous jumps in
the energy profile, a backward step was performed. The procedure has been stopped once
the resulting energy profile was smooth and presumably close to the global minimum.
However, this is strictly speaking not essential for the comparison between DFT and the
reactive force fields since our analysis is based on single-point calculations. We checked
this analysis from both sides, i.e. we either used the optimized geometries from DFT as
an input to compute the energies of ReaxFF or we used the optimized geometries obtained
from one of the ReaxFF force fields and computed single point calculations using DFT
and the other ReaxFF force field.

3.2.2 Aqueous Solution

We performed DFT-based MD simulations using Quickstep [54] which is a part of the
CP2K program package. [55] We used the Goedecker-Teter-Hutter (GTH) pseudopoten-
tials [56, 57], the BLYP functional [45, 46] uses the Grimme’s D2 dispersion model [58]
and a DZVP-MOLOPT basis set [59]. The BLYP functional has proven to give an ac-
curate description of the structure and dynamics of water and of the silicate-water inter-
action [60]. A plane-wave cutoff of 400 Ry was used. The simulations were performed
using a cubic simulation box of 13⇥13⇥13 Å3 containing Si(OH)4, its deprotonated
form Si(OH)3O�, Na+ ion and 64 water molecules. A Nosé-Hoover thermostat [61] was
used to maintain the temperature at 350 K. The system was equilibrated for 10 ps prior
to a 50 ps production run using a 1.0 fs time step.

Since the time scales at which the silicate oligomerization occur is not accessible with
current ab initio molecular dynamics methods, the constrained MD method is used to
force the reaction [62]. Therefore, the SiO�Si distance was chosen as the reaction co-
ordinate for the formation of five-coordinated silicate complex. The constrained MD
simulation is performed keeping the value of the reaction coordinate constant. A 5 ps
equilibrium run was followed by a 40 ps production run. The averaged constrained force
was calculated for the production runs. The free energy profile was obtained with the
thermodynamic integration method based on the following equation [63]:

�G ⇡ �
Z ⇠

2

⇠
1

hf(⇠)i d⇠ (3.1)

where f is the constrained force and ⇠ is the reaction coordinate. The integration was per-
formed numerically by applying a polynomial fit through the calculated average forces.
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The ReaxFF MD simulations were performed at the same conditions as the DFT-based
MD simulations. Still there were some differences in the simulation setup other than the
force field. For instance, we used a Berendsen thermostat [64] instead of Nosé-Hoover. In
principle a Nosé-Hoover thermostat is preferred since it exactly generates the Boltzmann
distribution unlike the Berendsen thermostat [65]. The Nosé-Hoover thermostat, on the
other hand, can have ergodicity problems which can be effectively suppressed by the
so-called Nosé-Hoover chain algorithm (NHC) [66]. The NHC thermostat is, however,
not yet implemented in the ADF software. For our purposes the Berendsen thermostat
is sufficient as our conclusions regarding the ReaxFF MD simulations will be mainly
qualitative. All the ReaxFF MD simulations were equilibrated for 50 ps prior to 250 ps
production run.

For completeness it should be reported that, according to suggested values in literat-
ure [67], we employed a time step of 0.1 fs in ReaxFF simulations versus the 1.0 fs of
DFT-based MD. The argument for this small time step in ReaxFF is that updates in the
bond order and its dependent quantities need to occur very regularly [67]. We find this
argument not so satisfying. The gradient of the ReaxFF potential depends on the derivat-
ives of the bond order parameters. If the generated potential energy surface is similar to
that of DFT, then both the force and the derivatives of the bond order parameter should be
slowly varying for time steps that are functioning for DFT-based MD. Hence, the need of
time steps smaller than DFT seems to imply that the potential energy surface of ReaxFF
is, even after parameter fitting, different from the DFT potential energy surface, e.g. pres-
ence of steeper gradients. Since the computational cost of a ReaxFF MD step is orders
of magnitude lower than that of DFT-based MD, we had not the need to investigate the
effects of larger time steps in ReaxFF for the here investigated systems.

3.3 Results and Discussion
3.3.1 Gas Phase

The oligomerization reaction occurs through two reaction steps. The first step is the
formation of the SiO�Si bond between two molecules. During this step one oxygen
atom of monomeric silicic acid connects with one silicon atom of another silicate to form
a stable five-coordinated silicon intermediate. The second step is the removal of water
to form the dimer species [68]. Here we focused on the first step of this reaction. The
DFT calculations show that the transition state point is at 2.38 Å. Starting from the con-
strained geometries at the distances 1.9 Å and 3.3 Å we also let the system fully relax in
unconstrained geometry optimization runs. This resulted in final equilibrium distances of
1.83 Å and 3.15 Å, respectively. The bond length of |Si�O| around fivefold-coordinated
Si was around 1.83 Å, whereas other Si�O bonds lengths were around 1.68 Å. Xiao and
Lasaga, studied the geometry elongations of the bonds around five-coordinated Si at the
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transition state point [9, 69] and reported values of 1.70 and 1.61 Å, for the bond length
of |Si�O| and other Si�O bonds, respectively. The activation barrier of the formation of
the dimer in our study is 7.07 kcal/mol. Figure 3.2 shows the details of this reaction path
which value is comparable to that of Xiao and Lasaga (6.2-9.7 kcal/mol) [9, 69] and Hu
et al. (5.0 kcal/mol) [11], respectively.

Figure 3.2 compares the energy profiles using the BLYP and B3LYP functionals and two
different basis sets. The DFT results show reasonable agreement between B3LYP and
BLYP with a difference of 0.55 kcal/mol for the barrier and 1.85 kcal/mol for the reaction

Figure 3.2: Energy versus |Si�O| distance. Geometry optimizations (G.O.) and single-point
(S.P.) calculations are compared for different DFT functionals and basis-sets. The reference state
E = 0 is chosen as the unconstrained optimized geometry around 3.15 Å. (A) compares the res-
ults of the exchange correlation functionals BLYP and B3LYP showing a difference in the energy
barrier ( from large to small distances) within 1 kcal/mol while reaction energy has a difference
around 2 kcal/mol. The single point BLYP energy calculations based on the B3LYP geometries
show an overall upward shift by 1 kcal/mol compared to the optimized BLYP energies. (B) plots
the B3LYP energies for two different basis sets showing a decent convergence at TZ2P/QZ4P
level since energy differences at transition state and reactant state are within 0.44 kcal/mol.
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Figure 3.3: Energy profiles for the silicate dimer formation comparing DFT (blue), ReaxFF1 (it-
alic, red), and ReaxFF2 (bold, green). DFT calculations are at the B3LYP/QZ4P level. The same
reference energy is used as in figure 3.2. At each panel one of the methods is fully optimized
(energy scale at the left axis) while these optimized geometries were used for single point calcu-
lations using the two other methods. The curves were shifted to overlap at the point describing the
largest separation in order to compare the relative trend. The absolute energy scale, which defines
E = 0, is simply the energy difference between different methods at the optimized geometries.
Both the relative trend and the absolute energy differences are rather large considering the small
system size. The vertical dashed line shows the geometric discontinuity along the reaction path
(see figure 3.4).

energy. If the optimized geometries of B3LYP are used as BLYP single point calculations,
we observe an approximate overall shift by 1 kcal/mol. Also the basis set convergence
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Figure 3.4: Geometries of the optimized ReaxFF1 geometry at 3.1 Å and the fully optimized
geometry without constraining the distance. Despite that the structures only differ by 0.1 Å in
the distance between atom Si1 and O17 the overall configurations has changed significantly due a
proton transfer from O8 to O4 which happened spontaneously when the molecules where moved
closer. Despite this change, only small changes in the energy are observed for the ReaxFF1 and
DFT calculations while there is more than 60 kcal/mol difference between these structures for the
ReaxFF2 force field.

is satisfactory with only 0.44 kcal/mol difference for the barrier when comparing TZ2P
and QZ4P. Figure 3.3A illustrates the energy profiles of the ReaxFF1 and ReaxFF2 con-
strained geometry optimization. It shows much stronger variations compared to the DFT
results, especially if we consider the absolute energy scales (as explained in the caption of
figure 3.3) at the right-hand side. The energy difference between ReaxFF1 and ReaxFF2
is notable as can be seen in figure 3.3B where the optimized structure of ReaxFF1 with
a |Si�O| distance of 3.2 Å lies about 133 kcal/mol higher than the optimized structure
of ReaxFF2. However, the ReaxFF2 energy shows a jump downwards when the oxy-
gen and silicon are moved 0.1 Å closer. Figure 3.4 provides some explanation of this
jump; despite the reaction coordinate only differs by 0.1 Å, a spontaneous proton transfer
occurs for ReaxFF1 optimization when the molecules are closer, resulting in a different
structure.

3.3.2 Aqueous Solution

The considerable deviations between single point energies between DFT and the ReaxFF
does not necessarily imply that MD simulations using these ReaxFF force fields will give
similar discrepancies. An MD simulation will not generate configurations which are en-
ergetically not acceptable by its own force field. In addition, even if the configurations
sampled are different, the differences might not be very relevant. For instance two water
models using harmonic |OH| stretching potentials with large force constants and slightly
different equilibrium bond lengths will also produce large single point energy deviations,
but might still produce almost the same radial distribution functions and diffusion con-
stants.

Hereby, we first used DFT based MD using the CP2K package and looked at the solva-
tion and silicate dimerization reactions in explicit water. An additional Na+ counter ion
was added to the system to ensure charge neutrality. Sodium is a commonly used addit-
ive for synthesizing zeolites and its effect has been reported [70,71] to reduce the rate of
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formation of the smaller silicate oligomers [63]. Figure 3.5 shows the calculated con-
straint force and the associated free-energy profile along the reaction path of the first step

Figure 3.5: DFT-MD calculated (A) constrained force profiles along the reaction
coordinates. (B) free energy profiles as functions of the reaction coordinate for
Si(OH)4+Si(OH)3O�+Na++64H2Os in a 13⇥13⇥13 Å3 cubic box and at T=350 K.

Figure 3.6: Representative snapshots of the Si�O bond formation step for the dimer reaction
using DFT-simulation. The reactive oxygen is shown in green colour. Water molecules are shown
as lines. (A) shows the reactants state. The reactive oxygen has three hydrogen bonds. (B) shows
the five-coordinated silicate complex. Selected distances are shown in Å.
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Figure 3.7: Radial distribution function for (A) hydrogen-hydrogen H�H, (B) oxygen-oxygen
O�O and (C) oxygen-hydrogen O�H pair at T=350 K.

of silicate dimerization reaction by using Eq. (1). The reaction mechanism is controlled
by a constrained value of the SiO�Si distance. We observe that at 350 K, the activation
barrier of the formation of five-coordinated silicate complex is around 15.5 kcal/mol.
Previous studies reported the first barrier for the anionic mechanism of the dimerization
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reaction in pure water as only 10.51 kcal/mol and 14.1 kcal/mole in the presence of Na+

counter ion [63].

Trinh et al. [60] showed that the free energy of the first step of the silicate dimerization
is unfavorable and our results are consistent for pure water. Figure 3.6 shows the rep-
resentative snapshots for the first step of the silicate dimerization reaction including the
production of the silicate complex. That study shows that the Na+ can be in the second
hydration shell of the anion oxygen or further away. In the first case, the reactive oxy-
gen can have up to three hydrogen bonds which makes the SiO�Si bond formation step
more favorable than the direct coordination of the sodium ion [63]. Figure 3.6 shows
the number of hydrogen bonds for the reactive oxygen (we only counted the bonds that
are shorter than the average hydrogen bond length in water which is 1.97 Å). The high
observed energy barrier might be due to the electrostatic interaction of the Na+ cation

Figure 3.8: Radial distribution function for (A) silicon-hydrogen Si�H and (B) silicon-oxygen
Si�O pair at T=350 K.

.



3.3. Results and Discussion 51

which can decrease the degree of hydrogen bonding with water molecules. Furthermore,
the positive charge of Na+ may reduce the O� and Si atom interaction prohibiting SiO�Si
bond formation [63].

An important quantity for characterizing the chemical structures in liquid water is the
radial distribution functions (RDF). In figure 3.7 and 3.8, we depict the shapes of RDF
of (O�O), (H�H), (O�H), (Si�H) and (Si�O) obtained from 50 ps run after the equi-
libration step. The maximum values of the RDFs obtained from our simulations are in
good agreement with Ref. 62. We have also used ReaxFF to investigate its capability
to describe the thermodynamics and dynamics of the reaction. Figure 3.7 and 3.8 show
that the internal structure of the solvent from ReaxFF simulations is similar to that of
DFT based on the RDFs between oxygen and hydrogen. As shown in figure 3.9, we have

Figure 3.9: Radial distribution function for the Na�H, Na�O pair and the coordination number
at T=350 K.
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Figure 3.10: Time evolution of the H�O distance as function of time shows a spontaneous
spurious reaction in aqueous solution of Si(OH)4+Si(OH)3O�+Na++64H2Os in a 13⇥13⇥13 Å3

cubic box and at T=350 K.

investigated the solvation of sodium by calculating the RDF of (Na�O). In the DFT-MD
simulation, the first peak in Na�O RDF is located between 2.1 and 3.1 Å and the second
peak between 3.1 and 5.1 Å. The coordination number is 6.0. This results suggest that
Na+ is only slightly over-coordinated [72–74]. It might be due to the presence of silicate
complex or effect of different functionals. However, this value is still close to the values
a 5-6 most frequently reported through both experiments and other ab initio and classical
MD studies of the Na+ cation in bulk water [75–79].

Observing the water structure around the Na+ ion, we find an unpredicted peak at 1.8
Å for the ReaxFF simulations. This peak is caused by a reaction forming sodium hy-
droxide in aqueous solution, a species that is stable only in the solid state. In fact, dissol-
ution of solid sodium hydroxide in water forming Na+ and OH� is a highly exothermic
reaction. We repeated both ReaxFF1 and ReaxFF2 simulations using different initial
configurations obtained from the DFT-simulation, but each time this spurious reaction
occurred, except once.

In most ReaxFF cases, H2O dissociated to OH� and H+. The proton transferred to
Si(OH)3O� to form Si(OH)4 and the Na+ and OH� ions formed NaOH. In another
case, the released OH� reacted with H2O to give H3O2

� which reacted further to form
H3O2Na. Figure 3.10 shows the time evolution of the H�O distance as function of time
for the oxygen that finally forms a bond with Na. Here we just reported the reactions that
happened during the first 13 ps.
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As shown in figure 3.10, the oxygen that finally forms a bond with Na+ first approaches
upto a distance of 2.42 Å. The oxygen is then still part of a water molecule in the first
sodium solvation shell. Then, catalyzed by the silicate anion the water molecule splits
into H+ and OH� which the OH� quickly attaches to the sodium. It is interesting to
note that these spurious reactions happened with both the ReaxFF parameters. We can
conclude that, although the genetic algorithm was able to significantly improve the cost
function [40] for ReaxFF2, it has not removed the unphysical artifacts of ReaxFF1 shown
in our simulations. Therefore, the fitting procedure itself need to be reconsidered.

3.4 Conclusions
We have presented a comparison between DFT and ReaxFF calculations for the initial
step of silicate dimerization reaction. The reactive force field was based on two differ-
ent ReaxFF parameter sets. We based our analysis on two-way single point calculations
along the reaction coordinate. In this approach, we optimized the geometry for con-
strained reaction coordinate values with one method and use the optimized geometries in
single point calculations performed by the other two methods. The differences between
the shifted energy curves (all starting at E = 0 at a reference distance) were substantial,
and the differences in absolute energies (using E = 0 for the unconstrained optimized
geometries) are even more pronounced. Then, we examined the consequences of these
discrepancies in molecular dynamics simulations for the aqueous phase. Both ReaxFF
force fields generated an unphysical formation of sodium hydroxide. This shows that
despite a significant improvement regarding the global optimization algorithm to find the
best possible force field parameter set, both force fields suffer from the same unphys-
ical behavior. Therefore, it seems that the optimization algorithm is not sufficient in
improving force field accuracy. The reference data set of configurations but also the cost
function are essential. In specific, it is important that geometries are not only provided by
quantum methods, it is also important that configurations provided by the reactive force
field are energetically reasonable when analyzed by quantum mechanical calculations.
Hence, a change in the force field fitting procedures is required to make reactive force
field a reliable predictive tool. An interesting method to achieve this is the adaptive force
field optimization in QuanTIS method [43]. This algorithm creates database of configur-
ations while simulating chemical events and, in addition, compares these configurations
from both sides; The energies of configuration points produced by a DFT-based MD sim-
ulation should be reproduced by the force field, and vice versa. The formation of sodium
hydroxide would, directly be penalized since DFT energies will be much higher. The
force field parameters will then, in the next optimization cycle, be changed such that this
spurious reaction would not happen again. This might be an effective way to improve
ReaxFF parameters, but it could also reveal that a completely new mathematical form
is needed to achieve the required accuracy. Therefore, we hope that our results will en-
courage the development of a new generation reactive force fields which is essential to
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make computational tools a dominant factor regarding the discoveries of new materials or
for making already existing materials in more energy-efficient or environmental-friendly
way.



Bibliography

[1] T. T. Trinh, A. P. J. Jansen, R. A. van Santen, and E. J. Meijer. Role of water in
silica oligomerization. J. Phys. Chem. C, 113:2647–2652, 2009.

[2] J. C. G. Pereira, C. R. A. Catlow, and G. D. Price. Ab initio studies of silica-based
clusters. part I. energies and conformations of simple clusters. J. Phys. Chem. A,
103:3252–3267, 1999.

[3] J. C. G. Pereira, C. R. A. Catlow, and G. D. Price. Ab initio studies of silica-based
clusters. part II. structures and energies of complex clusters. J. Phys. Chem. A,
103:3268–3284, 1999.

[4] J. M. Fedeyko, D. G. Vlachos, and R. F. Lobo. Formation and structure of self-
assembled silica nanoparticles in basic solutions of organic and inorganic cations.
Langmuir, 21:5197–5206, 2005.

[5] S. A. Pelster, W. Schrader, and F. Schüth. Monitoring temporal evolution of silicate
species during hydrolysis and condensation of silicates using mass spectrometry. J.
Am. Chem. Soc., 128:4310–4317, 2006.

[6] R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules. Ox-
ford University Press, New York, Oxford, 1989.

[7] J. C. G. Pereira, C. R. A. Catlow, and G. D. Price. Silica condensation reaction: An
ab initio study. Chem. Commun., 115:1387–1388, 1998.

[8] J. A. Tossell. Theoretical study on the dimerization of Si(OH)4 in aqueous solution
and its dependence on temperature and dielectric constant. Geochim. Cosmochim.
Acta, 69:283–291, 2005.

55



56 BIBLIOGRAPHY

[9] Y. T. Xiao and A. C. Lasaga. Ab initio quantum mechanical studies of the kinetics
and mechanisms of quartz dissolution: OH-catalysis. Geochim. Cosmochim. Acta,
60:2283–2295, 1996.

[10] T. T. Trinh, A. P. J. Jansen, and R. A. Santen. Mechanism of oligomerization reac-
tions of silica. J. Phys. Chem. B, 110:23099–23106, 2006.

[11] H. Hu, H. Hou, Z. He, and B. Wang. Theoretical characterizations of the mechanism
for the dimerization of monosilicic acid in basic solution. Phys. Chem. Chem. Phys.,
15:15027–15032, 2013.

[12] R. Car and M. Parrinello. Unified approach for molecular dynamics and density-
functional theory. Phys. Rev. Lett., 55:2471–2474, 1985.

[13] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. East-
wood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers. Atomic-
level characterization of the structural dynamics of proteins. Science, 330:341–346,
2010.

[14] R. O. Dror, T. J. Mildorf, D. Hilger, A. Manglik, D. W. Borhani, D. H. Arlow,
A. Philippsen, N. Villanueva, Z. Yang, M. T. Lerch, W. L. Hubbell, B. K. Kobilka,
R. K. Sunahara, and D. E. Shaw. Structural basis for nucleotide exchange in het-
erotrimeric g proteins. Science, 348:1361–1365, 2015.

