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I  

Abstract 
 

Marine controlled-source electromagnetic (CSEM) has been in commercial use for 

offshore hydrocarbon exploration for fifteen years. It is significant for geologists and 

geophysicists to design and interpret a marine EM survey for hydrocarbon exploration. 

SeaBed Logging (SBL) and towed streamer EM (TSEM) are the most popular data 

acquisition systems. They have their own advantages on acquisition. We compare the two 

different data acquisition systems by using 1D sensitivity modelling and 2D inline 

synthetic data inversion. In these studies, we test the effects of frequency, range, water 

depth, target dimensions and reservoir burial depth on the detectable capbility of the two 

acquisition systems. The relationship between the detectable hydrocarbon reservoir depth 

and water depth is discussed by anomalous transverse resistance (ATR) ratio, which is 

used to easily evaluate our inversion results. Moreover, the detectability is described for 

the two data acquisition systems in different water depth. Apparently, the SBL system 

has an advantage in deep water environment, but the TSEM has a similar sensitivity to 

the target with the SBL system in shallow water situation.  

We develop an irregular sparse mesh to enhance both the speed and resolution of CSEM 

inversion by introducing structural geological information in the inversion algorithm. 

This sparse mesh is defined as a coherence-based irregular (IC) sparse mesh, which is 

based on vertices extracted from available geological information. Synthetic data 

inversion examples illustrate that the IC sparse mesh has a smaller inversion 

computational cost compared to the regular dense mesh. Additionally, the IC sparse mesh 

reduces the computational cost of the matrix operation for model updates. It also has a 

higher resolution than with a regular sparse mesh for the same number of estimated 

parameters. 

Based on these IC sparse meshes, we propose an image-guided smoothing regularization 

method in the inversion of marine electromagnetic data. In order to enhance the resolution 

of marine EM inversion, incorporating seismic constraints into EM inversion is an 

effective approach. Compared to traditional regular dense mesh, a coherence-based 

irregular sparse mesh reduces computational cost. The image-guided regularization 
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represents an improvement of regularization and also uses the structure taken from a 

seismic image. In this thesis, we show that this regularization can improve the results of 

EM inversions with irregular sparse meshes. The image-guided regularized inversion can 

be applied to marine CSEM data and MT data, especially, it is able to be used for joint 

inversion of CSEM and MT data. Both synthetic and real data inversion examples 

presented in this thesis demonstrate that the proposed methods improve the quality of the 

resistivity image. 
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1 Chapter 1 Introduction 

Chapter 1 Introduction 

1.1. Marine Oil and Gas exploration and controlled-source 

electromagnetic method 

Marine oil and gas explorations were developed from land-based oil exploration. 

The whole development of marine oil and gas exploration is a process from simple to 

complex, from shallow water to deep water. In 1887, the offshore oil exploration opened 

in the coastal waters of California, where the first offshore exploration well was drilled 

in the shallow water (Mastrangelo, 2005). 

In marine geophysical exploration, remote sensing techniques record variations in 

physical parameters for instance acoustic or electric properties. Although marine seismic 

sounding is the most common tools of hydrocarbon (HC) exploration, the marine 

electromagnetic (EM) methods has been developed rapidly in the last 15 years to 

overcome the limitations of seismic data in direct predication of pore fluid composition 

(Constable, 2010). To give the interpretation of a structural geometry which may fill 

porous sedimentary rocks with HC, the remaining uncertainty of seismic method mainly 

focus on whether the pore space is filled with saline water or HC. For this reason only 

10-30% of exploration wells penetrate commercial oil or gas reserves in many areas 

(Johansen et al., 2005). Therefore, marine EM methods are dedicated as a valuable tool 

for offshore HC reservoir detection. 

Several researches achieved by Baba (2005), Edwards (2005), Constable (2010) 

and Key (2012a) have reviewed the development of marine EM methods. The history of 

marine controlled-source electromagnetics (CSEM) sounding was closely linked to the 

history of the marine magnetotelluric (MT) method, for the similar techniques of studying 

seafloor resistivity by electric and magnetic fields. The first publication about the marine 

CSEM measurements was given by Bannister (1968), which presented seafloor-to-

seafloor dipole-dipole measurements theory in frequency-domain to determine seabed 

resistivity. In the past, it was difficult to update the seafloor measurements from theory 

to practice. Until the late 1990s, Statoil researchers developed the use of the CSEM 

method for remote identification of hydrocarbons in a marine setting (Eidesmo et al., 
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2005). In November 2000, the first practical demonstration of the technique was 

successfully completed by Statoil for a known shallow hydrocarbon reservoir offshore 

Angola (Eidesmo et al., 2002; Ellingsrud et al., 2002). The method was applied into the 

offshore hydrocarbon exploration for a few years (Constable, 2010). It is found that the 

HC explorations by the CSEM method was hampered due to the lack of statistically 

significant calibration data. Then new equipment was developed to open the way for 

improving acquisition, processing and interpretation of CSEM data, which was tested in 

2003 by the Troll CSEM data collected by EMGS. These data were the first irrefutable 

evidence for direct detection of a deeply buried hydrocarbon accumulation by subsea 

CSEM sounding. The technique has later returned very good results when applied 

correctly in the prospecting work flow. These results have opened a new frontier in HC 

exploration.  

The CSEM methods could employ electric or magnetic dipole transmitters. Chave 

(2009) discussed theoretical formulations for all electric and magnetic source geometries 

in HC exploration. The four fundamental source types of CSEM are the horizontal and 

vertical electric dipoles (HED and VED), the horizontal and vertical magnetic dipoles 

(HMD and VMD). The primary CSEM method for HC exploration uses a mobile 

horizontal electric dipole (HED) source and an array of seafloor electric field receivers. 

The transmitting dipole emits a low frequency electromagnetic signal that diffuses 

outwards into the overlying water column and downwards into the seabed. The array of 

sea floor receivers measures both the amplitude and the phase of the received signal that 

depends on the resistivity structure beneath the seabed. The detailed descriptions of 

marine CSEM are given by MacGregor and Sinha (2000), Edwards (2005), and Constable 

and Srnka (2007). 

However, relatively high acquisition costs have represented a significant obstacle 

to widespread adoption of conventional CSEM technology, particularly in frontier basin 

and infrastructure-led exploration. Ziolkowski et al., (2010) presented field tests of a 

novel towed streamer approach where both the transmitters and a streamer array of 

receivers were towed by a ship, thereby allowing for continuous data coverage. The 

system has been developed and tested in the North Sea (Linfoot et al., 2011a; Zhdanov, 

2012). Although there are many successful case studies presenting the ability of CSEM 
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to detect HC reservoirs, marine CSEM method has not been completely accepted by the 

industry as an exploration tool. A successful case showed that towed EM data were 

suitable for characterization of the subsurface using resistivity in the Troll field, North 

Sea (Linfoot et al., 2011a). 

A method using stationary vertical electric transmitters has also been tested by 

industry, where the vertical current resulting from a vertical transmitter is sensitive to 

horizontal resistive layers (Holten et al., 2009a; 2009b). However, the merit of resolution 

over the conventional deep-towed horizontal transmitter and seafloor receivers were not 

readily apparent.  

1.1.1. Data acquisition 

In the hydrocarbon reservoir exploration, an HED source emits a low frequency 

(0.1-10 Hz) signal which is recorded by receivers or streamers. Low frequency EM 

signals decay exponentially with distance. The distance required to attenuate an EM 

signal by the factor e-1 (≈0.37) which is defined as the skin depth (≈503√ρ/f (m)). The 

reason of detectable limitations in using CSEM is the diffusive nature of the 

electromagnetic field in conductive media. For the strong diffusive electromagnetic field 

in seawater, HED source is towed as close to the seafloor as possible to maximize the 

electromagnetic energy for transmitting into subsurface. However, the HED source close 

to surface offers an improved operational efficiency and a faster towing speed (Shantsev 

et al., 2012). A streamer receivers offer a fast data collection approach and it is impossible 

to gather the large amount of data by SBL system. Besides, it is indispensable that 

uncertainties in the HED source and streamer receivers positioning are reduced since the 

equipment is at fixed depth and accurately measure their lateral position by GPS. 

A typical CSEM survey is sketched in Figure 1.1, which is normally called Sea 

Bed Logging (SBL) data acquisition system. The model consists of an air half space, a 

sea water layer, a sediment layer, a thin resistive reservoir, a sandstone layer, and an 

underlying resistive basement. The resistivity of the sediment is larger than the sea water 

layer. The thin layer as a hydrocarbon reservoir is more resistive than the surrounding 

sand stone media.  
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In Figure 1.1, a vessel is towing a horizontal electric dipole source over the 

seafloor. In order to reduce the energy lost in sea water, the HED source should be towed 

close to the seafloor around 30 m. The transmitter injects a current of 1250 A in the 

seawater from a 270 m long horizontal electric dipole source, creating magnetic and 

electric fields that propagate diffusively into the seafloor. An array of seafloor electric 

field receivers is located at the sea floor to measure the signal.  

 
Figure 1.1.Typical in-line towing configuration of sources and receivers for the SBL system. 

Comparing with SBL system, towed streamer electromagnetic (TSEM) system 

has a high efficient data acquisition. A TSEM survey is shown in Figure 1.2, where the 

same resistivity model is employed as Figure1.1. The vessel is towing not only the HED 

source but also a streamer with receivers. Normally, the inline HED source is towed at 10 

m depth and the streamer cable at up to 100 m depth with the offsets usually between 500 

m and 8000 m. The source bi-pole in this system is 800 m long with a signal current of 

1500 A as normal (Folke et al., 2012). The HED source injects current into the water and 

the response of electric field is measured along the streamer. A hydrocarbon reservoir in 

the subsurface can result in an anomaly in the field which can be detected in the received 

data.  
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Figure 1.2. Acquisition geometry for the TSEM system surveys. 

Some strongly resistive targets can be seen directly from the raw data, for instance, 

gas reservoir. Moreover, data processing, modelling and inversion methodologies are also 

applied to extract more information and determine resistivity and depth of sub-bottom 

structures.  

1.1.2. CSEM modelling and inversion 

In marine EM commercial investment, modelling and inversion techniques are 

necessary to provide more information for the marine CSEM interpretation. For 2D and 

3D modelling, numerical techniques are applied by using the finite difference, finite 

element and integral equation methods. 

Weiss and Constable (2006) introduced the concept of a control volume and 

computed the frequency-domain finite-volume solution to solve the governing curl-curl. 

Li and Key (2007) developed an adaptive finite-element algorithm for forward modelling 

of the frequency-domain, marine CSEM response of a 2D conductivity structure that is 

excited by a horizontal electric dipole source. For multisource and multi-frequency 

CSEM modelling, Plessix et al., (2007) discussed a practical approach which consists of 

an efficient iterative multigrid-based solver and an automatic gridding 

procedure. Abubakar et al., (2008) developed a forward algorithm based on a finite-

difference approach in which a multifractal LU decomposition algorithm simulates 
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multisource experiments at nearly the cost of simulating one single-source experiment for 

each frequency of operation. Mittet (2010) used the corresponding principle for wave and 

diffusion fields to implement highly efficient finite-difference time-domain (FDTD) 

schemes to simulate marine CSEM data. Key and Ovall (2011) presented a parallel goal-

oriented adaptive finite element method that can be used to rapidly compute highly 

accurate solutions for 2.5D controlled-source electromagnetic (CSEM) and 2D 

magnetotelluric (MT) modelling problems.  

The purpose of the marine CSEM inverse problem is to find a resistivity model fit 

to the given dataset. Solving the electromagnetic inverse problem was well described by 

Parker (1980; 1994), and Zhdanov (2002). The geophysical inverse problem is a non-

unique problem. Constable et al., (1987) used Occam’s inversion method to solve the 

regularized problem by searching for the smoothest model to fit the data. It was applied 

for 1D CSEM data inversion by Key (2009). 

Gribenko and Zhdanov (2007) presented the results of the application of the 

preconditioned nonlinear conjugate-gradient inversion method to the interpretation of 

synthetic 3D MCSEM data. Commer and Newman (2008) also employed a nonlinear 

conjugate gradient algorithm for the inversion scheme, and enhance image by model 

parameter transformation functions. 

2.5D and 3D inverse CSEM problems in frequency domain are successfully 

solved in many publications. Abubakar et al., (2008) has employed an inversion 

algorithm with a regularized Gauss-Newton minimization approach by a multiplicative 

cost function. The algorithm was equipped with two regularization cost functions that 

allow us to reconstruct either a smooth or sharp conductivity image. They also presented 

synthetic and field data inversion results for cross well and controlled-source EM 

measurements.  

Bayesian inversion approaches which required a huge computational cost were 

applied on marine CSEM data by Ray and Key (2012). They parametrized simple model 

and characterized model uncertainty by the reversible jump Markov Chain Monte Carlo 

(RJ-MCMC) method for marine CSEM data.  
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Although it is possible to identify leads using just CSEM scanning surveys, some 

papers mainly focus on how the CSEM inversion can be reducing the risk profile of 

prospects by considering with others geophysical data. One of the earliest applications 

focused on joint inversion of marine CSEM and seismic data in order to improve 

estimates of reservoir properties (Hoversten et al., 2006). Concerning joint inversion, the 

cross-gradient regularization joint inversion approach was defined and developed for 

geophysics by Gallardo and Meju (2003), and it was tested on marine CSEM data and 

seismic data by Hu et al. (2009). 

It is expensive to invert both marine CSEM and seismic data by joint inversion 

methods. In order to combine the resolution of seismic data and the sensitivity of marine 

CSEM data, a standard CSEM inversion algorithm constrained by seismic structure was 

published by Brown et al., (2012). Brown incorporated seismic constraints into EM 

inversion through the use of special regularization weight. The simple method utilized 

constraints EM inversion by using special regularization weights. However, CSEM data 

are not sensitive to all the normal layers if the difference of resistivity between the two 

layers is small.  

In order to solve the ill-posed problem or to prevent overfitting problem of the 

CSEM inversion, regularization involving a process of introducing additional information 

is often used for EM inversion. A classic regularization example was the roughness 

penalty applied in Occam’s inversion (Constable et al., 1987), in which the solution 

model varied to the smooth reference model. But in some cases, the preferred models 

were much sharper and more focused geological features than the traditional smooth 

models.  

However, in image-guided interpolation, Hale (2009a; 2009b) provided a method 

to compute the tensor field and coherence from structure tensors of seismic image. This 

approach has only been applied for the full waveform inversion of seismic data (Ma et 

al., 2012) in which the structural information was used to impose structural constraints in 

the inverse problem. In Ma et al., (2012), the size of model space was reduced by a gather-

scatter process where the sparse space could be back to the model space by image-guided 
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interpolation per iteration. The key issue is how to effectively incorporate this high 

resolution seismic image into an EM inversion.  

Zhou et al. (2014a; 2014b) inverted the electrical resistivity data by using image-

guided Gauss-Newton inversion method. This approach extracted the structural 

information from the guiding image (GPR section) and incorporated to the direct current 

(DC) resistivity data. In Zhou et al. (2014a; 2014b), the structural information is assumed 

to be well-known. Stochastic image-guided structure-constrained inversion approach was 

developed by Zhou et al. (2016), in which the structural information could be updated by 

Markov-chain Monte Carlo (MCMC) sampler and the adaptive metropolis algorithm 

(AMA). 

The marine CSEM modelling works have promoted the development of marine 

EM exploration. In this thesis, the research is focusing on the EM inversion which is 

based on the MARE2DEM code. A parallel goal-oriented adaptive finite element method 

is used to compute highly accurate solutions for the CSEM modelling by MARE2DEM 

(Key and Ovall, 2011). The forward modelling is significant to this research. However, it 

is not discussed in the thesis because my study is focusing on the inversion part. 

We have proposed a coherence-based irregular sparse mesh for EM inversion 

which is based on the vertices and segments from seismic coherence (Guo et al., 2015; 

Guo et al., 2016). The method consists of three major steps: (1) the seismic coherence 

section is created to detect the structured features of interest. (2) Extract corner nodes and 

horizons for triangle mesh generation. (3) Create irregular sparse meshes based on these 

nodes and segments by using MARE2DEM. The seismic coherence driven sparse mesh 

provides significant geological information for improving the marine CSEM inversion 

results and reduces the computational costs.  

The metric tensors field of seismic image can be extract to build a new 

regularization for the CSEM inversion. The developed regularization approach is based 

on the coherence-guided irregular mesh. This regularization approach incorporates 

seismic constraints into EM inversion by using a non-Euclidean distance defined from 

the metric tensor field.  
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1.2. Outline of the thesis 

In this section we briefly outline the work in each chapter contained in this thesis. 

The thesis consists of six chapters. In the following the chapters are introduced in more 

details, and each chapter emphasizes on different topics. 

This chapter reviews the development of the marine CSEM methods including 

marine CSEM data acquisition systems, and both the forward and inverse problems. 

Chapter 2: We introduce the theory of marine CSEM principle. Moreover, we present the 

rock physics theory. Based on the difference of resistivity between the water-bearing 

sediments and hydrocarbon-bearing reservoir, this difference of the resistivity makes the 

electromagnetic methods as powerful tools in the detection of the resistive anomaly. The 

electric and magnetic fields propagate following the Maxwell’s Equations. The marine 

CSEM forward problem is derived from the Maxwell’s Equation. The forward problem 

is solved by adaptive finite element method which is detailed by Key and Ovall (2011). 

