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Asymptotic stability of perturbation-based
extremum-seeking control for nonlinear plants

Mark Haring, and Tor Arne Johansen, Senior Member, IEEE

Abstract—We introduce a perturbation-based extremum-
seeking controller for general nonlinear dynamical plants with
an arbitrary number of tunable plant parameters. The controller
ensures asymptotic convergence of the plant parameters to their
performance-optimizing values for any initial plant condition
under the assumptions in this work. The key to this result is
that the amplitude and the frequencies of the perturbations,
as well as other tuning parameters of the controller, are time
varying. Remarkably, the time-varying tuning parameters can be
chosen such that asymptotic convergence is achieved for all plants
that satisfy the assumptions, thereby guaranteeing stability of the
resulting closed-loop system of plant and controller regardless of
tuning.

Index Terms—Extremum-seeking control, asymptotic stability,
time-varying tuning, performance optimization.

I. INTRODUCTION

EXTREMUM-SEEKING control is an adaptive control
methodology that optimizes the steady-state perfor-

mance of a plant by automated tuning of plant parameters.
Extremum-seeking methods are model-free optimization tech-
niques driven by measurements. Due to the low requirements
for the knowledge about the plant, extremum-seeking control
can be applied to many different engineering problems; see
for example [1], [29] and references therein. However, due to
the relatively slow convergence of extremum-seeking methods,
model-based methods are often preferred if an accurate model
of the plant is available. Therefore, typical applications of
extremum-seeking control are applications for which an accu-
rate model is not available due to the high complexity of the
plant, such as for bioreactors [7], [11], [32] and nuclear-fusion
reactors [3], [4], [24], or due to time-varying disturbances
that are difficult or expensive to measure, such as for wind
turbines [5], [8], [14] and solar arrays [2], [9], [18]. Although
extremum-seeking methods aim to tune the plant parameters
such that the steady-state performance of the plant is optimal,
commonly only near-optimal values are obtained due to the
effects of plant dynamics, measurement noise and added
perturbations. Therefore, practical convergence with respect
to the optimal steady-state plant performance is the standard
for many extremum-seeking methods; see for example [16],
[17], [23], [25], [30].

Asymptotic convergence results are relatively rare. It is
shown in [22] that local exponential convergence to the
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optimal steady-state performance can be achieved for static
plants by exponentially decaying the amplitude of the added
perturbations once the plant parameters enter a neighborhood
of the performance-optimizing values. Similarly, local expo-
nential convergence to the optimal steady-state performance
for dynamical plants is claimed in [33] by regulating the
perturbation amplitude. In [28], asymptotic convergence for
Wiener-Hammerstein-type plants is obtained by letting the per-
turbation amplitude and the adaptation gain of the controller
asymptotically converge to zero as time goes to infinity.

In addition, a few references describe asymptotic behavior
for extremum-seeking methods that do not rely on added
perturbations; see for example [10], [12]. It is shown in [12]
that asymptotic convergence to the optimal plant performance
can be obtained with an extremum-seeking controller that uses
first-order least-squares fits if the plant is static. Moreover,
simulation results for a Hammerstein-type plant indicate that
asymptotic convergence can also be obtained for certain dy-
namical plants. In [10], a simulation example of a Wiener-type
plant displays asymptotic convergence to the optimal steady-
state performance if the perturbation of the extremum-seeking
controller in [10] is omitted.

The main contributions of this work can be summarized
as follows. First, we introduce a novel perturbation-based
extremum-seeking controller for general nonlinear dynamical
plants with an arbitrary number of plant parameters. From
the stability analysis in this work, it follows that, under
given assumptions and appropriate tuning of the controller,
the closed-loop system of plant and controller is globally
asymptotically stable with respect to the optimal steady-state
plant performance in the sense that the solutions of the closed-
loop system are bounded and asymptotically converge to the
steady-state values for which the plant performance is optimal
for any initial condition of the plant. The key to this result
is that the amplitude and the frequencies of the perturbations,
as well as other tuning parameters of the controller, are time
varying and asymptotically decay to zero as time goes to
infinity. To the best of our knowledge, this is the first work
about extremum-seeking control in which global asymptotic
stability with respect to the optimal steady-state performance
of general nonlinear dynamical plants is proved. Second, we
prove that global asymptotic stability can even be obtained
if the plant is subjected to a time-varying disturbance under
the assumption that the perturbations of the controller and
the zero-mean component of the disturbance are uncorrelated.
Third, there exist time-varying tuning-parameter values of the
controller that ensure global asymptotic stability of the closed-
loop system for all plants that satisfy the assumptions in this
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work. Application of these values eliminates the necessity
(in [17], [30] for example) to tune the extremum-seeking
controller in order to obtain a stable closed-loop system.