[15] A. Warshel and R. M. Weiss. An empirical valence bond approach for comparing
reactions in solution and in enzymes. J. Am. Chem. Soc., 102:6218–6226, 1980.

[16] J. Åqvist and A. Warshel. Simulation of enzyme reactions using valence bond force
fields and other hybrid quantum/classical approaches. Chem. Rev., 93:2523–2544,
1993.

[17] J. Tersoff. New empirical model for the structural properties of silicon. Phys. Rev.
Lett., 56:632–635, 1986.

[18] D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chem-
ical vapor deposition of diamond films. Phys. Rev. B, 42:9458–9471, 1990. Erratum
in 46, 1948, 1992.

[19] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sin-
nott. A second-generation reactive empirical bond order (REBO) potential energy
expression for hydrocarbons. J. Phys.: Condens. Matter, 14:783–802, 2002.

[20] D. G. Pettifor. New many-body potential for the bond order. Phys. Rev. Lett.,
63:2480–2483, 1989.



BIBLIOGRAPHY 57

[21] E. Shustorovich. The bond-order conservation approach to chemisorption and het-
erogeneous catalysis: applications and implications. Adv. Catal., 37:101–163, 1990.

[22] E. Shustorovich and H. Sellers. The UBI-QEP method: a practical theoretical ap-
proach to understanding chemistry on transition metal surfaces. Surf. Sci. Rep.,
31:1–119, 1998.

[23] F. H. Stillinger and T. A. Weber. Computer simulation of local order in condensed
phases of silicon. Phys. Rev. B, 31:5262–5271, 1985. Erratum in 33, 1451, 1986.

[24] F. H. Stillinger and T. A. Weber. Fluorination of the dimerized Si(100) surface
studied by molecular-dynamics simulation. Phys. Rev. Lett., 62:2144–2147, 1989.

[25] D. Kohen, J. C. Tully, and F. H. Stillinger. Modeling the interaction of hydrogen
with silicon surfaces. Surf. Sci., 397:225–236, 1998.

[26] A. J. Dyson and P. V. Smith. Extension of the Brenner empirical interatomic poten-
tial to C-Si-H systems. Surf. Sci., 355:140–150, 1996.

[27] A. J. Dyson and P. V. Smith. Empirical potential study of the chemisorption of
C2H2 and CH3 on the �-SiC(001) surface. Surf. Sci., 396:24–39, 1998.

[28] D. Humbird and D. B. Graves. Improved interatomic potentials for silicon-fluorine
and silicon-chlorine. J. Chem. Phys., 120:2405–2412, 2004.

[29] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard. ReaxFF: A reactive
force field for hydrocarbons. J. Phys. Chem. A, 105:9396–9409, 2001.

[30] A. K. Rappe and W. A. Goddard. Charge equilibration for molecular dynamic
simulation. J. Phys. Chem., 95:3358–3363, 1991.

[31] J. E. Mueller, A. C. T. van Duin, and W. A. Goddard. Development and validation
of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J.
Phys. Chem. C, 114:4939–4949, 2010.

[32] S. Agrawalla and A. C. T. van Duin. Development and application of a ReaxFF
reactive force field for hydrogen combustion. J. Phys. Chem. A, 115:960–972, 2011.

[33] X. M. Cheng, Q. D. Wang, J. Q. Li, J. B. Wang, and X. Y. Li. ReaxFF molecular
dynamics simulations of oxidation of toluene at high temperatures. J. Phys. Chem.
A, 116:9811–9818, 2012.

[34] M. Raju, S. Y. Kim, A. C. T. van Duin, and K. A. Fichthorn. ReaxFF reactive
force field study of the dissociation of water on titania surfaces. J. Phys. Chem. C,
117:10558–10572, 2013.



58 BIBLIOGRAPHY

[35] A. Ostadhossein, E. D. Cubuk, G. A. Tritsaris, E. Kaxiras, S. Zhang, and A. C. T.
van Duin. Stress effects on the initial lithiation of crystalline silicon nanowires:
Reactive molecular dynamics simulations using ReaxFF. Phys. Chem. Chem. Phys.,
17:3832–3840, 2015.

[36] A. C. T. van Duin. ReaxFF User Manual. Materials and Process Simulation Center,
2002.

[37] A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A Goddard.
ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem.
A, 107:3803–3811, 2003.

[38] S. Dumpala, S. R. Broderick, U. Khalilov, E. C. Neyts, A. C. T. van Duin, J. Provine,
R. T. Howe, and K. Rajan. Integrated atomistic chemical imaging and reactive
force field molecular dynamic simulations on silicon oxidation. Appl. Phys. Lett.,
106:011602–5, 2015.

[39] J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. Van Duin, and S. A Pandit.
A reactive molecular dynamics simulation of the silica-water interface. J. Chem.
Phys., 132:174704–174710, 2010.

[40] H. R. Larsson, A. C. T. van Duin, and B. Hartke. Global optimization of parameters
in the reactive force field ReaxFF for SiOH. J. Comput. Chem., 34:2178–2189,
2013.

[41] T. Verstraelen, P. Bultinck, V. Van Speybroeck, P. W. Ayers, D. Van Neck, and
M. Waroquier. The significance of parameters in charge equilibration methods. J.
Chem. Theory Comput., 7:1750–1764, 2011.

[42] H. Li and W. Yang. Sampling enhancement for the quantum mechanical potential
based molecular dynamics simulations: A general algorithm and its extension for
free energy calculation on rugged energy surface. J. Chem. Phys., 126:114104–
114107, 2007.

[43] A. Lervik and T. S. van Erp. Gluing potential energy surfaces with rare event sim-
ulations. J. Chem. Theory Comput., 11:2440–2450, 2015.

[44] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van
Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with ADF. J. Comput. Chem.,
22:931–967, 2001.

[45] A. D. Becke. Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys. Rev. A, 38:3098–3100, 1988.



BIBLIOGRAPHY 59

[46] C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-
energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789,
1988.

[47] J. Andzelm J. Baker, M. Muir and A. Scheiner. Hybrid Hartree-Fock density-
functional theory functionals: The adiabatic connection method. ACS Symposium
Series, 629:342–367, 1996.

[48] S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion
corrected density functional theory. J. Comput. Chem., 32:1456–1465, 2011.

[49] E. van Lenthe and E. J. Baerends. Optimized Slater-type basis sets for the elements
1-118. J. Comput. Chem., 9:1142–1156, 2003.

[50] D. P. Chong. Augmenting basis set for time-dependent density functional theory
calculation of excitation energies: Slater-type orbitals for hydrogen to krypton. Mol.
Phys., 103:749–761, 2005.

[51] D. P. Chong, E. van Lenthe, S. J. A. van Gisbergen, and E. Jan Baerends. Even-
tempered Slater-type orbitals revisited:from hydrogen to krypton. J. Comput.
Chem., 25:1030–1036, 2003.

[52] G. Maroulis. Computational Aspects of Electric Polarizability Calculations: Atoms,
Molecules and Clusters. IOS Press, Amsterdam, 2006.

[53] M. Güell, J. M. Luis, M. Solà, and M. Swart. Importance of the basis set for the
spin-state energetics of iron complexes. J. Phys. Chem. A, 112:6384–6391, 2008.

[54] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter.
Quickstep: Fast and accurate density functional calculations using a mixed Gaus-
sian and plane waves approach. Comput. Phys. Commun., 167:103–128, 2005.

[55] CP2K: High Performance Computing, http://www.nanosim.mat.ethz.ch/ re-
search/cp2k.

[56] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopoten-
tials. Phys. Rev. B, 54:1703–1710, 1996.

[57] C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space Gaus-
sian pseudopotentials from H to Rn. Phys. Rev. B, 58:3641–3662, 1998.

[58] S. Grimme. Semiempirical GGA-type density functional constructed with a long-
range dispersion correction. J. Comput. Chem., 27:1787–1799, 2006.



60 BIBLIOGRAPHY

[59] J. VandeVondele and J. Hutter. Gaussian basis sets for accurate calculations on
molecular systems in gas and condensed phases. J. Chem. Phys., 127:114105–
114105, 2007.

[60] T. T. Trinh, A. P. J. Jansen, R. A. van Santen, and E. Jan Meijer. The role of water in
silicate oligomerization reaction. Phys. Chem. Chem. Phys., 11:5092–5099, 2009.

[61] S. Nosé. A unified formulation of the constant temperature molecular dynamics
methods. J. Chem. Phys., 81:511–519, 1984.

[62] E. Carter, G. Ciccoti, and J. T. Hynes. Constrained reaction coordinate dynamics
for the simulation of rare events. Chem. Phys. Lett., 156:472–477, 1989.

[63] A. Pavlova, T. T. Trinh, R. A. van Santen, and E. J. Meijer. Clarifying the role of
sodium in the silica oligomerization reaction. Phys. Chem. Chem. Phys., 15:1123–
1129, 2013.

[64] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak.
Molecular dynamics with coupling to external bath. J. Chem. Phys., 81:3684–3690,
1984.

[65] D. Frenkel and B. Smit. Understanding Molecular Simulation, Second Edition:
From Algorithms to Applications. Academic Press, San Diego, CA, 2005.

[66] G. J. Martyna, M. L. Klein, and M. Tuckerman. Nosé-hoover chains: The canonical
ensemble via continuous dynamics. J. Chem. Phys., 97:2635–2643, 1992.

[67] K. Chenoweth, A. C. T. van Duin, and W. A. Goddard. ReaxFF reactive force field
for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A,
112:1040–1053, 2008.

[68] T. T. Trinh, A. P. Jansen, R. A. van Santen, J. VandeVondele, and E. J. Meijer. Effect
of counter ions on the silica oligomerization reaction. Comput. Phys. Commun.,
10:1775–1782, 2009.

[69] Y. T. Xiao and A. C. Lasaga. Ab initio quantum mechanical studies of the kin-
etics and mechanisms of silicate dissolution: H+ (H3O+) catalysis. Geochim.
Cosmochim. Acta, 58:5379–5400, 1994.

[70] C. C. Harrison and N. Loton. Novel routes to designer silicas: studies of the de-
composition of (M+)2[Si(C6 H4O2)3].xH2O. importance of M+ identity of the kin-
etics of oligomerisation and the structural characteristics of the silicas produced. J.
Chem. Soc., Faraday Trans., 91:4287–4297, 1995.



BIBLIOGRAPHY 61

[71] S. L. Burkett and M. E. Davis. Mechanism of structure direction in the synthesis
of pure-silica zeolites. 2. hydrophobic hydration and structural specificity. Chem.
Mater., 7:1453–1463, 1995.

[72] A. Grossfield, P. Ren, and J. W. Ponder. Ion solvation thermodynamics from simu-
lation with a polarizable force field. J. Am. Chem. Soc., 125:15671–15682, 2003.

[73] D. Bucher, L. Guidoni, P. Carloni, and U. Rothlisberger. Coordination numbers of
K+ and Na+ ions inside the selectivity filter of the KcsA potassium channel: Insights
from first principles molecular dynamics. Biophys. J., 98:L47–L49, 2010.

[74] C. N. Rowley and B. Roux. The solvation structure of Na+ and K+ in liquid water
determined from high level ab initio molecular dynamics simulations. J. Chem.
Theory Comput., 8:3526–3535, 2012.

[75] S. B. Zhu and G. W. Robinson. Molecular dynamics computer simulation of an
aqueous NaCl solution: Structure. J. Chem. Phys., 97:4336–4348, 1992.

[76] D. A. Schmidt and K. Miki. Defective continuous hydrogen-bond networks: An al-
ternative interpretation of ir spectroscopy. Comput. Phys. Commun., 9:1914–1919,
2008.

[77] N. T. Skipper and G. W. Neilson. X-ray and neutron diffraction studies on concen-
trated aqueous solutions of sodium nitrate and silver nitrate. J. Phys.: Condens.
Matter, 1:4141–4154, 1989.

[78] R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper. Hydration
of sodium, potassium, and chloride ions in solution and the concept of structure
maker/breaker. J. Phys. Chem. B, 111:13570–13577, 2007.

[79] A. Tongraar, K. R. Liedl, and B. M. Rode. Born-Oppenheimer ab initio QM/MM
dynamics simulations of Na+ and K+ in water: From structure making to structure
breaking effects. J. Phys. Chem. A, 102:10340–10347, 1998.



62 BIBLIOGRAPHY



Chapter 4

Rare Event Ab Initio Simulations
Reveal Subtle Key Steps in Aqueous
Silicate Dimerization

Mahmoud Moqadam, Enrico Riccardi, Thuat Trinh, Anders Lervik,
Titus S. van Erp

Manuscript

63



64 Rare Event Ab Initio Simulations Reveal Subtle Key Steps in Aqueous Silicate Dimerization



4.1. Introduction 65

Abstract - A replica exchange transition interface sampling (RETIS) study combined
with Born-Oppenheimer molecular dynamics (BOMD) is used to investigate the dynam-
ics, thermodynamics and mechanism of the early stages of the silicate condensation pro-
cess. In this process, two silicate monomers, of which one anion species, form a negat-
ively charged five-coordinated silicate dimer. In a second stage, this dimer can fall apart
again, forming the original monomers, or release a water molecule into the solution.
We studied the association and dissociation reaction in the gas phase, and the dissoci-
ation and water removal step in the aqueous phase. The results on the aqueous phase
dissociation suggest two possible mechanisms. The breakage of the bond between the
intermediate oxygen and the five-coordinated silicon is sometimes accompanied with a
proton transfer. After the dissociation into silicate monomers, the anionic monomer is
either the previously four-coordinated silicon or the previously five-coordinated silicon
depending on whether the hydrogen transfer occurs or not. Our results show that the
mechanism with proton transfer is highly predominant. The water removal simulations
also show two possible mechanisms distinguished by the proton transfer reaction path.
The proton transfer can either occur via a direct or via a water mediated reaction step.
The calculations reveal that although both mechanisms contribute to the water removal
process, the direct proton transfer is slightly favorable and occurs roughly in six out of
ten occasions.

4.1 Introduction
The silicate condensation reaction is the basic step in the sol-gel chemistry and zeolite
synthesis. Therefore, understanding the earlier stages of silicate oligomerization is of
fundamental scientific and technological importance. The formation of the silicate dimer
from two silicate monomers, a neutral and an anionic species, basically consists of two
steps. The first step in this process is formation of the SiO�Si linkage between the
reactants to form a five-coordinated silicate complex. This is an essential intermediate
stage in the oligomerization reaction. In the second step, a water molecule is released
from the silicate complex forming the silicate dimer (see figure 4.1). The mechanism of
silicate based reactions have been subject of intensive research during last decades, both
experimentally [1–5] and theoretically [6–16].

Several of the previous theoretical studies have concentrated on the energetics of cluster
models either based on Hartree-Fock [11, 14, 15, 17, 18], MP2 [11, 14, 15, 18], or density
functional theory (DFT) [6–8, 10, 13, 19–22] in which the clusters are either described in
the gas phase or in a solvent using continuum solvent models. In particular, Pereira et al.
[6–8] studied the silicate clusters using DFT coupled with the continuum solvation model
COSMO (Conductor-like Screening MO method) to mimic the electrostatic conditions
found in real silica solutions. Similarly, Xiao and Lasaga addressed the catalytic effect
of OH� in promoting the dissolution process in basic pH solutions [18]. The limited
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size of the silicate clusters allowed relatively high-level quantum chemical computations.
In addition to energy barriers, reaction rates can be approximated using transition state
theory [11, 14]. However, these barriers and rates are not necessarily representable for
the actual reactions in a solvent. Especially for water it is known that the solvent actively
directs chemical reactions via its hydrogen bond network or participates in the reaction
by accepting or donating protons.

The thermodynamic properties of silicate oligomerization process in explicit water have
also been studied using Ab Initio molecular dynamics [10, 13, 16]. Since the accessible
timescale of Ab Initio molecular dynamics is on the order of several picoseconds while
the expectation time for a chemical reaction is many orders of magnitude larger, straight-
forward Ab Initio molecular dynamics is generally not useful to study chemical reactions.
Still, thermodynamic quantities like the reaction free energy barriers and equilibrium
constants can be obtained using standard constrained molecular dynamics methods and

Figure 4.1: The anionic mechanism of the silicate condensation reactions. The first step is form-
ation of a five-coordinated silicate complex. Then, a water molecule dissociates from silicate
complex either by an internal or external proton transfer and forms the silicate dimer.
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thermodynamic integration [10, 13, 16, 20–22].

Thermodynamic integration via constraint molecular dynamics [23] implies running sev-
eral molecular dynamics simulations in which a predefined reaction coordinate (RC) is
kept fixed by an artificial constraining force. Although it allows obtaining thermody-
namic properties, information on the spontaneous dynamics is lost. An alternative ap-
proach is the use of classical molecular dynamics simulations based on reactive force-
fields [24–31]. At this point, reactive force fields do not reach the same accuracy as DFT
and might not always reliable [16], but the accessible timescale of molecular dynamics
with reactive forcefields is in the range of several nanoseconds. Therefore, it is able to
capture the spontaneous reactive events in a wide range of chemical systems. Still, these
studies often require temperatures far above experimental conditions to increase the fre-
quency of reactive events.

Even faster than classical molecular dynamics is kinetic Monte Carlo (kMC) [32] which
has been applied to investigate silicate oligomerization reactions [33–35]. The kinetic
Monte Carlo typically requires as an input the diffusion constants of the reactants and rate
constants of several elementary reaction steps. Zhang et al. developed a continuum off-
lattice kMC model for the initial stage of silicate oligomerization based on rate constants
from transition state theory from DFT calculations with explicit water molecules [34].
This method allows exploring initial stage of silicate oligomerization and the effect of
pH at experimental conditions. More recently, a lattice-based kinetic Monte Carlo model
was introduced by Ciantar et al. [35] to study the effect of molecular diffusion, synthesis
parameters and initial monomer concentration on the steady state concentrations of silic-
ate oligomers at the earlier stages of zeolite synthesis. This model allows automatic alloc-
ation of each species with a flexible use of various lattice types. The accessible timescale
of kinetic Monte Carlo is enormous (minutes, hours) but its accuracy highly depends on
the accuracy of the rate constants of the elementary steps which need to be provided as
an input. In addition, detailed information about the actual reaction mechanism is lost.

Clearly, the above review shows that the computational study of the actual unbiased dy-
namics of the oligomerization process is still a huge challenge. Ideally, we would like to
use accurate forces based on Ab Initio methods and still reach large timescales. Kinetic
Monte Carlo has limited accuracy as mentioned above. ReaxFF increases the timescale
compared to Ab Initio based molecular dynamics, but generally not enough to study the
reactions at ambient condition. In addition, it requires choosing a parameter set or devel-
oping a new purpose-specific parameter set since we showed that simulations based on
present ReaxFF forcefields [36, 37] can produce unphysical reactions [16].

An alternative approach which can be used in combination with any type of molecu-
lar dynamics is path sampling [38–40]. Path sampling allows the harvesting of stat-
istically relevant ensembles of unbiased dynamical trajectories based on a combined



68 Rare Event Ab Initio Simulations Reveal Subtle Key Steps in Aqueous Silicate Dimerization

Monte Carlo/molecular dynamics approach. Based on the ensemble conditions, these
sets of paths will describe different stages of the reaction process. For instance, one en-
semble condition could be that all path should start from the reactant state and end in
the product state. Hence, this path ensemble only consists of reactive paths. Other path
ensembles might only require the paths to reach a certain threshold point at the barrier.
Path sampling allows overcoming high free energy barriers without artificially constrain-
ing the system or by applying an additional biasing force. Hence, it will provide the real
dynamics of the process and, by combining the results of the different path ensembles,
it can provide rate constants orders of magnitude faster than straightforward molecular
dynamics. The efficiency of the original transition path sampling method [38] was con-
secutively improved by the TIS [39] and RETIS [40] algorithms and has now matured as
a powerful method to study unbiased reactive events. In this chapter, we will use RETIS
in combination with Ab Initio molecular dynamics, which has not been used before, in
order to shed light on yet unresolved questions regarding the spontaneous oligomeriztion
process.

