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Summary

This thesis presents several topics on the subject of controlling underactuated ma-
rine vessels and the rejection of environmental disturbances.

To address disturbances caused by waves, an observer is introduced for the
wave encounter frequency. To estimate the wave encounter frequency we utilise an
estimator intended to estimate the frequency of sinusoidal signals. The estimator
is used to estimate the frequency of motion signals of the ship which are directly
related to the wave encounter frequency and are sinusoidal in nature, e.g. the roll
angle and pitch angle of the ship. Consequently, no model of the ship is required.
The frequency estimator is equipped with a gain-switching mechanism to assure
good performance in situations of high and low excitation. It is shown that when
applied to sinusoidal signals with a time-varying, amplitude the frequency esti-
mation error of the �lter equipped with a gain switching-mechanism is globally
exponentially stable. The theoretical results are veri�ed using experimental data.
The frequency estimator is applied to data from several towing tank tests and data
gathered during an Atlantic passage of a container ship. To assess the performance
of the �lter, the frequency estimate is compared to the peak of a frequency spec-
trum of the data that is created using fast Fourier transform frequency spectral
analysis.

The next part of the thesis is concerned with multi-agent control strategies
of marine vessels. In this part results are presented to achieve coordinated path-
following of underactuated marine vehicles in the presence of unknown constant
ocean currents. Both marine surface vessels and autonomous underwater vehicles
are considered. The vehicles are individually guided to the path using an integral
line-of-sight guidance law to reject the ocean current disturbances. To achieve coor-
dination, the vehicles communicate their along-path distance. The along-path dis-
tance is used in a decentralised coordination law to achieve the desired along-path
distances between the vehicles. The theoretical results are veri�ed using numerical
simulations and experimental results with three autonomous underwater vehicles.

A coordinated control strategy based on leader-follower synchronisation is also
presented for underactuated marine surface vessels. This strategy is based on a
constant bearing guidance algorithm from the marine system literature. First we
show that the guidance algorithm is semi-globally exponentially stable and give
explicit bounds on the solution. We then analyse the synchronisation properties
using the constant bearing guidance when it is used on curved trajectories rather
then the straight lines it is designed for. From an analysis of the guidance in closed
loop with a heading and velocity controller we show that on curved trajectories the
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Summary

synchronisation errors between leader and follower are integral input-to-state stable
when the sway velocity is considered as a disturbance input to the synchronisation
error dynamics. The theoretical results are veri�ed using numerical simulations.

The third part �rst presents two strategies to follow curved paths in the presence
of unknown constant ocean currents. In both strategies the paths are parametrised
by a path variable that is used to propagate a path-tangential reference frame. In
one strategy the frame is propagated to makes sure the vessel stays on the normal of
the path tangential reference frame. This results in a singularity in the update law
and make the strategy only usable locally. In the other strategy a parametrisation
is used that is globally valid. An appropriate guidance law is de�ned for both
parametrisations. The controllers use the input from the guidance law and from an
ocean current observer to reject the ocean current and converge to the path. The
closed-system with the controllers and observer is analysed and it is shown that
the path-following errors are globally asymptotically stable. The theoretical results
are veri�ed using numerical simulations.

A novel curved path-following strategy that does not require parametrisation of
the path is also presented in the third part of the thesis. This strategy is based on
principles from geometric control and hierarchical control design. In this strategy
the path is de�ned implicitly as a manifold of the state space. It is shown that using
three geometric objects, i.e. the normal to the path, the tangent to the path, and
the curvature of the path, we can de�ne controllers that make the manifold that
describes the path asymptotically stable. The theoretical results are veri�ed using
numerical simulation. This work does not consider environmental disturbances.
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Chapter 1

Introduction

This thesis considers the control of underactuated marine vehicles in the presence
of environmental disturbances. The thesis is divided into three parts. The �rst
part considers modelling of marine vehicles in the presence of environmental dis-
turbances. The second part considers multi-vehicle path-following approaches. The
third part considers curved path following for underactuated vehicles.

1.1 Background and Motivation

This section gives the background information and motivation of the topics consid-
ered in the thesis. Moreover, it gives an overview of previous works on these topics.
The di�erent parts of the thesis are considered separately in three subsections.

1.1.1 Modelling of Marine Vehicles and Environmental

Disturbances

As in many �elds of technology, and especially robotics, the need for increased
autonomy and intelligent control systems has also increased in the control of ma-
rine vehicles. Although nowadays almost all commercial ships are equipped with
GPS based navigational systems, radar systems, guidance autopilots, and speed
controllers, the introduction of autonomous and unmanned vehicles have increased
the need for further development. The introduction of these systems with increased
autonomy has both economical and practical motives. In particular, increased au-
tonomy can make operations more e�cient and thereby decrease the time a vessel
and crew need to be out at sea, and thus reduce operational costs. Moreover, for un-
derwater operations with remotely operated vehicles (ROVs) that require a tether
connection to a support ship, can be replaced by autonomous vehicles that do not
require a tether. This allows for more freedom of motion and reduces the amount
of support needed and thereby reducing costs. Moreover, unmanned operations in
hostile environments and for dangerous tasks, e.g. mine detection and sweeping,
can greatly improve safety.

Autonomous marine vehicles can be subdiveded in two main catergories: au-
tonomous surface vessels (ASVs) and autonomous underwater vehicles (AUVs).

1



1. Introduction

Both ASVs and AUVs need to be able to operate without operator intervention.
This implies that they should be equipped with control systems that can actively
attenuate the environmental disturbances that a�ect them during their operations.
To develop these control systems, mathematical models of both the vehicle and
the disturbances are required. The type of model used depends on the desired con-
trol purposes and the operation conditions. Based on the operational conditions
the mathematical models can be subdivided into low velocity models and higher
velocity models. Low velocity models are used for station keeping and dynamic
positioning where the vessel is required to remain at a desired �xed position, and
higher velocity models are used for manoeuvring applications such as path follow-
ing [60]. Moreover, the complexity of the model should also depend on the purpose
of the model. In Sørensen [131], two main categories are de�ned. The �rst being
control plant models which give a simpli�ed mathematical description containing
only the main physical properties of the plant, and which is suitable for control
design purposes and theoretical analysis. The second category consists of process
plant models which give a comprehensive description of the actual process and
should be as detailed as needed, and which are suited for high-�delity simulations
and robustness analysis.

When modelling disturbances, the complexity of the model should also depend
on the application of the model. The model should capture the e�ects of the dis-
turbances that a�ect the control system most. For the control of marine vehicles
three types of disturbances play a role, i.e. ocean currents, wave disturbances, and
wind disturbances.

When studying the e�ect of ocean currents on path-following control strategies
for marine vehicles, it is a widely accepted practice to model them as a constant
drift force. This captures the behaviour of an irrotational constant ocean current
which for the purpose of control design is a good approximation for a slowly time-
varying disturbance [60].

When considering wave disturbances the e�ects can be separated into �rst-
order and second-order e�ects [60]. The �rst-order wave-induced forces cause wave-
frequency induced motion and are observed as zero-mean oscillatory motions. The
second-order wave-induced forces are wave drift forces that are observed as nonzero
slowly varying components. These two types of forces have to be taken into account
di�erently by the control system. The second-order wave-induced forces cause a
drift force similar to the ocean current and can be lumped together with the ocean
current drift in the model. The �rst-order wave-induced forces cause zero-mean
oscillatory motions that should not be compensated for by the vehicles actuators
since this would cause oscillations in the ship's propulsion and rudder system,
something which is undesirable. Therefore, these motions should be removed from
from the feedback controllers, something which is usually done by �ltering out the
oscillations by using a cascaded notch and low-pass �lter [60]. This process is usually
referred to as wave �ltering. This requires knowledge of the wave frequency to
determine the pole placement of the notch frequency. In the case of a moving vessel,
a Doppler shift of the wave frequency should be taken into account. The Doppler
shifted frequency that is experienced by the ship is called the wave encounter
frequency.

Wind disturbances also have a constant and a non-constant e�ect. The con-
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1.1. Background and Motivation

stant e�ects of wind disturbances are often modelled as having a constant pressure
and direction [60]. This pressure and direction cause forces and moments on the
vessel depending on its exposed surface area, its direction with respect to the wind
direction, and load condition coe�cients that can be obtained from wind tunnel
tests. The non-constant e�ects of wind disturbances, e.g. wind gusts, should not
be compensated for by the propulsion system to avoid frequent control action.
These e�ects are often removed from the control system by �ltering, and moreover,
for larger vessels are often attenuated by the inertia of the vessels. For small au-
tonomous surface vehicles and autonomous underwater vehicles at the surface, the
area exposed to wind is small and the e�ect of wind disturbances is less than that
of the drift forces caused by ocean currents.

1.1.2 Multi-Vehicle Path Following

This part is concerned with multi-vehicle path following for underactuated ma-
rine vessels. Multi-vehicle systems, or more generally multi-agent systems, have
attracted a lot of attention from the research community, see for instance Bai et al.
[10], Kumar et al. [83] , and Pettersen et al. [117] and the references therein.

A lot of the work in the multi-agent systems literature has focused on consensus
and agreements protocols. The goal of these works is to derive theoretical conditions
for synchronisation of states between systems, e.g. to achieve a common velocity
or a desired inter-agent distance. To achieve synchronisation, communication be-
tween agents is required. Powerful tools to model this type of communication and
to analyse the synchronisation behaviour can be found in the literature of algebraic
graph theory, see for instance Mesbahi and Egerstedt [98] and Godcil and Royle
[68]. Algebraic graph theory can be used to model multi-agent systems as a set of
vertices (the agents) which are connected by a set of edges (the communication
channels). Synchronisation can be achieved depending on the topology of the net-
work, that is, if the network satis�es certain properties to allow the information to
spread to all agents. More advanced works dealing with consensus can be found for
instance in Moreau [101] and Moreau [102] in which time delays are also taken into
account using set based stabilisation of the consensus dynamics. Work on dynamic
graphs can be found in Lin et al. [92]. For a survey on consensus problems see Ren
et al. [121].

These theoretical works have found applications to more practically motivated
studies of formation control and cooperative/coordinated motion of robotic sys-
tems. Multi-agent systems can o�er several advantages over operations with single
robot systems. When using multiple robots a lot of tasks can be executed more time
e�ectively. This especially hold for spatially distributed tasks since multiple robots
can cover a larger area, but also having multiple robots to execute tasks in parallel
or together increases this e�ciency. Moreover, multiple robots can take over tasks
of more complex and costly single robots and can introduce some redundancy for
operations in harsh environments. In particular, if a vehicle malfunctions or is lost
in a sub-sea environment or under the Arctic, repairing or recovering the robot can
be di�cult or impossible, making redundancy desirable to continue operations.

One of the �elds for the applications that has received a lot of interest from the
research community is formation control. Comprehensive reviews of the literature
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in this �eld are given in Chen and Wang [44] and Oh et al. [108]. Formation control
strategies aim to drive agents to adhere to prescribed constraints on their states.
Usually this includes a desired relative inter-agent distance such that the vehicles
achieve a formation. This goal can be achieved in di�erent ways. The choice for
one of the di�erent methods is often motivated by the constraints of the vehicles
and their inter-agent communication capacities and the intended application for
the formation. Four major research directions within the formation control �eld
are

1. Leader-follower synchronisation

2. Virtual structure approach

3. Behaviour-based approach

4. Coordinated path following

In the following a sample of the wide range of literature available in each of these
�elds is given. Some references from applications in other �elds of robotics are
provided followed by a review of works in the marine systems literature.

Leader-follower synchronisation is conceptually one of the simplest strategies
for formation control. This is a hierarchical formation control approach in which
there is a leader and there are followers. Due to this hierarchical approach it is
sometimes also referred to as master-slave synchronisation. The leader can be al-
lowed to move freely or has the task to follow a certain path or trajectory. However,
the leader does not carry any responsibility for the achievement of the formation.
This responsibility falls on the followers, which have the task to control their inter-
agent position and/or orientation with respect to the leader to a desired value. The
advantage of the leader-follower structure is that only local information needs to
be used to achieve the formation. The disadvantages is that there is limited fault
tolerance. In particular, if the leader fails the entire formation breaks down, and if
one or more of the followers fail the leader does not change its behaviour accord-
ingly and the formation breaks down. A special form of leader-follower formation
control is the one-to-one communication formation control, where each vehicle only
receives information from one vehicle, its leader, and sends information to only one
vehicle, its follower. Leader-follower behaviour can also be used to steer the coor-
dination between groups of agents to provide a common reference. This is one of
the cases considered in the seminal work of Jadbabaie et al. [78].

Leader-follower synchronisation is widely applied for coordinated control ap-
plications. Applications include master-slave synchronisation of robot manipula-
tors of which an in-depth treatment is given in Nijmeijer and Rodriguez-Angeles
[106]. In Nijmeijer and Rodriguez-Angeles [106] several output-feedback schemes
are given for synchronisation of fully actuated Euler-Lagrange systems representing
robot manipulators with both rigid and �exible joints. Moreover, a scheme for mu-
tual synchronisation is given. Leader-follower synchronisation for control of mobile
robots is studied in Desai et al. [47] which focuses on cases of synchronising the dis-
tance with respect to multiple leaders and the case of synchronising the distance
and orientation with respect to one leader. This approach is extended in Desai
et al. [48] to allow for changing formations. In Dasdemir and Loria [46] the case of
one-to-one communication is investigated to build up a formation of mobile robots
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along straight-line paths. One-to-one communication is also investigated in Poon-
awala et al. [118] in which an estimator is used to �nd the leader's velocity and only
position measurements are used for synchronisation. In Aguirre [3] leader-follower
synchronisation is investigated for mobile robots connected over a network which
induces a delay in the communication. Theoretical results are presented and these
are veri�ed with experiments. A strategy for leader-follower based formations for
unmanned aerial vehicles can be found in Stipanovi¢ et al. [132], in which several
leader-follower strings are combined by selecting a common leader to build up a
formation.

Leader-follower synchronisation for marine vessels is considered in Breivik et al.
[36], in which a leader-follower scheme for fully actuated marine vessels is presented
that can be used both in a centralised and a decentralised control strategy. In the
marine systems literature work on leader-follower synchronisation has played an
important part in research on underway replenishment of ships, see for instance
Fu and Haddad [65], Kyrkjebø et al. [85], and Skejic et al. [125]. For these opera-
tions the supply-ship is usually responsible for synchronising its motion with the
ship it is supplying. In Kyrkjebø et al. [85] the case of a fully actuated follower
that synchronises its output with a leader with unknown dynamics is investigated.
An observer-controller scheme is utilised to achieve synchronisation where the ob-
servers are used to estimate the unknown velocities of the leader and follower. The
observer-controller scheme utilised in Kyrkjebø et al. [85] is based on the theory for
master-slave synchronisation of robotic manipulators investigated in Nijmeijer and
Rodriguez-Angeles [106]. In Skejic et al. [125] the focus is on the interaction forces
between two vessels during underway replenishment operations. For control pur-
poses the constant bearing guidance algorithm from Breivik and Fossen [35] is used
to synchronise the ships along a straight-line path. The vessels are underactuated,
but no analysis of the underactuated internal dynamics are given. In Fu and Had-
dad [65] underway replenishment between fully actuated vessels is investigated and
adaptive backstepping controllers are designed to reject exogenous disturbances. In
Peng et al. [114] formation control of underactuated vessels under the in�uence of
constant disturbances is considered using neural network adaptive dynamic surface
control in a leader-follower scheme.

In the virtual structure approach the goal is for the individual vehicles to con-
verge to di�erent points of a virtual structure. The virtual structure is usually a
geometrically-rigid object that de�nes the shape of the formation. Consequently,
when each vehicle is at its desired point on the virtual structure the vehicles are
in formation. Using this approach it is very straightforward to describe the desired
overall behaviour of the formation by appropriately designing the virtual structure
and its motion. The virtual structure approach was �rst proposed in Tan and Lewis
[134] and Lewis and Tan [90]. The controllers are usually derived in three steps. In
the �rst step the virtual structure is de�ned. In the second step the desired motion
of the virtual structure is translated to the desired motion of individual vehicles.
In the third step tracking controllers are de�ned for the individual vehicles to fol-
low the desired motion designed in the second step. An optional fourth step can
be added in which each of the vehicles provides feedback to the virtual structure
and the motion can be adjusted if necessary. This fourth step is called formation
feedback. In Tan and Lewis [134] and Lewis and Tan [90], the concept of a virtual
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structure is introduced and the proposed methodology is veri�ed using simulations
and experiments for a mobile robot platform. Moreover, it is shown that the virtual
structure can be used bi-directionally to add fault tolerance, i.e. the motion of the
virtual structure can be adjusted based on limitations of the vehicles. However, no
stability guarantees are given for the formation. Stability guarantees for the for-
mation using a virtual structure were given in Beard et al. [12], in which a uni�ed
control architecture is presented for the control of a formation of spacecraft. The
architecture includes a virtual structure but also utilises ideas from leader-follower
formation control and the behaviour-based approach. The disadvantage of this ar-
chitecture is however that formation feedback is not included. The work of Lewis
and Tan [90] and Beard et al. [12] is combined in Young et al. [139] which presents
a virtual structure approach with stability guarantees for a mobile robot platform
that also allows for formation feedback. These ideas are further developed in Ren
and Beard [120] where an extension is made that allows for a decentralised imple-
mentation. Based on the idea of a virtual structure with formation feedback an
application of an output feedback scheme for mobile robots with a dynamic model
is investigated in Do and Pan [52]. For marine systems a virtual structure is used
in the work of Skjetne et al. [127]. The approach uses a centralised control law to
control the formation that generates inputs for the decentralised controllers of the
vessels to achieve and maintain their position in the formation. This approach is
decentralised and validated experimentally in Ihle et al. [73]. Another decentralised
approach for marine surface vessels is developed in Ihle et al. [75], in which the
virtual structure is modelled as a set of mechanical constraints on the vehicles
using Lagrangian mechanics. The reaction forces generated from violating these
constraints are then used to control each vessel to keep the formation.

In the behaviour-based approach several behaviours are prescribed for the
agents. The control action is then typically a weighted average of the control ac-
tion for each behaviour of individual agents and the group as a whole. Di�erent
behaviours can include collision avoidance, obstacle avoidance, goal keeping, and
formation keeping. This type of averaging of the behaviours makes the resulting
behaviour unpredictable and makes it di�cult to describe desired formation be-
haviour and to show stability. An advantage however is that the averaging of be-
haviours within the group introduces formation feedback in a straightforward man-
ner. These approaches have their origins in studies aiming to recreate behavioural
studies of animals such as �ocking and the behaviour of herds and schools. One of
the �rst works to reproduce such behaviour using computer simulations is Reynolds
[122]. This type of formation control is still widely used when recreating animal
behaviour, since this is often a process of consensus that is not steered by a de-
sired reference. This biologically inspired type of interaction amongst neighbours
is shown Vicsek et al. [137] to achieve common behaviour using numerical simula-
tions. The work in Vicsek et al. [137] inspired [78] to perform the �rst mathematical
analysis of these types of interactions and provide conditions for convergence of
such strategies based on nearest-neighbour communication. An early application
for mobile robots of the behaviour-based approach is found in Balch and Arkin
[11], in which the generated behaviour is analysed using simulations and experi-
ments. Later works have focused on �nding theoretical proofs for di�erent types of
behaviour based on speci�c types of interaction rules, see for instance Olfati-Saber
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[109] and Tanner et al. [135]. An application for marine vessels can be found in
Arrichiello et al. [9] in which di�erent tasks, i.e. obstacle avoidance and keeping a
formation, are weighted against each other based on priorities.

Coordinated path following is a two-fold approach to formation control. That
is, a path is assigned to each vehicle individually. The vehicle is individually re-
sponsible to follow this path. The formation is then achieved by coordinating the
motion of the vehicles among their given paths. This allows for decentralised ap-
proaches in which only minimal information such as inter-agent distances need to
be communicated. This type of formation control is best suited for formation con-
trol along straight-lines and identical parallel curved paths since when vehicles are
on di�erent curved paths it is non-trivial to �nd a suitable metric of inter-agent
distance to synchronise the vehicles' positions. Therefore, this problem is mainly
investigated in the marine systems literature since these types of paths are common
trajectories in the marine systems literature.

In [88] path following of two underwater vehicles is investigated. The vehicles
follow parallel paths, whilst achieving and maintaining a desired along-path dis-
tance. Similar results can be found in Børhaug et al. [28] for surface vessels and
Børhaug et al. [29] for underwater vehicles. The work from Børhaug et al. [28] is
extended in Børhaug et al. [31] to include a thorough study of the coordination dy-
namics using techniques from graph theory. The work in [88] is a simpli�ed version
of this problem where one of the vehicles is responsible for coordinating the inter-
agent distances along the path which results in a leader-follower type coordinated
path following. The work in Børhaug et al. [31] is analysed for a much wider range
of communication topologies. The work in Ghabcheloo et al. [66] and Ghabcheloo
et al. [67] considers coordinated path following in the presence of communication
failures and time delays. In Ghabcheloo et al. [66] and Ghabcheloo et al. [67] the in-
dividual vehicles converge to a virtual target on the path to achieve path following.
The motion of these virtual targets is then adjusted around their common nominal
value based on their relative distances, to achieve coordination of the virtual tar-
gets and indirectly of the vehicles. In all the formation control approaches discussed
above the e�ects of ocean currents are not taken into account. Ocean current are
considered in, for instance, Almeida et al. [4] and Ihle et al. [76]. However these
works consider fully actuated marine vehicles. In Almeida et al. [4] backstepping
based controllers are derived for path following while coordination along the paths
is performed using measurements of the inter-agent distances between vehicles. In
Ihle et al. [76] a path-following approach is used that is shown to satisfy passivity
properties. This passive path-following strategy is combined with a coordination
law that is also passive, which results in a passive closed-loop system. In [38] line-of-
sight (LOS) path-following with a conditional integrator is used for path following
under the in�uence of unknown disturbances. However, the coordination dynamics
are not analysed in this work.

1.1.3 Curved Path Following for Underactuated Marine Vessels

This part is concerned with curved path-following for underactuated marine vessels.
While the literature for straight-line path following of underactuated marine vessels
is, by now, well established even in the presence of unknown disturbances, the
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literature for curved paths is much less rich and has some caveats. This is due to the
complexity caused by the underactuation which causes several necessary conditions
to be satis�ed. In particular, these conditions pertain to the well de�nedness of the
controllers and boundedness of the state.

In the literature three main approaches are considered when considering control
of ships along paths

1. The path-following problem focuses on stabilising a given path for a vehicle
without any time speci�cations, i.e. without putting a constraint on where
the vehicle needs to be on the path at a certain time.

2. The trajectory-tracking problem aims to let the vehicle's output track a de-
sired time-varying output, i.e. the desired position of the vehicle is a time
dependent reference, e.g. (xp(t), yp(t)).

3. The manoeuvring problem requires two tasks to be satis�ed: a geometric
task and a speed assignment. More speci�cally, for a θ-parametrised path
the vehicle needs to track a θ dependent output, e.g. (xp(θ(t)), yp(θ(t))),
and one or more additional requirements such as a time assignment, speed
assignment, or an acceleration assignment.

Some of these de�nitions have been used interchangeably in the literature by
di�erent authors. Partly because the de�nitions have not been established from the
beginning and partly because sometimes the di�erences can only be subtle such
that multiple cases can be argued to classify the result. In the following a review
is given of some of the literature on each of the problems given above.

The problem of curved path following for underactuated marine vessels has its
parallel in the �eld of mobile robotics. Although the nature of the underactua-
tion between mobile robots and marine vessels are di�erent, the powerful tools to
parametrise paths and de�ne the problem developed in the seminal works Samson
[124] and Micaelli and Samson [99] can still be utilised. A solution for 2D path
following based on the tools developed in [99, 124] was proposed in Encarnaçao
et al. [57]. In Encarnaçao et al. [57] the path representation from Micaelli and
Samson [99] is used to de�ne the path-following problem and a solution is pre-
sented using a nonlinear controller. An observer is used to incorporate the e�ects
of unknown, but constant ocean current. Part of the state is shown to be stable
and the zero dynamics are analysed and shown to be well behaved. However, this
is done under the assumption that the total speed is constant. This requires active
control of the forward velocity to cancel the e�ect of the sideways velocity induced
by turning. Moreover, the parametrisation from Micaelli and Samson [99] is only
valid locally, making the path-following result only valid locally. The work in En-
carnaçao et al. [57] was extended to the 3D case in Encarnaçao and Pascoal [56].
Another local result based on the parametrisation of [99, 124], is obtained in Do
and Pan [49]. In this work a practical stability result is shown for the path-following
states of an underactuated surface vessel in the presence of an environmental dis-
turbance. However, a simpli�ed model with diagonal system matrices is used and
the interconnection between the total velocity and the sideways velocity is not
taken into account in the analysis of the zero dynamics. In Lapierre et al. [87]
and Lapierre and Soetanto [86] the work of Encarnaçao et al. [57] is extended to
solve the path-following problem globally. This is done using another result �rst
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described for the control of mobile robots in Soetanto et al. [130]. In particular,
it is achieved by adapting the parametrisation of the path such that propagation
of the path-tangential reference frame can be used as an extra degree of freedom
in the controller design in order to avoid singularities in the parametrisation of
the path. The work in [86, 87] does not consider environmental disturbances, it
focuses on stabilisation of the path-following states but does not analyse the zero
dynamics. A similar approach to Lapierre et al. [87] is taken in Børhaug and Pet-
tersen [27] in which the frame is propagated di�erently and the controllers are also
analysed in closed loop. In Børhaug and Pettersen [27] a look-ahead based steer-
ing law is used to guide the vehicle to the path. Stability of the path-following
errors is shown using cascaded systems theory and the zero dynamics are analysed
and shown to be well behaved. To take into account ocean currents, the work in
Børhaug and Pettersen [27] is extended in Børhaug et al. [30] by adding integral
action to the steering laws. However, the results in Børhaug et al. [30] are only
valid for straight-line path following. The work in Børhaug et al. [30] was revisited
in Caharija et al. [40] for surface vessels and Caharija et al. [41] for AUVs. Ex-
perimental results were added in Caharija et al. [43]. The works of Caharija et al.
consider straight-line path following in the presence of ocean currents and refor-
mulate the work of Børhaug et al. [30] to consider relative velocities which provide
a simpler structure for controller design and a more direct control of energy ex-
penditure. Using the model formulation based on relative velocities from Caharija
et al. [40] the work of Børhaug and Pettersen [27] is extended with an ocean cur-
rent observer in Moe et al. [100] for curved path-following. However, in Moe et al.
[100] the zero dynamics are not analysed and the suggested input signals would
contain the unknown ocean current. Another LOS guidance for path-following is
presented in Fossen et al. [59]. The strategy is based on following a path made of
straight-line sections connecting way points. These concepts are further developed
to circles in Breivik and Fossen [32] where the vessel is regulated to the tangent of
its projection on the circle. The work is extended to the three dimensional case in
Breivik and Fossen [33] and Breivik and Fossen [34]. However, these works do not
consider environmental disturbances.

One of the �rst solutions to the full-state stabilisation problem for an underac-
tuated 3-DOF surface vessel was developed in Pettersen and Nijmeijer [115]. In this
work a trajectory tracking controller is developed for a simpli�ed model to guaran-
tee exponential tracking. The approach is based on backstepping and the recursive
design technique for systems in chained form developed in Jiang and Nijmeijer [80].
This result requires a persistently exciting (PE) yaw rate with some additional
condition on the curvature of the path, which implies that the path should have a
non-zero curvature, i.e. straight-lines are excluded. These limitations were partly
relaxed in Pettersen and Nijmeijer [116] where only the PE condition for the yaw
rate is required. The results in Pettersen and Nijmeijer [116] is extended to global
exponential tracking in Lefeber et al. [89] by using a cascaded systems approach.
In this work the problem is divided in two subsystem, i.e. a subsystem for the yaw
control and a subsystem for the velocity control. In Jiang [79] two solutions for
global trajectory tracking under the assumption of a persistently exciting yaw rate
are presented. Both approaches are base on Lyapunov's direct method. The �rst
method is a passivity-based approach which under a su�cient PE condition for the
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yaw rate provides asymptotically convergent tracking errors. The second method is
based on a combination of backstepping and cascaded systems theory to derive an
exponentially convergent tracking controller. A solution that does not require the
yaw rate to be persistently exciting is given in Do et al. [53] and extended to include
point stabilisation in Do et al. [54]. Both of these works are based on a combination
of backstepping and Lyapunov's direct method. In all of the aforementioned works
on trajectory tracking the model was simpli�ed. In particular, these works assume
diagonal mass and damping matrices which signi�cantly simpli�es the controller
design. In Do and Pan [50] nonzero o�-diagonal terms in the mass and damping
matrices are added and environmental disturbances were considered. This method
introduced a coordinate transform to transform the dynamics back into diagonal
form and then followed the same approach as previous works. Nonlinear damping
terms were included in Do and Pan [51] to allow for high-speed applications. An-
other interesting approach can be found in Aguiar and Hespanha [1] in which a
tracking controller is developed that is combined with an adaptive switching su-
pervisory control to develop a hybrid controller. The controller guarantees global
boundedness, convergence of the position tracking error to a small neighbourhood,
and robustness against parametric model uncertainties.

The manoeuvring problem combines aspects of both the path-following and
trajectory-tracking control problem. Its geometric task aims at stabilising a sub-
set of the state space as is done in path-following. However, for the manoeuvring
problem this is combined with a dynamic task that can prescribe a time-dependent
assignments as is done in trajectory tracking, or a velocity assignment depending on
the path parametrisation as is done in Do and Pan [51]. The manoeuvring problem
is introduced in Skjetne et al. [126]. In Skjetne et al. [126] a recursive control
design technique is developed for fully actuated nonlinear plants in vectorial strict
feedback form of any relative degree. This work is extended to handle disturbances
in Skjetne et al. [128]. The results of [128] are used in Skjetne et al. [129] to develop
and experimentally validate a manoeuvring controller for a fully actuated model
ship. In Ihle et al. [74] this work is extended to the output feedback case for fully
actuated ships. Moreover, unknown environmental disturbances are included in this
work.

The three problems treated above have their own set of advantages and disad-
vantages depending on the desired application and system under consideration. The
path-following is most convenient when simply satisfying the geometric task of path
following is the single most important task. In particular when the speed to travel
along the path is irrelevant or if the speed assignment is independent of the velocity
along the path. This is the case for instance in Børhaug and Pettersen [27] and Moe
et al. [100], where the vehicle is regulated towards the path using a parametrisation
of the path but the speed assignment is independent of the parametrisation. When
the speed assignment, or another dynamic task, is connected to the parametrisa-
tion the problem is best treated as a manoeuvring problem. This is the case for
instance in Do and Pan [51] where the parametrisation is used to generate a desired
velocity of the vehicle to guarantee path following, which is an approach similar to
the ones listed above in the review on the manoeuvring problem. When it is impor-
tant to converge to a certain place along the path at a speci�c time the problem
is best treated as a trajectory-tracking problem. This is for instance the case when
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performing docking with a moving target or other coordinated tasks, or tasks that
are time critical such as reconnaissance and search and rescue missions where the
vehicle is required to be at a certain place at a certain time that is relevant to the
mission.

1.2 Scope and Contributions of the Thesis

This section discusses the scope of the thesis and lists the contributions of the
work. This section is divided into three subsections corresponding two the three
main parts of the thesis. Within the three subsections each chapter is treated
separately.

1.2.1 Modelling of Marine Vehicles and Environmental

Disturbances

Part I of the thesis considers modelling of the vehicles studied in the thesis and
the environmental disturbances encountered by the vehicles studied in this thesis.
The di�erent types of disturbances, i.e. ocean current and waves, and their e�ects
on the vehicles are described.

Chapter 2 considers modelling of underactuated marine vehicles and presents
a convenient way to model the e�ect of ocean currents on the motion of a marine
vehicle. The material in this chapter is based on Fossen [60] and Caharija [39]. Two
models are presented that are used in this thesis. The �rst model represents an
underactuated surface vessel or an AUV moving in the horizontal plane. Hence, it
describes planar motion and has three degrees-of-freedom (DOF), i.e. two positions
and an angle. This model is used in Chapter 4 and Chapters 6-8. The second model
is the model of an AUV moving in three dimensional space. This model has �ve
degrees-of-freedom, i.e. three positions and two angles. The third angle, which is
the roll angle along the longitudinal axis, is not considered since it is self-stabilising
and does not in�uence the motion for the AUVs considered. This model is used in
Chapter 5.

Chapter 3 considers wave disturbances and presents a frequency estimator that
can measure the wave frequency encountered by a ship. The contribution in this
chapter is the development and experimental veri�cation of a wave frequency esti-
mator that is designed to estimate the dominant wave frequency of a wave spectrum
on-line. The frequency estimator takes motion signals, such as measurements of the
pitch or roll angle, of the vessel as input. The frequency estimator is based on a �l-
ter developed in Aranovskiy et al. [8] to estimate the frequency of sinusoidal signals
with �xed amplitudes. The work of Aranovskiy et al. [8] is extended to show that
the origin of the estimation error is globally exponentially stable even when the
amplitude is time-varying. It is shown that these stability properties hold when the
estimator is equipped with a gain-switching mechanism. The gain-switching mech-
anism is triggered by the amplitude of the measured signal and allows the estimator
to function in both situations of high excitation and low excitation. Moreover, it
is shown that the theoretical results hold if a low-pass �lter is added to smooth
the estimates if necessary. The theoretical results derived in this chapter are then
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veri�ed using an experimental case study. The experimental veri�cation consists
of two parts. In the �rst part the estimator is veri�ed using data gathered in tow-
ing tank tests using a model ship. Frequency spectra are made for the data sets
gathered in the towing tank and the estimate of the �lter is compared against the
peaks in those spectra. In the second part the wave frequency estimator is veri�ed
using data gathered on a container ship during a passage of the Atlantic Ocean.
The work in Chapter 3 is based on Belleter et al. [19] and Belleter et al. [20].

Wind disturbances are not considered in this thesis. Certain aspects of wind
disturbances may be captured by the model of the ocean current. However, dynamic
e�ects are not taken into account.

1.2.2 Multi-Vehicle Path Following

Part II consists of three chapters. Chapter 4 presents a control strategy for coor-
dinated path following for underactuated marine vehicles in the presence of ocean
currents. In this chapter integral line-of-sight guidance from Caharija et al. [40]
is used to control an underactuated marine vessel to follow a straight-line path
in the presence of a constant unknown ocean current. This is a task each vehicle
has to satisfy individually. To achieve coordination along the paths, a coordination
subsystem is added which uses measurements of the relative positions between
vessels to adjust the velocity of the vessel around a nominal value common to
all the vehicles, which is a coordination strategy based on the ideas in Børhaug
et al. [31]. The closed loop of the path-following and coordination subsystems is
then analysed using a technique from Loría [93], which allows us to consider the
feedback interconnection between the two subsystems as a cascaded connection. A
simulation case study with three vehicles is given to verify the results. The main
contribution of this work is that it presents an approach to coordinated path fol-
lowing that considers underactuated vessels and ocean currents together, whereas
in the previous literature results are available for both separately but not together
in one framework. Chapter 5 considers a similar problem to that of Chapter 4 but
for AUVs. This means that an extra subsystem is added to control the vehicle in
the vertical plane. The analysis follows along the same lines of that in Chapter 4
and a simulation case study is given. Moreover, Chapter 5 presents experimental
results using three light autonomous underwater vehicles (LAUVs) to verify the
theoretical results. The material in Chapter 4 is based on Belleter and Pettersen
[13] and Belleter and Pettersen [15]. The material in Chapter 5 is based on Belleter
and Pettersen [14].

Chapter 6 considers leader-follower synchronisation along an arbitrary trajec-
tory chosen by the leader. The underactuated follower is responsible for synchroni-
sation with the motion of the leader. The follower uses a constant bearing guidance
algorithm from Breivik et al. [37] to follow the leader. A proof is given to show that
the constant bearing guidance algorithm results in USGES tracking error dynamics
for which we can give an explicit bound on the error, rather than UGAS and ULES
by linearisation about the origin as shown in Fossen [60] which provided no such
bound. The constant bearing guidance algorithm from Breivik et al. [37] is intended
for straight-line target tracking, while in this work the leader's trajectory can be
arbitrary. Therefore, the remainder of the chapter analyses the closed-loop system
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when the constant bearing guidance algorithm is used for curved leader trajecto-
ries. It is shown that for a straight line, synchonisation can be achieved. However,
on a curved trajectory only integral input-to-state stability of the synchronisation
error with respect to the sway velocity can be shown. Simulation results are given
to verify the theoretical results. The material in Chapter 6 is based on Belleter and
Pettersen [16] and Belleter and Pettersen [17].

1.2.3 Curved Path Following for Underactuated Marine Vessels

Inspired by the interesting dynamical e�ects that appeared in the application on
curved paths in Chapter 6, Part III presents three approaches to curved path
following for underactuated marine vehicles. Contrary to the straight-line guidance
used in Chapter 6, the guidance strategies in this part are designed to overcome
the di�culties encountered in Chapter 6. Three approaches are considered, all of
them are path-following approaches. The �rst two strategies presented in Chapter
7 and Chapter 8 use parametrisation of the path to achieve this. In particular,
a path-tangential frame is propagated along the path and the goal is to let the
vessel converge to the path-frame in the presence of an unknown constant ocean
current. The third strategy presented in Chapter 9 presents a strategy to follow
unparametrised paths, but ocean currents are not considered.

Chapter 7 considers path-following of underactuated marine vessels in the pres-
ence of constant ocean currents. A line-of-sight guidance law, an ocean current ob-
server, and a local parametrisation of the path are used in this work. The parametri-
sation that is used is the parametrisation introduced for mobile robots in Samson
[124] with an adaptation to include the e�ect of the unknown ocean currents. This
parametrisation aims to keep the vessel on the normal of a path-tangential refer-
ence frame. However, this is only possible when the ocean current is known and
therefore the adaptation to the parametrisation includes a restoring term that as-
sures that the vessel is brought back to the normal of the path-tangential reference
frame once the estimate of the ocean current has converged. Due to the locality of
the parametrisation it can only be used in a certain tube around the path whose
size depends on the maximum curvature of the path. When in this tube it is shown
that the closed-loop system of the controllers and the ocean current observer pro-
vides global asymptotic stability of the path-following error dynamics. This work
considers a path-following scenario similar to Do and Pan [49]. In Do and Pan [49]
the mass and damping matrices are assumed diagonal while in Chapter 7 these
matrices may have non-zero o�-diagonal terms. Moreover, in Do and Pan [49] the
coupling between the total speed and the underactuated side-ways velocity is not
considered when showing boundedness of the sideways velocity. This coupling may
actually cause unbounded growth of the sideways velocity, which is shown and
prevented in Chapter 7.

Chapter 8 considers path-following of underactuated marine vessels in the pres-
ence of constant ocean currents. Contrary to the parametrisation in Chapter 7 the
parametrisation in this chapter is valid globally, i.e. the initial path-following errors
can be arbitrarily large. To accommodate this the guidance law is adapted, result-
ing in a line-of-sight like guidance for which the look-ahead distance is adapted
based on the path-following errors. Like in the local case an ocean current observer
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is used to compensate for the unknown ocean current. The full closed-loop system is
then analysed and it is shown that under appropriate conditions for the look-ahead
distance and path curvature the path-following errors are globally asymptotically
stable. The guidance considered in this work is an adaptation of the guidance in
Moe et al. [100], which investigates the same problem. It is shown that this mod-
i�cation is necessary to guarantee boundedness of the zero dynamics which were
not analysed in Moe et al. [100].

Chapter 9 presents a novel strategy to follow unparametrised paths with un-
deractuated marine vessels. The path is de�ned implicitly by using a describing
function that is zero when on the path. Then using three geometric objects, i.e.
the normal to the path, the tangent to the path, and the curvature of the path,
a control approach is introduced that drives the describing function to zero and
hence controls the vessel to the path. The controller is based on principles from ge-
ometric control and the hierarchical control design method from El-Hawwary and
Maggiore [55]. Using the hierarchical control design method, the closed-loop system
is analysed and the underactuated zero dynamics are shown to be well behaved.
The main contribution of this work is in the introduction of a new geometric con-
troller that allows path-following of unparametrised paths. This is a `purer' form
of path-following than the approach taken in Chapters 7 and 8 and the other ap-
proaches available in the literature, since parametrisation of the path technically
only makes any point on the path attractive instantaneously rather than the path
in general. The material in Chapter 9 is based on Belleter et al. [23].

1.2.4 Publications

The following is a list of publications relating to the work in the thesis. It contains
publications in journals, a book chapter, and publications at several international
peer-reviewed conferences. The list contains both accepted and submitted works.

Journal Papers and Book Chapter

� D. J. W. Belleter, R. Galeazzi, and T. I. Fossen. Experimental veri�cation
of a global exponential stable nonlinear wave encounter frequency estimator.
Ocean Engineering, 97:48�56, 2015

� D. J. W. Belleter and K. Y. Pettersen. Leader-follower synchronisation for
a class of underactuated systems. In N. van de Wouw, E. Lefeber, and
I. Lopez Arteaga, editors, Nonlinear Systems, chapter 8, pages 157�179.
Springer, 2017

� D. J. W. Belleter, J. Braga, and K. Y. Pettersen. Experimental veri�cation
of a coordinated path following strategy for underactuated marine vehicles.
To be submitted to Elsevier Ocean Engineering, 2016

� D. J. W. Belleter, M. Maghenem, C. Paliotta, and K. Y. Pettersen. Observer
based path following for underactuated marine vessels in the presence of
ocean currents: a global approach. To be submitted to IEEE Transactions of
Control Systems Technology, 2016
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Conference Papers

� D. J. W. Belleter, D. A. Breu, T. I. Fossen, and H. Nijmeijer. A globally
K -exponentially stable nonlinear observer for the wave encounter frequency.
IFAC Proceedings Volumes, Presented at: 9th IFAC Conference on Control
Applications in Marine Systems, 46(33):209�214, 2013

� D. J. W. Belleter and K. Y. Pettersen. Path following for formations of un-
deractuated marine vessels under in�uence of constant ocean currents. In
Proceedings of the 53th IEEE Conference on Decision and Control, Los An-
geles, USA, Dec. 15-17, pages 4521�4528, 2014

� D. J. W. Belleter and K. Y. Pettersen. Path following with disturbance rejec-
tion for inhomogeneous formations with underactuated agents. In European
Control Conference (ECC), Linz, Austria, pages 1023�1030. IEEE, 2015

� D. J. W. Belleter and K. Y. Pettersen. Underactuated leader-follower syn-
chronisation for multi-agent systems with rejection of unknown disturbances.
In American Control Conference (ACC), Chicago, USA, pages 3094�3100,
2015

� D. J. W. Belleter and K. Y. Pettersen. 3D coordinated path following with
disturbance rejection for formations of under-actuated agents. In 54th IEEE
Conference on Decision and Control (CDC), pages 1040�1047. IEEE, 2015

� D. J. W. Belleter, C. Paliotta, M. Maggiore, and K. Y. Pettersen. Path
following for underactuated marine vessels. In 10th IFAC Symposium on
Nonlinear Control Systems (NOLCOS), To Appear. IFAC, 2016

� M. Maghenem, D. J. W. Belleter, C. Paliotta, and K. Y. Pettersen. Observer
based path following for underactuated marine vessels in the presence of
ocean currents: a local approach. Submitted to IFAC world congress, 2017

Publications not part of the thesis

� D. J. W. Belleter, D. A. Breu, T. I. Fossen, and H. Nijmeijer. Nonlinear
observer design for parametric roll resonance. In Proceedings of the 11th
International Conference on the Stability of Ships and Ocean Vehicles, pages
699�705, 2012

� C. Paliotta, D. J. W. Belleter, and K. Y. Pettersen. Adaptive source seeking
with leader-follower formation control. IFAC-PapersOnLine, Presented at:
10th IFAC Conference on Manoeuvring and Control of Marine Craft, 48(16):
285�290, 2015

1.3 Outline of the Thesis

This thesis is build up of ten chapters and three appendices. Some chapters have
their own subappendices for material that is speci�c to that chapter and is not
necessary in the main body of the text.
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Chapter 2 presents a dynamical model for motion in two dimensional space to
model marine surface vessels, and a dynamical model for motion in three dimen-
sional space to model autonomous underwater vehicles (AUVs).

Chapter 3 presents the design of a frequency estimator to estimate the wave
encounter frequency of a ship. The estimation algorithm can be used online and is
equipped with a gain-switching mechanism to function in situations with high and
low excitation. The theoretical results are veri�ed using experimental data.

Chapter 4 presents a coordinated straight line path-following strategy for under-
actuated surface vessels in the presence of constant ocean currents. The combina-
tion of an integral line-of-sight guidance to achieve path-following and a nonlinear
coordination law to achieve desired along-path distances is investigated and it is
shown that coordinated path following can be achieved.

Chapter 5 presents a coordinated straight line path-following strategy for au-
tonomous underwater vehicles in the presence of constant ocean currents. Com-
pared to the previous chapter an extra step in the guidance is added for the depth
control and the extra degree of underactuation is taken into account in the coor-
dination error dynamics.

Chapter 6 considers leader-follower synchronisation for underactuated surface
vessels, where a straight-line guidance is applied to curved trajectories to analyse
the synchronisation behaviour under these circumstances.

Chapter 7 presents an approach for curved path following in the presence of
unknown ocean currents for underactuated marine surface vessels. It combines a
line-of-sight guidance law with an ocean current observer to achieve path following.
The result from this chapter is valid only locally due to the particular parametri-
sation of the path which has a singularity.

Chapter 8 presents an approach for curved path following in the presence of
unknown ocean currents for underactuated marine surface vessels. Compared to
the previous chapter this approach uses a di�erent parametrisation and di�erent
guidance that makes the result globally valid.

Chapter 9 presents a novel curved path-following strategy that does not require
parametrisation of the path. This strategy is based on principles from geometric
control and hierarchical control design.

Chapter 10 presents concluding remarks and gives recommendations for future
work and developments.

Appendix A presents some of the mathematical notations, de�nitions, and tools
used in the thesis.
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Appendix B presents model transformations that are used in the derivation of
the dynamical models of Chapter 2.

Appendix C presents the numerical simulation models used in the thesis.
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Modelling of Marine Vehicles and

Environmental Disturbances
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Chapter 2

Modelling of Marine Vehicles in the

Presence of Environmental

Disturbances

This chapter considers modelling of underactuated marine vehicles in the presence
of environmental disturbances. The �rst section presents a general model for ma-
rine vehicles based on a rigid-body approximation. In subsequent sections several
aspects of this model are speci�ed further to derive some of the models that are
used for the controller designs throughout this thesis. The models presented in this
chapter are for the purpose of control design and stability analysis. The models
give a good representation of the kinematics and dynamics of the ship's motion
but do not capture complex e�ects such as hydrodynamic interactions between the
hull and the water, details of the propulsion system and its interactions with the
environment.

2.1 Modelling of Ocean Current for Control of Marine

Vehicles

To derive the models used for control design in this thesis we start from a general
manoeuvring model as presented in Fossen [60]. This model is based on a rigid-
body approximation of a marine vehicle subjected to hydrodynamic and hydrostatic
forces which results in a nonlinear mass-spring-damper system with constant co-
e�cients. The model describes motion in three dimensional space. In the marine
systems literature it is common to express this motion in two frames: the inertial
north-east-down (NED) frame expressed by i and the body-�xed frame b which is
attached to the body of the marine vehicle as depicted in Figure 2.1. This section
only gives a brief presentation of the model a more comprehensive discussion and
other variations of models can be found in Fossen [60]. The model is then given by

η̇ = J(η)ν, (2.1a)

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +D(νr)νr + g(η) = τ + τw. (2.1b)
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Figure 2.1: De�nition of the coordinates.

The vector η , [x, y, z, φ, θ, ψ]T is de�ned in i and represents the position in
Cartesian coordinates and orientation in Euler angles roll-pitch-yaw of the vehicle
with respect to i. The matrix J(ν) is the velocity transformation matrix between
b and i. The term ν , [u, v, w, p, q, r]T is the vector of generalised velocities with
respect to b. The linear velocities u, v, and w are the surge, sway, and heave ve-
locity respectively and the angular velocities p, q, and r are the roll rate, pitch
rate, and yaw rate respectively. The relative velocity vector, i.e. the velocity with
respect to the ocean current, is de�ned as νr , ν − νc where νc is the velocity of
the ocean current expressed in b. The matricesMRB = MT

RB > 0 and CRB(ν) are
the rigid-body mass matrix and Coriolis and centripetal matrix respectively. The
matricesMA = MT

A > 0 and CA(ν) are the hydrodynamic added mass matrix and
the added mass Coriolis and centripetal matrix, respectively. The matrix D(νr)
is the hydrodynamic damping matrix. The vector g(η) is the vector of gravita-
tional/buoyancy forces and moments. The control input in body-frame b is given
by τ and the vector τw , τwind + τwave represents the vector of added wind and
wave-induced forces.

The general model (2.1) is speci�ed further in the two subsequent sections of this
chapter. However, we �rst specify the nature of the disturbances considered in this
thesis. As speci�ed in Chapter 1, the disturbance considered in this thesis are ocean
currents and wave forces. The wave forces are considered to be �ltered out using a
wave �lter that utilises estimates of the wave encounter frequency from the wave
frequency estimator that is presented in the next chapter. Moreover, as speci�ed
in Chapter 1, wind disturbances are out of the scope of this thesis. Therefore, the
vector of added wind and wave-induced forces τw is not considered in the models
for control design in the next subsections. We now rewrite the model (2.1) in a more
convenient form to incorporate ocean currents. To do this we assume that the ocean
current is constant and irrotational with respect to the inertial frame. Hence, we
de�ne the current vector Vc , [Vx, Vy, Vz]

T which has constant components and
where for surface vessels it holds that Vz = 0. Moreover, we assume the current is

bounded by a maximum value Vmax > 0 such that ‖Vc‖ =
√
V 2
x + V 2

y + V 2
z ≤ Vmax.
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The ocean current can be expressed in the body frame according to

vc = R(φ, θ, ψ)TVc, (2.2)

where R(φ, θ, ψ) is the rotation matrix from b to i and where vc , [uc, vc, wc]
T . In

an irrotational �uid this results in νc , [uc, vc, wc, 0, 0, 0]T . Furthermore, it shown
in Fossen [60] that if the current is constant and irrotational it holds that

MRBν̇ +CRB(ν)ν = MRBν̇r +CRB(νr)νr. (2.3)

Using (2.2), (2.3), and the de�nition of νr we rewrite (2.1) to

η̇ = J(η)νr + [Vc,01×3]T , (2.4a)

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ , (2.4b)

where M , MRB +MA and C(νr) = CRB(νr) +CA(νr). The model (2.4) now
represents a marine vehicle moving in the presence of an ocean current that causes
a kinematic drift. The �rst-order wave forces are assumed to be �ltered from this
model, and the vehicle is considered in the absence of wind. In this thesis we
choose to control the relative velocity. This gives direct control over the energy
consumption since the hydrodynamic damping depends on νr [39]. Furthermore,
using the relative velocity representation of the model leads to more straightfor-
ward controller design. In the next two sections the models are speci�ed further to
represent a surface vessel and an autonomous underwater vehicle.

2.2 The Manoeuvring Model in 3 DOF

In this section the model (2.4) is further simpli�ed to a 3 DOF model. This model
can be used to describe an autonomous surface vessel or an autonomous underwater
vehicle moving in a plane and is used in several subsequent chapters of the thesis.
This means that there is no motion in the vertical direction and that there is no
need to consider motion along the z-axis and rotation along the y-axis, i.e. the z
position and the pitch angle θ can be removed from the model. Furthermore the
roll angle φ is assumed to be passively stabilised and is also not considered in the
reduced model.