The inverse problem is a mathematic problem to estimate the parameters of a system. In 

this chapter, we give brief overview of the Occam’s inversion (Constable et al., 1987; 

Key, 2009). Additionally, we develop a regularization algorithm to smooth the model 

following the geological features.  

Chapter 3: We compare the two popular marine CSEM data acquisition systems (SBL 

and TSEM). In order to investigate the effects of frequency, offset, water depth, target 

dimensions and reservoir burial depth on the CSEM data, we test the sensitivity and 

resolution variation by studying synthetic data.  

Chapter 4: We develop an irregular sparse mesh generation method. This sparse mesh is 

based on the vertices extracted from seismic coherence and the segments extracted from 

seismic image. So the sparse mesh is defined as coherence-based irregular mesh. 

Coherence-base irregular mesh has tiny triangles near the seafloor and other features; 

therefore, enough parameters are needed in order to describe the model. The size of 

triangle is large at the flat area. So the model has fewer parameters for CSEM inversion 

than fine regular mesh. This coherence-based irregular mesh reduces the computational 

cost and physics memory.  
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Chapter 5: We developed an approach for incorporating seismic constraints into EM 

inversion by using a non-Euclidean distance defined by a metric tensor field. The metric 

tensor field is computed from not only seismic image but also the geological structural 

image. By using these constraints, low depth and horizontal resolution of EM data can be 

improved. This image-guided regularization method smooths the model along the 

features. We perform complex models in both magnetotelluric (MT) and CSEM data 

which are inverted by Occam’s inversion. This approach is an improvement of the 

irregular sparse mesh introduced in Chapter 4 to enhance the resolution of the EM 

inversion. The image-guided regularization method we proposed is an easy tool which 

can be used to the existing inversion methods.  

Chapter 6: We summarize the results of the research work during the Ph.D. period.  
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Chapter 2 Theory of marine CSEM method 

In this chapter, the theory of marine CSEM principle is introduced. Due to the 

difference of rocks properties, CSEM data have high sensitivity to resistive HC fluids 

embedded in saline pore fluids. Based on the Maxwell’s equations, we induce the CSEM 

forward and inverse problem. We propose the image-guided regularized inversion 

method which is developed from Occam’s inversion.  

2.1. Marine CSEM 

In hydrocarbon exploration, marine CSEM is also referred to Seabed Logging 

(SBL) (Ellingsrud et al., 2002). SBL method (Figure 2.1) was described as an application 

of marine CSEM sounding, which could detect and characterize hydrocarbon bearing 

reservoirs in deep water areas. In marine CSEM sounding a horizontal electrical dipole is 

towed close to the seabed emitting a low frequency (0.1-10 Hz) signal which is recorded 

by stationary seabed receivers (Figure 2.1). Seabed receivers measure the EM responses 

as a combination of energy pathways including signal transmission directly through 

seawater, reflection and refraction via the seawater-air interface, refraction and reflection 

along the seabed, and reflection and refraction via possible high resistivity subsurface 

layers (Løseth, 2007). Black arrows denote refracted transmission of electromagnetic 

signals via the air water interface. Green arrows denote direct transmission of 

electromagnetic signals through water and by refraction along the seabed. Red arrows 

denote guided transmission of electromagnetic signals via a buried high-resistivity layer 

(hydrocarbon reservoir). 

 
Figure 2.1. Schematic sketch of air-water-sediment geometry and receivers’ layout on seabed 

during towing of electromagnetic source.  
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The CSEM sources include the horizontal electric dipole (HED), vertical electric 

dipole (VED), horizontal magnetic dipole (HMD) and vertical magnetic dipole (VMD). 

The transmitter azimuth is the angle of the dipole measured clockwise from the 2D strike 

direction x. Thus, typical inline electric dipole CSEM data have a transmitter azimuth of 

about 90° (or 270°), while broadside data have a transmitter azimuth of 0° (or 180°). The 

geometry of CSEM dipole fields is shown in Figure 2.2. Along the polar axis of the dipole 

transmitter, the field is purely radial. Along the equatorial axis, the field is purely 

azimuthal. At other azimuths the received fields are a trigonometric mix of both modes 

(Constable and Weiss, 2006).In this thesis, we are focusing on the inline CSEM data.  

 

Figure 2.2. The geometry of CSEM dipole fields.  

2.2. Rock physics  

The electrical resistivity of Earth's materials varies over many orders of magnitude. 

It depends upon many factors including rock type, porosity, connectivity of pores, and 

permeability of the rocks, the pore fluid conductivity, and metallic content of the solid 

matrix. The resistivity of reservoir rock is largely dependent on its porosity and the 

resistivity of the fluid in the pore space. Figure 2.3 shows some materials resistivity on 

the earth. 
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Figure 2.3. Resistivity varies over many orders of magnitude in Earth materials.(From course of 

Professor Ståle Emil Johansen at NTNU) 

The electrical properties of rocks are required to interpret the electric field data 

measured at the earth’s surface. The water-bearing sediments are typically a few Ωm; the 

hydrocarbon reservoirs have much high resistivity of a few tens of Ωm or higher. Figure 

2.4 illustrates contrasting resistivity in water bearing sediments and a hydrocarbon 

reservoir. The resistivity of seawater, usually around 0.3 Ωm, is indicated in the upper 

part of the log curve. This difference of resistivity between the water-bearing sediments 

and hydrocarbon-bearing reservoir makes the electromagnetic methods powerful tools in 

the detection of the resistive anomaly. 

 

Figure 2.4. Resistivity log from a borehole illustrating contrasting resistivity in water bearing 

sediments and a hydrocarbon reservoir. (From course of Professor Ståle Emil Johansen at 

NTNU). 
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For the lack of sufficient information on pore microstructure, an empirical law is 

proposed by Gus Archie of Shell Oil (1942). In terms of the brine saturated formation 

resistivity and hydrocarbon saturation, the true resistivity is calculated by: 

,                                                   (2.1) 

where  is the true resistivity;  is brine saturated formation resistivity;  is 

hydrocarbon saturation. Typically n=2 is used when no log or core calibration is available. 

The electrical resistivity of reservoir rocks has a high sensitivity with hydrocarbon 

saturation. Electrical resistivity of a porous sandstone as a function of gas saturation in 

the pore fluid increasing for high gas saturation. The risk can be reduced by combining 

CSEM with seismic exploration.  

The resistivity of the reservoir is primarily controlled by the rock porosity, 

saturation, water, oil, gas, and other fluids in the rock are crucial factor information (Jean-

Louis et al., 1996).  

 

Figure 2.5. Reproduced from (Constable, 2010), seismic P-wave velocity and electrical resistivity 

of a porous (50%) sandstone as a function of gas saturation in the pore fluid. 
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2.3. Maxwell’s Equations 

The world of electromagnetic can be described by a set of complicated equations, 

Maxwell’s Equations. These equations describe how electric and magnetic fields 

propagate and interact, and how they are influenced by objects. Maxwell's Equations 

interpret four electromagnetic phenomena: Gauss’s law for electric fields, Gauss’s law 

for magnetic fields, Faraday’s Law and Ampere-Maxwell Law. The Maxwell’s Equations 

are written in differential form as: 

 ,                                                          (2.2) 

 ,                                                          (2.3) 

 ,                                                 (2.4) 

 ,                                                         (2.5) 

where  is electric displacement;  is magnetic induction;  is electric field;  is 

magnetic field;  is current density; is electric charge density; t is time. 

Linear material equations are given as follows: 

 ,                                                             (2.6) 

 ,                                                             (2.7) 

 ,                                 (2.8) 

where  is electric permittivity in F/m;  is magnetic permeability in H/m;  is 

conductivity in S/m. The other normal material property is resistivity ρ in Ωm, which is 

the reciprocal of conductivity. In the isotropic media, ε and μ are scalars; however, they 

are tensors of rank 2 in the anisotropic media. 

The Maxwell’s Equations can be simplified as Faraday’s law and Ampere’s law. 

The simplifications can be shown as follows: 

 ,                                           (2.9) 

 .                     (2.10) 



 

 
 

16 Zhenwei Guo’s Doctoral Thesis 

The two constants are the electric permittivity of free space  and the magnetic 

permeability of free space . 

 , (2.11) 

 .                                                  (2.12) 

With the given magnetic permeability and electric permittivity values given, the 

speed of light c can be calculated by: 

 .                                      (2.13) 

By Fourier transform, the Faraday’s law and Ampere’s law in frequency domain 

can be represented as:  

 ,                                                           (2.14) 

 ,                           (2.15) 

where ω is the angular frequency of the field;  is the relative electric permittivity. 

Compared with σ,  is the displacement term, which dominates at high 

frequencies in a nonconductive medium. σ is the conduction term which dominates at low 

frequencies in a conductive medium. The equations are applied in Ground penetrating 

radar (GPR) sounding when the frequencies are high in the range of 10 MHz to 1 GHz. 

Now we consider the problem of wave propagation in the quasi-static limit, which 

is described by Zonge and Hughes (1991). In the CSEM exploration, the sedimentary 

rocks can be considered as non-magnetic medium, where  equals . The seawater 

electric permittivity is 80 F/m; and  for sedimentary rocks is smaller than 80 F/m. 

When the frequency f is 1 Hz, is  S/m which is much less than the 

seawater conductive σ (3.2 S/m). So it is reasonable to neglect the displacement current 

for CSEM frequency band. 

 ,                                                 (2.16) 

 .                                      (2.17) 
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In these low frequencies and conductive medium, the Maxwell’s equations can be 

put in a diffusive system. The typical diffusive system has very strong absorption and 

dispersion. So the electromagnetic energy is lost during the diffusion and the different 

frequencies electromagnetic waves propagate with different velocities. 

Concerning 1D solution in frequency domain, we assume earth invariant in x and 

y directions. We also assume source invariant in x and y directions, and no vertical current. 

As a consequence, electric and magnetic fields are invariant in x and y directions. 

 , (2.18) 

 .                                                                (2.19) 

Combine two sets of the equations that describe two different polarizations: 

 ,                                                         (2.20) 

 .                                                         (2.21) 

Equations for both polarizations: 

 ,                                         (2.22) 

 .                                         (2.23) 

It is sufficient to concentrate on x-polarization to understand the physics. We 

assume a function without any current sources,  

.                                                       (2.24)  

The propagation constant or wave number is defined as: 

.                                                                   (2.25) 

The Equation (2.24) can be rewritten as: 
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.                                                          (2.26) 

For the horizontal electric field component Ex, the general form of solutions along 

z axis can be represented as: 

 .                                               (2.27) 

The factors A and B are determined by the source(s) and reflection/transmission 

properties of the medium. The propagation constant can be written in complex form as: 

 .                                   (2.28) 

The phase and attenuation constants are given as  and , 

respectively. 

The skin depth  is defined as: 

 .                                                                 (2.29) 

The phase velocity c is defined as: 

.                                                                 (2.30) 

The causal solution is given as: 

 .                                      (2.31) 

Then the field absorption is frequency dependent. The phase velocity is also 

frequency dependent. 

Angular frequency ω is related to linear frequency of the signal f by: 

                                                                       (2.32) 

and then, 

 ,                                                (2.33) 
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 .                                           (2.34) 

The wavelength of the signal:  .                                                                   (2.35) 

The skin depth  describes the travel distance where the magnitude of the EM 

signal is reduced by a factor . A propagation distance of 4.5 skin depths results 

in an amplitude decay of approximately a factor 100. The phase velocity increases with 

frequency and resistivity. 

The propagation distance depends on two parameters: the resistivity of the 

material of the earth and the frequency of the signal. The penetration of the EM signal is 

deeper and further with increasing resistivity and decreasing frequencies. Table 2.1 and 

2.2 show the skin depth, phase velocity, and wavelength in a sediment 1 Ωm and 100 Ωm 

medium, respectively. 

Table 2.1 Electromagnetic wave propagation in the 1 Ωm medium. 

Frequency f(Hz) Skin depth (m) Phase velocity c(m/s) Wavelength (m) 

0.01 5030 316 31588 

0.25 1006 1580 6318 

1.0 503 3160 3158.8 

4.o 251.5 6320 1579.4 

 

Table 2.2 Electromagnetic wave propagation in the 100 Ωm medium. 

Frequency f(Hz) Skin depth (m) Phase velocity c(m/s) Wavelength (m) 

0.01 50300 3160 315884 

0.25 10060 15800 63180 

1.0 5030 31600 31588 

4.o 2515 63200 15794 

 

2.4. Forward problem 

The forward problem is important to as inverse problem. In this thesis, we 

considered a secondary field approach to simulate the distribution of the electric field and 

magnetic field in a conductivity model.  
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Consider the isotropic 2D electrical resistivity model (y, z) with strike direction x 

and some imposed electric sources Js. Assuming the time variation , the governing 

equations for the frequency domain electric field E and magnetic field H are given by 

equations (2.16) and (2.17). The electromagnetic fields are calculated dividedly two parts 

with the primary fields (Ep and Hp) and the secondary fields (Es and Hs). The primary 

fields are induced by an HED in a 1D layered structure with primary conductivity  

and the secondary fields are caused by heterogeneities with anomalous conductivity

. The primary fields will be calculated to get an analytical solution. The total 

field will be a high accuracy. The secondary fields follow the equations: 

 ,                                                 (2.36) 

 .                                         (2.37) 

From equations (2.36) and (2.37), we can get 

,                                  (2.38) 

. (2.39) 

Then we have six equations: 
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(2.40) 

When the structure follows along the strike direction x in 2D equations, Fourier 

transformation can be applied to transfer the equation in x direction.  
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ˆ ( , , ) ( , , ) xik x
xF k y z F x y z e dx

,                                 (2.41) 

where kx is the wavenumber in x direction.  denotes the value in the wavenumber 

domain. Transforming the equations group (2.40): 
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The Fourier transformation derivation is given as following with the form of 

equation (2.43), 

0
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The left-hand side of equation (2.48)  
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and the right-hand side  

0 0
ˆxs ik x s

y yi H e dx i H
. 

If the  and  fields which are along the strike-parallel direction given all the 

fields  and ,  and  can be calculated. 

Combining equations (2.42) – (2.48), we can get two partial differential equations 

for the  and  fields. 
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where . The differential equations (2.49) and (2.50) are coupled 

through the last two terms on the left-hand sides. Hence, these equations must be solved 

simultaneously for  and . 

2.5. Inverse problem 

In geophysical exploration, inverse problem means making inferences about 

geophysical systems from real data. Three different issues are required, which are the 

parameters, the data and the geophysical system model. Predicting data by estimated 

parameters using the physical theory is called forward problem, by contrast, prediction of 

parameters from measured data by using mathematical model is called inverse problem. 

Figure 2.6 illustrates the relationship between the forward and inverse problem.  

 

Figure 2.6. A cartoon depicting the forward problem and inverse problem. 

Taking the first point of view, to solve a ‘forward problem’ means to predict the 

error-free values of the observable data d that would correspond to a given model m. This 

theoretical prediction can be denoted 

 ,                                                    (2.51) 

where d = F(m) is a short notation for the set of equations di = Fi(m1,m2, . . . ) (i = 1, 

2, . . .) . The operator F is called the forward operator.  

The ‘inverse problem’ is to predict a best model m to fix the observed data d. We 

will describe two fundamentally different strategies for solving inverse problems in the 

context of CSEM inversion. Occam’s inversion approach is presented by Constable et al. 

(1987). It is successful to be applied 1D marine CSEM by Key (2009). A regularized 

Gauss-Newton minimization approach described by Rodi and Mackie (2001) has been 

applied to solve the CSEM inverse problem by Liu and Li (2015). 
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Solving the inverse problem is generally a very difficult task because it is often an 

ill-posed problem. It is difficult to find unique and stable solution which exists. Tikhonov 

regularization may be the most widely applied regularization technique to make the ill-

posed problem stable (Tikhonov and Arsenin, 1977). Based on Tikhonov regularization, 

the inverse problem is formulated as the minimization of the following objective function: 

,                                       (2.52) 

 is the minimization of the data misfit between F(m) and d. And its inclusion 

illustrates that minimizing  does not necessarily find the best fitting model, but rather a 

smooth model that is within the specified target misfit  (Key, 2009).  is the 

minimization of the model difference between the predicted model m and the priori 

preference model m0. The factor  is Lagrange multiplier which trades off the data misfit 

term and the model misfit term. The factor  controls the trade-off between the two terms.  

The data misfit is expressed as: 

.                                   (2.53) 

The data weighted matrix  is a diagonal matrix (Grayver 2013), 

(2.54) 

where  is the standard error of ith datum. In other words,  weights the relative 

contribution of each datum to the misfit based on its uncertainty.  

The approximate uncertainty model is given by the following expression (Maaø 

and Nguyen, 2010; Mittet and Morten, 2012): 

 .                                          (2.55) 

Factor α is the relative error of the ith datum. N is the noise floor of the field data. 

Thus, data with large errors are scaled to limit their influence, whereas data with small 

errors will have a larger impact on the misfit budget. 