The organization of this work is as follows. The extremum-
seeking problem is formulated in Section II. Our novel
extremum-seeking controller is introduced in Section III. The
stability analysis of the resulting closed-loop system of plant
and controller is given in Section IV. We demonstrate our
findings with three simulation examples in Section V, after
which this work is concluded in Section VI.

The sets of real numbers and natural numbers (nonnegative
integers) are respectively denoted by R and N. We denote
the sets of positive real numbers, nonnegative real numbers
and positive integers by R>0, R≥0 and N>0, respectively. The
identity matrix and the zero matrix are denoted by I and 0.

II. PROBLEM FORMULATION

We consider the following mulit-input-single-ouput nonlin-
ear plant:

ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t)) + d(t),
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, y ∈ R is
the output and where t ∈ R≥0 is the time. The dimensions
of the state and the input are denoted by nx, nu ∈ N>0,
respectively. The input u can be regarded as a vector of tunable
plant parameters. The output of the function h can be seen as
a measure for the performance of the plant. We refer to the
output of h as the performance cost. The performance cost
is measured by the imperfect measurement y. The discrep-
ancy between the performance cost and the measurement is
denoted by the disturbance d. Our aim is to find the constant
plant-parameter values that optimize the steady-state plant
performance by minimizing the steady-state performance cost.
However, the exact relation between the plant parameters and
the performance cost is unknown, meaning that the state x, the
functions f and h, the state dimension nx and the disturbance d
are unknown. To identify for which plant-parameter values the
steady-state plant performance is optimal, we rely on the plant-
parameter values u, the measurement y and a set of general
assumptions about the plant, which we introduce next.

Our first assumption is that there exist a constant (unknown)
steady-state solution of the plant denoted by x = X(u)
for each set of constant plant-parameter values u. This is
formalized as follows.

Assumption 1. There exists a twice continuously differentiable
map X : Rnu → Rnu and a constant LX ∈ R>0 such that

0 = f(X(u),u) (2)

and ∥∥∥∥
dX

du
(u)

∥∥∥∥ ≤ LX (3)

for all u ∈ Rnu .

We note that X(u) is the explicit solution of the implicit
equation (2) for any u ∈ Rnu . Our second assumption is that
the plant is globally exponentially stable with respect to the
steady-state solution X(u) if u is constant.

Assumption 2. There exist constants µx, νx ∈ R>0 such that,
for each constant u ∈ Rnu , the solutions of (1) satisfy

‖x̃(t)‖ ≤ µx‖x̃(t0)‖e−νx(t−t0), (4)

with
x̃(t) = x(t)−X(u), (5)

for all x(t0) ∈ Rnx and all t ≥ t0 ≥ 0.

From Assumptions 1 and 2 and the output function of the
plant, we obtain that steady-state relation between the plant-
parameter values and the performance cost can be written as

F (u) = h(X(u),u). (6)

We refer to F as the objective function. In order to minimize
the steady-state performance cost and to optimize the steady-
state plant performance, we aim to find the plant-parameter
values for which the output of objective function is minimal.
Because the functions f and h are unknown, the objective
function is also unknown. Nonetheless, we assume that F (u)
exhibits a unique minimum for some unknown value u = u∗

for which the steady-state plant performance is optimal. This
is formulated in the following assumption.