In line with the previous section the position in the plane is denoted by p ,
[x, y]T ∈ R2 and the heading, i.e. yaw, angle is denoted by ψ ∈ R. The linear
velocities in the longitudinal (surge) and lateral direction (sway) of the body-
�xed frame are denoted by u and v respectively. The yaw rate is denoted by r.
The vessel has two control inputs available, the surge trust Tu and the rudder
angle Tr. The vessel in this case is only disturbed by an ocean current denoted by
Vc , [Vx, Vy]T in the inertial frame. The ocean current is assumed to be constant
and irrotational with respect to the inertial frame and it is bounded by Vmax > 0

such that ‖Vc‖ =
√
V 2
x + V 2

y ≤ Vmax.

The relative velocity vector also reduces to two components resulting in νr ,
[ur, vr]

T with ur , u− uc the relative surge velocity and vr , v− vc relative sway
velocity where uc and vc are the components of the current expressed in the body
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frame. The total speed is de�ned as ut ,
√
u2
r + v2

r and the angle between the
direction of the surge velocity and total speed, i.e. the side-slip angle, is de�ned as
β , atan(vr/ur). An illustration of the variables is given in Figure 2.2. In Fossen
[60] a 3-DOF manoeuvring model expressed in these variables is given by:

η̇ = R(ψ)νr + [Vx, Vy, 0]T (2.5a)

Mν̇r +C(νr)νr +Dνr = Bf . (2.5b)

where η , [x, y, ψ]T , νr , [ur, vr, r]
T , f , [Tu, Tr]

T , and

R(ψ) ,

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.6)

If we assume the vessel is port-starboard symmetric an the body-�xed frame is
located along the centreline of the vessel, the matrices M , D, and B can be
de�ned as

M ,

m11 0 0
0 m22 m23

0 m23 m33

 , D ,

d11 0 0
0 d22 d23

0 d32 d33

 , B ,

b11 0
0 b22

0 b32

 ,
withM = MT > 0 the symmetric positive de�nite inertia matrix including added
mass, D > 0 is the hydrodynamic damping matrix, and B is the actuator con�g-
uration matrix. The matrix C(νr) is the matrix of Coriolis and centripetal forces
and can be obtained from M (see [60]) resulting in

C(νr) ,

 0 0 −m22vr −m23r
0 0 m11ur

m22vr +m23r −m11ur 0

 . (2.7)

Remark 2.1. Note that nonlinear damping is not considered in this thesis. This
choice is made to reduce the complexity of the proposed controllers. However, the
passive nature of the nonlinear hydrodynamic damping forces should only enhance
the directional stability [42].

To make the stability properties of the sway dynamics easier to analyse we
perform a change of coordinates by moving the origin of the body frame over a
distance ε along the center-line of the vessel. Following Fredriksen and Pettersen
[64] there exists a constant ε such that the resulting dynamics have mass and
damping matrices satisfying this relation: M−1Bf = [τu, 0, τr]

T . Details of this
coordination transformation can be found in Appendix B. Using these conditions,
the model of the marine vessel (2.5) can be represented in component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (2.8a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (2.8b)

ψ̇ = r, (2.8c)

u̇r = Fur (vr, r)− d11
m11

ur + τu, (2.8d)

v̇r = X(ur)r + Y (ur)vr, (2.8e)

ṙ = Fr(ur, vr, r) + τr, (2.8f)
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The expressions for X(ur), Y (ur), Fu, and Fr are

Fur ,
1

m11
(m22vr +m23r)r, (2.9a)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23ur + d33m23−d23m33

m22m33−m2
23

, (2.9b)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (2.9c)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(2.9d)

Note that the functions X(ur) and Y (ur) are linear and that Y (ur) satis�es the
following assumption throughout the thesis.

Assumption 2.1. The function Yvr (ur) satis�es

Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, urd],

where urd is the desired surge speed.

Remark 2.2. Assumptions 2.1 is satis�ed for commercial vessels by design, since
the converse would imply an undamped or nominally unstable vessel in sway.

Figure 2.2: De�nition of the ship's kinematic variables.

2.3 The Manoeuvring Model in 5 DOF

The model considered in this section is a 5-DOF model of an AUV which describes
the motion of the AUV in surge, sway, heave, pitch and yaw. The roll angle is
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assumed to be passively stabilised by �ns or by gravity and is therefore neglected.
Consequently, the state of the vehicle w.r.t to i is given by η , [x, y, z, θ, ψ]T

with three spatial coordinates x, y, and z and two angles θ and ψ which are the
pitch and yaw angle respectively. The vector of linear and angular velocities of
the vehicle ν , [u, v, w, q, r]T is expressed with respect to the body-�xed frame b
and contains the surge velocity u, the sway velocity v, the heave velocity w, the
pitch rate q, and the yaw rate ψ. The vehicles are a�ected by the ocean current
described in Section 2.1 such that Vc , [Vx, Vy, Vz]

T expressed in the inertial frame
i is assumed to be constant, irrotational and upper-bounded, i.e. ∃Vmax > 0 such

that ‖Vc‖ =
√
V 2
x + V 2

y + V 2
z ≤ Vmax.

The ocean current velocities in the body-�xed frame b are given by νc ,
[uc, vc, wc, 0, 0]T , and are obtained from [uc, vc, wc]

T = RT (θ, ψ)Vc where R(θ, ψ)
is the rotation matrix from b to i de�ned as

R(θ, ψ) ,

cos(ψ) cos(θ) − sin(ψ) cos(ψ) sin(θ)
sin(ψ) cos(θ) cos(ψ) sin(ψ) sin(θ)
− sin(θ) 0 cos(θ)

 (2.10)

Using the ocean current velocity we can de�ne the relative velocity in the body-
�xed frame as νr , ν − νc = [ur, vr, wr, q, r]

T [60]. It is shown in Fossen [60] that
if the current is constant, bounded, and irrotational an underwater vehicle can be
described using the 5-DOF manoeuvring model:

η̇ = J(η)νr + [Vx, Vy, Vz, 0, 0]T , (2.11a)

Mν̇r +C(νr)νr +Dνr + g(η) = Bf (2.11b)

The block diagonal velocity transformation matrix maps the body-frame velocities
and rotation to the inertial frame and is de�ned as J(η) , bdiag(R(θ, ψ),T (θ)),
with T (θ) , diag(1, 1/ cos(θ)), |θ| 6= ±π/2. The matrix M = MT > 0 is the mass
and inertia matrix, matrix D > 0 is the hydrodynamic damping matrix, and B is
the actuator con�guration matrix.

The AUVs considered here are assumed to be slender-body AUVs, i.e. they have
a large length-to-width ratio. The AUV are assumed to be xz-plane symmetric,
which is the parallel of the port-starboard symmetry assumption in the previous
subsection. The AUVs are assumed to be neutrally buoyant, that is, they do not
move in the vertical plane unless active depth control is applied. Moreover, the
center of gravity (CG) and the center of buoyancy (CB) are located along the
same vertical axis in the body-�xed frame. The surge mode is decoupled from the
other degrees of freedom and consider only the dominating interconnections, i.e.
the interconnections between sway and yaw and between heave and pitch.

Remark 2.3. The assumptions made in the preceding discussion are common
assumptions in manoeuvring control of slender-body AUVs [60].

The matricesM , D, and B can now be de�ned to have the following structure

M ,


m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0
0 0 m43 m44 0
0 m52 0 0 m55

 ,
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D ,


d11 0 0 0 0
0 d22 0 0 d25

0 0 d33 d34 0
0 0 d43 d44 0
0 d52 0 0 d55

 , B ,


b11 0 0
0 0 b23

0 b32 0
0 b42 0
0 0 b53

 .

Remark 2.4. Note that nonlinear damping is not considered in this thesis. This
choice is made to reduce the complexity of the proposed controllers. However, the
passive nature of the nonlinear hydrodynamic damping forces should only enhance
the directional stability [42].

The matrix C is the coriolis and centripetal matrix and can be derived from
M (see [60]) to obtain

C(νr) ,


0 0 0 m33wr +m34q −m22vr −m25r
0 0 0 0 m11ur
0 0 0 −m11ur 0

−m33wr −m34q 0 m11ur 0 0
m22vr +m25r −m11ur 0 0 0



The gravity vector in CG is given as g(η) , [0, 0, 0, BGzW sin(θ), 0]T , with BGz
the vertical distance between CG and CB, and W is the weight of the vehicle. The
control input vector f is de�ned as f , [Tu, Tq, Tr]

T and contains the surge thrust
Tu, the pitch rudder angle Tq, and the yaw rudder angle Tr. The location of the
body-�xed frame is chosen to be at (x∗g, 0, 0) such thatM−1Bf = [τu, 0, 0, τq, τr]

T .
Note that the model is under-actuated in sway and heave. The point (x∗g, 0, 0)
always exists for AUVs of cylindrical shape employing symmetric steering and
diving control surfaces [29] and the body-�xed frame can always be translated
to this location [60], details of this coordination transformation can be found in
Appendix B.

The model can be expanded into component form as

ẋ = ur cos(ψ) cos(θ)− vr sin(ψ) + wr cos(ψ) sin(θ) + Vx (2.12a)

ẏ = ur sin(ψ) cos(θ) + vr cos(ψ) + wr sin(ψ) sin(θ) + Vy (2.12b)

ż = −ur sin(θ) + wr cos(θ) + Vz (2.12c)

θ̇ = q (2.12d)

ψ̇ = r/ cos(θ) (2.12e)

u̇r = Fur (vr, wr, q, r)− (d11/m11)ur + τu (2.12f)

v̇r = Xvr (ur)q + Yvr (ur)vr (2.12g)

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sin(θ) (2.12h)

q̇ = Fq(θ, ur, wr, q) + τq (2.12i)

ṙ = Fr(ur, vr, r) + τr (2.12j)
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The de�nitions of Fur , Xvr , Yvr , Xwr , Ywr , Zwr , Fq, and Fr are given by

Fur (vr, wr, r, q) ,
1

m11
[(m22vr +m25r)r − (m33wr +m34q)q], (2.13a)

Xvr (ur) ,
m2

25 −m11m55

m22m55 −m2
25

ur +
d55m25 − d25m55

m22m55 −m2
25

, (2.13b)

Yvr (ur) ,
(m22 −m11)m25

m22m55 −m2
25

ur −
d22m55 − d52m25

m22m55 −m2
25

, (2.13c)

Xwr (ur) ,
−m2

34 +m11m44

m33m44 −m2
34

ur +
d44m34 − d34m44

m33m44 −m2
34

, (2.13d)

Ywr (ur) ,
(m11 −m33)m34

m33m44 −m2
34

ur −
d33m44 − d43m34

m33m44 −m2
34

, (2.13e)

Zwr ,
BGzWm34

m33m44 −m2
34

, (2.13f)

Fq(θ, ur, wr, q) ,
m34d33 −m33(d43 − (m33 −m11)ur)

m33m44 −m2
34

wr

+
m34(d34 −m11ur)−m33(d44 −m34ur)

m33m44 −m2
34

q

− BGzWm33

m33m44 −m2
34

sin(θ),

(2.13g)

Fr(ur, vr, r) ,
m25d22 −m22(d53 + (m22 −m11)ur)

m22m55 −m2
25

vr

+
m25(d25 +m11ur)−m22(d55 +m25ur)

m22m55 −m2
25

r.

(2.13h)

Assumption 2.2. The function Yvr (ur) satis�es

Yvr (ur) ≤ −Y min
vr < 0, ∀ur ∈ [−Vmax, urd],

where urd is the desired surge speed.

Assumption 2.3. The function Ywr (ur) satis�es

Ywr (ur) ≤ −Y min
wr < 0, ∀ur ∈ [−Vmax, urd],

where urd is the desired surge speed.

Remark 2.5. Assumptions 2.2 and 2.3 are satis�ed for commercial vessels by
design, since the converse would imply an undamped or nominally unstable vessel
in sway and heave respectively.
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Chapter 3

Wave Frequency Estimation

Estimation of the wave encounter frequency is an important part of sea-state pre-
diction, which is of great importance in many marine operations as well as control
systems design. Sea-state estimation also provides information to increase both the
safety of operations at sea and the performance of control systems for ships a�ected
by waves.

To increase the safety of operations, knowledge of the wave encounter frequency
can be used for prediction of extreme waves, parametric roll resonance and in-
service monitoring. Knowledge of the sea-state, and in particular the encounter
frequency, is also important to increase the performance of marine control systems.
For ship autopilot and dynamic positioning (DP) systems, knowledge of the en-
counter frequency allows for better tuning of the low-pass and notch �lters used in
wave �ltering [60, Ch. 11]. On-line adjustment of controller and observer gains also
require knowledge of the wave encounter frequency [61]. This allows for automatic
gain scheduling of autopilots and DP systems.

As an exception in this thesis, this chapter has its own section with background
information. This is done since this chapter presents a topic not related to the other
chapters in the thesis which consider control of marine vehicles whilst this chapter
considers estimation of an environmental parameter. The material presented in this
chapter is based on Belleter et al. [19] and Belleter et al. [20].

3.1 Background

3.1.1 Sea-state estimation

In the literature several techniques for estimation of the wave encounter frequency
or wave spectra have been presented. The classical method is to obtain the wave
spectrum from Fast Fourier Transform (FFT) frequency spectral analysis [58].
Unfortunately, creating a FFT frequency spectrum takes time and consequently
it results in back-dated information when estimating the time-varying wave en-
counter frequency. This is due to the moving window necessary for applying the
FFT frequency spectral analysis. Hence, it is impossible to estimate a time-varying
wave encounter frequency without lag.
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3. Wave Frequency Estimation

More advanced spectral estimation techniques allow estimation of directional
wave spectra [105]. This can be done by parametric or non-parametric modelling.
The parametric modelling approach typically assumes that the wave spectrum is
parametrized such that it can be estimated using least-squares parameter matching
of a bimodal spectrum for stationary vessels [136] and moving vessels [105]. The
non-parametric modelling or Bayesian approach uses stochastic processes to match
the frequencies for stationary vessels [77] and moving vessels [105]. These techniques
have the same disadvantages with respect to acquisition times as the FFT frequency
spectral analysis. However, besides the frequency of the waves, they also supply
directional information.

Another approach to wave encounter frequency estimation is to estimate the
peak frequency instead of the entire wave spectrum. This is a valid approach for
application of sea-state estimation when designing control systems, since the peak
frequency of the spectrum is used for wave �ltering [60, Ch. 11]. Approaches using
Kalman �lters can be found in Belleter et al. [18] and Hassani et al. [69]. However,
these approaches require a dynamic model of the vessel.

3.1.2 Frequency estimation

Frequency estimation of oscillating signals is a well studied problem in the signal
processing literature. A discrete-time algorithm for a multifrequency signal based
on an adaptive notch �ltering was �rst proposed by Regalia [119]. A continuous-
time version of this algorithm was presented in Bodson and Douglas [25], while Hsu
et al. [72] have derived a globally convergent continuous-time frequency estimator
for a single frequency signal.

An adaptive technique based on the persistency of excitation (PE) of oscillating
signals was proposed in Marino and Tomei [97], and extended by Xia [138] and Hou
[71]. Two discrete-time algorithms based on PE can also be found in Stotsky [133].

The approach taken by the authors is based on the internal model principle
for identi�cation of a single frequency. This was �rst introduced in Nikiforov [107]
and further extended by Aranovskiy et al. [8], Bobtsov [24], and Aranovskiy and
Bobtsov [7].

3.1.3 Main contribution

The main result of this chapter is a nonlinear signal-based wave encounter fre-
quency estimator, which e�ectively estimates the ship wave encounter frequency
from heave, pitch or roll motion measurements. The wave encounter frequency es-
timator under consideration is designed to estimate the frequency of a sinusoid
with unknown frequency, amplitude and phase by modifying the algorithm of Ara-
novskiy et al. [8] to include an adaptive gain-switching mechanism. The frequency
estimator with gain-switching mechanism is shown to have GES error dynamics
even for signals with a time-varying amplitude.

The main motivation for introducing a gain-switching mechanism is that it is
important to improve the convergence of the estimator in situations with little
excitation (e.g. small roll and pitch angles) and vice versa. Typical applications
are marine craft control and decision-support systems where it is important to

30
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know the sea state and wave frequency. The wave encounter frequency estimator
is experimentally veri�ed through towing tank tests in both regular and irregular
waves. The estimator is also veri�ed for 9-hours of data gathered onboard the
container vessel Clara Maersk during a storm across the North Atlantic Ocean.

The wave estimator is implemented in real-time and consequently it is much
faster than the real-time requirement of the ship autopilot and DP control sys-
tems, which typically samples data at 1�10 Hz. FFT is an o�-line algorithm, which
use batches of data (moving window). The computational footprint is higher and
signi�cantly a�ected by the acquisition time and numerical processing of the data.

3.1.4 Organization of the chapter

This chapter is organized as follows: In Section 2 the wave encounter frequency es-
timation problem is introduced and the Aranovskiy �xed-gain frequency estimator
is reviewed. Section 3 presents the switching-gain frequency estimator and GES of
the equilibrium point of the estimation error dynamics is proven. Section 4 con-
tains experimental veri�cation using towing tank experiments and full-scale data
of a container ship. The material in this chapter is based on Belleter et al. [19] and
Belleter et al. [20].

3.2 Estimation of the Wave Spectrum Encounter

Frequency

Characterization of the sea state for marine operations is generally done in terms of
a limited number of fundamental parameters, which are used to calculate approx-
imations of the wave spectrum. Those parameters are the signi�cant wave height
Hs, the wave modal frequency (peak frequency) ω0, and the wave encounter angle
βe that is the relative angle between the vessel heading and the the main direction
of the wave train. Knowledge of those parameters may reveal to be of extreme
importance in order to schedule and perform activities at sea in a safe, reliable and
cost e�ective manner.

For vessels in transit at forward speed U > 0 the experienced wave excita-
tion does not occur at the modal frequency ω0 because of the Doppler shift. The
frequency observed from the vessel in motion is given by:

ωe(ω0, U, βe) =

∣∣∣∣ω0 −
ω2

0

g
U cos(βe)

∣∣∣∣ (3.1)

which is known as the wave encounter frequency. Awareness about ωe would allow
performance enhancement of ship control systems. For instance autopilots and DP
systems use wave �lters, which are tuned to suppress oscillations at the encounter
frequency, in order to reduce the workload of the steering and propulsion systems.

Although waves are usually described as narrow-band stochastic processes, the
associated spectrum is certainly richer in frequency content than a single sinusoid.
Nevertheless spectral analysis of wave-induced vessel motions usually displays a
dominant frequency associated with the peak of the spectrum. During the transient
the natural frequencies of the di�erent modes can be observed in the spectrum
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giving rise to multiple peaks. However, If the waves are large enough the ship will
oscillate at ωe in all 6 degrees-of-freedom in steady state. For multi-peaked wave
spectra with a dominant peak the proposed method will provide an estimate close
to the frequency of the highest peak. Analytically the problem can be formulated
as:

Problem de�nition (Wave encounter frequency estimation)
Given the signal in the form:

y(t) = A(t) sin(ωet+ ε) (3.2)

with A(t) the unknown amplitude, ωe the unknown frequency and ε the unknown
phase, reconstruct on-line the frequency ωe based solely on noisy measurements of
y(t).

3.2.1 The Aranovskiy �xed-gain frequency estimator

Before presenting the main contribution of the chapter (Theorem 3.1), we �rst
review the signal-based frequency estimator proposed by Aranovskiy et al. [8],
which is instrumental in our design.

The sinusoidal signal (3.2) can be represented by the di�erential equation:

ÿ = ϕy (3.3)

where ϕ := −ω2
e is treated as an unknown parameter. The frequency ωe of the

signal (3.2) can be estimated using an auxiliary �lter [7]:

ζ̇1 = ζ2 (3.4)

ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy (3.5)

where the �lter cut-o� frequency must be chosen such that 0 < ωe < ωf . The
transfer function corresponding to (3.4)�(3.5) is found by Laplace transformation:

ζ1(s) =
ω2
f

(s+ ωf )2
y(s) (3.6)

From (3.3) it follows that s2y(s) = ϕy(s) and

y(s) =
ϕ+ 2ωfs+ ω2

f

(s+ ωf )2
y(s)

=
2ωfs+ ω2

f + ϕ

ω2
f

ζ1(s) (3.7)

Transforming this expression to the time domain gives:

y =
1

ω2
f

(
2ωfζ2 + ω2

fζ1 + ϕζ1
)

(3.8)
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The Aranovskiy et al. [8] parameter update law for ϕ uses the computed measure-
ment:

y′ := ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy = ϕζ1 (3.9)

Let ϕ̂ denote the parameter estimate and de�ne:

ŷ′ := ϕ̂ζ1 (3.10)

The parameter update law is chosen as:

˙̂ϕ = k0 ζ1(y′ − ŷ′) (3.11)

where k0 > 0 is the constant observer gain. Consequently, the resulting frequency
estimator becomes:

ζ̇1 = ζ2 (3.12)

ζ̇2 = −2ωfζ2 − ω2
fζ1 + ω2

fy (3.13)

˙̂ϕ = k0 ζ1(ζ̇2 − ϕ̂ζ1) (3.14)

The di�erential equation for the parameter estimation error ϕ̃ = ϕ − ϕ̂ where
ϕ is assumed to be constant becomes:

˙̃ϕ = −k0 ζ
2
1 ϕ̃ (3.15)

The wave component (3.2) has a positive amplitude 0 < Amin ≤ A for ∀t ≥ 0 and
frequency ωe > 0. For frequencies ωe < ωf , the time-domain solution of (3.6) for a
sinusoidal input (3.2) is ζ1 = A sin(ωet+ ε1) where ε1 is the phase. The signal ζ1 is
persistently exciting (PE) since there exist a positive µ and T such that

µ ≤
∫ t+T

t

ζ2
1 (τ) dτ, ∀t ≥ 0 (3.16)

The PE-condition (3.16) is used to prove that the the equilibrium point of the
estimation error dynamics (3.15) is GES for constant adaptation gain k0 > 0 and
A > 0. This result will be generalized to time-varying adaptation gain and wave
amplitude in Section 3.

The solutions of (3.15) satisfy:

‖ϕ̃‖ = ‖ϕ̃(t0)‖e−k0
∫ t
t0
ζ21 (τ) dτ

= ‖ϕ̃(t0)‖ e−k0
∫ t
t0
A2 sin2(ωeτ+ε1) dτ

(3.17)

with ∫ t

t0

A2 sin2(ωeτ + ε1) dτ =
A2

2
(t− t0)− A2

4ωe
sin(2ωet+ 2ε1)

+
A2

4ωe
sin(2ωet0 + 2ε1) (3.18)
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Figure 3.1: Frequency estimates using di�erent cut-o� frequencies ωf .

Substituting (3.18) in (3.17) gives:

‖ϕ̃‖ = ‖ϕ̃(t0)‖ e−
k0A

2

2 (t−t0)e
k0A

2

4ωe
[sin(2ωet+2ε1)−sin(2ωet0+2ε1)]

≤ c ‖ϕ̃(t0)‖ e−λ(t−t0) (3.19)

where c = ek0A
2/2ωe > 0 and λ = k0A

2/2 > 0. Hence, by Khalil [82, De�nition
4.5], given in Appendix A as De�nition A.4, the equilibrium point ϕ̃ = 0 of (3.15)
is GES.

3.2.2 Filter cut-o� frequency

The choice of the cut-o� frequency ωf should be made based on desired performance
� i.e. convergence rate and steady-state error � and noise �ltering capabilities. ωf
clearly in�uences the convergence rate of the estimator as shown in Figure 3.1,
where the frequency of a sinusoidal function oscillating at 0.5 [rad/s] is estimated
for increasing value of the cut-o� frequency. Small cut-o� frequencies result in a slow
convergence rate. However, higher cut-o� frequencies introduce some oscillations in
steady state, as visible from the estimate done with ωf = 20 [rad/s]. It is interesting
to note that moderately increasing the cut-o� frequency can signi�cantly increase
the convergence rate while the increase in steady-state error is negligible.
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3.3. Switching-Gain Wave Encounter Frequency Estimator

3.3 Switching-Gain Wave Encounter Frequency Estimator

The GES stability proof for the Aranovskiy frequency estimator (Section 3.2.1)
is based on a constant observer gain k0 > 0. For marine craft the roll and pitch
angles may be quite small when operating in low sea states. Consequently, it is
advantageous to switch between a high and low gain in the parameter update law
depending on the amplitude of the pitch angle. In Belleter et al. [19] it was shown
that the frequency estimator (3.14) could be modi�ed to include a switching gain
k(A), which depends on the amplitude A of the measured signal. Moreover,

k(A) =

 kinit if, t ≤ tinit

kmin if, t > tinit ∧ A > A0

kmax if, t > tinit ∧ A ≤ A0

(3.20)

Here kinit ≥ kmin > 0 is the initial gain used to increase the convergence rate
at start up. During normal operation the gain is switched between the positive
gains kmin and kmax. Moreover, the gain k(A) will switch to the high value if the
amplitude A ≤ A0 and to the low gain when A > A0.

To implement the switching mechanism (3.20) online we need to know the
amplitude A of the measured signal y. Since we cannot measure A an estimator
based on the squared signal of (3.2) can be used for switching. Moreover,

y2 =
A2

2
(1− cos(2ωet+ 2ε)) (3.21)

The signal (3.21) can be low-pass �ltered to obtain the amplitude A2/2 of the
squared signal y2. For instance,

χ =
1

Ts+ 1
y2 (3.22)

where T > 0 implies that the estimated amplitude becomes:

Â =
√

2χ (3.23)

3.3.1 Wave encounter frequency estimator with switching-gain

The results are in this section extended to be GES for time-varying wave amplitude
A(t) and adaptation gain kf (t) by introducing a low-pass �lter for the gain k(Â)
according to:

Tf k̇f + kf = k(Â) (3.24)

where Tf > 0 is the �lter time constant and k(Â) ≤ max(kmax, kinit). The param-
eter update law (3.14) is modi�ed according to:

˙̂ϕ = kf ζ1

(
ζ̇2 − ζ1ϕ̂

)
(3.25)

and GES is guaranteed by Theorem 3.1, which is presented below. The e�ect of
low-pass �ltering on the gain switching is illustrated in Figure 3.2.
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Figure 3.2: Illustration of low-pass �ltered gain changes for step inputs k(Â).

Theorem 3.1 (GES switching-gain estimator). Let the time-varying wave
amplitude satisfy 0 < Amin ≤ A(t) for all t ≥ 0. Assume that ϕ = −ω2

e is constant
and that kf (t) is the solution of (3.24) for Tf > 0 and step input k(Â) given by
(3.20). Then the equilibrium point ϕ̃ = 0 of the estimation error dynamics:

˙̃ϕ = −kf ζ2
1 ϕ̃ (3.26)

is GES.

Proof. From Formulae (3.20) and (3.24) it follows that 0 < kmin ≤ kf (t) ≤ kmax

for all Â. The solutions of (3.26) satisfy:

‖ϕ̃‖ = ‖ϕ̃(t0)‖e−
∫ t
t0
kfζ

2
1 (τ) dτ

≤ ‖ϕ̃(t0)‖ e−kmin

∫ t
t0
A2 sin2(ωeτ+ε1) dτ

≤ ‖ϕ̃(t0)‖ e−kminA
2
min

∫ t
t0

sin2(ωeτ+ε1) dτ
(3.27)

Application of (3.18) to (3.27) gives:

‖ϕ̃‖ ≤ ‖ϕ̃(t0)‖ e−
kminA

2
min

2 (t−t0)e
kminA

2
min

2ωe

≤ c ‖ϕ̃(t0)‖ e−λ(t−t0) (3.28)

where c = ekminA
2
min/2ωe > 0 and λ = kminA

2
min/2 > 0. Hence, by Khalil [82,

De�nition 4.5], given in Appendix A as De�nition A.4, the equilibrium point ϕ̃ = 0
of (3.26) is GES.

3.3.2 Low-pass �ltering of the wave encounter frequency

estimate

Since the measured ship motions in general display a non-pure sinusoidal behaviour
due to the narrow-band spectral characteristic of the wave motions, the estimate
ϕ̂ provided by (3.25) will show high-frequency �uctuations as a result. Therefore,
if the encounter frequency estimator is to be used in applications such as adaptive
wave �ltering or gain-scheduling control, the high-frequency variations are certainly
undesirable since they may introduce chattering in the system. A straightforward
solution to this problem is to apply a low-pass �lter at the output of the estimator
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(3.25), to obtain a running mean of the encounter frequency estimate. Consider
the system:

˙̂ϕ = kf ζ1

(
ζ̇2 − ζ1ϕ̂

)
(3.29)

ϕ̇f = Aϕf + bϕ̂ (3.30)

where ϕf ∈ Rn is the vector whose �rst component ϕf,1 is the low-pass �ltered ϕ̂.
The Hurwitz design matrix A and the vector b = [0, 0, 0, . . . , 1]T de�ne the low-
pass �lter. By rewriting (3.29) in terms of the estimation error ϕ̃, and by applying a
change of coordinates ξ = ϕf + A−1bϕ the following cascaded system is obtained:

Σ1 : ˙̃ϕ = −kf ζ2
1 ϕ̃ (3.31)

Σ2 : ξ̇ = Aξ + bϕ̃ (3.32)

GES of the cascade Σ1�Σ2 is guaranteed by Corollary 3.2.

Corollary 3.2 (GES cascade). The origin of the cascade Σ1�Σ2 is GES.

Proof. The origin of (3.31) is GES according to Theorem 3.1. For ϕ̃ = 0 the
di�erential equation (3.32) reduces to ξ̇ = Aξ (nominal system) whose origin is
GES since A is Hurwitz. In addition, the linear growth condition ‖bϕ̃‖ ≤ |ϕ̃|
is satis�ed for all ϕ̃. Hence, according to Loría and Panteley [94, Theorem 2.1,
Proposition 2.3], see Theorem A.3 and Proposition A.1 in Appendix A, the origin
of the cascade Σ1�Σ2 is GES.

3.4 Experimental Veri�cation

The performance of the estimator (3.20)�(3.25) in Section 3.3 is tested on exper-
imental and full-scale data using heave and pitch data. This to demonstrate that
the wave frequency estimator performs equally well for both signals. Operationally
this will provide �exibility for the operator, which could use measurements pro-
vided by either a heave accelerometer or a pitch rate gyro. First, the wave encounter
frequency estimator is applied to experimental data gathered through towing tank
experiments. Subsequently, the estimator is applied to full-scale sea trial data gath-
ered aboard the container vessel Clara Maersk in an Atlantic passage during a
storm.

3.4.1 Towing tank experiments

The experimental data considered here was gathered through towing tank tests
with a 1:45 scale model of 281[m] long container ship with volume displacement
76 000[m]3 (see Figure 3.3). The detailed model and all the hydrodynamic coe�-
cients can be found in Holden et al. [70].

The experimental conditions are reported in Table 3.1. For the regular wave
experiments (R�1173 and R�1189) ω0 is the wave frequency and Hw is the wave
amplitude. For the irregular wave experiment (I �1195) ω0 is the peak wave fre-
quency and Hw is the signi�cant wave height. U and ωe are the ship forward speed
and the wave encounter frequency, respectively.
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Figure 3.3: Model ship in the towing tank. Photo courtesy of Dr I. Drummen.

Table 3.1: Towing-tank experiment (full scale equivalents)

Exp. U [m/s] ω0 [rad/s] Hw [m] ωe [rad/s]

R�1173 5.4806 0.4425 2.5 0.5519
R�1189 7.6675 0.4640 2.5 0.6324
I�1195 6.0240 0.4640 9 0.5963

Comparative study of the �xed and variable gain estimators

The data set R-1173 is used for comparing the performance of the Aranovskiy �xed-
gain frequency estimator with the proposed switching-gain solution (Theorem 1).
This data set is well suited for this comparison because the amplitude variations
of the pitch angle emphasizes the importance of the switching mechanism. The
parameters settings for both estimators can be fond in Table 3.2. Note that the
value of k0 is chosen equal to kmin. This choice guarantees a small steady-sate error
during the �rst 15 minutes of the measurement where the pitch angle shows large
amplitudes.

Figure 3.4 illustrates the results of the comparative study. The use of the very
large initialization gain kinit (Figure 3.4(b)) boosts the convergence rate of the
switching-gain estimator, which settles to the true value of the encounter frequency
approximately 4 minutes before the �xed-gain estimator (Figure 3.4(c)). After both
�lters have converged they have the same gain, and hence the same small steady-
state error. When the encounter frequency changes the estimators initially converge
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Figure 3.4: Comparison of the frequency estimator with and without a gain switch-
ing mechanism.

Table 3.2: Parameter settings for the comparative study.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-o� frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Initialization time tinit 100 s
Initialization gain kinit 1500 -
Filter low gain klow 50 -
Filter high gain khigh 1000 -
Fixed gain kfixed 50 -

to the new value at the same rate. However, when the amplitude gets below the
switching threshold A0 the switching-gain estimator switches to the much high gain
kmax, as shown in Figure 3.4(b). This allows faster convergence towards the correct
frequency before the excitation becomes too small. The �xed-gain estimator does
not converge to the true value because the gain is to small for limited excitation.
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Table 3.3: Switching-gain estimator parameter settings for towing-tank data.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-o� frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Switching amplitude heave Az,0 0.6 m
Initialization time tinit 100 s
Initialization gain kinit 500 -
Filter low gain kmin 250 -
Filter high gain kmax 1000 -

Performance assessment on towing tank data

The estimator is tested on pitch and heave measurements gathered during exper-
iments R�1173 and R�1189, and on a heave measurement gathered during the
experiment I �1195. The settings for the �lter and gain switching parameters are
given in Table 3.3.

At the �rst the frequency estimator is tested on a measurement of the pitch
angle θ(t), as shown in Figure 3.5(a). The 30 minutes long time series is obtained
by joining the pitch angles measured in experiments R�1173 and R�1189, and the
last 15 minutes of the recording have been amplitude modulated through a decay-
ing exponential function. This behaviour has been appositely introduced in order
to test the capability of the estimator to track frequency variations in vanishing
signals.

The spectral analysis shown in Figure 3.5(b) clearly shows a frequency shift
between the �rst 15 minutes of the experiments and the second ones in total agree-
ment with the data reported in Table 3.1. Moreover, the nature of the excitation
used in the regular wave experiments determines a very narrow-band power spectral
density (PSD) denoted Θ(ω), and this will ease the estimation process.

The estimate of the wave encounter frequency ω̂e and the changes in the gain
kf can be seen in Figures 3.5(c)�(d). The two horizontal lines in the frequency
estimate plot correspond to the peaks in the PSD's. Figure 3.5(c) shows that the
estimate ω̂e rapidly converges to the frequency associated to the largest peak of
Θ1(ω). During the transition to the exponential decaying pitch angle the frequency
estimate drops to values in the neighborhood of the small side-lobe of the PSD
Θ2(ω) and then converges to the frequency value associated with the largest peak
of Θ2(ω).

Figure 3.6(a) presents the measurement of the heave displacement z(t) recorded
during the regular wave experiments. The power spectral density Z(ω) shown in
Figure 3.6(b) obviously con�rms the position of the peak frequencies already iden-
ti�ed in the PSD of the pitch angle. The estimate of the wave encounter frequency
is not as sharp as seen in relation to the pitch measurement, as shown in Fig-
ure 3.6(c). This reduced precision in estimating the correct value of ωe may be
explained by the presence of side lobs in both PSDs Z1(ω) and Z2(ω). If fact for
both tranches of the heave measurement the estimate ω̂e is pulled towards slightly
higher frequency values clearly addressing the in�uence of the side lobes in the
estimation process. Last, Figure 3.6(d) shows that the switching-gain strategy is
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Figure 3.5: Test I: estimation of wave encounter frequency from exponentially mod-
ulated pitch angle measurements collected during regular wave experiments R�1173
and R�1189. The estimator rapidly converges to and track the peak frequency of
the power spectral density Θ(ω).

very active due to the large variability of the heave amplitude Az.

At last the switching-gain frequency estimator is tested on measurements of
the heave displacement recorded during the irregular waves experiment I �1195, as
shown in Figure 3.7(a). The large signi�cant wave height together with the irregular
pattern of the wave train exciting the vessel determine repeated large and asym-
metric variations of the heave displacement. This behaviour largely di�ers from the
sinusoidal one and challenges the frequency estimator, as shown in Figure 3.7(c).
The estimate ω̂e of the encounter frequency shows larger variations as a result of
the broader frequency range the power spectral density Z(ω) spans over. Moreover
the presence of multiple peaks of almost equal magnitude in the PSDs, as for Z2(ω)
and Z3(ω), increases the di�culty of identifying the main frequency carrier.

Figure 3.7(c) shows that the estimator slightly overestimates the peak frequency
of Z1(ω), which can be explained by the skewness of the PSD towards the higher
frequencies. Between 6 and 12 minutes the estimates varies between 0.5 and 0.7
[rad/s], which can be expected since Z2(ω) shows not clear dominant peak during
this time interval. For the last 5 minutes ω̂e �rst oscillates around 0.6 [rad/s], and
than decreases to around 0.5 [rad/s], which once again nearly matches the location
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Figure 3.6: Test II: estimation of wave encounter frequency from heave displacement
measurements collected during regular wave experiments R�1173 and R�1189. The
encounter frequency estimator converges towards the true value of the two main
peak frequencies of Z(ω), however the presence of side lobs in the power spectral
density in�uences the estimation process pulling ω̂e towards slightly higher values.

Table 3.4: Switching-gain estimator parameter settings for full-scale data.

Quantity Symbol Value Unit

Switching time constant Tf 0.05 s
Filter cut-o� frequency ωf 1 rad/s
Switching amplitude pitch Aθ,0 0.01 rad
Initialization time tinit 100 s
Initialization gain pitch angle kinit 50 -
Filter low gain pitch angle kmin 25 -
Filter high gain pitch angle kmax 100 -

of the two peaks of the power spectral density Z3(ω).

In order to reduce these �uctuations a low-pass �lter is added at the output of
the switching-gain estimator. This smooths the behaviour of the frequency estimate
of the encounter wave, which now stays much closer to the true value at all times,
as shown by the green line in Figure 3.7(c).
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Figure 3.7: Test III: estimation of wave encounter frequency from heave displace-
ment measurements collected during irregular wave experiment I �1195. The en-
counter frequency estimator converges towards the true value of the two main
peak frequencies of Z(ω), however the presence of side lobs in the power spectral
density in�uences the estimation process pulling ω̂e towards slightly higher values.

3.4.2 Atlantic passage full-scale data

The �nal test of the switching-gain frequency estimator is run on a data set of
full-scale ship motions' data recorded on board the container ship Clara Maersk
crossing the North Atlantic Ocean during a storm. The length of the vessel was
197[m] and its displacement volume was 33 000[m]3. Time series used here corre-
spond to the pitch angle recorded during nine hours of navigation. Due to the larger
amplitudes induced by the stormy weather di�erent settings of the gain switching
mechanism have been chosen. The settings for the �lter and the gain switching
mechanism are given in Table 3.4.

Performance assessment on full-scale data

The measurement of the pitch angle aboard the ship is presented in Figure 3.8(a).
The measurements show that the amplitude of the pitch angle is fairly constant over
a long period of time, with the exception of few larger peaks. Figure 3.9 presents
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Figure 3.8: Test IV: estimation of wave encounter frequency from pitch angle mea-
surements collected aboard Clara Maersk during a passage through the North
Atlantic. The wave encounter frequency estimator succeeds in rapidly identifying
the range of frequencies where the dominant spectral components fall into.

the evolution of the pitch power spectral density Θ(ω) over the nine hours, and
the wave encounter frequency identi�ed as the frequency of the largest peak of
each PSD. The power spectral density spans over a very broad range of frequencies
with a multitude of peaks; however, the main spectral components are in the range
0.7�0.8 [rad/s].

The estimate of the encounter frequency based on the pitch measurement is
given in Figure 3.8(b), which shows that ω̂e is also in the range 0.7�0.8 [rad/s].
Comparing the estimate of the encounter frequency with ωe identi�ed through
the analysis of the power spectral density it can be noted that ω̂e converges to
values in close proximity to ωe. Application of a low-pass �lter to the output of
the switching-gain frequency estimator helps in smoothing the obtained frequency
estimate. Figure 3.8(b) also shows the switching gain strategy. Since the amplitude
Aθ of the measured pitch angle is rather constant and su�ciently exciting for rapid
adaptation there are only few gain switches.
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Figure 3.9: Evolution of the pitch power spectral density over 9 hours of navigation
across a storm.

3.5 Conclusions

Knowledge of the parameters characterizing the sea state is of extreme value in
order to carry out marine operations in a safe, reliable and cost e�ective ways.
This chapter has derived a signal-based nonlinear observer for the estimation of
the wave encounter frequency. The kernel of the designed estimator is a second-
order nonlinear observer with a switching-gain mechanism designed to estimate the
frequency of a sinusoid with unknown frequency, amplitude and phase. The origin
of the estimation error dynamics is proven to be global exponentially stable.

The frequency estimator has been extensively tested on model-scale motion data
of a container ship gathered during towing tank experiments in regular and irregu-
lar waves, and on full-scale motion data of a container ship recorded in an Atlantic
passage during a storm. In all scenarios the nonlinear switching-gain frequency es-
timator succeeds in identifying the frequency range where the encounter frequency
falls into. Extremely good results in terms of fast convergence and tracking are
obtained for the model-scale data collected in the regular wave experiments, since
the ship responses in pitch and heave closely resemble pure sinusoidal signals. The
broadening of the spectral content of the heave and pitch responses recorded in the
irregular wave experiment and in the sea trial clearly challenges the capabilities of
the observer to converge to the true value of the wave encounter frequency. Nev-
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ertheless, the frequency estimator achieves its objective, by providing an estimate
within the frequency range where the main spectral components are.
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Chapter 4

Straight-Line Coordinated

Path-Following for Underactuated

Marine Vessels in the Presence of

Ocean Currents

In this chapter the straight line path-following problem is considered for forma-
tions of underactuated marine vessels. The vessels are a�ected by a constant ocean
current that is bounded and irrotational with respect to the inertial frame. This
is a problem of interest in applications such as sea-bed scanning or measuring of
environmental parameters, since in such applications the vehicles have to cover an
area often by performing a lawn-mover pattern with long straight-line sections.
Hence, by using multiple vehicles a large area can be covered at once, reducing
the time and costs of the operation. A Line-of-Sight (LOS) guidance law with two
feedback linearising controllers is used to achieve path following of each individual
vessel. Integral action is added to the LOS guidance law to compensate the e�ects
of the ocean current acting on each vessel. In addition to the individual geometric
task of path convergence, the vessels must also achieve the formation control task.
More speci�cally, the vessels have to move along the desired path with a speci-
�ed relative inter-vessel distance and with a constant desired velocity. This task
is accomplished using a nonlinear coordination law. The closed-loop dynamics are
analysed using theory that allows the analysis of feedback-interconnected systems
as cascaded systems under certain conditions Loría [93]. It is shown that the origin
of the closed-loop error dynamics of the combined path-following dynamics and
formation dynamics is uniformly globally asymptotically stable. Simulation results
are presented in a case study.

To achieve the goal of coordinated path following, the work aims to unify the
results for integral LOS (iLOS) path following for underactuated marine vessels in
the presence of ocean currents from Børhaug et al. [30] and Caharija et al. [40],
with LOS path-following results for formations of underactuated marine vessels
from Børhaug et al. [31]. This is done in order to achieve path-following control of
formations of underactuated marine vessels in a two dimensional plane that also
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takes into account the ocean currents.
Motivated by [30, 40], and [31] we use a cascaded systems approach. It is inter-

esting to note that the combination of the integral LOS guidance control, which
has adaptive properties, together with the formation keeping control, introduces
a feedback-loop in the system that is not present when only one of these features
is present in the system. The approach of cascaded control used in [30, 40], and
[31] can therefore not be directly applied. In particular, the combination of adapta-
tion and formation keeping makes it necessary to "break the loop" [93]. Using this
approach, we prove that the origin of the closed-loop error dynamics is uniformly
globally asymptotically stable.

The chapter is organized as follows. In Section 4.1 the model of an underac-
tuated surface vessel is given and the control objectives are stated. In Section 4.2
the controllers to solve the control problem are presented. Section 4.3 contains the
derivation of the closed-loop system. The main result is formulated and the closed
loop is analysed in Section 4.4. A case study is presented in Section 4.5. Finally
Section 4.6 gives the conclusions of the work. The material presented in this chapter
is based on Belleter and Pettersen [13] and Belleter and Pettersen [15].

4.1 Model

In this chapter underactuated marine surface vessels are considered. Therefore, the
model under consideration is the model from Section 2.2. Recall the model can be
written in component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (4.1a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (4.1b)

ψ̇ = r, (4.1c)

u̇r = Fur (vr, r)− d11
m11

ur + τu, (4.1d)

v̇r = X(ur)r + Y (ur)vr, (4.1e)

ṙ = Fr(ur, vr, r) + τr, (4.1f)

The de�nitions of Fur , X(ur), Y (ur), and Fr are given in Appendix 4.A. Note that
X(ur) and Y (ur) are bounded for bounded arguments and linear in ur. We assume
the following assumptions are satis�ed

Assumption 4.1. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc , [Vx, Vy, 0]T . Furthermore, it is bounded

by Vmax > 0 such that ‖Vc‖ =
√
V 2
x + V 2

y ≤ Vmax.

Assumption 4.2. It is assumed that Y (ur) satis�es

Y (ur) ≤ −Ymin < 0, ∀ur ∈ [−Vmax, Urd + a],

with Urd the constant desired velocity and a a parameter of the formation control
law to be de�ned later.
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4.1. Model

Figure 4.1: Example of a desired formation.

Remark 4.1. This assumption is satis�ed for commercial vessels by design, since
Y (ur) ≥ 0 would imply an undamped or nominally unstable vessel is sway direction.

Assumption 4.3. It is assumed that Vmax + a < Urd < Umax − a where Umax is
the maximum attainable surge velocity of the vessel.

Remark 4.2. Assumption 4.3 requires that the desired speed of the vessel is higher
than the maximum of the ocean current and the constant a which is a parameter of
the formation control law. In general, Assumption 4.3 is easily satis�ed since vessel
propulsion systems are rated for much higher speeds then typical ocean current
magnitudes.

4.1.1 Control Objectives

The goal is to coordinate the motion of n vessels along a straight-line path de�ned
as P , {(x, y) ∈ R2 : y = 0}. An example formation is given in Figure 4.1.
Note that this de�nition implies that, without loss of generality, the x-axis of the
inertial frame is aligned with the path. The desired potion of jth vessel can than be
described by the distance Dj with respect to the path P and the relative along-path
distance dji with respect to vessel i. This leads to a decentralised control strategy
where each vessel determines it's own control input dependent on its own position
measurements and that of its neighbours.

lim
t→∞

yj(t)−Dj = 0, (4.2a)

lim
t→∞

ψj(t) = ψss, ψss ∈
(
−π2 , π2

)
, (4.2b)

lim
t→∞

xj(t)− xi(t)− dji = 0, (4.2c)
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Figure 4.2: Illustration of the integral line-of-sight guidance.

for i, j = 1, . . . , n. Note that according to (4.2b) the desired yaw angle is required
to converge to a constant value in the interval

(
−π2 , π2

)
. This constant side-slip

angle, whose magnitude is dependent on the magnitude of the current, is required
to compensate for the component of the ocean current perpendicular to the path.

4.2 Guidance Law, Communication Topology and

Coordination Law

This section presents the guidance law that is used to steer the vessel to the desired
path, the coordination law that is used to achieve the desired along-path distances,
and the controllers to achieve the desired values prescribed by the guidance law
and coordination law.

4.2.1 Guidance law

The guidance law that is used is an integral line-of-sight guidance law. This guid-
ance law was �rst introduced by Børhaug et al. [30] and assigns the desired heading
angle based on the cross-track error y −Dj , an adaptive part to add the integral
action that is used to compensate for the unknown ocean current σyint, and the
look-ahead distance ∆. Resulting in the desired heading angle assignment:

ψd , − tan−1

(
(y −Dj) + σyint

∆

)
, ∆ > 0, (4.3a)

ẏint =
∆(y −Dj)

((y −Dj) + σyint)2 + ∆2
, (4.3b)
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where σ is the integral gain. An illustration of the guidance law can be seen in
Figure 4.2. As shown in Børhaug et al. [30] the integral action allows the yaw
angle assignment (4.3a) to be non-zero when the vehicle is on the desired path,
which in turn allows the vessel to compensate for the ocean current component
perpendicular to the path. To reduce the risk of integrator wind-up the integrator
update law (4.3b) is de�ned such that adaptation becomes small when the cross-
track error is large. To track the desired yaw angle we apply the following feedback
linearising PD controller to (4.1f):

τr = −Fr(ur, vr, r) + ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d), (4.4)

with kψ > 0 and kr > 0 constant controller gains. This controller assures that ψ

and r exponentially track ψd and ψ̇d respectively.

Remark 4.3. Note that technically implementation of the feedback linearising
controller (4.4) used here and in the works of Caharija et al. is not possible with
just measurements of the relative velocities, since ψ̇d contains unknown signals.
More speci�cally, from (4.3a) it can be seen that ψ̇d contains ẏ, and from (2.8b) it
can be seen that ẏ depends on the unknown ocean current component Vy. This can
be solved in various ways. The easiest solution is to use measurements of ẏ from
the GPS for ships and through a DVL with bottom lock for an AUV. Alternatively,
an ocean current observer can also be used which is the approach taken in Chapter
7 and Chapter 8 of this thesis. Moreover, it should be noted that for practical
applications this problem usually does not arise, since typically existing ASVs and
AUVs do not allow force or torque inputs to the control system, but rather have
autopilots that only allow the heading angle as input. The control input is thus
given by the guidance angle in (4.3a).

4.2.2 Communication topology and coordination law

The control objective (4.2c) is de�ned in terms of the along-path position of mul-
tiple vessels. Hence, the vessels need to communicate their along-path position.
Graph theory (see for instance Mesbahi and Egerstedt [98]) is used to describe the
communication.

The communication network is represented by a directed graph or digraph
G(V,E), where V is a set of vertices and E a set of edges. The vertices repre-
sent the vessels in the formation and the number of vertices is equal to the number
of vessels. The edges represent communication channels and are represented by
pairs of vertices. More speci�cally, if there is information transfer from vertex vi
to vj then the pair (vj , vi) ∈ E.

The neighbourhood Aj of vj is the set of vertices vi ∈ V such that there is an
edge from vj to vi. Hence, when controlling vessel j only the along-path position
xi of the vessels where i ∈ Aj may be used. The above allows us to give some
de�nitions, based on Godcil and Royle [68], that are used in the analysis of the
formation dynamics. A vertex vk ∈ V reachable from vertex vi ∈ V if there is a path
from vi to vk. A vertex is globally reachable if it can be reached, either directly or
indirectly, from every vertex in G(V,E). The graph is said to be strongly connected,
if all vertices of G(V,E) are globally reachable.
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Assumption 4.4. It is assumed the communication graph has at least one globally
reachable vertex.