The regularization term is defined by 

 .                     (2.56) 
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The first term is a norm of the model roughness and is computed by applying an 

operator R to the elements of the model vector m. P is a diagonal matrix of prejudice 

weights. For models considered here, m is a vector of log10σ for each parameter; mref is a 

priori preference model; and R is chosen to be a matrix calculated by the model 

differences between parameter cell and the neighbor cells which have the same edge or 

nodes.  

,                         (2.57) 

where np is the number of free parameters; nb is the number of neighbor cells; Aj is the 

area of the neighboring cell; Asum is the sum of areas of the neighbor cells.  is the 

distance between centroid and adjacent cells. 

However, in many cases the smooth inversion models are insufficient when the 

geological structure is expected to vary sharply. From seismic image, a non-Euclidean 

distance is introduced for a metric tensor field.  

The non-Euclidean distance  is defined as: 

,                               (2.58) 

where  means the minimum non-Euclidean distance from centroid of center 

element to centroid of neighbor cells;  is a metric tensor field from seismic image 

(Hale, 2009a; 2009b); and  the distance is between centroid of center element and 

centroid of adjacent cells.  

We replace the distance  in the equation (2.57) by the non-Euclidean distance 

 which is solved by equation (2.58). Then, the roughness penalty is given as: 

,                              (2.59) 

where  is the non-Euclidean distance from adjacent cell j to the center cell i. 

The advantage of non-Euclidean distance is that it is related with the tensor field 

which illustrates the direction of the feature.  
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In the Occam’s inversion approach, the Lagrange multiplier  is selected by 

finding the model mk+1 ( ) with the best fit to the data, which initially will probably be 

greater than the target misfit. 

For the model updated, linearizing the nonlinear derivative of F(m), and giving 

an initial model mk, the equation for the updated model in the sequence mk+1 is  

,  (2.60) 

where  ,                                                                             (2.61) 

Jk is the Jacobian matrix, or the linearized model response gradient. W is the 

model weight matrix.  

where ∂ is the np × np finite-difference derivative matrix 

  

,                                                        (2.62) 

where the elements of Jk is  

 ,                                                          (2.63) 

where i=1, 2,…, n, j=1, 2,…, m, and n is the number of data and m is the number of model 

parameter. In other words, J is a sensitivity matrix containing the derivative of each field 

component with respect to log10σ in each parameter. A method for efficiently computing 

J for 1D CSEM was given by Key (2009). 

During the inversion process, we define the root mean squared (RMS) misfit to be 

the criteria of the inversion.  

,                                    (2.64) 

If the data uncertainty ( ) is well known, a good fitting model has RMS 1.0. 
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Chapter 3 Comparison of marine CSEM data acquisition system 

In Chapter 2, we have introduced the principle of the CSEM survey. In this chapter, 

the marine CSEM data acquisition systems are introduced by the most popular systems, 

SBL and TSEM systems. To find out the difference of the two systems, we study the 

sensitivities and resultions in different enviornments, in which the synthetic data are 

calculated by both SBL and TSEM systems.  

3.1. Introduction 

Marine CSEM method uses the high electrical resistivity of hydrocarbon-saturated 

rocks to discover subsurface rocks that are filled with, such as, gas and oil. The EM field 

propagates through the water layer and into the subsurface, and the measurements at the 

receivers can be used to determine the resistivity at different locations and depths 

(Eidesmo et al., 2002; Ellingsrud et al., 2002). The method was originally viewed as a 

deep water technique because of the strong contribution to the electromagnetic field due 

to the air-water interface in shallow water depths. 

Several methods for attenuating the airwave components have been proposed to 

extend deep water to shallow water (Amundsen et al., 2005; Maaø et al., 2010; Chen and 

Alumbaugh, 2011). Some of these methods require a good knowledge of the subseafloor 

resistivity distribution, because the airwave signal is a function of subseafloor resistivity. 

Normally, marine CSEM data were analyzed by plotting electric field amplitude versus 

source-receiver offset. The normalized amplitude was defined as the electrical field 

amplitude measured over a hydrocarbon prospect divided by the corresponding amplitude 

measured over a similar non-hydrocarbon bearing area. 

In hydrocarbon exploration, marine CSEM is commonly applied as SBL (Ellingsrud 

et al., 2002). SBL method was described as an application of marine CSEM sounding, 

which used a mobile HED source and an array of receivers that typically measured both 

horizontal components of the electric and magnetic field (Figure 3.1(top)). The HED 

source emits a low frequency electromagnetic signal that diffuses outwards both into the 

overlying water column and downwards into the seabed. The HED source is towed 

approximately 30 m over the seafloor. The receiver arms are 10 m long, and the distance 
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bewteen receivers is typically in the range of 1 – 3 km. MacGregor and Tomlinson (2014) 

discussed the receiver spacing by unconstrained inversion of inline synthetic data.  

A TSEM data acquisition system has been developed and tested in the North Sea 

since 2010 (Linfoot et al., 2011a; Zhdanov et al., 2012). Although there were many 

successful case studies presenting the ability of CSEM of detecting hydrocarbon 

reservoirs, marine CSEM method has not been completely accepted by the industry as an 

exploration tool. A successful case showed that the TSEM data were suitable for 

characterisation of the subsurface using resistivity in the Troll field, North Sea (Linfoot 

et al., 2011b). The TSEM system looks very similar to a towed streamer seismic layout 

(bottom panle in Figure 3.1), which deploys a receiver cable at 100 m depth and a 

powerful (1500 A) 800 m long horizontal dipole source at 10m depth with an average 

offset interval of 160 m over offset ranges of 500 m – 7595 m (Key et al., 2014). The 

towed receiver antenna bipoles lengths are around 200 m – 1100 m increasing with 

offsets, providing high sensitivity measurements.  

Mittet (2008) presented an analysis approach of the effect by water depth using a 

modified version of normalized amplitude ratio. This ratio is calculated using both the 

amplitude and the absolute phase of the electromagnetic fields so that it is possible for 

this method to be used in very shallow water. Using the modified normalized amplitude 

ratio, Mittet transformed the phase change to an anomalous amplitude. He also gave three 

differenet water depths model to analyze the effect of water depth. Using the up-down 

decomposition, the sensitivity to the subsurface resistors could be enhanced by the 

modified normalized amplitude ratio (Amundsen et al., 2005). 

A measure of sensitivity to resistive target in marine CSEM was defined by Mittet 

and Morten (2012). This sensitivity is considered not only normalized magnitude but also 

the phase and data uncertainty. A hydrocarbon reservoir can be detected in shallow water, 

which was successfully represented by Mittet and Morten (2013). They also analysed the 

effect of water depth by the sensitivity to the target model. However, most of the 

researches focus on study of the SBL data acquisition system. 

Shantsev et al., (2012) compared two approaches for acquiring marine CSEM 

surveys: on towing the horizontal electric dipole transmitter close to the seafloor, and the 
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other on towing the antenna just below the sea surface, while the receivers are located on 

the seafloor. They analysed the sensitivity changes with frequency, target depth, 

navigation uncertainties in various water depth. Because of the attenuation of the EM 

signal in the seawater, the sensitivity will be different between deep towing and surface 

towing. As a conclusion, the advantage of the deep towing is that EM energy is less 

attenuation than that in the surface towing method, and it is preferred at larger water 

depths. But in the very shallow water depth, less than 250 m depth, the surface towing is 

likely to become the standard operation. At the shallow water depth, both surface and 

deep towing give good results in terms of sensitivity and inversion. The analysis is based 

on the setup with a towed source and seabed receivers described by Shantsev et al., 

(2010). However, they havn’t considered the receivers are towed as a streamer following 

the transmitter. 

In this Chapter, we compared the SBL and TSEM systems. In order to investigate 

the effects of frequency, offset, water depth, and reservoir burial depth on the CSEM data, 

synthetic data with different models will be simulated and inverted by 1D modelling and 

2D Occam’s inversion. Firstly, we establish a measure that allows us to quantitatively 

compare the sensitivity to a buried thin resistor for different frequencies and offsets. 

Secondly, we compare the sensitivity to a buried thin resistor for different target depths 

by using the synthetic data measured from two acquisition systems. Thirdly, we derive an 

analytic expression for depth resolution of the CSEM inversion with different buried 

depths of a reservoir. The results of CSEM inversion explain quantitatively and 

qualitatively the detectability of both the SBL and TSEM systems in different water depth. 

Then, we build two thin layered 2D models for testing the horizontal resolution of CSEM 

data inversion, where synthetic data are generated by both of the two acquisition systems. 

Finally, detectable limitations of SBL and TSEM systems will be compared by analyzing 

the Occam’s inversion results using anomaly transverse resistance ratio. These limitations 

are for determining the largest target burial depth where the marine CSEM data are able 

to provide sufficient sensitivity for detection and imaging. We define a reservoir 

sensitivity index (RSI) for evaluating the sensitivity of marine CSEM data. An evaluation 

of hydrocarbon reservoir image is given by a transverse resistance ratio and RSI. 
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Figure 3.1. Typical in-line towing configuration of sources and receivers for the SBL system 

(top). Acquisition geometry for the TSEM system surveys (bottom). 

3.2. Method 

3.2.1. Sensitivity 

In order to analysis the effect of the water depth, we employed the sensitivity which 

is defined by Mittet and Morten (2013) given by 

 ,                                               (3.1) 

where ΔEx is scattered field which is difference between the target response and 

background response; δEx is the measurement uncertainty; rr and rs are the positions of 

receivers and source, respectively;  is the angular frequency. 

The measurement uncertainty is estimated using detailed analysis (Mittet and 

Morten, 2012; Maaø and Nguyen, 2010) that is a good approximation for offsets which 

are relevant for this thesis. 

 ,                                   (3.2) 
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Factor  is the relative uncertainty in the electrical field amplitude. In this chapter, 

 is given as a constant.  is the ith target response. Noise N is added to the 

data, both amplitude and phase. The noise distribution is close to random. Noise N is 

related with frequency and offset. 

For the SBL system the noise contribution N varies with depth. Some typical values 

relevant for normalized amplitude are given by Mittet and Morten (2013), which are used 

in this chapter for the SBL system and the values of N by Mattson are used for the TSEM 

system (Mattson et al., 2012). In their article, noise reduction techniques tailored for 

towed streamer CSEM data were presented. 

3.2.2. Reservoir sensitivity index (RSI) 

Sensitivity is derived as an approximate expression to explain the scattered field 

from the thin resistor variation with water depth (Mittet and Morten, 2012). Since 

sensitivity of CSEM varies with frequencies, offsets, amplitude of both resistor model 

and background model, and noise, it is too complex to evaluate the effect of water depth 

on the CSEM data. To improve simple detection criteria, the RSI is defined as 

,                                  (3.3) 

where Ex
tar is the response of a model containing a high-resistive target, Ex

ref is the 

response of reference model but without the target, i is the uncertainty of the ith datum 

and n is the number of data points. From equation (3.3), we can see that the RSI is the 

standard deviation of sensitivity. Compared to sensitivity of CSEM, the RSI is also can 

be applied for 2D cases. 

3.2.3. Occam’s inversion 

In order to compare data acquired by SBL and TSEM systems, we employ the 

MARE2DEM code (Key, 2012b, available at http://mare2dem.ucsd.edu/) and Occam 

inversion algorithm described by Constable et al. (1987). Occam’s inversion was 

employed by Key (2009) to solve the regularized problem by searching a smooth model 

to fit the data. The Occam’s inversion has been introduced in the section 2.5. Here we 

refer to two functions. The first is objective function: 
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,                                        (3.4) 

which  is the data misfit, and target misfit is . is the model regularization. The 

trade-off is Lagrange multiplier . The details of  and  are introduced by equations 

(2.53) and (2.56), respectively. 

The second function is the root mean squared (RMS) misfit as defined in equation 

(2.64). 

,                                     (3.5) 

where n is the number of data and i is the uncertainty of the ith datum. 

3.2.4. Transverse Resistance Ratio 

Transverse resistance is adjusting the thicknesses and resistivities of a layering 

model while keeping the transverse resistance unchanged. Baltar and Roth (2013) claimed 

that transverse resistance is the anomalous transverse resistance (ATR) of the reservoir 

as the amount of transverse resistance above the value that would exist if no hydrocarbons 

were present: 

(3.6)

where ∆R is the resistivity anomaly due to high resistivity anomaly. The ATR represents 

the cumulative resistivity contrast over the anomaly zone. Given a 1D resistivity trace 

extracted from a 2D CSEM inversion model, the transverse resistance equivalence 

expression is represented as (Baltar and Roth, 2013): 

,                          (3.7) 

where A is the CSEM anomaly zone. 

Given a relative uniform background resistivity variation over the depth interval of 

interest defined by the CSEM anomaly in these cases, discretization equation (3.7) can be 

simplified to 

,                   (3.8) 
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where  is the ATR of CSEM inversion result, ∆z is the actual thickness of the 

hydrocarbon charged reservoir interval. In this way, we define an ATR ratio as: 

 ,                            (3.9)  

where  is the ATR of true model which is used for generating the synthetic data. 

∆Rlog and ∆zlog are the resistivity anomaly due to hydrocarbons and the actual thickness 

of the hydrocarbon charged reservoir interval at the well log scale, respectively. 

3.3. Examples  

In order to make comparison of the two systems, we generated synthetic CSEM 

data by MARE2DEM code. Eight cases are considered for comparing the sensitivity and 

resolution of the two acquisition systems. The eight cases are described in table 3.1. For 

studying the horizontal resolution, a model with one thin reservoir is created to test how 

small size of reservoir can be detected. A model with two thin reservoirs is built to study 

the resolution power of the method. 

Table 3.1 Cases for sensitivity and resolution comparison. 

Cases Propose Method 

Case 1 Sensitivity with frequencies, offsets 1D modelling 

Case 2 Sensitivity with water depth 1D modelling 

Case 3 Sensitivity with buried depth 1D modelling 

Case 4 RSI with water depth 2D modelling 

Case 5 Resolution with water depth 2D inversion 

Case 6 Depth resolution 2D inversion 

Case 7 Sensitivity VS target dimensions 2D inversion 

Case 8 Horizontal resolution 2D inversion 

3.4. Results of 1D sensitivity modelling  

In order to characterize the sensitivity of marine CSEM method, a resistivity 

model is built for Case 1, Case 2 and Case 3 for the two acquisition systems (Figure 3.2). 

The HED source is assumed as a point transmitter in the sea water. The transmitter 

shooting distance is 200 m for the SBL system. The transmitter is towed 30 m above the 

seafloor. While the transmitter is towed 10 m below the surface for the TSEM system, 
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and the shooting distance is 200 m. The streamer with receivers is towed 100 m below 

the surface in the TSEM system. Measurement frequencies are from 0.05 to 0.75 Hz with 

0.05 Hz step for both SBL and TSEM data acquisition systems. 

 

Figure 3.2. Geometry of a thin resistive layer model for Case 1, Case 2 and Case 3. 

In Figure 3.3, the sensitivity to the target model is shown as square line. Effective 

and efficient data are selected by the criteria that the anomalous field (circle line) is larger 

than data uncertainty (cross line), For instance the offset is larger than 1.5 km. The reason 

is that the EM energy is not lost too much during propagating through the resistive layer. 

Due to the effects of airwave, the responses of background model is larger than target 

model resopnse in far offsets area. In this case, the efficient electric field data can be 

collected by both SBL system and TSEM system in 300 m water depth. Surface towing 

HED transmitter and streamer has sensitive offset between 2.0 and 4.3 km.  

 

Figure 3.3. Sensitivities to resistive target are calculated by SBL system (a) and TSEM system 

(b). The frequency is 0.25 Hz. 

According to equations (3.1) and (3.2), the sensitivity is related with frequency, 

offsets, and the resistivity of the propagation medium. Firstly, we study the effect of water 

in 1D model case. Using 1D model described in Figure 3.2, the water depth varies from 
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200 m to 900 m by 100 m step. Moreover, we give a resistive model with 500 m water 

depth and 2000 m overburden. Measurement frequencies are from 0.05 to 0.75 Hz with 

0.05 step.  

3.4.1. Case 1: Effect of frequency and offsets 

The sensitivity variation with frequency and offset for the SBL and TSEM systems 

are shown in Figure 3.4. In this case, the reservoir depth is assumed at 2000 m. Figure 

3.4(a) illustrates the sensitivity as function of frequency and offset for the SBL system 

data acquisition system. Since the hydrocarbon reservoir is buried 2000 m below the 

seafloor, the receivers can detect the electromagnetic signal from the reservoir at double 

burial depth. When the offset is smaller than twice as the reservoir depth, the sensitivity 

is smaller than 2.0 for the field absorption. 

The sensitivity of the TSEM system data is shown in Figure 3.4(b). Because of 

the limitation of the streamer length, the maximum offset is 8000 m for the TSEM system. 

As mentioned above, the TSEM system has an 800 m long source. The electrode pair 

receiver antenna bipole length are 200 and 1100 m. It means that accurate modelling of 

the system requires both a bipole source and bipole receivers in the modelling code (Key 

et al., 2014). In this case, the source and receivers are modeled as horizontal point dipoles. 