For example, Pavlova et al. [13] reported that the water removal step of silicate dimeriz-
ation and trimerization reaction occurs through the external proton transfer mechanism,
while Trinh et al. [10] denoted that in the dimerization reaction only the internal proton
transfer mechanism occurs. In some cases, they observed the external proton transfer
mechanism in the trimerization reaction. In contrast, McIntosh detected both internal
and external mechanisms in the silicate dimerization reactions [11]. However, the author
concluded that internal mechanism is highly favorable compared to the external mech-
anism. Based on the available literature it is difficult to state a final conclusion since the
aforementioned studies all depend on different level of assumptions and approximations
or steer the reaction in an artificial manner. RETIS with Ab Initio molecular dynamics
is, therefore, a very valuable complementary method to the studies above as it is the only
method that can provide the correct statistics of unbiased dynamical reactive trajectories
in explicit water based on state-of-the-art DFT level energies and forces.

Path sampling with Ab Initio molecular dynamics has been used before for the study of
water autoionization [41], fenton reactions [42], gas-phase decomposition reactions [43],
and enzyme catalysis [44]. However, these papers are based on the original TPS [38]
algorithm employing a single path ensemble of reactive trajectories. This study is the first
one where the RETIS methodology is applied in combination with Ab Initio dynamics
using many different path ensembles. Hence, it is the first really quantitative Ab Initio
path sampling study which allows the calculation of rates, crossing probabilities, and
activation energies.

This chapter is organized as follows. In Section 4.2 we give an explanation of the RETIS
methodology used in the work. In Section 4.3 we give the computational details for our
approach. In Section 4.4 we provide the results accompanied with discussion for the
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gas-phase dissociation and association reaction, and the aqueous phase dissociation and
water removal step. We end with concluding remarks in Section 4.5.

4.2 Methodology
The typical reaction times of the chemical reaction steps in the dimerization process are
generally beyond the accessible timescale of molecular dynamics. Hence, it is extremely
unlikely to detect any of such rare events in a direct simulation. Still, these events can
be captured via the RETIS algorithm [40], which can be combined with any type of
dynamics such as classical MD, Langevin, or Ab Initio MD. Whereas the first Ab Ini-
tio MD simulations were based on the Car-Parrinello approach [45], which launched the
sudden popularity of these type of simulations, the advance in speed of electronic ground-
state optimization algorithms have made BOMD the method of choice for Ab Initio MD.
In this chapter, the RETIS algorithm has been combined with the BOMD utility of the
CP2K [46] Quickstep routine.

RETIS is a path sampling method based on transition path sampling techniques (TPS)
[38] allowing for an efficient quantitative analysis of chemical reaction and rare events in
general. TPS has pioneered the idea to use Monte Carlo (MC) to sample short molecular
dynamics reactive trajectories. In this way, the approach allows us to focus on those seg-
ments of the time evolution where the rare events actually occur. The original TPS pub-
lication [38] also provided a strategy to use this approach for calculating rate constants
though not in the most efficient way. The TIS algorithm [39] improved the efficiency by
a factor five for a simple two-state dimer molecule imersed in a solvent by allowing flex-
ible path lengths and the introduction of interface path ensemble averages. The efficiency
was further improved in the RETIS algorithm [40] by applying replica exchange between
the different path ensembles. This approach showed a factor 20 improvement compared
to TIS when studying the denaturation of a mesoscopic DNA model [47]. Although it is
difficult to make a statement about the relative algorithmic efficiency in general, one can
prove that the efficiency always increases when going from the original TPS algorithm to
TIS and from TIS to RETIS. Based on the numbers above, the RETIS approach can easily
account for a two orders of magnitude overall improvement compared to the original TPS
algorithm. It is important to note that is improvement is achieved without invoking any
approximation. On the contrary, the TIS/RETIS approach is also slightly more accurate
since they are not restricted to a fixed path length; the average path length in TIS/RETIS
is reduced compared to TPS but occasionally longer than the typical fixed path length
used in TPS simulations.

The TIS/RETIS algorithm introduces a set of interfaces between the reactant and the
product state and computes the overall crossing probability as a product of crossing
probabilities for the intermediate interfaces. The TIS equations for transition between
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two stable states are:

kAB = fA PA(�B|�A) (4.1)

PA(�B|�A) = PA(�n|�0) =
n�1Y

i=0

PA(�i+1|�i) (4.2)

where fA is the flux through the first interface �0. The flux term is determined in the
RETIS algorithm from the average path lengths in the first two path ensembles, called
[0

�
] and [0

+
] [40]. These path ensembles have as only condition that they should start

at the first interface �0 = �A and from there move towards the reactant state ([0�])
or towards the product state ([0+]). These paths are ended when they recross �A or
�B = �n. The latter is only possible for the [0

+
] ensemble, but unlikely since it is

a rare event. The chance that this happens is equal to PA(�B|�A) which is called the
overall crossing probability. This is the probability that whenever the system crosses
�A, it will cross �B before it crosses �A again. As �B is positioned a surface at the
other side of the barrier, this probability is very small and can not be calculated directly.
However, in TIS/RETIS it is determined by a series of path sampling simulations using
the factorization given in equation (4.2). Here, PA(�i+1|�i) is the conditional crossing
probability that �i+1 will be crossed before �A under the condition that the trajectory
starting from �A has also crossed �i. Determination of this term requires the sampling
of the [i+] path ensemble which contain all possible trajectories starting at �A, ending at
�A or �B , and having at least one crossing with interface �i in between. This sampling
can be done efficiently via MC moves in trajectory space such as shooting and time-
reversal moves, which were developed within the TPS framework [48]. In RETIS this
is completed with replica exchange moves. PA(�i+1|�i) is finally estimated from the
fraction of trajectories in the [i+] ensemble that cross �i+1 as well. It should be noted that
the overall reaction rate does not depend on the positions or the number of the interfaces,
however, efficiency does. If the crossing probabilities are all around 0.2 the simulation
set up is considered to be close to optimum [49].

As reaction coordinate we chose the Si�O distance of the bond that will be created or
broken in the dissociation and association reaction. In the water removal step, the reac-
tion coordinate is MAX[Si�OH] which implies that the value of the reaction coordinate
corresponds to the largest Si�OH distance in the five-coordinated silicon. This approach
guarantees that the leaving OH group can be any Si�OH bond of the five-coordinated
silicon (see figure 4.2).

Besides reaction rates, path sampling also allows determining the activation energy of
the reaction [50]. In the case of deterministic dynamics, the activation energy is equi-
valent to the difference between the average energy of state A and the average energy
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Figure 4.2: Illustration of the reaction coordinate used in the RETIS simulation. Highlighted
atoms and bonds show the atoms and bonds related to the reaction coordinate. (a) Formation
and dissociation of silicate complex. The reaction coordinate is defines as Si�O distance, the
distance between the five-coordinated silicon and the bridging or the anion oxygen. (b) Water
removal step. The reaction coordinate is MAX[Si�OH] which is the maximum distance between
oxygen and the five-coordinated silicon.

of the transition pathways connecting state A with state B [50]. Consequently, the cal-
culation of activation energy barrier does not require all interface ensembles. However,
if all the path ensembles are available, like in a TIS or RETIS simulation, an activation
energy profile as function of the reaction coordinate can be obtained [49]. Analogous to
the crossing probability, the function converges to a plateau value equal to the activation
energy of the reaction. The function is expected to be strictly increasing, but not neces-
sarily. Dips or sudden changes in slope of the activation energy function might indicate
a complex reaction step at the value of the reaction coordinate where it happens. The
total energy of the system is an extensive variable. Hence, it increases if, for instance,
more solvent molecules are added to the system. However, the activation energy is an
intensive variable. This implies that for large systems this activation energy is a relative
small energy difference between two ensemble average which have much larger standard
deviation than this difference. Therefore, accurate evaluation of the activation energy
becomes problematic for the larger systems.

4.3 Computational Details
We studied the formation of five-coordinated silicate complex from one silicic acid Si(OH)4
and its deprotonated form Si(OH)3O� in gas and aqueous phase by coupling the RETIS
algorithm with the DFT-based molecular dynamics simulation package Quickstep of the
CP2K code [46, 51]. The CP2K part of the simulation scheme employed the BLYP
functional with Grimme’s empirical dispersion correction [52–55] and Goedecker-Teter-
Hutter (GTH) pseudopotentials [56, 57]. The BLYP functional has shown to give an
accurate description of the structure and dynamics of water [10, 16, 58]. A Gaussian
basis set DZVP-MOLOPT [59] was chosen in addition to a plane-wave basis set with a
cutoff of cutoff 400 Ry. In the gas phase, the simulations were performed using a cubic
simulation box of 13⇥13⇥13 Å3 with periodic boundaries containing Si(OH)4 and its
deprotonated form Si(OH)3O�. In the aqueous phase, it also includes a Na+ ion and 64
water molecules. All simulations were performed at a temperature of 350 K with a time
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step of 0.5 fs.

In the RETIS part, we employed 10 and 15 interfaces for the dissociation and associ-
ation of silicate complex in the gas phase, and 7 and 15 interfaces for the dissociation of
silicate complex and water removal step in aqueous phase, respectively. We used previ-
ously computed free energy profiles [16] as a guideline to identify suitable positions of
the interfaces. Additionally we used some initial trial simulations to adjust the number
of interfaces and their positions. For the water removal step the reaction coordinate is
based on the distance between the five-coordinated silicon and hydroxyl oxygen that is
released. The first interface, defining the reactant state A, was set at �A = 1.85 Å and
the last interface, defining product state B, was set at �B = 3.8 Å. For the cases in which
�B was crossed without the second reaction step being completed, we used the last con-
figuration and atomistic velocities to start a straightforward molecular trajectory. All of
these trajectories showed that the second reaction step followed eventually and none of
these trajectories showed the reverse reaction. This implies that crossing �B is a valid
criterion to assume that basin of attraction of the product state is reached.

At each cycle and each path ensemble, we randomly choose among the different MC
moves to be carried out. These are shooting, time-reversal, and replica exchange moves.
The selection probability for these moves are equal to 25%, 50%, and 25%, respectively.
In total, at least 5000 cycles were performed for the dissociation reaction and 2000 cycles
for the association reaction in the gas phase. Each cycle implies an update of each path
ensemble with a single Monte Carlo move. In the aqueous phase, we also performed at
least 2200 cycles for the dissociation reaction in the aqueous phase and 2500 cycles for
the water removal step.

4.4 Results and Disscusion
For the gas phase we focused on the association and dissociation mechanism, since the
water removal step is of little physical relevance in the gas phase. The surrounding
hydrogen-bonded network of the aqueous solution is essential element to facilitate the
departure of the hydroxyl group. For the aqueous phase, we focused on the dissociation
and the water removal step since the height of the association barrier proved to require
too much computational resources.

4.4.1 Gas Phase

Dissociation and association. Here we analyze the first step of this reaction in a small-
scale gaseous system in both forward (association) and backward (dissociation). For this
purpose, several reactive trajectories along the reaction coordinate were used to investig-
ate the reaction mechanism in the gas phase. Analysis of the reactive molecular dynam-
ics trajectories showed that the dissociation and association reactions occur by the direct
mechanism, in which the Si�O bond is dissociated or created without significant dis-
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turbance of any of the other molecular bonds (see figure 4.3). Figure 4.3 shows that the

Figure 4.3: Representative snapshots of dissociation of silicate complex in gas phase. Distances
of Si�O and hydrogen bonds are shown in angstrom (Å)

Table 4.1: The flux fA through �A, crossing probability P (�B |�A), and rate constant kAB for
the silicate complex dissociation (Dissoc.), association (Assoc.), and water removal step (Remov.)
at 350 K. Results are shown for (a) gas-phase and (b) aqueous phase.

(a) Gas fA (s�1) P (�B|�A) kAB (s�1)
Dissoc. 6.20⇥10

12 1.24⇥10

�2 7.68⇥10

10

Assoc. 2.23⇥10

12 7.13⇥10

�8 1.59⇥10

5

(b) Aqueous fA (s�1) P (�B|�A) kAB (s�1)
Dissoc. 6.87⇥10

12 6.92⇥10

�5 4.75⇥10

8

Remov. 8.04⇥10

12 2.53⇥10

�6 2.04⇥10

7

silicon atoms and the intermediate oxygen are not exactly aligned, the Si-O-Si angle has
a small bend, tilting the oxygen a little upwards (Figure 4.3). In the dissociation process,
the upper hydroxyl groups of the four-coordinated silicate group flip their orientation and
make hydrogen bonds with the intermediate oxygen. This process is highly symmetric
with both hydroxyl groups forming the hydrogen bonds almost simultaneously. How-
ever, this process does not lead to a transfer of the proton of any of the hydroxyl groups
towards the intermediate oxygen.

Table 4.1a shows the flux through interface �A = 1.95 Å for dissociation and �A =

3.1 Å for association, the overall crossing probability, and the rate constants which fol-
lows as the product of the two for the dissociation and association reactions in gas phase.
The rate constant for dissociation is five orders of magnitude higher than the one of the
association process. Block analysis indicates statistical errors of 15% and 66% for disso-
ciation and association, respectively.

Figure 4.4a,b shows the activation energy profiles and the crossing probabilities for as-
sociation and dissociation calculated from the RETIS path ensembles. The activation
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Figure 4.4: Crossing probabilities as function of RC for the silicate dimerization at 350 K. The
positions of the interfaces are indicated with vertical dashed lines. (a) Dissociation reaction of
silicate complex, (b) Association reaction of silicate complex in gas phase. The DFT free energy
profile was calculated at 0 K using the BLYP functional including Grimme dispersion correction
[60] and the QZ4P [61] basis set [16]. (c) Dissociation reaction of silicate complex in aqueous
phase. The free energy profile was calculated from constrained molecular dynamics simulation
using the BLYP functional and the DZVP-MOLOPT basis set [16]. (d) Water removal step, free
energy profile obtained from Ref. 13.

energy profile clearly converges to a plateau analogous to the crossing probability. In
both panels a, b of Figure 4.4 we showed the minimized energy previously obtained [16]
using DFT geometry optimizations in which the Si-O distance was held fixed at different
values ranging from 1.83 til 3.15 Å. This curve corresponds to the so-called zero tem-
perature free energy curve and shows a transition state at 2.38 Å [16], just before the
point were the activation energy curve and the crossing probability starts to become flat.
The mismatch in position between the maximum of energy curve obtained from the con-
strained geometry optimization and the plateau value of the activation energy obtained
from RETIS simulation is due to hysteresis [62] caused by the reaction coordinate not
being aligned with the eigenvector with negative eigenvalue. The zero temperature free
energy barrier for both association and dissociation is close (within 1 kcal/mol) but not
identical, which is also logical since they describe related but conceptual different quant-
ities. In our simulations, length of the reactive trajectories ranges between 100 and 400 fs
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for the dissociation and between 150 and 650 fs for the association process in gas phase.

Figure 4.5: Representative snapshots of different dissociation mechanism of silicate complex in
aqueous phase. Hydrogens with possibility of involving in the dissociation process are shown in
green and purple colors. Water molecule with hydrogen bond to the bridging oxygen is shown in
orange and Na+ ion is colored in blue. (a), (b) Mechanism with hydrogen transfer (c) Mechanism
without hydrogen transfer.

4.4.2 Aqueous Phase

Dissociation. Figure 4.4c shows the crossing probability along the reaction coordinate
for the dissociation in the aqueous phase. As mentioned above, an accurate evaluation of
the activation energy is difficult to obtain for large systems and this was confirmed by our
analysis which did not convergence enough to provide a meaningful result. Instead, we
show the free energy barrier at 350 K obtained from Ref. 16 as a reference. Table 4.1b
shows the flux through �A = 1.85 Å and overall crossing probability. The rate constants
of dissociation in the aqueous phase is about 160 times smaller than in the gas phase
implying that the aqueous solution stabilizes the five-coordinated silicate dimer. The
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length of the reactive trajectories ranged between 0.15 and 4.0 ps.

Representative snapshots for the mechanisms of the dissociation process are shown in
figure 4.5. The dissociation process can occur through two possible mechanisms which
are distinguished from each other by the presence or the absence of an additional proton
transfer step. Figure 4.5a and 4.5b show two trajectories involving the proton transfer
mechanism while figure 4.5c shows a reactive trajectory which does not involve a proton
transfer. Just like the gas-phase reaction two hydroxyl groups (labeled 1 and 2) at the
five-coordinated silicate group tend to point their hydrogens (colored green and purple,
respectively) in the direction of the intermediate bridging oxygen. Our path sampling
simulations produce reactive transitions which involve either the transfer of hydrogen
number 1 (Figure 4.5a) or number 2 (Figure 4.5b). The fact that the RETIS simulation
manages to produce both types of trajectories provides confidence that the sampling is
ergodic. Although the orientation of the hydroxyl groups look initially symmetric, just
like the gas-phase reaction, the symmetry is sometimes broken by the solvent structure
which seems to catalyze the proton transfer step. Figure 4.5a and 4.5b show the presence
of water molecule (with its oxygen colored orange) forming a hydrogen bond with the
bridging oxygen atom. The hydrogen bond creates a pulling force on the bridging oxygen
which brings the oxygen closer towards one of the hydroxyl groups 1 or 2 which enables
the proton transfer at the point where the silicon-oxygen bond breaks. In the reactive
trajectories where the hydrogen bond is absent no proton transfer was observed (like in
figure 4.5c) similar to the gas phase reaction. In all cases where the bridging oxygen
accepted a hydrogen bond from the solvent, the proton transfer from one of the two
hydroxyl groups always occurred at the side of the water molecule donating the bond.
Although both mechanisms contribute to the dissociation of the silicate complex, our
results infer that the mechanism with proton transfer is predominant with a probability of
about 80% compared to the mechanism without proton transfer.

Removal of water. The energy barrier for water removal step is higher than dissociation
process [10, 11, 13]. Free energy for the water removal step in the silicate dimerization
has a maximum at silicon-oxygen distance 2.4 Å [13]. Figure 4.4d illustrates the over-
all crossing probability as function of reaction coordinate for the water removal step. It
clearly shows a plateau at 2.4 Å, indicating that the barrier of water removal step has been
crossed. The flux and overall crossing probability are shown in table 4.1b. The rate con-
stant for the water removal step is almost one order of magnitude less than dissociation
process and is about 2.04⇥10

7 s�1. The length of trajectories ranges from 0.06 to 40
ps depending on the mechanism and number of water molecules involved in the proton
transfer process.

During the water removal process, one hydroxyl group leaves the five-coordinated sil-
icon, remains in the solution for a while, and then receives a proton, neutralizing the OH�

ion. The last step can either occur directly via the silicate complex (internal) or by means
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Figure 4.6: Representative snapshots of water removal step in the silicate dimerization process.
The oxygen of leaving OH group and Na+ ion are shown in green and blue colors respectively.
(a) Internal mechanism: Proton transfers directly from the deprotonation of a Si�OH group (b)
External mechanism: Proton transfer occurs through the Grotthuss mechanism. Water molecules
involved in the hydrogen bonds network are shown bold and different colors, (c) Non-reactive
trajectory and effect of the presence and absence of hydrogen bonds on the leaving OH group in
the water removal step. In the first frame of the three trajectories always one hydroxyl group is
pointed towards the leaving OH group (colored brown). It is this hydroxyl group that always gets
deprotonated in the internal mechanism and most often in the external mechanism as well (but
not for trajectory (b)). Having at least two hydrogen bonds between the leaving OH group and the
solvent seems a prerequisite for the reaction to succeed. The second frame of trajectory (c) shows
that only one hydrogen bond remained after the initial release and since the OH group is still in
the vicinity of the silicate complex the five-coordinated silicate complex is quickly reformed.

of the solvent via a hydrogen bond network (external). The internal proton transfer mech-
anism implies that the leaving OH group receives a proton directly via a deprotonation
of a Si�OH group, while in the external proton transfer, one or several water molecules
transfer their proton through a hydrogen bond wire via a Grotthuss mechanism [63]. This
process ends when the Si�OH group releases a proton neutralizing the OH� ion. Hence,
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in both cases the reaction ends after the deprotonation of a Si�OH group generating the
anionic silicate dimer H5Si2O7

� (see figure 4.6).