Coordination is achieved by a coordination law at the velocity level using the
desired surge speed assignment

ucj = Urd − g
( ∑
i∈Aj

(xj − xi − dji)
)
, (4.5)

consisting of the desired constant relative surge velocity Urd and g(x) : R → R
should be a continuously di�erentiable saturation-like function that satis�es

−a ≤ g(x) ≤ a, ∀x ∈ R, g(0) = 0,

0 < g′(x) ≤ µ,∀x ∈ R, g′(x) , dg/dx
(4.6)

where a is the parameter from Assumptions 4.2 and 4.3, and µ > 0 is an arbitrary
constant. This also implies that the function g(x) should be a sector function
belonging to the sector [0, µ]. A suitable choice for g(x) is for example

g (x) ,
2a

π
tan−1 (x) . (4.7)

To make urj (t) track ucj the following feedback linearising P controller is ap-
plied to (4.1d) (omitting the vessel-speci�c subscript):

τu = −Fur (vr, r) +
d11

m11
uc + u̇c − kur (ur − uc), (4.8)

with kur > 0 a constant controller gain.

4.3 The Closed-Loop System

This section presents the closed-loop systems of the model (4.1) with the yaw rate
(4.4) and surge velocity (4.8) controllers. First we consider the actuated dynamics
for each vehicle and analyse the control errors ξ , [ũr, ψ̃, r̃]

T , where ũr , ur − uc
is the surge velocity error, ψ̃ , ψ−ψd is the yaw angle error, and r̃ , r− rd is the
yaw rate error. The derivative of ξ can be found by applying (4.4) and (4.8) to the
dynamical system (4.1), resulting in

ξ =

−kur − d11
m11

0 0

0 0 1
0 −kψ −kr

 , Σξ. (4.9)

The system (4.9) is linear and time-invariant and kur , kψ, kr, and d11/m11 are
strictly positive. Consequently, Σ is Hurwitz and the origin of (4.9) is uniformly
globally exponentially stable.

The underactuated part is considered next and we consider the cross-track error
kinematics (4.1b), the sway velocity dynamics (4.1e), and the guidance (4.3). To
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simplify notation we de�ne yj , y − Dj The dynamics of the yj-vr subsystem is
given by:

ẏint =
∆yj

(yj + σyint)2 + ∆2
(4.10)

ẏj = (ũr + uc) sin(ψ̃ + ψd) + vr cos(ψ̃ + ψd) + Vy (4.11)

v̇r = X(ũr + uc)(
˙̃
ψ + ψ̇d) + Y (ũr + uc)vr. (4.12)

The equilibrium of the yj − vr systems for uc = Urd satis�es:

yeq
int =

∆

σ

Vy√
U2
rd − V 2

y

, yeq
j = 0, veq

r = 0. (4.13)

The equilibrium is moved to the origin by de�ning e1 , yint − yeq
int and e2 ,

yj + σe1. Substituting (4.3a) for ψd and factorizing the result w.r.t. ξ leads to the
interconnected dynamics

[ė1, ė2, v̇r]
T = A[e1, e2, vr]

T +Bf(e2) +Cg(x)−Hξ (4.14a)

ξ̇ = Σξ. (4.14b)

with A as in (4.50) and B, C, and H de�ned as:

B(e2) ,
[
0 Vy − ∆XucVy

(e2+σyeqint)
2+∆2

]T
(4.15)

C(e2) ,

[
0

σyeqint
(e2+σyeqint)

2+∆2

∆Xucσyeqint

((e2+σyeqint)
2+∆2)

3/2

]T
(4.16)

H(y, yint, ψd, vr, ξ) ,

 0 0
1 0

− ∆X(ũr+uc)
(e2+σyeqint)

2+∆2 1

[hTy
hTvr

]
(4.17)

with hTy and hTvr de�ned in Appendix 4.A and

f(e2) = 1−
√

(σyeq
int)

2 + ∆2√
(e2 + σyeq

int)
2 + ∆2

. (4.18)

Note that f(e2) satis�es the following bound:

|f(e2)| ≤ |e2|√
(e2 + σyeq

int)
2 + ∆2

(4.19)

and that H(·)ξ contains the terms vanishing at ξ = 0. The above describes the
path-following error dynamics for each vehicle, which is decoupled from every other
vehicle. We now turn our attention to our attention to the interconnected dynamics.

Coordination takes place along the direction of the path, i.e. the x-axis. There-
fore, we analyse the along-path kinematics to analyse the coordination error. The
along-path kinematics are given by

ẋ = ur cos(ψ)− vr sin(ψ) + Vx. (4.20)
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4. Coordinated Path-Following for Underactuated Marine Vessels

Using the expressions ur = ũr + uc, ψ = ψ̃ + ψd, and uc = Urd − g(x), with
g(x) de�ned as in (4.6), (4.20) can be rewritten as

ẋ = Urd cos(ψ)− g(x) cos(ψd) + Vx + hT (ζ, x)ζ, (4.21)

where ζ , [e1, e2, vr, ξ
T ]T and hT (ζ, x)ζ contains the terms vanishing at ζ = 0.

Furthermore, we can split ψd = ψss+ψt where ψss is the steady-state path-following
angle (see Figure 4.1) and ψt a transient part that disappears when e2 = 0 resulting
in

ẋ = Urd cos(ψ)− g(x) cos(ψss) + Vx + hTx (ζ, x)ζ. (4.22)

Consequently, hTx (ζ, x) , [hx,1, . . . , hx,6]T is given by

hx,1 = hx,6 = 0; hx,3 = sin(ψ̃ + ψd)

hx,2 = g(x)

[
sin(ψt)

e2
sin(ψss)−

cos(ψt)− 1

e2
cos(ψss)

]
hx,4 = cos(ψ̃ + ψd)

hx,5 = g(x)

[
sin(ψ̃)

ψ̃
sin(ψd)−

cos(ψ̃)− 1

ψ̃
cos(ψd)

] (4.23)

where hx,5 is related to ψt and disappears when e2 = 0. Note that hTx (ζ, x) has
less then linear growth in x. More speci�cally the growth of hTx (ζ, x) is bounded
by the constant a.

From the geometry of the problem (see Figure 4.2) it can be veri�ed that the
following holds

Urd cos(ψ) = ux(t)− Vx (4.24)

where ux(t) is the along-path component of the velocity, which allows us expresses
the relative velocity term in an equivalent inertial frame term. We now substitute
(4.24) in (4.22) to obtain

ẋ = ux(t)− g(x) cos(ψss) + hTx (ζ, x)ζ. (4.25)

More speci�cally, for the formation we can write (4.25) as

ẋj = ux(t)− g
( ∑
i∈Aj

(xj−xi − dji)
)

cos(ψssj ) + hTxjζj (4.26)

with j = 1, . . . , n. Based on the preceding substitution we now perform a change of
coordinates, as is done in Børhaug et al. [31], by de�ning θj , xj−dj−

∫ t
t0
ux(s)ds

for j = 1, . . . , n where dj is such that dj − di = dji, for j, i = 1, . . . , n. This results
in

θ̇j = −g
( ∑
i∈Aj

(θj − θi)
)

cos(ψssj ) + hTxj (ζj , θ)ζj , (4.27)

for j = 1, . . . , n. It can be veri�ed that θj − θi = 0 ∀ i, j = 1, . . . , n implies that the
control goal (4.2c) is achieved.
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We now write the system in vector form by de�ning the aggregate state θ ,
[θ1, . . . , θn]T , the aggregate function g(x) , [g(x1), . . . , g(xn)]T , and the aggre-
gate matrices Λ , [diag{cos(ψss1), . . . , cos(ψssn)}], ζ , [ζT1 , . . . , ζ

T
n ]T , and Hx ,

[hx1
, . . . ,hxn ]T . Such that (4.27) can be written as

θ̇ = −Λg(Lθ) +Hx(ζ,θ)ζ (4.28)

where the L is the Laplacian matrix of the graph G with elements:

lji ,


δj if j = i

−1, if j 6= i ∧ (j, i) ∈ E, j, i = 1, . . . , n

0, otherwise

(4.29)

with δj the number of outgoing edges from vj . By de�nition the Laplacian has
one or more eigenvalues at zero with the vector of all ones as eigenvector. If the
graph is stronlgy connected -i.e. it has n globally reachable vertices- then the zero
eigenvalue is simple and L is symmetric and positive semi-de�nite (see [68, 98]).

Remark 4.4. The graph Laplacian is a well known tool from the literature of
graph theory and is used to express the structure of the communication network
mathematically. For more information see for instance Mesbahi and Egerstedt [98].

Remark 4.5. Although the system equation has di�erences, the structure (4.28)
is equivalent to the system considered in Børhaug et al. [31] except for the mul-
tiplication with the matrix Λ, which is a diagonal positive de�nite matrix. In the
following we will adapt some of the tools used in Børhaug et al. [31] to show sta-
bility of the coordination error dynamics to account for the addition of the matrix
Λ.

As stated in Børhaug et al. [31], the consensus properties of the along-path
dynamics cannot be determined by simply analysing its stability properties, since
any state of consensus is an equilibrium point of (4.28). Therefore, a coordinate
transform is proposed in Børhaug et al. [31, Lemma 2] which can also be derived
for system equation (4.28).

Lemma 4.1 (Børhaug et al. [31, Lemma 2]). Consider system (4.28).Provided
Assumption 4.4 is satis�ed, there exists a coordinate transformation φ , Tθ, T ∈
R(n−1)×n, such that the following holds:

1. φ = 0 implies that θ1 = . . . = θn;

2. the dynamics of φ are of the form

φ̇ = f(φ) +G(ζ,φ)ζ (4.30)

with G(ζ,φ) globally bounded, uniformly in ζ and φ;

3. φ̇ = f(φ) is UGAS with positive de�nite and radially unbounded Lyapunov
function V = V (φ) satisfying

∂V

∂φ
(φ)f(φ) ≤ −W (φ) < 0, ∀φ ∈ Rn−1 \ {0} (4.31)∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ≤ C1, ∀φ ∈ Rn−1. (4.32)
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The proof of Lemma 4.1 is given in Appendix 4.B.
We are now ready to formulate the full closed system as:

φ̇ = f(φ) +G(ζ,φ)ζ (4.33a)

[ė1, ė2, v̇r]
T = A[e1, e2, vr]

T +Bf(e2) +Cg(x)−Hξ (4.33b)

ξ̇ = Σξ. (4.33c)

where (4.33a) describes the synchronization dynamics, (4.33b) is the path-following
error dynamics, and (4.33c) are the controller error dynamics. In the next section
we formulate the main theorem and show stability of the closed-loop dynamics
(4.33).

Remark 4.6. Note that by a slight abuse of notation (4.33b) contains g(x) instead
of g(φ) and that the cross-track error system is in a non-aggregate form. This
is done to make the analysis more clear, since path following is considered for
individual vessels, while the along-path dynamics (4.33a) considers multiple vessels.

Remark 4.7. Note that (4.33b) contains a term depending on g(x), hence (4.33)
is a feedback-interconnected system and not a cascaded system. Consequently, we
cannot use classical cascaded systems theory to prove stability of the path following
problem as is done in Caharija et al. [40] and for the formation path following
problem in the absence of ocean currents as in Børhaug et al. [31]. Note that
the term Cg(x) is a result of the combination of integral action/adaptation and
formation control. Having only one of these features, as in Caharija et al. [40] and
Børhaug et al. [31], this term would be zero. Therefore the feedback-interconnection
structure is a result of the combination of integral e�ect/adaptation together with
the formation keeping scheme.

4.4 Main Result

Using the following notation to denote the maximum and minimum of X(uc) and
Y (uc) respectfully

Xmax
j , max

ucj∈[Urd−a,Urd+a]
|Xj(ucj )| (4.34)

Y min
j , min

ucj∈[Urd−a,Urd+a]
|Yj(ucj )| (4.35)

we formulate the main result as

Theorem 4.2. Consider n vessels described by the dynamical system (4.1). If
Assumptions 4.1-4.3 hold, and if the communication digraph G(V,E) has at least
one globally reachable vertex, and the look-ahead distance ∆ and the integral gain
σ satisfy the conditions

∆ >
|Xmax

j |
|Y min
j |

[
5

4

Urd + Vmax + a+ σ

Urd − Vmax − a− σ
+ 1

]
, (4.36)

0 < σ < Urd − Vmax − a, (4.37)
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for j = 1, . . . , n, then the controllers (4.4) and (4.8) guarantee achievement of the
control objectives (4.2a)-(4.2c).

To proof Theorem 4.2 we study stability of the origin of closed-loop error dy-
namics (4.33). The system (4.33) has a cascaded structure however there is a feed-
back from the synchronisation error kinematics to the path-following error dynam-
ics because of the in�uence of the synchronisation error kinematics on the surge
velocity. This feedback perturbs the path-following error dynamics and changes
the equilibrium of the integral line-of-sight guidance. The resulting structure is
analysed in Loría [93], where it is shown that a system of the form:

ẋ1 = f1(t, x1) + g(t, x1, x2) (4.38a)

ẋ2 = f2(t, x1, x2) (4.38b)

can be analysed as a cascaded system of the form

ξ̇1 = f1(t, ξ1) + g(t, ξ1, ξ2)ξ2 (4.39a)

ξ̇2 = f2(t, x1(t), ξ2) = f̃2(t, ξ2) (4.39b)

where f2(t, x1(t), ξ2) depends on the parameter x1, with x1(t) denoting solutions
of (4.38a), under the conditions that

1. x1 = 0 is a UGAS equilibrium for ẋ1 = f1(t, x1).

2. The solutions of (4.38) are uniformly globally bounded.

In Loría [93] it is shown that if these conditions are satis�ed in the manner presented
in the remainder of this section, then the solutions of the system (4.39) will coincide
with that of (4.38) for an appropriate choice of initial conditions.

Condition 1) translates to the closed-loop system (4.33) satisfying the following
condition:

Condition 4.1 (1). φ = 0 is a UGAS equilibrium for φ̇ = f(φ).

Condition 4.1 is veri�ed by claim 3) from Lemma 4.1, which establishes stability
of the nominal coordination dynamics.

Verifying condition 2) requires satisfying the following three subconditions 2a),
2b), and 2c).

Condition 4.2 (2a). There exists a C1 positive de�nite radially unbounded function
Ṽ : R × Rn1 → R≥0, α1 ∈ K∞ and continuous non-decreasing functions α4, α

′
4 :

R≥0 × R→ R≥0 such that

Ṽ (t, x1) ≥ α1(|x1|) (4.40)

and that,

˙̃V(4.33a)(t, x1) ≤ α4(|x1|)α′4(|x2|); (4.41)∫ ∞
a

dṽ

α4(α−1
1 (ṽ))

=∞ (4.42)
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This condition is used to verify that (4.33a) has no �nite escape times uniform
in ζ. We de�ne α1(‖x1‖) as the lower bound of the radially unbounded Lyapunov
function from Appendix 4.B. More speci�cally, α1(‖φ‖) , ln(V + 1), where V is
given in (4.56). Now using Lemma 4.1 and its proof in Appendix 4.B we have

˙̃V(4.33a)(t, x1) ≤ −W (φ) +

∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ‖G(ζ,φ)‖‖ζ‖

≤
[

δ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

≤
[

δ‖φ2‖
δ
2‖φ2‖+ 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

(4.43)

where the existence of the constant C2 > 0 above is a consequence of G(ζ,φ) being
bounded in its arguments. Moreover, it should be noted from the de�nition of g(·)
in (4.6) that g(·) is upper bounded by a constant a and that the growth of g(·) in
its argument is upper-bounded by µ and lower-bounded by zero. This implies that
g(·) has its maximal growth around the origin, outside the origin it keeps growing
at a smaller rate as it approaches the upper-bound. Therefore, any function g(‖φ‖)
can be bounded by a function of the form β‖φ‖/(‖φ‖ + γ) for which there exists
constants β > 0 su�ciently larger than a and γ > 0 su�ciently small to dominate
the growth of g(·). Consequently, we can bound (4.43) as

˙̃V(4.33a)(t, x1) ≤
[

δ‖φ2‖
δ
2‖φ2‖+ 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

≤ ε‖φ‖
‖φ‖+ κ

C2‖ζ‖
(4.44)

where ε > 0 is su�ciently large and κ > 0 is su�ciently small. From the above we
can satisfy (4.41) by choosing α4(‖φ‖) , ‖φ‖/(‖φ‖ + κ) and α′4(‖ζ‖) , εC2‖ζ‖.
Computation of the inverse of α1(‖φ‖) is not an easy tasks and results in a com-
plicated function. However, to verify (4.42) we do not need to calculate α−1

1 (‖φ‖)
if we note that α1(‖φ‖) is a function in class K∞ and from Khalil [82, Lemma 4.2]
(see Lemma A.1), we know that it holds that α−1

1 (‖φ‖) is de�ned on [0,∞) and
belongs to class K∞. With the de�nition for α4(‖φ‖) above, for (4.42) we have∫ ∞

a

dṽ

α4(α−1
1 (ṽ))

=

∫ ∞
a

α−1
1 (ṽ) + κ

α−1
1 (ṽ)

dṽ

=

∫ ∞
a

1 dṽ +

∫ ∞
a

κ

α−1
1 (ṽ)

dṽ =∞
(4.45)

since the integral from a to ∞ of 1 is in�nity and the integral of κ/α−1
1 (ṽ) ≥ 0

because α−1
1 (ṽ) ∈ K∞, and consequently (4.42) is satis�ed. Therefore, Condition

4.2 is satis�ed.

Remark 4.8. The fact that (4.33a) has no �nite escape times uniform in ζ can also
be veri�ed by the following observations on the growth rate of φ. It can be seen from
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(4.54a) that the nominal dynamics f(φ) have a growth rate dependent on g(Lφ),
which has at most linear growth and is bounded by constants according to the
de�nitions in (4.6). From (4.23) we can see that same holds for the perturbing term
G(ζ,φ)ζ. Consequently, the growth rate of (4.33a) is less then linear everywhere,
which implies no �nite escape times uniform in ζ.

Condition 4.3 (2b). We dispose of a C1 function V : R × Rn1 → R≥0, α1, α2 ∈
K∞, and a positive semide�nite function W such that

α1(‖x1‖) ≤ V (t, x1) ≤ α2(‖x1‖) (4.46)

∂V

∂t
+
∂V

∂x1
f1(t, x1) ≤ −W (x1) (4.47)

for all t ∈ [to, tmax) and all x1 ∈ Rn1 .

This condition is veri�ed by Lemma 4.1. In particular, in Lemma 4.1 it is shown
that this condition is satis�ed for tmax =∞.

Condition 4.4 (2c). There exists β ∈ KL such that the solutions x2(t, to, x2o, x1)
of ẋ2 = f̃2(t, x2) satisfy

‖x2(t, to, x2o, x1)‖ ≤ β(‖x2o‖, t− to) ∀t ∈ [to, tmax). (4.48)

It should be noted that ‖x2(t, to, x2o, x1)‖ represents the solutions of (4.38b)
for �xed values of the parameter x1 with initial conditions (to, x2o), i.e. solutions
of the path-following error dynamics (4.33b)-(4.33c) for �xed values of the coor-
dination error φ and hence �xed values of the velocity. Consequently, Condition
4.4 implies that the solutions of x2, i.e. subsystem (4.33b)-(4.33c), are required to
asymptotically decreasing to zero for all possible values of the parameter x1. For
(4.33) it su�ces to show that (4.33b)-(4.33c) is UGAS for all velocities constant
velocities uc ∈ [Urd−a, Urd+a]. Hence, for all possible states of the synchronisation
error (4.33a) the adaptation function g(·) that appears in the (4.33b)-(4.33c) takes
values in the range [−a, a].

Consequently, a proof that the error dynamics of the integral line-of-sight path-
following strategy is UGAS is su�cient to proof Condition 4.4. This proof is avail-
able from the work in Caharija et al. [40] and Caharija [39], where it is shown that
the origin of the error dynamics of the integral line-of-sight path following is in fact
UGAS and ULES. In fact, if we choose ∆ and σ as in Theorem 4.2, then the condi-
tions of the proof in Caharija et al. [40] are satis�ed for all uc ∈ [Urd − a, Urd + a].
Therefore, we can show that there is a stable equilibrium on the path for each value
of the coordination function.

Condition 2) is now veri�ed with the following theorem:

Theorem 4.3. The solutions of (4.33) are uniformly globally bounded.

Proof. The proof of this theorem follows from Loría [93, Theorem 2], which is given
as Theorem 4.5 in Appendix 4.C. In the case presented here, it is straightforward
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to verify that item 2) of Theorem 4.5 holds. In particular, in this case

‖[LgV ]‖ =

∥∥∥∥∂V (x1)

∂x1
g(t, x1, x2)

∥∥∥∥ (4.49a)

≤
∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ‖G(ζ,φ)‖‖ζ‖ (4.49b)

≤
[

δ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖ (4.49c)

≤ ε‖φ‖
‖φ‖+ κ

C2‖ζ‖ ≤ C1C2‖ζ‖ (4.49d)

where C1 is the constant from (4.32) and note that we have used the results from the
veri�cation of Condition 4.2. From (4.49d) it can be seen that to bound ‖[LgV ]‖, we
can choose α5(‖φ‖) ∈ K as a function of the form ‖φ‖/(‖φ‖+κ) for an appropriate
choice of κ > 0. Having chosen a suitable family of functions for α5(‖φ‖), we then
note that forward completeness of (4.33a) is implied by the ful�lment of Condition
4.2 and Condition 4.3 [93]. Therefore, the solutions of the cascade (4.33) exist
for all time. Moreover, we know that according to Condition 4.4, ‖ζ‖ decreases
for all values of φ since there is always an equilibrium on the path. Therefore,
after a certain time, W (φ) dominates ‖[LgV ]‖ ≤ C1C2‖ζ‖. More speci�cally, there

exists a certain time after which it holds that α′5(‖ζ‖) , εC2‖ζ‖ ≤ λr, such that
α5(‖φ‖) ≤ λrW (φ). Consequently, item 2) of Theorem 4.5 is satis�ed. Moreover,
since it is shown that Condition 4.2, 4.3, and 4.4 hold, Theorem 4.5 holds and
consequently Theorem 4.3 holds.

Theorem 4.4. The origin of (4.33) is UGAS if Condition 4.1 and the conditions
of Theorem 4.3 hold.

Proof. It is shown that both Condition 4.1 and Theorem 4.3 hold and hence we
can invoke Loría [93, Proposition 2], given as Proposition 4.1 in Appendix 4.C, for
system (4.33).

This implies that the control goals (4.2) are achieved and thus the proof of
Theorem 4.2 is complete.

4.5 Case Study

In this case study we consider three vessels described by the ship model from
Fredriksen and Pettersen [63], which are given in Section C.1. The three vessels
each have to follow their speci�ed path Pi, whilst being a�ected by a current
with an intensity |Vc| =

√
2 [m/s]. The components of the current are chosen

as Vx = −1.1028 [m/s] and Vy = 0.8854 [m/s]. The integral gain for the ILOS
guidance law is chosen as σ = 1.5 [m/s] and the look-ahead distance is chosen to
be ∆ = 200 [m], which satis�es conditions (4.36-4.37) for the given vessels. The
gains for the feedback linearising controllers are chosen as kur = 0.1, kψ = 0.04,
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and kr = 0.9, following the tuning of the path-following controller in Caharija
et al. [40]. All initial velocities are set to zero and the initial positions and angles
(in degrees) are chosen asx1o

y1o

ψ1o

 =

 0
−1000

180

,
x2o

y2o

ψ2o

 =

 0
500
90

,
x3o

y3o

ψ3o

 =

 0
−500
−90

.
The desired relative surge velocity is chosen to be Urd = 5 [m/s] and the

velocity adaptation parameter as a = 0.5 [m/s] to have su�cient freedom to adapt
the velocity. Ship 1 can communicate its position to ship 2 and 3, while only ship
3 can communicate its position to ship 1. The path-following distances for the
formation are d12 = 200 [m], d13 = 100 [m], D2 = −200 [m], and D3 = 200 [m].
In Figure 4.3 it can be seen that the ships converge to their speci�ed paths and
attain the desired formation. We also see how the ships side-slip in order to keep
the desired path despite the ocean current acting in the transverse direction of
the path. This is con�rmed by the plot of the cross-track error y − Dj for each
vessel given in Figure 4.4, which show that the path-following errors converge to
zero. Furthermore, the side-slipping behaviour can be seen from the heading angle
assignments given in Figure 4.5, which shows that the heading angle for the vessels
is nonzero when it has converged to the paths in order to compensate for the ocean
current. In Figure 4.6 the relative surge velocity over time can be seen. We can see
that at �rst ship 1 is at maximal speed while ship 2 and 3 wait until they are at
the desired distance by slowing down. After about 340 [s] ship 2 is at the desired
position w.r.t. ship 1 and matches its velocity to ship 1. After about 540 [s] the
desired formation is achieved and the velocities all converge to the desired surge
velocity. The along-path formation errors can be seen in Figure 4.7, from which it
can be observed that the formation errors converge to zero.

Remark 4.9. Collision avoidance is not taken into consideration during this case
study, which is intended to illustrate the combined path-following and formation
control strategy.

4.6 Conclusions

In this chapter, the problem of path following for formations of underactuated
surface vessels under the in�uence of constant ocean currents was considered. It was
shown that n underactuated surface vessels can be controlled to follow a straight-
line path whilst attaining and maintaining a desired formation. This has been
achieved by making each vehicle converge to a desired path individually using
a ILOS-based cross-track controller, combined with a formation keeping control
scheme controlling the along-path position of the vessels using only locally available
information. The closed-loop system of the path following and formation control
strategy were analysed using theory for nonlinear cascaded systems. This was done
by showing that the system, which is feedback interconnected, can be analysed as
a cascaded system under certain conditions. Simulation results are presented to
validate the theory.
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Figure 4.3: The paths of the vessels attaining formation. The small boats give the
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4.A Function De�nitions

The functions Fur , X(ur), Y (ur), and Fr are given by:

Fur (vr, r) ,
1

m11
(m22vr +m23r)r,

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

,

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

,
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Figure 4.6: The relative surge velocities
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Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

Functions hy , [hy1 , hy2 , hy3 ]T and hvr , [hvr1 , hvr2 , hvr3 ]T are given by:

hy,1 = sin(ψ̃ + ψd), hy,3 = 0,

hy,2 = uc

[
sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃)− 1

ψ̃
sin(ψd)

]

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

hvr,1 =
X(ũr + uc)−Xuc

ũr
γ(yint, y, vr) + vr

Y (ũr + uc)− Y uc
ũr

,

hvr,2 = 0, hvr,3 = X(ũr − uc),

with γ(yint, y, vr) de�ned as:

γ(yint, y, vr) ,
∆(uc(y + σyeq

int)−∆vr)

((e2 + σyeq
int)

2 + ∆2)3/2
− ∆Vy

(e2 + σyeq
int)

2 + ∆2

− σ∆

((e2 + σyeq
int)

2 + ∆2)2
(y −Dj).
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4.B Proof of Lemma 4.1

The proof for Lemma 4.1 follows along the lines of the proof given in Børhaug et al.
[31]. However, we now have to account for the matrix Λ in the dynamics (in addition
to the interconnection termHxζ being di�erent). According to Assumption 4.3 the
communication graph G has at least one globally reachable vertex. Therefore in this
proof we assume that G has 1 ≤ r < n globally reachable vertices. This allows us,
without loss of generality, to partition L as

L =

[
L1 L2

0 L3

]
(4.51)

where L1 ∈ R(n−r)×(n−r) is anti-Hurwitz, i.e., −L1 is Hurwitz, and satis�es

PL1 +LT1 P = Q, Q = QT > 0 (4.52)

for some positive de�nite diagonal matrix P [91]. The sub-graph corresponding to
L3 ∈ Rr×r, i.e. G(L3), is strongly connected. Hence L3 is positive semi-de�nite,
with zero as a simple eigenvalue and a corresponding eigenvector 1r = [1, ..., 1]T ∈
Rr. Consequently, L3 can be decomposed into L3 = M3M

T
3 , whereM3 ∈ Rr×(r−1)

has full column rank. A coordinate transform is then given by

φ ,

[
L1 L2

0 MT
3

]
θ , Tθ. (4.53)

We can now verify the claims of Lemma 4.1.
Claim 1):

φ = 0 ⇒
[
I 0
0 M3

]
φ = Lθ = 0 ⇒ θ = α1n, α ∈ R.

Consequently, φ = 0 implies that θj = θi, j, i = 1, ..., n.
Claim 2): Di�erentiating (4.53) w.r.t time we obtain

φ̇ =

[
−L1Λ1g1(φ1)−L2Λ2g2(κ)

−MT
3 Λ2g2(κ)

]
+ THx(ζ,θ)ζ (4.54a)

, f(φ) +G(ζ,φ)ζ (4.54b)

where φ = [φT1 ,φ
T
2 ]T , with φ1 ∈ Rn−r and φ2 ∈ Rr, and we de�ned κ , M3φ2

to simplify notation. Moreover, using (4.23) it is straightforward to verify that
G(ζ,φ) , THx(ζ,θ) is globally bounded in its arguments.

Claim 3): Consider the stability properties of the nominal system[
φ̇1

φ̇2

]
=

[
−L1Λ1g1(φ1)−L2Λ2g2(κ)

−MT
3 Λ2g2(κ)

]
= f(φ). (4.55)

Remark 4.10. Note that considering the stability properties of the origin of the
nominal dynamics means that we consider the stability properties of (4.54a) when
the perturbing dynamics has converged. This implies that the cross-track error has
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converged, and consequently, the desired yaw angle ψd is bounded well away from
π/2 and −π/2. Hence the elements of diagonal matrices Λ1 and Λ2 are bounded
away from zero and will have clearly de�ned minimum eigenvalues of λm1 and λm2

respectively.

To show that the origin of (4.55) is UGAS we use the Lyapunov function can-
didate

V ,
δ

2
‖φ2‖2 +

∫ φ1

0

PΛ1g1(y) · dy (4.56)

where P is the positive de�nite diagonal solution of (4.52) and δ > 0 to be chosen
at a later stage. The sector property of g and the fact that P is a positive de�nite
diagonal matrix assure that V is a positive de�nite function of φ1 and φ2. It
is straightforward to verify that V is also radially unbounded. Taking the time-
derivative of V along the solutions of (4.55) gives

V̇ =− 1
2g

T
1 (φ1)

[
Λ1PL1Λ1 + Λ1L

T
1 PΛ1

]
g1(φ1)

− δκTΛ2g2(κ)− gT1 (φ1)Λ1PL2Λ2g2(κ)
(4.57)

If we substitute for Q in (4.57) and take the norm we obtain

V̇ ≤ c‖g1(φ1)‖ · ‖g2(κ)‖ − δκTΛ2g2(κ)− qm
2
‖g1(φ1)‖2

with qm > 0 the minimum eigenvalue of Λ1QΛ1 and c ≥ ‖Λ1PL2Λ2‖ > 0. Since
g belongs to the sector [0, µ], with µ > 0, it can be veri�ed that x/g(x) ≥ 1/µ,
∀x ∈ R, and we can bound V̇ by

V̇ ≤ c‖g1(φ1)‖ · ‖g2(κ)‖ − δλm2

µ
‖g2(κ)‖2 − qm

2
‖g1(φ1)‖2

Choosing δ ≥ µ([c/
√

2qm]2 + α)/λm2
, where α > 0, gives

V̇ ≤ −
(

c√
2qm
‖g2(κ)‖ −

√
qm
2
‖g1(φ1)‖

)2

− α‖g2(κ)‖2

, −W (g1(φ1), g2(κ)).

(4.58)

The function W is a positive de�nite function of g1(φ1) and g2(κ) = g2(M3φ2).
Noting that g(x) = 0 if and only if x = 0 and that matrix M3 has full column
rank we can conclude that W = 0 if and only if φ1 = 0 and φ2 = 0. Hence, W is
a positive de�nite function of φ1 and φ2. Consequently the origin of the nominal
system (4.55) is GAS and since (4.55) is time-invariant, the origin is UGAS. This
result is equivalent to that in Børhaug et al. [31].

Although the Lyapunov function (4.56) has made it possible to prove UGAS
for the origin of (4.55), and it satis�es (4.31), it does not satisfy (4.32). However,
as shown in Børhaug et al. [31] the function Ṽ , ln(V + 1) satis�es both (4.31)
and (4.32), since

˙̃V ≤ − 1

V (φ) + 1
W (g1(φ1), g2(M3φ2)) (4.59a)

, −W̃ (φ) < 0, (4.59b)
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satis�es (4.31) and∥∥∥∥∥∂Ṽ∂φ
∥∥∥∥∥ ≤ 1

V + 1

(
δ‖φ2‖+ ‖g1(φ1)‖ ‖Λ1‖ ‖P ‖

)
(4.60a)

≤ δ ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖ (4.60b)

≤ C1, C1 > 0, (4.60c)

satis�es (4.32), where we used that ‖g1(φ)‖ is globally bounded.

4.C Reference Theorems

This appendix presents Theorem 2 and Proposition 2 from [93] which are used in
the stability proof of the closed-loop system in Section 4.3.

Theorem 4.5 ([93, Theorem 2]). Consider system (4.38) under the following
conditions:

1. Condition 4.2, 4.3, and 4.4 hold;

2. there exist α5, α
′
5 ∈ K such that

‖[LgV ]‖ ≤ α5(‖x1‖)α′5(‖x2‖) (4.61)

and for each r > 0 there exist λr, ηr > 0 such that

t ≥ 0, ‖x1‖ ≥ ηr =⇒ α5(‖x1‖) ≤ λrW (x1) (4.62)

Then, the solutions of (4.38) are uniformly globally bounded.

Proposition 4.1 ([93, Proposition 2]). Under Condition 4.1 and the conditions
of Theorem 4.3 the origin of (4.38) is UGAS.
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Chapter 5

Straight-Line Coordinated

Path-Following for Underactuated

Underwater Vehicles in the Presence

of Ocean Currents

In this chapter coordinated path following for formations of under-actuated agents
in three dimensional space is considered. The agents are controlled to follow a
straight-line path whilst being a�ected by an unknown environmental disturbance.
The problem is solved using a twofold approach. In particular, the agents are con-
trolled to the desired path using a guidance law that rejects an unknown, but
constant, disturbance. Simultaneously, each agent utilises a decentralised nonlin-
ear coordination law to achieve the desired formation. The closed-loop system of
path-following and coordination dynamics is analysed using theory for feedback-
interconnected systems. In particular, a technique from Loría [93] is used that
allows us to analyse a feedback-interconnected systems as a cascaded system. The
origin of the closed-loop error dynamics is shown to be globally asymptotically
stable.

Each vehicle is guided to a desired straight-line path using integral LOS guid-
ance [43]. The path-following error dynamics can then be placed in cascade with
the coordination error dynamics that are used to achieve along-path coordination.
However, the combination of the adaptive properties of the integral LOS guidance
together with the coordination controller creates a feedback in the cascade formed
by the full closed-loop dynamics. Therefore classical cascaded systems theory can-
not be applied and it is necessary to `break the loop' [93]. Using this technique we
prove that the origin of the full closed-loop error dynamics is uniformly globally
asymptotically stable.

The chapter is organised as follows. The model for the agents and the com-
munication topology are presented in Section 5.1. The controllers and guidance
scheme are given in Section 5.2. The closed-loop system is derived in Section 5.3
and stability of the closed-loop system is shown in Section 5.4. Section 5.5 presents
the results of a case study using numerical simulations. Section 5.6 contains results
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of experiments performed with three AUVs. Section 5.7 presents the conclusions.
The material in this chapter is based on Belleter and Pettersen [14] and Belleter
et al. [21].

5.1 Modelling

This section recalls the model of the AUVs and the environmental disturbance,
the control objectives, and the communication topology for the network of agents.
To describe the motion of the AUVs we use the 5-DOF manoeuvring model from
Section 2.3. Therefore, the unknown environmental disturbance is modelled as a
three dimensional ocean current in this work.

5.1.1 AUV model

The model considered in this chapter is the 5-DOF model for an AUV given in
Section 2.3, which describes the motion of the AUV in surge, sway, heave, pitch
and yaw. Recall that the state of the vehicle η , [x, y, z, θ, ψ]T with respect to
the inertial frame i is expressed in three spatial coordinates x, y, and z and two
angles θ and ψ which are the pitch and yaw angle respectively. Moreover, recall
that the model is derived under the following assumptions for the AUV and the
ocean current.

Assumption 5.1. The roll motion is assumed to be passively stabilised by �ns or
by gravity and can therefore be neglected when modelling the vessel.

Assumption 5.2. The ocean current, Vc , [Vx, Vy, Vz]
T , expressed in the inertial

frame i, is assumed to be constant, irrotational and upper-bounded, i.e. ∃Vmax > 0

such that ‖Vc‖ =
√
V 2
x + V 2

y + V 2
z ≤ Vmax.

Assumption 5.3. The vehicles are neutrally buoyant and the center of gravity
(CG) and the center of buoyancy (CB) are located along the same vertical axis in
the body-�xed frame.

Assumption 5.4. The vehicles are assumed to be x−z plane symmetric and have
a large length to width ratio.

Assumption 5.5. The surge mode is decoupled from the other degrees of free-
dom and consider only the dominating interconnections, i.e. the interconnections
between sway and yaw and between heave and pitch.

Assumption 5.6. Damping is considered linear.

Remark 5.1. Assumptions 5.1 and 5.3-5.6 are common assumptions in manoeu-
vring control of slender-body AUVs [60].
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Consequently, the model can be expanded into component form as

ẋ = ur cos(ψ) cos(θ)− vr sin(ψ) + wr cos(ψ) sin(θ) + Vx (5.1a)

ẏ = ur sin(ψ) cos(θ) + vr cos(ψ) + wr sin(ψ) sin(θ) + Vy (5.1b)

ż = −ur sin(θ) + wr cos(θ) + Vz (5.1c)

θ̇ = q (5.1d)

ψ̇ = r/ cos(θ) (5.1e)

u̇r = Fur (vr, wr, q, r)− (d11/m11)ur + τu (5.1f)

v̇r = Xvr (ur)q + Yvr (ur)vr (5.1g)

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sin(θ) (5.1h)

q̇ = Fq(θ, ur, wr, q) + τq (5.1i)

ṙ = Fr(ur, vr, r) + τr (5.1j)

The de�nitions of Fur , Xvr , Yvr , Xwr , Ywr , Zwr , Fq, and Fr are given in Appendix
5.A.

Assumption 5.7. The function Yvr (ur) satis�es

Yvr (ur) ≤ −Y min
vr < 0, ∀ur ∈ [−Vmax, Urd + a],

where a is a parameter of the formation control law to be de�ned later.

Assumption 5.8. The function Ywr (ur) satis�es

Ywr (ur) ≤ −Y min
wr < 0, ∀ur ∈ [−Vmax, Urd + a],

where a is a parameter of the formation control law to be de�ned later.

Remark 5.2. Assumptions 5.7 and 5.8 are satis�ed for commercial vessels by
design, since the converse would imply an undamped or nominally unstable vessel
in sway and heave respectively.

5.1.2 The control objectives

The goal is coordinating the motion of n AUVs along a straight-line path P in 3D
space to achieve a given formation. Without loss of generality the inertial frame
is chosen such that its x-axis is aligned with the desired path, and consequently
P , {(x, y, z) ∈ R3 : y, z = 0}. For the jth AUV in the formation the goal can be
characterised by the following control objectives

lim
t→∞

yj(t)−Dyj = 0, (5.2a)

lim
t→∞

zj(t)−Dzj = 0, (5.2b)

lim
t→∞

ψj(t) = ψss, ψss ∈ (−π2 , π2 ), (5.2c)

lim
t→∞

θj(t) = θss, θss ∈ (−π2 , π2 ), (5.2d)

lim
t→∞

urj (t)− Urd = 0, (5.2e)

lim
t→∞

xj(t)− xi(t)− dji = 0. (5.2f)
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Control objectives (5.2a) and (5.2b) express the path-following control objectives,
where Dyj and Dzj are o�sets to the path P that are given by the desired for-
mation structure. Control objectives (5.2c) and (5.2d) describe the desired side-
slipping motion in steady-state, which is necessary for disturbance rejection in the
transversal direction of the path despite the absence of actuation in sway and heave.
Control objective (5.2e) assures that all vehicles achieve the same desired veloc-
ity. Control objective (5.2f) speci�es that the inter vehicle distance along the path
should converge to a pre-de�ned value dji given by the desired formation structure.

5.1.3 Communication topology

To synchronise the along-path distance, communication of the along-path distance
between the vehicles is required. This information can then be used in local syn-
chronisation laws resulting in a decentralised approach. Graph theory [98] is used
to model the communication.

The communication network is represented by a directed graph or digraph
G(V,E), where V is a set of vertices representing the vessels and E is a set of
edges representing the communication �ow. The neighbourhood Aj of vj is the set
of vertices vi ∈ V such that there is an edge from vj to vi. Hence, when controlling
vessel j only the along-path position xi of the vessels where i ∈ Aj may be used.
The above allows us to give some de�nitions, based on Godcil and Royle [68], that
are used in the analysis of the formation dynamics. A vertex vk ∈ V reachable from
vertex vi ∈ V if there is a path from vi to vk. A vertex is globally reachable if it can
be reached from every vertex in G(V,E), either directly or indirectly. The graph is
said to be strongly connected, if all vertices of G(V,E) are globally reachable.

5.2 Control System

In this section the control system is proposed. In the �rst subsection the path-
following control strategy is introduced. The second subsection describes the con-
troller used to achieve along-path coordination.

5.2.1 Path-following control

Path-following is achieved using integral line-of-sight guidance combined with feed-
back linearising controllers for the yaw and pitch angle. An illustration of the iLOS
in three dimensional space can be seen in Figure 5.1.

Yaw Control

The desired yaw angle is calculated using an integral LOS guidance law, �rst in-
troduced in Børhaug et al. [30], based on the y distance to the path which results
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Figure 5.1: Geometry of the 3D-ILOS path-following for ∆y = ∆z = ∆

in

ψd , − tan−1

(
(y −Dyj) + σyyint

∆y

)
, ∆y > 0, (5.3a)

ẏint =
∆y(y −Dyj)

((y −Dyj) + σyyint)2 + ∆2
y

, (5.3b)

with σy > 0 the integral gain, ∆y the look-ahead distance, and Dyj denoting the
constant o�set from the main path. The desired yaw angle is tracked using the
following feedback linearising yaw rate controller

τr =− Fr(ur, vr, r)− q sin(θ)ψ̇ + cos(θ)
[
ψ̈d − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d)

]
, (5.4)

with kψ > 0 and kr > 0 the proportional and derivative controller gains respec-
tively.

Pitch Control

The desired pitch angle is calculated using an integral LOS guidance based on the
z distance to the path, resulting in

θd , tan−1

(
(z −Dzj) + σzzint

∆z

)
, ∆z > 0, (5.5a)

żint =
∆z(z −Dzj)

((z −Dzj) + σzzint)2 + ∆2
z

, (5.5b)

with σz > 0 the integral gain, ∆z the look-ahead distance, and Dyj denoting the
constant o�set from the main path. The desired pitch angle is tracked using the
following feedback linearising pitch rate controller

τq = −Fq(θ, ur, wr, q) + θ̈d − kθ(θ − θd)− kq(θ̇ − θ̇d), (5.6)
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with kθ > 0 and kq > 0 the proportional and derivative controller gains respectively.

5.2.2 Coordination control

The coordination controller consists of a velocity assignment proportional to the
coordination error, combined with a feedback linearising surge controller. The ve-
locity assignment is chosen as

ucj , Urd − g
( ∑
i∈Aj

(xj − xi − dji)
)
, (5.7)

with Urd the desired constant relative surge velocity and g(x) proportional to the
along-path coordination error. The function g(x) : R→ R should be a continuously
di�erentiable saturation-like function satisfying

−a ≤ g(x) ≤ a, ∀x ∈ R, g(0) = 0,

0 < g′(x) ≤ µ,∀x ∈ R, g′(x) , ∂g/∂x
(5.8)

where a is the parameter from Assumptions 5.7 and 5.8, and µ > 0 is an arbitrary
constant. This also implies that the function g(x) should be a sector function
belonging to the sector [0, µ]. A suitable choice for g(x) is for example

g (x) ,
2a

π
tan−1 (x) . (5.9)

It was shown in Caharija et al. [43] that in order to overcome the e�ects of the
ocean currents a minimum bound should be placed on the desired velocity. That
bound is given in the following assumption adjusted for the case that includes
coordination.

Assumption 5.9. The desired relative surge velocity uc satis�es the following
condition:

umin
c > max

{
Vmax +

5

2

∣∣∣∣ Zwr
Ywr (u

min
c )

∣∣∣∣ , 2Vmax + 2

∣∣∣∣ Zwr
Ywr (u

min
c )

∣∣∣∣}
and consequently Urd > umin

c + a to allow for the necessary velocity manipulation
by the coordination law.

Remark 5.3. Note that it is always possible to �nd values of Urd satisfying As-
sumption 5.9, since |Ywr (ur)| is strictly increasing for ur > 0 [43].

To track ucj the following feedback linearising P controller is applied to each
vessel

τu = −Fur (vr, r) +
d11

m11
ucj + u̇cj − kur (ur − ucj ), (5.10)

with kur > 0 a constant gain. Note that part of the surge damping is not cancelled
to guarantee some robustness w.r.t. model uncertainties.
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Using the notation

Xmaxj
α , max

ucj∈[Umin,Umax]
|Xα,j(ucj )| (5.11)

Y minj
α , min

ucj∈[Umin,Umax]
|Yα,j(ucj )| (5.12)

with α ∈ {vr, wr}, Umin = Urd − a, and Umax = Urd + a where the main result can
then be formulated as follows.

Theorem 5.1. Consider a formation of n vessels described by (5.1). Suppose
that ud is continuously di�erentiable, Assumptions 5.2-5.9 are satis�ed, and the
communication graph contains at least one globally reachable vertex. If the look-
ahead distances ∆y and ∆z, and the integral gains σy and σz satisfy the conditions

∆y =
|Xmax

vr |
|Y min
vr |

[
5

4

Γmax + Vmax + σy
Γmin − Vmax − σy

+ 1

]
, (5.13a)

∆z =
|Xmax

wr |
|Y min
wr |

ρ(σz)

[
5

4

Γmax + Vmax + σz
Γmin − Vmax − σz

+ 1

]
, (5.13b)

0 < σy < Γinf − Vmax, (5.13c)

0 < σz < Umin − Vmax −
5

2

∣∣∣∣ ZwrY min
wr

∣∣∣∣ (5.13d)

with

ρ(σz) ,
Umax − Vmax − σz

Umin − Vmax − σz − 5
2

∣∣∣ ZwrY min
wr

∣∣∣ (5.14)

for j = 1, . . . , n, then the controllers (5.3-5.6), (5.10) guarantee achievement of the

control goals (5.2) with ψss = − tan−1(Vy/
√

Γ(s)2 − V 2
y ) and θss = tan−1(s).

Remark 5.4. The constant s and the function Γ(s) are de�ned in the next section
when the closed-loop dynamics are derived.

The proof of Theorem 5.1 is given in Section 5.4 which considers the closed-loop
stability of the error dynamics.

5.3 Closed-loop System

In this section the closed-loop dynamics are formulated. The closed-loop path-
following error and tracking error dynamics are derived �rst. The coordination error
dynamics are derived second and �nally the full closed-loop system is presented.

5.3.1 Path-following and tracking error dynamics

In this subsection the tracking and path-following error dynamics are considered.
The derivation of these dynamics follow those in Caharija et al. [41] and Caharija
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5. Coordinated Path-Following for Underactuated Underwater Vehicles

et al. [43], in which the same path-following dynamics are investigated for single
vehicles. The tracking errors are analysed by substituting the controllers (5.4),
(5.6), and (5.10) into the dynamical system (5.1). For analysis we introduce the
vector ξ , [ũr, ψ̃, r̃, θ̃, q̃]

T , with tracking errors ũr , ur−uc, ψ̃ , ψ−ψd, r̃ , r−ψ̇d,
θ̃ , θ − θd, and q̃ , q − θ̇d. The tracking error dynamics are given by

ξ̇ =


−kur − d11

m11
0 0 0 0

0 0 1 0 0
0 −kψ −kr 0 0
0 0 0 0 1
0 0 0 −kθ −kq

 ξ , Σξ. (5.15)

The system (5.15) is linear and time-invariant and kur , d11/m11, kψ, kθ, kq, and
kr are all strictly positive. Therefore, Σ is Hurwitz and the origin of the tracking
error dynamics (5.15) is uniformly globally exponentially stable (UGES).

The �rst part of the path-following dynamics consists of the z −wr subsystem
given by

żint =
∆z(z −Dzj)

((z −Dzj) + σzzint)2 + ∆2
z

, (5.16a)

ż = −ur sin(θ̃ + θd) + wr cos(θ̃ + θd) + Vz, (5.16b)

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sin(θ̃ + θd). (5.16c)

In Caharija et al. [43] it is shown that the equilibrium of (5.16) satis�es

zeq = Dzj , weq
r = uc

σzz
eq
int

∆z
− Vz

√(
σzz

eq
int

∆z

)2

+ 1

where zeq
int is the unique solution of:

s
√
s2 + 1 =

Vz
uc
s2 − Zwr

ucY
uc
wr

s+
Vz
uc

(5.17)

with s , σzz
eq
int/∆z.

The second part of the path-following dynamics is formed by the y − vr sub-
system given by

ẏint =
∆y(y −Dyj)

((y −Dyj) + σyyint)2 + ∆2
y

, (5.18a)

ẏ = ur sin(ψ̃ + ψd) cos(θ̃ + θd) + vr cos(ψ̃ + ψd)

+ wr sin(ψ̃ + ψd) sin(θ̃ + θd) + Vy, (5.18b)

v̇r = Xvr (ur)(
˙̃
ψ + ψ̇d) cos(θ̃ + θd) + Yvr (ur)vr, (5.18c)

for which it is shown in Caharija et al. [43] that the equilibrium is given by

yeq
int =

∆y

σy

Vy√
Γ(s)2 − V 2

y

, yeq = Dyj , veq
r = 0,
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with

Γ(s) , uc
1√

s2 + 1
− Zwr
Y ucwr

s2

s2 + 1
.

and

Γinf ,
3

5

[
Umin −

∣∣∣∣∣ ZwrY
umin
c

wr

∣∣∣∣∣
]
, Γmax , Umax. (5.19)

The equilibrium point of the (5.16) and (5.18) can be moved to the origin using
the introduction of the following error variables

ez1 , zint − zeq
int, ez2 , (z −Dzj)− σzez1 , ez3 , wr − weq

int

ey1 , yint − yeq
int, ey2 , (y −Dyj)− σyey1 ,

and including the tracking error dynamics (5.15), the system can be written in the
cascaded form ėy1ėy2

v̇r

 = A2(ey2)

ey1ey2
vr

+B2(ey2)p(ey2) +H2χ,

χ̇ =

[
A1(ez2) H1

0 Σ

]
χ+

[
B1(ez2)

0

]
f(ez2)

(5.20)

with χ , [ez1 , ez2 , ez3 , ξ
T ]T . Hence, the tracking errors are placed in cascade with

the z−wr subsystem and this cascade is placed in cascade with the y−vr subsystem.
The matrices A1(ez2) and A2(ey2) can be found in (5.50) and (5.51), matrices
B1(ez2), B2(ey2), f(ez2), and p(ey2) are de�ned as

B1 ,
[
0, Vz,

∆2
zX

uc
wr
Vz

(ez2+σzz
eq
int)

2+∆2
z
− Zwr s√

s2+1

]T
(5.21)

B2 ,
[
0, Vy,

−∆2
yX

uc
vr
Vy√

s2+1(ey2+σyy
eq
int)

2+∆2
y

]T
(5.22)

f(ez2) = 1−
√

(σzz
eq
int)

2+∆2
z√

(ez2+σzz
eq
int)

2+∆2
z

(5.23)

p(ey2) = 1−
√

(σyy
eq
int)

2+∆2
y√

(ey2+σyy
eq
int)

2+∆2
y

. (5.24)

The interconnection matrices H1(z, zint, θd, wr, ζ) and H2(y, yint, θd, ψd, vr,χ)
contain the terms perturbing terms for the cascade from control tracking errors to
the z−wr subsystem and the perturbing terms van z−wr to the y− vr subsystem
respectively. The interconnection term H1ξ goes to zero when ξ goes to zero and
H2χ goes to zero when χ goes to zero. The interconnection matrices are given by

H1 ,

 0 0
1 0

∆zXwr (ũr+uc)
(ez2+σzz

eq
int)

2+∆2
z

1

[ hTz
hTwr

]
(5.25)

H2 ,

 0 0
1 0

−∆yXvr (ũr+uc) cos(θ̃+θd)
(ey2+σyy

eq
int)

2+∆2
y

1

[hTy
hTvr

]
(5.26)
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where the expressions for hTz , h
T
wr , h

T
y , and h

T
vr can be found in Appendix 5.A.