This first order approximation is sufficient for the sensitivity calculations in this study.  

Since both the source and streamer receivers are far away from the seafloor in this 

case with 500 m water depth, the high frequency part of the electromagnetic field 

decreases by the seawater. Hence, the sensitivity decreases for frequencies larger than 0.4 

Hz compared to the seafloor based node system in this relatively deep water case.  
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Figure 3.4. Sensitivity variation with frequency and offset for (a) SBL system and (b) Towed 

streamer system. 

3.4.2. Case 2: Effect of water depth 

In this section, we study the effect of water depth in 1D model case. We employ the 

resistivity model as given in Figure 3.2. The water depth varies from 200 m to 900 m by 

100 m step. The 0.25 Hz frequency is transmitted by both SBL and TSEM systems.  

Figure 3.5 illustrates the CSEM sensitivity curve variation with water depth. When 

the water depth increases, the magnitude value decreases in SBL system. However, in 

TSEM system, the magnitude value decreases only in near offset. The CSEM data 

uncertainty are increasing with water depth when the water depth is deeper than 400 m. 

The main reason is that the EM signal propagated through deep water is lost and the 

airwave will have a strong response at far offset area.  

 

 
Figure 3.5. CSEM data anomalous field solid line  and uncertainty dashed line  varies in 

offsets with different water depth collected by SBL system (a) and TSEM (b).  
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We have studied the sensitivity range with reservoir burial depth in an 

intermediate water depth in the previous section. In this section, we consider the effect of 

the water depth on sensitivity of the two acquisition systems. For comparison, we choose 

a shallow thin resistive layer model to ensure the sensitivity efficiently. The resistivity 

model is employed with only range and water depth. The sensitivity to the target is 

measured by both SBL system and TSEM system. 

In this case, the various noise levels are given in different water depth. We will 

borrow a definition of the term airwave, which refer to any signal arising by interactions 

with the air-water interface. In the shallow water case, the difference of the target and 

background model contribution is large due to the airwave and the response for a resistive 

anomaly increase. 

Concerning the sensitivity in SBL system, both deep water and shallow water have 

an apparently high sensitivity. At shallow water case, airwave and multiple reflections 

between the air surface and seafloor will increase the anomalous field, so that there is a 

very high sensitivity. In the case with intermediate water depth, the sensitivity is reduced 

because the relative contribution of the propagation path through the target is not as strong 

as in deep water due to the setting in primary airwave. However, in the deep water, all 

EM signal reaches the receivers propagation path through the subsurface, especially the 

high resistive layer. The main contribution is the EM energy travelling through the 

hydrocarbon reservoir.  

In Figure 3.6, the reservoir is burial at 1.2 km depth from the seafloor. Figures 

3.6(a) and (c) show the sensitivity to the target at frequency 0.25 Hz, 0.75 Hz, respectively. 

For the shallow water, the increase in background signal amplitude with reduced water 

depth is accompanied with a corresponding increase in burial resistor scatter field. This 

increased scatter field leads to an increasing sensitivity with the decreasing water depth. 

Therefore, the sensitivity is decreasing when the water depth increases from 200 m to 500 

m in Figure 3.6(a). The amplitude of the scattered field is almost constant for the water 

depths larger than 500 m (Mittet and Morten, 2012). But the uncertainty and noise level 

decrease with raising the water depth when it is deeper than 500 m. The sensitivity grows 

up when the water is deeper than 500 m.  
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When it comes to the TSEM system, there is almost no sensitivity at deep waters 

because the EM signal is extraordinarily attenuated in the conductive seawater. However, 

a good sensitivity to the target could be obtained at the intermediate water depths. In the 

shallow water case, high sensitivity can be obtained for the target detection. For the 

TSEM system, fast and accurate measurements are the advantages which SBL system 

cannot offer: (1) the depth of both HED source and streamer with receivers could keep 

nearly constant during the data acquisition, (2) the position of the HED source could be 

measured by GPS system. Mattsson et al. (2012) presented noise reduction techniques to 

keep the total error below 3%, including the navigation uncertainty, measurement error 

and noise reduction processing error in addition to the electric field noise.  

In Figure 3.6(b), for the shallow water, the sensitivity is growing up with the 

increasing water depth at 0.25 Hz. At the water depth of 200 m ~ 400 m, the sensitivity 

has a peak in 0.25 Hz frequency case. The sensitivity decreases sharply when the water 

depth becomes deeper than 400 m. In other words, the sensitivity to CSEM data has a 

peak at 400 m water depth for the TSEM system at 0.25 Hz. Figure 3.6(d) describes the 

sensitivity at 0.75 Hz. The sensitivity decreases with increasing the water depth. When 

the water depth is larger than 500m, the TSEM system has a low sensitivity to the 

hydrocarbon reservoir target. 
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Figure 3.6. CSEM data sensitivity variation with offsets and water depth collected by SBL system 

(a), (c) and TSEM (b), (d). Different curve illustrates sensitivity for different water depth. The 

frequency is 0.25 Hz in (a) and (b), and 0.75 Hz in (c) and (d). 

3.4.3. Case 3: Effect of reservoir burial depth 

In studying the relationship between sensitivity and reservoir depth, the same 

resistivity model in Figure 3.2 is considered but with varying reservoir burial depth. In 

these cases, the transmitter frequencies are 0.25 and 0.75 Hz. The water-depth-

independent contribution to the ambient noise N is chosen as 10-15 V/Am2, 10-14 V/Am2 

for uncertainty in the SBL and TSEM systems, respectively. The top of reservoir is buried 

at depth of 1200, 1600, 2000, and 2400 m, respectively.  

We calculate the sensitivity defined by equation (3.1) and the uncertainty model 

described by equation (3.3) for the burial depths from 1200 m to 2400 m. The results are 

illustrated in Figures 3.7 and 3.8 at the frequency of 0.25 Hz and 0.75 Hz, respectively. 

Figure 3.7(a) shows that the sensitivity to the target is good for all reservoir depths for 

the SBL system. However, the sensitivity to the target buried below 2400 m is difficult 

to detect as shown in Figure 3.7(b) for the TSEM system. The sensitivity reduces with 

the increasing reservoir depth.  

Figure 3.8 shows the sensitivity to the target at 0.75 Hz. The SBL system can still 

detect a target at 2000 m but fails to detect the 2400 m case based on the sensitivity 

attribute being larger than 1 (Figure 3.8(a)). Based on the same criteria, the TSEM can 

only detect the shallowest target. Figure 3.8(b) illustrates that the sensitivity to the 

shallow target with 1200 m depth is larger than 1.0 which means the shallow target is 

detectable. In other words, it is difficult to detect the deep target at a high frequency 0.75 

Hz by the TSEM system. 

Compared the results shown in Figures 3.7 and 3.8, the TSEM system has an 

advantage at shallow reservoir detection, while the SBL system apparently has a deeper 

reservoir detectability. In the low frequency case, a shallow target can be very well 

detected by both of acquisition systems. But it is difficult to obtain a good sensitivity for 

deeper target by the TSEM system. For the TSEM system, only 1200 m deep reservoir 
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shows sensitivity to the target in Figure 3.8(b). In other words, the sensitivity to the target 

is sharply reduced for the TSEM system.  

 

Figure 3.7. The synthetic data measured by (a) SBL system and (b) TSEM system in different 

reservoir burial depths at 0.25 Hz. 

 

Figure 3.8. The synthetic data measured by (a) SBL system and (b) TSEM system in different 

reservoir burial depths at 0.75 Hz. 

3.5. Results of 2D layers models  

In this section three cases are considered to study the resolution of the SBL and 

TSEM systems by using Occam inversion introduced in section 2.5. Regularized smooth 

inversion is used to analyze the resolution (Constable et al., 1987; Key 2009). Case 4 

studies the sensitivity with the various water depths by using the RSI; Case 5 and Case 6 

study the resolution with various water depths and reservoir buried depths, respectively; 

Case 7 studies the resolution with various reservoir lengths; and Case 8 studies the 

resolution with the horizontal distance between two reservoirs. The true resistive model 

for Cases 4, 5, 6 and 7 is a thin resistive layered (100 Ωm) model embedded in a 
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conductive medium (1 Ωm) given in Figure 3.9. The resistivity of air and sea water is the 

same as the 1D model shown in Figure 3.2. The parameters of the two acquisition systems 

are given in table 3.2. In Figures 3.9 to 3.15 to be shown, the white dots represent the 

receivers with 1 km interval for the SBL system, and the source locations for the TSEM 

system with a 250 m interval. The offsets for the TSEM system are ranges from 883 m to 

7595 m. 

Table 3.2 Model parameters of the CSEM acquisition systems 
 

Parameters SBL TSEM  

Source distance (m) 200  250 

Frequency (Hz) 0.25, 0.75 0.25, 0.75 

Noise floor (V/Am2) 10-15  10-14  

Standard error  0.4 0.4 

Source length (m) 270  800  

Source depth 30 m above the seafloor 10 m below the surface 

Receivers position, spacing On the seafloor & 1 km 100 m below the surface & 160 m 

 

The HED source and streamer are towed from east to west. The first shot starts at 

10 km. After 72 shots, the end is located at -7.7 km for all the cases. Because the streamer 

is 7.7 km long, the last receiver is located at 0 km. In the SBL system, 11 receivers are 

located between 0 km and 10 km with equal spacing of 1 km. The distance between the 

transmitter shots is 200 m, which is towed from 20 km to -10 km for data acquisition. 

Both of the two systems cover the interesting area (Figure 3.9). 
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Figure 3.9. Simple model with a thin resistive layer embedded in a conductive background 

medium. 

3.5.1. Case 4: Effect of water depth on RSI  

In order to study the effect of water depth in 2D thin layer resistivity model, the 

synthetic data are measured in different water depths. In these cases, we assume that the 

reservoir is buried 1.2 km below the seafloor in the resistivity model shown in Figure 3.9.  

Figure 3.10 shows the RSI measured using each of the two different data 

acquisition systems. According to equation (3.2), the curves demonstrate that the RSI 

value varies with a increasing water depth. As a result, the RSI to the target in the SBL 

system increases with the increasing water depth. Because of the reduction of noise, the 

RSI has a high value at deep water. However, the RSI in the TSEM system decreases 

smoothly with increasing water depth. When the water depth increases, the distance 

between seafloor and receivers streamer is also increasing. EM energy is absorbed by 

seawater, and then the CSEM data anomalous field decreases. Additionally, the signal to 

noise ratio is also increasing with water depth. 
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Figure 3.10. RSI as a function of water depth for the two acquisition systems. 

3.5.2. Case 5: Effect of water depth on depth resolution 

To test the effect of water depth in 2D thin layer resistivity model, we also invert 

the synthetic CSEM data by using Occam inversion (Key, 2009; Key and Ovall, 2011). 

These synthetic data are simulated by MARE2DEM, and the water depth is setted as 300, 

500, 700, and 900 m. The frequencies are 0.25 and 0.75 Hz. The resistivity model is 

shown in Figure 3.9, where the reservoir is buried 1.2 km below the seafloor. The water 

depth is 0.3 km for (a) and (b); 0.5 km for (c) and (d); 0.7 km for (e) and (f) and 0.9 km 

for (g) and (h), respectively. 

The inversion results are summarized in Figure 3.11, where the differences 

between the TSEM system and the SBL system are able to be effectively and efficiently 

distinguished.  

In shallow water both methods are able to provide quality resistive images. With 

increasing water depth, the qualities of the resistive image of TSEM system deteriorate 

due to the absorption of the electromagnetic wave in the water. At the same time, the 

airwave does not attenuate while traveling along the sea surface. In this case, the lower 

signal to noise ratio results in a poorer image in deep water than in shallow water.  

However, the opposite phenomenon is also observed for the SBL system. In the 

deep water case, the attenuation of a diffusive field in the water caused by a reduction of 

the airwave signal, and as a consequence the signal to noise ratio increases with increasing 

water depth. The deeper the water depth is, the better inversion results which cloud be 

given by the SBL sytem. When the water depth is 900 m, it is difficult for TSEM system 

to detect the anomaly of reservoir.  
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Figure 3.11. Inversion results of SBL system (left) and TSEM system (right) in various water 

depth.  

3.5.3. Case 6: Effect of reservoir depth on depth resolution 

Case 3 studies Occam’s inversion resolution with variation of reservoir depth. The 

data used for inversion examples are obtained from a simple 2D reservoir model (Figure 

3.9). The top of the thin resistive layer lies at a depth of 1.2, 1.6, 2.0 and 2.4 km below 

the seafloor for testing the resolution with reservoir depth. The parameters for the data 

measurement are listed in Table 3.2. In order to study the detectability, the fixed water 

depths at 300, 500 and 700 m are used for the tests. The effects of the water depth are 

discussed in the previous subsection. So the fixed water depth at 300 m is only given as 

an example for the tests. 
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The inversion results give in Figure 3.12 show that none of the data acquisition 

systems can get good inversion results when the reservoir is buried of 2400 m. The 

reservoir depth is 1.2 km for 3.12(a) and (b); 1.6 km for 3.12(c) and (d); 2.0 km for 3.12(e) 

and (f) and 2.4 km for 3.12(g) and (h), respectively. When the reservoir depth increases, 

the anomaly area by the inversion increases but the value of resistivity parameter becomes 

small as shown in Figures 3.12(a), 3.12(c), 3.12(e) and 3.12(g) for the SBL system and 

3.12(b), 3.12(d), 3.12(e) and 3.12(h) for the TSEM system.  

   

   

   

  

Figure 3.12. Inversion results from SBL system (left) and TSEM system (right) for 300m water 

depth.  

3.5.4. Case 7: Effect of target dimensions on sensitivity 

In order to study the sensitivity versus target dimensions of two acquisition 

systems, we tested a simple model with variation reservoir length, 2.0, 1.5, 1.0 km. The 
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model is shown in Figure 3.9. The water depth is 300 m, and the reservoir is buried 1 km 

below the seafloor. The acquisition parameters are given in table 3.2. 

Figure 3.13 illustrated the Occam inversion results of varying reservoir length 

model. Left panels present SBL system inversion results, and right panels present results 

acquired by TSEM system. The reservoir lengths are 2.0 km for Figures 3.13(a) and 

3.13(b), 1.5 km for Figures 3.13(c) and 3.13(d) and 1.0 km for Figures 3.13(e) and 3.13(f).  

With the reduction of reservoir length, there are fake anomalies in the Occam’s 

inversion results by SBL system. One reason of the artifaces may that we choose wrong 

parameters for the Occam’s inversion. The wrong parameters lead to the RMS misfit is 

larger than the target misfit. The Occam’s inversion has not started to smooth the model, 

when the Occam’s inversion finished. Another reason may be the few data points of the 

acquisition system. In order to overcome this problem, more inversion examples could be 

tests in the future, for instance, changing the inversion parameters or giving a higher target 

misfit to test the smooth model, adding or removing receivers to test the data points. 

Comparing the results from SBL system, the inverted resistvity results of the 

TSEM system have a better horizontal resolution. The reason of the good solution of the 

inversion may that the distance between the neighbor receivers of the TSEM system is 

smaller than that of SBL system. In this way, the very dense spatial sampling can be 

offered by the TSEM system. 
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Figure 3.13. Inversion results from SBL (left) and TSEM (right) system.  

3.5.5. Case 8: Effect of reservoir distance on horizontal resolution 

In this section, we test the horizontal resolution for a model with two close 

reservoirs. A model for Case 8 (Figure 3.14) is built to simulate CSEM synthetic data for 

this testing. The 2D model consists of two equal sized resistive reservoirs of 2.0 km × 0.1 

km along x and z directions, respectively. One reservoir is located between 2km and 4km 

in x direction with 100 Ωm resistivity and the other has the same resistivity and burial 

depth. The distances between the two reservoirs are 2 km and 1 km. The parameters in 

table 3.2 are used for the CSEM data inversion. 

 
Figure 3.14. A thin resistive layered model embedded in a conductive background medium for 

analyzing the horizontal resolution (Case 8). 

Inversion results of the synthetic data generated by the two acquisition systems 

are illustrated in Figure 3.15. The length of the two reservoirs is 2.0 km and the distance 

between the two reservoirs is 2.0 km in 3.15(a) and (b); 1.0 km in 3.15(c) and (d). The 

distance between the two reservoirs is 2 km in the true model. The results show that both 

of the SBL and TSEM systems are able to detect the two resistive anomalies. The depths 

of the anomalies detected using the SBL system are a little shallower than that of the true 

model shown in Figure 3.15(a), while the clear anomalies are located at the right place by 

the TSEM system shown in Figure 3.15(b). 
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Figures 3.15(c) and 3.15(d) show the results by Occam inversion when the 

distance between the two reservoirs is 1 km. The two reservoirs estimated by the SBL 

system in Figure 3.15(c) are connected as a large anomaly. In contrast, the two anomalies 

are clearly separated by the TSEM system in Figure 3.15(d). 

 

  

Figure 3.15. Inversion results from SBL system (left) and TSEM system (right) for 300m water 

depth.  