Despite that the reaction coordinate is flexible, not specifying which hydroxyl group at
the five-coordinated silicon should release (see figure 4.2b), our simulation showed that
the leaving OH group is always the group most distant from the other silicon (with its
oxygen colored green in figure 4.6). In addition, the simulations reveal that both internal
and external mechanisms contribute to the overall reaction, though the internal proton
transfer is favored and happens in 58% of the occasions. Previous studies suggested that
the hydroxyl release step occurs simultaneously with the deprotonation of the Si�OH
group [10,11,13]. However, our study indicates that the OH group remains in the solution
0.06�3.5 ps in the internal mechanism and 0.1�40 ps in the external mechanism before
it neutralizes. Hence, the reaction forming the anionic silicate dimer H5Si2O7

� is step-
wise and not concerted. This illustrates the advantage of the RETIS approach compared
to constrained MD. In the constrained MD simulations, the release of the OH group
occurs more gradually since at each increment of the reaction coordinate its value is
fixed for a while and the system is given time to adapt to the new situation. In the
unbiased MD trajectories harvested by the RETIS algorithm, there is no adaptation time
and the hydroxyl can escape into the solvent without giving a chance to the rest of the
silicate complex to release its proton. Hence, RETIS is able to disclose the true dynamical
evolution of a complex process. Figure 4.6 shows the selected snapshots for initial stages
of water removal process. In most cases, as shown in figure 4.6a and 4.6b, one of Si�OH
groups (oxygen colored in brown) on the five-coordinated silicon is pointing towards
the leaving OH group, acting as a proton donor to the hydroxide via an internal proton
transfer. Also for the cases in which the proton transfers externally, i.e. via the solvent,
it is this hydroxyl group that most often releases its proton. However, if the release of
the OH group is not rapidly follow-up by the proton release, also the other hydroxyl
groups may act as proton donor (as in figure 4.6b). In 24% of the cases of the external
proton transfer a Si�OH group from the four-coordinate silicon acts as proton donor.
This can occur when the hydroxide ion has sufficient time to effectively diffuse (via the
Grotthuss mechanism) towards the four-coordinated silicon. In some but not all cases this
happens via the periodic boundaries. Figure 4.7 shows the time distribution of the reactive
trajectories indicating the time interval between OH release and silicate deprotonation
for both internal and external mechanism. Clearly, the average trajectory length of the
external mechanism is considerably longer than that of the internal mechanism. This is a
result of the external mechanism consisting of several proton transfer reaction steps.

However, as can be seen from figure 4.7a, also the internal mechanism has a relatively
broad double peaked distribution. This is because also in the internal mechanism solvent
molecules can participate in intermediate reaction steps. The released OH group then
receives a proton from the solvent but eventually gives it back and finally accepts a pro-
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Figure 4.7: Time distribution of the reactive trajectories indicating the time interval between OH
group release and silicate deprotonation for (a) internal mechanism and (b) external mechanism.
The inset (a) shows number of water molecules involved in temporary proton excursions in the
internal mechanism. The inset (b) shows number of water molecules involved in the hydrogen
wire in the external mechanism of water removal step. Vertical lines show the average trajectory
length with respect to the number of water molecules involved in the hydrogen bond wire.

ton from the silicate complex. We observed that there can be a maximum of two water
molecules involved in these temporary proton excursions as shown in the inset of fig-
ure 4.7a. The double peaked distribution is a direct result of having either zero or one
solvent molecule or two molecules involved.

In the external mechanism, the proton transfer occurs along a hydrogen bond wire. Wa-
ter molecules in solution construct a hydrogen bonds network that facilitates the water
removal step. The inset of figure 4.7b shows the number of water molecules involved
in the hydrogen wire before neutralization occurs via the deprotonation of the silicate.
In some cases, the proton transfer from a solvent molecule towards the hydroxide jumps
back after a very short time. These water molecules were not counted as being part of the
hydrogen bond wire. The silicon deprotonation seems irreversible which is in contrast to
what constraint molecular dynamics suggest [13].

Figure 4.6c shows a non-reactive trajectory in the water removal step. We observed that
at least two hydrogen bonds are required to pull and dissociate the OH group from the
five-coordinate silicon. These hydrogen bonds are essential to depart the hydroxyl group
from silicate in opposite directions and to avoid the recombination process. After that the
hydroxide ion can participate in the Grotthuss mechanism and becomes neutralized.

4.5 Conclusions
In this paper, we have performed a path sampling simulation based on the RETIS al-
gorithm in combination with Ab Initio molecular dynamics to investigate the mechanisms
and the rate of silicate dimerization reactions in gas and aqueous phase. For this purpose,



80 Rare Event Ab Initio Simulations Reveal Subtle Key Steps in Aqueous Silicate Dimerization

we generated in total around one hundred thousand trajectories. Regarding force evalu-
ations, each reaction study in the aqueous phase corresponded to ca. 1000-1400 ps. Still,
by means of the RETIS rare event approach, we obtain inverse rate constants (the expect-
ation time of the chemical event) as high as 50 000 ps and a couple of thousands reactive
trajectories. In other words, the RETIS simulations provide results which would other-
wise require a 100 µs brute force molecular dynamics simulation which is far beyond
reach for Ab Initio molecular dynamics.

As expected, the RETIS simulations show that the rates of SiO�Si bond dissociation in
the aqueous phase is relatively reduced, compared to the gas phase results. This implies
that the aqueous solution stabilizes the five-coordinated silicate dimer. Interestingly, the
dissociation of silicate complex in the aqueous phase may either occur via a proton as-
sisted mechanism or via a mechanism without proton transfer. We highlighted the role
and importance of water molecule arrangement in the dissociation mechanism. A water
molecule forms a hydrogen bond with the bridging oxygen atom in silicate complex and
causes a pulling force on the oxygen towards one of the hydroxyl groups and enables the
proton transfer at the silicon-oxygen bond breakage point. The mechanism with proton
transfer is highly predominant compared to the mechanism without proton transfer.

Also the water removal step may occur through two possible mechanisms, the internal
and external mechanism, which are distinguished by the proton transfer reaction path.
This implies that proton transfer can either occur via a direct or via a water mediated re-
action step. In the internal proton transfer mechanism the leaving hydroxyl group accepts
a proton directly via a silicate deprotonation step, while in the external proton transfer,
one or several water molecules transfer their protons through a hydrogen bond wire via
a Grotthuss mechanism. Previous studies have provided contradicting conclusions re-
garding the role of solvent in the water removal step in the silicate dimerization reaction
as some have reported that it occurs solely via the internal mechanism [10] while other
studies suggest it occurs via the external mechanism [13]. More recently, McIntosh [11]
observed both mechanisms, but claimed that it is unlikely that the external proton trans-
fer is competitive with the direct proton transfer. In contrast, the unbiased dynamical
trajectories generated by the RETIS simulation show that both mechanisms can occur
and the internal mechanism only is slightly favorable compared to the external mechan-
ism. The length of these trajectories highly depend on the mechanisms and number of
water molecules involved in the hydrogen bonds wire. The presence of hydrogen bonds
between the leaving hydroxyl group and the solvent acts as a prerequisite for the reaction
to succeed.

In summary, RETIS allowed the calculation of rate constants as well as to give valuable
insight into which reaction mechanism dominates when dynamics and explicit solvent
are taken into account. We believe that the technique presented here can open many
possible avenues in the field of silicate oligomerization reactions and chemical reactions
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in general. Besides the fundamental new insight, these type of simulations will eventually
help to obtain a better control of chemical reactions and provide new inspiration for
alternative synthesis methods.
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Abstract - We introduce an approach to analyze collective variables regarding their pre-
dictive power for a reaction. The method is based on already available path sampling data
produced by for instance transition interface sampling or forward flux sampling which are
path sampling methods used for efficient computation of reaction rates. By a search in
collective variable space a measure of predictiveness can be optimized and, in addition,
the number of collective variables can be reduced using projection operations which keep
this measure invariant. The approach allows testing hypotheses on the reaction mechan-
ism, but could in principle also be used to construct the phase space committor surfaces
without the need of additional trajectory sampling. The procedure is illustrated for a
one-dimensional double well potential, a theoretical model for an ion-transfer reaction in
which the solvent structure can lower the barrier, and an Ab Initio molecular dynamics
study of water auto-ionization. The analysis technique enhances the quantitative inter-
pretation of path sampling data which can provide clues on how chemical reactions can
be steered in desired directions.

5.1 Introduction
Systematic approaches to analyze reaction mechanisms in terms of descriptive reaction
coordinates have been focused on committor analysis [1–7]. The committor function
tells for each phase point or configuration point what the probability is that a dynam-
ical trajectory launched from that point will end up in the product state rather than the
reactant state. Points having the same committor value form iso-committor surfaces. A
reaction can then be described by a Markov process in which the system moves from
one iso-committor surface to another one. The committor can, hence, be interpreted as
a progress coordinate and a growing number of researchers in the field believe it should
be viewed as the true reaction coordinate. Literature is, however, not always consistent
whether the phase space or configuration space committor should be considered. In prin-
ciple only the phase space committor gives the full mechanistic information [8, 9], but
the configurational committor fits better into the original concept of reaction coordinate
which is traditionally a purely geometric function [10]. Moreover, the determination of
the committor surfaces is computationally intensive since it requires the release of many
trajectories from each individual phase- or configuration-point. Although there are sys-
tematic approaches based on genetic neural networks [11] and Bayesian techniques [4,5]
which can reduce the computational burden, accurate determination of the committor
values is difficult especially for low values. Hence, computational studies investigating
the committor generally tend to focus on the surface with committor value 1/2, the sep-
aratrix. Therefore, a systematic analysis on the required conditions, of how and when the
system can reach the separatrix, has received much less attention.

On one hand, the beauty of the phase-space and configurational-space committors is that
they are mathematically well-defined and do not require any pre-assumptions or chemical
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intuition. On the other hand, however, this also implies a disadvantage. If a divine power
would give us the full phase space committor (from which the configurational committor
can be obtained by velocity averaging) as an exact nonlinear function of all atom positions
and velocities, it will not directly give us a lot of insight. We would probably not be
able to make any sense out of this multi-dimensional nonlinear function unless we could
simplify it, if necessary through approximations, and rewrite it in a human understandable
function of just a few parameters to which we can relate to; i.e parameters based on well-
known concepts which are intuitive. An example of such a concept is that of the hydrogen
bond (or any chemical bond in general) and order parameters based on it such as the
number of hydrogen bonds that a specific molecule donates or accepts. Although there is
not a single unique microscopic definition for something like a hydrogen bond [12, 13],
it provides a tool which helps our understanding of solvent dynamics and the functioning
of bio-molecules such as DNA. The knowledge that some well-ordered hydrogen-bonded
water networks are essential for reactions [14, 15] might eventually lead to rationalized
approaches to steer chemical reactions, produce new materials, or design more efficient
catalysts.

So in one way or another, we need to translate our findings into intuitively understand-
able parameters, in other words, gaining an understanding of the reaction mechanism.
In this chapter, we introduce an analysis method to test hypotheses about the reaction
mechanism and to identify the essential circumstances which make a reaction proceed or
not. The analysis method uses the path sampling data which are produced by rare event
sampling methods such as transition interface sampling (TIS) [16], replica exchange TIS
(RETIS) [17], and forward flux sampling [18]. These methods employ a Monte Carlo
(MC) sampling of trajectories within a series of simulations, each evaluating a different
path ensemble.

A trajectory belongs to an ensemble whenever it starts at the boundary of the reactant
state, moves along the barrier up to a certain minimum progression, and then either ends
by re-entering the reactant state or entering the product state. The minimum progression
requirement is enforced by an interface crossing condition: associated with each path
ensemble there is an unique interface defined by the value of the progress coordinate
(“reaction coordinate”) which needs to be crossed. The results from the different path
ensembles can be combined and allow one to obtain the reaction rate without additional
approximations, but orders of magnitude faster than straight-forward molecular dynamics
(MD). Although the progress coordinate in the TIS methods [16–18] is not related to the
committor, some have argued that the committor as progress coordinate [19] would give
the best possible efficiency for these methods. However, it should be noted that there is
a crucial difference between TIS and RETIS on the one hand and FFS on the other hand
regarding the efficiency scaling. Whereas the efficiency of TIS and RETIS is relatively
insensitive to the choice of progress coordinate and outperforms standard free energy
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based methods to compute rates whenever both are based on a poor reaction coordinate,
FFS is doing worse than the standard methods in that case [20, 21]. It is interesting to
note that Ref. 19 actually refers to the phase space committor implying that the reaction
coordinate providing the most efficient sampling should be momentum-dependent, some-
thing which is very unusual. However, as shown in Ref. 21, FFS indeed requires such
momentum-dependent reaction coordinate in an underdamped one-dimensional system
while it is neither needed nor more efficient for TIS and RETIS.

The aim of our analysis method is, therefore, not finding the committor or a single
coordinate per se. Rather, it tries to identify which additional coordinates (possibly
momentum-dependent) other than the chosen reaction coordinate determine the progress
of the reaction. Though, as we will show below, in principle our method can also be used
to determine the full phase-space committor just using the data of the TIS methods. Our
chapter is organized as follows. In Section 5.2 we give the theoretical definitions that are
being used in our methodology. In Section 5.3 we show how these theoretical measures
of predictiveness can be computed using path sampling data from TIS, RETIS or FFS.
In Section 5.4, we show numerical results for a one-dimensional double well potential,
a theoretical model for an ion-transfer reaction, and an Ab Initio molecular dynamics
study of water auto-ionization. In Section 5.5 we elaborate further on the possibilities of
our methodology, in particular we discuss how the number of CVs can be reduced while
maintaining the same predictive power and how that ultimately can be used to determine
the phase space committor. We end with concluding remarks in Section 5.6.

5.2 Definitions
TIS, FFS, and RETIS are based on a partitioning of the phase space using interfaces (from
here on called TIS interfaces). Let �(x) be a progress coordinate which is in principle a
function of phase space point x. In many cases it can be taken as a geometric function
like the length of a bond that needs to be broken, the largest solid cluster in a nucleation
study, the radius of gyration for protein folding, etc. Then, the collection of phase points x
having a specific value �i form the interfaces. This implies that {x|�(x) = �i} comprises
interface number i. In the case of M + 1 interfaces, �0 = �A is placed within the
reactant well, �M = �B is placed in the product well, and the interfaces in between, �i
for 0 < i < M , are placed in the barrier region. Here, we use the subscript notation to
indicate the integer index for the TIS interfaces and a superscript to indicate a specific
value of the �-parameter. The system is then considered belonging to the overall state A
if it crossed �A more recently than �B . If there is a clear separation of time scales, the
overall states will be insensitive to the exact positioning of �A and �B as long as they
are reasonable; it is assumed that once �A or �B is crossed from the barrier region side
the system will relax to that respective state (commit). The other interfaces are placed in
order to maximize efficiency.
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Within the TIS theory, the rate constant kAB is defined as the number of transitions
from overall state A to overall state B per time unit which can be expressed as the flux
through �A times the overall crossing probability PA(�M |�0). The last term equals the
chance that the system will cross �M before �0 provided that it just crossed �0 in the
positive direction (as convention we assume that the reactant state and the product state
are situated at the left and right side of the barrier, respectively). This probability is
generally too low to be determined directly, but it can be computed by a series of path
simulations using the following relation [16]

PA(�M |�0) =
MY

i=1

PA(�i|�i�1) (5.1)

Here, PA(�i|�i�1) is the conditional probability that the system coming from �0 and then
crossing �i�1 for the first time will cross �i as well before recrossing �0 again. Naturally,
PA(�i|�i�1) will be much larger than the overall crossing probability whenever �i is
sufficiently close to �i�1 and this property can be computed by Monte Carlo walk in path
space.

We denote with X a path of L+ 1 time slices

X = {x0, x1, . . . , xL} (5.2)

where L is the path length and xk is the k-th phase point of the path, also called time
slice. We will further refer to the nomenclature of RETIS where the path ensemble [i+]
comprises the collection of trajectories with the following properties:

X 2 [i+] if:
�(x0) < �0,

�(xL) < �0 or �(xL) > �M ,

�0 < �(xk) < �M for k = 1, 2, . . . , L� 1,

�max ⌘ max[�(x1),�(x2), . . . ,�(xL)] > �i

(5.3)

We define characteristic binary functions which relate to whether X is within [i+] or not

hi(X) = 1 if X 2 [i+], 0 otherwise (5.4)

and the weight, %i(X), of a path in ensemble [i+] is given by

%i(X) = hi(X)⇢(x0)
L�1Y

k=0

p(xk ! xk+1) (5.5)

Here, ⇢ is the phase space density and p(xk ! xk+1) are the hopping probability dens-
ities; the chance that the system moves to phase point xk+1 in a single �t time step
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given that it is in xk. An ensemble average of an arbitrary path function a(X) in the [i+]
ensemble equals

ha(X)i%
i

=

R
a(X)%i(X)DXR
%i(X)DX

(5.6)

where the integral is formally equal to
R
. . .DX =

P
L=1,1

R
. . .
Q

k=0,L dxk. In prac-
tice, however, we only compute ratios of two path space integrals like the one of equa-
tion 5.6 using MC in trajectory space. In this method we collect a Markov chain of traject-
ories for specific path ensembles using MC moves (like e.g. shooting [22]) obeying de-
tailed balance %i(X(o)

)Pgen(X(o) ! X(n)
)Pacc(X(o) ! X(n)

) = %i(X(n)
)Pgen(X(n) !

X(o)
)Pacc(X(n) ! X(o)

) where X(o) and X(n) are the old and new paths, respectively,
and Pgen and Pacc are the generation and acceptance probabilities of the MC algorithm.
Equation 5.6 is then a simple average of the simulation ha(X)i%

i

⇡ 1
N

sim

P
n=1,N

sim

a(Xn)

where Xn is the n-th path sampled in the simulation and Nsim is the total number of paths.

In the following we will focus on first crossing points with interfaces as defined by our
progress coordinate. We define x�

c as the first crossing point with interface �c:

x�
c

(X) = xk 2 X if �(xk) � �c

while �(xl) < �c for all l < k
(5.7)

Naturally �(x�c

(X)) & �c, but there are many other collective variables (CVs) which
can characterize this crossing point. Let us call these coordinates  1,  2, . . . ,  N . For
instance, if �(x) is the bond length between two atoms, which needs to be broken to
establish the reaction,  1(x) could be related to the relative position of a catalyst,  2(x)
a coordinate describing the solvent structure etc. For a set of N collective variables
in addition to �(x) we denote  N

(x) = { 1(x),  2(x), . . .,  N (x)} as the vector
describing the additional collective variables. Hence, whereas �(x�c

(X)) describes the
interface that is being crossed,  N

(x�
c

(X)) describes the position within this surface
where the crossing takes place. We will therefore call  N the orthogonal coordinates,
though we should stress that this does not imply any strict orthogonality as in a Euclidean
sense. In fact, �,  1,  2, . . . , or  N do not even have to have the same dimensionality;
these can be a mix of distances, angles, integer values like the number of hydrogen bonds,
Boolean functions, etc. Also, �(x) and  N

(x) do not necessarily have to be mutually
independent. For instance,  1(x) = (�(x))2 would be a valid option. Of course, this  1

does not add any information about the system which we could not have already known
from �. However, this is a conclusion which should come out of our analysis method.
Therefore, there is not a strict need to think very carefully about possible dependencies at
this stage. We can choose  N

(x) based on our intuition; the collective variables which
we think are important for the reaction.

We will consider three interfaces, the reactant interface �A, the crossing interface �c >
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�A, and the (partial) reaction interface �r > �c. Considering all trajectories coming
from �A which cross �c, we can characterize “reactive” and “unreactive” trajectories up
to �r. The reactive ones cross �r, the unreactive ones recross �A without crossing �r.
Naturally, if �r = �B the “reactive” trajectories are then fully reactive, but for �r < �B

we get useful information about the reaction mechanism at intermediate stages of the
reaction, and probably better statistics since crossing �r < �B is less rare than crossing
�B .

In the following methodology both �c and �r can be shifted to the desired region at the
reaction barrier. As explained below, we can use the output of standard TIS, RETIS, or
FFS simulations to extract a statistically representative subset of trajectories that cross
�c. This subset can then be used to analyze the first crossing points in CV space:
 1(x�

c

), 2(x�
c

), . . . .