In Caharija et al. [43] it is shown that the path-following cascaded system (5.20)
has a UGAS and ULES equilibrium at the origin for a constant velocity satisfying
Assumption 5.9 and constants satisfying (5.13).

Remark 5.5. Note that for the case of a constant velocity uc we have Umax ≡
Umin ≡ uc, X

max ≡ Xmin ≡ Xuc , and Y max ≡ Y min ≡ Y uc for the constants in
(5.13).

Remark 5.6. Note that the proof in Caharija et al. [43] applies for a constant
velocity uc. However in the case considered here the velocity is not constant, and
therefore the proof cannot be directly applied to the coordinated path-following
scenario. However it will be shown that when analysing the closed-loop system in
Section 5.4 we can still utilise this proof to guarantee an equilibrium on the path
when the velocity satis�es uc ∈ [Urd − a, Urd + a] as de�ned in (5.7).

Remark 5.7. Despite the singularity in θ in the open-loop system (2.11), this
singularity does not appear in the closed-loop path-following error dynamics (5.20).
Therefore, global results can be achieved for the path-following error.

5.3.2 Coordination error dynamics

The coordination error dynamics are expressed in the x-direction of the inertial
frame and therefore we consider (5.1a)

ẋ = (uc + ũr) cos(ψ̃ + ψd) cos(θ̃ + θd)− vr sin(ψ̃ + ψd)

+ wr cos(ψ̃ + ψd) sin(θ̃ + θd) + Vx (5.27)

= Γ(s) cos(ψd) + g(x) cos(ψss) cos(θss) + Vx + hTx ζ

where hTx ζ is the interconnection term between the coordination error dynamics
and path-following error dynamics with ζ = [ey1 , ey2 , vr,χ]T . The elements of hTx
are given by

hx1 = hx4 = hx9 = hx11 = 0

hx2 = g(x) cos(θss)

[
cos(ψt)− 1

ey2
cos(ψss) +

sin(ψt)

ey2
sin(ψss)

]
hx3 = − sin(ψ̃ + ψd)

hx5 = uc cos(ψd)

[
cos(θt)− 1

ez2
cos(θss) +

sin(θt)

ez2
sin(θss)

]
+ weq

r cos(ψd)

[
sin(θt)

ez2
cos(θss) +

cos(θt)− 1

ez2
sin(θss)

]
hx6 = cos(ψ̃ + ψd) sin(θ̃ + θd) (5.28)

hx7 = cos(ψ̃ + ψd) cos(θ̃ + θd)

hx8 =
[
weq
r sin(θ̃ + θd) + uc cos(θ̃ + θd)

] [cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
hx10 = [weq

r cos(ψd) + uc cos(ψd)]

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
.
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The contribution to the along-path velocity of the surge velocity and the current
is given by Ux , Γ(s) cos(ψss) + Vx. Using this, we can introduce the change

of coordinates ϑj , xj − dj −
∫ t
t0
Uxds for j = 1, . . . , n where dj is such that

dj − di = dji. The path-following dynamics (5.27) can be transformed into the
coordination error dynamics using this changes of coordinates

ϑ̇j = −g

∑
i∈Aj

(ϑj − ϑi)

 cos(ψss) cos(θss) + hTx ζ. (5.29)

Remark 5.8. Note that ϑj − ϑi = 0,∀i, j = 1, . . . , n implies that (5.2f) is satis�ed
and along-path coordination is achieved. Moreover, since ũr converges exponen-
tially to zero satisfaction of (5.2f) also implies that (5.2e) is satis�ed.

To consider all vessels we write the system in vector form by de�ning ϑ ,
[ϑ1, . . . , ϑn]T , g(ϑ) , [g(ϑ1), . . . , g(ϑn)]T , Λ , [diag{cos(ψss1) cos(θss1), . . . ,
cos(ψssn) cos(θssn)}], ζ , [ζT1 , . . . , ζ

T
n ]T , and Hx , [hx1 , . . . ,hxn ]T , such that

(5.29) can be written as

ϑ̇ = −Λg(Lϑ) +Hx(ζ,ϑ)ζ (5.30)

where L is the Laplacian matrix of the graph G with elements:

lji ,


δj if j = i

−1, if j 6= i ∧ (j, i) ∈ E, j, i = 1, . . . , n

0, otherwise

(5.31)

with δj the number of outgoing edges from vj . By de�nition the Laplacian has
one or more eigenvalues at zero with the vector of all ones as eigenvector. If the
graph is strongly connected, i.e. it has n globally reachable vertices, then the zero
eigenvalue is simple and L is symmetric and positive semi-de�nite (see [68, 98]).

As stated in Børhaug et al. [31] the consensus properties of the coordination-
error dynamics cannot be determined by simply analysing its stability properties,
since it can have multiple equilibria depending on the network topology. Therefore,
a coordinate transform is proposed in Børhaug et al. [31, Lemma 2] which can also
be derived for system equation (5.30).

Lemma 5.2 ([31, Lemma 2]). Consider system (5.30). Under the condition of
Theorem 5.1 there exists a coordinate transformation φ , Tϑ, T ∈ R(n−1)×n, such
that the following holds:

1. φ = 0 implies that ϑ1 = . . . = ϑn;

2. the dynamics of φ are of the form

φ̇ = f(φ) +G(ζ,φ)ζ (5.32)

with G(ζ,φ) globally bounded, uniformly in ζ and φ;

3. φ̇ = f(φ) is UGAS with positive de�nite and radially unbounded Lyapunov
function V = V (φ) satisfying
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∂V

∂φ
(φ)f(φ) ≤ −W (φ) < 0, ∀φ ∈ Rn−1 \ {0} (5.33)∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ≤ C1, ∀φ ∈ Rn−1. (5.34)

The proof of this lemma is given in Appendix 5.B.
The total closed-loop system can now be formulated as:

φ̇ = f(φ) +G(ζ,φ)ζ (5.35a)

ζ̇ =

 A2(ey2) H2

0
A1(ez2) H1

0 Σ

 ζ +

B2(ey2)p(ey2)
B1(ez2)f(ez2)

0

 (5.35b)

By splitting uc in the constant desired velocity Urd and the adaptive part g(x)
the coupling between the coordination dynamics and path-following error dynamics
becomes evident

φ̇ = f(φ) +G(ζ,φ)ζ (5.36a)

ζ̇ =

 A2(ey2 , Urd) H2

0
A1(ez2 , Urd) H1

0 Σ

 ζ
+

B2(ey2)p(ey2)
B1(ez2)f(ez2)

0

+

C2(ey2)
C1(ez2)

0

 g(x)

(5.36b)

with

C1(ez2) ,

[
0,− σzz

eq
int

(ez2+σzeqint)
2
+∆2

z

,
∆zX

uc
wr
σzz

eq
int(

(ez2+σzz
eq
int)

2
+∆2

z

)3/2

]T
C2(ey2) ,

[
0,

σyy
eq
int

(ey2+σyy
eq
int)

2
+∆2

y

∆z

(ez2+σzz
eq
int)

2
+∆2

z

, 1√
s2+1

∆yX
uc
wr(

(ey2+σyy
eq
int)

2
+∆2

y

)3/2

]T
where C(ey2 , ez2)g(x) is the feedback from coordination dynamics in path-following
dynamics.

5.4 Closed-loop Stability

In this section we investigate the closed-loop stability properties. The proof for
stability will follow along the lines of that in Section 4.4. First note that, as in
Chapter 4, the coupling term seen in (5.36b) is a result of the combination of
having a multi-agent system and having disturbance rejection. With only one of
these, the system would be in a cascaded form. Now instead the system has a
feedback-interconnected form. However, feedback-interconnected systems can be
analysed as cascade-interconnected system using a technique called `breaking the
loop', as introduced in Loría [93]. In Loría [93] it is shown how a system of the
form:

ẋ1 = f1(t, x1) + g(t, x1, x2) (5.37a)

ẋ2 = f2(t, x1, x2) (5.37b)
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can be analysed as a cascaded system of the form

ξ̇1 = f1(t, ξ1) + g(t, ξ1, ξ2)ξ2 (5.38a)

ξ̇2 = f2(t, x1(t), ξ2) = f̃2(t, ξ2) (5.38b)

where f2(t, x1(t), ξ2) depends on the parameter x1, with x1(t) denoting solutions
of (5.37a), under the conditions that

1. x1 = 0 is a UGAS equilibrium for ẋ1 = f1(t, x1).

2. The solutions of (5.37) are uniformly globally bounded.

In Loría [93] it is shown that if these conditions are satis�ed in the manner presented
in the remainder of this section, then the solutions of the system (5.38) will coincide
with that of (5.37) for an appropriate choice of initial conditions.

Condition 1) translates to the closed-loop system (5.35) satisfying the following
condition:

Condition 5.1. (1) φ = 0 is a UGAS equilibrium for φ̇ = f(φ).

Condition 5.1 is veri�ed by claim 3) from Lemma 5.2, which establishes stability
of the nominal coordination dynamics.

Verifying condition 2) requires satisfying the following three subconditions 2a),
2b), and 2c).

Condition 5.2. (2a) There exists a C1 positive de�nite radially unbounded func-
tion Ṽ : R × Rn1 → R≥0, α1 ∈ K∞ and continuous non-decreasing functions
α4, α

′
4 : R≥0 × R→ R≥0 such that

Ṽ (t, x1) ≥ α1(‖x1‖) (5.39)

and that,

˙̃V(5.35a)(t, x1) ≤ α4(‖x1‖)α′4(‖x2‖); (5.40)∫ ∞
a

dṽ

α4(α−1
1 (ṽ))

=∞ (5.41)

This condition is used to verify that (5.35a) has no �nite escape times uniform
in ζ. We de�ne α1(‖x1‖) as the lower bound of the radially unbounded Lyapunov
function from Appendix 5.B. More speci�cally, α1(‖φ‖) , ln(V + 1) where V is
given in (5.57). Now using Lemma 5.2 and its proof in Appendix 5.B we have

˙̃V(5.35a)(t, x1) ≤ −W (φ) +

∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ‖G(ζ,φ)‖‖ζ‖

≤
[

δ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

≤
[

δ‖φ2‖
δ
2‖φ2‖+ 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

(5.42)
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where the existence of the constant C2 > 0 above is a consequence of G(ζ,φ) being
bounded in its arguments. Moreover, it should be noted from the de�nition of g(·)
in (5.8) that g(·) is upper bounded by a constant a and that the growth of g(·) in
its argument is upper-bounded by µ and lower-bounded by zero. This implies that
g(·) has its maximal growth around the origin, outside the origin it keeps growing
at a smaller rate as it approaches the upper-bound. Therefore, any function g(‖φ‖)
can be bounded by a function of the form β‖φ‖/(‖φ‖ + γ) for which there exists
constants β > 0 su�ciently larger than a and γ > 0 su�ciently small to dominate
the growth of g(·). Consequently, we can bound (5.42) as

˙̃V(5.35a)(t, x1) ≤
[

δ‖φ2‖
δ
2‖φ2‖+ 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖

≤ ε‖φ‖
‖φ‖+ κ

C2‖ζ‖
(5.43)

where ε > 0 is su�ciently large and κ > 0 is su�ciently small. From the above we
can satisfy (5.40) by choosing α4(‖φ‖) , ‖φ‖/(‖φ‖ + κ) and α′4(‖ζ‖) , εC2‖ζ‖.
Computation of the inverse of α1(‖φ‖) is not an easy tasks and results in a com-
plicated function. However, to verify (5.41) we do not need to calculate α−1

1 (‖φ‖)
if we note that α1(‖φ‖) is a function in class K∞ and from Khalil [82, Lemma 4.2]
(see Lemma A.1), we know that it holds that α−1

1 (‖φ‖) is de�ned on [0,∞) and
belongs to class K∞. With the de�nition for α4(‖φ‖) above, for (5.41) we have∫ ∞

a

dṽ

α4(α−1
1 (ṽ))

=

∫ ∞
a

α−1
1 (ṽ) + κ

α−1
1 (ṽ)

dṽ

=

∫ ∞
a

1 dṽ +

∫ ∞
a

κ

α−1
1 (ṽ)

dṽ =∞
(5.44)

since the integral from a to∞ of 1 is equal to in�nity and the integral of κ/α−1
1 (ṽ) ≥

0 because α−1
1 (ṽ) ∈ K∞. Consequently, (5.41) is satis�ed. Therefore, Condition 5.2

is satis�ed.

Remark 5.9. The fact that (5.35a) has no �nite escape times uniform in ζ can also
be veri�ed by the following observations on the growth rate of φ. It can be seen from
(5.55a) that the nominal dynamics f(φ) have a growth rate dependent on g(Lφ),
which has at most linear growth and is bounded by constants according to the
de�nitions in (5.8). From (5.28) we can see that same holds for the perturbing term
G(ζ,φ)ζ. Consequently, the growth rate of (5.35a) is less then linear everywhere,
which implies no �nite escape times uniform in ζ.

Condition 5.3. (2b) We dispose of a C1 function V : R × Rn1 → R≥0, α1, α2 ∈
K∞, and a positive semide�nite function W such that

α1(‖x1‖) ≤ V (t, x1) ≤ α2(‖x1‖) (5.45)

∂V

∂t
+
∂V

∂x1
f1(t, x1) ≤ −W (x1) (5.46)

for all t ∈ [to, tmax) and all x1 ∈ Rn1 .
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Condition 5.3 holds as a direct consequence of Condition 5.1 being satis�ed
with tmax =∞ by the proof of Lemma 5.2.

Condition 5.4. (2c) There exists β ∈ KL such that the solutions x2(t, to, x2o, x1)
of ẋ2 = f̃2(t, x2) satisfy

‖x2(t, to, x2o, x1)‖ ≤ β(‖x2o‖, t− to) ∀t ∈ [to, tmax). (5.47)

It should be noted that ‖x2(t, to, x2o, x1)‖ represents the solutions of (5.37b) for
�xed values of the parameter x1, i.e. solutions of the path-following error dynamics
(5.35b) for �xed values of the coordination error φ and hence �xed values of the
velocity. Consequently, Condition 5.4 implies that the solutions of x2, i.e. subsystem
(5.35b), are required to asymptotically decreasing to zero for all possible values
of the parameter x1. For (5.35) it then su�ces to show that (5.35b) is UGAS
for all �xed velocities uc ∈ [Urd − a, Urd + a]. Hence, for all possible states of
the synchronisation error (5.35a) the adaptation function g(·) that appears in the
(5.35b) takes values in the range [−a, a].

Consequently, a proof that the error dynamics of the integral line-of-sight path-
following strategy is UGAS is su�cient to proof Condition 5.4. This proof is avail-
able from the work in Caharija et al. [43] and Caharija [39], where it is shown that
the error dynamics of the integral line-of-sight path following is in fact UGAS and
ULES for constant velocities. In fact, if we choose the look-ahead distances ∆y and
∆z, and the integral gains σy and σz as in Theorem 5.1, then the conditions of the
proof in Caharija et al. [40] are satis�ed for all uc ∈ [Urd − a, Urd + a]. Therefore,
we can show that there is a stable equilibrium on the path for each value of the
coordination function.

Condition 2) is now veri�ed with the following theorem:

Theorem 5.3. The solutions of (5.35) are uniformly globally bounded.

Proof. The proof of this theorem follows from Loría [93, Theorem 2], which is given
as Theorem 5.5 in Appendix 5.C. In the case presented here, it is straightforward
to verify that item 2) of Theorem 5.5 holds. In particular, in this case

‖[LgV ]‖ =

∥∥∥∥∂V (x1)

∂x1
g(t, x1, x2)

∥∥∥∥ (5.48a)

≤
∥∥∥∥∂V∂φ (φ)

∥∥∥∥ ‖G(ζ,φ)‖‖ζ‖ (5.48b)

≤
[

δ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖
]
C2‖ζ‖ (5.48c)

≤ ε‖φ‖
‖φ‖+ κ

C2‖ζ‖ ≤ C1C2‖ζ‖ (5.48d)

where C1 is the constant from (5.34) and note that we have used the results from the
veri�cation of Condition 5.2. From (5.48d) it can be seen that to bound ‖[LgV ]‖, we
can choose α5(‖φ‖) ∈ K as a function of the form ‖φ‖/(‖φ‖+κ) for an appropriate
choice of κ > 0. Having chosen a suitable family of functions for α5(‖φ‖), we then

85



5. Coordinated Path-Following for Underactuated Underwater Vehicles

note that forward completeness of (5.35a) is implied by the ful�lment of Condition
5.2 and Condition 5.3 [93]. Therefore, the solutions of the cascade (5.35) exist
for all time. Moreover, we know that according to Condition 5.4, ‖ζ‖ decreases
for all values of φ since there is always an equilibrium on the path. Therefore,
after a certain time, W (φ) dominates ‖[LgV ]‖ ≤ C1C2‖ζ‖. More speci�cally, there

exists a certain time after which it holds that α′5(‖ζ‖) , εC2‖ζ‖ ≤ λr, such that
α5(‖φ‖) ≤ λrW (φ). Consequently, item 2) of Theorem 5.5 is satis�ed. Moreover,
since it is shown that Condition 5.2, 5.3, and 5.4 hold, Theorem 5.5 holds and
consequently Theorem 5.3 holds.

Theorem 5.4. The origin of (5.35) is UGAS if Condition 5.1 and the conditions
of Theorem 5.3 hold.

Proof. It is shown that both Condition 5.1 and Theorem 5.3 hold and hence we can
invoke [93, Proposition 2], given as Proposition 5.1 in Appendix 5.C, for system
(5.35).

This implies that all the control goals (5.2) are achieved and thus the proof of
Theorem 5.1 is complete.

5.5 Case Study

This case study considers three AUVs moving in three dimensional space a�ected
by a constant three dimensional ocean current. The parameters for the model (5.1)
are obtained from da Silva et al. [45] and are given in Section C.2. The simulation
parameters to describe the formation, the ocean current, the tuning of the integral
line-of-sight guidance, and the formation control strategy are given in Table 5.1.
The parameters in Table 5.1 are chosen such that they satisfy all conditions of
Theorem 5.1. The initial position for the AUVs is given by

x1o

y1o

z1o

θ1o

ψ1o

 =


0
−100
−50

0
π

,

x2o

y2o

z2o

θ2o

ψ2o

 =


0
50
−50

0
π/2

,

x3o

y3o

z3o

θ3o

ψ3o

 =


0
−50
−50

0
−π/2

.
The motion of the vehicles in three dimensional space can be seen in Figure 5.2.

From Figure 5.2 it can be seen that the vehicles converge to their assigned path.
This is con�rmed by the error plots in Figures 5.3-5.5. From which is it can be seen
that the y- and z-direction path-following errors converge to zero in Figure 5.3 and
5.4 respectively. Finally Figure 5.5 show that the along-path formation error go to
zero and the desired formation is achieved.

5.6 Experimental Veri�cation

This section presents the results of an experimental veri�cation tests performed
using three light autonomous underwater vehicles (LAUVs) from the University of
Porto.
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Table 5.1: Simulation parameters.

Variable Value Unit Variable Value Unit

∆y 10 m σy 0.2 -
∆z 20 m σz 0.2 -
Vx -0.11028 m/s Vy 0.08854 m/s
Vz -0.05 m/s Dz1 -20 m
Dz2 ,Dz3 -10 m Dy1 0 m
Dy2 -50 m Dy3 50 m
d12 50 m d13 50 m
Urd 2 m/s a 0.2 m/s
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Figure 5.2: AUV trajectories in 3-D space

5.6.1 Vehicle description and capabilities

A picture of one of the LAUVs can be seen in Figure 5.6. The LAUVs are ap-
proximately 110 [cm] long depending on the con�guration and have a diameter of
15 [cm]. The vehicles are designed to be light-weight and to be portable by one
person. Therefore, their weight is between 15 − 20 [kg] depending on the con�gu-
ration. The vehicles are rated for a maximum depth of 100 [m]. For propulsion the
vehicle uses a DC motor coupled to a three-blade propeller. The propulsion system
allows the LAUV to reach speeds of approximately 2 [m/s]. To steer the LAUV is
equipped with four �ns. The vertically placed �ns are used as rudders to control
the yaw rotation. The horizontally placed �ns are used as control surfaces to con-
trol the pitch rotation that is used to control the depth. The vehicles are equipped
with GPS so that they can get position measurements when at the surface. For
underwater navigation the vehicles are equipped with acoustic modems, long base-
line (LBL) navigation, ultra-short baseline (USBL) navigation, a Doppler velocity
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Figure 5.6: Image of one of the LAUVs used during the experiments.

log (DVL), and a forward looking sonar for obstacle avoidance. For communication
purposes the vehicles are equipped with an antenna that allows communication
through WiFi and GSM/HSDPA.

5.6.2 Software toolchain

The vehicles are operated using the open-source toolchain developed at the Under-
water Systems and Technology Laboratory (LSTS) at the University of Porto. This
toolchain consists, among others, of the uni�ed navigation environment DUNE, the
inter-module communication protocol (IMC), and Neptus which is the command
and control software. DUNE is the on-board software running on the vehicles and
communication gateways. The software is responsible for interactions with sensors,
payload, and actuators and also takes care of anything related to communications,
navigation, control, manoeuvring, plan execution and vehicle supervision. To ex-
tend the functionality of the vehicles, source code can be added to the DUNE code
repository. This is usually done as separate tasks that can interact with all other
aspects on DUNE by exchanging data through the message bus system. For this
communication, both on-board the vehicles and between vehicles, IMC is used.
IMC consists of a set of messages common to all entities in the system, e.g. ve-
hicles and communication nodes, and allows data exchange and communication.
Hence, each entity of the network runs DUNE tasks to function, while IMC pro-
vides data-exchange and communication capabilities between vehicles and between
di�erent processes on the vehicles. The command and control software Neptus can
be used during all di�erent phases of a typical mission life cycle: planning, simu-
lation, execution and post-mission analysis. It provides a graphical user interface
with pro�les of the available vehicles that include the sensory and manoeuvring
capabilities of vehicles. Moreover, it provides di�erent types of geographical maps.
All of this can be used to plan and simulate missions considering all aspects of
the mission including battery life, available sensors, etc. During execution Neptus
can be used to visualise incoming real-time data from the operation, allows for
tele-operation of vehicles, and can be used to send new manoeuvring commands to
the vehicles. In the review and analysis phase Neptus can be used to process and
visualise all the data stored through IMC messages of each vehicle. This allows the
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user to visualise and analyse the data.

5.6.3 Mission description and implementation

The mission considers the coordination of three LAUVs that are required to coor-
dinate their motion to a line formation on parallel straight-line paths. The test is
performed in the harbour of Porto. To contain the motion of the LAUVs they are
assigned rectangular shape paths. The motion pattern can be seen in Figure 5.7.
From Figure 5.7 it can be seen that the lenght of the path is not the same for each
AUV. The paths are placed this way to avoid collisions between the AUVs during
cornering. However, this has the adverse e�ect that the path of the orange AUV on
the inside is shorter than the path of the green AUV on the outside trajectory. In
fact, the length of the corner section for the green AUV is 30 [m] longer than that
of the yellow AUV and 60 [m] longer than that of the orange AUV. This means
that each time a corner is taken, coordination is lost and the metric for the relative
along-path distance does not make sense in the corner section. Therefore, the goal is
to only achieve coordination on the straight-line sections of 200 [m] length depicted
in Figure 5.7, which are sections of common length to each vehicle. The corner sec-
tions will be traversed in a way that aims to keep the formation error as small as
possible before reaching the next straight-line section. This is done by normalising
each corner section such that to the AUVs they appear to have the same length.
This normalised distance is then scaled to arti�cially increase path-following errors
on the normalised section. This will result in the outside AUV speeding up in the
corner and the inside AUV slowing down to reduce the distance between the AUVs
as much as possible before the next straight-line section is reached. To achieve
coordination, communication of the along-path distances between the vehicles is
necessary. For the purposes of this experiment, the AUVs are at the surface and
communicate using their WiFi antennas. The communication is not done directly
but is routed through a Manta communication gateway set up at the dock side.
The communication gateway makes a local communication network for the vehicles
to send their messages through. Each vehicle communicates its position to only one
other vehicle and receives a position from the third vehicle.

The AUVs are given a nominal speed of urd = 1.25 [m/s] and can adjust their
speed by 0.25 [m/s] either way. Since each AUV communicates its messages to
only one other vehicle and the desired formation is a line, the argument of the
synchronisation function g(·) will simply be the along-path distances of each vehicle
subtracted. Consequently, the velocity assignment is made by taking.

ucj (t) = 1.25− 2 · 0.25

π
atan(xj − xi). (5.49)

The look-ahead distance for the vehicles is set to ∆ = 4 [m] and the integral gain
is set to σ = 0.5 [m/s]. To be able to communicate through the WiFi network, the
vehicles should be at the surface. Therefore, the depth controller of the vehicle is
used to keep the vehicles on the surface.
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Figure 5.7: LAUV paths with dimensions

5.6.4 Simulation benchmark

To evaluate the experimental data gathered during the mission described above,
we �rst perform a simulation which can be used as a benchmark. These simulations
were performed using DUNE, which provides high-accuracy hardware simulations
of the vehicles to test code implementations. To simulate an environmental dis-
turbance, a constant ocean current is added with a component in north and east
direction. The ocean current has a velocity of 0.2 [m/s] from the east direction and
−0.1 [m/s] from north direction. The vehicle paths generated by the simulations
can be seen in Figure 5.8, from which we see that the paths accurately resemble
the pattern suggested in Figure 5.7. The desired velocity assignments can be seen
in Figure 5.9, from which it can be seen that the desired velocity assignment is as
expected. Especially during the corner sections it can be seen that the red vehicle
is waiting for the other vehicles by lowering its speed, and we see the blue vehicle
changing its velocity once it synchronises with the red vehicle. On the straight-line
sections the velocity does not converge precisely to the nominal value but oscillates
around it. These same oscillations can be seen in the plot for the synchronisation
errors given in Figure 5.10. The error does not go to zero but oscillates around
it. This can be expected for the hardware simulations presented here, which have
discrete communication. This causes the vehicles to overshoot their desired posi-
tions to achieve synchronisation. Moreover, this discretisation causes transients in
the velocity controllers at every step which also prevent the vehicles from following
tracking their desired inputs, which is something that in the theory and numerical
simulations is guaranteed by the feedback linearising controllers.

5.6.5 Experimental results

The trajectories for the vehicles performing the mission described in Subsection
5.6.3 can be seen in Figure 5.11. From Figure 5.11 it can be seen that the vehicles
converge to the prescribed patterns. However, the trajectories are less smooth in
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Figure 5.8: On-board estimates of the paths of the vehicles.
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Figure 5.9: Desired velocity assignment for the vehicles in simulation.
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Figure 5.10: Synchronisation errors between the vehicles in simulation. The blue
line is the synchronisation error of the blue vehicle with measurements from the
red vehicle. The red line is the synchronisation error of the red vehicle with mea-
surements from the yellow vehicle. The yellow line is the synchronisation error of
the yellow vehicle with measurements from the blue vehicle.

open water than in simulation. This can be seen by comparing Figure 5.8 and Fig-
ure 5.11. This is a performance degradation that is to be expected by the added
uncertainties in the experiments, especially at the surface where the vehicles are
also exposed to waves. Note that in Figure 5.11, the distances between the rect-
angles may not be accurate as depicted, since the placement depends on the �rst
global estimate of the position and are interpolated from there. However, the overall
shape of the path suggests the geometric task of path following is achieved satisfac-
torily for the circumstances under consideration. The desired velocity assignment
can be seen in Figure 5.12. It can be seen that the pattern of the relative velocity
assignments resemble those of the simulation results in Figure 5.9. However, like for
the motion patterns the added uncertainty reduces the performance. In particular,
the oscillations on the straight-line sections are larger and the signal is less smooth
in general. Despite the oscillations it can be seen that the velocity assignment is
done as desired by making the vehicles that are ahead wait while the vehicles that
are behind speed up until a steady-state is reached. The same di�erence with re-
spect to the simulations can be seen from the plots of the synchronisation errors,
which are given in Figure 5.13. The synchronisation errors in Figure 5.13 show
larger oscillations on the straight-line sections and are less smooth in general than
the synchronisation errors from the simulations in Figure 5.10. From Figure 5.13
it can be seen that after a transient period in which the vehicles converge to the
desired paths and get in formation, they reach a steady-state until they arrive at
the next waypoint. The steady-state has oscillations of the synchronisation errors
with an amplitude of up to 2 [m]. However, it should be noted that the oscillations
are much smaller on the second straight-line section. This suggests that the di�er-
ence in environmental circumstances between the two sides of the rectangle might
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play an important roll in the amplitude of the oscillations. The amplitude of the
oscillations should preferably be lowered in future experiments. In the remainder
of this subsection we will discuss measures to achieve this. Before going into these
measures, we note the fact that the communication only attains a low bandwidth
of about 1 [Hz]. Consequently, the desired velocity can only be updated every sec-
ond which causes vehicles to overshoot the desired formation. Although a similar
bandwidth is utilised in the simulations of Subsection 5.6.4, the bandwidth is at-
tained uniformly over the whole path in the simulations, while in the experiments
communication is more intermittent and the attained bandwidth di�ers between
the vehicles.
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Figure 5.11: On board estimates of the paths of the vehicles in the experiments.

The oscillations on the straight-line sections can be attributed to several factors.
The most important is the low bandwidth of communication which causes delays
in the changes of the desired velocity that are required to achieve the formation.
Moreover, a transient in the velocity controller is induced every time the velocity
is changed. These changes in the velocity are much less smooth in this case than it
would be if the communication bandwidth was higher. This is already the case for
the hardware simulations in Subsection 5.6.4 and is exacerbated by the more inter-
mittent communication in the experiments. Added to that, there is more delay in
the communication, which requires interpolation to compare incoming along-path
distance measurements to stored along-path distances of the vehicle itself, such that
the timestamps of those measurements match. Consequently, the calculated errors
become less accurate due to the interpolation, and the control action is applied
with a delay since the error is `old' at the time the control action is computed and
applied. Besides increasing the bandwidth, over which direct control might not be
available, several other measures can be taken. One measure could be to change
the synchronisation function. More speci�cally, the slope of the arctangent around
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Figure 5.12: Desired velocity assignment for the vehicles in the experiments.
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Figure 5.13: Synchronisation errors between the vehicles in the experiments. The
blue line is the synchronisation error of the blue vehicle with measurements from
the red vehicle. The red line is the synchronisation error of the red vehicle with
measurements from the yellow vehicle. The yellow line is the synchronisation error
of the yellow vehicle with measurements from the blue vehicle.
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the origin can be decreased. This has the e�ect that changes in the velocity will
be smoother, and if the vehicles overshoot the desired position, then the resulting
change in velocity is less severe. This might be combined with an increase of the
look-ahead vehicles, which will make the guidance of the vehicles less reactive to
changes in the velocity and the transients in the controller. The negative e�ect of
changing the slope of the arctangent is that it will take longer for the vehicles to
converge to the formation. Therefore, the choice will be a trade-o� between con-
vergence speed and desired steady-state behaviour. For the case considered here,
speed of convergence plays an important role due to the transients introduced
in each corner. For future implementations this requirement can be removed by
letting vehicles have the same corners and interweaving trajectories as suggested
in Figure 5.14. The implementation in Figure 5.14 makes the cornering distance
identical for each vehicle and should maintain formation when coming to the next
straight-line section. Therefore, the necessity of fast transients is removed. Another
measure to remove the oscillations is a change in the communication topology. In
the implementation presented here the graph is cyclic. This has an advantage that
all the vehicles wait for vehicles that are left behind. This assures again that the
steady-state is reached faster. However, it also implies that all the vehicles should
synchronise at the same time. More speci�cally, partial synchronisation between
two of the vehicles is disturbed by one of the vehicles is waiting for the third while
the other vehicle desired to maintain the nominal velocity. This can be solved by
implementing the communication graph in a leader-follower like structure where
two of the vehicles synchronise only to the leader, which allows for synchronisation
between two of the vehicles while the third vehicle still converges. Another option
could be that each vehicle sends its information to both of the others. However,
this is more complicated from an implementation perspective since interpolation
will have to be applied to match all the time-stamps of incoming messages, which
will also introduce some additional errors. Despite the di�culties mentioned here,
the experimental results illustrate the e�ectiveness of the proposed coordinated
path-following strategy.

5.7 Conclusions

In this chapter a control strategy for straight-line coordinated path-following of
under-actuated vehicles moving in three dimensional space has been presented. It
has been shown that using integral LOS guidance the vehicles are able to reject an
unknown, but constant, environmental disturbance, whilst simultaneously coordi-
nating their motion along a desired path with a nonlinear decentralised coordina-
tion law to achieve a desired formation. The origin of the combined coordination
and path-following error dynamics is shown to be UGAS by showing that our
feedback-interconnected system can be analysed as a cascaded system and satis�es
the conditions to prove UGAS. Simulation results have been presented that vali-
date the theoretical results. Moreover, experiments with actual AUVs are included
to validate the control strategy in a practical situation.
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Figure 5.14: Current implementation of cornering (left) and suggested alternative
implementation (right).

5.A Function De�nitions
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Vectors hz , [hz1, hz2, hz3, hz4, hz5]T and hwr , [hwr1, hwr2, hwr3, hwr4, hwr5]T are
de�ned as:

hz1 = − sin(θ̃ + θd); hz2 = hz3 = hz5 = 0

hz4 = wr

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]

− uc
[

sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]

hwr1 =
Xwr (ũr + uc)−Xuc

wr

ũr
γwr (zint, z, wr)

+ wr
Ywr (ũr + uc)− Y ucwr

ũr
,

hwr4 = Zwr

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃ − 1)

θ̃
sin(θd)

]
,

hwr5 = Xwr (ũr + uc); hwr2 = hwr3 = 0.

The vectors hy and hvr are de�ned as:

hy , [hy1, hy2, hy3, hy4, hy5, hy6, hy7, hy8]T , where,

hy2 =
uc
ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z
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int√
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]
,

hy3 = sin(θ̃ + θd) sin(ψ̃ + ψd), hy4 = cos(θ̃ + θd) sin(ψ̃ + ψd)

hy5 =

[
uc cos(θ̃ + θd)−

s√
s2 + 1

Zwr
Y ucwr

sin(θ̃ + θd)

]
·
[

sin(ψ̃)

ψ̃
cos(ψd) +

cos(ψ̃ − 1)

ψ̃
sin(ψd)

]

+ vr

[
cos(ψ̃)− 1

ψ̃
cos(ψd)−

sin(ψ̃)

ψ̃
sin(ψd)

]
,

hy7 = uc sin(ψd)

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]

− s√
s2 + 1

Zwr
Y ucwr

sin(ψd)

[
sin(θ̃)

θ̃
cos(θd) +

cos(θ̃)− 1

θ̃
sin(θd)

]
hy1 = hy6 = hy8 = 0,

hvr , [hvr1, hvr2, hvr3, hvr4, hvr5, hvr6, hvr7, hvr8]T where,

hvr2 =
Xuc
vr

ez2

[
∆z√

(ez2 + σzz
eq
int)

2 + ∆2
z

− 1√
s2 + 1

]
γvr (yint, y, vr),
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hvr4 =
Xvr (ũr + uc)−Xuc

vr

ũr
cos(θ̃ + θd)γvr (yint, y, vr)

+ vr
Yvr (ũr + uc)− Y ucvr

ũr
,

hvr6 = Xvr (ũr + uc) cos(θ̃ + θd), hvr1 = hvr3 = hvr5 = hvr8 = 0

hvr7 =

[
cos(θ̃)− 1

θ̃
cos(θd)−

sin(θ̃)

θ̃
sin(θd)

]
Xuc
vr γvr (yint, y, vr).

Functions γwr (zint, z, wr) and γvr (yint, y, vr) are de�ned as

γwr ,
∆zuc(z + σzzint

((z + σzz
eq
int)

2 + ∆2
z)

3/2
+

∆2
z

((z + σzz
eq
int)

2 + ∆2
z)

3/2
wr

+
σz∆

2
z

((z + σzz
eq
int)

2 + ∆2
z)

2
z +

∆zVz
(z + σzz

eq
int)

2 + ∆2
z)
,

γvr ,
∆yΓ(s)(y + σyyint

((y + σyy
eq
int)

2 + ∆2
y)3/2

− ∆2
y

((y + σyy
eq
int)

2 + ∆2
y)3/2

vr

− σy∆2
y

((y + σyy
eq
int)

2 + ∆2
y)2

y − ∆yVy
(y + σyy

eq
int)

2 + ∆2
y)
.
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5.B Proof of Lemma 5.2

The proof for Lemma 5.2 follows along the lines of the proof given in [31]. How-
ever, we now have to account for the matrix Λ in the dynamics (in addition to
the interconnection term Hxζ being di�erent). According to Assumption 5.9 the
communication graph G has at least one globally reachable vertex. Therefore in
this proof we assume that G has 1 ≤ r < n globally reachable vertices. This allows
us, without loss of generality, to partition L as

L =

[
L1 L2

0 L3

]
(5.52)

where L1 ∈ R(n−r)×(n−r) is anti-Hurwitz, i.e., −L1 is Hurwitz, and satis�es

PL1 +LT1 P = Q, Q = QT > 0 (5.53)

for some positive de�nite diagonal matrix P [91]. The sub-graph corresponding to
L3 ∈ Rr×r, i.e. G(L3), is strongly connected. Hence L3 is positive semi-de�nite,
with zero as a simple eigenvalue and a corresponding eigenvector 1r = [1, ..., 1]T ∈
Rr. Consequently, L3 can be decomposed into L3 = M3M

T
3 , whereM3 ∈ Rr×(r−1)

has full column rank. A coordinate transform is then given by

φ ,

[
L1 L2

0 MT
3

]
ϑ , Tϑ. (5.54)

We can now verify the claims of Lemma 5.2.
Claim 1):

φ = 0 ⇒
[
I 0
0 M3

]
φ = Lϑ = 0 ⇒ ϑ = α1n, α ∈ R.

Consequently, φ = 0 implies that ϑj = ϑi, j, i = 1, ..., n.
Claim 2): Di�erentiating (5.54) w.r.t time we obtain

φ̇ =

[
−L1Λ1g1(φ1)−L2Λ2g2(κ)

−MT
3 Λ2g2(κ)

]
+ THx(ζ,ϑ)ζ (5.55a)

, f(φ) +G(ζ,φ)ζ (5.55b)

where φ = [φT1 ,φ
T
2 ]T , with φ1 ∈ Rn−r and φ2 ∈ Rr, and we de�ned κ , M3φ2

to simplify notation. Moreover, using (5.28) it is straightforward to verify that
G(ζ,φ) , THx(ζ,ϑ) is globally bounded in its arguments.

Claim 3): Consider the stability properties of the nominal system[
φ̇1

φ̇2

]
=

[
−L1Λ1g1(φ1)−L2Λ2g2(κ)

−MT
3 Λ2g2(κ)

]
= f(φ). (5.56)

Remark 5.10. Note that considering the stability properties of the origin of the
nominal dynamics means that we consider the stability properties of (5.55a) when
the perturbing dynamics has converged. This implies that the cross-track errors
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have converged, and consequently, the desired yaw angle ψd and pitch angle θd are
bounded well away from π/2 and −π/2. Hence the elements of diagonal matrices
Λ1 and Λ2 are bounded away from zero and will have clearly de�ned minimum
eigenvalues of λm1

and λm2
respectively.

To show that the origin of (5.56) is UGAS we use the Lyapunov function can-
didate

V ,
δ

2
‖φ2‖2 +

∫ φ1

0

PΛ1g1(y) · dy (5.57)

where P is the positive de�nite diagonal solution of (5.53) and δ > 0 to be chosen
at a later stage. The sector property of g and the fact that P is a positive de�nite
diagonal matrix assure that V is a positive de�nite function of φ1 and φ2. It
is straightforward to verify that V is also radially unbounded. Taking the time-
derivative of V along the solutions of (5.56) gives

V̇ =− 1
2g

T
1 (φ1)

[
Λ1PL1Λ1 + Λ1L

T
1 PΛ1

]
g1(φ1)

− δκTΛ2g2(κ)− gT1 (φ1)Λ1PL2Λ2g2(κ)
(5.58)

If we substitute for Q in (5.58) and take the norm we obtain

V̇ ≤ c‖g1(φ1)‖ · ‖g2(κ)‖ − δκTΛ2g2(κ)− qm
2
‖g1(φ1)‖2

with qm > 0 the minimum eigenvalue of Λ1QΛ1 and c ≥ ‖Λ1PL2Λ2‖ > 0. Since
g belongs to the sector [0, µ], with µ > 0, it can be veri�ed that x/g(x) ≥ 1/µ,
∀x ∈ R, and we can bound V̇ by

V̇ ≤ c‖g1(φ1)‖ · ‖g2(κ)‖ − δλm2

µ
‖g2(κ)‖2 − qm

2
‖g1(φ1)‖2

Choosing δ ≥ µ([c/
√

2qm]2 + α)/λm2
, where α > 0, gives

V̇ ≤ −
(

c√
2qm
‖g2(κ)‖ −

√
qm
2
‖g1(φ1)‖

)2

− α‖g2(κ)‖2

, −W (g1(φ1), g2(κ)).

(5.59)

The function W is a positive de�nite function of g1(φ1) and g2(κ) = g2(M3φ2).
Noting that g(x) = 0 if and only if x = 0 and that matrix M3 has full column
rank we can conclude that W = 0 if and only if φ1 = 0 and φ2 = 0. Hence, W is
a positive de�nite function of φ1 and φ2. Consequently the origin of the nominal
system (5.56) is GAS and since (5.56) is time-invariant, the origin is UGAS. This
result is equivalent to that in [31].

Although the Lyapunov function (5.57) has made it possible to prove UGAS
for the origin of (5.56), and it satis�es (5.33), it does not satisfy (5.34). However,
as shown in [31] the function Ṽ , ln(V + 1) satis�es both (5.33) and (5.34), since

˙̃V ≤ − 1

V (φ) + 1
W (g1(φ1), g2(M3φ2)) (5.60a)

, −W̃ (φ) < 0, (5.60b)
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satis�es (5.33) and∥∥∥∥∥∂Ṽ∂φ
∥∥∥∥∥ ≤ 1

V + 1

(
δ‖φ2‖+ ‖g1(φ1)‖ ‖Λ1‖ ‖P ‖

)
(5.61a)

≤ δ ‖φ2‖
δ
2‖φ2‖2 + 1

+ ‖g1(φ)‖ ‖Λ1‖ ‖P ‖ (5.61b)

≤ C1, C1 > 0, (5.61c)

satis�es (5.34), where we used that ‖g1(φ)‖ is globally bounded.

5.C Reference Theorems

This appendix presents Theorem 2 and Proposition 2 from [93] which are used in
the stability proof of the closed-loop system in Section 5.4.

Theorem 5.5 ([93, Theorem 2]). Consider system (5.37) under the following
conditions:

1. Condition 5.2, 5.3, and 5.4 hold;

2. there exist α5, α
′
5 ∈ K such that

‖[LgV ]‖ ≤ α5(‖x1‖)α′5(‖x2‖) (5.62)

and for each r > 0 there exist λr, ηr > 0 such that

t ≥ 0, ‖x1‖ ≥ ηr =⇒ α5(‖x1‖) ≤ λrW (x1) (5.63)

Then, the solutions of (5.37) are uniformly globally bounded.

Proposition 5.1 ([93, Proposition 2]). Under Condition 5.1 and the conditions
of Theorem 5.3 the origin of (5.37) is UGAS.
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Chapter 6

Leader-Follower Synchronisation for

Underactuated Marine Vessels on

Curved Trajectories

This chapter considers leader-follower synchronisation for inhomogeneous multi-
agent systems with underactuated agents. In particular, we consider synchronisa-
tion of underactuated marine vessels on straight-line trajectories and curved paths.
The leader can be a vehicle with arbitrary dynamics as long as it moves in the same
space as the follower(s). The follower can be any type of marine vehicle described
by the nonlinear manoeuvring model that is introduced in Section 2.2. For for-
mation control purposes, each follower can again be the leader of other followers,
or all followers can have the same leader. Examples of possible con�gurations are
ASVs following an AUV as communication nodes during AUV search and survey
operations, or a �eet of ASVs manoeuvring by following a leader. Since we consider
an underactuated system, we need to take into account the full dynamic model
in the control design and analysis. In particular, since the system is underactu-
ated it is not possible to consider a purely kinematic model since then the internal
sway dynamics cannot be analysed. Moreover, for the case considered here it is
not possible to perform feedback linearisation of the full dynamics. The leader dy-
namics and the leader trajectories are assumed to be unknown. The leader is free
to move as it wants independently of the follower, while the follower has access to
measurements of the leader's position and velocity in the inertial frame for use in
its guidance law. If the follower uses controllers with acceleration feedforward, the
leader's acceleration and jerk also need to be measured. This includes cases where
there is communication between the leader and follower, but also when the follower
reads AIS measurements of the leader Kyrkjebø [84].

It should be noted that the leader-follower synchronisation scheme in this work
has its dual problem in trajectory tracking. Hence, the input signal of the leader
could easily be replaced by a virtual leader. This is true for most, if not all, leader-
follower type synchronisation schemes since the leader can always be represented as
a virtual vehicle with known trajectory and properties. However, when performing
trajectory tracking in most cases it is preferable to use information about the
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dynamics of the vehicle since then perfect tracking can be achieved for all types of
motions. When the leader dynamics and desired trajectory are not known a priori,
the followers' internal dynamics might be perturbed by the chosen leader motion.
Moreover when the strategy is applied in a chained form, i.e. followers become
leaders to other vehicles, the duality is lost. The stability properties derived in this
work will still hold with respect to each leader.

Preliminary results for this problem have been presented in Belleter and Pet-
tersen [16], where the followers' yaw rate was used as a parameter to limit the
motion of the follower to reduce the synchronisation error. However, in this work
the e�ect of the internal dynamics was not considered in the analysis of the guid-
ance. In this chapter we generalize the results of Belleter and Pettersen [16] by
analysing the complete closed-loop system including the fully actuated closed-loop
dynamics, the underactuated sway dynamics in addition to the synchronisation
error kinematics. We discuss the conditions to achieve synchronisation and the
physical meaning of these conditions. In particular, we show that the synchroni-
sation error kinematics become integral input-to-state stable (iISS) with respect
to changes in the velocity when coupled with the underactuated dynamics, i.e.
perfect synchronisation is not possible on trajectories that excite the underactu-
ated dynamics. Moreover, we also prove that the constant bearing guidance from
Breivik et al. [37] gives uniformly semiglobally exponentially stable (USGES) syn-
chronisation error kinematics with an explicit bound on the solutions, rather then
only showing uniformly global asymptotically stability and uniformly locally ex-
ponential stability through linearisation around the origin as proved in previous
work.

The work is organised as follows. In Section 6.1 the dynamic model for the fol-
lower and the constant bearing guidance algorithm are introduced. The closed-loop
behaviour is investigated in Section 6.2. Section 6.3 presents simulations consider-
ing di�erent scenarios. Finally Section 6.4 gives the conclusions of the work.

6.1 The Follower: Modelling and Control

This section presents the model for the follower and the guidance law for the
follower that is used to synchronise its motion to that of the leader. The leader-
follower synchronisation scheme is developed for a class of systems described by a
3-DOF manoeuvring model. This class of systems includes underactuated ASVs and
AUVs moving in the horizontal plane. However, it should be noted that the leader-
follower scheme and analysis can be extended to di�erent classes of systems with
similar properties such as unmanned aerial vehicles by considering the appropriate
dynamic model, control/guidance scheme, and appropriate disturbances.

6.1.1 The Vessel Model

In this section we consider the model for a surface vessel moving given in Chapter 2.
This model can be used to describe an autonomous surface vessel or an autonomous
underwater vehicle moving in a plane. Recall, that the model can be represented
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in component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (6.1a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (6.1b)

ψ̇ = r, (6.1c)

u̇r = Fur (vr, r) + τu, (6.1d)

v̇r = X(ur)r + Y (ur)vr, (6.1e)

ṙ = Fr(ur, vr, r) + τr, (6.1f)

which is clearly underactuated in sway. Therefore, tracking has to be achieved by
a suitable velocity and heading assignment that takes into account the underactu-
ation. For this purpose constant bearing guidance is used. The de�nitions of Fur ,
X(ur), Y (ur), and Fr are given by

Fur ,
1

m11
(m22vr +m23r)r −

d11

m11
ur, (6.2)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (6.3)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (6.4)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(6.5)

Note thatX(ur) and Y (ur) are bounded for bounded arguments and Y (ur) satis�es
the following assumption.

Assumption 6.1. It is assumed that Y (ur) satis�es

Y (ur) ≤ −Y min < 0, ∀ur ∈ [−Vmax, Umax].

with Umax the maximal surge speed of the follower.

Remark 6.1. This assumption is satis�ed for commercial vessels by design, since
Y (ur) ≥ 0 would imply an undamped or nominally unstable vessel in sway direc-
tion.

The ocean current is assumed to satisfy the following assumption.

Assumption 6.2. The ocean current is assumed to be constant and irrotational
w.r.t. n, i.e., Vc , [Vx, Vy, 0]T . Furthermore, it is bounded by Vmax > 0 such that

‖Vc‖ =
√
V 2
x + V 2

y ≤ Vmax.
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6.1.2 Constant Bearing Guidance

This subsection brie�y describes constant bearing guidance (CB) as presented in
Fossen [60] and Breivik and Fossen [35]. CB guidance assigns a desired velocity
based on two di�erent components expressed in the earth-�xed frame. The �rst
component is the velocity of the leader vnl = [ẋl, ẏl]

T which needs to be matched.
The second component is the follower-leader approach velocity vna which is propor-
tional, but upper-bounded by a maximum, to the relative position in the earth-�xed
frame between the follower and the leader p̃n = [x̃n, ỹn]T and is aligned along the
line-of-sight (LOS) vector. The superscript n denotes that the variable is expressed
in the earth-�xed frame. An illustration of the constant bearing guidance can be
seen in Figure 6.1. The desired velocity assignment for constant bearing guidance
is given by

vnd = vnl + vna , (6.6)

vna = −κ p̃n

‖p̃n‖ , (6.7)

with vnl the leader velocity, vna the approach velocity, and

p̃n , pn − pnl , (6.8)

is the LOS vector between the follower and the leader, where ‖p̃n‖ ≥ 0 is the
euclidean length of this vector and

κ = Umax
a

‖p̃n‖√
(p̃n)T p̃n + ∆2

p̃

, (6.9)

with Umax
a the maximum approach speed and ∆p̃ a tuning parameter to a�ect the

transient leader-follower rendezvous behaviour, which results in the synchronisation
error kinematics

˙̃pn = vnd − vnl = −Umax
a

p̃n√
(p̃n)T p̃n + ∆2

p̃

. (6.10)

From (6.7) and (6.9) it can be seen that as p̃n → 0 the approach speed goes
to zero and the velocity of the follower approaches the leader velocity. Conversely
when p̃n →∞ the approach velocity approaches Umax

a and the guidance commands
the maximum allowed velocity to close the gap.