3.6. Analysis of ATR ratio 

3.6.1. ATR ratio with variation of water depth 

Apparently, CSEM inversion results can be evaluated by analysis of resistive 

image. Additionally, ATR ratio is able to evaluate the resistive image quickly. Using this 

method, a fast evalution of CSEM sensitivity could be performed before carrying out 

CSEM inversion work.  

The inversion results in Case 5 are used to study ATR ratio. According to equation 

(3.9), ATRratio depends on both ATRtrue and ATRinv. In these cases, ATRtrue is equal to 

9900 Ωm2. ∆RCSEM refers to the resistivity anomaly owing to hydrocarbons in the CSEM 

resistivity trace. ∆ZCSEM is the thickness of the CSEM anomaly in the CSEM resistivity 

trace. ∆RCSEM of 500 m is used for calculation anomaly transverse resistance. A ratio of 

0.3 is used as the quality criteria by experience. If the ratio is below 0.3, the resistivity 

image is accepted for interpretation. For hydrocarbon filled reservoir depth varying, three 

water depths corresponding to deep water, intermediate water, and shallow water are 
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considered. When the reservoir depths vary from 1.2 (blue), 1.6 (green) and 2.0 (red), the 

results are illustrated in Figure 3.16. 

Figure 3.16(a) demonstrates transverse resistance ratio variation with water depth 

collected by the SBL system, and the curve for data acquired by the TSEM system is 

presented in Figure 3.16(b). From Figure 3.16(a), the trough of low ATR ratio is at 500 

m water depth. Especially, when the reservoir depth is 2.0 km, the ATR ratio is lower 

than 0.3 in the SBL system. Similar results can be given by 1D sensitivity model case. 

The sensitivity is lowest at 500 m water depth (Figure 3.6(a)), but the ATR ratio has a 

peak at 400 m water depth by towed streamer. In other words, TSEM system has the best 

sensitive and resolution at 400 m water depth (Figure 3.6(b)). In the deep water, the ATR 

ratio of TSEM system is too low to give a quality resistive image of CSEM inversion 

result. When the reservoir depth increases, the ATR ratio decreases sharply. In both of 

very shallow water and deep water environments, the ATR ratio is low when the reservoir 

depth is 2.0 km. 

 

 
Figure 3.16. ATR ratio variation with water depth by (a) SBL system and (b) TSEM system for 

reservoir buiral depths. 
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3.6.2. ATR ratio with variation of reservoir depth 

The inversion results in Case 6 are used to study Anomaly Transverse Resistance 

ratio. The ATR ratio is calculated using equations (3.8) and (3.9) and shown in Figure 

3.17. The quality criteria is 0.3 by experience, the same as above. If the ratio is below 0.3, 

the resistivity image is not accepted for interpretation. The ATR ratio varies with reservoir 

depth illustrated in Figures 3.17(a), (b), (c) and (d) for the water depths of 300, 500, 700, 

and 900 m, respectively.  

As depicted in Figure 3.17(a), ATR ratio of inversion results varies with 

increasing reservoir depth at shallow water of 300 m depth. The ATR ratio decreases with 

increasing reservoir depth. Because the airwave affects the response of hydrocarbon 

reservoir in shallow target case, the ratios in both acquisition systems in 1000 m reservoir 

depth are lower than that in 1200 m reservoir depth case. The fact that linearly decreasing 

curve reflects the transverse resistance ratio reduces with reservoir depth indicates that to 

some extent the detectability of CSEM method is declined. Both of the data acquisition 

systems are able to provide a qualified resistivity image when the reservoir is buried less 

than 1800 m below the seafloor.  

In the intermediate water 500 m, the ATR ratio of the SBL system is similar to 

that of the TSEM systemin in Figure 3.17(b). As shown in Figure 3.17(b) the ATR ratio 

value for the TSEM system declines sharply when the reservoir depth increases from 

1600 m to 1800 m. The CSEM inversion result is not able to provide a high resolution 

image in 1800 m reservoir depth case by the TSEM system. Although the ATR ratio of 

the SBL system at 1800 m is smaller than 0.3, yet it is larger than that of the TSEM 

system. Accordingly, the SBL system has an advantage in deep reservoir case with 

intermediate water depth.  

In Figure 3.17(c), it is no doubt that the ATR ratio of the SBL system is higher in 

deep water 700 m model than in intermediate water 500 m model. Even though the 

reservoir is buried 2000 m below the seafloor, the inversion result of synthetic data 

acquired by the SBL system has high resolution.  
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The detectable limitation of the TSEM system reduces with increasing water 

depth. When the water depth is 900 m, the ATR ratio is illustrated in Figure 3.17(d). The 

TSEM system can only have a quality resistivity image for very shallow reservoir. 

 

 

Figure 3.17. ATR ratio variation with reservoir depth by SBL system (solid line) and TSEM 

system (dashed line) for water depth of 300 m (a), 500 m (b) 700 m (c) and 900 m (d). 
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3.7. Discussion and Conclusion 

The marine CSEM method has advantages and disadvantages like other 

geophysical methods. In order to evalue the CSEM method, the effects of frequency, 

offset, water depth, target depth, target dimensions and the horizontal resolution in 

context of sensitivity and resolution have beenstudied for both the SBL and TSEM data 

acquisition system. Three methods are applied for these investigation, 1D sensitivity 

modelling, the RSI and Occam’s inversion with ATR ratio.  

1D sensitivity modelling can provide a fast evaluation of the CSEM data 

acquisition systems. The responses of 1D modelling show that the sensitivity for the SBL 

system method is different from TSEM system method in different frequencies and 

offsets. Both SBL and TSEM systems have good sensitivity for shallow resistive target 

detection. The detectable limitation of the TSEM system reduces as increasing water 

depth. 

The effects of water depth and target depth on the detectable limitation is studied 

by 1D sensitivity model and 2D modelling and inversion. The advantage of the SBL 

system is preferable in deep water environment because of the lower EM energy lost 

during propagating through the sea water. This study has demonstrated that in shallow 

water depth of 300 m both acquisition systems are useful for marine CSEM hydrocarbon 

exploration. In shallow water envoirnments, the TSEM system gives good and qualified 

responses in terms of sensitivity and inversion as the SBL system.  

In 2D cases, the RSI can provide a fast evaluation of the sensitivity to the target. 

This method has been tested  for  simple 2D thin layer cases. The RSI curves demonstrate 

a similar relationship bewteen the detectability and the water depths. But this method 

cannot show more details information. 

To get more information, Occam’s inversion is employed for the 2D simple layer 

case. The inverted resistivity results illustrate that the depth resolution is related to water 

depth. In shallow water environment, both SBL and TSEM systems have good resolution 

of CSEM inversion. The signal interacting with the air affects the received fields and can 

limit sensitivity to sub-seafloor structure. Using RSI, the sensitivity of marine CSEM data 
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could be evaluated before inverting CSEM data. When the water depth increases, the 

depth resolution of the SBL data is better than that of the TSEM data.  

Because it is difficult to compare the resistivity results from two data acquisition 

system, an ATR ratio is introduced to evalue these resistive image. By analyzing ATR 

ratio of resistive image from marine CSEM data inversion, we have considered 0.3 as a 

criteria to evaluate the inversion results. The detectable limitation of target depth depends 

on the water depth, geologic setting, frequency and offsets. The exact reservoir detection 

limitation depth has been tested for water depth of 300, 500, 700 and 900m in both SBL 

and TSEM systems.  

Based on the above methods, the SBL system is preferred in deep water 

environment, while the TSEM system is better in the shallow water case. In our cases, the 

SBL system has a disadvantage in 500 m water depth. But in both shallow and deep water 

environments, the SBL system can provide a high quality data acquisition. Furthermore, 

the best water depth interval for TSEM system is between 300 m and 600 m. At 400 m 

water depth, it has an advantage. In deep water, it is not a good environment for TSEM 

system.  

In the target depth case, both two systems lose the resolution of deep target. 

Concerning the sensitivity of target dimentions and horizontal resolutions, the TSEM 

system has an advantage. The TSEM system provides a clear resistivity image when 

revervoir length is 1 km and it is able to distinguish two shallow reservoirs by Occam’s 

inversion when the reservoirs are at 1 km distance.  

There are some limitations of these comparison study. Firstly, the model is 

assumed as a simple isotropic model. And 1D sensitivity modelling and 2D inversion 

cannot describe a 3D and anisotropic world. The SBL system has an advantage of 3D data 

acquistion. The boardside data is not considered in these cases either. Secondly, the 

selection of inverted parameters may lead to different results. More parameters tests may 

provide better inversion results. Thirdly, for the 1D sensitivity modelling, the lengths of 

the souce and receivers are not considered. Finally, there are new technologies for two 

data acquisition system updated. In my studies, I have not considered these new 
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technologies, for instance the bipole source and bipole receivers for TSEM sytem, the 

deep towed equipments technology for both systems.  

In the future, the studies of the sensitivity and resolution may be tested in 3D 

domain and anisotropic environment. More Occam’s inversion may be tested to figure 

out the better parameters. The noise can be well estimated for the CSEM modelling.   

Although these researches have limitations, they can be used to identify 

experimental limiting factors and to guide the selection of acquisition systems for 

hydrocarbon exploration. We believe that the comparison studies are useful for improving 

acquisition systems.  
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Chapter 4 Seismic coherence driven sparse CSEM inversion 

In the Chapter 3, we discussed the difference of the SBL and TSEM data 

acquisition systems. We employed the Occam’s method to invert the synthetic data for 

studying the resolutions. Because of the large number of free parameters, the Occam’s 

inversion has a high computational cost. In this chapter, we present an irregular sparse 

mesh that it can reduce the computational cost while it keeps resolution. 

4.1. Introduction 

It is common to create 2D or 3D resistivity cubes from controlled-source 

electromagnetics (CSEM) data by inversion techniques involving modelling and data 

fitting (Zach and Frenkel, 2009; Brevik et al., 2009). These techniques are applied in 2D 

and 3D large models by inverting the dataset on a mesh with discretized cells (Commer 

and Newman, 2008; Gabrielsen, 2009). There has been already some work done by using 

seismic constraints in CSEM inversion (da Silva et al., 2012; Brown et al., 2012). 

The choice of discretization of the inversion model is a critical aspect. An ultra-

fine discretized mesh can provide a high resolution resistivity image but at high cost. For 

the CSEM inverse problem, the mesh or grid does not need such a high precision because 

of the limited resolution of electromagnetic waves in conductive media compared to a 

seismic image. Therefore, the optimal solution would be the inversion on a grid or mesh 

that provides good resolution without increasing the computational cost and physical 

memory.  

The traditional method used to choose the inverse model mesh is to generate a fine 

discrete mesh (Constable et al., 1987). Occam’s inversion algorithm was employed by 

Key (2009) to solve the regularized problem by searching a smooth model to fit the data 

on these meshes. A staggered grid was introduced to increase resolution of inversion in 

seismic application (Louis et al., 2005; Michelini, 1995). It shows a high resolution image 

by shifting and merging a number of low resolution images (Vesnaver and Bӧhm, 2000; 

Arato et al., 2014). ). Meanwhile, the staggered grid electrical resistivity tomography 

method is effective in reducing the formation of artifacts from the inversion procedure, 
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but using a coarser grid, the time used for inversion is less than the finer grid inversion. 

In addition, the mesh cannot be too coarse without limitation due to numerical dispersion. 

A coarser mesh can be used for the inverse problem, which has the benefit of 

reducing computational cost. Bӧhm et al. (2000) defined an algorithm for automatic 

gridding which is based on Delaunay triangulation and Voronoi tessellation. This 

algorithm can also adapt the tomographic grid to the velocity gradient, by increasing the 

local resolution where its modulus is larger than a chosen threshold for seismic inversion.  

Traditionally, unstructured meshes are generated for Occam’s inversion 

(Constable et al., 1987). An unstructured uniform triangle mesh was generated by 

MARE2DEM code (Key and Ovall, 2011; Key, 2012). Although their unstructured model 

mesh can readily conform to known complex features, the number of cells needed to 

describe the shallow part of the model can be significantly reduced by using structural 

information contained in a seismic image. On one hand, a coarse mesh is efficient to limit 

the computational cost; on the other hand, an ultra-fine mesh is needed to obtain small-

scale details of the model. The main goal of this chapter is to replace the unstructured 

uniform mesh by an irregular mesh that follows existing geological structures. Seismic 

images can be used to build an irregular sparse mesh that represents the shape of 

geological structures. This sparse mesh is composed of two parts: large-scale cells 

describe regions where the resistivity is expected to be relatively constant, while areas 

where the resistivity is more variable are represented by small-scale cells. The total 

number of cells in the irregular sparse mesh is less than that in the fine regular mesh 

(Bӧhm et al., 2000). 

Our approach is to use a seismic image to build irregular meshes. In order to build 

the irregular mesh we extract segments from the seismic image and nodes from a seismic 

coherence section to build triangular cells by Delaunay triangulation. 

Traditionally, there are several methods to extract nodes directly from seismic 

information. For instance, a set of properly chosen locations for scattered nodes were used 

for implementing image-guided sparse full waveform inversion by Ma et al. (2012). The 

nodes are located on the features and between the reflectors. Triangular meshes can be 

generated by these nodes; however it is computationally very expensive and suboptimal. 
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In order to improve the edge generated along the faults direction, a coherence section is 

employed to replace the seismic image. 

In our approach, the features are picked from the seismic image as the skeleton of 

the sparse mesh. The vertices of triangles are extracted from the seismic coherence slice, 

which was used by Bahorich and Farmer (1995) as an efficient method for seismic data 

interpretation. The coherence slice shows not only the faults with clarity but also the 

intensively fractured region to the top. A corner detection approach defined as Harris 

corner detection (Harris and Stephens, 1988) is employed to extract the nodes from the 

coherence slice. Then, this skeleton map will be filled by nodes to create the triangle 

meshes.  

In order to generate a quality mesh, the angle of triangle cells should be larger 

than 25 degrees (Key, 2009). A conforming Delaunay Triangulation (CDT) of a seismic 

coherence PSLG is a true Delaunay triangulation in which each PSLG segment may be 

subdivided into several edges by the insertion of additional vertices, called Steiner points 

(Shewchuk, 2002). Steiner points are generated by two steps. The Steiner points in the 

first step are generated from the nodes of seismic coherence PSLG, and in the second step, 

the Steiner points are generated by Delaunay Triangulation. An efficient sparse triangular 

mesh for CSEM data inversion should include both the structured features exactly and 

have fewer inversion parameters. 

In this chapter, an irregular sparse mesh generation method for CSEM inversion 

is proposed. The proposed sparse mesh is defined as coherence-based irregular (IC) mesh, 

which is generated by Delaunay Triangulation method based on the vertices and segments 

from coherence section.  

The details of the IC mesh generation method are given. Two synthetic models 

are tested to show the inverse resolution and computational cost for different meshes. The 

results show that the computational cost by using the IC mesh is much reduced without 

losing resolution.  
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4.2. Method 

The fact that hydrocarbon reservoirs are characterized by high resistivity, but 

CSEM data lead to models with low spatial resolution. Hence, imposing these constraints 

is relevant. It is important to get a higher resolution by a fine mesh in this area. This fine 

mesh is generated by using small scale cells around the faults and reflected horizons. 

Coherence artifacts have different types. Some types of the coherence artifacts can 

lead to the existence of higher or lower density of nodes. The nodes extracted from these 

artifacts are used to generate the irregular sparse meshes. The resistivity image is sensitive 

to the CSEM data on the area both seismic coherence artifacts and anomalies. The 

thorough interpretation of coherence should be done before the mesh generation. In this 

paper, the impact of artifacts in the inversion result is not investigated, but can potentially 

introduce a bias in the result.  

The IC mesh generation method consists of three major steps: (1) Create the 

seismic coherence section to detect the structured features of interest. (2) Extract corner 

nodes and horizons as vertices and segments for triangle mesh generation. (3) Create 

sparse meshes based on these vertices and segments by using MARE2DEM. The mesh 

of the starting model of CSEM inversion includes geological features such as horizons 

and faults which are represented as sides of triangles in 2D meshes. 

Step (1) is explained below. Based on the method of the location structure tensors 

introduced by Tchon et al. (2006), we employed the seismic coherence to generate the 

sparse mesh. Figure 4.1 illustrates the difference of faults from the seismic image (a) and 

coherence section (b). The skeleton of the sparse mesh, horizons and faults are picked 

from seismic image. Then, this skeleton map is filled by special nodes extracted from the 

seismic coherence to create the triangle meshes. Based on the skeleton, a coarse irregular 

triangle meshes are created by Delaunay Triangulation. 
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Figure 4.1. (a) Seismic image extracted from seismic cube; (b) Seismic coherence extracted from 

coherence section. 

In step (2) nodes are extracted by Harris corner detection method (Harris and 

Stephens, 1988) based on the seismic coherence section shown in Figure 4.1(b). Seismic 

coherence PSLG is used for sparse mesh generation, which includes both structure 

features and corner points from the seismic coherence map. Since the vertices are 

extracted based on the seismic coherence, a number of small size triangular meshes are 

generated automatically near the faults. The distance of two neighbor vertices is limited 

by the size of triangle cells of fine mesh.  

In Figure 4.2, the red nodes are picked as vertices for mesh generation based on 

Figure 4.1(b). 