By constructing a grid in the collective variable space  N , we can define bins covering
the full accessible surface of the �c interface. Let q be the index of these bins. Then, of
all trajectories crossing �c let tq be the fraction of trajectories passing through bin q in
the �c surface, rq the fraction of trajectories passing through bin q and cross �r, and uq
the fraction of trajectories passing through bin q but do not reach �r (see figure 5.1).

Figure 5.1: (Color online). Visualization of reactive and unreactive trajectories passing through
bins as defined by two orthogonal CVs  1 and  2. The green trajectories are reactive up to
�r while the orange trajectory is unreactive. If we would only base our analysis on these three
trajectories we would have tq = 1/3, tq0 = 2/3 and tq00 = 0 for any other bin q00. In addition, the
reactive and unreactive distributions for bins q, q0 would be rq = 1/3, uq = 0 and rq0 = uq0 =

1/3.
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We can write down following relations

tq = uq + rq,
X

q

tq = 1,

X

q

rq = PA(�
r|�c),

X

q

uq = 1� PA(�
r|�c)

(5.8)

Depending on the CVs and grid spacing we will get different fractions of reactive and
unreactive paths in each bin. If we would be able to partition the first crossing points
such that rq/tq = 1 or rq = 0 for each bin, the predictive ability is optimal; each
time that �c is crossed for the first time, we check through which bin it passes and,
then, we would be able to say whether it will cross �r or not (assuming that there is
no problem with the accuracy of our beforehand estimated distributions r and u). In
practice this might not be possible, either because the dynamics is stochastic or because
it turns out to be too difficult to find the right CVs. In that case each bin q can have any
fractional value between zero and one for the reactive ratio rq/tq. The overall measure
of predictive power, that can be obtained from the orthogonal coordinates, must then
be a weighted average of rq/tq over q. This measure should be high if there are many
bins with rq/tq = 1. However, if only a very small fraction of the reactive trajectories
move through bin q, this will not have a large impact on the overall predictive power.
Therefore, we introduce a measure T for the CVs regarding their predictive ability which
is a weighted average of rq/tq where each bin is weighted with the fraction of reactive
trajectories passing through q:

T ⌘
X

q

✓
rqP
v rv

◆
rq
tq

=

1

PA(�r|�c)
X

q

r2q
tq

=

1

PA(�r|�c)
X

q

rq(tq � uq)

tq

=

1

PA(�r|�c)
X

q

rq �
1

PA(�r|�c)
X

q

rquq
tq

= 1� 1

PA(�r|�c)
X

q

rquq
tq

⌘ 1� S (5.9)

In continuous space, S is the overlap integral of the reactive and unreactive distributions.

S�c,�r

A [ 

N
] =

1

PA(�r|�c)

Z ✓
r�

c,�r

( 

N
)u�

c,�r

( 

N
)

t�c

( 

N
)

◆
d 

N (5.10)

The overlap S�c,�r

A will depend on the selection of CVs which are functions of phase
space x. Hence, S�c,�r

A is a functional of  N
(x). The highest possible predictive ability
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is obtained by finding the collective variables that minimize the overlap

S�c,�r

A,0 =

1

PA(�r|�c)
⇥

min

 N

Z ✓
r�

c,�r

( 

N
)u�

c,�r

( 

N
)

t�c

( 

N
)

◆
d 

N

�
(5.11)

and we call the corresponding collective variables  N
min

S�c,�r

A [ 

N
min] = S�c,�r

A,0 (5.12)

The N
min variables are in general not unique. For instance, if 1(x) is a distance between

two atoms, we could as well have taken the squared distance. Similarly, we could add
or remove CVs to total set of CVs which have no correlation with reactivity. These
operations will not change the overlap value. However, since our goal is to gain insight
and to provide inspiration how to steer chemical reactions, the ideal set of orthogonal
coordinates are those that minimize S�c,�r

A and are also intuitive; e.g. based on known
concepts such as number of hydrogen bonds, radii of gyration, nucleus size etc.

In the case that the CVs do not correlate with reactivity: PA(�r|�c, N
) = PA(�r|�c).

In other words, the chance to cross �r after crossing �c is independent of where the first
crossing with �c takes place in the  N space. This might either indicate that the CVs
were badly chosen or because the �c surface is an iso-committor surface with respect
to �r. The former implies that these specific CVs do not improve predictivity, while
the latter implies that there simply are no CVs which potentially could improve the pre-
dictive power. For both cases, the absence of correlation implies that r�c,�r

( 

N
) =

PA(�r|�c)t�
c

( 

N
), u�

c,�r

( 

N
) = [1� PA(�r|�c)] t�

c

( 

N
). Substitution in equa-

tion 5.10 gives S�c,�r

A [ 

N
] = 1� PA(�r|�c) and T �c,�r

A = PA(�r|�c). In other words,
 

N does not provide more information which can help us to tell whether �r will be
crossed or not. Based on the fact that we observe an effective positive crossing with �c,
we know already that the chance of a (partial) reaction is PA(�r|�c). Any knowledge
about the orthogonal space expressed in the CVs  N does not increase the quality of our
predictions. Of course, if �c is sufficiently beyond the transition state PA(�r|�c) = 1.
Hence, we can still have a high predictive power. However,  N does not improve it
and T �c,�r

A /PA(�r|�c) will be equal to one. Therefore, T �c,�r

A is a useful measure of
predictive capacity using all information (both �c and  N ) while T �c,�r

A /PA(�r|�c) is
a measure of the enhancement of predictive capacity due to the information of the selec-
ted orthogonal coordinates. Note that T �c,�r

A  1 and T �c,�r

A /PA(�r|�c) � 1, which
basically means that predictions can never be more than 100% correct and additional
information on  N can never be harmful for the predictive power.

Since, the path sampling data allow computing the overlap for different values of �c and
�r, these functions can be plotted for the full range, �A  �c < �B and �c  �r < �B ,
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in order to provide information about the predictive power of the CVs  N at each stage
of the reaction. Numerical examples showing such plots are given in Section 5.4.

5.3 Path Reweighing
In this section we will show how the results from TIS, FFS, or RETIS can be used
to compute S�c,�r

A [ 

N
] for a predefined set of CVs. As mentioned above, these path

sampling methods for computing reaction rates consist of a series of simulations. Each
simulation samples a so-called path ensemble. The [i+] path ensemble consists of tra-
jectories that start at �A, cross �i at least once, and then might end at either �A or
�B . In TIS, RETIS, and FFS different path simulations sample the different ensembles
[0

+
], [1+], . . . [(M � 1)

+
]. In addition, TIS and FFS also require a short MD simulation

initiated from the reactant state while RETIS employs an extra path ensemble [0�]. These
will not be part of our analysis and in the following, when referring to the i-th simulation,
we mean the simulation exploring the [i+] path ensemble.

Hence, from the trajectories generated in the i-th path ensemble, we can in principle
straightforwardly determine S�c,�r

A [ 

N
] for �c = �i. We simple gather the effective

crossing points with �i and from these we can construct histograms for t�c , r�c,�r , and
u�

c,�r in the  N space choosing appropriate bin widths, and by checking whether the
trajectories cross �r or not. Once the histograms are constructed, integrations of equa-
tion 5.10 can be carried out to obtain S�c,�r

A and T �c,�r

A .

However, we would like to determine S�c,�r

A [ 

N
] or T �c,�r

A [ 

N
] on the full range and

not restrict �c to any of the TIS interfaces. In addition, we would also like to combine
all data of the different path simulations to reduce statistical errors, especially if crossing
�r from �c is a rare event. We can achieve this by path reweighting [23] based on the
weighted histogram analysis method (WHAM) [24–26].

For convenience, we introduce following notation for the multidimensional Dirac delta
function in CV space

��
c

( 

0N , X) ⌘
NY

m=1

�( m(x�
c

(X))� 0
m) (5.13)

Now, suppose that �c = �i and �r = �j are both identical to one of TIS interfaces. Then
we can write for r�i

,�
j :

r�i

,�
j

( 

N
) =

D
hj(X)��i

( 

N , X)

E

%
i

=

R
%i(X)hj(X)��i

( 

N , X)DXR
%i(X)DX

(5.14)

Then, using that for j > i: hi(X)hj(X) = hj(X) or %i(X)hj(X) = %j(X), we can
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rewrite the above expression to get an ensemble average in [j+] ensemble.

r�i

,�
j

( 

N
) =

✓R
%j(X)��i

( 

N , X)DXR
%j(X)DX

◆✓R
%i(X)hj(X)DXR

%i(X)DX

◆

=

D
��i

( 

N , X)

E

%
j

PA(�j |�i) (5.15)

Here, PA(�j |�i) is a known result from the interface path sampling simulation since the
computation of the full crossing probability PA(�|�0) is a central output to the TIS, FFS,
and RETIS and PA(�j |�i) = PA(�j |�0)/PA(�i|�0). In principle, also the data of the
other path ensembles can be used to obtain r�i

,�
j since for any k < j:

r�i

,�
j

( 

N
) =

D
��i

( 

N , X)hj(X)

E

%
k

PA(�k|�i) (5.16)

The ensembles [k+] with k > j can by itself not be used to fully compute the r�i

,�
j dis-

tribution, but still these data can be used to reduce its statistical errors. WHAM [24–26]
provides a way to take a weighted average of the distributions which have been obtained
using different bias functions (also called windows). That is, for an arbitrary parameter
⇠(x) the most accurate distribution that can be obtained from the different biased simu-
lations is

⇢(⇠) =

PN
w

i=1 !i(⇠)⇢unb.i (⇠)
PN

w

j=1 !j(⇠)
(5.17)

Here Nw is the number of windows and ⇢(⇠)unbi is the unbiased distribution of simulation
i. This is the distribution after proper rescaling to remove the effect bias. Further, !i are
weights depending on ⇠, chosen to be proportional to inverse square of the estimated
error in each simulation.

As shown in the appendix, also the crossing probability itself can then be expressed using
WHAM:

PA(�|�0) =
PK(�)

i=0 ni[�]
PK(�)

j=0 nj [PA(�j |�0)]�1
(5.18)

Here ni[�] is the number of trajectories in simulation i having a �max > �, nj is the total
number of trajectories in simulation j, and K(�) is the integer which fulfills

K(�) =

(
k if �k < �  �k+1 and � < �B

M � 1 if � > �B
(5.19)

The maximum of M �1 is due to the fact that there is generally not a simulation that just
considers the [M+

] ensemble since it gives the trivial unit contribution in the product
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expression, equation 5.1. Equation 5.18 can be solved iteratively and is presumably
somewhat more accurate than equation 5.1 since it is based on more data. If nj is equal
for all simulations, then equation 5.18 is identical to the crossing probability derived
by Rogal et al. [23] in a different manner. In our derivation (see appendix) we also
provide two refinements of the above expression. One is standard and appears also in
e.g Roux [26] and is related to the effect of correlated trajectories which might be more
severe in some of the simulation than in the others. Another refinement, that is non-
standard, is related to the non-negligible size of the bins in the determination of crossing
probability. The use of more refined expressions is not always preferred since they rely
on the facts that errors can be obtained accurately while, in practice, simulations which
tend to get trapped for a long time can provide artificially low standard deviations. In
the refined expression these simulations could get the highest weights and overwhelm
the more converged results of the other simulations. We have therefore used the simpler
expression, equation 5.18, in the remainder of this chapter.

In order to obtain our distributions t�c

q , r�
c,�r

q , and u�
c,�r

q we first compute the following

ensemble averages
D
H [�a:�b]

q,�c

E

%
0

in which H [�a:�b]
q,�c

(X) is 1 (otherwise 0) if and only if

trajectory X passes through bin q on the �c surface while �max(X) is inside the interval
[�a : �b]. Moreover, we restrict ourselves to intervals which do not overlap with any of
the TIS interfaces. In other words �b  �K(�a)+1. Then for any i  K(�a):

D
H [�a:�b]

q,�c

E

%
0

=

R
H [�a:�b]

q,�c

%0(X)dX
R
%0(X)dX

=

R
H [�a:�b]

q,�c

%i(X)dX
R
%i(X)dX

R
%i(X)dXR
%0(X)dX

=

D
H [�a:�b]

q,�c

E

%
i

PA(�i|�0) (5.20)

Here we used the relation H [�a:�b]
q,�c

%0 = H [�a:�b]
q,�c

%i valid for �i < �a. Hence, this prop-
erty can be determined using different interface ensemble simulations. As shown in the
appendix, the WHAM weights which are assumed to minimize the error equals

!i =
[PA(�i|�0)]�1

PK(�a)
j=0 [PA(�j |�0)]�1

(5.21)

This implies that the WHAM expression equals

D
H [�a:�b]

q,�c

E

%
0

=

PK(�a)
i=0 ni(q,�c; [�a : �b])

PK(�a)
j=0 nj [PA(�j |�0)]�1

(5.22)
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where ni(q,�c; [�a : �b]) is the number of trajectories in simulation i moving through
bin q at its first crossing with �c and having �max in the interval [�a : �b].

Our distributions can then be constructed from these since
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if �r > �K(�c)+1 (5.23)

where �M+1 = 1. Now, by rescaling we obtain the actual distributions

r�
c,�r

q =

R�c,�r

q

PA(�c|�0)
, u�

c,�r

q =

U�c,�r

q

PA(�c|�0)
(5.24)

5.4 Numerical Results
In this section we will give a detailed description of the implementation for calculating
the crossing probability and distribution functions. We will also exemplify the method
by applying it to three systems we have studied with RETIS simulations.

5.4.1 Implementation

The Crossing Probability

In order to obtain the distribution functions using WHAM we need, first of all, to obtain
the crossing probability. This can be done using the product expression, equation 5.1, or
the more accurate expression based on WHAM, equation 5.18. We will discuss the last
one. The first step is to obtain the values of the crossing probability at the TIS interfaces.
Setting PA(�0|�0) = 1 gives directly

PA(�1|�0) =
n0(�1)

n0
(5.25)

or simply the number of trajectories in simulation 0 crossing �1 divided by the total
number of trajectories in simulation 0. The next interface gives

PA(�2|�0) =
n0(�2) + n1(�2)

n0 + n1 [PA(�1|�0)]�1 (5.26)
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and so we can continue determining PA(�3|�0), PA(�4|�0), . . ., PA(�M |�0). For con-
venience we define

Qk ⌘ 1

Pk
j=0 nj [PA(�j |�0)]�1

(5.27)

and the crossing probability for any continuous value � is then obtained by a simple
summation which includes all trajectories X in all path sampling data of ensembles i =
0, 1, . . . ,M � 1

PA(�|�0) = QK(�)

K(�)X

i=0

ni[�] (5.28)

= QK(�)

M�1X

i=0

ni[�]✓(�� �i)

= QK(�)

M�1X

i=0

X

X2[i+]

✓(�max(X)� �)✓(�� �i)

with ✓(·) being the Heaviside step function.

In an actual computer algorithm, PA(�|�0) is computed using a small step-size along
the �-parameter which define a fine grid of sub-intervals. Let v(↵) be the vector for
determining PA(�|�0) on this fine grid such that ↵ is an index of the sub-interface �↵

and v(↵) = PA(�↵|�0) after completion of the algorithm. We can then determine the
full vector v as follows:

1. Set all entries of v(↵) equal to 0: v(↵) = 0.

2. Loop over all data sets corresponding to the path ensembles i = 0, 1, . . . ,M � 1,
and for each trajectory X in data set i:

2.1. Determine �max(X).

2.2. For each ↵ where �i  �↵ < �max(X), increment v(↵): v(↵) = v(↵) + 1

3. For each ↵ determine K(↵) and QK(↵) and multiply this with the vector entry:
v(↵) = v(↵)⇥QK(↵).

Probability Distribution Functions

We can also determine the probability distribution function u�
c,�r

q , r�
c,�r

q based on equa-
tions 5.22-5.24 using a single loop over all trajectories. Substituting equation 5.27 into
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equation 5.22 yields

D
H [�a:�b]

q,�c

E

%
0

= QK(�a)

K(�a)X

i=0

ni(q,�
c
; [�a : �b])

= QK(�a)

M�1X

i=0

ni(q,�
c
; [�a : �b])

=

M�1X

i=0

X

X2[i+]

QK(�
max

)�q,�c

⇥ ✓(�a � �max)✓(�max � �b) (5.29)

where �q,�c is 1 (otherwise zero) whenever X has a first crossing through bin q at the �c

surface. In the second equation we used the fact that we only consider intervals [�a : �b]
that are not overlapping with the TIS interfaces. This implies that �b < �K(�a)+1 and,
hence, ni(q,�c; [�a : �b]) = 0 for any i � K(�a)+1. In the third expression we use that
whenever �max(X) is within this interval [�a : �b], we must have K(�a) = K(�max).
Equation 5.29 shows that

D
H [�a:�b]

q,�c

E

%
0

can be expressed as a sum over all trajectories

without considering the actual simulation i it was taken from. The values to be summed
are either zero or QK(�

max

). A non-zero contribution can only occur whenever �max is
within the interval [�a : �b]. Now let us consider equations 5.23. To calculate R�c,�r

q and
U�c,�r

q we need to add
D
H [�a:�b]

q,�c

E

%
0

for different intervals and since these intervals are

not overlapping, each X can only give a contribution 0 or QK(�
max

) to the total sum as
well. The non-zero contribution occurs whenever there is a first crossing through bin q
and �max is within [�c : �r] for U�c,�r

q and whenever �max is larger than �r for R�c,�r

q .
Now, let Mu(q,↵,�) and Mr(q,↵,�) be the matrices used to construct the u�

↵,��

q and
r�

↵,��

q distributions, respectively, where ↵,� are indices of the fine grid along �. The
computational algorithm is then as follows:

1. Set all entries of matrices Mu(q,↵,�) and Mr(q,↵,�) equal to 0.

2. Loop over all data sets corresponding to path ensembles i = 0, 1, . . .M � 1, and
for each trajectory X in data set i:

2.1. Determine �max and QK(�
max

).
2.2. For each ↵ such that �↵ < �max:

– Determine x�
↵ and the corresponding bin q.

– For each � such that �� > �max, add QK(�
max

) to the entries of Mu(q,↵,�):
Mu(q,↵,�) = Mu(q,↵,�) +QK(�

max

).



5.4. Numerical Results 105

– For each � such that ��  �max, add QK(�
max

) to all entries of Mr(q,↵.�):
Mr(q,↵,�) = Mr(q,↵,�) +QK(�

max

).

3. For each ↵, apply for all � and q the normalizations Mr(q,↵,�) =

Mr(q,↵,�)/v(↵) and Mu(q,↵,�) = Mu(q,↵,�)/v(↵). The normalized matrices
Mr and Mu are now estimates of the distributions r�

c,�r

q and u�
c,�r

q , respectively.

The fine grid along � does not have to be commensurate with the TIS interfaces. The
accuracy is not affected by the spacing between the sub-interfaces unlike the binning in
the orthogonal directions; The bins q have to be sufficiently large in order to determine
the path density going through it, while still be sufficiently small enough to get enough
resolution in order to discriminate between rq and uq.

5.4.2 Numerical Example 1: 1D Double Well Potential

The 1D double well potential, V (r) = r4�2r2, models the transition for a single particle
between two stable states (located at r ± 1) separated by a barrier (at r = 0) [21]. The
progress coordinate is in this case given by the position of the particle in the potential:
� = r. We have investigated the transition between the two stable states using RETIS
simulations under Langevin dynamics with a friction coefficient � = 0.3 and a reduced
temperature of 0.07 as described in Ref. 21.

Two additional collective variables have been considered for our analysis: (1) the velocity
of the order parameter v = d�/dt and (2) the random Langevin force averaged over 9
steps (labeled “9rf”) after the crossing. The use of the second parameter might be viewed
as a not completely "fair" way to improve predictions since it assumes that, after crossing
�c, one already knows which random numbers will be generated for the stochastic force.
Still, it is a CV that we can use in a computer experiment in order to measure the balance
of initial conditions at the crossing before the reaction takes place and the stochastic
contributions during the course of the reaction. The use of velocity is also not a common
parameter in reaction coordinate analysis studies. Notably exceptions are Ref. 27, 28
in which not the configurational committor but the transmission coefficient selected to
choose the reaction coordinates.