Assumption 6.3. To assure that the problem is feasible we assume that the sum
of the magnitude of the leader velocity, the maximum approach speed, and ocean
current is smaller than the maximum feasible surge velocity of the follower Ufeas,
i.e.

‖vnl ‖+ Umax
a + ‖Vc‖ ≤ Ufeas (6.11)

for all t > 0. Moreover, the desired speed is required to be positive, and we therefore
need to assume that

‖vnl ‖ − Umax
a − ‖Vc‖ > 0 (6.12)

for all t > 0.
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Figure 6.1: Constant bearing guidance velocity assignments and position error.

Remark 6.2. Note that in order to converge to a point that is at a desired o�-
set w.r.t the leader pr, the position of the leader should be included in (6.8) as
pnl , pnl,true +R(ψl)pr where R(ψl) is a rotation matrix describing the orientation
of the leader. For curved paths the velocity vnl should then also be calculated in the
o�-set point to track the curvature with minimal error which requires the leader's
yaw rate.

As shown in Fossen [60] the stability and convergence of the CB guidance
scheme, i.e., (6.6)�(6.7) and (6.9), can be investigated using the positive de�nite,
radially unbounded Lyapunov function candidate (LFC)

V =
1

2
(p̃n)T p̃n. (6.13)

Time di�erentiation of (6.13) along the trajectories of p̃n gives

V̇ = (p̃n)T (vnd − vnl ) = −κ (p̃n)T p̃n

‖p̃n‖ (6.14a)

= −Ua,max
(p̃n)T p̃n√

(p̃n)T p̃n + ∆2
p̃

< 0, ∀ p̃n 6= 0 (6.14b)

with vnd − vnl = vna by de�nition. Hence, the origin p̃n = 0 is UGAS, which is the
result given in Fossen [60].

Note however that by de�ning

φ∗(t, p̃n) ,
Umax
a√

(p̃n)T p̃n + ∆2
p̃

(6.15)

which for each r > 0 and |p̃n(t)| ≤ r gives

φ∗(t, p̃n) ≤ Umax
a√

r2 + ∆2
p̃

, c∗(r) (6.16)
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which substituted in (6.14) gives

V̇ ≤ −2c∗(r)V (t, p̃n) (6.17)

for all |p̃n(t0)| ≤ r and any r > 0. The solutions of a linear system of the form
ẋ = −2c∗(r)x are given by

x(t) = e−2c∗(r)(t−t0)x(t0) (6.18)

so by applying the comparison lemma Khalil [82, Lemma 3.4] we have

V (t, p̃n) ≤ e−2c∗(r)(t−t0)V (t0, p̃
n(t0)) (6.19)

and consequently

‖p̃n(t)‖ ≤ ‖p̃n(t0)‖e−c∗(r)(t−t0) (6.20)

for all t > t0, |p̃n(t0)| ≤ r, and any r > 0. Therefore, we can conclude that (6.10)
is a USGES system according to Loría and Panteley [95, De�nition 2.7], a result
which has not previously been shown in Fossen [60].

Theorem 6.1. Using the constant bearing guidance scheme, i.e. (6.6)-(6.7) and
(6.9), the origin of the synchronisation error kinematics (6.10) is uniformly semi-
globally exponentially stable.

The desired heading ψd and its derivative, the desired yaw rate rd, are calculated
by extracting heading information from the inner and outer products of the desired
velocity vnd and the actual velocity vn [37]. This assures that vn is aligned with vnd .
Moreover, since it provides us with course, and equivalently heading, information
it allows for compensation of the environmental disturbance. More details about
constant bearing guidance can be found in Fossen [60] and the references therein.

6.1.3 The Controller

The control goals are

lim
t→∞

p̃n = 0, (6.21)

lim
t→∞

ṽn , vn − vnd = 0, (6.22)

which corresponds to synchronisation with the leader, i.e., that the follower vessel
follows the leader, with a constant desired relative position and the same inertial
frame velocity. Note that the body frame velocity may be di�erent due to di�erences
in actuation topology etc. In this section, we present feedback linearising controllers
using the desired velocity and heading angle from 6.1.2, in order to achieve these
control goals. In the following section it will be shown that the feasibility of these
goals depends on the type of motion the leader executes.

Since the follower is underactuated we can not directly control the velocity in
the earth-�xed coordinates, but rather the forward velocity and yaw rate in body-
�xed coordinates. Therefore, we transform the velocity error in the earth-�xed
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frame to an error in the body-�xed frame using the coordinate transformation ψ̃ũr
ṽr

 =

1 0 0

0 cos(ψ̃ + ψd) sin(ψ̃ + ψd)

0 − sin(ψ̃ + ψd) cos(ψ̃ + ψd)

[ ψ̃
ṽn

]
. (6.23)

It is straightforward to show that the Jacobian of this transformation is given by

∂T

∂(ψ̃, ṽn)
=

 1 0 0
−ṽnx s(·) + ṽny c(·) c(·) s(·)
−ṽnxc(·)− ṽny s(·) −s(·) c(·)

 (6.24)

with s(·) = sin(ψ̃ + ψd) and c(·) = cos(ψ̃ + ψd). The Jacobian (6.24) can easily be
veri�ed to be non-singular. Consequently, T is a global di�eomorphism. A physical
interpretation of this is that when ψ̃ is driven to zero, i.e., vn is aligned with vnd by
the CB guidance algorithm, the relative surge velocity error can be used to control
vn to vnd . Note that perturbation of the underactuated sway motion will disturb
this balance which will be shown in the analysis of the next section.

Remark 6.3. For the underactuated model considered here only ũr = ur − ud
can be used for control purposes, while for the fully actuated case ṽr = vr − vd
could be used to control the sway velocity and the perturbation problem does not
exist. For the underactuated case the heading controller needs to assure that vn

is aligned with vnd and the control action can be prescribed solely by the surge
actuator, something which prevents the magnitude from being matched on curved
trajectories and in the presence of accelerations.

Remark 6.4. Note that the coupling between the heading and velocity control is
what allows for disturbance rejection. Since if a larger (or smaller) velocity is needed
to compensate for the e�ect of the current, the heading controller will assure that
the vessel is rotated such that vn and vnd are aligned and hence the vessel keeps
the correct course.

We will use the following feedback linearising P controller for the surge velocity:

τu =− Fur (vr, r) + u̇d − kur (ur − ud), (6.25)

with kur > 0 a constant controller gain.
Using (6.25) we can control ur towards ud provided that we have the accelera-

tion of the leader available to calculate u̇d, but we cannot directly control vr. Along
the lines of Breivik et al. [37] we aim to control vr indirectly by using a proper yaw
rate controller. Following Breivik et al. [37] we have for χ̃ = χ− χd:

sin(χ̃) =
vnd × vn
‖vnd ‖‖vn‖

=
ẏvnd,x − ẋvnd,y√(

(vnd,x)2 + (vnd,y)2
)

(ẋ2 + ẏ2)

(6.26a)

cos(χ̃) =
(vnd )Tvn

‖vnd ‖‖vn‖
=

ẋvnd,x + ẏvnd,y√(
(vnd,x)2 + (vnd,y)2

)
(ẋ2 + ẏ2)

(6.26b)
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tan(χ̃) =
vnd × vn
(vnd )Tvn

=
ẏvnd,x − ẋvnd,y
ẋvnd,x + ẏvnd,y

⇒ χ̃ = −atan2(ẏvnd,x − ẋvnd,y, ẋvnd,x + ẏvnd,y)

(6.26c)

where χ̃ , ψ−ψd+β−βd , ψ̃+ β̃ with β̃ the di�erence in side-slip angle between
di�erent orientations. We can thus de�ne

ψd − β̃ = ψ − atan2(ẏvnd,x − ẋvnd,y, ẋvnd,x + ẏvnd,y) (6.27)

Note that from (6.26) we also have

˙̃χ =
ẋÿ − ẏẍ
ẋ2 + ẏ2

+
vnd,y v̇

n
d,x − vnd,xv̇nd,y

(vnd,x)2 + (vnd,y)2
(6.28)

so we can write

rd − ˙̃
β = r − ẋÿ − ẏẍ

ẋ2 + ẏ2
−
vnd,y v̇

n
d,x − vnd,xv̇nd,y

(vnd,x)2 + (vnd,y)2
(6.29a)

, r −R1(ur, vr, ẋ, ẏ,v
n
d )r −R2(vnd , v̇

n
d )−R3(ur, vr, ẋ, ẏ,v

n
d , v̇

n
d ) (6.29b)

where vbc,u , Vx cos(ψ) + Vy sin(ψ) and vbc,v , Vx sin(ψ) − Vy cos(ψ) are the com-
ponents of the current expressed in the body frame axis and

R1(·) ,
u2
r + v2

r + V 2
x +X(ur)(ur + vbc,u)− vrvbc,v + urv

b
c,u − vnd,x(Vx − vr sin(ψ))

u2
r + v2

r + 2(urvbc,x + vrvbc,y) + V 2
x + V 2

y

+
−(vnd,y(vr − vbc,v)− vnd,xvbc,u) cos(ψ) + cos2(ψ)(V 2

y − V 2
x )

u2
r + v2

r + 2(urvbc,x + vrvbc,y) + V 2
x + V 2

y

≤ Cmax
R1

R2(·) ,
vnd,y v̇

n
d,x − vnd,xv̇nd,y

(vnd,x)2 + (vnd,y)2

R3(·) , Y (ur)vr(ur + vbc,u) + kur (ur − ud)(vr − vbc,v)
u2
r + v2

r + 2(urvbc,x + vrvbc,y) + V 2
x + V 2

y

+
v̇nd,x(vbc,u − vr) cos(ψ) + v̇nd,y(Vx − vr sin(ψ)− vbc,u cos(ψ))

u2
r + v2

r + 2(urvbc,x + vrvbc,y) + V 2
x + V 2

y

≤ CR3

Note that R1 can be bounded by the constant Cmax
R1

since R1 has the same growth
rate in vr and ur for the denominator and numerator while the ocean current
components are bounded (in body frame) and constant (in inertial frame). The
term R3 can be bounded by the constant CR3 since the denominator and numerator
grow at the same rate with respect to vr and ur and the current is bounded. Note
that the denominator of R1, R2, and R3 are larger than zero for nonzero ‖vn‖ and
‖vnd ‖ which is veri�ed by Assumption 6.3. Boundedness of R2 will be considered
later since its numerator grows linearly with vr and its denominator does not grow
with vr.

Since the inertial frame velocities, i.e. ẋ and ẏ, are measured Vx and Vy can
be substituted in expression (6.29) using the model equations (6.1a) and (6.1b)
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respectively for implementation purposes. Alternatively a kinematic ocean current
observer as in Aguiar and Pascoal [2] can be used to estimate ẋ, ẏ, Vx, and Vy based
on measurements of the positions and relative velocities. Hence, all the variables in
(6.29) are known and can thus be substituted in the yaw rate controller. A further

derivative of (6.29) can be taken to obtain ψ̈d − ¨̃
β as an acceleration feedforward.

Note that this will also require knowledge of the jerk of the leader motion since it
contains Ṙ2(vnd , v̇

n
d ) and Ṙ3(ur, vr, ẋ, ẏ,v

n
d , v̇

n
d ).

To control the yaw rate we use the following controller:

τr = −Fr(ur, vr, r) +
1

R1(ur, vr, ẋ, ẏ,vnd )

(
− Ṙ1(ur, vr, ẋ, ẏ,v

n
d )r − Ṙ2(vnd , v̇

n
d )

− Ṙ3(ur, vr, ẋ, ẏ,v
n
d , v̇

n
d )− kψ(ψ − ψd + β̃)− kr(ψ̇ − ψ̇d +

˙̃
β)
)

(6.30a)

= −Fr(ur, vr, r) +
1

R1(ur, vr, ẋ, ẏ,vnd )

(
− Ṙ1(ur, vr, ẋ, ẏ,v

n
d )r − Ṙ2(vnd , v̇

n
d )

− Ṙ3(ur, vr, ẋ, ẏ,v
n
d , v̇

n
d )− kψχ̃− kr ˙̃χ

)
(6.30b)

with kψ > 0 and kr > 0 constant controller gains. This control action is well de�ned
if R1(ur, vr, ẋ, ẏ,v

n
d ) satis�es certain conditions, which is something discussed in

the following when considering the boundedness of r. We introduce the vector

ξ , [ũr, χ̃, ˙̃χ]T , with the tracking errors ũr , ur − ud, χ̃ , ψ̃ + β̃, and ˙̃χ , ˙̃
ψ − ˙̃

β.
The dynamics of ξ can be found by applying the controllers (6.25) and (6.30) to
the dynamical system (6.1) resulting in:

ξ̇ =

−kur 0 0
0 0 1
0 −kψ −kr

 ξ , Σξ. (6.31)

The system (6.31) is linear and time-invariant and kur , kψ, and kr are strictly
positive. Consequently, Σ is Hurwitz and the origin of (6.31) is uniformly globally
exponentially stable and hence the controllers guarantee exponential tracking of
the desired surge velocity and course.

Note that through the assignment of (6.30) we use the heading controller to
perform course control, i.e. we force the direction of vnd and vn to be equal. To
investigate how the course controller a�ects r we start by rewriting (6.29) to obtain

r =
1

R1(ur, vr, ẋ, ẏ,vnd )

(
˙̃χ−R2(vnd , v̇

n
d )−R3(ur, vr, ẋ, ẏ,v

n
d , v̇

n
d )
)

(6.32)

This function is well de�ned if the numerator of R1 given in (6.29) is larger than
zero. This condition is satis�ed if ud is su�ciently large at all time and if ur starts
su�ciently close to ud The term ˙̃χ/R1 will be bounded since ˙̃χ is bounded and R1

is bounded by constant CR1 as shown earlier. The same holds for the term R3/R1.
The term R2/R1 however grows linearly in vr since v̇nd,x and v̇nd,y depend linearly
on vr since the derivative of the approach speed vna depends on ẋ and ẏ. When
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(6.32) is substituted in (6.1e) the linear growth will assure that there is no �nite
escape time for vr but some conditions have to be satis�ed to show boundedness.
Summarizing the above we have that the course controller results in a well de�ned
yaw rate if the following condition is satis�ed.

Condition 6.1. If the numerator of R1 is strictly larger than zero, then the
yaw rate equation (6.32) is well de�ned and bounded. In particular, besides be-
ing upper-bounded there also exists a lower bound for R1 such that 0 < Cmin

R1
≤

R1(ur, vr, ẋ, ẏ).

Remark 6.5. Condition 6.1 is satis�ed for a su�ciently large desired surge velocity
ud if ur starts in a neighbourhood of ud. Further analysis has to be performed to
�nd the precise physical meaning of the bound, but it appears to be that inertial
frame velocity vector has to have a positive magnitude for all time. This can be
satis�ed by keeping the surge velocity ur su�ciently large to be able to dominate
the e�ects of the ocean current and the sway velocity vr. In particular, if the
inertial frame velocity vector would have a zero crossing, the rotation would change
instantaneously and when the magnitude of the inertial frame velocity vector is zero
then the desired rotation is unde�ned.

Remark 6.6. Note that Condition 6.1 is a condition that plays a role in the initial
behaviour when the di�erence between the initial orientation of the follower and
the leader is large, e.g. if they point in opposite directions. In this case ud obtained
from (6.23) needs to be saturated to a lower bound such that it stays positive and
well de�ned. As soon as the follower is oriented in the same direction as the leader
Condition 6.1 is easily satis�ed for physically sensible motions of the leader and ud
can simply be obtained from (6.23).

The term R2 can be interpreted as dependent on the desired curvature of the
motion. In particular it can be rewritten as R2 = ‖vnd ‖κ where κ denotes the
curvature of the desired trajectory. This term grows linearly with the inertial frame
velocities of the follower since it depends on v̇na

R2(vnd , v̇
n
d ) =

vnd,y v̇
n
d,x − vnd,xv̇nd,y

(vnd,x)2 + (vnd,y)2
=
vnd,y v̇

n
l,x − vnd,xv̇nl,y

(vnd,x)2 + (vnd,y)2
+
vnd,y v̇

n
a,x − vnd,xv̇na,y

(vnd,x)2 + (vnd,y)2
(6.33)

which using the transformation (6.23) can be bounded by

R2 ≤
Umax
a ṽr

(vnd,x)2 + (vnd,y)2

 vnd,y + vnd,x√
x̃2 + ỹ2 + ∆2

p̃

+
vnd,y(x̃2 + x̃ỹ) + vnd,x(ỹ2 + x̃ỹ)

(x̃2 + ỹ2 + ∆2
p̃)

3/2

+ CR2

, R′2ṽr + CR2
(6.34)

where CR2
is some constant which magnitude will depend on the leader's velocity

and acceleration. Note that the term R′2 is uniformly bounded for desired velocities
greater than zero and that it decreases as the positional error grows. Moreover, it
contains two parameters that can be tuned, i.e. the maximum approach speed
Ua,max and the interaction tuning parameter ∆p̃. Hence, these tuning parameters
can be used to in�uence the interaction behaviour between r and vr.
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6.2 Closed-Loop Analysis

In this section the closed-loop system, i.e. the fully actuated closed-loop dynamics,
the underactuated sway dynamics, and the synchronisation error kinematics, are
investigated. In particular, the closed-loop path-following error kinematics and dy-
namics for (6.1) with the proposed leader-follower synchronisation scheme is given
by:

˙̃pn = − Umax
a p̃n√

(p̃n)T p̃n + ∆2
p̃

+

[
ũr cos(χ̃− β̃ + ψd)− ṽr sin(χ̃− β̃ + ψd)

ũr sin(χ̃− β̃ + ψd) + ṽr cos(χ̃− β̃ + ψd)

]
(6.35a)

˙̃vr = Y (ur)ṽr +X(ur)r − v̇d − Y (ur)vd (6.35b)

ξ̇ = Σξ (6.35c)

where vd and v̇d can be veri�ed to be given by:

vd = (Vx − vnd,x) sin(ψ)− (Vy − vnd,y) cos(ψ) (6.36)

v̇d = −v̇nd,x sin(ψ) + (Vx − vnd,x)r cos(ψ) + v̇nd,y cos(ψ) + (Vy − vnd,y)r sin(ψ)

= −(v̇nd,x + v̇na,x + (Vy − vnd,y)r) sin(ψ) + (v̇nl,y + v̇na,y + (Vx − vnd,x)r) cos(ψ)

(6.37)

with vd bounded for a bounded leader velocity. The equation for v̇d depends on
v̇na,x, v̇

n
a,y, and r which will depend on ṽr. However as in (6.34) we can derive a

bound for v̇d

v̇d ≤

‖Vc − vnd ‖2R′2
Cmin
R1

+
Umax
a√

x̃2 + ỹ2 + ∆2
p̃

(
1 +

(x̃+ ỹ)2

x̃2 + ỹ2 + ∆2
p̃

) ṽr + C2 (6.38a)

≤ C3ṽr + C2 (6.38b)

where C2 is a constant which will depend on the leader's maximum velocity and
acceleration and on the magnitude of the ocean current. The magnitude of the
constant C3 can again be adjusted by tuning Umax

a and ∆p̃.

Please note that the terms perturbing the CB path-following error system in
(6.35a) compared to (6.10) arise since we here do not only consider the kine-
matic model, but instead take into account the (underactuated) dynamics given in
(6.35b)-(6.35c). We thus take into account that the desired inertial frame velocity
may not be matched since part of the error in the inertial frame velocity error is
transferred to the sway direction as seen in (6.23).

In order to not violate Condition 6.1 we analyse the system (6.35) under the
following assumption.

Assumption 6.4. The desired relative surge velocity is saturated to a su�ciently
large lower bound ud,min such that Condition 6.1 is not violated. It is assumed that
there exists such a lower bound that satis�es ud,min < ‖vnd ‖, i.e. that the leader
velocity can be matched without violating Condition 6.1.
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Since ur = ud is a stable equilibrium point the surge velocity dynamics, for any
δ > 0 there exists a positively invariant neighbourhood of the equilibrium point
such that all solutions originating in this neighbourhood satisfy |ur − ud| < δ.
Therefore in the remainder we only consider solutions starting in the neighbourhood
of ur = ud such that Condition 6.1 is not violated and there are no �nite escape
times.

Since substituting (6.32) in (6.35b) shows that there is no �nite escape time
for vr and the tracking dynamics (6.35c) are UGES, it su�ces to investigate local
boundedness of vr near the set where ur − ud ≤ δ such that r is well de�ned.
Therefore we consider the system

˙̃vr = Y (ur)ṽr +X(ur)r − v̇d − Y (ur)vd (6.39)

We substitute (6.32) and we obtain

˙̃vr = Y (ur)ṽr +
X(ur)

R1(ur, vr, ẋ, ẏ,vnd )

(
˙̃χ−R2(vnd , v̇

n
d )−R3(ur, vr, ẋ, ẏ,v

n
d , v̇

n
d )
)

− v̇d − Y (ur)vd
(6.40)

Using the following Lyapunov function we show boundedness for all solutions start-
ing in the neighbourhood of ur = ud by considering the Lyapunov function

V (ṽr) =
1

2
ṽ2
r (6.41)

The derivative of (6.41) along the solutions of (6.39) is given by

V̇ (ṽr) = Y (ur)ṽ
2
r +

X(ur)
(

˙̃χ−R2(vnd , v̇
n
d )−R3(ur, vr, ẋ, ẏ,v

n
d , v̇

n
d )
)

R1(ur, vr, ẋ, ẏ,vnd )
ṽr

+ (v̇d − Y (ur)vd) ṽr

(6.42a)

≤ −
(
|Y min| − |X

max|R′2
Cmin
R1

− C3

)
ṽ2
r +
|Xmax|

(
| ˙̃χ|+ CR2

+ CR3

)
Cmin
R1

ṽr

+ (C2 + |Y max|vd)ṽr
(6.42b)

where Y min, Y max, and Xmax are the minimum and maximum values over the
interval of velocities considered and will exist for su�ciently small δ. From which
we can conclude boundedness if

|Y min|
|Xmax| >

|R′2|
Cmin
R1

+
C3

|Xmax| (6.43)

which is a bound that depends on the leader motion, the environmental disturbance,
and parameters Umax

a and ∆p̃. From (6.34) and (6.38) we can see that the term
R′2 can be tuned using the parameters Umax

a and ∆p̃. In particular, if we increase
∆p̃, i.e. choose a smoother leader-follower rendez-vous behaviour, then the terms
R′2 and C3 will be reduced. Hence, condition (6.43) can be guaranteed to hold by
appropriate tuning of the constant bearing guidance algorithm and all solutions of
(6.35b) originating in a neighbourhood of ur = ud are uniformly bounded.
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Remark 6.7. Note that increasing ∆p̃ has an e�ect on the dissipating term in
(6.35a). In particular, it lowers the `gain' of the synchronisation around the origin,
i.e. the turning manoeuvre required will be less severe which has a positive e�ect on
(6.43), but the synchronisation error increases since the follower takes a smoother
trajectory.

We can now investigate the interconnection between (6.35a) and (6.35b). In
particular, we show that the synchronisation error kinematics are integral input-
to-state stable with respect to the output of (6.35b) and (6.35c). If we lump the
perturbations into a new input ν(t) , [ν1(t), ν2(t)]T we can rewrite (6.35a) as

˙̃pn = − Umax
a√

(p̃n)T p̃n + ∆2
p̃

p̃n + ν(t) (6.44)

If we consider the Lyapunov function

V (p̃n) =
(p̃n)T p̃n√

(p̃n)T p̃n + ∆2
(6.45)

we obtain

V̇ (p̃n) =
2(p̃n)T ˙̃pn√

(p̃n)T p̃n + ∆2
p̃

−

(
(p̃n)T ˙̃pn

) (
(p̃n)T p̃n

)
2
(

(p̃n)T p̃n + ∆2
p̃

)3/2
(6.46a)

≤ −2Umax
a (p̃n)T p̃n

(p̃n)T p̃n + ∆2
p̃

− Umax
a

(
(p̃n)T p̃n

)(
(p̃n)T p̃n + ∆2

p̃

)2 +
3

2
‖ν(t)‖ (6.46b)

≤ −2Umax
a (p̃n)T p̃n

(p̃n)T p̃n + ∆2
p̃

− Umax
a

(
(p̃n)T p̃n

)(
(p̃n)T p̃n + ∆2

p̃

)2 +
3
√

2

2
‖[ũr, ṽr]T ‖ (6.46c)

The �rst two terms are clearly negative de�nite and the third term is a class
K function of the input. Consequently, (6.45) is an iISS Lyapunov function for
(6.35a) [6] (see De�nition A.6) and the system (6.35a) is iISS (see De�nition A.5)
with respect to ũr and ṽr. The results of this section can be summarised in the
following theorem.

Theorem 6.2. Consider the system (6.35). Under Assumptions 6.2-6.4 all the
solutions of (6.35) starting in a neighbourhood of ur = ud are bounded if the CB
guidance algorithm is tuned such that it holds that

|Y min|
|Xmax| >

|R′2|
Cmin
R1

+
C3

|Xmax| (6.47)

for the given leader motion. Moreover, the synchronisation error kinematics (6.35a)
are integral input-to-state stable with respect to the output of (6.35b)-(6.35c).
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Table 6.1: Simulation parameters.

Variable Value Unit Variable Value Unit
Ua,max 2 m/s kψ 0.04 -
∆p̃ 500 m kr 0.9 -
Vx -1.1028 m/s kur 0.1 -
Vy 0.8854 m/s

Corollary 6.3. If the leader trajectory is a straight-line with constant velocity
then, under the conditions of Theorem 6.2, the synchronisation error converges to
zero.

Proof. In this case the course of the leader and its inertial frame velocity are
constant. Therefore, as the follower synchronizes with the leader its course will
converge to the leader's course. Since ṽr is not directly controllable the only stable
con�guration the follower can be regulated to, to keep a constant course, will be
when r → 0 and vr → 0. Consequently, both ṽr and ũr go to zero and we arrive
at the unperturbed version of (6.35a), i.e. (6.10), which has a USGES equilibrium
according to Theorem 6.1.

6.3 Simulations

In this section two scenarios are used as case studies to validate the control strategy

1. the leader moves along a straight-line path that is at an angle with respect
to the earth-�xed frame.

2. the leader moves along a sinusoidal path.

In both cases the follower ship is a�ected by a constant ocean current. The leader
is represented by a point moving in the horizontal plane that is to be followed.
This allows for a very straightforward implementation of the desired path and
illustrates that the leader dynamics are not needed for the control strategy. Some
parameters for the simulations are given in Table 6.1. This includes the parameters
for the controllers and guidance law, and the magnitude of the ocean current. The
follower vessel in the simulation is described by the ship model from Fredriksen
and Pettersen [63], which is given in Section C.1.

6.3.1 Straight-line Path Following

The motion of the leader and the follower in the horizontal plane can be seen in
Figure 6.2. From Figure 6.2 it can be seen that the follower converges to the tra-
jectory of the leader and compensates for the current by side-slipping to maintain
the desired path. The side-slipping is a desired result of the control strategy and
is necessary to remain on the straight-line path in the presence of ocean currents.
In particular, since the vessel is underactuated in sway, a side-slip angle w.r.t. the
path is necessary to compensate for the force pushing the vessel in the transverse
direction of the path. Since the desired heading angle is calculated from the inner
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and outer products of the desired and actual velocity, the desired angle is the angle
for which the velocity error is zero, which is the necessary side-slip angle.
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Figure 6.2: Motion in the horizontal plane.

The synchronisation error in x and y can be seen in Figure 6.3. Figure 6.3
clearly shows that x̃n and ỹn converge to zero. Hence, target tracking or leader-
follower synchronisation with zero synchronisation error is attained for straight-line
motions with rd → 0 which is in-line with our analysis of Section 6.2.

6.3.2 Sinusoidal Path Following

In the second case study the leader generates a sinusoidal reference for the follower
which demands a constantly changing desired yaw rate. Hence, the synchronisation
error kinematics are perturbed.

The trajectory of the leader and the follower for tracking of a sinusoidal path
can be seen in Figure 6.4. From Figure 6.4 it can be seen that the follower gets
close to the trajectory of the leader and compensates for the current to maintain
the desired path. Figure 6.5 shows the position synchronisation error in the x and
y direction. From Figure 6.5 it can be seen that the synchronisation error in x
decreases to below an amplitude of about 1.5 meters, while the error in y direction,
which is the direction transversal to the propagation of the sinusoid and most prone
to drift, decreases to below 2.5 meter. Note that the error plots are asymmetric
due to the vessel changing its direction with respect to the current which causes
di�erent behaviour.
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Figure 6.3: x (top) and y (bottom) synchronisation error.

The behaviour in the test-case is in-line with the analysis of Section 6.2 since
we have convergence from large initial errors, the follower converges towards the
trajectory of the leader. When the follower is close to the leader the follower exhibits
integral input-to-state stable behaviour and stays in a neighbourhood of the leader
dependent on the size of the desired yaw rate to track this motion.

6.4 Conclusions

This chapter has presented and analysed a control scheme for leader-follower syn-
chronisation for inhomogeneous multi-agent systems consisting of an underactuated
follower and a leader vessel with unknown dynamics. The developed leader-follower
scheme can be applied to multi-agent systems with underactuated follower agents
that are subjected to environmental disturbances. The dynamics of the leader is
unknown, and the leader may be fully actuated or underactuated. Position and
velocity measurements of the leader are available to the follower for use in the
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Figure 6.4: Motion in the horizontal plane.

guidance law. If the follower uses controllers with acceleration feedforward, accel-
eration and jerk measurements of the leader also need to be available to the follower.
The leader is free to move as it wants independently of the follower(s), and can for
instance be manually controlled. The follower thus has no information about the fu-
ture motion of the leader. The follower uses a constant bearing guidance algorithm
to track the leader. The constant bearing guidance algorithm is shown to provide
USGES synchronisation error kinematics with an explicit bound on the solutions.
The constant bearing guidance algorithm is then coupled to controllers designed for
the underactuated follower vehicle. This results in a closed-loop system consisting
of the fully actuated controlled dynamics, underactuated dynamics, and synchroni-
sation error kinematics. The solutions of the underactuated and the fully actuated
dynamics, have been shown to be bounded under certain conditions. Furthermore,
the synchronisation error kinematics has been shown to be integral input-to-state
stable with respect to changes in the unactuated sway velocity. Moreover, it has
been shown that synchronisation can be achieved when the leader moves along a
straight-line since in this case the perturbation of the underactuated dynamics to
the synchronisation error kinematics vanishes. The validity of the control scheme
has been shown in a case study.
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Figure 6.5: x (top) and y (bottom) synchronisation error.
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Chapter 7

Observer Based Path Following for

Underactuated Marine Vessels in the

Presence of Ocean Currents:

A Local Approach

In this chapter a solution to the problem of following a curved path in the presence
of a constant ocean current disturbance is presented. The path is parametrised by a
path variable that is used to propagate a path-tangential reference frame. The up-
date law for the path variable is chosen such that the motion of the path-tangential
frame ensures that the vessel remains on the normal of the path-tangential refer-
ence frame. As shown in the seminal work [124] such a parametrisation is only
possible locally. A tube is de�ned in which the aforementioned parametrisation is
valid and the path-following problem is solved within this tube. The size of the
tube is proportional to the size of the curvature of the path. The locality of this
approach is a disadvantage. The advantage of this local parametrisation that keeps
the vessel on the normal is that the path-following error is always de�ned as the
shortest distance to the path.

To achieve path following we use a line-of-sight guidance law that is combined
with an observer to estimate the unknown ocean current. The closed-loop sys-
tem of the vessel with the observer and controller is investigated by �rst showing
boundedness of the sway velocity and then showing global asymptotic stability of
the path-following errors within the tube. Since the current is unknown the ves-
sel cannot be guaranteed to stay within the tube for an arbitrary current and an
arbitrary curvature of the path. Hence, the initial estimation error for the current
might cause a transient that takes the vessel out of the tube if the actual curva-
ture of the path is close to the maximally feasible curvature for the vessel. This
maximally feasible curvature is dependent on the parameters of the ship and the
desired path-following velocity.

The outline of the chapter is as follows. In the Section 7.1 the vessel model from
Section 2.2 is recalled. The path-following problem and the chosen path parametri-
sation are introduced in Section 7.2. Section 7.3 presents the ocean current observer

125



7. Observer Based Path Following: A Local Approach

that is used together with the guidance law and controllers. The closed-loop sys-
tem is then formulated and analysed in Section 7.4. A simulation case study is
presented in Section 7.5 and conclusions are given in Section 7.6. The material in
this chapter is based on Maghenem et al. [96].

7.1 Vessel Model

In this section we consider the model for a surface vessel given in Chapter 2. This
model can be used to describe an autonomous surface vessel or an autonomous
underwater vehicle moving in a plane. Recall, that the model can be represented
in component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (7.1a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (7.1b)

ψ̇ = r, (7.1c)

u̇r = Fur (vr, r)− d11
m11

ur + τu, (7.1d)

v̇r = X(ur)r + Y (ur)vr, (7.1e)

ṙ = Fr(ur, vr, r) + τr, (7.1f)

The functions X(ur), Y (ur), Fu, and Fr are given by

Fur (vr, r) ,
1

m11
(m22vr +m23r)r, (7.2a)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (7.2b)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (7.2c)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(7.2d)

Note that the functions X(ur) and Y (ur) are linear functions of the velocity. The
kinematic variables are illustrated in Figure 7.1. As speci�ed in Chapter 2, the
ocean current satis�es the following assumption.

Assumption 7.1. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc , [Vx, Vy, 0]T . Furthermore, it is bounded

by Vmax > 0 such that ‖Vc‖ =
√
V 2
x + V 2

y ≤ Vmax.

Moreover, for the considered range of values of the desired surge velocity urd
the following assumption holds.

Assumption 7.2. It is assumed that Y (ur) satis�es

Y (ur) ≤ −Ymin < 0, ∀ur ∈ [−Vmax, urd],
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i.e. Y (ur) is negative for the range of desired velocities considered.

Remark 7.1. Assumptions 7.2 is satis�ed for commercial vessels by design, since
the converse would imply an undamped or nominally unstable vessel in sway.

Additionally we assume that the following assumption holds

Assumption 7.3. It is assumed that 2Vmax < urd(t) ∀t, i.e. the desired relative
velocity of the vessel is larger than the maximum value of the ocean current.

Assumption 7.3 assures that the vessel has enough propulsion power to over-
come the ocean current a�ecting it. The factor two in Assumption 7.3 adds some
extra conservativeness to bound the solutions of the ocean current observer, this is
discussed further in Section 7.3.

Figure 7.1: De�nition of the ship's kinematic variables.

7.2 Problem de�nition

The goal is to follow a smooth path P , parametrised by a path variable θ, by appro-
priately controlling the ship's surge velocity and yaw rate. For an underactuated
vessel, path following can be achieved by positioning the vessel on the path with
the total velocity ut ,

√
u2
r + v2

r (see Figure 7.1) tangential to the path. To express
the path-following error we propagate a path-tangential frame along P such that
the vessel will be on the normal of the path-tangential frame at all time. This is
illustrated in Figure 7.2. The preceding implies that the progression of the path-
tangential frame is controlled such that the path-following error takes the form:

[
xb/p
yb/p

]
=

[
cos(γp(θ)) sin(γp(θ))
− sin(γp(θ)) cos(γp(θ))

] [
x− xP (θ)
y − yP (θ)

]
(7.3a)

=

[
0
yb/p

]
, (7.3b)
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where γ(θ) is the angle of the path with respect to the X-axis, xb/p is the deviation
from the normal in tangential direction, and yb/p is the deviation from the tangent

in normal direction. The time derivative of the angle γ(θ) is given by γ̇(θ) = κ(θ)θ̇
where κ(θ) is the curvature of P at θ. The goal is to regulate xb/p and yb/p to zero.

7.2.1 Locally valid parametrisation

The error in the tangential direction xb/p will be kept at zero by the choice of the
update law for the path variable θ, i.e. the vehicle is kept on the normal. It is well
known that such a parametrisation will only be unique locally [124]. In particular,
such a unique expression exists when the vehicle is closer to the path than the
inverse of the maximum curvature of the path, i.e. when yb/p < 1/κmax where
κmax is the maximum curvature of the path. Note that this is equivalent to being
closer than the radius of the smallest inscribed circle of the path. To design such a
parametrisation we �rst consider the error dynamics of the vessel with respect to
the path frame, which is given by:

ẋb/p = −θ̇(1− κ(θ)yb/p) + ut cos(χ− γp(θ)) + VT , (7.4a)

ẏb/p = ut sin(χ− γp(θ)) + VN − κ(θ)θ̇xb/p, (7.4b)

where χ , ψ + β is the course angle (see Figure 7.1) and VT , Vx cos(γp(θ)) +

Vy sin(γp(θ)) and VN , Vy cos(γp(θ))− Vx sin(γp(θ)) are the ocean current compo-
nent in the tangential direction and normal direction of the path-tangential refer-
ence frame, respectively. Consequently, if the path variable θ is updated according
to

θ̇ =
ut cos (χ− γp(θ)) + VT

1− κ(θ)yb/p
, (7.5)

the vessel stays on the normal when it starts on the normal. In particular, substi-
tution of (7.5) in (7.4a) results in ẋb/p = 0. To make sure that the update law (7.5)
is well de�ned the following condition should be satis�ed

Condition 7.1. To have a well de�ned update law for the path variable θ it should
hold that

1− κ(θ)yb/p 6= 0 (7.6)

for all time.

Note that Condition 7.1 implies that the update law is well de�ned within the
tube of radius yb/p < 1/κmax which results in the parametrisation being only locally
valid.

The update law (7.5) depends on the current component VT . However, since
the current is assumed unknown we have to replace VT by its estimate V̂T ,
V̂x cos(γ(θ)) + V̂y sin(γ(θ)). Consequently, (7.3b) does not hold until the current is
estimated correctly. Therefore, (7.3) takes the form[

xb/p
yb/p

]
=

[
cos(γ(θ)) sin(γ(θ))
− sin(γ(θ)) cos(γ(θ))

] [
x− xP (θ)
y − yP (θ)

]
. (7.7)
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Figure 7.2: De�nition of the path.

To force (7.7) to become equal to (7.3) once the ocean current is estimated correctly
we augment (7.5) to be

θ̇ =
ut cos (χ− γp(θ)) + V̂T + kδxb/p

1− κ(θ)yb/p
, (7.8)

such that the path-tangential reference frame propagates based on an estimate of
the ocean current and has a restoring term to drive xb/p to zero. Hence, substituting
(7.8) in (7.4a) gives

ẋb/p = −kδxb/p + ṼT , (7.9)

which shows that if the estimate of the current has converged the restoring term
kδxb/p remains to drive xb/p to zero after which the vessel remains on the normal
of the path-tangential frame.

The dynamics of the error along the normal are given by

ẏb/p = ut sin(χ− γp(θ)) + VN − xb/pκ(θ)θ̇. (7.10)

In the next section a guidance law is chosen to stabilise the origin of the dynamics
(7.9)-(7.10) and achieve the goal of path following.

Note that since the path parametrisation is only local, we can only utilise it
within a tube around the path with radius 1/κmax. To achieve global results this
tube needs to be made attractive and invariant, such that the vehicle �rst converges
to the tube after which the unique parametrisation to achieve path-following can be
used. The disadvantage of this is that a two-step approach is needed to solve the
path-following problem, which complicates the analysis. There is, however, also
a big advantage to this approach, since extra design freedom is available when
making the tube attractive. This allows one to design the approach behaviour and
convergence when far from the path, while for a global one-step approach this is in
general not possible to do independently of the behaviour close to the path. Hence,
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for the one-step approach the global behaviour will be a compromise between the
desired behaviour far away from the path and the desired behaviour close to the
path. For the two-step approach, the behaviour far away from the path and close
to the path can be optimised independently. This, for instance, allows strategies
where the vehicle moves along the normal of the path to reach the path as fast as
possible. Moreover, in cluttered environments this allows the vessel to converge to
the path along a clearly de�ned approach path, after which it can switch to the
guidance strategy that allows it to follow the desired path P .

7.3 Controller, Observer, and Guidance

In this section we design the two control laws τu and τr, and the ocean current
estimator that are used to achieve path-following. In the �rst subsection we present
the velocity control law τu. The second subsection presents the ocean current esti-
mator. The third subsection presents the guidance to be used within the tube.

7.3.1 Surge velocity control

The velocity control law is a feedback-linearising P-controller that is used to drive
the relative surge velocity to a desired urd and is given by

τu = −Fur (vr, r) + u̇rd +
d11

m11
urd − ku(ur − urd), (7.11)

where ku > 0 is a constant controller gain. It is straightforward to verify that
(7.11) ensures global exponential tracking of the desired velocity. In particular,
when (7.11) is substituted in (7.1d) we obtain

˙̃ur = −ku(ur − urd) = −kuũr, (7.12)

where ũr , ur − urd. Consequently, the velocity error dynamics are described by
a stable linear systems, which assures exponential tracking of the desired velocity
urd.

7.3.2 Ocean current estimator

This subsection presents the ocean current estimator introduced in [2]. This ob-
server provides the estimate of the ocean current needed to implement (7.8) and
the guidance law developed in the next subsection. Rather than estimating the
time-varying current components in the path frame VT and VN the observer is
used to estimate the constant ocean current components in the inertial frame Vx
and Vy. The observer from [2] is based on the kinematic equations of the vehicle,
i.e. (7.1a) and (7.1b), and requires measurements of the vehicle's x and y position
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in the inertial frame. The observer is formulated as

˙̂x = ur cos(ψ)− vr sin(ψ) + V̂x + kx1
x̃ (7.13a)

˙̂y = ur sin(ψ) + vr cos(ψ) + V̂y + ky1 ỹ (7.13b)

˙̂
Vx = kx2

x̃ (7.13c)

˙̂
Vy = ky2 ỹ (7.13d)

where x̃ , x− x̂ and ỹ = y − ŷ are the positional errors and kx1
, kx2

, ky1 , and ky2
are constant positive gains. Consequently, the estimation error dynamics are given
by

˙̃x = Ṽx − kx1
x̃ (7.14a)

˙̃y = Ṽy − ky1 ỹ (7.14b)

˙̃Vx = −kx2 x̃ (7.14c)

˙̃Vy = −ky2 ỹ (7.14d)

which can be written in vector form as
˙̃x
˙̃y
˙̃Vx
˙̃Vy

 =


−kx1 0 1 0

0 −ky1 0 1
−kx2

0 0 0
0 −ky2 0 0



x̃
ỹ

Ṽx
Ṽy

 . (7.15)

which is a linear system with negative eigenvalues. Hence, the observer error dy-
namics are globally exponentially stable at the origin. Note that this implies that
also V̂T and V̂N go to VT and VN respectively with exponential convergence since
it holds that

V̂T = V̂x cos(γ(θ)) + V̂y sin(γ(θ)), (7.16a)

V̂N = −V̂x sin(γ(θ)) + V̂y cos(γ(θ)). (7.16b)

For implementation of the controllers it is desired that ‖V̂N (t)‖ < urd(t) ∀t. To
achieve this we �rst choose the initial conditions of the estimator as

[x̂(t0), ŷ(t0), V̂x(t0), V̂y(t0)]T = [x(t0), y(t0), 0, 0]T . (7.17)

Consequently, the initial estimation error is given by

[x̃(t0), ỹ(t0), Ṽx(t0), Ṽy(t0)]T = [0, 0, Vx, Vy]T , (7.18)

which has a norm smaller than or equal to Vmax according to Assumption 7.1. Now
consider the function

W (t) = x̃2 + ỹ2 +
1

kx2

Ṽ 2
x +

1

ky2
Ṽ 2
y , (7.19)
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which has the following time derivative

Ẇ (t) = 2x̃ ˙̃x+ 2ỹ ˙̃y +
2

kx2

Ṽx
˙̃Vx +

2

ky2
Ṽy

˙̃Vy

= 2x̃(Ṽx − kx1
x̃) + 2ỹ(Ṽy − ky1 ỹ)− 2Ṽy ỹ − 2Ṽxx̃

= −2kx1 x̃
2 − 2ky1 ỹ

2 ≤ 0.

(7.20)

This implies that W (t) ≤ ‖W (t0)‖. From our choice of initial conditions we know
that

‖W (t0)‖ =
1

kx2

V 2
x +

1

ky2
V 2
y ≤

1

min(kx2
, ky2)

V 2
max. (7.21)

Moreover, it is straightforward to verify

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤W (t). (7.22)

Combining the observations given above we obtain

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤
1

min(kx2
, ky2)

V 2
max. (7.23)

Consequently, we obtain

‖Ṽc(t)‖ ≤
√

max(kx2 , ky2)

min(kx2
, ky2)

Vmax <

√
max(kx2 , ky2)

min(kx2
, ky2)

urd(t), ∀t, (7.24)

which implies that if the gains are chosen as kx2
= ky2 we have

‖V̂N‖ ≤ 2Vmax ≤ urd(t), ∀t. (7.25)

Hence, ‖V̂N‖ < urd(t), ∀t if 2Vmax < urd(t), ∀t.
Remark 7.2. The bound 2Vmax < urd, ∀t, is only required when deriving the
bound on the solutions of the observer. In particular, it is required to guarantee
that ‖V̂N‖ < urd(t), ∀t. For the rest of the analysis it su�ces that Vmax < urd, ∀t.
Therefore, if the more conservative bound 2Vmax < urd, ∀t, is not satis�ed the
observer can be changed to an observer that allows explicit bounds on the estimate
V̂N , e.g. the observer developed Narendra and Annaswamy [103], rather than an
observer that only provides a bound on the error Ṽc as is the case here. For practical
purposes the estimate can also be saturated such that ‖V̂N‖ < urd, ∀t, which is the
approach taken in Moe et al. [100]. However, in the theoretical analysis of the yaw
controller we use derivatives of V̂N which will be discontinuous when saturation is
applied.

7.3.3 Guidance

This subsection presents the guidance that is used in combination with the local
parametrisation. Since, the chosen parametrisation is only valid in a tube around
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the path, the proposed guidance is designed for operation in the tube. Inside the
tube we propose the following guidance law

ψd = γ(θ)− atan

(
vr
urd

)
− atan

(
yb/p + g

∆

)
. (7.26)

The guidance law consists of three terms. The �rst term is a feedforward of the
angle of the path with respect to the inertial frame. The second part is the desired
side-slip angle, i.e. the angle between the surge velocity and the total speed when
ur ≡ urd. This side-slip angle is used to make the vehicle's total speed tangential to
the path when the sway velocity is non-zero. The third term is a line-of-sight (LOS)
term that is intended to steer the vessel to the path, where g is a term dependent
on the ocean current. The choice of g provides extra design freedom to compensate
for the component of the ocean current along the normal axis VN . To analyse the
e�ect of this guidance law and to design g we consider the error dynamics along
the normal (7.10). To do this we substitute (7.26) in (7.10) and obtain

ẏb/p = utd sin
(
ψd + ψ̃ + βd − γp(θ)

)
+ VN − xb/pκ(θ)θ̇ + ũr sin(ψ − γp(θ))

(7.27a)

= −utd
yb/p + g√

(yb/p + g)2 + ∆2
+ VN +G1(ψ̃, ũr, xb/p, ψd, yb/p, utd, γ̇p(θ))

(7.27b)

where G1(·) is a perturbing term given by

G1(·) = utd

[
1− cos(ψ̃)

]
sin

(
arctan

(
yb/p + g

∆

))
+ ũr sin(ψ − γp(θ))

+ utd cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)− xb/pγ̇p(θ)

(7.28)

and utd ,
√
u2
rd + v2

r is the desired total velocity. Note that G1(·) satis�es

G1(0, 0, 0, ψd, yb/p, utd, γ̇p(θ)) = 0 (7.29a)

‖G1(ψ̃, ũr, xb/p, ψd, yb/p, utd, γ̇p(θ))‖ ≤ ζ(γ̇p(θ), utd)‖(ψ̃, ũ, xb/p)‖, (7.29b)

where ζ(γ̇p(θ), utd) > 0, which shows that G1(·) is zero when the perturbing vari-
ables are zero and that it has maximal linear growth in the perturbing variables.

To compensate for the ocean current component VN the variable g is now chosen
to satisfy the equality

utd
g√

∆2 + (yb/p + g)2
= V̂N . (7.30)

which is a choice inspired by [100]. In order for g to satisfy the equality above, g
should be the solution of the following second order equality

(u2
td − V̂ 2

N )︸ ︷︷ ︸
−a

(
g

V̂N

)2

= ∆2 + y2
b/p︸ ︷︷ ︸

c

+2 yb/pV̂N︸ ︷︷ ︸
b

(
g

V̂N

)
, (7.31)
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hence we choose g to be

g = V̂N
b+
√
b2 − ac
−a , (7.32)

which has the same sign as V̂N and is well de�ned for (u2
rd − V̂ 2

N ) > 0. Moreover,
since √

b2 − ac =
√

∆2(u2
td − V̂ 2

N ) + y2
b/pu

2
td (7.33)

solutions are real for (u2
rd − V̂ 2

N ) > 0.

Consequently if we substitute this choice for g in (7.27) we obtain

ẏb/p = −utd
yb/p√

(yb/p + g)2 + ∆2
+ ṼN +G1(ψ̃, ũ, xb/p, ψd, yb/p, utd, γ̇p(θ)). (7.34)

The desired yaw rate can be found by taking the time derivative of (7.26)
resulting in

ψ̇d = κ(θ)θ̇ +
v̇rurd − u̇rdvr
u2
rd + v2

r

+
∆(ẏb/p + ġ)

∆2 + (yb/p + g)2
, (7.35)

where v̇r as given in (7.1e), ẏb/p in (7.34), and ġ is given by

ġ =
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂a
ȧ+

∂g

∂b
ḃ+

∂g

∂c
ċ, (7.36)

where

∂g

∂a
= V̂N

c

2a
√
b2 − ac

+ V̂N
b+
√
b2 − ac
a2

, (7.37a)

ȧ = 2V̂N
˙̂
VN − 2urdu̇rd − 2vr [X(ur)r + Y (ur)vr] , (7.37b)

∂g

∂b
= V̂N

b+
√
b2 − ac

a
√
b2 − ac

, (7.37c)

ḃ = 2V̂N ẏb/p + 2
˙̂
VNyb/p,

∂g

∂c
= V̂N

1

2
√
b2 − ac

, ċ = 2yb/pẏb/p. (7.37d)

Note that ẏb/p appears a number of times in the expression for ψ̇d and that ẏb/p
depends on ṼN . Consequently, ψ̇d depends on an unknown variable and cannot be
used to control the yaw rate. This was not considered in [100] where the proposed
controller contained both ψ̇d and ψ̈d.