Assumption 3. The objective function F : Rnu → R is twice
continuously differentiable and exhibits a unique minimum on
the domain Rnu . Let the corresponding minimizer be denoted
by u∗. There exist constants LF1, LF2 ∈ R>0 such that

dF

du
(u)(u− u∗) ≥ LF1‖u− u∗‖2 (7)

and ∥∥∥∥
d2F

duduT
(u)

∥∥∥∥ ≤ LF2 (8)

for all u ∈ Rnu .

We note that, although (7) implies that F (u∗) is a unique
minimum of the objective function, it does not imply that the
objective function is convex. A similar assumption to (7) for
a single-parameter plants is stated in [30].

The existence of a steady-state solution, the stability of
the plant and the existence of a minimum of the objective
function are common assumptions in the extremum-seeking
literature; see for example [17], [30]. Additionally, we require
the following bounds on the derivatives of the functions f and
h for analytical purposes.

Assumption 4. The function f : Rnx × Rnu → Rnx and
h : Rnx × Rnu → R are twice continuously differentiable.
Moreover, there exist constants Lfx, Lfu, Lhx, Lhu ∈ R>0

such that ∥∥∥∥
∂f

∂x
(x,u)

∥∥∥∥ ≤ Lfx,

∥∥∥∥
∂f

∂u
(x,u)

∥∥∥∥ ≤ Lfu (9)

and∥∥∥∥
∂2h

∂x∂xT
(x,u)

∥∥∥∥ ≤ Lhx,
∥∥∥∥

∂2h

∂x∂uT
(x,u)

∥∥∥∥ ≤ Lhu (10)

for all x ∈ Rnx and all u ∈ Rnu .

Remark 5. In this work, we optimize the steady-state plant
performance for any initial conditions x(0) ∈ Rnx and u(0) ∈
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Rnu . For this reason, we require that Assumptions 1-4 are
satisfied for all x ∈ Rnx and all u ∈ Rnu . For a local result,
it is sufficient to assume that Assumptions 1-4 hold for compact
sets of x and u, where the steady-state solution X(u) is in the
interior of the compact set of x and the minimizer u∗ is in the
interior of the compact set of u. We note that Assumption 4
holds for any compact sets of x and u if the functions f and
h are twice continuously differentiable.

Because the objective function is unknown, any information
about the objective function is obtained via the measurement
y. We note that the measurement y differs from the output
of the objective function F (which is equal to the steady-
state performance cost) in two ways: first, the measurement
is not equal to the performance cost due to the disturbance
d; second, the performance cost is not equal to the output of
the objective function due to the plant dynamics. Nonetheless,
we aim to steer the plant parameters u to their performance-
optimizing values u∗ under the given assumptions by using
the measurement y as feedback.

III. PROPOSED CONTROLLER

From Assumption 3, it follows that the plant parameters
u converge to their performance-optimizing values u∗ if they
are steered in the direction opposite to the gradient of the
objective function. Because the objective function is unknown,
we estimate (a scaled version of) its gradient and use this
gradient estimate to steer u to u∗. We introduce the following
sinusoidal perturbations to provide sufficient excitation to the
plant-parameter signals to accurately estimate the gradient of
the objective function:

ω(t) = [ω1(t), ω2(t), . . . , ωnu(t)]
T , (11)

with

ωi(t) =





sin

(
i+ 1

2

∫ t

0

ηω(τ)dτ

)
, if i is odd,

cos

(
i

2

∫ t

0

ηω(τ)dτ

)
, if i is even

(12)

for i = 1, 2, . . . , nu, where ηω ∈ R>0 is a time-varying tuning
parameter. We note that if ηω is constant, the perturbation
signals in (12) are given by ω1 = sin(ηωt), ω2 = cos(ηωt),
ω3 = sin(2ηωt), etcetera. The use of sinusoidal perturbations
with constant angular frequencies is common in extremum-
seeking control; see for example [1], [29] and references
therein. The corresponding plant-parameter signals are given
by

u(t) = û(t) + αω(t)ω(t), (13)

where û ∈ Rnu is the nominal value of the plant parameters
and αω ∈ R>0 is the time-varying amplitude of the pertur-
bation signals. The tuning parameters αω and ηω satisfy the
differential equations