 

Figure 4.2. Harris corner detection results on seismic gray image. Red star is the location of the 

nodes, which are sited as vertices of the triangles in the meshing generation. The nodes are 

detected from seismic coherence. 

In step (3) the sparse mesh is generated based on the vertices shown in Figure 4.2. 

The IC mesh (Figure 4.3) is created by MARE2DEM code. 
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Figure 4.3. Coherence-based structured mesh generated by MARE2DEM code. 

MARE2DEM code and Occam’s inversion algorithm described by Constable et 

al. (1987). Although the starting model is simulated with a coarse mesh, a goal-oriented 

adaptive finite element method designs sufficiently dense mesh around sources and 

receivers to obtain sufficient accuracy for each forward modelling (Key and Ovall, 2011). 

Occam’s inversion was employed by Key (2009) to solve the regularized problem by 

searching a smooth model to fit the data. The details of the Occam’s inversion are 

introduced in section 2.5. 

,                                              (4.1) 

which consists of two terms: the misfit of the model's forward response to the data, and a 

norm of the model roughness.  is the data misfit and  is target misfit.  is the 

minimization of the model difference between the predicted model m and the priori 

preference model m0. To seek a best fitting model, the model misfit should be updated to 

reach the target misfit. In Occam’s inversion, the RMS misfit varies with iteration 

including two phases. For Occam phase 1, the algorithm is sweeping through  and 

finding the best fitting model, iteration will stop until the target misfit is obtained. Once 

the target misfit is obtained, the iteration will work as Occam phase 2. It will find the 

largest  for that misfit. In this chapter, we mainly consider the reduction in 

computational cost for phase 1.  

For the model updated, giving an initial model mk, the equation for the next model 

in the sequence mk+1 is given as equation (2.60) 

,      (4.2) 



 

 
 

61 Chapter 4 Seismic coherence driven sparse CSEM inversion 

where 

 ,                                                                        (4.3) 

W is the model weight matrix. The operator F is called the forward operator. Jk is the 

Jacobian matrix, or the linearized model response gradient. P is a diagonal matrix of 

prejudice weights. 

,                                                      (4.4) 

where, the elements of the Jacobian matrix 

 ,                                                        (4.5) 

where i=1, 2,…, n, j=1, 2,…, m, and n is the number of data and m is the number of model 

parameters which are the conductivities σ. in each element m is a vector of . Jk is 

the kth iteration of Jacobian matrix J containing the derivative of each field component 

with respect to log10σ in each parameter. A method given by key (2009) is adopted in this 

chapter for efficiently computing J for 1D CSEM. 

We define the root mean squared (RMS) misfit to be the criteria of the inversion. 

,                                     (4.6) 

where n is the number of data and  is the uncertainty of the ith datum. 

As shown in equations (4.2) and (4.3), the computational cost in Occam phase 1 

is the sum of the Jacobian matrix calculations, model updates, and forward modelling 

calls. 

4.3. Synthetic marine CSEM survey examples 

A synthetic inversion example from a marine environment is used and the 

synthetic data are generated from a 2D isotropic resistivity model illustrated in Figure 4.4. 

The skeleton of the model comes from the same structural model shown in Figures 4.1(a) 

and (b). The model contains a resistive reservoir (100 Ωm) with length 4.4 km and 

thickness 0.1 km (the black area in Figure 4.4). The same geological features as the 
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seismic image illustrated in Figure 4.1(a) are applied to build the resistive background. 

The reservoir is embedded in a homogeneous and isotropic conductive background. All 

the parameters in the test model are given in Table 4.1. The top of the thin resistive layer 

lies at a depth of z = 1500 m below the sea surface (z = 0 m). The background has a 

complex geology with several faults. Synthetic electric field data for two frequencies 0.25 

and 0.75 Hz are generated by MARE2DEM (Li and Key, 2007; Key and Ovall, 2011). 3% 

Gaussian noise is added to the data and data below a noise floor of 10-15 V/Am2 are 

removed. The receivers recording the inline electric field are spaced 1 km along the line; 

the distance between the transmitter shots is 200 m.  

 

Figure 4.4. True resistivity model for CSEM inversion test. The rectangle is the interesting area. 

White spots represent receivers’ location. White triangles are the locations where the sources 

transmit electromagnetic waves. 

Table 4.1 Resistivity in test model 

Layer Resistivity (Ωm) 

Sea water  0.3  

Sediment layer 1  1.0  

Sediment layer 2  3.0  

Sediment layer 3  5.0  

Base 10.0  

Hydrocarbon reservoir 100.0  

 

Normally, a regular dense (RD) mesh is generated as shown in Figure 4.5(a). If 

the size of triangles is small enough, this mesh can describe complex features. In order to 

reduce the computational cost, a regular sparse (RS) mesh is given in Figure 4.5(b). If we 

know the geological features, we can generate a horizon-based irregular dense (IH) mesh 
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as shown in Figure 4.5(c). The IH mesh is constrained by the features from the seismic 

image. Finally, we build an IC sparse mesh using the proposed method, which is 

illustrated in Figure 4.5(d). To study the resolution and computational cost of the IC 

sparse mesh, we invert the synthetic CSEM data by using these four meshes.  

 
  

  

 

 
 

 

Figure 4.5. Building meshes of the starting model for Occam inversion by MARE2DEM. (a), RD 

mesh with 14600 cells. (b), RS mesh with 6700 cells. (c), IH mesh with 12900 cells. (d), IC mesh 

with 5900 cells. 

We invert the synthetic dataset using four different meshes. For comparison, the 

10th iteration inverse results for the four different meshes are used, where the RMS misfit 
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is slightly above the target misfit. Occam’s inversion results are calculated by 

MARE2DEM code, and the results are shown in Figure 4.6 together with the exact 

resistivity model.  

Although we invert CSEM data from a 14600 parameters RD mesh, the resistivity 

image shown in Figure 4.6(a) does not provide the same quality as the seismic image. 

The resistive anomaly thickness estimated is around 300 m (the true value is 100 m). 

However, this image is good enough for interpretation.  

When the number of parameters is reduced to 6700 for a RS mesh, the sizes of the 

triangle cells are larger than that of the RD mesh. Since the model is described by fewer 

parameters, the Occam’s inversion reduces computational cost per iteration. But the 

resolution of the inversion result using the RS mesh (Figure 4.6(b)) is not as good as the 

one using the RD mesh (Figure 4.6(a)).  

The IH mesh has slightly fewer free parameters for inversion than the RD mesh. 

The high resistive anomaly of the IH mesh image shown in Figure 4.6(c) is stronger than 

that from the RD mesh (Figure 4.6(a)).  

Unlike the image with the RS mesh, the resistive image using the IC mesh shown 

in Figure 4.6(d) has good resolution for interpretation, although the number of parameters 

is less than for the RS mesh. The 5900 parameters IC mesh has less than half of the RD 

mesh. However, the resistive model with the IC mesh provides an image as good as the 

RD mesh. Moreover, the image from the inversion with the IC mesh has good resolution 

in the area below the anomaly where the image with the RD mesh produces an artificial 

anomaly (Figure 4.6(a)). As a result, CSEM inversion from the IC mesh provides better 

resolution than the RD mesh.  

Compared with the RS mesh, the IC mesh has similar number of parameters, but 

the resistive image with IC mesh provides better result with fewer parameters. The 

anomaly of the reservoir is stronger than shown in Figure 4.6(b). The IC mesh can also 

predict the faulted area below the hydrocarbon anomaly. 

The inversion with the IH mesh has the best resolution among these meshes. The 

image with the IC mesh does not have as good resolution as the IH mesh. However, 
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compared to the true model shown in Figure 4.6(e), the resistive image with the IC mesh 

has a similar layer structure. The thin layer resistive anomaly and the basement anomaly 

can be interpreted.  
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Figure 4.6. CSEM inversion result by using (a) RD mesh, (b) RS mesh, (c) IH mesh, and (d) IC 

mesh. The final RMS is 1.22 for (a), (b) and (d) respectively, and 1.23 for (c). (e) True resistivity 

model for synthetic data. 

The RMS misfit variation with iteration number for phase 1 is given in Figure 4.7 

and the target misfit is 1.20. Due to the small difference of the RMS misfits per iteration, 

it is difficult to determine which method converges faster. The computational cost of IC 

mesh allows for the same rate of convergence as the RD mesh. However, the inversion 

on the IC mesh is at a smaller computational cost. Therefore, it is necessary to analyze 

the time used in different parts in the Occam’s inversion for different meshes. 

 
Figure 4.7. RMS misfit variation with iterations using different meshes. Dashed lines for regular 

meshes and solid lines for irregular meshes. 

The total accumulated computational time is illustrated in Figure 4.8. It increases 

with iteration number and is related to the number of triangles in the meshes. So the sparse 

meshes save computational time and physical memory. Because of optimization of the 

nodes position by this approach, the inverse problem is allowed for a reduction in the 

dimension and for this reason it accelerates execution speed. Furthermore, there is little 

difference between the cost of inversion with the IC mesh and the RS mesh. 
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Figure 4.8. The total time cost with CSEM data inversion iterations. Dashed lines for regular 

meshes and solid lines for irregular meshes. 

The cost of Occam’s inversion in each iteration includes three parts: Jacobian 

matrix calculation, matrix operation for model updates, and forward modelling calls. The 

computational time for each part in each iteration is plotted in Figure 4.9 in logarithmic 

scale. The four different meshes cost approximately the same for Jacobian calculation 

shown in Figure 4.9(a). But the cost of model updates increases with the number of 

triangle cells. As shown in Figure 4.9(b), the IC mesh has an advantage on this part. In 

addition, the sparse meshes also save time on forward modelling as illustrated in Figure 

4.9(c). The cost of the forward modelling is also a cumulative time for all the iterations. 

If the number of forward modelling calls is the same per iteration, the accumulated 

computational cost is a linear function of the iteration numbers. 
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Figure 4.9. The total time for (a) Jacobian calculation; (b) Model update; (c) forward modelling. 

The time used in each part is shown in Figure 4.10. The cost of Jacobian matrix 

calculation is similar for the four different meshes. The forward modelling spends no 

more than 1000 s for the sum of 10 iterations. Compared with the dense meshes the RD 

and the IH, sparse meshes the RS and the IC save little time on the Jacobian matrix 

calculation. Apparently, sparse meshes reduce the computational cost due to reduction of 

the matrix dimension during model updates. However, the computational time is not only 

dependent on the Jacobian matrix calculation, matrix operation, and forward modelling 

calculation but also the number of forward modelling calls and iterations.  
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Figure 4.10. Main computational cost for the different meshes. 

If we only consider the computational time of phase 1, the sparse mesh has an 

advantage on saving computational cost and physical memory.  

However, the total time for Occam’s inversion also depends on the computational 

time of phase 2. In phase 2, the inversion method tries to find a smooth model fitting the 

data, and the forward modelling is called to regularize the model. Because the mesh has 

an influence on the regularization and smoothing, the computational time in phase 2 is 

unpredictable for the different methods.  

The reduction of inversion parameters is necessary to save computational cost. 

The question is if it is possible to have comparable inversion result in terms of data misfit 

and quality of the inverted model. The number of elements of the IC sparse mesh is 

determined by the vertices extracted from the coherence section. In order to answer the 

question, we have tested three different models, where the numbers of vertices are 500, 

750, and 1000 for the generation of starting meshes. The numbers of the parameters for 

inversion are 3100, 3800 and 5400, respectively. Inversion results with the IC mesh 500, 

the IC mesh 750, and the IC mesh 1000 are shown in Figure 4.11.  
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Figure 4.11. CSEM inversion result by using IC sparse mesh, but with a different number of 

parameters. All the final RMS misfit of inversion is approximately 1.22. IC mesh is generated 

starting from (a) 750 vertices, (b) 500 vertices and (c) 1000 vertices. 

The resolution of the resistive image with IC mesh 500 is low, because of the weak 

reservoir anomaly. The underlying basement is strongly shown in the resistive image with 

the IC mesh 750. However, the estimated reservoir layer anomaly is too thick which is 

due to the large size of the cells. When the sparse mesh is too coarse, the resistive image 

loses the details of the anomaly. For computational cost comparison, the total time of 
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Occam’s inversion for different meshes is illustrated in Figure 4.12. Apparently, the total 

time does not decrease too much with fewer parameters. The reason is that the 

computational time of the RS and the IC meshes is similar as illustrated in Figure 4.10. 

For the RS and the IC meshes, the cost is mainly for Jacobian matrix calculation. The 

sparse mesh reduces the cost by providing a fast model update. Therefore, the decreasing 

number of parameters does not reduce the computational cost a lot when both forward 

modelling and model updates have a small proportion of the total cost. The IC mesh 1000 

has the similar cost as the IC mesh 750 and IC mesh 500. 

The IC mesh is not able to reduce the Jacobian Matrix calculation cost. It will be 

indispensable to combine another method, for instance, the low-rank approximation 

(Amaya et al., 2014), to reduce both the number of forward modellings and the memory 

requirements associated with storage of the Jacobian.  

 

Figure 4.12. The total time cost with CSEM data inversion iterations with the IC mesh 1000, 750, 

and 500. 

In order to test the horizontal resolution of the CSEM inversion by IC mesh, a 

model with two resistive reservoirs is used for generating synthetic data with a marine 

geophysical structure shown in Figure 4.1(a). The 2D resistive true model is shown in 

Figure 4.13(e). The 2D model consists of two resistive reservoirs (100 Ωm). The shallow 

reservoir is located between 11.5 km and 15.5 km in the x direction, and buried 1.5 km 

below the seafloor with 100 m thickness. The deep reservoir is located between 16 km 

and 19.5 km in the x direction, and buried approximate 2 km below the seafloor with 200 

m thickness. The target is embedded into a homogeneous and isotropic conductive 
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layered background (1, 3, 5, 10 Ωm). The meshes for the inversion are the same as given 

in Figure 4.5. The inversion results of different triangle meshes are shown in Figure 4.13.  

In all the Occam’s inversion results, the anomalies consist of two different 

reservoirs. However, the horizontal resolution of Occam’s inversion results by the IC 

mesh is not as high as the resistivity image by the RD mesh. The results from regular 

meshes have two low resistive artifacts below the reservoir anomaly. It is due to the 

shadowing of the overlying high-resistive anomaly. Both the shallow and deep anomalies 

are well recovered on the RD mesh. Since the anomalies are well recovered on the dense 

mesh, it is crucial to have a finer mesh in the vicinity of heterogeneity and coarser where 

the medium is more homogeneous for inversion. The coherence cube determines how the 

nodes are distributed in the space based on the imposed constraints. Compared with 

regular mesh and horizons constrained mesh, the IC mesh provides a smooth resistivity 

image, where the anomalies are constrained well by the structure. 
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Figure 4.13. CSEM inversion result by using (a) RD mesh, (b) RS mesh, (c) IH mesh, and (d) IC 

mesh. The final RMS is 1.14 for (b), 1.14 for (c), 1.15 for (d) and 1.14. (e) A true model of two 

reservoirs. 

The target RMS misfit is 1.20. The RMS misfits of Occam’s inversion in different 

meshes are given for Figure 4.14. The RMS misfit is smaller than target misfit at the 8th 

iteration. All the RMS misfits of Occam’s inversions reach the target misfit.  
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Figure 0.14. RMS misfit varies with iterations in two resistors model with the RD, RS, IH, and IC 

mesh. 

The performances of the different mesh methods are listed in Table 4.2 for 

comparison. 

Table 4.2 Comparison of the different meshes 

Mesh Resolution Cost 

RD High High 

RS Low Low 

IH High High 

IC High Low 

 

4.4. Discussion and Conclusion 

Using synthetic data examples, we have tested the Occam’s inversion on the four 

different meshes. The IC sparse mesh provides resolution as good as the RD mesh. 

Compared to the RS mesh, the IC sparse mesh shows a higher model resolution. However, 

the resolution is not as good as for the seismic approaches. This is due to the weakness of 

the electromagnetic exploration approach.  

IC sparse mesh can reduce the computational cost while it keeps resolution as 

good as a fine regular mesh. Inversion using the IC sparse mesh provides a resistive image 

with good resolution at a much lower computational cost. This method can save time on 

model updates.  

The total inversion time reduces by decreasing the number of unknown parameters. 

The IC sparse mesh reduces the computational cost of matrix operation for model updates. 

When the computational cost for model updates is a small proportion of the total time, 
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the total time tends to a constant when Jacobian matrix is the dominant proportion of the 

total cost, which is almost the same for the different IC sparse meshes.  

The cost of the forward modelling is dependent on the number of nodes of the grid 

and the solution method of the forward problem. In this chapter, we use the same solver 

on the four different meshes. The main contribution to the difference of computational 

cost is the number of nodes. 

The inverse resolution is dependent on the number of vertices extracted from the 

seismic coherence slice. This number is determined empirically and may be improved in 

further studies.  

We have also shown that IC sparse mesh can support a good horizontal resolution 

for Occam’s inversion. It can identify close resistors anomalies by Occam’s inversion as 

good as the regular dense mesh. 