The first collective variable, v, is expected to improve the predictive capacity for small
values of � when the dynamics is largely deterministic, while the second, “9rf”, may
improve the predictive capacity for stochastic dynamics resulting from a large friction
coefficient �. In figure 5.2, we show the crossing probability and the predictive capacit-
ies for the three combinations of collective variables ({v}, {9rf}, {v, 9rf}). These results
show that the predictive capacity is largely improved by inclusion of the collective vari-
able v, but only minimally with the inclusion of 9rf. This shows that the chance for a
barrier crossing is much more determined by the right initial conditions than by a rare
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Figure 5.2: (Color online.) The crossing probability, PA(�r|�c), and the predictive capacities,
T �c,�r

A , for the 1D double well potential: (top left) the crossing probability, (top right) the predict-
ive capacity using the velocity (v) of the progress coordinate as the collective variable, (bottom
left) the predictive capacity using the random Langevin force averaged over 9 steps (“9rf”) as
the collective variable, (bottom right) the predictive capacity using both v and 9rf as collective
variables. We used 200 sub-interfaces both for �r and �c. The histograms in the  N space were
constructed using 20 bins for �2 < v < 2 and 20 bins for �3 < 9rf < 3.

sequence of random kicks during the barrier crossing process. This is also the reason that
FFS is not able to predict the crossing rate in an adequate manner [21].

A closer inspection (see figure 5.3) shows that the predictive capacities can be increased
by several orders of magnitude due to the knowledge of v. The use of 9rf as CV only
improves the predictions by 4% as is shown in the inset of the top panel.

5.4.3 Numerical Example 2: Ion Transfer Model in a Solvent

This example models the ion transfer reaction Ax + A ! A + Ax where an ion, x is
transferred between two molecules of the same type, A. The reaction takes place in a
solvent (molecules of type B) which may reduce the barrier due to a cooperative effect.
For the detailed description of the potential and the interactions, please see Ref. 29.

The ion is initially bound to one of the A molecules (labeled “A1“) and it is transferred
to the other (labeled A2) over the course of the reaction. The progress coordinate, �, is
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Figure 5.3: (Color online.) The crossing probability, PA(�r|�c), and the predictive capacities,
T �c,�r

A , for the double well potential at (top) �c = �0.9 and (bottom) �r = 1. The position of the
interfaces used in the RETIS simulations are indicated with dotted vertical lines. In both cases we
find that T �c,�r

A [v, 9rf] > T �c,�r

A [v] >> PA(�r|�c) and T �c,�r

A [9rf] > PA(�r|�c) and in the in-
set in the top figure we show the enhancement of the predictive capacity, T �c,�r

A [9rf]/PA(�r|�c),
when using 9rf alone as the collective variable.

defined using the distance, rx,A
2

, between x and A2:

� = �rx,A
2

(5.30)

where the minus sign ensures that the progress coordinate changes from a low value to a
high value while the ion transfer advances. The reactant state is defined by �A = �0.7
and the product state by �B � 0.4.

For our analysis we have defined two additional collective variables: (1) the velocity,
v, of the progress coordinate (v = d�/dt), and (2) the coordination number, CN , for
solvent molecules surrounding the ion, defined by

CN =

X

j2{type B}

1

1 + exp

⇥
Nd
�
rx,j �Rcoop

�⇤ (5.31)

where rx,j is the distance between the ion and solvent molecule j and Rcoop and Nd are
parameters of the potential [29]. Like in the previous example, we expect the velocity v
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Figure 5.4: (Color online.) The crossing probability, PA(�r|�c), and the predictive capacities,
T �c,�r

A , for the ion transfer potential: the crossing probability (top left), the predictive capacity
using the velocity (v) of the progress coordinate as the collective variable (top right), the pre-
dictive capacity using the coordination number (CN ) as the collective variable (bottom left), the
predictive capacity using both v and CN as collective variables (bottom right). We used 85 sub-
interfaces both for �r and �c. The histograms in the  N space were constructed using 20 bins
for 0 < CN < 3 and 20 bins for �45 < v < 25. The circles placed on the �r and �c axes in
the bottom left figure indicate points where we have obtained the distributions in the CN space,
shown in figure 5.5 and 5.6

to be important if the crossing process is largely non-stochastic. This would be the case if
the typical collision time with solvent molecules is larger than the time required to cross
the reaction barrier. For dense systems, we expect that the second collective variable will
be more important as it’s directly linked to the height of the barrier [29].

In figure 5.4 we show the crossing probability and the predictive capacity for the three
combinations of collective variables ({v}, {CN}, {v, CN}) using results from a RETIS
simulation carried out as described in Ref. 29. In this case, we see that both variables im-
prove the predictive capacity. However, the coordination number improves the predictive
capacity more than the velocity of the progress coordinate. The distributions t�c,�r

(CN),
r�

c,�r

(CN), and u�
c,�r

(CN) for some of the �c,�r values are shown in figures 5.5
and 5.6. Figure 5.5 shows the distributions with �c = �A and different values for �r,
while figure 5.6 shows the distributions for �r fixed at �B and different values for �c.
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Figure 5.5: (Color online.) Distribution of t�
c,�r

, r�
c,�r

and u�c,�r

using the coordination
number (CN ) as the collective variable for �c = �0.7 and �r = �0.66 (top-left), �r = �0.63
(top-right), �r = �0.60 (bottom-left) and �r = �0.4 (bottom-right). For the analysis, we used
22 sub-interfaces both for �r and �c, and the distributions shown here were obtained using 50

bins for 0 < CN < 3.

The values correspond to the black dots in the left-bottom panel of figure 5.4. Figure 5.5
shows a clear cross-over for increasing �r. For �r values close to �c = �A, the reactive
distribution r�

c,�r

(CN) is almost identical to the total distribution t�
c,�r

(CN). How-
ever, when �r is moved towards �B the unreactive distribution increases at the expense
of the reactive distribution. Despite, as shown by the insets, the reactive distribution is
always higher at the large coordination numbers.

Figure 5.6 shows an opposite trend regarding the height of the distributions. The unreact-
ive distribution is initially the largest but for increasing �c the reactive distribution rises
at the expense of u�c,�r

(CN). At large coordination numbers, the reactive distribution
is always the largest just as in figure 5.5.

Figure 5.7 shows the intersections of figure 5.4 corresponding to a fixed �c = �0.7 and a
fixed �r = �0.4. The results clearly show that the coordination number is a much better
indicator for the ion-transfer reaction than the velocity along the reaction coordinate �.
Still, having knowledge of both parameters will improve the predictive capacity slightly
more compared to the situation in which one only knows CN .
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Figure 5.6: (Color online.) Distribution of t�
c,�r

, r�
c,�r

and u�c,�r

using the coordination
number (CN ) as the collective variable for �r = �0.4 and �c = �0.70 (top-left), �c = �0.60
(top-right), �c = �0.53 (bottom-left) and �c = �0.40 (bottom-right). For the analysis, we used
22 sub-interfaces both for �r and �c, and the distributions shown here were obtained using 50

bins for 0 < CN < 3.

5.4.4 Numerical Example 3: Ab Initio MD of Water Dissociation

For this example, we have performed RETIS simulations of dissociation of water at
a low density. Water was modeled with the BLYP functional [30, 31] and a DZVP-
MOLOPT basis set [32]. A plane-wave cut-off of 300 Ry was used and the simulations
were performed at a low density with 8 water molecules in a cubic simulation box of
9.85 ⇥ 9.85 ⇥ 9.85 Å3. Periodic boundary conditions were employed in all directions.
The DFT-based MD simulations were carried out using the CP2K program package [33]
with a time step of 0.5 fs and NVE dynamics. Shooting moves were performed by ran-
domly reselecting the velocities at the shooting point from a Maxwellian distribution
corresponding to a temperature of 600 K.

The progress coordinate was defined using the distances between oxygen and hydrogen
atoms. We first assign each hydrogen to the oxygen atom it is closest to. This allows us
to classify molecules, e.g. as H2O, H3O+ or OH�, and calculate bond lengths between
hydrogen and oxygen. If the system only contains H2O molecules, the progress coordin-
ate is defined as the longest hydrogen-oxygen bond length. If the system contains H3O+

and OH� species, the order parameter is taken as the shortest distance from the oxygen
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Figure 5.7: (Color online.) The crossing probability, PA(�r|�c), and the predictive capacities,
T �c,�r

A , for the ion transfer potential at (top) �c = �0.7 and (bottom) �r = �0.4. The position
of the interfaces used in the RETIS simulations are indicated with dotted vertical lines.

in OH� to a hydrogen in H3O+.

For this example, we have considered one additional collective variable defined as the
length, w, of the shortest hydrogen bond wire connecting 4 water molecules/species
where one of the species contain the oxygen atom used for the progress coordinate.
Hassanali et al. [34] highlighted the importance of compression of such wires for the
recombination reaction and hypothesized that a similar phenomena is likely to be the
rate-limiting step for autoionization. In order to obtain the hydrogen bond wire length,
we first obtained all hydrogen bonds (defined as in Ref. 35) in the system and used this
to create a graph of hydrogen-bond connected water molecules. The relevant hydrogen
bond wire was obtained using the following criteria: (i) The wire should contain the oxy-
gen atom used for the order parameter (identified as explained above) when the order
parameter first crossed the 1.15 interface, (ii) the wire should contain 4 water molecules,
(iii) the wire should be the shortest of the wires where criterion (i) and (ii) is met. The
length of the wire was defined as the sum of the oxygen-oxygen distances of consecutive
molecules in the wire.

The results of including this additional collective variable are shown in figure 5.8. The
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Figure 5.8: (Color online.) The crossing probability, PA(�r|�c), and the predictive capacity,
T �c,�r

A , for the ab initio water simulations: (top left) the crossing probability, (top right) the pre-
dictive capacity using the hydrogen bond wire length (w) the collective variable (see the main
text for the definition of this quantity), (bottom left) the enhancement of the predictive capacity,
T �c,�r

A [w]/PA(�r|�c), (bottom right) the predictive capacity and crossing probability as a func-
tion of �r for �c = 1.05 (positioned at the leftmost interface; the position of the interfaces used in
the RETIS simulations are indicated with dotted vertical lines). We used 200 sub-interfaces both
for �r and �c. The histograms in the  N space were constructed using 50 bins for 7 < w < 11.

values of T �c,�r

A [w], show that the dissociation reaction involves rare fluctuations in the
hydrogen bonded network and as shown in the bottom-left and bottom-right figures, in-
cluding the hydrogen bond wire length improves the predictive capacity compared by
several orders of magnitude.

5.5 Reduction of CVs and Relation to the Isocommittor
Whenever a predictive set of CVs is obtained with a relatively low overlap value
S�c,�r

A [ 

N
] for a certain set of interfaces �c,�r, one can attempt to reduce the number

of CVs without raising the overlap value. The idea is graphically illustrated in figure 5.9
where we show how a two-dimensional CV-space can be projected on a single coordinate.
In the figure the best possible one-dimensional coordinate is given as a linear combination
of the previously examined coordinates  1 and  2. This approach can also be used to
construct coordinates that are non-linear functions of the original CVs. However, in some
cases it might be preferred to project on a more simple coordinate even if it is not the best
one in terms of minimizing the overlap since the more complex functional form might be
less intuitive.
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Figure 5.9: (Color online). Reduction of a set of CVs having a low overlap. Let red represent the
distribution r�

c,�r

( 1, 2) and blue u�c,�r

( 1, 2) where  1, 2 are two CVs. By selecting
 1 as a single one-dimensional coordinate the projected distributions still show little overlap
while the coordinate  2 is a much poorer choice since the projected distributions r�

c,�r

( 2) and
u�c,�r

( 2) will almost fully overlap. The optimal coordinate is shown by a yellow arrow and
corresponds to the linear combination c1 1 + c2 2 where c1 and c2 are two constants.

The projection procedure can, in principle, also be used to find the committor, at least if
sufficient path data is available. Suppose that we use the full phase space as orthogonal
coordinates ( N

= x) and take �r = �B . In that case r�
c,�B

(x)/t�i

(x) = PB(x) where
PB(x) is the phase space committor. For the overlap integral we get

S�c,�B

A [x] =
1

PA(�B|�c)

Z

�c

dx t�
c

(x)PB(x)(1� PB(x)) (5.32)

Suppose we bin the full phase space such that the integral can be solved numerically as

S�c,�B

A [x] =
dx

PA(�B|�c)
X

q

s(xq) (5.33)

where

s(xq) =
r�

c,�B

(xq)u�
c,�B

(xq)

t�c

(xq)

= t�
c

(xq)PB(xq)(1� PB(xq)) (5.34)

is the unnormalized contribution of bin q belonging to phase point xq. Naturally, the
contribution to equation 5.33 of two bins corresponding to phase points x1 and x2 is
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given as

s(x1) + s(x2) = (1� PB(x1))PB(x1)t(x1)

+ (1� PB(x2))PB(x2)t(x2) (5.35)

Now, our projection operations can basically be viewed as a process in which two or
more bins are merged into a single bin in the reduced coordinate space. After merging
these two bins we can write for the collective bin

s(x1 + x2) =
(r(x1) + r(x2)) (u(x1) + u(x2))

t(x1) + t(x2)
(5.36)

=

✓
(1� PB(x1))t(x1) + (1� PB(x2))t(x2)

t(x1) + t(x2)

◆

⇥
✓
PB(x1)t(x1) + PB(x2)t(x2)

t(x1) + t(x2)

◆
(t(x1) + t(x2))

The difference between equation 5.36 and equation 5.35 is

s(x1 + x2)� s(x1)� s(x2) =✓
(PB(x1)� PB(x2))2t(x1)t(x2)

t(x1) + t(x2)

◆
(5.37)

Naturally, this difference is always positive except if PB(x1) = PB(x2), then it is zero.
Therefore, any projection will increase the overlap unless it is done such that phase points
having the same committor end up in the same bin after the projection. In other words,
if after the projection only a single orthogonal coordinate is left while the overlap has
not increased, then all points having the same value for this orthogonal coordinate must
have the same committor value. As such, we basically obtain an intersection of the
committor surfaces with the �c plane and the final one-dimensional  is a descriptor of
this committor.

5.6 Conclusions
We devised a quantitative analysis method for identifying reaction mechanisms and ini-
tiation conditions for reactive events. The analysis is performed on the path sampling
data that are already produced by path sampling simulations for computing reaction rates
such as TIS [16], RETIS [17], and FFS [18]. Hence, a big advantage of our technique
is that it does not require additional simulations which is generally needed for other ana-
lysis methods such a committor analysis. Also, our method does not require intensive
iterations such as in the FFS-least-square estimation for determining the committor on-
the-fly as linear or a polynomial function of predefined CVS during a FFS simulation. In
contrast, our approach is a pure a posteriori method that can be applied after the simu-
lation is finished, which allows for testing any possible set of CVs, which could either
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come from intuition after analyzing molecular trajectories or even from machine learning
techniques.

Another advantage is that it is very flexible and also allows identifying momenta depend-
ent variables which might be crucial steps in the reaction mechanism. The main idea is to
determine probability distributions of first crossing points along order parameters ortho-
gonal to the chosen reaction coordinate. Each plane with points having the same value
of the reaction coordinate, also called interface, can be used to collect the first crossing
points. Another plane further towards the product state can be used to set a condition
of partial reactivity. Trajectories from the first crossing points with the first plane might
or might not cross the plane defining partial reactivity. Based on this, the first cross-
ing points are categorized and define “reactive” and “unreactive” distributions. Then, a
simple overlap integral defines how well the orthogonal coordinates can help in the pre-
diction of reactivity or not. Since crossing the full barrier can be a rare event, we showed
how reweighting techniques can be used based on WHAM [24–26] to improve statistics.
Moreover, the number of orthogonal coordinates can be reduced by applying projection
operations which keep the overlap to its minimum. The latter approach, in principle, can
also be applied to determine the phase space committor. We are aware that the analysis
method described here, possibly with some adaptations, could be used in a wide range
of different scientific fields such as economics and social sciences. Certainly, this is not
the first method that tries, based on available data, to early identify events or parameters
which possibly could predict whether something happens or not. One of such techniques
is determination of receiver operator characteristic curves [36, 37] which is a common
method in signal detection theory. These methods, although having similar aims, are
based on a rather different mathematical formulations to measure the quality of predict-
iveness of some parameters. In addition, it would be very instructive to compare the kind
of information that can be subtracted from the predictive power method, described in this
chapter, and the information obtained from likelihood maximization [4, 5]. We plan to
analyze possible analogies of these approaches in a future study.

The approach presented here allows one to get more valuable data from path sampling
simulations and provides a mean to analyze reaction mechanism in a quantitative way.
This output is likely to unravel hidden initiation events. Knowledge of these can then be
exploited for designing new synthesis routes in which either new products are made or
existing chemicals are generated with a lower energy cost or impact on the environment.
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Appendix

5.A WHAM Approach for Path Sampling
The WHAM methodology is well explained in previous publications [24–26] and also
the WHAM approach applied on path sampling simulations have been reported before.
The derivation that we give here is, however, slightly different than reported elsewhere.
We give it here for completeness and to show that the WHAM weights can be optim-
ized using non-standard terms. These terms come in addition to the terms depending
on the correlation number, which are standard but often omitted. Whether these more
refined weights should be applied or not will mainly depend on the accuracy of the path
simulations.

The WHAM approach is based on the idea that whenever different simulations produce
the same output, the best numerical result should be a weighted average of these outputs
in which the weights have to chosen in order to minimize the overall error. One way to
derive these weights is to write an general expression of the overall error for arbitrary
weights. The optimizing set of weights can then be found by minimizing this expression
with respect to the weights under the condition that the sum of weights must be equal
to one. Intuitively we can, however, also use the following argument. Suppose there are
two simulations with different simulation lengths computing the same average. If the
two simulations are equally efficient, it is obvious that the best overall result is obtained
by taking a weighted average in which the weights are taken to be proportional to the
simulation length. Reversely, since the error scales as the inverse square root of the
simulation length, it makes sense to weight different types of simulations, possibly using
different algorithmic approaches or biases, with the inverse square of their error: !i /
✏�2
i .

Now, consider a certain probability p(⇠) which is for instance the probability that the

117
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system is within a bin as defined by the order parameter ⇠. To improve the statistics we
can apply biases in the sampling and unbias the results using a proper rescaling.

punb.i (⇠) = Yi(⇠)p
b.
i (⇠) (5.38)

where pb.i is the biased distribution of simulation i and Yi is the ⇠-dependent scaling
factor to obtain the i-th realization of the unbiased distribution punb.i . If we assume that
Yi(⇠) can be viewed as a constant not bearing any error, then the error in punb.i is simply
✏(punb.i ) = Yi✏(pb.i ). Moreover, since the calculation of punb.i (⇠) is generally related
to the average of a binary function (being 1 if the system visits the bin at ⇠ and zero
otherwise), we can use the well known expression for its error (see e.g. [20, 38])

✏(pb.i (⇠)) =

s
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(5.39)

Here, Ni is the effective correlation (also called statistical inefficiency) and
n0
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where we used equations 5.38 and 5.39 and the fact that punb.i (⇠) should be similar for all
i since these values should converge for each simulation to the true unbiased distribution
⇢(⇠).

Hence, the weighted average, equation 5.17, equals
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j n
0
jY
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(5.41)

where n0
i[⇠] is the effective number of cycles in simulation i that visit bin ⇠. Here, effect-

ive means that one counts all the cycles visiting bin ⇠ but finally divides this number by
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Ni
�
(1� pb.i (⇠)

�
. The reduction of ni and ni[⇠] with the correlation is standard though

often omitted. Although Ni can be large, it cancels out in Eq 5.41 if the correlation num-
ber is similar for all i. The other factor

�
(1� pb.i (⇠)

�
can generally be omitted whenever

the bin-width is small enough such that pb.i (⇠) ⌧ 1.