α̇ω(t) = −gα(t)αω(t), η̇ω(t) = −gω(t)ηω(t), (14)

with initial conditions αω(0), ηω(0) ∈ R>0 and time-varying
parameters gα, gω ∈ R≥0. This is not the first work about
extremum-seeking control for which the amplitude of the

perturbations is time varying. Sinusoidal perturbations with
a time-varying amplitude are also used to optimize the plant
performance in the presence of multiple local extrema in [31],
to increase the convergence rate of the extremum-seeking
controller in [20], to remove steady-state oscillations in [33], to
obtain exponential convergence for static plants in [22], and to
achieve asymptotic convergence for Wiener-Hammerstein-type
plants in [28]. In this work, we utilize sinusoidal perturbations
with a time-varying amplitude and time-varying frequencies to
obtain asymptotic convergence of the plant parameters to their
performance-optimizing values by letting the value of αω and
ηω asymptotically decay to zero as time goes to infinity. Here,
the novelty lies in the decay of the frequencies in addition to
the decay of the amplitude of the perturbations, which allows
us to extend the results in [28] to the general nonlinear plant
in (1).

In this work, we introduce an extremum-seeking controller
that asymptotically regulates the nominal plant parameters û to
u∗ with the help of an estimate of the gradient of the objective
function. To be able to estimate the gradient of the objective
function from the measurement y, we impose the following
assumption on the disturbance d.

Assumption 6. The disturbance d : R≥0 → R is integrable.
Moreover, there exists a constant bd ∈ R for which

bd = lim
T→∞

1

T

∫ T

0

d(t)dt. (15)

We define
d̃(t) = d(t)− bd. (16)

In addition, there exists a vector bωd ∈ Rnu for which

bωd = lim
T→∞

1

T

∫ T

0

ω(t)d̃(t)dt. (17)

Furthermore, there exist constants qd, qωd ∈ R≥0 such that
∣∣∣∣
∫ t

0

d̃(τ)dτ

∣∣∣∣ ≤ qd (18)

and ∥∥∥∥
∫ t

0

(
ω(τ)d̃(τ)− bωd

)
dτ

∥∥∥∥ ≤ qωd (19)

for all t ≥ 0.

We note that the disturbance d is allowed to be discontinu-
ous and unbounded as long as the bounds on the integrals
in (18) and (19) exist. The constant bd is a bias in the
measurement. We refer to d̃ as the zero-mean component of the
disturbance. The vector bωd is a measure for the correlation
between ω and d̃. We refer to ω and d̃ as uncorrelated if
bωd is equal to the zero vector. Uncorrelation between the
perturbations and the zero-mean component of the disturbance
is used to prove the practical stability results in [1], [29], where
(17) is equivalent to the noise assumption in [29] for bωd = 0.
Similarly, the asymptotic stability result in this work can only
be obtained if the perturbations and the zero-mean component
of the disturbance are uncorrelated.
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A. Model of the input-to-output behavior of the plant

To obtain an estimate of the gradient of the objective
function from the measurement signal y, we model the input-
to-output behavior of the plant. The state of the model is given
by

m1(t) = F (û(t)) + bd, m2(t) = αω(t)
dF

duT
(û(t)). (20)

By combining the output equation in (1) and the expression for
objective function in (6), the measurement y can be expressed
as

y = h(x,u)− h(X(u),u) + F (u) + d. (21)

With the help of Taylor’s theorem and (13), the steady-state
performance cost can be written as

F (u) = F (û+ αωω)

= F (û) + αω
dF

du
(û)ω

+ α2
ωω

T

∫ 1

0

(1− s) d2F

duduT
(û+ sαωω)dsω.

(22)

By combining (14), (16) and (20)-(22), we obtain the follow-
ing input-to-output behavior of the plant:

ṁ1(t) =
˙̂u
T
(t)

αω(t)
m2(t)

ṁ2(t) = −gα(t)m2(t) + α2
ω(t)w(t)

y(t) = m1(t) + ωT (t)m2(t) + α2
ω(t)v(t) + z(t) + d̃(t),

(23)
with

w =
d2F

duduT
(û)

˙̂u

αω
,

v = ωT
∫ 1

0

(1− s) d2F

duduT
(û+ sαωω)dsω,

z = h(x,u)− h(X(u),u).