Moreover, since ψ̇d contains v̇r, which depends on r = ψ̇, the yaw rate error
˙̃
ψ , ψ̇ − ψ̇d grows with ψ̇ which leads to a necessary condition for a well de�ned
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yaw rate error. The yaw rate error dynamics are given by

˙̃
ψ = r

[
1 +

X(ur)urd
u2
rd + v2

r

− ∆

∆2 +
(
yb/p + g

)2 ∂g∂a (2vrX(ur))

]

− κ(θ)θ̇ +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2 ˙̂
VN

b+
√
b2 − ac
−a

+
∆

∆2 +
(
yb/p + g

)2 ∂g∂a (2V̂N
˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+

∆

∆2 +
(
yb/p + g

)2 ∂g∂b (2
˙̂
VNyb/p

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ẏb/p

∆2 +
(
yb/p + g

)2

(7.38)

which leads to the following necessary condition for a well de�ned yaw rate, i.e.
existence of the yaw controller,

Condition 7.2. To have a well de�ned yaw controller it should hold that

Cr , 1 +
X(ur)urd
u2
rd + v2

r

− ∂g

∂a

2vrX(ur)∆

∆2 +
(
yb/p + g

)2 6= 0. (7.39)

for all time after entering the tube.

Remark 7.3. The condition above can be veri�ed for any positive velocity, for
the vehicles considered in this thesis. Note that for most vessels this condition is
veri�able since standard ship design practices will result in similar properties of
the function X(ur). Besides having a lower bound greater then zero Cr is also
upper-bounded since the term between brackets can be veri�ed to be bounded in
its arguments.

Since ψ̇d depends on the unknown signal ṼN we cannot take ψ̇d = rd. To de�ne
an expression for rd without requiring the knowledge of ṼN we use (7.38) to de�ne

rd ,−
1

Cr

[
κ(θ)

(
ut cos(ψ + β − γp(θ)) + kδxb/p + V̂T

1− κ(θ)yb/p

)

+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+
∂g

∂b

(
2

˙̂
VNyb/p

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)
)]]

(7.40)
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which results in the following yaw angle error dynamics

˙̃
ψ = Cr r̃ +

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2 (7.41)

where r̃ , r− rd is the yaw rate error. From (7.41) it can be seen that choosing rd
as in (7.40) results in yaw angle error dynamics that have a term dependent on the
yaw rate error r̃ and a perturbing term that vanishes when the estimation error
ṼN goes to zero.

To add acceleration feedforward to the yaw rate controller, the derivative of rd
needs to be calculated. However, when we analyse the dependencies of rd we obtain

rd =rd(h, yb/p, xb/p, ψ̃, x̃, ỹ), (7.42)

where h = [θ, vr, ur, urd, u̇rd, V̂T , V̂N ]T is introduced for the sake of brevity and rep-
resents all the variables whose derivatives do not contain ṼN or ṼT . Consequently,
the acceleration feedforward cannot be taken as ṙd since using (7.42), (7.9), and
(7.10) it is straightforward to verify this signal contains the unknowns ṼT and ṼN .
Therefore we de�ne the yaw rate controller in terms of only known signals as:

τr =− F (ur, vr, r) +
∂rd
∂hT

ḣ+
∂rd
∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

+
∂rd
∂xb/p

(
−kδxb/p

)
+
∂rd

∂ψ̃
Cr r̃ −

∂rd
∂x̃

kxx̃−
∂rd
∂ỹ

ky ỹ − k1r̃ − k2ψ̃

(7.43)

Using (7.43) in (7.1f) we then obtain the yaw rate error dynamics

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd

∂ψ̃

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2
− ∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

(7.44)

which has a term depending on the yaw angle error, a term depending on the
yaw rate error, and perturbing terms depending on the unknown ocean current
estimation error.

Remark 7.4. It is straightforward to verify that all the terms in (7.35) are smooth
fractionals that are bounded with respect to (yb/p, xb/p, x̃, ỹ, ψ̃) or are periodic
functions with linear arguments and consequently the partial derivatives (7.43) and
(7.44) are all bounded. This is something that is used when showing closed-loop
stability in the next section.

7.4 Closed-Loop Analysis

In this section we analyse the closed-loop system of the model (7.1) with controllers
(7.11) and (7.43) and observer (7.13) when the frame propagates with (7.8) along
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the path P . To show that path following is achieved we have to show that the
following error dynamics converge to zero

ẋb/p =− kδxb/p + ṼT (7.45a)

ẏb/p =− utd
yb/p√

∆2 + (yb/p + g)2
+G1(·) + ṼN (7.45b)

˙̃
ψ = Cr r̃ +

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2 (7.45c)

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2 (7.45d)

˙̃u =−
(
ku +

d11

m11

)
ũ (7.45e)

The system (7.45) has the following perturbed form:

˙̃X ,


ẋb/p
ẏb/p

˙̃
ψ
˙̃r
˙̃u

 =


−kδxb/p

−utd yb/p√
∆2+(yb/p+g)2

+G1(·)
Cr r̃

−k1r̃ − k2Crψ̃
−k3ũ

+



ṼT
ṼN[

1 + ∂g
∂c2yb/p + ∂g

∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂ ˜pb/p
Ṽc

0


(7.46)

where pb/p , [xb/p, yb/p]
T and all the perturbing terms disappear as the current

estimates converge to zero. In particular, we cannot apply our desired control action
whilst the current estimates have not converged yet, since the current cannot be
compensated for until it is estimated correctly.

The full closed-loop system of the model (7.1) with controllers (7.11) and (7.43)
and observer (7.13) is given by

˙̃X1 ,

ẏb/p˙̃ψ
˙̃r

 =

−utd
yb/p√

∆2+(yb/p+g)2
+G1(·)

Cr r̃

−k1r̃ − k2Crψ̃

+
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ṼN[

1 + ∂g
∂c2yb/p + ∂g

∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂p̃ Ṽc

 (7.47a)

˙̃X2 ,



ẋb/p
˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u


=


−kδxb/p + ṼT
−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ

 (7.47b)

v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (7.47c)

Before starting with the stability analysis of (7.47), we �rst establish GES of
(7.47b) by using the following lemma.

Lemma 7.1. The system (7.47b) is GES.

Proof. Note that (7.47b) is a cascaded system of the form

ẋb/p = −kδxb/p + ṼT , (7.48a)
˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u

 =


−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ

 . (7.48b)

The nominal dynamics of (7.48) are given by ẋb/p = −kδxb/p from (7.48a), which
is a stable linear system and thus GES. The perturbing dynamics are given by
(7.48b) and where shown to be GES in Section 7.3. The interconnection term is
the term ṼT from (7.48a). The growth of the interconnection term can be bounded
by ‖ṼT ‖ ≤ ‖[Ṽx, Ṽy]T ‖, which satis�es the condition for the interconnection term
from Theorem A.3. Note that it is trivial to shown the nominal dynamics admit
the quadratic Lyapunov function Vxb/p = 1/2x2

b/p. Consequently, all the conditions
of Theorem A.3 and Proposition A.1 are satis�ed. Therefore, the cascaded system
(7.48) is GES, which implies that (7.47b) is GES.

Note that although we show that the system (7.47b) is GES, the dynamics of
xb/p are only de�ned in the tube to avoid the singularity in the parametrisation.
Hence, the stability result is only valid in the tube.

The �rst step in the stability analysis of (7.47) is to assure that the closed-loop
system is forward complete and that the sway velocity vr remains bounded. There-
fore, under the assumption that Condition 7.1-7.2 are satis�ed, i.e. 1−κ(θ)yb/p 6= 0
and Cr 6= 0, we take the following three steps:

1. First, we prove that the trajectories of the closed-loop system are forward
complete.
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2. Then, we derive a necessary condition such that vr is locally bounded with
respect to (X̃1, X̃2).

3. Finally, we establish that for a su�ciently big value of ∆, vr is locally bounded
only with respect to X̃2.

The above three steps are taken by formulation and proving three lemmas. For
the sake of brevity in the main body of this chapter the proofs of the following
lemmas are replaced by a sketch of each proof in the main body. The full proofs
can be found in the Appendices 7.A-7.C.

Lemma 7.2 (Forward completeness). The trajectories of the global closed-loop
system (7.47) are forward complete.

The proof of this lemma is given in Appendix 7.A. The general idea is as
follows. Forward completeness for (7.47b) is evident since this part of the closed-
loop system consists of GES error dynamics. Using the forward completeness and

in fact boundedness of (7.47b) we can show forward completeness of (7.47c),
˙̃
ψ,

and ˙̃r. Hence, forward completeness of (7.47) depends on forward completeness of
ẏb/p. To show forward completeness of ẏb/p, we consider the yb/p dynamics with

X̃2, ψ̃, r̃, and vr as input, which allows us to claim forward completeness of ẏb/p
according to Theorem A.6. Consequently, all the states of the closed-loop system
are forward complete and hence the closed-loop system (7.47) is forward complete

Lemma 7.3 (Boundedness near (X̃1, X̃2) = 0). The system (7.47c) is bounded
near (X̃1, X̃2) = 0 if and only if the curvature of P satis�es the following condition:

κmax , max
θ∈P
|κ(θ)| < Ymin

Xmax
. (7.49)

The proof of this lemma is given in Appendix 7.B. A sketch of the proof is
as follows. The sway velocity dynamics (7.47c) are analysed using a quadratic
Lyapunov function V = 1/2v2

r . It can be shown that the derivative of this Lyapunov
function satis�es the conditions for boundedness when the solutions are on or close
to the manifold where (X̃1, X̃2) = 0. Consequently, (7.47c) satis�es the conditions
of boundedness near (X̃1, X̃2) = 0 as long as (7.49) is satis�ed.

In Lemma 7.3 we show boundedness of vr for small values of (X̃1, X̃2) to derive
the bound on the curvature. However, locality with respect to X̃1, i.e. the path-
following errors and yaw angle and yaw rate errors, is not desired and in the next
lemma boundedness independent of X̃1 is shown under an extra condition on the
look-ahead distance ∆.

Lemma 7.4 (Boundedness near X̃2 = 0). If the following additional assumption
is satis�ed:

∃ σ > 0 s.t. 1− κ(θ)yb/p ≥ σ > 0 ∧
[
Ymin −Xmaxκmax

1

σ

]
> 0 (7.50)
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the system (7.47c) is bounded only near X̃2 = 0 if we have

∆ >
4Xmax[

Ymin −Xmaxκmax
1
σ

] (7.51)

κmax < σ
Ymin

Xmax
(7.52)

Remark 7.5. The size of σ can be calculated by using the following tuning pro-
cedure.

1. Start by calculating the absolute bound on the curvature from Lemma 7.3.
This is a bound that is necessary for feasibility of the trajectories.

2. Now choose a positive ∆ and using the maximum curvature of the path, solve
(7.51) to obtain a possible value for σ.

3. Using the value for σ obtained in the previous step and the maximum value
of the curvature we can use the inequality 1 − κ(θ)yb/p ≥ σ from (7.50) to
calculate the size of the tube as

ytube
b/p =

1− σ
κmax

. (7.53)

If initial conditions are within the tube ytube
b/p , and are chosen such that the transient

caused by the unknown current does not force the vessel out of the tube. Then the
sway velocity is bounded for all time. Note that the choice of ∆ in step two given
above determines how large the tube will be. More speci�cally, a larger choice for
∆ will result in a smaller value for σ which will lead to a larger tube in step three.
However, due to the nature of the guidance a larger ∆ will mean slower steering
and consequently slower convergence to the path.

The proof of Lemma 7.4 is given in Appendix 7.C, the general idea is given
as follows. The proof follows along the same lines of that of Lemma 7.3 but solu-
tions are considered close to the manifold X̃2 = 0 rather than (X̃1, X̃2) = 0. It is
shown that boundedness can still be shown if (7.51) is satis�ed additionally to the
conditions of Lemma 7.3.

Theorem 7.5. Consider a θ-parametrised path denoted by P (θ) , (xp(θ), yp(θ)).
Then under Conditions 7.1-7.2 and the conditions of Lemma 7.2-7.4, the system
(7.1) with control laws (7.11) and (7.43) and observer (7.13) follows the path P ,
while maintaining vr, τr and τu bounded. In particular, the origin of the system
(7.47a)-(7.47b) is exponentially stable in the tube.

Proof. From the fact that the origin of (7.47b) is GES, the fact that the closed-
loop system (7.47) is forward complete according to Lemma 7.2, and the fact that
solutions of (7.47c) are locally bounded near X̃2 = 0 according to Lemma 7.4, we
can conclude that there is a �nite time T > t after which solutions of (7.47b) will
be su�ciently close to X̃2 = 0 to guarantee boundedness of vr.
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Having established that vr is bounded we �rst analyse the cascade[
˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]
+

[
G2(·)

−∂rd
∂ψ̃
G2(·)− ∂rd

∂pb/p
[ṼT , ṼN ]T + ∂rd

∂[x̃,ỹ]T
Ṽc

]
(7.54a)

ẋb/p
˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u


=


−kδxb/p + ṼT
−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ

 (7.54b)

The perturbing system (7.54b) is GES as shown in Lemma 7.1. The interconnection
term, i.e. the second and third term in (7.54a), satis�es the linear growth criteria
from Theorem A.3. More speci�cally, it does not grow with the ψ̃ and r̃ since all
the partial derivatives of rd and g can be bounded by constants. The nominal dy-
namics, i.e. the �rst matrix in (7.54a), can be analysed with the following quadratic
Lyapunov function

V(r̃,ψ̃) =
1

2
r̃2 +

1

2
k2ψ̃

2 (7.55)

whose derivative along the solutions of the nominal system is given by

V̇(r̃,ψ̃) = −k1r̃
2 − k2Crψ̃r̃ + k2Cr r̃ψ̃ = −k2r̃

2 ≤ 0 (7.56)

which implies that r̃ and ψ̃ are bounded. The derivative of (7.56) is given by

V̈(r̃,ψ̃) = −2k2
1 r̃

2 − 2k1k2Crψ̃r̃ (7.57)

which is bounded since r̃ and ψ̃ are bounded. This implies that (7.56) is a uniformly
continuous function. Consequently, by applying Barbalat's lemma (see Lemma A.7)
we have that

lim
t→∞

V̇(r̃,ψ̃) = lim
t→∞

−k1r̃
2 = 0 ⇒ lim

t→∞
r̃ = 0. (7.58)

Since Cr is persistently exciting, which follows from the fact that Cr is upper
bounded and lower bounded by a constant larger then zero, it follows from the
expression of the nominal dynamics that

lim
t→∞

r̃ = 0 ⇒ lim
t→∞

ψ̃ = 0. (7.59)

This implies that the system is globally asymptotically stable according to De�-
nition A.3 and since the nominal dynamics are linear it follows that the nominal
dynamics are globally exponentially stable. Consequently, from the above it follows
that the cascade (7.54) is GES using Theorem A.3 and Proposition A.1.

We now consider the following dynamics

ẏb/p = −utd
yb/p√

∆2 + (yb/p + g)2
+ ṼN +G1(·). (7.60)
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Note that we can view the systems (7.54) and (7.60) as a cascaded system where
the nominal dynamics are formed by the �rst term of (7.60), the interconnection
term is given by second matrix of (7.60), and the perturbing dynamics are given by
(7.54). As we have just shown the perturbing dynamics are GES. Using the bound
on G1(·) from (7.29) it is straightforward to verify that the interconnection term
satis�es the conditions of Theorem A.3. We now consider the following Lyapunov
function for the nominal system

Vyb/p =
1

2
y2
b/p. (7.61)

whose derivative along the solutions of the nominal system is given by

V̇yb/p = −utd
y2
b/p√

∆2 + (yb/p + g)2
≤ 0, (7.62)

which implies that the nominal system is GAS. Moreover, since it is straight-
forward to verify that V̇yb/p ≤ αVyb/p for some constant α dependent on initial
conditions, it follows from the comparison lemma (Lemma A.5) that the nominal
dynamics are also LES. Consequently, the cascaded system satis�es the conditions
of Theorem A.3 and Lemma A.4, and therefore the cascaded system is GAS and
LES. This implies that the origin of the error dynamics, i.e. (X̃1, X̃2) = (0, 0), is
globally asymptotically stable and locally exponentially stable. However, since the
parametrisation is only valid locally we can only claim exponential stability in the
tube.

7.5 Case Study

This section presents a case study to verify the theoretical results presented in this
chapter. The case study under consideration is following of a circular path using the
model of an underactuated surface vessel from Fredriksen and Pettersen [63], the
parameters of which are given in Section C.1. The ocean current components are
given by Vx = −1 [m/s] and Vy = 1.2 [m/s] and consequently Vmax ≈ 1.562 [m/s].
The desired relative surge velocity is chosen to be constant and set to urd =
5 [m/s] such that Assumption 7.3 is veri�ed. Using the ship's model parameters
from Section C.1 and the expressions (7.2c) and (7.2d) it is straightforward to see
that the curvature bound from Lemma 7.3 is given by κmax < (Ymin)/(Xmax) ≈
0.1333. The observer is initialised as suggested in Subsection 7.3.2 and the observer
gains are selected as kx1 = ky1 = 1 and kx1 = ky1 = 0.1. The controller gains are
selected as kur = 0.1 for the surge velocity controller and k1 = 1000 and k2 = 400
for the yaw rate controller.

In this case study the vessel is required to follow a circle with a radius of
400 [m] that is centred around the origin. Consequently, the curvature of the path
is given by κp = 1/400 = 0.0025. To choose the parameters of the guidance law
we will now follow the tuning procedure lined out in Remark 7.5. In the �rst step
we verify that the feasibility constraint on the curvature is satis�ed for the path
under consideration, which is clearly the case since κp < (Ymin)/(Xmax) ≈ 0.133.
In the second step we �x our ∆ as ∆ = 40 [m], which results in σ ≈ 0.0268. In
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7.5. Case Study

the third step we use the value for σ to calculate the size of the tube as ytube
b/p ≈

369.983 [m]. Note that this is only slightly smaller then the size of the tube where
the parametrisation is valid, i.e. 400 [m]. To stay within this tube we choose the
initial conditions as

[ur(t0), vr(t0), r(t0), x(t0), y(t0), ψ(t0)]T = [0, 0, 0, 700, 10, π/2]T . (7.63)

The resulting trajectory for the vessel can be seen in Figure 7.3. The blue dashed
line is the trajectory of the vessel and the red circle is the reference path. The yellow
vessels represent the orientation of the vessel at certain instances. From the plot in
Figure 7.3 it can be seen that the vessel converges to the circle and starts to follow
the path. Moreover, it can be seen from the yellow vessels that the orientation of
the ship is not tangential to the circle which is necessary to compensate for the
ocean current.

x [m]

y
[m

]

−400 −200 0 200 400 600

−400

−300

−200

−100

0

100

200

300

400

Figure 7.3: Path of the vessel in the x − y-plane. The dashed blue line is the
trajectory of the path and the red line is the reference. The yellow ships denote
the orientation of the vessel at certain times.

The path-following errors can be seen in the top plot of Figure 7.4 which con�rm
that the path-following errors converge to zero. A detail of the steady-state is
given to show the reduction of the error. Moreover, note that because of the choice
of parametrisation the error in tangential direction xb/p is zero throughout the
motion except from a very small transient at the beginning caused by the transient
of the observer. The estimates obtained from the ocean current observer can be
seen in the second plot from the top in Figure 7.4. From this plot it can be seen
that the estimates converge exponentially with no overshoot. This underlines the
conservativeness of the bound from Assumption 7.3 that is required for the error
bound for the observer as explained in Subsection 7.3.2. The third plot in Figure
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7.4 depicts the yaw rate and the sway velocity induced by the motion. It can be
seen that these do not converge to zero but converge to a periodic motion. Note
that for circular motion in the absence of current the yaw rate would converge to
zero. However, when current is present the vessel needs to change its turning rate
depending on if it goes with or against the current. The relative surge velocity is
given in the fourth plot from the top in Figure 7.4 and shows that the surge velocity
converges exponentially to the desired value. This plot is especially interesting in
combination with the plot of the magnitude of Cr given at the bottom of Figure
7.4. From this plot it can clearly be seen that Condition 7.2 is veri�ed both in
steady-state and during the transient of the velocity controller.

7.6 Conclusion

This chapter considered curved-path following for underactuated marine vessels in
the presence of constant ocean currents. In this approach the path is parametrised
by a path variable with a update law that is designed to keep the vessel on the
normal of a path-tangential reference frame. This assures the path-following error
is de�ned as the shortest distance to the path. However, the disadvantage is that
this type of update law has a singularity which only allows for local results. The
vessel is steered using a line-of-sight guidance law, which to compensate for the
unknown ocean currents is aided by an ocean current observer. The closed-loop
system with the controllers and observer was analysed. This was done by �rst
showing boundedness of the underactuated sway velocity dynamics under certain
conditions. It was then shown that if these conditions are satis�ed and the sway
velocity is bounded the path-following errors are exponentially stable within the
tube. Due to the singularity the feasibility of this problem depends on the initial
conditions, the curvature of the path, and the magnitude of the ocean current.
More speci�cally, the size of the tube in which the parametrisation is well de�ned
was shown to be a function of the maximal curvature of the path. This implies that
the combination of curvature and ocean current should be such that a suitable set
of initial conditions exists for which the transient of the ocean current observer
does not take the vessel out of the tube.

7.A Proof of Lemma 7.2

Consider the following part of the global closed-loop system:[
˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]

+


[
1 + ∂g

∂c2yb/p + ∂g
∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂p̃b/p
Ṽc


︸ ︷︷ ︸

R(h,yb/p,xb/p,ψ̃,x̃,ỹ)

(7.64a)
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Figure 7.4: Path following errros plotted agains time (top), current estimates
against time (second), sway velocity and yaw rate against time (third), surge ve-
locity against time (fourth), and size of Cr over time (bottom).
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v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (7.64b)

From the boundedness of the vector [X̃T
2 , κ(θ), urd, u̇rd, VT , VN ]T we know that∥∥∥[X̃T

2 , κ(θ), urd, u̇rd, VT , VN ]T
∥∥∥ ≤ β0, and from (7.40) we can conclude the existence

of positive functions ard(·), brd(·), aR(·), and bR(·) which are all continuous in their
arguments and are such that such the following inequalities hold:

|rd(·)| ≤ ard(∆, β0) |vr|+ brd(∆, β0) (7.65)

and,

‖R(·)‖ ≤ aR(∆, β0) |vr|+ bR(∆, β0) (7.66)

Then taking the following Lyapunov function candidate:

V1(ψ̃, r̃, vr) =
1

2

(
k2ψ̃

2 + r̃2 + v2
r

)
(7.67)

whose time derivative along the solutions of (7.64) is

V̇1(·) = k2Cr r̃ψ̃ − k1r̃
2 − k2Cr r̃ψ̃ + [ψ̃ r̃]R(·) + Y (urd + ũ)v2

r

+X(urd + ũ)r̃vr +X(urd + ũ)rd(·)vr
(7.68)

Using Young's inequality we note that

V̇1(·) ≤ k1r̃
2 + ψ̃2 + r̃2 +R2(·) + Y (urd + ũ)v2

r

+ |X(urd + β0)|
(
r̃2 + v2

r

)
+ |X(urd + β0)|

(
r2
d(·) + v2

r

)
≤αV + β, α ≥ 0, β ≥ 0

(7.69)

Note that since the di�erential inequality (7.69) is scaler we can invoke the com-
parison lemma Khalil [82, Lemma 3.4] given as Lemma A.5 in Appendix A. From
Lemma A.5 we know that the solutions of di�erential inequality (7.69) are bounded
by the solutions of the linear system:

ẋ = αx+ β (7.70)

which has solutions

x(t) =
‖x(t0)‖α+ β

α
eα(t−t0) − β

α
(7.71)

Hence, from Lemma A.5 we have that

V1(·) ≤ ‖V1(t0)‖α+ β

α
eα(t−t0) − β

α
(7.72)

which shows the solutions of V1(·) are de�ned up to tmax = ∞ and consequently
from (7.67) it follows that the solutions of ψ̃, r̃, and vr must be de�ned up to
tmax =∞. Hence, the solutions of (7.64) satisfy De�nition A.7 and we can conclude
forward completeness of trajectories of (7.64).
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The forward completeness of trajectories of the global closed-loop system now
depends on forward completeness of ẏb/p from (7.47a). We can conclude forward
completeness of ẏb/p by considering the Lyapunov function

V2 =
1

2
y2
b/p. (7.73)

The time derivative of (7.73) is given by

V̇2 = yb/pẏb/p

≤ −utd
yb/p√

∆2 + (yb/p + g)2
+ (G1(·) + ṼN )yb/p

≤ (G1(·) + ṼN )yb/p

(7.74)

where using the bound on G1(·) from (7.29) and Young's inequality we obtain

V̇2 ≤ V2 +
1

2

(
ζ2(γ̇p(θ), utd)‖[ψ̃, r̃, xb/p]T ‖2 + Ṽ 2

N

)
(7.75)

≤ V2 + σ2(vr, ψ̃, r̃, ṼN , ṼT , xb/p) (7.76)

with σ2(·) ∈ K∞. Consequently, if we view the arguments of σ2(·) as input to
the yb/p dynamics, then (7.75) satis�es Theorem A.6 and hence ẋb/p and ẏb/p are
forward complete. Note that the arguments of σ2(·) are all forward complete and
therefore �t the de�nition of an input signal given in De�nition A.7. We have now
shown forward completeness of (7.47a) and (7.47c) and since (7.47b) is GES is
is trivially forward complete. We can therefore claim forward completeness of the
entire closed-loop system (7.47) and the proof of Lemma 7.2 is complete.

7.B Proof of Lemma 7.3

Recall the sway velocity dynamics (7.47c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (7.77)

The derivative of (7.77) along the solutions of (7.47c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(7.78)

where we used the fact that:

Y (ur) = ayur + by (7.79)

X(ur) = axur + bx (7.80)
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The term rdvr can be bounded as a function of vr as follows

rdvr =− vr
Cr

[
κ(θ)

(
ut cos(ψ + β − γp(θ)) + kδxb/p + V̂T

1− κ(θ)yb/p

)

+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+
∂g

∂b

(
2

˙̂
VNyb/p

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)
)]]

≤ 1

Cr
|κ(θ)| v2

r

1

1− κ(θ)yb/p
+ F2(X̃1, X̃2,∆, VT , VN , urd)v

2
r

+ F1(X̃1, X̃2,∆, VT , VN , urd)vr

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(7.81)

where F1,2(·) are continuous functions in their arguments with:

F2(0, 0,∆, VT , VN , urd) = 0. (7.82)

When substituting (7.81) in (7.78) we obtain

V̇3 ≤ X(urd)F2(X̃1, X̃2,∆, VT , VN , urd)v
2
r +

∣∣∣C∗
r−Cr
CrC∗

r

∣∣∣ (|X(urd)κ(θ)| − |Y (urd)|) v2
r

+
1

C∗r

[
|X(urd)| |κ(θ)|

(
1 +

yb/p

1− κ(θ)yb/p

)
− |Y (urd)|+ ayũ

]
v2
r

+
(
X(urd)F1(X̃1, X̃2,∆, VT , VN , urd) + axũ(rd + r̃) +X(urd)r̃

)
vr

(7.83)

where C∗r (vr, yb/p,∆, VN , urd) = Cr(vr, yb/p,∆, V̂N = VN , ur = urd). When substi-
tuting (7.81) in (7.78) we have used the fact that

1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
X(ur)Y (ur)v

2
r =

Cr − 1

Cr
Y (ur)v

2
r . (7.84)

Remark 7.6. Note that C∗r (vr, yb/p,∆, VN , urd) can be found independently of
yb/p and xb/p since the terms in Cr are bounded with respect to these variables.

Consequently, on the manifold where (X̃1, X̃2) = 0 we have

V̇3 ≤
1

C∗r
(Xmax |κ(θ)| − Ymin) v2

r +X(urd)F1(0, 0,∆, VT , VN , urd)|vr| (7.85)

which is bounded as long as

Xmax |κ(θ)| − Ymin < 0. (7.86)
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Hence, satisfaction of (7.86) renders the quadratic term in (7.85) negative and since
the quadratic term is dominant for su�ciently large vr, (7.85) is negative de�nite
for su�ciently large vr. If V̇3 is negative for su�ciently large vr this implies that
V3 decreases for su�ciently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies a
decrease in v2

r and by extension in vr. Therefore, vr cannot increase above a certain
value and vr is bounded near the manifold where (X̃1, X̃2) = 0.

Consequently, close to the manifold where (X̃1, X̃2) = 0 the su�cient and nec-
essary condition for local boundedness of (7.47c) is the following:

Xmax |κ(θ)| − Ymin < 0. (7.87)

which is satis�ed if and only if the condition in Lemma 7.3 is satis�ed.

7.C Proof of Lemma 7.4

Recall the sway velocity dynamics (7.47c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (7.88)

The derivative of (7.88) along the solutions of (7.47c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(7.89)

where we used the fact that:

Y (ur) = ayur + by (7.90)

X(ur) = axur + bx (7.91)
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The term rdvr is given by:

rdvr =− 1

Cr
vr

[
κ(θ)

ut cos(ψ + β − γp(θ))
1− κ(θ)yb/p

+ κ(θ)
kδxb/p + V̂T

1− κ(θ)yb/p

+
∆
(
b+
√
b2 − ac

)
a∆2 + a

(
yb/p + g

)2 (−kx1
x̃ sin(γp(θ)) + ky1 ỹ cos(γp(θ)))

+
∆κ(θ)V̂T

(
b+
√
b2 − ac

)
a∆2 + a

(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p − V̂T
1− κ(θ)yb/p

)

+
∆ ∂g
∂a2V̂N

∆2 +
(
yb/p + g

)2 (kx1
x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆κ(θ) ∂g∂a2V̂N V̂T

∆2 +
(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

− ∆ ∂g
∂a

∆2 +
(
yb/p + g

)2 (2urdu̇rd − 2vrY (ur)vr) +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆∂g
∂b 2yb/p

∆2 +
(
yb/p + g

)2 (kx1
x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆κ(θ)∂g∂b 2yb/pV̂T

∆2 +
(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)
− φ(·)utd

yb/p√
∆2 + (yb/p + g)2

+ φ(·)ũ sin(ψ − γp)

+ φ(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+ φ(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

− 2φ(·)xb/pκ(θ)

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)]
(7.92)

where the function φ(yb/p, vr, urd, V̂N ,∆) is bounded by a constant with respect to
vr and de�ned as

φ(·) , 2∆yb/p

∆2 +
(
yb/p + g

)2 ∂g∂c︸ ︷︷ ︸
φ1(·)

+
∆

∆2 +
(
yb/p + g

)2︸ ︷︷ ︸
φ2(·)

+
2∆V̂N

∆2 +
(
yb/p + g

)2 ∂g∂b︸ ︷︷ ︸
φ3(·)

(7.93)
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We can rewrite rdvr to obtain

rdvr =− 1

Cr
vr

[
κ(θ)

ut cos(ψ + β − γp(θ))
1− κ(θ)yb/p

− φ2(·)utd
yb/p + g√

∆2 + (yb/p + g)2
+ φ2(·)V̂N

+ φ2(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+ φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

]
− 1

Cr
vrΦ1(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(7.94)

where Φ1(·) collects terms that are bounded with respect to vr and terms that
grow linearly with vr but vanish when X̃2 = 0. The function Φ1(·) is de�ned as

Φ1(·) , κ(θ)
kδxb/p − V̂T
1− κ(θ)yb/p

− u̇rdvr
u2
rd + v2

r

+
2urdu̇rd∆

∆2 +
(
yb/p + g

)2 ∂g∂a
+

∆
(
b+
√
b2 − ac

)
a∆2 + a

(
yb/p + g

)2 (−kx1
x̃ sin(γp(θ)) + ky1 ỹ cos(γp(θ)))

+
∆κ(θ)V̂T

(
b+
√
b2 − ac

)
a∆2 + a

(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

+
∆ ∂g
∂a2V̂N

∆2 +
(
yb/p + g

)2 (kx1 x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆ ∂g
∂a2κ(θ)V̂N V̂T

∆2 +
(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

+
∆∂g
∂b 2yb/p

∆2 +
(
yb/p + g

)2 (kx1 x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆∂g
∂b 2yb/pκ(θ)V̂T

∆2 +
(
yb/p + g

)2
(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)
− (φ1(·) + φ3(·))utd

yb/p√
∆2 + (yb/p + g)2

+ φ(·)ũ sin(ψ − γp)

+ (φ1(·) + φ3(·))
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+ (φ1(·) + φ3(·)) cos

(
arctan
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∆

))
sin(ψ̃)utd

− 2φ(·)xb/pκ(θ)
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ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)
(7.95)
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We now introduce C∗r (·) as de�ned in the proof of Lemma 7.3, so we can rewrite
rdvr to obtain:

rdvr =− 1

C∗r
vr

[
κ(θ)ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
−

φ2(·)utd
yb/p + g√

∆2 + (yb/p + g)2
+

φ2(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+

φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

]
− 1

Cr
vrΦ2(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(7.96)

where Φ2(·) collects terms that are bounded with respect to vr and terms that
grow linearly with vr but vanish when X̃2 = 0. The function Φ2(·) is de�ned as

Φ2(·) , Φ1(·) +
C∗r − Cr
C∗r

[
φ2(·)

[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+
κ(θ)ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
− φ2(·)utd

(
yb/p + g

)√
∆2 + (yb/p + g)2

+ φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

−
(

urd
u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)vr

]
+ φ2(·)V̂N

(7.97)

Considering the above we derive the following upper bound for rdvr:

rdvr ≤
∣∣∣∣ 1

C∗r
vr

∣∣∣∣ [ |κ(θ)|ut
1− κ(θ)yb/p

+ 4 |φ2(·)|utd
]
− 1

Cr
vrΦ2(·) (7.98)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r (7.99)

Using the fact that: ut ≤ |ur|+ |vr|, we obtain:

rdvr ≤
∣∣∣∣ vrC∗r

∣∣∣∣ [ |κ(θ)| (|ur|+ |vr|)
1− κ(θ)yb/p

+ 4 |φ2(·)| |urd|+ 4 |φ2(·)| |vr|
]
− vr
Cr

Φ2(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ 1

C∗r

∣∣∣∣ |κ(θ)| v2
r

1− κ(θ)yb/p
+ 4

∣∣∣∣ 1

C∗r

∣∣∣∣ |φ2(·)| v2
r + Φ3(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(7.100)
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where Φ3 collects the terms that grow linear in vr and terms that grow quadratically
in vr but vanish when X̃2 = 0. The function Φ3 is de�ned as

Φ3(·) ,
∣∣∣∣ 1

C∗r

∣∣∣∣ |κ(θ)| |vrur|
1− κ(θ)yb/p

+

∣∣∣∣ 1

C∗r

∣∣∣∣ |vrurd| |φ2(·)| − 1

Cr
vrΦ2(·) (7.101)

Observing the de�nition of Φ3(·) one can easily conclude the existence of three
continuous positive functions F0,2(X̃1, X̃2, urd, u̇rd, VT , VN ,∆) which are bounded

since the vector [X̃T
2 , urd, u̇rd, VT , VN ,∆]T is bounded, and where

F2(X̃1, X̃2 = 0, urd, u̇rd, VT , VN ,∆) = 0,

such that:

Φ3(·) ≤ F2(·)v2
r + F1(·)vr + F0(·) (7.102)

Consequently, when we substitute (7.100) in (7.89) obtain:

V̇3 = vrv̇r ≤ |X(urd)|
[∣∣∣∣ 1

C∗r

∣∣∣∣ |κ(θ)| v2
r

1− κ(θ)yb/p
+ 4

∣∣∣∣ 1

C∗r

∣∣∣∣ |φ2(·)| v2
r + Φ3(·)

]
+ axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv

2
r + Y (urd)v

2
r

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
X(urdY (urd)v

2
r

≤
∣∣∣∣ 1

C∗r

∣∣∣∣ [ Xmaxκmax

1− κ(θ)yb/p
+ 4Xmax |φ2(·)| − Ymin

]
v2
r

+ |X(urd)| |Φ3(·)|+ axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r

(7.103)

To have boundedness of vr for small values of X̃2 we have to satisfy the following
inequality:

Xmaxκmax

1− κ(θ)yb/p
+ 4Xmax |φ2(·)| − Ymin < 0 (7.104)

such that the quadratic term in (7.103) is negative. Using (7.50) we need to choose
∆, such that:

|φ2(·)| <
[
Ymin −Xmaxκmax

1
σ

]
4Xmax

> 0, (7.105)

since |φ2(·)| ≤ 1
∆ , we can take ∆ > 4Xmax

[Ymin−Xmaxκmax
1
σ ]

such that (7.104) holds.

Consequently, near the manifold X̃2 = 0 it holds that (7.103) is negative de�nite
for su�ciently large vr. If V̇3 is negative for su�ciently large vr this implies that
V3 decreases for su�ciently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies a
decrease in v2

r and by extension in vr. Consequently, vr cannot increase above a
certain value and vr is bounded near X̃2 = 0.
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Chapter 8

Observer Based Path Following for

Underactuated Marine Vessels in the

Presence of Ocean Currents:

A Global Approach

This chapter presents another approach to investigate the problem of following a
curved path in the presence of a constant ocean current disturbance. In this chap-
ter the path is parametrised in a di�erent way such that the parametrisation is
globally valid. This is done by releasing the requirement in place in Chapter 7 that
the vehicle had to be on the normal. This leaves extra freedom to derive the update
law of the parametrisation and means that the singularity in the parametrisation
in Chapter 7 can be avoided. This is an approach �rst suggested in Lapierre et al.
[87]. Note that this strategy has the disadvantage that the path-following error is
no longer de�ned as the shortest distance to the path, which is the case when the
vehicle is on the normal as in the local parametrisation. Note that even though
in this case we track a point on the path rather then simply reduce the shortest
distance to the path this still quali�es as a path-following approach. More speci�-
cally, there are no pre-de�ned time constraints as to where the vehicle needs to be
and it is therefore not a trajectory tracking problem. Moreover, as will be shown
the parametrisation that is applied propagates based on the velocity and motion
of the vehicle and not vice-versa as it would in a manoeuvring problem.

When the path is parametrised according to the global parametrisation we can
solve the path-following problem using a combination of an ocean current observer
and a controller based on a line-of-sight-like guidance. The guidance for this case
is said to be line-of-sight-like since it adopts a time-varying look-ahead distance
depending on the path-following error. It is shown that this dependency on the
path-following errors is necessary to show boundedness of the sway velocity. The
closed-loop system of the vessel with the observer and controller is investigated by
�rst showing boundedness of the sway velocity and then showing global asymptotic
stability of the path-following errors.

The outline of the chapter is as follows. In the Section 8.1 the vessel model from
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Section 2.2 is recalled. The path-following problem and the chosen path parametri-
sation are introduced in Section 8.2. Section 8.3 presents the ocean current observer
that is used together with the guidance law and controllers. The closed-loop sys-
tem is then formulated and analysed in Section 8.4. A simulation case study is
presented in Section 8.5 and conclusions are given in Section 8.6. The material in
this chapter is based on Belleter et al. [22].

8.1 Vessel Model

In this section we consider the model for a surface vessel given in Chapter 2. This
model can be used to describe an autonomous surface vessel or an autonomous
underwater vehicle moving in a plane. Recall, that the model can be represented
in component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (8.1a)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (8.1b)

ψ̇ = r, (8.1c)

u̇r = Fur (vr, r)− d11
m11

ur + τu, (8.1d)

v̇r = X(ur)r + Y (ur)vr, (8.1e)

ṙ = Fr(ur, vr, r) + τr, (8.1f)

The functions X(ur), Y (ur), Fu, and Fr are given by

Fur (vr, r) ,
1

m11
(m22vr +m23r)r, (8.2a)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (8.2b)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (8.2c)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r.

(8.2d)

Note that the functions X(ur) and Y (ur) are linear functions of the velocity. The
kinematic variables are illustrated in Figure 8.1. As speci�ed in Chapter 2, the
ocean current satis�es the following assumption.

Assumption 8.1. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc , [Vx, Vy, 0]T . Furthermore, it is bounded

by Vmax > 0 such that ‖Vc‖ =
√
V 2
x + V 2

y ≤ Vmax.

Moreover, for the considered range of values of the desired surge velocity urd
the following assumption holds.
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Assumption 8.2. It is assumed that Y (ur) satis�es

Y (ur) ≤ −Ymin < 0, ∀ur ∈ [−Vmax, urd],

i.e. Y (ur) is negative for the range of desired velocities considered.

Remark 8.1. Assumptions 8.2 is satis�ed for commercial vessels by design, since
the converse would imply an undamped or nominally unstable vessel in sway.

Additionally we assume that the following assumption holds

Assumption 8.3. It is assumed that 2Vmax < urd(t) ∀t, i.e. the desired relative
velocity of the vessel is larger than the maximum value of the ocean current.

Assumption 8.3 assures that the vessel has enough propulsion power to over-
come the ocean current a�ecting it. The factor two in Assumption 8.3 adds some
extra conservativeness to bound the solutions of the ocean current observer, this is
discussed further in Section 8.3.

Figure 8.1: De�nition of the ship's kinematic variables.

8.2 Problem de�nition

The goal is to follow a smooth path P , parametrised by a path variable θ, by appro-
priately controlling the ship's surge velocity and yaw rate. For an underactuated
vessel path following can be achieved by positioning the vessel on the path with the
total velocity ut ,

√
u2
r + v2

r (see Figure 7.1) tangential to the path. To express
the path-following errors we propagate a path-tangential frame along P . This is
illustrated in Figure 8.2. The path-following errors, pb/p, take the following form:

pb/p ,

[
xb/p
yb/p

]
=

[
cos(γp(θ)) sin(γp(θ))
− sin(γp(θ)) cos(γp(θ))

] [
x− xP (θ)
y − yP (θ)

]
(8.3)
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where γ(θ) is the angle of the path with respect to the X-axis. The time derivative
of the angle γ(θ) is given by γ̇(θ) = κ(θ)θ̇ where κ(θ) is the curvature of P at θ. The
path-following error is expressed in xb/p and yb/p which are the relative positions
between the path frame and body frame expressed along the axes of the path frame.
Hence, xb/p is the position of the vehicle along the path-frame tangential axis and
yb/f is the position of the vehicle along the path-frame normal axis. The goal is to
regulate both xb/p and yb/p to zero.

Figure 8.2: De�nition of the path.

The error dynamics of a vessel with respect to the path frame are given by:

ẋb/p = −θ̇(1− κ(θ)yb/p) + ut cos(χ− γp(θ)) + VT (8.4a)

ẏb/p = ut sin(χ− γp(θ)) + VN − κ(θ)θ̇xb/p (8.4b)

where χ , ψ + β is the course angle (see Figure 8.1) and VT , Vx cos(γp(θ)) +

Vy sin(γp(θ)) and VN , Vy cos(γp(θ)) − Vx sin(γp(θ)) are the ocean current com-
ponent in the tangential direction and normal direction of the path-tangential
reference frame respectively.

To avoid the singularity in the parametrisation of Chapter 7 we no longer require
the vessel to remain on the normal. Therefore, as proposed in [86] we can use the
update law as an extra degree of freedom in the controller design. In particular,
the propagation speed of the frame is used to get the desired behaviour of the xb/p
dynamics. This is achieved by setting

θ̇ = ut cos(χ− γp(θ)) + kxfθ(xb/p, yb/p) + VT (8.5)

where kx > 0 is a control gain for the convergence of xb/p and fθ(xb/p, yb/p) is a
function to be designed later satisfying fθ(xb/p, yb/p)xb/p > 0. Consequently, when
substituting (8.5) in (8.4a) we obtain

ẋb/p = −kxfθ(xb/p, yb/p) + θ̇κ(θ)yb/p (8.6)
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For the case where the current is unknown we need to replace VT by its estimate
V̂T , and the update law becomes

θ̇ = ut cos(χ− γ(θ)) + kxfθ(xb/p, yb/p) + V̂T (8.7)

Substituting this revised update law into (8.4) results in

ẋb/p = −kxfθ(xb/p, yb/p) + θ̇κ(θ)yb/p + ṼT (8.8)

ẏb/p = ut sin(χ− γp(θ)) + VN − xb/pκ(θ)θ̇. (8.9)

Note that although the parametrisation (8.7) does not contain a singularity as it
did in Chapter 7 it also does not decouple (8.8) from (8.9) as it did in Chapter 7.
Consequently, since (8.8) depends on yb/p the xb/p no longer converge independently
from those of yb/p and both xb/p and yb/p will have to be regulated to zero using the
surge and yaw rate controllers. Moreover, note that although this parametrisation
has the advantage that the update law can be well de�ned on the entire state space
the path-following error is no longer de�ned as the shortest distance to the path
since the vessel is not on the normal.

8.3 Controllers, Observer, and Guidance

In this section we design the two control laws τu and τr, and the ocean current esti-
mator that are used to achieve path-following. In the �rst subsection we present the
velocity control law τu. The second subsection presents the ocean current observer.
The third subsection presents the guidance to be used.

8.3.1 Surge velocity control

The velocity control law is a feedback-linearising P-controller that is used to drive
the relative surge velocity to a desired urd and is given by

τu = −Fur (vr, r) + u̇rd +
d11

m11
urd − ku(ur − urd) (8.10)

where ku > 0 is a constant controller gain. It is straightforward to verify that
(8.10) ensures global exponential tracking of the desired velocity. In particular,
when (8.10) is substituted in (8.1d) we obtain

˙̃ur = −ku(ur − urd) = −kuũr (8.11)

where ũr , ur − urd. Consequently, the velocity error dynamics are described by
a stable linear systems, which assures exponential tracking of the desired velocity
urd.

8.3.2 Ocean current estimator

This subsection presents the ocean current estimator introduced in [2]. This ob-
server provides the estimate of the ocean current needed to implement (8.7) and
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the guidance law developed in the next subsection. Rather then estimating the
time-varying current components in the path frame VT and VN the observer is
used to estimate the constant ocean current components in the inertial frame Vx
and Vy. The observer from [2] is based on the kinematic equations of the vehicle,
i.e. (8.1a) and (8.1b), and requires measurements of the vehicle's x and y position
in the inertial frame. The observer is formulated as

˙̂x = ur cos(ψ)− vr sin(ψ) + V̂x + kx1
x̃ (8.12a)

˙̂y = ur sin(ψ) + vr cos(ψ) + V̂y + ky1 ỹ (8.12b)

˙̂
Vx = kx2

x̃ (8.12c)

˙̂
Vy = ky2 ỹ (8.12d)

where x̃ , x− x̂ and ỹ = y − ŷ are the positional errors and kx1
, kx2

, ky1 , and ky2
are constant positive gains. Consequently, the estimation error dynamics are given
by

˙̃x = Ṽx − kx1
x̃ (8.13a)

˙̃y = Ṽy − ky1 ỹ (8.13b)

˙̃Vx = −kx2 x̃ (8.13c)

˙̃Vy = −ky2 ỹ (8.13d)

which can be written in vector form as
˙̃x
˙̃y
˙̃Vx
˙̃Vy

 =


−kx1

0 1 0
0 −ky1 0 1
−kx2

0 0 0
0 −ky2 0 0



x̃
ỹ

Ṽx
Ṽy

 (8.14)

which is a linear system with negative eigenvalues. Hence, the observer error dy-
namics are globally exponentially stable at the origin. Note that this implies that
also V̂T and V̂N go to VT and VN respectively with exponential convergence since
it holds that

V̂T = V̂x cos(γ(θ)) + V̂y sin(γ(θ)) (8.15a)

V̂N = −V̂x sin(γ(θ)) + V̂y cos(γ(θ)) (8.15b)

For implementation of the controllers it is desired that ‖V̂N (t)‖ < urd(t) ∀t. To
achieve this we �rst choose the initial conditions of the estimator as

[x̂(t0), ŷ(t0), V̂x(t0), V̂y(t0)]T = [x(t0), y(t0), 0, 0]T . (8.16)

Consequently, the initial estimation error is given by

[x̃(t0), ỹ(t0), Ṽx(t0), Ṽy(t0)]T = [0, 0, Vx, Vy]T (8.17)
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which has a norm smaller than or equal to Vmax according to Assumption 8.1. Now
consider the function

W (t) = x̃2 + ỹ2 +
1

kx2

Ṽ 2
x +

1

ky2
Ṽ 2
y (8.18)

which has the following time derivative

Ẇ (t) = 2x̃ ˙̃x+ 2ỹ ˙̃y +
2

kx2

Ṽx
˙̃Vx +

2

ky2
Ṽy

˙̃Vy

= 2x̃(Ṽx − kx1
x̃) + 2ỹ(Ṽy − ky1 ỹ)− 2Ṽy ỹ − 2Ṽxx̃

= −2kx1
x̃2 − 2ky1 ỹ

2 ≤ 0.

(8.19)

This implies that W (t) ≤ ‖W (t0)‖. From our choice of initial conditions we know
that

‖W (t0)‖ =
1

kx2

V 2
x +

1

ky2
V 2
y ≤

1

min(kx2 , ky2)
V 2

max. (8.20)

Moreover, it is straightforward to verify

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤W (t). (8.21)

Combining the observations given above we obtain

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤
1

min(kx2
, ky2)

V 2
max. (8.22)

Consequently, we obtain

‖Ṽc(t)‖ ≤
√

max(kx2
, ky2)

min(kx2 , ky2)
Vmax <

√
max(kx2

, ky2)

min(kx2 , ky2)
urd(t), ∀t, (8.23)

which implies that if the gains are chosen as kx2
= ky2 we have

‖V̂N‖ ≤ 2Vmax ≤ urd(t), ∀t. (8.24)

Hence, ‖V̂N‖ < urd(t), ∀t if 2Vmax < urd(t), ∀t.
Remark 8.2. The bound 2Vmax < urd, ∀t, is only required when deriving the
bound on the solutions of the observer. In particular, it is required to guarantee
that ‖V̂N‖ < urd(t), ∀t. For the rest of the analysis it su�ces that Vmax < urd, ∀t.
Therefore, if the more conservative bound 2Vmax < urd, ∀t, is not satis�ed the
observer can be changed to an observer that allows explicit bounds on the estimate
V̂N , e.g. the observer developed Narendra and Annaswamy [103], rather than an
observer that only provides a bound on the error Ṽc as is the case here. For practical
purposes the estimate can also be saturated such that ‖V̂N‖ < urd, ∀t, which is the
approach taken in Moe et al. [100]. However, in the theoretical analysis of the yaw
controller we use derivatives of V̂N which will be discontinuous when saturation is
applied.
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8.3.3 Guidance for global parametrisation

When using the global parametrisation we can de�ne one guidance law that can
be used everywhere. As in Chapter 7 and Moe et al. [100] we choose a guidance
law of the form:

ψd = γ(θ)− atan

(
vr
urd

)
− atan

(
yb/p + g

∆(xb/p, yb/p)

)
(8.25)

The guidance law consists of three terms. The �rst term is a feedforward of the
angle of the path with respect to the inertial frame. The second part is the desired
side-slip angle, i.e. the angle between the surge velocity and the total speed when
ur ≡ urd. This side-slip angle is used to make the vehicle's total speed tangential
to the path when the sway velocity is non-zero. The third term is a line-of-sight
(LOS) term that is intended to steer the vessel to the path, where g is a term
dependent on the ocean current. The choice of g provides extra design freedom to
compensate for the component of the ocean current along the normal axis VN .

Note that the guidance law (8.25) is very similar to the local guidance law
in Chapter 7. However, in (8.25) the look-ahead distance ∆ is not constant as in
Chapter 7 but is a function of xb/p and yb/p to be speci�ed later.

Remark 8.3. The guidance law (8.25) with the choice ∆(xb/p, yb/p) =
√
µ2 + x2

b/p

was utilised in Moe et al. [100]. However, as will be shown this leads to a desired
yaw rate that goes to in�nity as yb/p goes to in�nity. Consequently, no �nite value
of the constant µ can be found that stabilises the system globally, i.e. for any yb/p.