Now let us come back to the crossing probability. For PA(�|�0) we can write:

PA(�|�0) = h✓(�max(X)� �)i%
0

(5.42)
= h✓(�max(X)� �)i%

i

PA(�i|�0) for any i < K(�)

where, in the second step, we applied a similar mathematical operation as the one in
equation 5.20. Now, we can use equation 5.41 in which we replace Yi with PA(�i|�0)
and replace the bin around ⇠ with an extended interval [� : 1] for �max:

PA(�|�0) =

PK(�)
i=0 n0

i[�]PK(�)
j=0 n0

j [PA(�j |�0)]�1
(5.43)

where
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(5.44)

is the number of generated paths in simulation i reduced by a factor proportional to the
statistical inefficiency and the fraction of trajectories with �max < �. Similarly,

n0
i[�] = n0

i h✓(�max(X)� �)i%
i

(5.45)

is the number of trajectories in simulation i with �max > � scaled by the same factor.
The bin at position ⇠ is here replaced by the region �max > �. The small bin-width
assumption can, hence, not be made. In other words, we can’t assume that
[1 � h✓(�max(X)� �)i%

i

] = h✓(�� �max(X))i%
i

⇡ 1 for all i. In fact, it can even
be zero which, unless it is based on bad statistics, implies that the crossing probability
has reached a plateau. However, if it is based on bad statistics the infinite weight of
1/ h✓(�� �max(X))i%

i

will influence the results in a negative way. We, therefore, used
the simpler expression of equation 5.18 which involves ni and n[�] instead of n0

i and
n0
[�].
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Abstract - Autoionization of water at room temperature is investigated by combining
a recently developed rare event simulation method with ab initio molecular dynamics.
This approach allows sampling of rare autoionization events which happen on the time-
scale of minutes. Our simulations shed light on the autoionization mechanism and we
show how local collective variables such as the hydrogen bond wire length connecting
the nascent ions and the distortion from tetrahedral arrangement can be used to predict
autoionization events. Using these order parameters, we discuss the mechanism and
comment on the possibility of enhancing water dissociation.

6.1 Introduction
Understanding the behaviour of aqueous solutions is of crucial importance in many areas
of chemistry and biology. Water plays an important role as a universal solvent for a wide
variety of chemical processes and one of the most important properties of water is its
ability to act both as an acid and as a base: In pure water or aqueous solution, water
molecules autoprotolyse and form hydroxide (OH�) and hydronium (H3O+) ions which
exist as Eigen or Zundel-like structures [1–4] in solution. Experiments show that the
mean lifetime before undergoing autoionization is about 11 hours [5,6] for an individual
water molecule and this makes the autoionization event extremely rare compared to the
time scale for solvent reorganizations and molecular motions.

The scarcity by which individual water molecules dissociate is also reflected by the low
water dissociation equilibrium constant and the high rate of the reverse recombination
reaction. In fact, the low conductivity of pure water makes room-temperature water elec-
trolysis challenging and it has to be performed under acidic or alkaline conditions. Elec-
trolysis of water is potentially one of the key steps in the “Hydrogen Economy” where
hydrogen is the energy carrier, preferably produced from water using renewable energy
sources. Currently, the majority (96% [7]) of hydrogen is produced in coal gasification
and natural gas reforming. This is less cost-intensive, but requires a relatively expensive
CO2 capture and storage process to be sustainable [8]. Understanding the mechanism
for water dissociation is a prerequisite for energy efficient water electrolysis. However,
this is one of the most challenging problems in physical chemistry and the autoionization
event has not been directly probed by experiments. Typically, the dissociation rate is ob-
tained using the water dissociation equilibrium constant and the rate for the much faster
recombination reaction, see e.g. [5, 6].

The experimental difficulties make the autoionization event a pertinent target for com-
puter simulations and previous constrained ab initio simulations has indeed shed some
light on the mechanism [9–11]. However, the selection of a reaction coordinate that
accurately quantifies the progress of the reaction is difficult and the use of constraints
leads to a loss of the spontaneous dynamics of the system. These serious limitations can
be avoided by making use of path sampling simulation methods such as transition path
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sampling (TPS) [12] or (replica exchange) transition interface sampling ((RE)TIS) [13,
14]. Both TIS and RETIS are efficient (with RETIS being the most efficient [14]) al-
gorithms based on TPS and these methods have in common that they are designed for
sampling rare events without artificially altering the dynamics. Compared to methods
based on free energy calculations, the efficiency of path sampling methods are less in-
fluenced by the choice of the order parameter [15]. Geissler et al. [16] made use of TPS
for ab initio simulations of the autoionization event and demonstrated that the mechan-
ism involves transfer of protons along a hydrogen bond wire with concomitant breaking
of the wire. Further, it was found that local order parameters could not be used to de-
scribe the event. Due to the computational cost of performing ab initio simulations of
the autoionization event and the lack of more efficient methods such as (RE)TIS, only a
limited number of reactive trajectories were obtained which preclude a statistical analysis
of the event.

The importance of the hydrogen bond wire connecting the ions was also demonstrated
by Hassanali et al. [17] who studied the rapid recombination reaction with ab initio sim-
ulations. It was demonstrated that the recombination event takes place by a collective
compression of the water wire bridging the ions, followed by a triple concerted proton
jump. The hydroxide ion which is neutralized is then left in a hyper-coordinated state
and Hassanali et al. hypothesized that it could serve, together with the compression of
the wire, as a nucleation site for autoionization. The study [17] explained the charge
separated state and the recombination process; however, it does not clarify the molecular
mechanism of the dissociation process nor quantifies its rate. In particular: what are the
conditions for initiation of the autoionization event? In this work we aim to quantitat-
ively tackle this question and describe the mechanism and the importance of collective
variables such as the hydrogen bond wire length. To this aim, we harvest reactive events
using the RETIS algorithm and analyse them using a recently developed rare event ana-
lysis method [18]. Our results demonstrate that the local water structure is important for
the reactive event and in particular the initiation.

6.2 Methodology
6.2.1 Simulation methods

The MD simulations required by the RETIS algorithm [14] were performed with the Born
Oppenheimer MD capabilities of the CP2K program package [19]. We used a BLYP
functional with a DZVP-MOLOPT [20] basis set and a plane-wave cutoff of 280 Ry.
The BLYP functional has been shown to give an accurate description of the structure and
dynamics of water [21]. Further, the collective compression of the hydrogen bond wire
and the motion of the protons in the bulk water is independent of the choice of functional
and basis set [17].
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The initial system consisted of 32 water molecules placed in a cubic simulation box of
9.85⇥9.85⇥9.85 Å3. All MD simulations were carried out under constant energy (NVE)
dynamics, with a time step of 0.5 fs and periodic boundaries.

The transition region was divided into 20 path ensembles by positioning RETIS interfaces
at � = {1.07, 1.10, 1.13, 1.16, 1.19, 1.22, 1.25, 1.28, 1.31, 1.34, 1.39 1.43, 1.48, 1.52,
1.56, 1.80, 2.00, 2.50, 2.90, 3.29} Å. In addition, a final interface was placed at � = 1
such that all trajectories were propagated until they reached the pure water state again.
After generating an initial path for each path ensemble (this was done by repeatedly
modifying the momenta of the particles and evolving the system forward in time until
valid paths were obtained) the RETIS algorithm either attempts to swap paths between
different path ensembles or generate new trajectories by the so-called shooting or the
time-reversal move. In our simulations the probability of performing a swapping move
was set to 50% while the probabilities of the two other moves were both set to 25%. New
velocities for the shooting move were drawn from a Maxwell-Boltzmann distribution
corresponding to an average temperature of 300 K.

We performed about 24 000 steps with the RETIS algorithm which generated between
8000 and 18 000 distinct trajectories for the different ensembles. The length of the tra-
jectories range from 13.5 fs to 1365 fs and we disregarded the first 400 trajectories in our
analysis.

6.2.2 Analysis of trajectories

For trajectories harvested with the RETIS algorithm we have calculated additional col-
lective variables: the hydrogen bond wire length (wi), the number of hydrogen bond
donors (nd) and acceptors (na) and the orientation order parameter (q). Using the first
configuration in each trajectory, hydrogen atoms were assigned to the closest oxygen
atom and this defined the initial H2O molecules. Then, the hydrogen bond network
was obtained for each configuration in the trajectory. Hydrogen bonds were identified
using the criteria of Luzar and Chandler [22] and all (shortest) hydrogen bond connec-
tions between all pairs of water molecules were determined using the Floyd-Warshall al-
gorithm [23]. This allowed us to represent the hydrogen bond structure as a graph. Next
the oxygen atom (O�) used in the definition of the order parameter was identified. With
no OH� present, this is the oxygen atom for which the covalent O-H distance is largest
and when we have OH� present in the system this is the OH� oxygen atom. After identi-
fying O�, we obtained the number of hydrogen bonds accepted (na) and donated (nd)
by the water specie containing it. The relevant hydrogen bond wire was obtained using
the following criteria: (i) The wire should contain the oxygen atom used for the order
parameter (identified as explained above) when the order parameter first crossed 1.15 Å,
(ii) the wire should contain i water species, (iii) the wire should be the shortest of the
wires where two criteria (i) and (ii) are met. The length of the wire was defined as the



130 Concerted and Stepwise Autoionization of Water

sum of the O-O distances of consecutive molecules in the wire.

The orientation order parameter measures the distortion from a tetrahedral orientation of
four water molecules around a central molecule and is defined by [24]

q = 1� 3
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3X

j=1

4X

k=j+1

✓
cos jk +

1

3

◆2

(6.1)

Here,  jk is the angle formed by the central oxygen and the oxygens of it’s four nearest
neighbors. For a perfect tetrahedral orientation q = 1 and it is q 6= 1 otherwise.

After calculating these additional collective variables, we analysed the trajectories using
the methodology of van Erp et al. [18]. For the analysis we used 100 interfaces both
for �r and �c for the range 0 < �/Å < 6.4. The histograms in the collective variable
space was constructed using 40 bins for 4.0  w3/Å  7.0, 7.0  w4/Å  9.6,
9.0  w5/Å  12, 25 bins for 0  q  1, while the bins (mid points) were simply
placed at �0.5, 0.5, 1.5, . . . , 6.5 for both na and nd.

6.3 Results and discussion
The autoionization event was investigated by sampling trajectories generated by the RETIS
algorithm [14] in combination with ab initio molecular dynamics (MD) simulations as de-
scribed in the methods. The RETIS algorithm makes use of an order parameter, �, cap-
able of distinguishing the initial and final state. Here, we have used a relatively simple
geometric distance order parameter (see illustration in figure 6.1): If the system consist of
only H2O species, � is the largest covalent O–H bond distance, and if the system contains
OH� and H3O+ species, � is taken as the shortest distance between the oxygen in OH�

and the hydrogen atoms in H3O+. The type of species are identified by allocating to each
hydrogen a single bond connecting it to the closest oxygen. We note that this definition
does not require a threshold for defining a chemical bond nor does it constrain the order
parameter to specific water molecules for the duration of the simulation, and we will in
the following refer to the oxygen atom used for the order parameter as O�. Hence, we
initially compute the rate for observing a dissociation event of any water molecule in the
system instead of a single targeted O–H bond or water molecule. This value is easier to
compute since it is higher and it can be normalised (by the number of water molecules)
to the actual dissociation rate.

The RETIS algorithm proceeds by positioning several interfaces (�0 < �1 < . . . < �N )
along the order parameter which defines the so-called path ensembles. The dissociation
rate constant, kD, can then be expressed as the product of the flux, fA, through the first
interface (�0) and a (conditional) probability, PA(�N |�0),

kD = fA ⇥ PA(�N |�0). (6.2)
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Here, PA(�N |�0), is the probability of reaching the final state (� > �N ) before (pos-
sibly) returning to the initial state given that the initial interface has been crossed. This
probability can be estimated by as a product of similarly defined history dependent con-
ditional probabilities for the individual path ensembles, PA(�i|�i�1): PA(�N |�0) =QN

i=1 PA(�i|�i�1). The number and location of the interfaces do not alter the results,
only the efficiency for obtaining them.

A

B

C

Figure 6.1: (Panel A and B) Definition of the order parameter (�, dashed line), taken as the
largest covalent O–H distance in the system (panel A, when no ionic species are present) or as the
shortest distance between the OH� oxygen atom and the hydrogen atoms in H3O+ (panel B, when
ionic species are present). A hydrogen bond wire with 4 members is shown with red (oxygen)
and white (hydrogen) spheres and the distances |OH|1, |OH|2, |OH|3 are also indicated. These
distances are used to investigate the possible concerted motion of hydrogen atoms along the wire.
(Panel C) The crossing probability (PA) and average energy of trajectories (hEi) as a function of
the order parameter. The (black) dashed line is calculated using an alternative definition of the
order parameter (�0) where the trajectory length (in fs) defines the order parameter for � > 3 Å.
The horizontal dot-dashed line is the crossing probability (1.7 ⇥ 10

�16) obtained at the plateau
for long paths (�0 � 1200 fs). The activation energy is equal to the plateau value of the average
energy which approaches 17.8 kcal/mol.

In figure 6.1 we show the crossing probability obtained by the RETIS algorithm as a
function of the order parameter. However, as the interionic distance is not necessarily
a useful order parameter for distinguishing the neutral and charge-separated states (as
largely separated ions might still recombine fast within several fs [16]), we used path
reweighting [25] to project the crossing probability on another order parameter which
improves the identification of the metastability region of the ionized state. Specifically,
we used the trajectory length (in fs) as an alternative order parameter, �0, when � > 3 Å
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and detected a semi plateau region for trajectories longer than 1.2 ps which was then used
as a stability criterion. We show also the average energy of the different path ensembles
which is expected to converge to a plateau value equal to the activation energy [26, 27].
This computed activation energy is derived from the temperature derivative of the rate
constant. Hence, it gives in principle a more direct comparison to experiments than
standardly computed free energy barriers which depend on the choice of order parameter.
From the RETIS simulations we find a crossing probability of 1.7⇥ 10

�16 and an initial
normalised flux of 2.9 ⇥ 10

�3 fs�1 resulting in a rate constant kD = fA ⇥ PA = 4.9 ⇥
10

�4 s�1. This compares well with the experimentally determined dissociation constants
at 25�C by Eigen and Maeyer (kD = 0.25 ⇥ 10

�4 s�1) [5] and by Natzle and Moore
(kD = 0.204 ⇥ 10

�4 s�1) [6]. The activation energy obtained from the average energy
of the accepted paths is approximately 17.8 kcal/mol. For comparison, an Arrhenius
plot of the experimental data of Natzle and Moore [6] results in an activation energy of
approximately 17.3 kcal/mol while Eigen and Maeyer [5] reported an activation energy
of 15.5–16.5 kcal/mol.

In addition to straightforwardly yielding the rate constant, the RETIS algorithm also
generate reactive (and nonreactive) trajectories which can be used to discover possible
mechanisms. We have analysed the reactive trajectories both qualitatively and quantit-
atively using a recently developed rare event analysis method [18]. For this analysis we
have considered additional collective variables, ⇠, relevant for the mechanism. The abil-
ity to form hydrogen bonds is one of the characteristic features of water [28] and previous
computational studies have demonstrated the relevance of the hydrogen bond wire con-
necting the ionic species [16, 17]. Therefore, we base our analysis on the hydrogen bond
connectivity and hydrogen bond wires. In our case, we aim to predict the outcome of
initiated trajectories and in particular the initiation conditions for reactive events. Thus,
we cannot simply define the hydrogen bond wires as connecting the ionic species since
this is one of the outcomes we wish to predict. We rather define the hydrogen bond wire
for a single trajectory as the shortest wire containing the O�-specie and i� 1 other water
species at the point in time when � is greater than a given threshold value, �t = 1.15 Å.
This defines a wire containing i water species and the length of this wire, wi, is obtained
as the sum of the O–O distances of consecutive members.

Anticipating the discussion of our results on wires of different length, we find that when
the ionic species are separated by at least two water molecules, the ionic state survives
for a longer time compared to cases where they are separated by just one water molecule.
This implies that (at least) three proton transfer events have occurred. We have monitored
the distances of the initially covalent O–H bonds, and show these for the first (|OH|1),
second (|OH|2) and third (|OH|3) transferred proton in figure 6.2. As can be expected
from Grotthuss mechanism [29,30], the initial autoionization event is followed by several
proton transfers in which the ionic species separate along the wire. Figure 6.2 shows
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A B

Figure 6.2: The concerted behavior of the autoionization event, obtained in the final path en-
semble. (Panel A) The distances (|OH|i) of initially covalent O–H bonds for the first (i = 1),
second (i = 2) and third (i = 3) proton transfer in four trajectories. The arrows show the time
direction and the different trajectories exemplify different types of hydrogen transfer: Failed step-
wise (dark gray color, only shown for |OH|1-|OH|2), concerted (light gray color), concerted only
for |OH|1-|OH|2 (blue color) and concerted-stepwise (orange color). (Panel B) Using all traject-
ories in the final path ensemble (having � > 3.29 Å by definition), densities for |OH|1-|OH|2 and
|OH|1-|OH|3 has been obtained (leftmost column). The right-most column show the densities
when considering trajectories with a length tpath > 60 fs.

that this can happen both in a concerted and stepwise way: The transfer of the first and
second proton occurs almost exclusively in a concerted way, while the transfer of the third
proton (if it occurs) can happen in a stepwise or in a concerted way. This is also reflected
in the waiting time between these events shown in figure 6.3, where the waiting time
distribution between the third and second proton transfer is broader compared to the first
and second transfer. To investigate if the wires remain unbroken, we have also calculated
the hydrogen bond wire in the time-reverse trajectories. Figure 6.4 shows that trajectories
are indeed starting and ending with a contracted wire (< 7.6 Å) as reported by Hassanali
et al. [17], but at the end these wires do not necessarily contain the same oxygen atoms.
This is indicative for the wire being broken and reformed by other water molecules. The
majority of the longer trajectories reform via another wire, but there is still a significant
number of long trajectories (> 1.0 ps) for which the recombination is exactly the same
as the dissociation path. This seems to disprove the hypothesis of Geissler et al. [16]
that breakage of the wire is a necessary condition to reach a metastable state. We find
that, unless the trajectories are short, we most often identify different wires in the time-
reversed direction.
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Figure 6.3: Distribution of waiting times between initiation of hydrogen transfer events, obtained
in the final path ensemble. From top to bottom we show the waiting time between initiation of
the first and second hydrogen transfer event (�2,1), the first and third (�3,1), and the second and
third event (�3,2).

Next, we address the reaction mechanism and initiation conditions quantitatively. We
consider an additional interface for the analysis, �c > �0, and focus on the first crossing
point for the trajectories with this interface. Here, additional collective variables (⇠) form
a distribution of possible values and we classify the trajectories as reactive or nonreactive
depending on them reaching a selected �r > �c or not. This gives two distributions:
r�

c,�r
(⇠); the fraction of reactive trajectories (passing �c and reaching �r) and u�

c,�r
(⇠);

the fraction of nonreactive trajectories (passing �c but fail to reach �r). If, for instance,
u�

c,�r
(⇠) = 0, we know immediately that if we cross �c at ⇠, the trajectory will be

reactive. Using these distributions, we consider the predictive ability, T �c,�r

A , defined
by [18]

T �c,�r

A = 1� 1

PA(�r|�c
)

Z
r�

c,�r
(⇠)u�

c,�r
(⇠)

r�c,�r
(⇠) + u�c,�r

(⇠)
d⇠, (6.3)

which satisfy PA(�r|�c
)  T �c,�r

A  1. If the collective variables do not correlate with
reactivity the lower limit is attained but if the collective variables are relevant for the
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Figure 6.4: Distribution of trajectory lengths for the final path ensemble. The trajectories have
been classified according to the identified hydrogen bond wire in the forward and time-reversed
directions as: (1) The same wire is identified in both directions (white color and striped pattern:
“Same wires”) or (2) different wires are identified in the two directions (color blue: “Distinct
wires”). The inset show two examples for the length of the four-membered wires for the two
classes (forward direction in solid blue, time-reversed direction in dashed black lines).

reaction, T �c,�r

A > PA(�r|�c
). Thus, for a set of collective variables, these distributions

give us a measure of how relevant the variables are for the mechanism. Further, we see
from the definition in equation (6.3) that if the overlap of the two distributions is small,
then the predictive ability will increase.