(24)

The signals w, v and z can be regarded as unknown dis-
turbances. The influences of w, v and z on the state and
output of the model are small if û is slowly time varying,
if αω is small and if the state x of the plant is close to its
steady-state value X(u). We note that the state m2 in (20) is
equal to the gradient of the objective function scaled by the
perturbation amplitude αω . Hence, an estimate of the gradient
of the objective function can be obtained from an estimate of
the state m2.

B. Controller design

We introduce an extremum-seeking controller that consists
of an observer to estimate the state of the model in (23) and
an optimizer that uses the estimate of the state m2 of the
observer to regulate the nominal plant parameters û to their

performance-optimizing values u∗. Let the observer be given
by

˙̂m1(t) = ηm(t) (y(t)− m̂1(t))

˙̂m2(t) = −gα(t)m̂2(t)

+ ηm(t)Q(t)ω(t)
(
y(t)− m̂1(t)− ωT (t)m̂2(t)

)

Q̇(t) = ηm(t)Q(t)− 2gα(t)Q(t)

− ηm(t)Q(t)ω(t)ωT (t)Q(t),
(25)

with time-varying tuning parameter ηm ∈ R>0 and state m̂1 ∈
R, m̂2 ∈ Rnu and Q ∈ Rnu×nu , where Q is symmetric
and positive definite. Similar to (14), the tuning parameter ηm
satisfies the differential equation

η̇m(t) = −gm(t)ηm(t), (26)

with initial condition ηm(0) ∈ R>0 and time-varying parame-
ter gm ∈ R≥0. We note that m̂1 and m̂2 are estimates of m1

and m2 in (20), respectively. Therefore, m̂2 is an estimate
of the scaled gradient of the objective function. We define the
following gradient-descent optimizer to steer the nominal plant
parameters û to their performance optimizing values u∗:

˙̂u(t) = −λu(t)
ηu(t)m̂2(t)

ηu(t) + λu(t)‖m̂2(t)‖
, (27)

where λu, ηu ∈ R>0 are time-varying tuning parameters that
satisfy the differential equations

λ̇u(t) = −gλ(t)λu(t), η̇u(t) = −gu(t)ηu(t), (28)

with initial conditions λu(0), ηu(0) ∈ R>0 and time-varying
parameters gλ, gu ∈ R≥0. We note that the adaptation gain of
the optimizer in (27) is normalized to preclude a finite escape
time of the solutions of the closed-loop system of plant and
extremum-seeking controller if the estimate m̂2 is inaccurate.

C. Closed-loop system

The closed-loop system of the plant in (1) and the
extremum-seeking controller in (25) and (27) is illustrated in
Fig. 1. To accurately estimate the state of the model in (23)
with the observer in (25), it is assumed that the following
design assumptions are satisfied: first, the plant parameters
(that is, the sum of the nominal plant parameters and the
perturbations) are slowly time varying with respect to the
plant dynamics so that the performance cost remains close
to its steady-state value (that is, the disturbance z in (24)
is small); second, the observer uses a sufficiently long time
history of the perturbation signals and measurement signal
to be able to accurately extract the state of the model from
these signals, which requires the observer to be slow compared
to the perturbations; third, the nominal plant parameters are
slowly time varying with respect to the observer so that an
accurate state estimate is obtained (that is, the disturbance w
in (24) is small). Under these design assumptions, different
time scales can be assigned to the various components of the
closed-loop system of plant and controller, similar to [17],
[21], [30]. We conclude that the closed-loop system should be
tuned to exhibit four time scales under these assumptions:
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˙̂u = −λu
ηum̂2

ηu + λu‖m̂2‖

˙̂m1 = ηm(y − m̂1)

˙̂m2 = −gαm̂2 + ηmQω
(
y − m̂1 − ωTm̂2

)

Q̇ = ηmQ− 2gαQ− ηmQωωTQ

Plant

Observer

Optimizer

u

y

m̂2

αωω

Extremum-seeking controller

ẋ = f(x,u)

y = h(x,u) + d

d

û
+ +

ω

Fig. 1. Closed-loop system of plant and extremum-seeking controller.