We have demonstrated by synthetic examples that the resolution and 

computational cost for the IC sparse mesh offers a good compromise between spatial 

resolutions of the final solution and the computational cost. We have demonstrated that 

the IC sparse mesh is applicable to EM inversion. The use of this sparse mesh method to 

reduce the computational cost while keeping good resolution has been shown. The results 

show that the high computational cost of large-scale CSEM inverse problem can be 

significantly reduced by an IC sparse mesh. 
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Chapter 5 Image-guided regularized marine EM inversion 

We introduce the generation of the irregular sparse mesh to reduce the 

computational cost. Based on this sparse mesh, we propose a regularization approach to 

enhance Occam’s inversion. This regularization approach incorporates seismic 

constraints into EM inversion by using a non-Euclidean distance defined from the metric 

tensor field. The metric tensor field is computed not only from the seismic image but also 

from the stratigraphy image.  

5.1. Introduction 

During the past fifteen years, solutions to marine electromagnetic (EM) inverse 

problems have been rapidly and reliably developed for offshore exploration, as discussed 

in recent reviews (Constable, 2010; Key, 2012a). CSEM data have high sensitivity to 

resistive hydrocarbon fluids embedded in saline pore fluids. The inverse problem of 

finding a 3D model describing subsurface resistivity variations from CSEM data 

measured at surface is unfortunately ill-posed (McOwen, 1966). To stabilize the problem, 

regularization methods have been applied for various EM geophysics applications 

(Constable et al., 1987; Newman and Alumbaugh, 2000; Zhdanov et al., 2007; Abubakar 

et al., 2008, and Newman et al., 2010).  

Regularization, in mathematics and statistics and particularly in the field of 

inverse problems, involves introducing additional information in order to solve the ill-

posed problem or to prevent overfitting. A classic regularization example is the roughness 

penalty applied by Occam’s inversion (Constable et al., 1987), which favors smooth 

models. Sometimes sharper and more focused models are preferred. Such models can be 

obtained by using norms other than L2 for penalizing the model gradients (de Groot-

Hedlin and Constable, 2004; Hoversten et al., 2006; Hansen and Mittet, 2009).  

The marine magnetotelluric (MT) method is applied for mapping the subsurface 

resistivity image by using naturally occurring low-frequency plane waves. The basis for 

MT method is found by Tikhonov (1950) and Cagniard (1953).  The first equipment 

suitable for deep seafloor MT and CSEM soundings has developed by Charles Cox and 

Jean Filloux since the early 1960s (Constable and Cox, 1996). Although the marine MT 
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sounding has been developed by the academic since 1970s (the reviews by Constable, 

1990; Baba, 2005), the marine MT method was first commercialized as a tool for mapping 

subsurface resistivity to complement the seismic method (Constable et al., 1998). The 

history of marine MT technique has been reviewed several times (Baba, 2005; Constable, 

2010; Key, 2012a), 

The EM data have a high sensitivity to highly resistive target, such as hydrocarbon 

reservoirs, embedded in low resistivity backgrounds. Moreover, the inverse resistivity 

image suffers from lower resolution than many seismic methods. Still, the ability to 

distinguish resistive targets from conductive surroundings makes the EM method an 

important tool for offshore exploration. 

Combining the advantages of both EM and seismic data can improve 

interpretation based on each method alone. Based on the same geological structures of 

both seismic and EM models, joint inversion can be used to invert the data. But the joint 

inversion method normally has high computational cost. 

Brown et al., (2012) proposed an alternative approach to joint inversion by 

boosting the vertical resolution of EM inversion algorithm using the better resolution of 

full waveform inversion (FWI). In their paper, Occam’s inversion of EM data is 

constrained through the use of seismic velocity regularization weights. Similarly, Wiik et 

al., (2015) presented a Tikhonov type structural smoothing regularization approach that 

the marine CSEM inversion discretization conforms to the seismic information. Similarly, 

to incorporate a priori information, Bayesian methods have been applied in CSEM 

inversion (Ray and Key, 2012; Ray et al., 2014). 

In image-guided interpolation, Hale (2009a, 2009b) provided a method to 

compute the tensor field and coherence from structure tensors of seismic image. He 

extracted the tensor for each pixel of the seismic image. These tensors present the 

amplitude and direction of the pixel. This approach has been applied for full waveform 

inversion of seismic data (Ma et al., 2012), where structural information was used to 

impose structural constraints in the inverse problem. The question is how this high 

resolution seismic image can effectively be incorporated into an EM inversion.  
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Zhou et al. (2014a, 2014b) inverted the electrical resistivity data by using image-

guided Gauss-Newton inversion method. This approach extracted the structural 

information from the guiding image (GPR section) and incorporated to the direct current 

(DC) resistivity data. In Zhou et al. (2014a, 2014b), the structural information is assumed 

to be perfectly known. Stochastic image-guided structure-constrained inversion approach 

was developed by Zhou et al. (2016), in which the structural information could be updated 

by Markov-chain Monte Carlo (MCMC) sampler and the adaptive metropolis algorithm 

(AMA). 

We have employed the tensors for mesh generation for the EM inversion. A 

coherence-based irregular sparse mesh has been generated for EM inversion based on 

vertices and segments from seismic coherence (Guo and Dong, 2015; Guo et al., 2016). 

Therefore, the coherence-based irregular sparse mesh can support a high horizontal 

resolution for Occam’s inversion. It can identify close resistive anomalies by Occam’s 

inversion as good as the regular dense mesh. The regularization is still of a smoothing 

nature, but it can be improved by incorporating structural information from seismic data. 

In this chapter, we develop an approach to improve the results for the structural 

sparse mesh by a structural smoothing regularization. The structural sparse mesh is 

generated by using a coherence-guided irregular method. This regularization approach 

incorporates seismic constraints into EM inversion by using a non-Euclidean distance 

defined from the metric tensor field. The metric tensor field is computed not only from 

the seismic image but also from the stratigraphy image. Due to the uncertainty in seismic 

interpretation, the impact of seismically derived structure in the inversion result was not 

investigated, which can potentially introduce a bias in the result. In this way, some of the 

low vertical and horizontal resolution of EM data can be improved by this constraint. In 

order to do this, the non-Euclidean distance replaces the space distance between the 

neighbor parameters. The parameters do not vary much along the geological features; 

however, it allows a large difference between the neighbor parameters across the features. 

When the spatial distance is replaced by the smaller value non-Euclidean distance, the 

new model weight is larger than the old model weight. Therefore, the regularization will 

smooth the model along the features. For each cell, neighbor cell along the features 

supports a large model weight.  
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We develop both the coherence-based irregular sparse mesh and image-guided 

regularization methods. These methods are applied on synthetic datasets of both marine 

CSEM and magnetotelluric (MT) cases and real datasets of marine CSEM in the Troll 

area (Gabrielsen et al., 2009). For the marine CSEM and MT synthetic datasets cases, the 

inversions are tested not only separately but also jointly. The image-guided regularization 

method presented in this thesis is an easy tool that can be used to the existing inversion 

methods.  

5.2. Regularization inverse problem 

We introduce the image guided regularization concept by showing the application 

in CSEM Occam’s inversion algorithm. Occam’s inversion searches the minimization of 

the following unconstrained regularized objective function, which is given in Equation 

(2.52). This objective function includes two terms. The first term is called data misfit, 

where the expression is given by equation (2.53); the second term is the regularization 

term given by equation (2.56). 

,                                (5.1) 

The first term, model roughness, is computed by applying an operator R to the 

elements of the model vector m. Concerning models here, m is a vector of the logarithm 

to the base 10 of the conductivity for each parameter, and R is chosen to be a matrix 

calculated by the model differences between parameter cell and the neighboring cells 

which have the same edges or nodes. The second term is a measure of the difference 

of m from a priori preference model mref. The diagonal matrix P contains scaling 

parameters that determine the relative weighting between the preference and the model 

roughness.  

The normal model roughness regularization  in Occam’s inversion is 

dependent on the finite parameter area, and the spatial distance between the given 

parameter and the surrounding parameters. In the discrete problem, the roughness penalty 

is given as following: 

,                                  (5.2) 
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where np is the number of free parameters; nb is the number of neighbor cells; Aj is the 

area of the neighboring cell; Asum is the sum of areas of the neighboring cells;  is the 

distance between the centroid of a center cell and the centroid of adjacent cells; and  

is the parameter difference of the center cell with the adjacent cell.  

However, in many cases the smooth inversion models are insufficient for 

interpretation of marine CSEM data when the geological structure is expected to vary 

sharply. From the seismic image, a non-Euclidean distance can be defined by a metric 

tensor field.  

5.3. Image-guided regularization inversion 

In this section, we present the methodology of the image-guided regularization of 

Occam’s inversion. Firstly, we introduce the structure tensor and metric tensor fields from 

a guiding image. Then, we build an irregular mesh by using coherence-based sparse mesh 

method as the mesh of the starting model of EM inversion. Finally, we modify the smooth 

regularization term by using the non-Euclidean distance. 

5.3.1. The structure tensor fields and the metric tensor fields 

The structure tensors can be computed from an image for instance given the grey 

map (Guo and Dong, 2015). Each pixel in the grey image ranges from 0 for white to 1 for 

black. This tensor has been developed in the image processing (Weickert, 1999; Köthe, 

2003; Fehmers and Hӧcker, 2003; Baghaie and Yu, 2015). Given an image I(x; z), the 

structure tensor is based on the gradient of I, which is usually defined as:  

,                            (5.3) 

where  denotes convolution;  is a Gaussian function with standard deviation σ as 

shown in equation (5.4), and and  are horizontal and vertical components of gradient 

vector at each pixel respectively.  

 ,                                         (5.4) 
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The orientations of the image features are provided by the eigenvalue and 

eigenvector decompositions of the structure tensor. The eigenvalue and eigenvector 

decompositions are given by Fehmers and Hӧcker (2003), 

,                                               (5.5) 

where and  denote the eigenvalues;  and  denote the corresponding eigenvectors 

of the symmetric and positive semi-definite matrix . ;  d1 and d2 are 

the "semi-minor" and "semi-major" axes of the ellipse. Vectors e1 and e2 represent the 

prescribed directions of the tensor. The two eigenvectors are calculated as: 

,               (5.6) 

,               (5.7) 

Obviously, the eigenvalue  is smaller than . The tensor geometry is shown by 

Figure 5.1. 

 

 

Figure 5.1. Geometric interpretation of a structure tensor. 

Three types of areas in the image can be defined from the eigenvalues, which are 

calculated from location structure tensors (Tchon et al., 2006). These are flat regions 

( ), edges ( ) and corners ( ). 

The relative difference between the two eigenvalues of  is an indicator of the 

degree of gradient anisotropy, which shows how strongly it is biased to a particular 

direction. This attribute can be quantified by the coherence defined as: 

 .                                                     (5.8)  
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A simple example of structure tensors field and metric tensors field is given in 
Figure 5.2. 

 

Figure 5.2. Seismic image (left), structure tensors field (middle), and metric tensors field 

(right). Red ellipses represent tensors. 

5.3.2. Coherence-based sparse mesh 

The seismic coherence section can improve the vertical resolution of the seismic 

image. Seismic coherence has been applied to build irregular sparse mesh for EM 

inversion (Guo and Dong, 2015). This sparse grid is generated by Delaunay Triangulation 

based on the nodes and segments. The nodes are extracted by Harris corner detection 

method (Harris and Stephens, 1988) based on seismic coherence section. The segments, 

horizons and faults, are picked from the seismic image. 

5.3.3. Image-guided regularization 

The non-Euclidean distance  is given by the equation: 

,                                         (5.9) 

where  means the minimum non-Euclidean distance from centroid of a center 

element to centroid of neighboring cells;  is a metric tensor field from a seismic 

image (Hale, 2009a); and the spatial distance is between centroid of a center element 

and centroid of adjacent cells.  

The metric tensor field  is computed by the structure tensor  and the 

coherence  as given below (Hale, 2009a): 

 ,                                                   (5.10) 
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where  and is calculated from equation (5.8). In this function, the 

eigenvalues of the metric tensors are the reciprocal of the structure tensors. The 

eigenvectors of the metric tensors are the same as the structure tensors. This means that 

the eigenvectors parallel to the structure exhibit big eigenvalues, whereas those 

perpendicular to the reflections are small. This encourages diffusion of the seismic 

amplitude in the direction along the reflection, because diffusion in the direction 

perpendicular to the reflection would destroy the reflections. 

We now modify the regularizing term . We replace the spatial distance in 

equation (5.2) by the non-Euclidean distance  from equation (5.9). Then, the roughness 

penalty is given as: 

,                               (5.11) 

where  is the non-Euclidean distance from adjacent cell j to the center cell i. 

It is important to find the centroid of the cell at the pixel in the seismic image. The 

centroid of the cell has the same metric tensor as this pixel. In order to modify the 

regularization rapidly and efficiently, we find the interfaces of the stratigraphy, which are 

the horizons and faults in the irregular sparse mesh. Then the cells with the vertices on 

the interfaces should have different non-Euclidean distance to the neighbors, if they 

belong to different layers. At the end, we modify the smooth regularization by using this 

non-Euclidean distance.  

         

Figure 5.3. Roughness calculated by (a) spatial distance; (b) non-Euclidean distance. "arrow" 

represents the non-Euclidean distance with the direction of the metric tensor (ellipse). 
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The advantage of the non-Euclidean distance is that it is related to the tensor field 

which contains the direction of the feature. The difference of spatial distance and non-

Euclidean distance is shown in Figure 5.3. In Figure 5.3(b), the cell ‘0’ is much closer to 

cell ‘7’ than cell ‘11’. In Figure 5.3(a), the spatial distance of r7 is almost the same to r11.  

5.4. Results 

In this section, we demonstrate the performance of image-guided regularization 

with resistivity synthetic model studies that are illustrative of offshore hydrocarbon 

exploration problems. The resistivity model is the same as in Key (2012b), which is 

shown in Figure 5.4. The resistivity values in each layer are given in Table 5.1. The 

isotropic model consists of sloping seafloor, conductive sediments, and a thick tabular 

resistor representing a salt layer, a thin resistive hydrocarbon reservoir and an underlying 

resistive basement. 

 

Figure 5.4. Reproduced from (Key, 2012b). The synthetic model consisting of sloping seafloor 

bathymetry, conductive sediments, and a thick tabular resistor representing a salt layer, a thin 

resistive hydrocarbon reservoir and an underlying resistive basement. The white dots are the 

receivers’ locations with 1.32 km spacing. 

Table 5.1 Model parameters for the synthetic model. 

layer R(Ωm) 

Air 1013 

Sea water 0.3 

Salt 4 
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Sediment (brown) 0.6 

Sediment (yellow) 1 

Basement 100 

Reservoir 50 

 

2D synthetic inline electric field CSEM data were measured for 50 horizontal 

electric dipole (HED) source and 20 receivers at both 0.25 and 0.75 Hz by applying 4% 

Gaussian noise. The data were removed below a 10-15V/Am2 noise floor. Moreover, 2D 

synthetic inline MT data were calculated at 20 receivers for 21 frequencies from 0.001 to 

1 Hz, with a noise floor at 10-15V/Am2 and 4% Gaussian noise added to the synthetic data. 

It is assumed that the seismic model and resistivity model have the same 

geological features. We compare results of regularized inversion performed with the 

following meshes. The inversion mesh is generated by MARE2DEM code (Key, 2012). 

The finite element meshes are generated and refined by using the Delaunay triangulations 

method (Shewchuk, 1996). Inversion models are constructed by Matlab graphical model 

design tools, which can import topographic interfaces and other known surfaces. The 

starting model has a constant value of 1 Ωm below the seafloor. The mesh of starting 

model is generated by MARE2DEM code. These EM data inversion tests are run on 5 

nodes with 16 cores each of the Intel Sandy Bridge E5-2670 (2.6GHz) cluster. 

In order to present the improvement of the image-guided regularization inversion, 

some experiments are introduced in the following, which are given in Table 5.2. All the 

inversions fit to a root mean squared (rms) misfit of 1.0. 

Table 5.2. Cases for the different meshes and regularizations 

Synthetic examples Mesh Regularization 
Case 1(Figure 5.5) Regular dense mesh Normal regularization 
Case 2(Figure 5.7) Regular sparse mesh Normal regularization 
Case 3(Figure 5.9) Irregular sparse mesh Normal regularization 
Case 4(Figure 5.11) Irregular sparse mesh Image-guided regularization 
Case 5(Figure 5.13) Irregular dense mesh Image-guided regularization 

5.4.1. Case in normal regularization and normal mesh 

In this case, we present Occam’s inversion results of marine EM data using the 

traditional method. The marine CSEM and MT synthetic data are simulated by the 
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MARE2DEM code with the true model shown in Figure 5.4. The mesh of the starting 

model is generated as an unstructured isotropic dense mesh shown in Figure 5.5(a). In 

order to clearly illustrate the results, logarithmic color scale from -1 to 1.5 was used for 

only plotting purpose. 

Figure 5.5(b) illustrates Occam’s inversion results with fine regular mesh and 

traditional smooth regularization from the CSEM data. The final RMS misfit is 0.90 

smaller than the target misfit 1.0 (Figure 5.6). The resistive model is smoothed in both 

horizontal and vertical directions. It can image a thick tabular resistor anomaly as salt 

layer. There is also a strong anomaly representing the shallow resistive hydrocarbon 

reservoir. 