When we substitute (8.25) in (8.9) we obtain

ẏb/p = utd sin
(
ψd + ψ̃ + βd − γp(θ)

)
+ VN − xb/pκ(θ)θ̇ + ũr sin(ψ − γp(θ))

(8.26a)

= − utd(yb/p + g)√
(yb/p + g)2 + ∆2

− xb/pγ̇p(θ) + VN +G1(ψ̃, ũr, g, ψd, yb/p, utd)

(8.26b)

where G1(·) is a perturbing term given by

G1(·) = utd

[
1− cos(ψ̃)

]
sin

(
arctan

(
yb/p + g

∆

))
+ ũr sin(ψ − γp(θ))

+ utd cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)

(8.27)

Note that G1(·) satis�es

G1(0, 0, g, ψd, yb/p, utd) = 0 (8.28a)

‖G1(ψ̃, ũr, ψd, yb/p, utd)‖ ≤ ζ(utd)‖[ψ̃, ũr]T ‖, ζ(utd) > 0 (8.28b)

where ζ(utd) > 0, which shows that G1(·) is zero when the perturbing variables are
zero and that it has maximal linear growth in the perturbing variables.
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To compensate for the ocean current component VN the variable g is now chosen
to satisfy the equality

utd
g√

∆2 + (yb/p + g)2
= V̂N . (8.29)

which is a choice inspired by [100]. In order for g to satisfy the equality above, it
should be the solution of the following second order equality

(u2
td − V̂ 2

N )︸ ︷︷ ︸
−a

(
g

V̂N

)2

= ∆2 + y2
b/p︸ ︷︷ ︸

c

+2 yb/pV̂N︸ ︷︷ ︸
b

(
g

V̂N

)
(8.30)

hence we choose g to be

g = V̂N
b+
√
b2 − ac
−a (8.31)

which has the same sign as V̂N and is well de�ned for (u2
rd − V̂ 2

N ) = −a > 0.
Substituting this in (8.26) gives

ẏb/p = −utd
yb/p√

(yb/p + g)2 + ∆2
− xb/pγ̇p(θ) + ṼN +G1(ψ̃, ũ, ψd, yb/p, utd) (8.32)

Recall that the error in tangential direction is given by :

ẋb/p =− θ̇ + θ̇κ(θ)yb/p +
√
u2
r + v2

r cos(ψ + β − γp(θ)) + VT (8.33)

where κ(θ) is the curvature of the path at the point (xp(θ), yp(θ)). We now choose

θ̇ to be:

θ̇ =
√
u2
r + v2

r cos(ψ + β − γp(θ)) + kδ
xb/p√

1 + x2
b/p

+ V̂T (8.34)

such that we obtain:

ẋb/p =− kδ
xb/p√

1 + x2
b/p

+ θ̇κ(θ)yb/p + ṼT . (8.35)

where kδ > 0. In this way we introduce a stabilising term to the tangential er-
ror dynamics by appropriately controlling the propagation of our path-tangential
frame.

The derivative of (8.25) is given by

ψ̇d = κ(θ)θ̇ − v̇rurd − u̇rdvr
u2
rd + v2

r

− ∆(ẏb/p + ġ)

∆2 + (yb/f + g)2

+
yb/p + g

∆2 + (yb/p + g)2

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

] (8.36)

with

ġ =
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂a
ȧ+

∂g

∂b
ḃ+

∂g

∂c
ċ (8.37)
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where

∂g

∂a
= V̂N

c

2a
√
b2 − ac

+ V̂N
b+
√
b2 − ac
a2

(8.38a)

∂g

∂b
= V̂N

b+
√
b2 − ac

a
√
b2 − ac

(8.38b)

∂g

∂c
= V̂N

1

2
√
b2 − ac

(8.38c)

ȧ = 2V̂N
˙̂
VN − 2urdu̇rd − 2vr [X(ur)r + Y (ur)vr] (8.38d)

ḃ = V̂N ẏb/p +
˙̂
VNyb/p (8.38e)

ċ = 2yb/pẏb/p + 2∆(xb/p, yb/p)

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

]
(8.38f)

The expression for ψ̇d contains terms depending on ẏb/p and ẋb/p which depend

on ṼN and ṼT respectively. Consequently, ψ̇d depends on unknown variables and
cannot be used to control the yaw rate. This was not considered in [100] where the
proposed controller contained both ψ̇d and ψ̈d.

Moreover, from (8.25) we see that ψ̇d contains v̇r, which depends on r = ψ̇.

Therefore, the yaw rate error
˙̃
ψ , ψ̇− ψ̇d grows with ψ̇ which leads to a necessary

condition for a well de�ned yaw rate error. The yaw rate error dynamics are given
by

˙̃
ψ = r

[
1 +

X(ur)urd
u2
rd + v2

r

− ∆

∆2 +
(
yb/p + g

)2 ∂g∂a (2vrX(ur))

]

− κ(θ)θ̇ +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)]
ẏe

+
∂g

∂c
2∆

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏp/f

]]
− yb/p + g

∆2 + (yb/p + g)2

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

]

(8.39)

which shows we have the following necessary condition for the existence of our
controller:

Condition 8.1. If it holds that

Cr , 1 +

[
urd

u2
rd + v2

r

− 2vr∆

∆2 +
(
yb/p + g

)2 ∂g∂a
]
X(ur) > 0. (8.40)
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then the yaw rate controller is well de�ned for all time.

Remark 8.4. The condition above can be veri�ed for any positive velocity, for
the vehicles considered in this thesis. Note that for most vessels this condition is
veri�able since standard ship design practices will result in similar properties of
the function X(ur). Besides having a lower bound greater then zero Cr is also
upper-bounded since the term between brackets can be veri�ed to be bounded in
its arguments.

Since ψ̇d depends on the unknown signal ṼN we cannot take ψ̇d = rd. To de�ne
an expression for rd without requiring the knowledge of ṼN we use (7.38) to de�ne

rd =− 1

Cr

κ(θ)

ut cos(ψ + β − γp(θ)) + kδ
xb/p√

1 + x2
b/p

+ V̂T


+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]
(8.41)

with,

˙̂
VN =− ˙̂

Vx sin(γp(θ)) +
˙̂
Vy cos(γp(θ))

− κ(θ)

ut cos(ψ + β − γp(θ)) +
kδxb/p√
1 + x2

b/p

− V̂T

 V̂T
(8.42)

Notice that (8.41) is equivalent to (8.36), but without the terms depending on the
unknowns Ṽx and Ṽy that cannot be used in the input functions. If we substitute
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(8.41) in (8.39) and use r̃ , r − rd we obtain

˙̃
ψ = Cr r̃ +

∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (8.43)

Note that we have used the notation

∂∆

∂pb/p

[
ṼT , ṼN

]T
=

∂∆

∂xb/p
ṼT +

∂∆

∂yb/p
ṼN . (8.44)

From (8.43) it can be seen that choosing rd as in (8.41) results in yaw angle error
dynamics that have a term dependent on the yaw rate error r̃ and a perturbing
term that vanishes when the estimation errors ṼT and ṼN go to zero. To add
acceleration feedforward to the yaw rate controller, the derivative of rd should be
calculated. Using the expression of rd in (8.41) with (8.12), (8.13) and (8.15) it can
be seen that rd has the following dependencies

rd =rd(h
T , yb/p, xb/p, ψ̃, x̃, ỹ), h , [θ, vr, ur, urd, u̇rd, V̂T , V̂N ]T . (8.45)

where h is a vector that contains all the variable whose time derivative do not de-
pend on ṼN and ṼT . However, the other dependencies of rd do introduce new terms
depending on ṼN and ṼT when the acceleration feedforward is calculated. Conse-
quently, we de�ne our yaw rate controller instead with an acceleration feedforward
that contains only the known terms from ṙd

τr =− F (ur, vr, r) +
∂rd
∂hT

ḣ+
∂rd
∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+
∂rd

∂ψ̃
Cr r̃ −

∂rd
∂x̃

kxx̃−
∂rd
∂ỹ

ky ỹ − k1r̃ − k2Crψ̃

+
∂rd
∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)
.

(8.46)

where k1 > 0 and k2 > 0 are constant controller gains.
Using the controller (8.46) in (8.1f) the yaw rate error dynamics become

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T]
(8.47)

which contains two stabilising terms −k1r̃ and −k2Crψ̃, and perturbing terms
depending on ṼT and ṼN that cannot be cancelled by the controller.
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Remark 8.5. It is straightforward to verify that all the terms in (8.36) are smooth
fractionals that are bounded with respect to (yb/p, xb/p, x̃, ỹ, ψ̃) or are periodic
functions with linear arguments and consequently the partial derivatives in (8.46)
and (8.47) are all bounded. This is something that is used when showing closed-loop
stability in the next section.

8.4 Closed-Loop Analysis

In this section we analyse the closed-loop system of the model (8.1) with controllers
(8.10) and (8.46) and observer (8.12), when the frame propagates along the path
P with update law (8.7). To show that path following is achieved we have to show
that the following error dynamics converge to zero

ẏb/p =− utd
yb/p√

∆2 + (yb/p + g)2
+G1(·)− xb/pκ(θ)θ̇ + ṼN (8.48a)

ẋb/p =− kδ
xb/p√

1 + x2
b/p

+ yb/pκ(θ)θ̇ + ṼT (8.48b)

˙̃
ψ = Cr r̃ +

∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (8.48c)

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T]
(8.48d)

˙̃u =− kuũ (8.48e)

To show that the error variables in (8.48) converge to zero, we formulate the
following total closed-loop system that also contains all variables that converge to
zero independently of the variables in (8.48)

˙̃X1 =


ẏb/p
ẋb/p

˙̃
ψ
˙̃r

 =


−utd yb/p√

∆2+(yb/p+g)2
− xb/pκ(θ)θ̇ +G1(·)

−kδ xb/p√
1+x2

b/p

+ yb/pκ(θ)θ̇

Cr r̃

−k1r̃ − k2Crψ̃



+


ṼN
ṼT

G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )

−∂rd
∂ψ̃
G2(·)− ∂rd

∂yb/p
ṼN − ∂rd

∂xb/p
ṼT + ∂rd

∂x̃ Ṽx + ∂rd
∂ỹ Ṽy


(8.49a)
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˙̃X2 =


˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u

 =


−kx1 x̃− Ṽx
−ky1 ỹ − Ṽy
−kx2 x̃
−ky2 ỹ
−kuũ

 (8.49b)

v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (8.49c)

where

G2(·) =
∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (8.50)

Note that G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT ) satis�es

G2(∆, yb/p, xb/p, g, V̂N , V̂T , 0, 0) = 0 (8.51)

‖G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )‖ ≤ ζ2(∆)‖[ṼT , ṼN ]‖, (8.52)

where ζ2(∆) > 0, which shows that G2(·) is zero when the perturbing variables,
i.e. ṼT and ṼN , are zero and that it has at most linear growth in the perturbing
variables. Note that by an appropriate choice of ∆ we will assure that ζ2(∆) > 0
is a constant independent of xb/p and yb/p.

The �rst step in the stability analysis of (8.49) is to assure that the closed-
loop system is forward complete and that the sway velocity vr remains bounded.
Therefore, under the assumption that Condition 8.1 is satis�ed, i.e. Cr > 0, we
take the following three steps:

1. First, we prove that the trajectories of the closed-loop system are forward
complete.

2. Then, we derive a necessary condition such that vr is locally bounded with
respect to (X̃1, X̃2).

3. Finally, we establish that for a su�ciently big value of ∆, vr is locally bounded
only with respect to X̃2, i.e. independently of X̃1.

Furthermore we design the time-varying look-ahead distance as

∆(xb/p, yb/p) =
√
µ+ x2

b/p + y2
b/p, (8.53)

where µ > 0 is a constant. The choice of (8.53) depending on xb/p and yb/p is
necessary to �nd a bounded value of µ to assure local boundedness of vr with
respect to X̃2 independently of X̃1.

The above three steps are taken by formulating and proving three lemmas. For
the sake of brevity in the main body of this chapter, the proofs of the following
lemmas are replaced by a sketch of each proof in the main body. The full proofs
can be found in the Appendices 8.A-8.C.
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Remark 8.6. In the proof of Lemma 8.2 it is shown that by choosing (8.53) the
skew symmetric terms −xb/pκ(θ)θ̇ and yb/pκ(θ)θ̇ do not a�ect the boundedness of
the sway velocity. Choosing ∆ to be a constant, independent of xb/p and yb/p, as
we did in the local case considered in Chapter 7, is impossible since we no longer
use θ̇ to cancel all terms in the xb/p dynamics and we can no longer view xb/p as a
perturbation to the yb/f dynamics. The choice of ∆ proposed in Moe et al. [100],

i.e. ∆(xb/p) =
√
µ+ x2

b/p is also impossible since the terms that cancel due to

skew-symmetry in the case presented here will not vanish. The terms that remain
have no upper bound independent of yb/p and g, and therefore a lower bound on
µ necessary for boundedness of vr independent on xb/p and yb/p cannot be found.

Lemma 8.1 (Forward completeness). The trajectories of the closed-loop system
(8.49) are forward complete.

The proof of this lemma is given in Appendix 8.A. The general idea is as
follows. Forward completeness for (8.49b) is evident since this part of the closed-
loop system consists of GES error dynamics. Using the forward completeness and

in fact boundedness of (8.49b) we can show forward completeness of (8.49c),
˙̃
ψ,

and ˙̃r. Hence, forward completeness of (8.49) depends on forward completeness of
ẋb/p and ẏb/p. To show forward completeness of ẋb/p and ẏb/p, we consider the xb/p
and yb/p dynamics with X̃2, ψ̃, r̃, and vr as input which allows us to claim forward
completeness of ẋb/p and ẏb/p according to Theorem A.6. Consequently, all the
states of the closed-loop system are forward complete and hence the closed-loop
system (8.49) is forward complete

Lemma 8.2 (Boundedness near (X̃1, X̃2) = 0). The system (8.49c) is bounded
near (X̃1, X̃2) = 0 if and only if the curvature of P satis�es the following condition:

κmax , max
θ∈P
|κ(θ)| < Ymin

2Xmax
. (8.54)

The proof of this lemma is given in Appendix 8.B. A sketch of the proof is
as follows. The sway velocity dynamics (8.49c) are analysed using a quadratic
Lyapunov function V = 1/2v2

r . It can be shown that the derivative of this Lyapunov
function satis�es the conditions for boundedness when the solutions are on or close
to the manifold where (X̃1, X̃2) = 0. Consequently, (8.49c) satis�es the conditions
of boundedness near (X̃1, X̃2) = 0 as long as (8.54) is satis�ed.

In Lemma 8.2 we show boundedness of vr for small values of (X̃1, X̃2) to derive
the bound on the curvature. However, locality with respect to X̃1, i.e. the path-
following errors and yaw angle and yaw rate errors, is not desirable and in the next
lemma boundedness independent of X̃1 is shown under an extra condition on the
constant µ from the de�nition (8.53) of the look-ahead distance ∆.

Lemma 8.3 (Boundedness near X̃2 = 0). The system (8.49c) is bounded near
X̃2 = 0, independent of X̃1, if we choose

µ >
8Xmax

Ymin − 2Xmaxκmax
. (8.55)
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The proof of this lemma is given in Appendix 8.C. The general idea is given
as follows. The proof follows along the same lines of that of Lemma 8.2 but solu-
tions are considered close to the manifold X̃2 = 0 rather than (X̃1, X̃2) = 0. It is
shown that boundedness can still be shown if (8.55) is satis�ed additionally to the
conditions of Lemma 8.2.

Theorem 8.4. Consider a θ-parametrised path denoted by P (θ) , (xp(θ), yp(θ)).
Then under Condition 8.1 and the conditions of Lemma 8.1-8.3, the system (8.1)
with control laws (8.10) and (8.46) and observer (8.12) follows the path P , while
maintaining vr, τr and τu bounded. In particular, the origin of the system (8.49a)-
(8.49b) is GAS and LES.

Proof. From the fact that the origin of (8.49b) is GES, the fact that the closed-
loop system (8.49) is forward complete according to Lemma 8.1, and the fact that
solutions of (8.49c) are locally bounded near X̃2 = 0 according to Lemma 8.3, we
can conclude that there is a �nite time T > t after which solutions of (8.49b) will
be su�ciently close to X̃2 = 0 to guarantee boundedness of vr.

Having established that vr is bounded we �rst analyse the cascade[
˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]
+

[
G2(·)

−∂rd
∂ψ̃
G2(·)− ∂rd

∂pb/p
[ṼT , ṼN ]T + ∂rd

∂[x̃,ỹ]T
Ṽc

]
(8.56a)

˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u

 =


−kx1

x̃− Ṽx
−ky1 ỹ − Ṽy
−kx2 x̃
−ky2 ỹ
−kuũ

 (8.56b)

The perturbing system (8.56b) is GES as shown in Section 8.3. The interconnection
term, i.e. the second matrix in (8.56a), satis�es the linear growth criteria from
Theorem A.3. More speci�cally, it does not grow with the ψ̃ and r̃ since all the
partial derivatives of rd and G2(·) can respectively be bounded by constants and
linear functions of Ṽx and Ṽy. The nominal dynamics, i.e. the �rst matrix in (8.56a),
can be analysed with the following quadratic Lyapunov function

V(r̃,ψ̃) =
1

2
r̃2 +

1

2
k2ψ̃

2 (8.57)

whose derivative along the solutions of the nominal system is given by

V̇(r̃,ψ̃) = −k1r̃
2 − k2Crψ̃r̃ + k2Cr r̃ψ̃ = −k2r̃

2 ≤ 0 (8.58)

which implies that r̃ and ψ̃ are bounded. The derivative of (8.58) is given by

V̈(r̃,ψ̃) = −2k2
1 r̃

2 − 2k1k2Crψ̃r̃ (8.59)

which is bounded since r̃ and ψ̃ are bounded. This implies that (8.58) is a uniformly
continuous function. Consequently, by applying Barbalat's lemma (see Lemma A.7)
we have that

lim
t→∞

V̇(r̃,ψ̃) = lim
t→∞

−k1r̃
2 = 0 ⇒ lim

t→∞
r̃ = 0. (8.60)
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Since Cr is persistently exciting, which follows from the fact that Cr is upper
bounded and lower bounded by a constant larger then zero, it follows from the
expression of the nominal dynamics that

lim
t→∞

r̃ = 0 ⇒ lim
t→∞

ψ̃ = 0. (8.61)

This implies that the system is globally asymptotically stable according to De�-
nition A.3 and since the nominal dynamics are linear it follows that the nominal
dynamics are globally exponentially stable. Consequently, from the above it follows
that the cascade (8.56) is GES using Theorem A.3 and Proposition A.1.

We now consider the following dynamics

[
ẏb/p
ẋb/p

]
=

−utd yb/p√
∆2+(yb/p+g)2

− xb/pκ(θ)θ̇

−kδ xb/p√
1+x2

b/p

+ yb/pκ(θ)θ̇

+

[
ṼN +G1(·)

ṼT

]
. (8.62)

Note that we can view the systems (8.56) and (8.62) as a cascaded system where
the nominal dynamics are formed by the �rst matrix of (8.62), the interconnection
term is given by second matrix of (8.62), and the perturbing dynamics are given
by (8.56). As we have just shown the perturbing dynamics are GES. Using (8.28)
it is straightforward to verify that the interconnection term satis�es the conditions
of Theorem A.3. We now consider the following Lyapunov function for the nominal
system

V(xb/p,yb/p) =
1

2
x2
b/p +

1

2
y2
b/p. (8.63)

whose derivative along the solutions of the nominal system is given by

V̇(xb/p,yb/p) = −utd
y2
b/p√

∆2 + (yb/p + g)2
− kδ

x2
b/p√

1 + x2
b/p

≤ 0, (8.64)

which implies that the nominal system is GAS. Moreover, since it is straightforward
to verify that V̇(xb/p,yb/p) ≤ αV(xb/p,yb/p) for some constant α dependent on initial
conditions, it follows from the comparison lemma (Lemma A.5) that the nominal
dynamics are also LES. Consequently, the cascaded system satis�es the conditions
of Theorem A.3 and Lemma A.4, and therefore the cascaded system is GAS and
LES. This implies that the origin of the error dynamics, i.e. (X̃1, X̃2) = (0, 0), is
globally asymptotically stable and locally exponentially stable.

8.5 Case Study

This section presents a case study for the theoretical results presented in this chap-
ter. We will apply the path-following approach to the case of following a circular
path. The ocean current components are given by Vx = −1 [m/s] and Vy = 1.2 [m/s]
and consequently Vmax ≈ 1.562 [m/s]. The desired relative surge velocity is cho-
sen to be constant and set to urd = 5 [m/s] such that Assumption 8.3 is veri�ed.
The simulation uses the ship model parameters from Fredriksen and Pettersen [63]
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which are given in Section C.1 of the thesis. Using these parameters and expres-
sions (8.2c) and (8.2d) it is straightforward to verify that the curvature bound
from Lemma 8.2 is given by κmax < (Ymin)/(2Xmax) ≈ 0.0667. The observer is
initialised as suggested in Subsection 8.3.2 and the observer gains are selected as
kx1

= ky1 = 1 and kx1
= ky1 = 0.1. The controller gains are selected as kur = 0.1

for the surge velocity controller and k1 = 1000 and k2 = 400 for the yaw rate
controller.

In this case study the vessel is required to follow a circle with a radius of 400 [m].
Consequently, the curvature of the path is given by κp = 1/400 = 0.0025. This
implies we satisfy our constraint on the curvature κp < (Ymin)/(2Xmax) ≈ 0.0667.
The required value for µ can be calculated as suggested in Lemma 8.3 to obtain
µ > 62.3468 [m], which can be satis�ed by taking µ = 70 [m]. The initial conditions
are taken as

[ur(t0), vr(t0), r(t0), x(t0), y(t0), ψ(t0)]T = [0, 0, 0, 700, 10, π/2]T . (8.65)

The resulting trajectory of the ship can be seen in Figure 8.3. The dashed blue
line is the trajectory of the vessel and the red cicle is the reference. The yellow
ships represent the orientation of the ship at certain times. From Figure 8.3 it can
clearly be seen that the orientation of the ship is not tangent to the circle, which
is indeed what is needed to compensate for the ocean current.

x [m]

y
[m

]

−400 −200 0 200 400 600

−400

−300

−200

−100

0

100

200

300

400

Figure 8.3: Path of the vessel in the x − y-plane. The dashed blue line is the
trajectory of the path and the red line is the reference. The yellow ships denote
the orientation of the vessel at certain times.

The path-following errors in tangential direction, xb/p, and in normal direction,
yb/p can be seen in the top plot of Figure 8.4 from which it can clearly be seen
that the path-following error converge to zero after a transient period. A detail of
the last portion of the simulation is given to illustrate the errors converge to zero.
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The estimates for the ocean current components obtained from the ocean current
observer are given in the second plot from the top in Figure 8.4. From this plot
it can clearly be seen that the estimates converge to the desired values without
overshoot, which illustrates the conservativeness of the bound 2Vmax < urd(t), ∀t,
derived in the analysis of the observer-error dynamics in Subsection 8.3.2. The
yaw rate r and sway velocity vr are plotted together in the third plot of Figure
8.4. These plots show that due to the curvature of the path the yaw rate and
sway velocity do not converge to zero but follow a periodic motion induced by the
motion along the circle. The periodic signals are not symmetric due to the ocean
current a�ecting the ship's motion, i.e. on part of the circle the ship moves against
the current and on part of the circle it moves with the current. The relative surge
velocity is plotted in the fourth plot from the top of Figure 8.4. This plot clearly
shows the exponential convergence of the velocity as it moves to the desired value
of urd = 5 [m/s]. Especially interesting is the coupling of the relative surge velocity
with the value of Cr from Condition 8.1, which is plotted in the bottom plot of
Figure 8.4. From this plot it can clearly be seen that Cr is bounded away from zero
throughout the motion.

To compared the result and case study in Chapter 7 to the approach presented
here it is most interesting to study the transient when the vehicle converges to the
path. In particular, since when the vehicle is on the path the guidance laws become
equivalent. If we compare the transients in Figure 7.3 and Figure 8.3 it is evident
that the vessel takes a much wider approach to the circle in the global case then
in the local case from Chapter 7. This is caused by the fact that the look-ahead
distance ∆ in the local case is always smaller then the look-ahead distance in the
global case. Even when the µ of the global case is equal to the ∆ of the local
case, the look-ahead distance in the global case will be increased by the values
of the errors during transient. Consequently, the global case will lead to slower
convergence. In fact the faster convergence is con�rmed by the plots of xb/p and
yb/p in Figure 7.4 and Figure 8.4.

8.6 Conclusion

In this chapter curved-path following for underactuated marine vessels in the pres-
ence of constant ocean currents has been considered. In this approach the path
is parametrised by a path variable with a globally de�ned update law. The vessel
is steered using a line-of-sight like guidance law where the lookahead-distance de-
pends on the path-following errors. To compensate for the unknown ocean currents
the guidance law is aided by an ocean current observer. The closed-loop system
with the controllers and observer was analysed. This was done by �rst showing
boundedness of the underactuated sway velocity dynamics under certain condi-
tions. It was then shown that if these conditions are satis�ed and the sway velocity
is bounded the path-following errors are globally asymptotically stable and locally
exponentially stable.
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Figure 8.4: Path following errros plotted agains time (top), current estimates
against time (second), sway velocity and yaw rate against time (third), surge ve-
locity against time (fourth), and size of Cr over time (bottom).
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8.A Proof of Lemma 8.1

Consider the following part of the global closed-loop system:[
˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]

+

[
G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )

−∂rd
∂ψ̃
G2(·)− ∂rd

∂yb/p
ṼN − ∂rd

∂xb/p
ṼT + ∂rd

∂x̃ Ṽx + ∂rd
∂ỹ Ṽy

]
︸ ︷︷ ︸

R(h,yb/p,δx,ψ̃,x̃,ỹ)

(8.66a)

v̇r =X(urd + ũ)rd(h, yb/p, δx, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (8.66b)

where

G2(·) =
∆

∆2 +
(
yb/p + g

)2 [1 +
∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2 ∂g∂c − yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (8.67)

From the boundedness of the vector [X̃T
2 , κ(θ), urd, u̇rd, VT , VN ]T we know that∥∥∥[X̃T

2 , κ(θ), urd, u̇rd, VT , VN ]T
∥∥∥ ≤ β0, and from (8.41) we can conclude the existence

of positive functions ard(·), brd(·), aR(·), and bR(·) which are all continuous in their
arguments and are such that such the following inequalities hold:

|rd(·)| ≤ ard(µ, β0) |vr|+ brd(µ, β0) (8.68)

and,

‖R(·)‖ ≤ aR(µ, β0) |vr|+ bR(µ, β0) (8.69)

Then we choose the following Lyapunov function candidate:

V1(ψ̃, r̃, vr) =
1

2

(
k2ψ̃

2 + r̃2 + v2
r

)
(8.70)

whose time derivative along the solutions of (8.66) is

V̇1(·) = k2Cr r̃ψ̃ − k1r̃
2 − k2Cr r̃ψ̃ + [ψ̃ r̃]R(·)

+ Y (urd + ũ)v2
r +X(urd + ũ)r̃vr +X(urd + ũ)rd(·)vr

(8.71)

Using Young's inequality we note that

V̇1(·) ≤ k1r̃
2 + ψ̃2 + r̃2 +R2(·) + Y (urd + ũ)v2

r

+ |X(urd + β0)|
(
r̃2 + v2

r

)
+ |X(urd + β0)|

(
r2
d(·) + v2

r

)
≤ αV1 + β, α ≥ 0, β ≥ 0

(8.72)
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Note that since the di�erential inequality (8.72) is scaler we can invoke the com-
parison lemma Khalil [82, Lemma 3.4] given as Lemma A.5 in Appendix A. From
Lemma A.5 we know that the solutions of di�erential inequality (8.72) are bounded
by the solutions of the linear system:

ẋ = αx+ β (8.73)

which has solutions

x(t) =
‖x(t0)‖α+ β

α
eα(t−t0) − β

α
(8.74)

Hence, from Lemma A.5 we have that

V1(·) ≤ ‖V1(t0)‖α+ β

α
eα(t−t0) − β

α
(8.75)

which shows the solutions of V1(·) are de�ned up to tmax = ∞ and consequently
from (8.70) it follows that the solutions of ψ̃, r̃, and vr must be de�ned up to
tmax =∞. Hence, the solutions of (8.66) satisfy De�nition A.7 and we can conclude
forward completeness of trajectories of (8.66).

The forward completeness of trajectories of the global closed-loop system now
depends on forward completeness of of ẏb/p and ẋb/p from (8.49a). We can conclude
forward completeness of ẏb/p and ẋb/p by considering the Lyapunov function

V2 =
1

2
x2
b/p +

1

2
y2
b/p. (8.76)

The time derivative of (8.76) is given by

V̇2 = xb/pẋb/p + yb/pẏb/p

≤ −utd
y2
b/p√

∆2 + (yb/p + g)2
−

kδx
2
b/p√

1 + x2
b/p

+ (G1(·) + ṼN )yb/p + ṼTxb/p

≤ (G1 + ṼN )yb/p + ṼTxb/p

(8.77)

where using the bound on G1(·) from (8.28) and Young's inequality we obtain

V̇2 ≤ V2 +
1

2

(
ζ2(utd)‖[ψ̃, r̃]T ‖2 + Ṽ 2

N + Ṽ 2
T

)
(8.78)

≤ V2 + σ2(vr, ψ̃, r̃, ṼN , ṼT ) (8.79)

with σ2(·) ∈ K∞. Consequently, if we view the arguments of σ2(·) as input to the
xb/p and yb/p dynamics, then (8.78) satis�es Theorem A.6 and hence ẋb/p and ẏb/p
are forward complete. Note that the arguments of σ2(·) are all forward complete
and therefore �t the de�nition of an input signal given in De�nition A.7. We have
now shown forward completeness of (8.49a) and (8.49c) and since (8.49b) is GES
is is trivially forward complete. We can therefore claim forward completeness of
the entire closed-loop system (8.49) and the proof of Lemma 8.1 is complete.

176



8.B. Proof of Lemma 8.2

8.B Proof of Lemma 8.2

Recall the sway velocity dynamics (8.49c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (8.80)

The derivative of (8.80) along the solutions of (8.49c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(8.81)

where we used the fact that:

Y (ur) = ayur + by (8.82)

X(ur) = axur + bx (8.83)

The term rdvr is given by

rdvr =− vr
Cr

κ(θ)

ut cos(ψ + β − γp(θ)) + kδ
xb/p√

1 + x2
b/p

+ V̂T


+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]
(8.84)
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We now introduce a term F (X̃1, X̃2,∆, VT , VT , urd, vr) to collect all the terms that
grow linearly with vr and the terms that grow quadratically with vr but vanish
when X̃1 and X̃2 are zero. Consequently we rewrite (8.84) to obtain

rdvr =− vr
Cr

[
1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]
κ(θ) (ut cos(ψ + β − γp(θ)))

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

+ F (X̃1, X̃2,∆, VT , VT , urd, vr)

(8.85)

where

F (·) =− vr
Cr

κ(θ)

kδ xb/p√
1 + x2

b/p

+ V̂T

− u̇rdvr
u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)

+ 2
∂g

∂a

(
V̂N

˙̂
VN − urdu̇rd

)
− xb/pκ(θ)

 kδxb/p√
1 + x2

b/p

+ V̂T


+

[
∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

− ∂g

∂c
2∆

 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)
+

yb/p + g

∆2 + (yb/p + g)2

 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)]]
(8.86)

Note here that using our de�nition of ∆ in (8.53) all the terms in rdvr with par-
tial derivatives of ∆ multiplied by θ̇ are cancelled due to skew-symmetry. It is
straightforward to verify that the function F (·) satis�es the following inequality:

|F (·)| ≤ F2(X̃1, X̃2,∆, VT , VN , urd)v
2
r + F1(X̃1, X̃2,∆, VT , VN , urd) |vr| (8.87)

where F1,2(·) are positive functions continuous in their arguments with:

F2(0, 0,∆, VT , VN , urd) = 0. (8.88)
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Consequently, using (8.85) the term rdvr can be bounded as a function of vr as
follows

rdvr ≤
√
u2
r + v2

r

∣∣∣∣ vrCr
∣∣∣∣ |κ(θ)|

∣∣∣∣∣
[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]∣∣∣∣∣+ |F (·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ v2
r

Cr

∣∣∣∣ |κ(θ)|
∣∣∣∣∣
[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]∣∣∣∣∣+ |F (·)|

+

∣∣∣∣ vrCr
∣∣∣∣ |κ(θ)| |ur|

∣∣∣∣∣
[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]∣∣∣∣∣

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(8.89)

Remark 8.7. The necessity for the choice of ∆ as in (8.53) becomes evident from
(8.85). The choice of ∆ constant would make all partial derivatives of ∆ equal to
zero. However, from vr/Crxb/pκ(θ)θ̇ we obtain a term of the form

v2
r

Cr
κ(θ)

∆2xb/p

(∆2 + (yb/f + g)2)3/2
(8.90)

which grows quadratically in vr with a gain that cannot be bounded independent
of xb/f if ∆ is independent of xb/f . Therefore, boundedness of vr cannot be shown

independently of xb/f . With the choice of ∆ =
√
µ2 + x2

b/p as proposed in Moe

et al. [100], the partial derivatives with respect to yb/p would be zero. The term in
(8.90) would now be upper-bounded by one. However, a new term would then be
introduced from the partial derivative of ∆

v2
r

Cr

∂∆

∂xb/p
κ(θ)

∆yb/p(yb/p + g)

(∆2 + (yb/f + g)2)3/2
(8.91)

where it should be noted that this term can grow unbounded in yb/p near the
manifold where g = −(yb/p + 1). Hence, the growth of this quadratic term in vr
cannot be upper-bounded independent of yb/p.

To avoid the issues describe in Remark 8.7, we choose ∆ as de�ned in (8.53).
Using the de�nition of ∆(xb/p, yb/p) given in (8.53) it is straightforward to verify
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that

rdvr ≤
∣∣∣∣ v2
r

Cr

∣∣∣∣ |κ(θ)|
∣∣∣∣∣
[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]∣∣∣∣∣+ |F (·)|

+

∣∣∣∣ vrCr
∣∣∣∣ |κ(θ)| |ur|

∣∣∣∣∣
[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2
]∣∣∣∣∣

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤ 2

∣∣∣∣ v2
r

Cr

∣∣∣∣ |κ(θ)|+ 2 |ur|
∣∣∣∣ vrCr

∣∣∣∣ |κ(θ)|+ |F (·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(8.92)

When substituting (8.92) in (8.81) we obtain

V̇3 = vrv̇r ≤
1

Cr

[
2 |X(urd)| |κ(θ)|+ Y (urd)

]
v2
r + ayũv

2
r + axũvr r̃

+X(urd)

(
F (·) + 2 |ur|

∣∣∣∣ vrCr
∣∣∣∣)+ axũrdvr +X(urd)vr r̃

(8.93)

Consequently, on the manifold where (X̃1, X̃2) = 0 we have

V̇3 ≤
1

C∗r

(
2Xmax |κ(θ)|+ Ymin

)
v2
r +X(urd)F1(0, 0,∆, VT , VN , urd)|vr| (8.94)

where C∗r (vr, xb/p, yb/p,∆, VN , urd) = Cr(vr, xb/p, yb/p,∆, V̂N = VN , ur = urd).
Boundedness of (8.94) is guaranteed as long as

2Xmax |κ(θ)|+ Ymin < 0 (8.95)

Hence, satisfaction of (8.54) renders the quadratic term in (8.94) negative and since
the quadratic term is dominant for su�ciently large vr, (8.94) is negative de�nite
for su�ciently large vr. If V̇3 is negative for su�ciently large vr this implies that
V3 decreases for su�ciently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies a
decrease in v2

r and by extension in vr. Therefore, vr cannot increase above a certain
value and vr is bounded near the manifold where (X̃1, X̃2) = 0.

Remark 8.8. Note that C∗r (vr, yb/f ,∆, VN , urd) can be found independently of
yb/p and xb/p since the terms in Cr are bounded with respect to these variables.

Consequently, close to the manifold where (X̃1, X̃2) = 0 the su�cient and nec-
essary condition for local boundedness of (8.49c) is the following:

2Xmax |κ(θ)|+ Ymin < 0 (8.96)

which is satis�ed if and only if the condition in Lemma 8.2 is satis�ed. This com-
pletes the proof of Lemma 8.2.
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8.C Proof of Lemma 8.3

Recall the sway velocity dynamics (8.49c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (8.97)

The derivative of (8.97) along the solutions of (8.49c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(8.98)

where we used the fact that:

Y (ur) = ayur + by (8.99)

X(ur) = axur + bx (8.100)

The term rdvr is given by:

rdvr =− vr
Cr

κ(θ)

ut cos(ψ + β − γp(θ)) + kδ
xb/p√

1 + x2
b/p

+ V̂T


+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]
(8.101)

181



8. Observer Based Path Following: A Global Approach

We can now collect the terms that have less than quadratic growth in vr and/or
vanish when X̃2 = 0.

rdvr =− vr
Cr
κ(θ)

(√
u2
r + v2

r cos(ψ + β − γp(θ))
)

+
vr
Cr

∆xb/p

∆2 +
(
yb/p + g

)2 (κ(θ)
√
u2
r + v2

r cos(ψ + β − γp)
)

− vr
Cr

∆

∆2 +
(
yb/p + g

)2
(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

+
vr
Cr

yb/p + g

∆2 + (yb/p + g)2

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

+G(X̃1, X̃2,∆, VT , VN , urd, vr)

(8.102)

where,

G(·) ,− vr
Cr

κ(θ)

kδ xb/p√
1 + x2

b/p

+ V̂T

− kδxb/p√
1 + x2

b/p

− u̇rdvr
u2
rd + v2

r

− yb/p + g

∆2 + (yb/p + g)2

∂∆

∂xb/p

+
∆

∆2 +
(
yb/p + g

)2
[

˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)

− ∂g

∂c
2∆

 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)
+ 2

[
∂g

∂c
yb/p +

∂g

∂b
V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+ 2
∂g

∂a

(
V̂N

˙̂
VN − urdu̇rd

)
− xb/pκ(θ)

 kδxb/p√
1 + x2

b/p

+ V̂T


(8.103)

where G(·) is the function introduced to collect the terms that have less than
quadratic growth in vr and/or vanish when X̃2 = 0. Note here that using our
de�nition of ∆ in (8.53) all the terms in rdvr with partial derivatives of ∆ multiplied
by θ̇ are cancelled due to skew-symmetry. We can now �nd the following bound on
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(8.101)

rdvr ≤
∣∣∣∣ vrCr

∣∣∣∣ |κ(θ)|
√
u2
r + v2

r

∣∣∣∣∣ ∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣
+

∣∣∣∣ vrCr
∣∣∣∣ ∣∣∣∣ 1

∆

∣∣∣∣ (4
√
u2
r + v2

r + |ũ|
)

+

∣∣∣∣ vrCr
∣∣∣∣ ∣∣∣∣ yb/p + g

∆2 + (yb/p + g)2

∣∣∣∣ (4
√
u2
r + v2

r + |ũ|
)

+ |G(·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ v2
r

Cr

∣∣∣∣
[
|κ(θ)|

∣∣∣∣∣ ∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣+
8

∆

]
+ |G(·)|

+

∣∣∣∣ vrCr
∣∣∣∣ |κ(θ)| |ur|

∣∣∣∣∣ ∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣+

∣∣∣∣ vrCr
∣∣∣∣ ∣∣∣∣ 2

∆

∣∣∣∣ (4 |ur|+ |ũ|)
− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ v2
r

Cr

∣∣∣∣
[
|κ(θ)|

∣∣∣∣∣ ∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣+
8

∆

]
+ Φ(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ v2
r

Cr

∣∣∣∣ [2 |κ(θ)|+ 8

∆

]
+ Φ(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(8.104)

where,

Φ(·) , |G(·)|+ 2

∣∣∣∣ vrCr
∣∣∣∣ |κ(θ)| |ur|+ 2

∣∣∣∣ vrCr
∣∣∣∣ ∣∣∣∣ 1

∆

∣∣∣∣ (4 |ur|+ |ũr|) (8.105)

The function Φ(·) is introduced to collect the remaining terms that have less than
quadratic growth in vr and/or vanish when X̃2 = 0. Note also the terms in G(·)
with partial derivatives of g that appear to have quadratic growth. Although the
overall terms appear to have quadratic growth, the partial derivatives of g actually
decrease for increasing vr giving the entire term less than quadratic growth. From
the de�nitions of Φ(·) and G(·) one can easily conclude the existence of three
continuous positive functions F0,2(X̃1, X̃2, urd, u̇rd, VT , VN ,∆) which are bounded

under the boundedness of the vector [X̃T
2 , urd, u̇rd, VT , VN ,∆]T , with

F2(X̃1, X̃2 = 0, urd, u̇rd, Vxe , Vye ,∆) = 0,

such that:

Φ(·) ≤ F2(·)v2
r + F1(·)vr + F0(·). (8.106)
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When we substitute the bound on rdvr from (8.104) in (8.98) we obtain:

V̇3 = vrv̇r ≤ |X(urd)|
(∣∣∣∣ v2

r

Cr

∣∣∣∣ [2 |κ(θ)|+ 8

∆

]
+ Φ(·)

)
+ axũrdvr

+X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣ 1

Cr

∣∣∣∣ [|X(urd)|
[
2 |κ(θ)|+ 8

∆

]
− |Y (urd)|

]
v2
r

+ axũrdvr +X(urd)(vr r̃ + Φ(·)) + axũvr r̃ + ayũv
2
r

(8.107)

Consequently, on the manifold where X̃2 = 0 we obtain

V̇3 ≤
∣∣∣∣ 1

Cr

∣∣∣∣ [Xmax

[
2κmax +

8

∆

]
− Ymin

]
v2
r

+X(urd)(F1(X̃1, 0, urd, u̇rd, VT , VN ,∆) |vr|
+ F0(X̃1, 0, urd, u̇rd, VT , VN ,∆))

(8.108)

To have boundedness of vr for small values of X̃2 we have to satisfy the following
inequality:

Xmax

[
2κmax +

8

∆

]
− Ymin < 0 (8.109)

such that the quadratic term in (8.108) is negative. Using (8.53) we need to choose
µ, such that:

µ >
8Xmax

Ymin − 2κmaxXmax
(8.110)

which is the condition given in Lemma 8.3. Note that the denominator of µ is
nonzero and positive as long of the conditions of Lemma 8.2 are satis�ed. Con-
sequently, near the manifold X̃2 = 0 it holds that (8.108) is negative de�nite for
su�ciently large vr. Consequently, near the manifold X̃2 = 0 it holds that (7.103)
is negative de�nite for su�ciently large vr. If V̇3 is negative for su�ciently large vr
this implies that V3 decreases for su�ciently large vr. Since V3 = 1/2v2

r , a decrease
in V3 implies a decrease in v2

r and by extension in vr. Consequently, vr cannot
increase above a certain value and vr is bounded near X̃2 = 0 if µ is chosen such
that (8.55) holds, which completes the proof of Lemma 8.3.
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Chapter 9

Path Following of Unparametrized

Paths for Underactuated Marine

Vessels

This chapter presents a control methodology for underactuated marine vessels with
two control inputs (thrust and torque) and three degrees-of-freedom (position and
rotation). This chapter has its own modelling section. This choice is made since
there are no ocean currents considered in this work and therefore the model is
slightly di�erent with respect to the models presented in Chapter 2. The control
speci�cation is path following: make the ship approach a path and follow it with
nonzero speed without requiring any time parametrization. While in the trajectory
tracking problem one would seek to make the ship follow a moving reference point,
in path following one wants to stabilize a suitable controlled-invariant subset of the
state space (see [104]), and no exogenous signal drives the control loop.

The papers listed in Subsection 1.1.3 consider path following of straight-line
paths or path-following/trajectory-tracking of curved paths that are parametrized
by time or a path variable. To the best of our knowledge, in the context of marine
vessels, the problem of �nding a smooth, static, and time-invariant feedback solving
the path-following problem for general paths, remains open. In this work, we make
an initial step towards its solution. Our approach leverages the hierarchical control
methodology presented in El-Hawwary and Maggiore [55], a methodology which has
been used in Roza and Maggiore [123] to derive almost global position controllers
for underactuated �ying vehicles. The idea is to �rst design a path following control
law for a kinematic point-mass. Then from this feedback extract a desired heading
angle, and view it as a reference for a torque controller. Carrying out these two
separate design steps corresponds to the simultaneous stabilization of two nested
subsets of the state space, and the a reduction theorem from El-Hawwary and
Maggiore [55] is used to show overall stability. In particular, we show that if the
curvature of the path is not too large in relation to a constant that depends on the
ship's parameters, then the sideways velocity is uniformly bounded.

The challenge in solving the path-following problem for marine vessels is that,
due to the presence of sideways motion, in order to stay on a curved path the ship

185



9. Path Following of Unparametrized Paths for Underactuated Marine Vessels

cannot head tangent to it, and its angle of attack relative to the path's tangent
depends on the sway speed.

9.1 Preliminaries and notation

In this chapter we adopt the following notation. We denote by S1 the set of real
numbers modulo 2π, with the di�erentiable manifold structure making it di�eo-
morphic to the unit circle. If ψ ∈ S1, Rψ is the rotation matrix

Rψ =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
.

If f(x, y) is a di�erentiable function of two scalar variables, we denote by ∂xf , ∂yf
the partial derivatives with respect to x and y, respectively. Similarly, we de�ne
∂2
xyf := ∂x∂yf , and similarly for the other second-order partial derivatives. If f :

Rn → Rm is a di�erentiable vector function and p ∈ Rn, dfp is the m×n Jacobian
matrix of f at p. If Γ is a closed subset of a metric space (M,d) and x ∈M , then
we denote by ‖x‖M the point-to-set distance of x to M , ‖x‖M = infy∈M d(x− y).

The following stability de�nitions are taken from El-Hawwary and Maggiore
[55]. Let Σ : χ̇ = f(χ) be a smooth dynamical system with state space a Riemannian
manifold X with associated metric d. Let φ(t, χ0) denote the local phase �ow
generated by Σ, and let Bδ(x) denote the ball of radius δ centred at x ∈M .

Consider a closed set Γ ⊂ X which is positively invariant for Σ, i.e., for all
χ0 ∈ Γ, φ(t, χ0) ∈ Γ for all t > 0 for which φ(t, χ0) is de�ned. Then we have the
following stability de�nitions taken from El-Hawwary and Maggiore [55].

De�nition 9.1. The set Γ is stable for Σ if for any ε > 0, there exists a neigh-
borhood N (Γ) ⊂ X such that, for all χ0 ∈ N (Γ), φ(t, χ0) ∈ Bε(Γ), for all t > 0
for which φ(t, χ0) is de�ned. The set Γ is attractive for Σ if there exists a neigh-
borhood N (Γ) ⊂ X such that for all χ0 ∈ N (Γ), limt→∞ ‖φ(t, χ0)‖Γ = 0. The
domain of attraction of Γ is the set {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. The set
Γ is g lobally attractive for Σ if it is attractive with domain of attraction X . The
set Γ is locally asymptotically stable (LAS) for Σ if it is stable and attractive. The
set Γ is g lobally asymptotically stable for Σ if it is stable and globally attractive.
If Γ1 ⊂ Γ2 are two closed positively invariant sets, then Γ1 is asymptotically stable
relative to Γ2 if Γ1 is asymptotically stable for the restriction of Σ to Γ2. System
Σ is locally uniformly bounded (LUB) near Γ if for each x ∈ Γ there exist positive
scalars λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x). 4

The following result is key in the development of this work.

Theorem 9.1 (El-Hawwary and Maggiore [55]). Let Γ1, Γ2, Γ1 ⊂ Γ2 ⊂ X , be two
closed sets that are positively invariant for Σ and suppose that Γ1 is not compact.
If

(i) Γ1 is asymptotically stable relative to Γ2,

(ii) Γ2 is asymptotically stable, and

(iii) Σ is LUB near Γ1,

then Γ1 is asymptotically stable for Σ.
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9.2 The Problem

Consider the 3-degrees-of-freedom vessel depicted in Figure 9.1, which may describe
an ASV or an AUV moving in the horizontal plane. We denote by p ∈ R2 the
position of the vessel on the plane and ψ ∈ S1 its heading (or yaw) angle. The yaw
rate ψ̇ is denoted by r.

uv

ṗ

x

y

px

py

ψ

Figure 9.1: Illustration of the ship's kinematic variables.

We attach at the point p of the vessel a body frame aligned with the main axes
of the vessel, as depicted in the �gure, with the standard convention that the z-axis
points into the plane (towards the sea bottom). We represent the velocity vector
ṗ in body frame coordinates as (u, v), where u, the longitudinal component of the
velocity vector, is called the surge speed, while v, the lateral component, is called
the sway speed. Finally, the control inputs of the vessel are the surge trust Tu and
the rudder angle Tr. In terms of these variables, the model derived in Fossen [60]
is

η̇ =

[
Rψ 0
0 1

]
ν

Mν̇ +C(ν)ν +Dν = Bf

(9.1)

with η , [p, ψ]>, ν , [u, v, r]>, and f , [Tu, Tr]
>. The matrices M , D, and B

are given by

M ,

m11 0 0
0 m22 m23

0 m23 m33

 ,
D ,

d11 0 0
0 d22 d23

0 d32 d33

 , B ,

b11 0
0 b22

0 b32


withM = M> > 0 the symmetric positive de�nite inertia matrix including added
mass, D > 0 is the hydrodynamic damping matrix, and B is the actuator con�g-
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uration matrix. The matrix C(ν) is the matrix of Coriolis and centripetal forces
and can be obtained fromM (see [60]). We place the origin of the body frame at a
point on the center-line of the vessel with distance ε from the centre of mass. Follow-
ing Fredriksen and Pettersen [64], assuming that the vessel is starboard symmetric,
there exists ε such that the resulting dynamics have mass and damping matrices
satisfying this relation: M−1Bf = [τu, 0, τr]

>. Thus, with this choice of origin
of the body frame, the sway dynamics become decoupled from the rudder control
input, making it easier to analyze the stability properties of the sway dynamics.
Using this convention, the model of the marine vessel (9.1) can be represented as

ṗ = Rψ

[
u
v

]
[
u̇
v̇

]
=

[
Fu(v, r)− d11

m11
u+ τu

X(u)r + Y (u)v

]
ψ̇ = r

ṙ = Fr(u, v, r) + τr.

(9.2)

The functions X(u) and Y (u) are linear. Their expressions are given in Appendix
9.A together with those of Fu and Fr. Denoting by χ := (p, u, v, ψ, r) the state of
the vessel, the state space is X := R2 × R× R× S1 × R.

Assumption 9.1. We assume that Y (u) < 0 for all u ∈ [0, Umax].

This is a realistic assumption, since Y (ū) ≥ 0 would imply that the sway dy-
namics are undamped or unstable when the yaw rate r is zero.

Assumption 9.2. The ocean current is zero.

This assumption is made to simplify the exposition of the ideas. The results of
this work can be adapted to handle unknown constant current.

Consider a planar Jordan1 curve γ expressed in implicit form as γ = {p : h(p) =
0}, where h is a C1 function whose gradient never vanishes on γ. We assume that
h : R2 → R is a proper function, i.e., all its sublevel sets {p : h(p) ≤ c}, c ∈ R, are
compact. Since γ is assumed to be compact, there is no loss of generality in this
assumption.