• fast – the plant;
• medium fast – the perturbations of the controller;
• medium slow – the observer of the controller;
• slow – the optimizer of the controller.

The time scales of the perturbations, the observer and the
optimizer are dependent on the tuning parameters αω , ηω ,
ηm, λu and ηu. As mentioned above, we let αω and ηω
asymptotically converge to zero to obtain asymptotic conver-
gence of the plant parameters to their performance-optimizing
values. This implies that the perturbations become slower as
time progresses. To ensure that the observer and the controller
are sufficiently slow compared to the perturbations, the tuning
parameters ηm, λu and ηu are required to be time varying and
asymptotically decay to zero as well.

IV. STABILITY ANALYSIS

To investigate under which initial conditions and tuning
conditions the plant parameters converge to their performance-
optimizing values, we analyse the stability of the closed-loop
system of the plant in (1) and the extremum-seeking controller
in (25) and (27). Contrary to extremum-seeking controllers
with constant tuning parameters in [17], [30], for example, we
allow our choice of tuning-parameter values to be bad initially,
as long as suitable tuning-parameter values are obtained after
a finite time t1 ≥ 0. Our main result is presented next.

Theorem 7. Suppose that the parameters gα, gω , gm, gλ and
gu in (14), (26) and (28) are chosen such that

∫ ∞

0

e−
∫ t
0
gm(τ)dτdt =∞,

∫ ∞

0

min
{
e−

∫ t
0
(gα(τ)+gλ(τ))dτ , e−

∫ t
0
gu(τ)dτ

}
dt =∞

(29)
and

max {gα(t), gω(t), gm(t), gλ(t), gu(t)} ≤ cg (30)

for all t ≥ 0 and some constant cg ∈ R>0. Moreover, suppose
that

max

{
ηm(t)

αω(t)
qd,

ηm(t)

αω(t)
qωd,

1

αω(t)
‖bωd‖

}
≤ cd (31)

for all t ≥ 0 and for some constant cd ∈ R>0. Let
αω(0), ηω(0), λm(0), λu(0), ηu(0) ∈ R>0. Under these as-
sumptions and Assumptions 1-4 and 6, there exist (sufficiently
large) constants c1, c2, . . . , c5 ∈ R>0 and (sufficiently small)
constants ε1, ε2, . . . , ε7 ∈ R>0 such that, if there exists a time
t1 ∈ R≥0 for which

gα(t) + gω(t) ≤ ε1, gα(t) ≤ ηm(t)ε2,

|gm(t)− gω(t)| ≤ ηm(t)ε3, ηω(t) ≤ ε4,
ηm(t) ≤ ηω(t)ε5, ηu(t) ≤ αω(t)ηm(t)ε6,

αω(t)λu(t) ≤ ηm(t)ε7

(32)

for all t ≥ t1, then the solutions of the closed-loop system
of the plant in (1) and the extremum-seeking controller in
(25) and (27) are bounded for all t ≥ 0, all x(0) ∈ Rnx ,
all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu , all symmetric positive-
definite Q(0) ∈ Rnu×nu and all û(0) ∈ Rnu . In addition, the
solutions of û satisfy

lim sup
t→∞

‖û(t)− u∗‖ ≤ lim sup
t→∞

max

{
αω(t)c1, ηω(t)c2,

ηm(t)

αω(t)
c3qd,

ηm(t)

αω(t)
c4qωd,

1

αω(t)
c5‖bωd‖

}
.

(33)

We note that the constants c1, . . . , c5 and ε1, . . . , ε7 in
Theorem 7 are specific to the plant. The division of time scales
in Section III-C is achieved for sufficiently small values of
ε4, . . . , ε7 in (32).