Marine MT image has good resolution for the deep targets. Figure 5.5(c) shows 

the inversion result traditional regularization with a fine regular mesh in Figure 5.5(a). In 

the shallow area, the hydrocarbon reservoir is undetectable, and only a weak anomaly is 

shown as the thick anomaly of salt layer. The strong anomaly of underlying resistive 

basement is shown as a flat layer.  

The results of joint inversion of CSEM and MT data have high resolution in both 

shallow and deep area compared to both CSEM and MT methods. Figure 5.5(d) shows 

the normal smooth regularization inversion result with fine regular dense mesh. In Figure 

5.5(d), the inverted resistivity results have high resolution at both the shallow and deep 

area. The resistive reservoir and thick layer of salt layer at the shallow area are 

interpretable. The underlying resistive basement can be detected by the joint inversion.  

 



 

 
 

88 Zhenwei Guo’s Doctoral Thesis 

 

 

 

Figure 5.5. (a). Fine regular dense mesh consists of 8500 free parameters for Occam’s inversion. 

The results are the inversion of (b) CSEM data, (c) MT data and (d) joint inversion of CSEM and 

MT data. 
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Figure 5.6. The (a) rms misfit and (b) roughness with iterations for the inversion with regular 

dense mesh and smooth regularization. 

5.4.2. Case in normal regularization and sparse mesh 

In order to reduce the computational cost and physical memory, a sparse mesh is 

used to reduce the number of parameters. We give an example where the number of 

parameters is 1700 and the regular isotropic sparse mesh is shown in Figure 5.7(a). The 

true resistivity model employed for this test is shown in Figure 5.4. The inversion results 

with fewer parameters describe the model shown in Figures 5.7(b), 5.7(c), and 5.7(d) for 

CSEM data, MT data and joint inversion of both CSEM and MT data, respectively. 

The results shown in Figure 5.7 are not as quantitative as those shown in Figure 

5.5. The rms misfit and roughness are shown in Figure 5.8. 
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Figure 5.7. (a). Regular sparse mesh for Occam’s inversion. The results are the inversion of (b) 

CSEM data, (c) MT data and (d) joint inversion of CSEM and MT data. 
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Figure 5.8. The (a) rms misfit and (b) roughness with iterations for the inversion with regular 

sparse mesh and smooth regularization. 

In order to improve the qualified resistivity image with a sparse mesh, the 

coherence-based irregular sparse mesh is applied to invert the marine EM data. The 

results are shown in Figure 5.9. 
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Figure 5.9. (a). Irregular sparse mesh for Occam’s inversion. The results are the inversion of (b) 

CSEM data, (c) MT data and (d) joint inversion of CSEM and MT data. 
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Figure 5.10. The (a) rms misfit and (b) roughness with iterations for the inversion with irregular 

sparse mesh and smooth regularization. 

Compared to the traditional regular dense mesh, the inversion with irregular sparse 

mesh can provide a similar resistivity image with fewer parameters (Figure 5.9). In Figure 

5.9(b), the resistivity image of marine CSEM inversion has a more clearly delineated 

boundary of the salt layer.  

Figures 5.9(c) and 5.9(d) illustrate the CSEM data inversion results with the same 

sparse starting model for MT data inversion and joint inversion of CSEM and MT data. 

The conductive layer below the salt layer is clearly shown. Compared to Figure 5.7(c), 

the anomaly of underlying resistive basement has been improved in Figure 5.9(c).  

5.4.3. Case in image-guided regularization and irregular mesh 

The coherence-based irregular sparse mesh incorporates seismic structure into the 

EM inversion. However, the EM inversion can still be improved by image-guided 

regularization. Using the image-guided regularized inversion, the result is shown in 

Figure 5.11. The true model employed is the same as above in Figure 5.4. The mesh of 

the starting model is the same as the irregular sparse mesh (Figure 5.9(a)). The rms misfit 

and roughness are shown in Figure 5.12.  

Figure 5.11(b) shows image-guided regularized inversion result of CSEM data. 

Both Figures 5.9(b) and 5.11(b) provide a strong anomaly of hydrocarbon reservoir. But 

the resistivity image from the image-guided regularized inversion has a strong thick 

anomaly of the salt layer in Figure 5.11(b). The boundary of the thick anomaly is much 
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clearer than shown in Figure 5.9(b). The bottom of the salt layer is constrained by the 

image-guided regularization in Figure 5.11(b). The conductive layer is also detected 

below the salt layer anomaly, where the amplitude of the anomaly is more correct than 

the result from the traditional smooth regularization. The image-guided regularization 

method provides an apparent boundary of the salt layer anomaly.  

Compared the traditional smooth regularized inversion, the improvements do not 

only come from the irregular mesh but also the image-guided regularization. Figure 

5.11(b) provides a resistivity image which is similar to the resistivity image inverted with 

the irregular mesh shown in Figure 5.9(b). The reason is that the mesh of the starting 

model in Figure 5.11(b) includes the geological features and the model is smoothed 

following the feature direction by the image-guided regularization. The difference 

between the salt layer and sediment layer is stronger in Figure 5.11(b). The image-guided 

regularized inversion provide a larger roughness for the salt anomaly boundary.  

In Figure 5.11(c), the resistivity image is from the MT data inversion. A 

conductive sediment layer is located at 4 km depth below the surface, which is accordance 

to the true model shown in Figure 5.4. A weak anomaly of hydrocarbon reservoir is also 

detected by MT data. Moreover, the anomalies of the salt layer and the underlying 

resistive basement are clear and irregular following the horizons in Figure 5.11(c). 

Apparently, the image-guided regularization provides a smooth model in 

horizontal direction. The joint inversion results combine the advantages of both CSEM 

and MT data, which have good resolution in both shallow and deep areas in Figure 5.11(d). 
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Figure 5.11. (a). Irregular sparse mesh for image-guided regularized inversion. The results are 

the image-guided regularized inversion of (b) CSEM data, (c) MT data and (d) joint inversion of 

CSEM and MT data. 
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Figure 5.12. The (a) rms misfit and (b) roughness with iterations for the inversion with irregular 

sparse mesh and image-guided regularization. 

Compared these three cases, the image-guided regularization algorithm promotes 

the resolution of the EM data inversion. In summary, there are two different aspects to 

incorporate this high resolution seismic image into an EM inversion. The mesh of the 

starting model is generated by coherence-based irregular sparse mesh method. On the 

other hand, the model parameters are penalized by seismic image-guided regularization 

algorithm. In order to figure out how the image-guided regularization inversion method 

works, we test one more model with the dense starting mesh. 

The true model is the same as above. Figure 5.13 shows both of the traditional and 

image-guided regularization with the same mesh. A synthetic test for MT data inversion 

is performed with these two regularization method. The starting model employs an 

irregular dense mesh as shown in Figure 5.13(a). Figure 5.13(b) illustrates the Occam’s 

inversion result with traditional regularization. Although the resistivity map can illustrate 

the underlying resistive basement, the anomaly is not as good as it shown in Figure 5.13(c). 
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Figure 5.13. (a) Irregular dense mesh for MT data inversion. The result of MT data inversion 

with (b) traditional regularization and (c) image-guided regularization. 

5.4.4. Real data example 

The real data set was measured over the Troll West Oil Province (TWOP) in 2008 

in the Norwegian North Sea (Gabrielsen et al. 2009; Morten et al. 2012). The map view 

of the TWOP is shown in Figure 2 in Morten et al. (2012). These inline data were inverted 

on the frequencies of 0.25, 0.75, 1.25 and 1.75 Hz. The horizons are used to make the 
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geometry image to constrain the inversion. The initial anisotropic half-space model 

shown in Figure 5.14 with the main geological. Both the horizontal and vertical 

resistivities of the half-space are set as 1 Ωm. 

 

Figure 5.14. Initial model for the 2008 Troll data set with the horizons. The triangles located on 

the sea floor indicate the receiver locations.  

Figures 5.15 and 5.16 show the inversion results with the normal smooth 

regularization and image-guided regularization using inline CSEM data, respectively. 

Figure 5.15(a) and 5.15(b) are the vertical and horizontal resistivity images, respectively. 

Apparently, we observe two clear anomalies between approximately 1300 m and 1500 m 

depth in the vertical resistivity image. These anomalies locate between 2 km and 3 km 

(left), 4 km and 5 km (right), respectively. The left anomaly is stronger than the right. 

Both of the two anomalies are cross the top Balder horizon. 
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Figure 5.15. Inversion results using normal smooth regularization for the 2008 Troll data set. 

Triangles denote the receiver positions; white notes are the shots of transmitters. (a) Vertical 

resistivity, (b) Horizontal resistivity. 

Similarly, Figures 5.16(a) and 5.16(b) are the vertical and horizontal resistivity 

image, respectively. We observe two clear anomalies between the top Balder and top 

Songefjord horizons. The depths are approximately between 1300 m and 1500 m. In 

Figure 5.16, both anomalies are stronger than those shown in Figure 5.15. Obviously, the 

inverted resistivity image follows the geometry dictated by the seismic horizons. By 

comparing Figures 5.15(a) and 5.16(a), the results of image-guided regularization have 

some changes.  

 



 

 
 

100 Zhenwei Guo’s Doctoral Thesis 

 

Figure 5.16. Inversion results using image-guided regularization for the 2008 Troll data set. 

Triangles denote the receiver positions; white notes are the shots of transmitters. (a) Vertical 

resistivity, (b) Horizontal resistivity. 

The RMS misfit and roughness for the different regularization inversions are 

shown in Figure 5.17. The convergence for the two regularization inversions has similar 

rate. The image-guided regularization has an increasing roughness. 

 

Figure 0.17. (a) RMS misfit and (b) Roughness for the two different regularizations inversions. 

5.5. Discussion 

We have demonstrated that the image-guided regularization method is applicable 

to Occam’s inversion. It works on both the CSEM and MT data inversion. We use the 

non-Euclidean distance to replace the space distance. Therefore, the model weight is 



 

 
 

101 Chapter 5 Image-guided regularized marine EM inversion 

changing with the features. This method has considered regularization operators that 

penalize the L2 norm of the spatial derivatives, smoothing models with sharply and 

focused varying features. 

We improve Occam’s inversion in two steps. Firstly, we replace the regular mesh 

by irregular sparse mesh. This irregular sparse mesh can reduce the computational cost. 

Secondly, we regularize the irregular mesh by using an image-guided regularization 

method. The results show that the image-guided regularization can provide an approach 

to constrain the EM inversion by geological features. It can be applied to salt layer 

boundary detection.  

Compared with the seismic regularization method to incorporate seismic velocity 

into EM inversion (Brown et al., 2012), the major advantage of image-guided 

regularization method can be applied to 2D or 3D modelling. The seismic regularization 

provides a method for incorporating seismic structure into EM inversion but avoids the 

joint inversion method. 

Image-guided inversion of electrical resistivity data is developed for DC 

resistivity data by Zhou et al. (2014). The image-guided interpolation approach is applied 

to focus a smooth resistivity image along four-direction smoothing matrix by model 

weights. Since the method is applied in a rectangle mesh, the four-direction is following 

0, 45, 90, and 135 degrees directions of the neighboring cells. However, the image-guided 

regularization method in this thesis may consider any directions. 

This method also has some limitation and it assumes that the seismic data and EM 

data have the same structural features. It is difficult to find the boundary of the fine-scale 

layering using this method due to the low sensitivity. It works best for the situations where 

the boundaries of resistivity and image features change at the same depth. 

5.6. Conclusion 

In this chapter, we have developed a simple method for combining structural 

constraints into EM inversion by using image-guided regularization weights. The image-

guided regularization scheme was tested on 2D inline synthetic marine CSEM and MT 

data to demonstrate how the results fit with the geological structures. The complex model 
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for these tests is 2D isotropic, with both conductive and resistive features. This approach 

is an alternative to traditional regularization, where models that are structurally 

conformed to geological features or seismic data can be found. The inverted resistivity 

model follows the features more closely. The anomalies are not across the interfaces. The 

amplitude of the anomaly is closer to the true model than the traditional regularized 

inversion. This will aid the interpreters when dealing with results from marine EM 

inversion. 

We have also applied the image-guided regularization method on the marine 

CSEM inversion for the real data set (TWOP). Though the seismic image is not available 

for this study, we inverted the TWOP CSEM data constrained by seismic horizons. The 

resistive anomaly is constrained by the horizons well in the vertical resistivity image.  

Use of geological features to form the regularization weights for Occam’s 

inversion is just one example of a more general application. If any priori high resolution 

data set, such as seismic image, is assumed to be structurally correlated with the EM 

resistivity model, the regularization can be derived from this high resolution information. 

This regularization can be applied not only to Occam’s inversion but also to Gauss-

Newton or others inversion methods.  

In this chapter the metric tensor field was calculated from a geological image. It 

can also be constructed from other high resolution information such as a section of 

seismic velocity. The regularization scheme favors models that follow the seismic 

structure. But the electrical parameters are not always following the seismic structures. 

Therefore, the image-guided regularization method should be carefully applied to real 

data. The structured resistivity model should be interpreted with the structural information. 

In the future, this method may be tested for 3D EM inversion.  
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Chapter 6 Conclusion 

This thesis investigates the detectability of marine CSEM technique for 

hydrocarbon offshore exploration. Our contributions on the marine CSEM technique 

consist of comparison between SBL and TSEM acquisition systems, coherence-based 

irregular sparse mesh, and image-guided regularized inversion of marine EM data. 

Comparing the SBL system and the TSEM system by the sensitivity and resolution 

analysis, we have studied the dependency of sensitivity and resolution on frequency, 

offset, water depth, target dimensions and reservoir burial depth by the simulation using 

MARE2DEM code.  

In this thesis, we define the shallow water depth , intermediate water 

depth between 300 and 700 m, and deep water depth . In shallow water depth of 

300 m both data acquisition systems are useful for marine CSEM shallow hydrocarbon 

exploration. In shallow water environment, the TSEM system gives good and qualified 

responses in terms of sensitivity and inversion as the SBL system does. In the deep water 

environment, the SBL system has an advantage in exploration due to lower EM energy 

lost during propagating through the sea water.  

On the depth resolution, the resistivity images from CSEM inversion illustrate the 

relationship between the resolution and the water depth. Both the SBL and TSEM systems 

have goode resolution of CSEM inversion in shallow water. But at the deep water 

envoirnment, the depth resolution of the SBL system is superior to the TSEM system.  

On the horizontal resolution, the TSEM system has an advantage. The TSEM 

system provides a clear resistivity image even though the revervoir length is 1 km. It also 

distinguish two shallow reservoirs by Occam’s inversion when the distance between the 

two reservoirs are 1 km. 

We define a criterion for evaluation of CSEM inversion results. We defined an 

ATR ratio to analyze the resistive image from marine CSEM data inversion. The 

detectability of the CSEM data acquisition systems varies with water depth and burial 

depth of the target. Based on these results, the SBL system is preferred in deep water 

environment, while the TSEM system is better in the shallow water case. 
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In order to reduce the computational cost of CSEM inversion, we developed a 

seismic coherence-based irregular sparse mesh. This irregular sparse mesh reduced the 

computational cost and physical memory by using fewer parameters. The nodes of this 

mesh are extracted from seismic coherence and follow the geophysical features. 

In this thesis, we have developed a simple method for combining structure 

constraints into EM inversion by using image-guided regularization weights. The image-

guided regularization scheme uses the seismic coherence to provide the model smooth 

direction. This regularization is tested on 2D inline synthetic marine CSEM and MT data 

to demonstrate how the results fit the geological structures. The regularizing assumption 

is that the resistivity parameters have a similar structure to the geological features or 

seismic image. The resistive anomalies are not across the interfaces, and the amplitude of 

the anomaly is closer to the true model than the traditional regularized inversion. In this 

way, the resistivity image from image-guided regularized image is valuable for 

interpretation. 

We have also applied the image-guided regularization method on the marine 

CSEM Troll area field data set. Even though we inverted the TWOP CSEM data 

constrained by seismic horizons, the image-guided regularization works well on the 

CSEM inversion. The resistive anomaly is constrained by the horizons well in the vertical 

resistivity image. 

There are still some limitations in this thesis. First of all, the studies on the 

sensitivity and resolution of two data acquisition systems are based on the assumption of 

isotropic environment. Secondly, the IC sparse mesh is only tested in 2D isotropic model. 

Finally, the image-guided regularization is not tested in real data with the seismic image. 

In the future, we shall study the sensitivity and resolution of two system in 3D and 

anisotropic environment. The IC sparse mesh and image-guided regularization method 

will be tested on the marine CSEM field data with seismic image.  

Our analysis and the results can be used to identify experimental limiting factors 

and to guide the acquisition method selection for hydrocarbon exploration. We believe 

that the comparison of data acquisition systems is useful for designing or interpreting a 

marine EM survey. The coherence-based irregular sparse mesh reduces the computational 
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cost whereas keep a fine resolution. The image-guided regularization method improve the 

resolution of resistivity image following the geological stucture.  

These studies are useful for the geologists and geophysicists to design or interpret 

a marine EM survey for hydrocarbon exploration.   
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