As stated above, we have investigated the hydrogen bond wires of different length and
we now have a quantitative way of distinguishing them. In addition, we have considered
three additional collective variables which describe the local structure surrounding the
O�-specie: (i) The orientational order parameter, q, obtained using the angles defined by
O� and it’s four nearest oxygen atoms (by the definition q = 1 for a perfect tetrahedral
structure and q 6= 1 otherwise) and (ii) the number of hydrogen bonds accepted, na, and
(iii) donated, nd, by the water specie containing O�. In figure 6.5-panel A we show T �c,�r

A
normalized by the probability for these collective variables. Comparing the hydrogen
bond wire lengths (w3, w4, w5) we find that w4 and w5 are more correlated with reactivity
and that w4 is more relevant than w5 for larger �r. For the other collective variables,
the results show that q and na are also correlated with reactivity but nd is less relevant.
Using different combinations of the more relevant collective variables (e.g. ⇠ = (w4, q))
we find that we can improve the predictive capacity by a factor 10

7 compared to the
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crossing probability. We note that since the crossing probability is small in this case we
have T �c,�r

A ⇠ 0.1 and we cannot perfectly predict the outcome. However, our results
show that the hydrogen bond wire and the local water structure around the O� specie are
important for the mechanism.

Figure 6.5: (Panel A) The predictive power (T �c,�r

A [⇠]) relative to the crossing probability (PA)
using additional collective variables: Hydrogen bond wires of different length (⇠ = w3, ⇠ =

w4, ⇠ = w5), the orientational order parameter (⇠ = q) and the number of hydrogen bonds
accepted (⇠ = na) and donated (⇠ = nd) by the O�-specie. (Panel B) The distributions r�

c,�r
and

u�c,�r
using the collective variables ⇠ = (w4, q) for �c

= 1.15 Å and �r
= 2.0 Å. The top and right

insets show the one-dimensional distributions for ⇠ = w4 and ⇠ = q, respectively. (Panel C) The
predictive power and the crossing probability as a function of �r for �c

= {1.15, 1.19, 1.23} Å
and different combinations of collective variables. Due to the threshold criterion for defining the
wires (see the main text), the probability is shifted so that PA = 1 for � < 1.15 Å.

Returning to the question on initiation conditions we investigate these collective variables
in more detail. In figure 6.5-panel B we show the r�c,�r

(⇠) and u�
c,�r

(⇠) distributions for
�c

= 1.15 Å, �r
= 2.0 Å and ⇠ = (w4, q). Hence, we exam all dissociation events, even
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the ones that recombine quickly. Along the w4 coordinate we see a clear separation of the
two distributions and this indicates that trajectories crossing �c

= 1.15 Å have a larger
probability of being reactive for shorter wires (smaller w4). This supports the hypothesis
of a “compressed” wire as an important condition for autoionization, suggested by Has-
sanali et al. [17]. Along the q coordinate there is a larger overlap of the two distributions.
However, we find that r�c,�r is shifted towards lower q values compared to u�

c,�r . This
indicates that a distortion from a tetrahedral arrangement around the dissociating water
specie may also initiate the event. Finally, in figure 6.5-panel C we show T �c,�r

A as func-
tions of �r  2 Å for �c

= {1.11, 1.15, 1.2} Å compared to the crossing probability using
several combinations of the collective variables ⇠ = {w4, q, na, nd, (w4, q), (w4, q, na)}.
Inspecting these results, we find again that the two collective variables w4 and q are more
relevant for reactivity than the other variables. We also find again that T �c,�r

A ⇠ 0.1 < 1

which indicates that there are other collective variables important for description. These
might be local ones we did not consider yet, or, possibly, non-local variables are needed
as suggested by Geissler et al. [16].

Overall the results shown in figure 6.5 show that a compression of the water wire (as
measured by w4) and hyper-coordination (measured by na) or distortion (measured by q)
are necessary initiation conditions for autoionization. These are not sufficient conditions
as shown by the values of T �c,�r

A in figure 6.5-panel C. Still, our findings suggest that
water splitting could be tremendously enhanced if we would be able to manipulate the
water structure towards the topological relevant initiation region for autoionization, for
instance, by bringing into contact with well-designed nanostructured materials possibly
in combination with applying electric fields or inclusions of ions.

6.4 Conclusions
We have investigated the autoionization of water at room temperature using an uncon-
strained ab initio rare event simulation method. Our simulations sample reactive events
that happen on the time scale of minutes and we have demonstrated that autoionization
can be initiated by a compression of a hydrogen bond wire and distortion from a tetrahed-
ral arrangement. Our findings are valuable for the future development of more efficient
and sustainable approaches for hydrogen production since it provides clues on how the
water structure needs to be manipulated in order to increase the rate of dissociation.
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Chapter 7

Autoionization of Water in Presence
of Chloride and Sodium Ions 1

1This chapter is based on work in progress and ongoing simulations.
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7.1 Introduction
Understanding the behavior of aqueous solutions is of crucial importance in many areas
of chemistry and biology. Water plays an important role as a universal solvent for a wide
variety of chemical processes. The structure of liquid water is controlled by hydrogen
bond interactions between water molecules. This normally influences the dynamics of
water in many ways. Adding ions into pure liquid water leads to a disturbance in the nat-
ural hydrogen bond network. The water molecules must break the hydrogen bonds and
reposition in order to accommodate the additive ions. Although this process is energet-
ically unfavourable, the hydrogen bonds between ions and water molecules can recoup
the loss of inter-water hydrogen bonds and result in a negative total free energy of solva-
tion. The contribution of this ion-water interaction is determined by the strength and the
number of the hydrogen bonds that surround the ion and these parameters depend on the
charge and the size of the ion. An ion with smaller charge produces a weaker hydro-
gen bond, while an ion with high charge makes a strong hydrogen bond. Moreover, the
sign of the charge is of importance for the determination of the solvation free energy.
The solvation of an anion is favorable compared to the solvation of a cation because the
layout of the first solvation shell of anion is more compatible with natural water-water
interactions in liquid water [1]. The effect of the size of the ion in liquid water is a bit
more tricky to understand. A large ion disturbs the natural water network more than small
ion, in addition its charge is more delocalized, both these effects are unfavourable, but
a larger ion can also create a larger solvation shell and therefore forms hydrogen bonds
with more water molecules, which is again favourable. Therefore, the net effect deeply
depends on the specific ion and the geometry and size of its solvation shell [2].

The solvation of ions has been studied, both experimentally [3–6] and computationally
[2,7–9]. Most of previous studies investigated the structural and dynamical properties of
the solvation shell of water molecules. One of the most important chemical properties of
water is its ability to act as either a Brønsted acid or a Brønsted base [10]. In pure water or
aqueous solution, one water molecule can deprotonate to become a hydroxide ion, OH�,
and the hydrogen nucleus, H+, protonates another water molecule to create hydronium,
H3O+. This process is called the autoionization of water and is greatly involved with
the acid-base chemical equilibria and is an important factor for determining the pH of
water [11]. These charged species show up in pairs as the result of the dissociation of a
water molecule, and they vanish through the recombination process. The mechanism of
water dissociation and recombination has previously been studied [11–16], however, the
influence of the presence of ions pair and their interactions has not been fully described
yet. The interaction of the ions in solution has an important role for determining the
pH of solution but due to the rarity of the autoionization process, the understanding of
molecular mechanism of this process is still one the most challenging problems in the
physical chemistry.



146 Autoionization of Water in Presence of Chloride and Sodium Ions

In this work, we applied the Replica exchange interface sampling (RETIS) method in
combination with Born-Oppenheimer molecular dynamics (BOMD) on autodissociation
of water molecules in presence of chloride and sodium ions. This study complements
and expands our previous work on pure water by addressing how the presence of ions
can accelerate the ionization process of water.

7.2 Methodology and Computation Details
Path sampling [17] has become a very efficient approach to calculate quantitative proper-
ties like reaction rates and to provide qualitative analysis on reaction mechanisms. In this
work, we use RETIS [18] as an advanced sampling method to explore the true dynamical
pathways and to measure the rate constant of transition between two stable states. The
ensemble of trajectories, that is obtained from RETIS simulation, provides a wealth of
information about the reaction process. From this simulation we obtain large sets of paths
connecting reactant and product state or paths that make progress along the reaction co-
ordinate but then fail to reach the product state. Using this data, we can use path analysis
in order to extract the qualitative and the quantitative path features from these sets.

In this work, we studied the effect of additives on the autoionization process of water.
For this purpose, we employed the RETIS simulation combined with CP2K BOMD [19].
We investigated the application of this method for studying molecular mechanism and
rate constant of the autodissociation of water into the charged separated state of H3O+

and OH� ions in pure water and in the presence of sodium and chloride ions.

In this work, water was modeled using the Goedecker-Teter-Hutter (GTH) pseudopoten-
tials [20, 21], the BLYP functional [22, 23] and a DZVP-MOLOPT basis set [24]. In
addition to the Gaussian basis set, a plane-wave basis set was used with a plane-wave
cutoff 400 Ry. The BLYP functional has proven to give an accurate description of the
structure and dynamics of water. The simulations were performed using a cubic simula-
tion box of 13⇥13⇥13 Å3 containing 64 water molecules and a Cl� or a Na+ ions. The
simulation were carried out using the CP2K program package with 0.5 fs timestep and
NVE dynamics. Shooting moves were performed by randomly reselecting the velocities
at the shooting point from a Maxwellian distribution corresponding to a temperature of
300 K.

The reaction coordinate was defined using the distances between oxygen and hydrogen
atoms. The reaction coordinate initially is MAX[|OH|] which implies that the value
of the reaction coordinate corresponds to the largest OH distance in the system that is
still considered to be a bond. Once a OH bond breaks and the proton transfers to another
water molecule, the reaction coordinate switches to the shortest distance from the oxygen
in OH� to a hydrogen in H3O+. This approach guarantees that the reaction can and will
occur at any OH bond of any molecule.
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7.3 Preliminary Analysis and Discussion
Water molecules sometimes spontaneously ionize into hydroxide and hydronium. This
spontaneous dissociation of water molecule leads to a proton transfer through the solution
along a hydrogen bond wire. Once the hydronium and hydroxide are separated from
each other, they may remain in ionized state for a while or may recombine quickly. The
presence of additive ions and other impurities in the solution affects solvation shell of
water around the hydroxide and hydronium ions and obviously influences the ionization
process in the solution.

Figure 7.1: Representative snapshot of water molecules surrounding (A) negative and (B) posit-
ive ions.

Figure. 7.1 shows chloride and sodium ions surrounded by a layer of sticky water mo-
lecules. Water molecule has a permanent dipole, it means that one end (H) is always
slightly positively charged and the other end (O) is always slightly negatively charged.
Therefore, the charged ends of the water molecules are strongly attracted to the sodium
and chloride ions. The alignment of the hydrogen bonded network and the presence of
strong electrostatic forces are suspected to facilitate the ionization process.

We detected different types of ionization processes in the presence of the chloride ion.
Figure. 7.2A shows the mechanism in which the chloride ion is not directly involved in
the ionization process. Although this mechanism looks very similar to the autoionization
process in pure water, influence of the presence of chloride is completely recognizable.
We observed that the ionization reaction always commences inside the first solvation shell
around the chloride ion. Figure. 7.3A shows the radial distribution function for chloride-
oxygen pair. The hydronium is mostly formed around the distance 2.75 Å which we
identified as the minimum H3O+�Cl� contact-ion pair distance. The hydronium ion can
present either as a direct H3O+�Cl� contact-ion pair or transfer along the hydrogen wire
and present as a solvent-separated ion pair. The hydroxide is always located in the second
solvation shell around the chloride as a solvent-separated ion pair.
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Figure 7.2: Representative snapshot of water ionization in presence of chloride ion. Water mo-
lecule involved in ionization wire are shown bold and the chloride ion is in cyan. (A) the autoion-
ization process, (B) the autoionization process producing hydrochloric acid and hydroxide.

Figure 7.3: Radial distribution function for (A) chloride-oxygen Cl�O, (B) sodium-oxygen
Na�O pair at T = 300 K.

Figure. 7.2B shows the mechanism in which the chloride ion directly participates in the
ionization process. Chloride ion is very electronegative and once a water molecule ap-
proaches the chloride ion less than contact-ion pair distance, the chloride ion pulls off
a hydrogen from that water, and concertedly a proton transfers from another water mo-
lecule to that water and forms the hydroxide and hydronium ions. Upon decreasing of
the central H3O+�Cl� distance, the proton can barrierlessly shuttle between the oxy-
gen and chloride. When the proton transfers to the chloride ion and the resulting water
molecule builds hydrogen bonds with the hydroxide ion and other water molecules, the
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H2O�HCl distance increases and the transfer is complete. The hydroxide ion sometimes
accepts a proton from another water molecule in the wire and moves further into the
second solvation shell of water around the chloride.

Figure. 7.4 shows the autoionization reaction in the presence of sodium ion. We observed
that the autoionization reaction always occurs in the second solvent shell around the
sodium ion. Figure. 7.3B shows the radial distribution function for sodium-oxygen pair.
The positively charged sodium ion and the negatively charged hydroxide ion interaction
is very small but nonnegligible. This interaction explains why the hydroxide-sodium
distance is always less than the hydronium-sodium distance in our reactive trajectories.
However, the HO��Na+ pair always remains present as a solvent-separated ion pair.

Our analysis in this chapter was based on our ongoing simulations. Because our research
efforts are in progress, we focused on a brief qualitative analysis for the autoionization
process in presence of the ions rather than presenting quantitative results. Despite the
preliminary character of our simulations, the results clearly suggest that the presence of
ions enhance the rate of the autoionization process (RnH

2

O+Cl > RnH
2

O+Na > RnH
2

O).
However, once the ionization has occurred the presence of contaminants, such as chloride
and sodium ions, can cause a decline in excess proton diffusivity, i. e. the frequency
of proton jumps between water molecules is reduced [9]. For example, in the case of
chloride ion the relatively small diffusion constant, combined with the strong hydrogen
bonding between the ion and water molecules, results in slow dynamics of the solvation
shell around the hydronium ion. Therefore, this twisted and slowed down solvation shell
around the hydronium ion decreases the rate of recombination severely which leads to
longer reactive trajectories in our simulation.

Figure 7.4: Representative snapshot of water autoionization in presence of sodium ion. Water
molecule involved in autoionization wire are shown bold and the sodium ion is in blue colour.
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The aim of this thesis is to theoretically study and advance the application of the RETIS
path sampling method for realistic modeling of chemical systems. These applications
are the study on autoionization of water, which is a fundamental application, and silicate
oligomerization in gas phase and aqueous solution, a reaction that is relevant for e.g.
zeolite synthesis. Applications that have been undertaken served as proof for the ability
of this method to deal with realistic and complex environments.

In chapter 3, the main focus has been put on presenting a comparison between DFT and
ReaxFF calculations (using two already published parameter sets) for the initial step of
the silicate dimerization reaction. Notable discrepancies between the two methods have
been found, with ReaxFF showing a few unphysical results. Our results suggest that the
standard procedures for parameter fitting need to be improved by a mutual comparative
method. Furthermore, the reactions were deeply investigated using DFT and constrained
molecular dynamics. This provided reaction barriers but did not allow the study of the
unbiased reaction dynamics.

In order to study the actual reaction dynamics, RETIS has been employed in chapter 4
to gather a collection of true dynamical unbiased trajectories connecting stable states.
From these trajectories exact rate constants are computed and true reaction mechanisms
are identified. Quantitative and qualitative analysis on different reaction mechanisms for
the dissociation process and the water removal step are presented.

An approach to analyze collective variables for chemical reactions is introduced in chapter
5. The analysis method introduces a new theoretical concept which corresponds to a
measure of predictive power for a reaction. This predictive power can be optimized by
a search in collective variable space. The method is based on already available path
sampling data from a TIS, RETIS or FFS simulation. The method was tested on one-
dimensional double well potential, a theoretical model for an ion-transfer reaction, and
an Ab initio molecular dynamics study of water autoionization at low density. The ap-
proach allows testing hypotheses on the reaction mechanisms and can be used to construct
the phase space committor surfaces without the need of additional trajectory sampling.
Quantitative interpretation of path sampling data is enhanced with this analysis technique
providing practical hints on how reactions can be steered in desired directions.

In chapter 6, RETIS simulations of water autodissociation in pure water are performed.
The reaction coordinate is defined using distances between oxygen and hydrogen atoms.
The rate of proton transfer between water molecules is computed without specifying
which water molecule or which OH bond should break. This rate well agrees with the
experiments at 25�C. Also, the obtained activation energy is close to the experimental
value. The reactive trajectories generated by the RETIS algorithm provide insight to
discuss possible ways to enhance water splitting.
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We can conclude that RETIS simulations are an effective method to compute rate con-
stants and to unravel reaction mechanisms. RETIS has the advantage over other methods
to provide the real dynamics. In the dimerization reaction this aspect provided new in-
sights which were not achievable using biasing techniques. After this study, it would be
interesting to apply RETIS to other silicate reactions like the formation of longer linear
and three-ring silicate oligomers.

In our simulations, molecular dynamics treats the atomic nuclei as classical particles
whose trajectories are computed by integrating Newton’s equations of motion. However,
because of light mass, hydrogen nuclei are subjected to nuclear quantum effects. These
effects might have an impact on H-bond fluctuations in water, and presumably also in
other hydrogen-bonded systems. There are approaches like finite path integrals molecular
dynamics that can treat the nuclei as the quantum mechanical objects but they are very
expensive and are not suited for studying of dynamics. These effects can also be seen
in the autoionization of water-heavy water mixture. Since the nuclear quantum effects
are more important for hydrogen than deuterium, comparing water (H2O) and heavy
water (D2O) systems both theoretically and experimentally might shine a light on the
effect of the quantum nature of hydrogen. Therefore, an interesting and informative
extension of the autoionization process can be the autoionization in water-heavy water
mixtures in which several species may be observed: H2O, HDO, D2O, H3O+, D3O+,
H2DO+, HD2O+, HO� and DO�. The heavy water, under standard conditions, is less
dissociated than ordinary water. This is a reflection of the somewhat shorter and stronger
bond between D and O, which means it will take a greater amount of energy to separate
D from O. Moreover, based on classical transition state theory, the rate is proportional
to the inverse of the square root of mass. Deuterium is 2 times heavier than hydrogen,
therefore, we can expect that the rate of D�O dissociation would be about 1.4 times
smaller than that of H�O.

In Ab initio molecular dynamics simulations, the gradient-corrected BLYP functionals
have been the most popular for the study of aqueous solutions. However, it has been
noted that BLYP produces slightly over-structured water with a somewhat larger number
of H-bonds than experimental evidences suggest. This leads to longer H-bond lifetimes
and sluggish water dynamics, particularly a slower self-diffusion coefficient for water
molecules. The major causes of this inaccuracy are a poor description of weak dispersion
interactions, the self-interaction error and omission of nuclear quantum effects. Some
of the dispersion correction schemes proposed for water give less over-structured wa-
ter, with RDFs and angle distribution functions in better agreement with experiments.
However, sensitivity of results with respect to choice of basis set, density functional
might still be a concern in Ab initio simulations. Our collective analysis shows that the
over-structure in water can lead to two mechanisms, one increases and one decreases
the autoionization reaction and it is not clear which one is more important. More struc-
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ture means more H-bonds and more electrostatic effects. Therefore, molecules get more
polarized and this will increase the rate of autodissociation. On the other hand, a defect
from tetrahedral structure can help the autodissociation to occur as we showed in Chapter
6.

Another issue in Ab initio molecular dynamics simulation is the effect of the periodic
boundary conditions due to its necessarily small box size. These edge effects can result
in an increase in the rate of autodissociation of water because molecules may interact
with the periodic images in a neighbouring box. We are, therefore, planning to repeat
these type of simulations using a larger simulation box with twice the number of water
molecules.

Despite these limitations, our approach provides realistic qualitative analysis, as well as
semi-quantitative analysis on unbiased reaction dynamics. Therefore, we believe that the
technique presented in this thesis may open up many possible avenues for investigating
chemical reactions. Besides the fundamental new insight, these type of simulations will
eventually help to obtain a better control of chemical reactions and provide new inspira-
tion for alternative synthesis methods.
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