Path-Following Problem (PFP). Design a smooth time-invariant feedback such
that, for suitable initial conditions, the position vector p(t) → {p : h(p) = 0},
and the speed ‖ṗ(t)‖ satis�es 0 < ‖ṗ(t)‖ ≤ supt ‖ṗ(t)‖ < ∞. In other words, we
want to make the position of the ship converge to the path, travel along it without
stopping, while guaranteeing that its speed is bounded.

Geometric objects. Associated with the implicit representation h(p) = 0 of γ
there are three geometric objects: the unit tangent and normal vectors, and the
signed curvature. The unit normal vector at p is

N(p) := dh>p /‖dhp‖.
1A curve is said to be Jordan if it is closed and has no self-intersections.
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The unit tangent vector at p is the counterclockwise rotation of N(p) by π/2,

T (p) := Rπ/2N(p).

Finally, the signed curvature κ(p) is de�ned as

κ(p) = − (∂yh)2 ∂2
xxh− 2∂2

xyh ∂xh ∂yh+ ∂2
yyh (∂xh)2(

(∂xh)2 + (∂yh)2
)(3/2)

. (9.3)

The quantities N(p), T (p), κ(p) are de�ned not just on γ, but at all points p such
that dhp 6= [0 0]. If p0 6∈ γ, then N(p0), T (p0), κ(p0) are the normal vector, tangent
vector, and curvature at p0 of the curve {p : h(p) = p0}.

9.3 Hierarchical Control Approach

The idea of the proposed solution is hierarchical in nature.

1. We regulate the surge speed u to a desired constant ū > 0.

2. We consider the kinematic point-mass system

ṗ = µ,

and we solve the PFP with the constraint that ‖µ‖ = (ū2 + v2)(1/2). The
result of this design is a function µ(p, v).

3. Having found µ(p, v), we �nd the desired heading angle ψd(p, v) such that

Rψd

[
ū
v

]
= µ.

This equation has a solution because, by construction, ‖µ‖ = (ū2 + v2)(1/2).
Intuitively, when ψ = ψd and u = ū, the marine vessel behaves like a kine-
matic point-mass subject to a path-following control law.

4. Having found ψd(p, v), we de�ne the output function e = ψ−ψd and we show
that, under certain conditions on ū (possibly any ū > 0), the system with
input τr and output e has relative degree 2. We thus de�ne a controller τr(χ)
that stabilizes the set where e = ė = 0.

5. We show that, if the curvature of the path is not too large, then the sway
speed v remains bounded. We use Theorem 9.1 to prove that the hierarchical
approach described above does indeed solve the PFP if the curvature of the
path is not too large.

9.4 Control Design

In this section we carry out the design steps 1-4 outlined above. The stability
analysis of step 5 is carried out in the next section.
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Step 1: regulation of surge speed. This step is trivial, we choose the feedback
linearizing control law

τu = −Fu(v, r) +
d11

m11
u−Ku(u− ū), Ku > 0. (9.4)

Step 2: solution of the PFP for a kinematic point-mass. Consider the kinematic
point-mass system

ṗ = µ, (9.5)

where the velocity vector µ ∈ R2 is the control input. We are to design µ such
that ‖µ‖ = (ū2 + v2)(1/2) and the set {h(p)} is asymptotically stable. To this end,
consider the output z = h(p). The derivative is

ż = dhpµ = ‖dhp‖N(p)>µ. (9.6)

De�ne

µ(p, v) := −
[
ūσ(h(p))

]
N(p) + w(p, v)T (p). (9.7)

This control input is composed of two terms. The �rst term is orthogonal to all
level sets of h (in particular, to γ) and is responsible for making z → 0, as we shall
see in a moment. The second term is tangent to the level sets of h and it will be
designed to guarantee that ‖µ‖ = (ū2 + v2)(1/2). The function σ : R → (−a, a),
a ∈ (0, 1), is a saturation function, chosen to be smooth, monotonically increasing,
zero in zero, and such that lim|z|→∞ |σ(z)| = a. The positive scalar a is a design
parameter.

Since {T (p), N(p)} is an orthonormal frame, substitution of (9.7) into (9.6)
gives

ż = −‖dhp‖ūσ(z).

Since, by assumption, ‖dhp‖ 6= 0 on γ, by continuity of h we have that ‖dhp‖ 6= 0
in a neighborhood of γ. Therefore, for any ū > 0, the set {p : h(p) = 0} is
asymptotically stable.

Next we design w(p, v) such that ‖µ(p, v)‖ = (ū2 + v2)(1/2). Referring to the
identity (9.7), since {T (p), N(p)} form an orthonormal frame, we have

‖µ‖2 = ū2σ2(h(p)) + w2(p, v).

Setting

w(p, v) :=
(
ū2(1− σ2(h(p))) + v2

)(1/2)
, (9.8)

we have ‖µ(p, v)‖ = (ū2 + v2)(1/2), as required. Note that the above expression of
w(p, v) is well-de�ned and smooth because, by construction, |σ| < a ≤ 1.

In conclusion, we have the following result.

Lemma 9.2. The feedback µ(p, v) de�ned in (9.7) and (9.8) makes the set {p ∈
R2 : h(p) = 0} asymptotically stable for the kinematic point-mass system (9.5).
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9.4. Control Design

Step 3: de�nition of ψd. We need to �nd a smooth function ψd(p, v) such that

Rψd

[
ū
v

]
= µ(p, v).

The vector on the left-hand side of the identity above has norm (ū2 + v2)(1/2) and,
by construction, so does the vector on the right-hand side. Thus ψd is just the
phase of the vector µ,

ψd(p, v) := atan2(µ2(p, v), µ1(p, v)), (9.9)

where atan2 is the four-quadrant arctangent function such that

atan2(sin(θ), cos(θ)) = θmod2π.

Step 4: regulation of ψ to ψd. We de�ne the output function e = ψ−ψd. Then

ė = g(p, u, v)r + f(p, u, v, ψ), (9.10)

where
g(p, u, v) = 1−

(
∂vψd(p, v)

)
X(u),

f(p, u, v, ψ) = −
(
∂pψd(p, v)

)
Rψ

[
u
v

]
− ∂vψdY (u)v.

Taking one more time derivative along (9.2) we get

ë = g(p, u, v)
(
Fr(v, r) + τr

)
+ ġ(χ)r + ḟ(χ).

Lemma 9.3. The following identity holds:

∂vψd = − ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
, (9.11)

where w(p, v) is given in (9.8). Suppose that

1− ū|X(ū)|
ū2 + v2

> 0 (9.12)

for all v ∈ R. Then, the parameter a ∈ (0, 1] in the saturation σ can be chosen small
enough that system (9.2) with input τr and output e = ψ − ψd(p, v) has relative
degree 2 at any point χ = (p, u, v, ψ, r) such that u = ū.

Remark 9.1. Condition (9.12) is met for all ū, for the ship parameters listed in
the appendix and used in our simulations.

Proof. Recall that, by de�nition, ψd satis�es the following identity

Rψd

[
ū
v

]
= µ,
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from which we deduce that[
cos(ψd)
sin(ψd)

]
=

1

ū2 + v2

[
ū v
−v ū

]
µ.

Now using the identity

∂vψd =
[
− sin(ψd) cos(ψd)

] [∂v cos(ψd)
∂v sin(ψd)

]
,

and the expressions for cos(ψd), sin(ψd) found above, after some manipulation one
gets

∂vψd = − ū

ū2 + v2
+

1

ū2 + v2
µ>
[

0 1
−1 0

]
∂vµ.

Substituting in the above the expression for µ given in (9.7), after some algebra
one obtains identity (9.11).

Now we turn to the relative degree property. System (9.2) with input τr and
output e has relative degree 2 when u = ū if 1− ∂vψd(p, v)X(ū) > 0, or

1 +
X(ū)ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
> 0.

Using the fact that |σ(·)| < a ≤ 1 and |v/w(p, v)| < 1, we have the inequality

1 +
X(ū)ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
> 1− |X(ū)|(1 + a)ū

ū2 + v2
.

If condition (9.12) holds, there exists a ∈ (0, 1], such that the lower bound above is
greater than zero, implying that the system (9.2) with output e has relative degree
2.

Assuming that (9.12) holds, we de�ne the smooth feedback linearizing control
law

τr = −Fr(v, r) +
1

g(p, u, v)

(
− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v))−Kd(r − ψ̇d(χ))
)
,

(9.13)

where dot on a function denotes the time derivative of the function along the vector
�eld (9.2) with τu as in (9.4). With the feedback above, we obtain

ë+Kp sin(e) +Kdė = 0.

This is the equation of a pendulum with friction. Thus the equilibrium (e, ė) = (0, 0)
is almost globally asymptotically stable. This implies that the set {χ ∈ X : ψ =
ψd(p, v), r = ψ̇d(χ)} is stable. Moreover, this set is also asymptotically stable if
the original system (9.2) with the chosen feedbacks τu and τr has no �nite escape
times. The absence of �nite escape times will be proved in the next section.
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9.5. Stability Analysis

Summary of feedback design. We have designed the following feedback control
law

τu = −Fu(v, r) +
d11

m11
u−Ku(u− ū),

τr = −Fr(v, r) +
1

g(p, u, v)

(
− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v))−Kd(r − ψ̇d(χ))
)
,

(9.14)

where ū,Ku,Kp,Kd > 0 are design parameters and

ψd(p, v) = atan2(µ2(p, v), µ1(p, v)),

µ(p, v) = −
[
ūσ(h(p))

]
N(p)

+
(
ū2(1− σ2(h(p))) + v2

)(1/2)
T (p).

Finally, σ(z) is any smooth, monotonically increasing function such that σ(0) = 0
and lim|z|→∞ |σ(z)| = a, where a ∈ (0, 1] is su�ciently small as in Lemma 9.3. For
instance, σ(z) = a tanh(Kz), K > 0, has the desired properties.

As we discussed, in the absence of �nite escape times the feedback above asymp-
totically stabilizes the set Γ2 := {χ ∈ X : u = ū, ψ = ψd(p, v), r−ψ̇d(p, u, v, r) = 0}.
In Theorem 9.5 below we show that it solves the PFP.

9.5 Stability Analysis

As we shall see in a moment, the control design procedure developed in the previous
section amounts to the simultaneous stabilization of the two nested closed sets
Γ1 ⊂ Γ2

Γ2 = {χ ∈ X : u = ū, ψ = ψd(p, v), r = ψ̇d(χ)},
Γ1 = {χ ∈ Γ2 : h(p) = 0}.

On Γ2, the ship behaves like a kinematic point-mass subject to a path-following
control law. On Γ1, the ship is on the path with a desired surge speed ū. Showing
that the feedback (9.14) solves the PFP amounts to showing that Γ1 is asymptoti-
cally stable. To prove this property, we will use Theorem 9.1.

To begin, we observe that, by design, Γ2 is stable, and asymptotically stable if
solutions starting in a neighborhood of Γ2 have no �nite escape times. Assume for
a moment that this is the case. On Γ2, we have

ṗ = Rψd

[
ū
v

]
.

By the construction in step 2,

Rψd

[
ū
v

]
= µ(p, v),

and thus
ṗ = µ(p, v).
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By Lemma 9.2, the set {h(p) = 0} is asymptotically stable for the above dynamics.
In the absence of �nite escape times, this implies that Γ1 is asymptotically stable
relative to Γ2. Therefore, in order to prove asymptotic stability of Γ1, we will prove
that the closed-loop system has no �nite escape times near Γ2 and, in addition,
property (iii) of Theorem 9.1 holds. This is done in the next lemma.

Lemma 9.4. Consider system (9.2) with the feedbacks de�ned in (9.14), and
suppose Assumptions 9.1 and 9.2 hold. Suppose further that the desired surge speed
ū ∈ [0, Umax] is such that 1 + ūX(ū)/(ū2 + v2) 6= 0. Then for any initial condition
in a neighborhood of Γ2, the solution is de�ned for all t ≥ 0. Moreover, if the
curvature κ of γ satis�es the bound

max
p∈γ
|κ(p)| < |Y (ū)|

|X(ū)| ,

then the closed-loop system is LUB near Γ1.

Proof. We �rst show that the closed-loop system has no �nite escape times near
Γ2. Since Γ2 is stable, for any δ > 0 there exists a positively invariant neighborhood
of Γ2, N (Γ2), such that all solutions originating in N (Γ2) satisfy |u(t) − ū| < δ,
|ψ(t)−ψd(p(t), v(t))| < δ, |ṙ(t)−ψ̇d(χ(t))| < δ. From now on, consider an arbitrary
solution χ(t) originating in N (Γ2). Since u− ū is bounded, u has no �nite escape
times. Since ψ ∈ S1, a compact set, the same holds for ψ. Recalling that on Γ2 we
have ṗ = µ(p, v), we may write

ṗ = µ(p, v) +

(
Rψ

[
u
v

]
−Rψd

[
ū
v

])
= Rψ−ψdµ(p, v) +Rψ

[
u− ū

0

]
.

Letting, as in the previous section, z = h(p), we have

ż = −‖dhp‖
(
ūσ(z)N>Rψ−ψdN −N>Rψ

[
u− ū

0

])
= −‖dhp‖

(
ūσ(z) cos(ψ − ψd)−N>Rψ

[
u− ū

0

])
.

Using the fact that zσ(z) ≥ 0, cos(ψ − ψd) > cos(δ), and |u − ū| < δ, we deduce
the following inequality

zż ≤ −‖dhp‖|z| (ūσ(z) cos(δ)− δ) . (9.15)

Pick δ small enough that δ/(ū cos(δ)) < 1, then we see that zż ≤ 0 whenever
z > ρ(δ) := σ−1(δ/ū cos δ). This implies that all trajectories of the z-dynamics
are bounded and, moreover, the interval {z : |z| < ρ(δ)} is positively invariant
for the z-dynamics. Recalling that z = h(p) and that h is proper, we deduce that
all trajectories of the p subsystem are bounded and hence have no �nite escape
times. Moreover, the neighborhood of Γ1 de�ned as {χ ∈ N (Γ2) : |h(p)| < ρ(δ)},
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is positively invariant. Since ρ(·) is a class-K function, Γ1 is stable. In the rest of
the proof we denote

N (Γ1) = {χ ∈ Γ2 : |h(p)| < ρ(δ)}.

By the construction above, for any δ > 0 this set is a neighborhood of Γ1 and
trajectories originating in it satisfy the bounds

|u− ū| < δ, |ψ − ψd(p, v)| < δ, |ṙ − ψ̇d(χ)| < δ, |h(p)| < ρ(δ).

We now turn our attention to the v-subsystem. For convenience, we denote
α(p, v) := ∂vψd, whose expression is given in Lemma 9.3. On N (Γ2), ė is bounded.
Using (9.10) and Lemma 9.3, we have

r =
1

1− α(p, v)X(u)

(
α(p, v)Y (u)v + (∂pψd)Rψ

[
u
v

]
+ ė

)
,

where ė is bounded. Since condition (9.12) is assumed to hold, the quantity 1 −
α(p, v)X(ū) > 0. Therefore, for small enough δ > 0, the quantity 1−α(p, v)X(u) >
0 as well, implying that r above is well de�ned. Substituting the expression for r
in the v̇ equation in (9.2) and rearranging terms, we get

v̇ =
1

1− α(p, v)X(u)

(
Y (u)v +X(u)

(
(∂pψd)Rψ

[
u
v

]
+ ė
))
.

We argue that |v̇| ≤ C1 + C2|v|, for suitable C1, C2 > 0. Indeed, on N (Γ2) the
coe�cient in front of the parenthesis is upper bounded by a constant. The term
Y (u)v is linear in v and u is bounded. The term ∂pψd is a continuous function
of (p, v). Since we have established that p(t) is bounded, ∂pψd is bounded with
respect to p. Moreover, using the de�nition of ψd and µ it is possible to show
that supv |∂pψd| < ∞. Thus the term X(u)∂pψdRψ[u v]> grows linearly with
v, proving the claim. Since |v̇| grows linearly with v, the v subsystem has no
�nite escape times. Finally, concerning r(t), we have expressed it as function of
(p(t), u(t), v(t), ψ(t), ė(t)), signals that are de�ned for all t ≥ 0, and therefore r(t)
has no �nite escape times. In conclusion, all solutions originating on N (Γ2) are
de�ned for all t ≥ 0.

Now we prove that the closed-loop system is LUB near Γ1. Consider a generic
solution χ(t) originating in N (Γ1). Since |h(p(t))| < ρ(δ), and since h is proper,
‖p(t)‖ has a bound independent of the initial condition in N (Γ1). Consider now
the v̇ equation above, and in particular the term (∂pψd)Rψ[u v]>. On Γ2, this
term reduces to

(∂pψd)Rψd

[
ū
v

]
= (∂pψd)µ(p, v).

We show in Appendix 9.B that

(∂pψd)µ(p, v) = −κ(p)w(p, v) + ∆1(p, v),

where κ(p) is the curvature at p of the level set of h through p, w(p, v) is de�ned
in (9.8), and ∆1(p, v) is a smooth function that vanishes on γ and is bounded with
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respect to v. Since p(t) has a uniform bound over initial conditions in N (Γ1), so
does ∆1(p(t), v(t)). Back to the v̇ equation, using the identity

Rψ

[
u
v

]
= Rψd

[
ū
v

]
+ (Rψ−ψd − I)

[
ū
v

]
+Rψ

[
u− ū

0

]
,

we have

v̇ =
1

1− αX
(
Y (u)v − w(p, v)X(u)κ(p)

+X(u)(∂pψd)(Rψ−ψd − I)

[
ū
v

]
+ ∆2(χ)

)
,

where ∆2(χ) = X(u)(∆1(p, v)+∂pψd(Rψ[u−ū 0]>)+ė) is uniformly bounded along
solutions originating in N (Γ1). We now derive two bounds valid on the positively
invariant set N (Γ1). First, the boundedness of p yields∣∣w(p, v)X(u)κ(p)

∣∣ ≤ C1 + |X(u)||κ||v|

for some C1 > 0. Also, it is possible to show that ‖∂pψd(p, v)‖ is bounded. Then,
since |ψ − ψd| < δ, we have the second bound∣∣X(u)(∂pψd)(Rψ−ψd − I)[ū v]>

∣∣ ≤ |X(u)|δ|v|+ C2,

for some C2 > 0. Recall that, by Assumption 9.1, ū ∈ [0, Vmax], so that Y (ū) < 0
and for su�ciently small δ, Y (u) < 0 as well. De�ne the Lyapunov function V =
v2/2, then

V̇ ≤ −1

1− αX
(
|Y (u)| − |X(u)|(|κ|+ δ)

)
v2

+
(

(C1 + C2) + sup
χ∈N (Γ1)

∆2(χ)
)
|v|.

By assumption, |Y (ū)| − |X(ū)||κ(p)| > 0 for all p ∈ γ. Since κ is a continuous
function and since, on N (Γ1), |u− ū| < δ and |h(p)| < ρ(δ), we have that for small
enough δ,

|Y (u)| − |X(u)|(|κ(p)|+ δ) > 0.

Thus v(t) is uniformly bounded. Since r is a continuous function of (p, u, v, ψ, ė),
r is uniformly bounded as well. This proves the LUB property near Γ1.

Application of Theorem 9.1 gives the following result.

Theorem 9.5. Consider system (9.2) with the feedbacks de�ned in (9.14), sup-
pose that Assumptions 9.1 and 9.2 hold, and assume that the desired surge speed
ū ∈ [0, Vmax] is chosen such that condition (9.12) holds. If the curvature κ of γ
satis�es the bound

max
p∈γ
|κ(p)| < |Y (ū)|

|X(ū)| ,

then Γ1 and Γ2 are asymptotically stable, implying that feedback (9.14) solves the
PFP.
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Remark 9.2. It is interesting to note that in Moe et al. [100, Theorem 1], the
authors present a stability result for a path-following control law with a similar,
but more restrictive, curvature bound, max |κ| < (1/3)|Y (ū)/X(ū)| compared to
that in Theorem 9.5.

9.6 Simulation Results

In this section two case studies are presented to verify the proposed path-following
strategy. For this purpose we consider a supply vessel described by the model (9.2)
with the function descriptions and model parameters given in Appendix 9.A. In the
�rst case study we consider the case of following of following a straight-line path.
Note that in the proof we assume the curves are Jordan, which the straight-line
is not since it is not closed. However, the straight-line is a common test case and
serves as a good proof of concept of the control strategy. The second case study
considers following of a Cassini oval.

9.6.1 Case 1: Straight-Line Path

In this case study the goal is to follow a straight-line path aligned with the inertial
x-axis. Hence, h(p) , −py and the implicit representation of the path is given by
γ = {p : −py = 0}. This assures that the unit normal vector, N(p), points in the
negative y-direction and the unit tangent vector, T (p), points in the positive x-
direction. The desired velocity is chosen as ū = 2 [m/s] and the saturation function
is set to σ(h(p)) = 2/π tan−1(h(p)). The initial conditions are given by χ0 :=
([0, 100], 0, 0, π/2, 0) and the controller gains from (9.14) are given by Ku = 0.5,
Kp = 0.4, and Kd = 2. The trajectory of the ship in the x-y plane can be seen in
Figure 9.2, where the ship icons superimposed on the path give the orientation of
the ship at those points. From Figure 9.2 it can be seen that the trajectory converges
to the x-axis and that the ship travels in the direction of the unit tangent vector
T (p). The positional error of the ship w.r.t. the path, i.e. py, can be seen in Figure
9.3, from which it can clearly be seen that the error converges to zero.

9.6.2 Case 2: Cassini Oval

In this case study the goal is to follow a Cassini oval. This implies that h(p) ,
(p2
x + p2

y)2 − 2a2(p2
x − p2

y) + a4 − b4 and that the path is implicitly described by

γ = {p : (p2
x + p2

y)2 − 2a2(p2
x − p2

y) + a4 − b4 = 0}.

where in this case study a = 22.5 [m] and b = 24.9 [m]. This results in a curve for
which the maximum curvature maxp∈γ |κ(p)| = 0.0785 and with a desired velocity
ū = 2 [m/s] the ratio |Y (ū)|/|X(ū)| = 0.2483. Note that this curve satis�es the cur-
vature condition of Theorem 9.5 showing that this is not a very restrictive condition,
since it allows a ship with a length of approximately 83 meters to follow a curve
whose diameter (the maximum distance between any two of its points) is approx-
imately 70 metres. The saturation function is set to σ(h(p)) = 2/π tan−1(αh(p)),
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Figure 9.2: Path of the ship (the ship is not to scale).
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Figure 9.3: Path-following error of the ship.

where α is a parameter that can be used to tune the slope of the saturation func-
tion. In this case the magnitude of h(p) is large, therefore α needs to be small to
make the saturation e�ective close to the path and we choose α = 10−4. The initial
conditions are given by χ0 := ([15, 45], 0, 0,−2/3π, 0) and the controller gains from
(9.14) are given by Ku = 1, Kp = 30, and Kd = 5. The trajectory of the ship
and the desired oval can be seen in Figure 9.4. From Figure 9.4 we can clearly see
convergence to the desired oval and from the superimposed ships it can be seen
that the heading of the vessel is not tangent to the oval. Its velocity vector, on the
other hand, is tangent to the path. From the plot of the sway velocity in Figure 9.5
it can be seen that this motion induces quite large sway velocities relative to the
desired surge velocity ū = 2 [m/s]. The value of h(p) is plotted in Figure 9.6 which
shows that h(p) is driven to zero as the ship converges to the path, showing that
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the ship is able to track the speci�ed Cassini oval in accordance with the theoretical
analysis.
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Figure 9.4: Path of the ship and the cassini oval (the ship is not to scale).
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Figure 9.5: Sway velocity of the ship.

9.7 Conclusions

In this chapter we presented a methodology to design path-following controllers for
a class of underactuated marine vessels. This methodology allows one to migrate
a path-following controller designed for a point-mass to one that is guaranteed
to work for the underactuated vessel. As we mentioned in the introduction, the
proposed solution is an initial step. For simplicity, we assumed the curve to be
Jordan and the ocean current to be absent. We will remove these assumptions in
future work.
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Figure 9.6: Magnitude of h(p) as the vessel converges to the path.

9.A Functions used in the Model

The functions Fu, X(u), Y (u), and Fr are given by:

Fu ,
1

m11
(m22v +m23r)r,

X(u) ,
m2

23 −m11m33

m22m33 −m2
23

u+
d33m23 − d23m33

m22m33 −m2
23

,

Y (u) ,
(m22 −m11)m23

m22m33 −m2
23

u− d22m33 − d32m23

m22m33 −m2
23

,

Fr(u, v, r) ,
m23d22 −m22(d32 + (m22 −m11)u)

m22m33 −m2
23

v

+
m23(d23 +m11u)−m22(d33 +m23u)

m22m33 −m2
23

r.

The numerical expressions for the matrices M , D, and B used in the simula-
tions are

M ,

7.22e6 0 0
0 1.21e7 −5.6446e7
0 −5.6446e7 4.9044e9

 ,
D ,

9.507e4 0 0
0 4.34e6 −9.6961e6
0 −2.6026e7 8.0445e8

B ,

1 0
0 −1.13e6
0 9.8181e9


which are the model parameters from Fredriksen and Pettersen [63] translated from
the center of gravity to the point ε, where ε = 1.6650 m.

9.B Curvature Computation for Lemma 9.4

We need to �nd an expression for (∂pψd)µ(p, v). We begin by recalling the expres-
sions for cos(ψd) and sin(ψd) from the proof of Lemma 9.3:[

cos(ψd)
sin(ψd)

]
=

1

ū2 + v2

[
ū v
−v ū

]
µ.
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Then we write

∂pψd =
[
− sin(ψd) cos(ψd)

] [∂p cos(ψd)
∂p sin(ψd)

]
=

1

(ū2 + v2)2
µ>
[

v ū
−ū v

] [
ū v
−v ū

]
∂pµ

=
1

(ū2 + v2)
µ>
[

0 1
−1 0

]
∂pµ.

Thus

(∂pψd)µ(p, v) =
1

(ū2 + v2)
µ>
[

0 1
−1 0

]
(∂pµ)µ.

At this point we substitute in the expression for µ(p, v) in (9.7), using w(p, v)
in (9.8) and the fact that

N(p) =
1

((∂xh)2 + (∂yh)2)(1/2)
, T (p) =

[
0 −1
1 0

]
N(p).

After some algebra we obtain

(∂pψd)µ = −κ(p)w(p, v) + ∆1(p, v),

where κ is given in (9.3) and

∆1(p, v) = − ūσ(h(p))

((∂xh)2 + (∂yh)2)3/2

[
∂2
xyh ((∂xh)2 − (∂yh)2)

+ (∂xh)(∂yh)(∂2
yyh− ∂2

xxh)
]
− ū2σ(h(p))σ′(h(p))

w(p, v)((∂xh)2 + (∂yh)2)3/2

·
[
(∂xh)4 + (∂yh)4 + 2(∂xh)2(∂yh)2

]
.

We see that ∆1(p, v) vanishes when h(p) = 0. Moreover, its dependence on v arises
in the term w(p, v) in one denominator. Since the function 1/w(p, v) is bounded
with respect to v, so is ∆1.
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Chapter 10

Conclusions and Future Work

This thesis has considered various topics subdivided into three parts. Some con-
cluding remarks are given in this chapter together with some suggestions for future
developments on these topics.

The �rst part considered the modelling of marine vehicles and environmental
disturbances. In this part novel results were introduced to estimate the wave en-
counter frequency for a marine vessel. Rather than using models of the vessel or
using spectral analysis techniques, this estimator is based on measurements of the
ship motion that are readily available for the vessel such as the roll and pitch angle
of the ship. These signals are sinusoidal in nature and their frequency is coupled
directly to the frequency of the waves exciting the vessel. Therefore, a frequency es-
timator for the frequency of sinusoidal signals was adapted for application to ship
motion signals. In particular, the estimator was equipped with a gain-switching
mechanism that allows the estimator to function in situations of low excitation by
switching to a higher gain and in situations of high excitation by doing the con-
verse. Moreover, it was shown that the stability properties of the estimator still
hold for time-varying amplitudes as long as the signal is persistently exciting. The
origin of the estimation error dynamics were shown to be globally exponentially
stable for the new estimator. The estimator was veri�ed using an experimental
case study. The case study considered several data sets gathered in towing tank
tests with a model ship and data from an Atlantic passage with a container ship.
The frequency estimator was successfully applied to two data sets of pitch angle
measurements and two sets of heave displace measurements gathered in the towing
tank tests and a data set of pitch angle measurements from the Atlantic passage.
Future developments of interest for this work would be the investigation of multi-
frequency estimators to be able to estimate the peaks of multi-peak wave spectra.
Moreover, it can be of interest to unify this result with other model based results
and spectral analysis results such that more information of the sea state can be
extracted.

The second part of the thesis considered multi-vehicle approaches. Straight line
coordinated path following in the presence of constant ocean currents is considered
both for marine surface vessels and for autonomous underwater vehicles. The aim of
this work was to combine the results for straight-line path following in the presence
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of constant ocean currents using integral line-of-sight guidance, and a coordination
law that had been successfully applied to straight-line path following in the absence
of disturbances. The combination of the disturbance rejection algorithm with the
formation control approach breaks the cascaded systems stability proof that was
used for both strategies individually. It was shown, using a result from the litera-
ture that allows feedback-interconnections to be studied as cascades under certain
conditions, that stability of the closed-loop system can still be shown. The theo-
retical results were supported by numerical simulations and an experimental case
study using three autonomous underwater vehicles. It was shown that due to the
lack of continuous communication in practice the performance degrades. However,
these problems should be resolvable by appropriate tuning. As future work some
of the measures suggested in the experimental case study might be implemented
to see if the performance can be increased in practical circumstances. Moreover,
the in�uence of time-delays and communication failures can be studied to extend
the theoretical results. This part also considered a leader-follower type motion syn-
chronisation. A constant bearing guidance algorithm from the literature, that is
intended for straight-line target tracking, was analysed for applications of curved
trajectories in this work. First, a proof was given to show that the constant bear-
ing guidance algorithm results in USGES tracking error dynamics for which we
can give an explicit bound on the synchronisation error, rather than UGAS and
ULES by linearisation about the origin as previously shown which provided no
such bound. The remainder of the chapter analysed the closed-loop system when
the constant bearing guidance algorithm is used for curved leader trajectories. It
was shown that for a straight line, synchronisation can be achieved, while on a
curved trajectory only integral input-to-state stability of the synchronisation er-
ror with respect to the sway velocity can be shown. Simulation results were given
to verify the theoretical results. As future work string stability of leader-follower
vehicle strings could be investigated.

The third part of the thesis considered curved path following for underactu-
ated marine vessels. Two strategies were presented for path following in the pres-
ence of an ocean current disturbance, and one strategy was presented that does
not consider environmental disturbances. The two approaches in which ocean cur-
rents were considered were based on a line-of-sight type guidance laws aided by an
ocean current observer to estimate the unknown disturbances. Path following was
achieved by parametrising the path using a path variable that is used to propagate
a path-tangential reference frame. The path-following errors are then expressed
with respect to this frame and path following is achieved when the vessel converges
to the frame. One of the strategies has a parametrisation that aims to keep the
vessel on the normal of the path-tangential frame. The advantage of this approach
is that the path-following error is always de�ned as the shortest distance to the
path. However, the parametrisation has a singularity and therefore only a local
result can be realised. The other approach has a parametrisation that is globally
valid. However, in this case the path-following error is not the shortest distance to
the path and there is no direct control over the rate of convergence. It was shown
that the stability proof can be done along the same lines and allows us to conclude
asymptotic stability for the local approach and global asymptotic stability for the
global approach. This was done by �rst considering the sway velocity dynamics
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and show that these dynamics are bounded under certain conditions. Stability of
the path-following errors was then shown by recursively applying a cascaded sys-
tems argument. The theoretical results were supported by numerical simulations.
Future development for this work might include substituting the ocean current ob-
server with an adaptive algorithm that can compensate for the ocean current much
like the integral line-of-sight for straight-line paths. The curved path-following ap-
proach that did not consider ocean currents disturbances presented novel results
that allow path following without the need for parametrisation of the path. Con-
sequently, this is the purest form of path following that only aims at stabilising a
manifold of the state space. The approach is based on principles from geometric
control and principles from hierarchical control design. It was shown that based on
a condition on the curvature, the sway velocity remains bounded and the path is an
asymptotically stable manifold for the vehicle and path-following can be achieved.
The theoretical results were supported by numerical simulations. Future work on
this topic could be to make the strategy globally valid and adding an ocean current
disturbance.
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Appendix A

Mathematical References

This appendix contains some of the mathematical de�nitions and notations that
are used in the thesis.

A.1 Notation

We denote by Rn the n-dimensional Euclidean space and by R+ the set of all
non-negative real numbers. The absolute value of a scalar x is denoted by |x|.
The p-norm of a vector x ∈ Rn is denoted by ‖x‖p, for p ∈ [1,∞], when no
subscript is given, i.e. ‖x‖, the Euclidean norm is implied. The following de�nitions
of comparison functions, known as class K and KL functions, are used throughout
the thesis.

De�nition A.1 (Khalil [82, De�nition 4.2]). A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said
to belong to class K∞ if a =∞ and α(r)→∞ as r →∞.

De�nition A.2 (Khalil [82, De�nition 4.3]). A continuous function β : [0, a) ×
[0,∞)→ [0,∞) is said to belong to class KL if, for each �xed s, the mapping β(r, s)
belongs to class K with respect to r and, for each �xed r, the mapping β(r, s) is
decreasing with respect to s and β(r, s)→ 0 as s→∞.

Lemma A.1 (Khalil [82, Lemma 4.2]). Let α1 and α2 be class K functions on
[0, a), α1 and α2 be class K∞ functions on [0, a), and β be a class KL function.
Denote the inverse of αi by α

−1
i . Then,

� α−1
1 is de�ned on [0, α1(a)) and belongs to class K.

� α−1
3 is de�ned on [0,∞) and belongs to class K∞.

� α1 ◦ α2 belongs to class K.
� α3 ◦ α4 belongs to class K∞.
� σ(r, s) = α1(β(α2(r), s)) belongs to class KL.
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A.2 Stability De�nitions

We now presents some notions of stability for a nonautonomous system

ẋ = f(t, x) (A.1)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x
on [0,∞)×D, with D ⊂ Rn a domain that contains the origin x = 0. The following
de�nitions are obtained from Khalil [82]

De�nition A.3. The equilibrium point x = 0 of (A.1) is

� uniformly stable (US) if and only if there exist a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (A.2)

� globally uniformly stable (UGS) if an only if inequality (A.2) is satis�ed for
any initial state x(t0).

� uniformly asymptotically stable (UAS) if and only if there exist a class KL
function β and a positive constant c, independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (A.3)

� globally uniformly asymptotically stable (UGAS) if an only if inequality (A.3)
is satis�ed for any initial state x(t0).

De�nition A.4 (Khalil [82, De�nition 4.5]). The equilibrium point x = 0 of (A.1)
is locally exponentially stable (LES) if there exist positive constants c, k, and λ
such that

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c (A.4)

and globally exponentially stable (GES) if (A.4) is satis�ed for any initial state
x(t0).

A.3 Cascaded Systems

Consider the following nonlinear time-varying cascaded system:

ẋ = f1(t, x) + g(t, x, y) (A.5a)

y = f2(t, y) (A.5b)

where x ∈ Rn, y ∈ Rm, and f1(t, x) and f2(t, x) continuously di�erentiable in their
arguments. The following results characterise the stability properties of the system
(A.5).

Lemma A.2 (Panteley and Lor�A [112, Lemma 2]). Consider the cascaded sys-
tem (A.5). If both ẋ = f1(t, x) and ẏ = f2(t, y) are UGAS and the solutions of
(A.5a) and (A.5b) are globally uniformly bounded, then the cascaded system (A.5)
is UGAS.

210



A.4. Integral Input-to-State Stability

Theorem A.3 (Panteley and Lor�a [111, Theorem 2]). Consider the cascaded
system (A.5). Assume that the system ẋ = f1(t, x) is UGAS with a Lyapunov
function V (t, x) satisfying∥∥∥∥∂V∂x

∥∥∥∥ ‖x‖ ≤ c1V (t, x), ∀‖x‖ ≥ η > 0, (A.6)

and that Assumptions (A1)-(A2) below are satis�ed. Then the cascaded system
(A.5) is UGAS.

(A1) The function g(t, x, y) satis�es

‖g(t, x, y)‖ ≤ θ1(‖y‖) + θ2(‖y‖)‖x‖, (A.7)

where θ1, θ2 : R+ → R+ are continuous.

(A2) The system ẏ = f2(t, y) is UGAS and for all t ≥ t0,∫ t

t0

‖x(s)‖ds ≤ φ(‖x(t0)‖), (A.8)

where φ(·) ∈ K.

Remark A.1. If the nominal system ẋ = f1(t, x) is UGAS with a quadratic Lya-
punov function, then the condition (A.6) is satis�ed trivially.

Remark A.2. If the perturbing system ẏ = f2(t, y) is UGAS and ULES (or equiv-
alently exponentially stable in any ball of initial conditions), then the integrability
condition (A.8) is satis�ed trivially

Lemma A.4 (Panteley et al. [113, Lemma 8]). If in addition to the assumptions
in Theorem A.3, both ẋ = f1(t, x) and ẏ = f2(t, y) are UGAS and ULES then the
cascaded system (A.5) is UGAS and ULES.

Proposition A.1 (Loría and Panteley [94, Proposition 2.3]). If in addition to the
assumptions in Theorem A.3, both ẋ = f1(t, x) and ẏ = f2(t, y) are UGES then
the cascaded system (A.5) is UGES.

A.4 Integral Input-to-State Stability

Consider the system

ẋ = f(x, u) (A.9)

with states x(t) ∈ Rn and the inputs are measurable locally essentially bounded
functions u : R+ → Rm, and f : Rn × Rm → Rn locally Lipschitz. Given any
control u and any ξ ∈ Rn, there is a unique maximal solution of the intial value
problem ẋ = f(x, u), x(0) = ξ. This solution is de�ned on some maximal open
interval, and it is denoted by x(·, ξ, u).
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De�nition A.5 (Angeli et al. [6, De�nition 2.2]). The system (A.9) is integral
input-to-state stable (iISS) if there exists functions α ∈ K∞, β ∈ KL, and γ ∈ K,
such that, for all ξ ∈ Rn and all u, the solution x(t, ξ, u) is de�ned for all t ≥ 0,
and

α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫ t

0

γ(‖u(s)‖)ds (A.10)

for all t ≥ 0, all ξ ∈ Rn, and all u.

De�nition A.6 (Angeli et al. [6, De�nition 2.2]). A continuously di�erentiable
function V : Rn → R is called an iISS-Lyapunov function for system (A.9) if there
exist functions α1, α2 ∈ K, and a continuous positive de�nite function α3, such
that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) (A.11)

for all ξ ∈ Rn and

DV (ξ)f(ξ, µ) ≤ −α3(‖ξ‖) + σ(‖µ‖) (A.12)

for all ξ ∈ Rn and all µ ∈ Rm.

A.5 Additional Tools

Lemma A.5 (Comparison Lemma, Khalil [82, Lemma 3.4]). Consider the scalar
di�erential equation

u̇ = f(t, u), u(t0) = u0

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all
u ∈ J ⊂ R. Let [t0, T ) (T could be in�nity) be the maximal interval of existence
of the solution u(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a continuous function whose
upper right-hand derivative D+v(t) satis�es the di�erential inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).

De�nition A.7 (Angeli and Sontag [5]). Consider a general nonlinear system of
the form

ẋ = f(x, u), y = h(x) (A.13)

with states x ∈ Rn, inputs u ∈ Rm, and outputs y ∈ Rp. The maps f : Rn ×
Rm → Rn and h : Rn → Rm are locally Lipschitz continuous. By an input signal
for (A.13) we mean any measurable locally essentially bounded function of time,
u(·) : R → Rm. The system (A.13) is called forward complete if for every initial
condition and every input signal u, the corresponding solution is de�ned for all
t ≥ 0.

212



A.5. Additional Tools

Theorem A.6 (Angeli and Sontag [5, Corollary 2.11]). System (A.13) is forward
complete if and only if there exists a smooth and proper function V : Rn → R≥0

and such that

∂V (x)

∂x
f(x, u) ≤ V (x) + σ(‖u‖), ∀x ∈ Rn, ∀u ∈ Rm (A.14)

holds for some σ ∈ K∞.

Lemma A.7 (Khalil [82, Lemma 8.2]). Let φ : R→ R be a uniformly continuous

function on [0,∞). Suppose that limt→∞
∫ t

0
φ(τ)dτ exists and is �nite. Then,

φ(t)→ 0 (A.15)

as t→∞.
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Appendix B

Translation of Equations of Motion

This appendix presents the detail on how to perform the translation of the equa-
tions of motion for both the surface vessel model considered in Section 2.2 and
the model for the AUV considered in Section 2.3. This translation is applied to
remove the e�ect of the yaw rate controller on the representation of the sway ve-
locity dynamics. This signi�cantly simpli�es the process of control design and the
stability analysis. The coordinate transformation for a surface vessel can be found
in Fredriksen and Pettersen [64] and is given Section B.1 of this appendix. The
transformation for an AUV can be found in Børhaug et al. [29] and is given in
Section B.2 of this appendix.

B.1 Translation for the Manoeuvring Model in 3-DOF

Recall the model given in Section 2.2;

η̇ = R(ψ)νr + [Vx, Vy, 0]T (B.1)

Mν̇r +C(νr)νr +Dνr = Bf . (B.2)

where η , [x, y, ψ]T , νr , [ur, vr, r]
T , f , [Tu, Tr]

T , and

M ,

m11 0 0
0 m22 m23

0 m23 m33

 , D ,

d11 0 0
0 d22 d23

0 d32 d33

 , B ,

b11 0
0 b22

0 b32

 .
From the structure of M , B, and f it is straightforward to verify that in this
model the rudder angle input Tr in�uences not only the dynamics of the yaw but
also the dynamics of the sway velocity. The transformation presented here allows
us to transform the equations of motions to a point where it holds thatM−1Bf =
[τu, 0, τr]

T . Hence, in this point the sway velocity dynamics are decoupled from the
yaw control.

For the case of a surface vessel the following transformation is proposed in
Fredriksen and Pettersen [64]

v̄r = vr + εr, (B.3)
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where ε is a constant given by

ε , −m33b22 −m23b32

m22b32 −m23b22
(B.4)

where as pointed out in Børhaug [26] this transformation is well-de�ned if the
system is initially controllable in yaw. This transformation corresponds to moving
the body-frame along the center line of the vessel, for a distance ε, to a point where
the yaw control input generates a pure rotation and no sway force. Therefore, as
in Caharija [39] we translate the body-�xed frame to the point where yaw and
sway are decoupled and consider motion around this point in this thesis. This can
be done without loss of generality, since the transformation is invertible and the
structure and properties of the inertia and damping matrices are not changed.

The transformation results in a transformed body-frame velocity vector ν̄r ,
[ur, v̄r, r]

T . As in Caharija [39] we note that there exists a corresponding transfor-
mation matrix H3DOF such that νr = H3DOF ν̄r where

H3DOF ,

1 0 0
0 1 −ε
0 0 1

 . (B.5)

The transformation of the equations of motion using H3DOF is preformed as de-
scribed in Fossen [60] and results in

η̇ = R(ψ)νr + [Vx, Vy, 0]T (B.6)

MH ν̇r +CH(νr)νr +DHνr = BHf . (B.7)

where MH , HT
3DOFMH3DOF , D

H , HT
3DOFDH3DOF , and B

H , HT
3DOFB.

The model now corresponds to the motion around the point where the yaw rudder
control is now decoupled from the sway dynamics. Consequently, it can now be
veri�ed that

(MH)−1BHf =


b11
m11

Tu
0

m22b32−m23b22
m22m33−m2

23
Tr

 (B.8)

such that we can de�ne[
τu
τr

]
,

[
b11
m11

0

0 m22b32−m23b22
m22m33−m2

23

] [
Tu
Tr

]
. (B.9)

The controllers in this thesis are developed in terms on τu and τr, but can be easily
be transformed back in terms of Tu and Tr using the inverse of transformation of
(B.9) which is well de�ned since M is positive de�nite.

B.2 Translation for the Manoeuvring Model in 5-DOF

Recall the model given in Section 2.3;

η̇ = J(η)νr + [Vx, Vy, Vz, 0, 0]T ,

Mν̇r +C(νr)νr +Dνr + g(η) = Bf
(B.10)
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where η = [x, y, z, θ, ψ]T , νr = [ur, vr, wr, q, r]
T , f , [Tu, Tq, Tr]

T , and the matrices
M and B have the following structure

M =


m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0
0 0 m43 m44 0
0 m52 0 0 m55

 , B ,


b11 0 0
0 0 b23

0 b32 0
0 b42 0
0 0 b53

 .
From the structure of M , B, and f it is straightforward to verify that the yaw
rudder angle input Tr in�uences not only the dynamics of the yaw but also the
dynamics of the sway velocity. Moreover, the pitch rudder angle Tq does not only
in�uence the pitch dynamics but also the dynamics of the heave velocity. The
transformation presented here allows us to transform the equations of motions to
a point where it holds that M−1Bf = [τu, 0, 0, τq, τr]

T . Hence, in this point the
sway velocity dynamics are decoupled from the yaw control and the heave velocity
dynamics are decoupled from the pitch control.

Inspired by the work in Fredriksen and Pettersen [64] the following coordinate
transform was proposed in Børhaug et al. [29]

v̄r = vr + ε1r, w̄r = wr + ε2q, (B.11)

where ε1 and ε2 are constants de�ned as

ε , −m55b23 −m25b53

m22b53 −m25b23
, ε , −m44b32 −m34b42

m33b42 −m34b32
. (B.12)

Note that ε1 and ε2 are well-de�ned if the original system is controllable in yaw
and pitch. As pointed out in Børhaug [26] and Caharija [39] it is intresting to note
that if m22 = m33, m44 = m55, m25 = −m34, b23 = −b32, and b42 = b53 then it
holds that ε1 = −ε2. Interestingly enough this holds for most AUVs of cylindrical
shape since they satisfy symmetry properties in the body and in the diving control
surfaces. Examples include the HUGIN AUV ([26]), the LAUV ([45]), and the ISiMI
([81]). If this is the case than the transformation reduces to a translation along the
center-line of the body by a distance ε1. Therefore, as in Caharija [39] we translate
the body-�xed frame to the point where yaw and sway, and pitch and heave are
decoupled and consider motion around this point in this thesis. This can be done
without loss of generality, since the transformation is invertible and the structure
and properties of the inertia and damping matrices are not changed.

As for the 3-DOF case we now introduce a transformed body-frame velocity
vector ν̄r , [ur, v̄r, w̄r, q, r]

T . As in Caharija [39] we note that there exists a corre-
sponding transformation matrix H5DOF such that νr = H5DOF ν̄r where

H5DOF ,


1 0 0 0 0
0 1 0 0 −ε1
0 0 1 −ε2 0
0 0 0 1 0
0 0 0 0 1

 . (B.13)
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The transformation of the equations of motion using H5DOF is preformed as de-
scribed in Fossen [60] and results in

η̇ = J(η)νr + [Vx, Vy, Vz, 0, 0]T ,

MH ν̇r +CH(νr)νr +DHνr + gH(η) = BHf
(B.14)

whereMH ,HT
5DOFMH5DOF , D

H ,HT
5DOFDH5DOF , g

H(ν) = HH
5DOFg(ν),

and BH ,HT
5DOFB. The model now corresponds to the motion around the point

where the yaw rudder control and pitch rudder control are decoupled from the sway
and heave dynamics respectively. Consequently, it can now be veri�ed that

(MH)−1BHf =


b11
m11

Tu
0
0

m33b42−m34b32
m33m44−m2

34
Tq

m22b53−m25b23
m22m55−m2

25
Tr

 (B.15)

such that we can de�neτuτq
τr

 ,


b11
m11

0 0

0 m33b42−m34b32
m33m44−m2

34
0

0 0 m22b53−m25b23
m22m55−m2

25


TuTq
Tr

 . (B.16)

The controllers in this thesis are developed in terms on τu, τq, and τr, but can
be easily be transformed back in terms of Tu, Tq, and Tr using the inverse of
transformation of (B.16) which is well de�ned since M is positive de�nite.
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Appendix C

Numerical Simulation Models

This appendix presents the models used for the numerical simulations in the thesis.
The �rst model is for a supply vessel, this a 3-DOF model and corresponds to
the model in Section 2.2. The second model is a model for an AUV, this model
corresponds to the 5-DOF model in Section 2.3.

C.1 Numerical Model for a Supply Vessel

This section presents a simulation model for an underactuated supply vessel. In
particular, we consider the model derived in Fossen et al. [62] and Fredriksen and
Pettersen [63]. Recall the dynamics of the model given by

Mν̇r +C(νr)νr +Dνr = Bf . (C.1)

The numerical values of M , B, and C(νr) are given by

M =

7.22 · 106 0 0
0 1.21 · 107 −3.63 · 107

0 −3.63 · 107 4.75 · 109

 , B =

1 0
0 −1.13 · 106

0 9.63 · 107

 ,
C(νr) =

 0 0 −1.21 · 107vr + 3.63 · 107r
0 0 7.22 · 106ur

1.21 · 107vr − 3.63 · 107r −7.22 · 106ur 0



The linear damping matrix from Fredriksen and Pettersen [63] is given by

D =

95070 0 0
0 4.34 · 106 −2.47 · 106

0 −1.88 · 107 7.57 · 108

 . (C.2)

The control input vector f is de�ned as f = [Tu, Tr]
T and contains the surge thrust

Tu and the yaw rudder angle Tr.
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C. Numerical Simulation Models

C.2 Numerical Model for AUV

This section presents a simulation model for an AUV. The AUV under considera-
tion is the light autonomous underwater vehicle (LAUV) developed at Laboratório
de Sistemas e Tecnologia Subaquática (LSTS) from the electrical engineering and
computer science department at the university of Porto in cooperation with the
spin-o� company OceanScan - Marine Systems and Technology, Lda. The model
parameters are obtained from da Silva et al. [45]. An image of the LAUV can be
seen in Figure C.1.

Figure C.1: Image of the LAUV.

Recall the dynamics of the model given in Section 2.3:

Mν̇r +C(νr)νr +Dνr + g(η) = Bf . (C.3)

The numerical values for the matrices M , C(νr), D, and B are given by

M =


19.0 0 0 0 0

0 34.0 0 0 0
0 0 34.0 0 0
0 0 0 2.1 0
0 0 0 0 2.1

 ,

D =


2.4 0 0 0 0
0 23.0 0 0 −11.5
0 0 23.0 11.5 0
0 0 −3.1 9.7 0
0 3.1 0 0 9.7

 , B =


1 0 0
0 0 −39.8783
0 39.8783 0
0 18.1446 0
0 0 18.1446



C(νr) =


0 0 0 34.0 · wr −34.0 · vr
0 0 0 0 19 · ur
0 0 0 −19.0 · ur 0

−34.0 · wr 0 19.0 · ur 0 0
34.0 · vr −19.0 · ur 0 0 0

 .
The gravity vector is given by g(η) = [0, 0, 0, BGzW sin(θ), 0]T , where BGz =
0.017 [m] is the vertical distance between centre of gravity (CG) and the centre of
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C.2. Numerical Model for AUV

buoyancy (CB), and W = mg is the weight of the vehicle with mass m = 18 [kg]
and gravitational acceleration g = 9.81 [m/s2]. The control input vector f is de�ned
as f = [Tu, Tq, Tr]

T and contains the surge thrust Tu, the pitch rudder angle Tq,
and the yaw rudder angle Tr.
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