A. Proof of Theorem 7

To prove Theorem 7, we define the following coordinate
transformation:

x̃(t) = x(t)−X(u(t)),

m̃1(t) = m̂1(t)−m1(t)

− ηm(t)k1(t)−
ηm(t)

ηω(t)
lT1 (t)m2(t),

m̃2(t) = m̂2(t)−m2(t)− ηm(t)Q(t)k2(t),

Q̃(t) = Q−1(t)− 1

2
I− ηm(t)

ηω(t)
l2(t),

ũ(t) = û(t)− u∗,

(34)

with

k1(t) =

∫ t

0

d̃(τ)dτ,

k2(t) =

∫ t

0

(
ω(τ)d̃(τ)− bωd

)
dτ

(35)

and

l1(t) =

∫ t

0

ηω(τ)ω(τ)dτ,

l2(t) =

∫ t

0

ηω(τ)

(
ω(τ)ωT (τ)− 1

2
I

)
dτ.

(36)
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We note that k1 and k2 in (35) are bounded; see Assumption 6.
Moreover, from the definition of ω in (11), it follows that
l1 and l2 in (36) are also bounded. Loosely speaking, the
convergence of the closed-loop system can be divided in three
stages:
• for 0 ≤ t < t1, the tuning parameters converge to the

bounds in (32), while the state (34) of the closed-loop
system may drift;

• for t1 ≤ t < t2, the variables x̃ and Q̃ converge to a
region of the origin and remain there, while the rest of
the state (34) of the closed-loop system may drift;

• for t ≥ t2, the variables m̃1, m̃2 and ũ converge to a
region of the origin and remain there.

Next, we derive bounds on solutions of the individual variables
in (34) in accordance with the three stages. First, we derive
bounds on x̃ and Q̃ in Lemmas 8 and 9, respectively.

Lemma 8. Under the conditions of Theorem 7, there exist
constants cx1, cx2, βx ∈ R>0 such that the solutions of x̃ are
bounded for all t ≥ 0 and all x̃(0) ∈ Rnx . Moreover, the
solutions of x̃ satisfy

‖x̃(t)‖ ≤ max
{
cx1‖x̃(t1)‖e−βx(t−t1), αω(t)ηω(t)cx2

}

(37)
for all t ≥ t1.

Proof. See Appendix A.

Lemma 9. Under the conditions of Theorem 7, there exist
constants cQ, βQ ∈ R>0 such that the solutions of Q̃ are
bounded for all t ≥ 0 and all Q̃(0) ∈ Rnu×nu for which Q(0)
is symmetric and positive definite. Moreover, the solutions of
Q̃ satisfy

‖Q̃(t)‖ ≤ max

{
cQ‖Q̃(t1)‖e−βQ

∫ t
t1
ηm(τ)dτ

,
1

8

}
(38)

for all t ≥ t1.

Proof. See Appendix B.

From Lemmas 8 and 9, we have that the solutions of x̃
and Q̃ are bounded for all time under the given assumptions.
Moreover, it follows that there exists a time t2 ≥ t1 such that
‖x̃(t)‖ ≤ αω(t)ηω(t)cx2 and ‖Q̃(t)‖ ≤ 1

8 for all t ≥ t2 under
the conditions of Theorem 7. We use these bounds on x̃ and
Q̃ to obtain the results in Lemmas 10 and 11 regarding the
existence of ISS-Lyapunov functions (see for example [26])
for the m̃1-, m̃2- and ũ-dynamics.

Lemma 10. Under the conditions of Theorem 7, there exists a
time t2 ≥ t1 such that the solutions of m̃1 and m̃2 are bounded
for all 0 ≤ t ≤ t2, all m̃1(0) ∈ R and all m̃2(0) ∈ Rnu . In
addition, there exist a function Vm : R × Rnu × Rnu×nu →
R≥0 and constants γm1, γm2, . . . , γm5, cm1, cm2, . . . , cm9 ∈
R>0 such that

max
{
γm1|m̃1(t)|2, γm2‖m̃2(t)‖2

}
≤Wm(t)

≤ max{γm3|m̃1(t)|2, γm4‖m̃2(t)‖2}
(39)

for all t ≥ t2, where we used the shorthand notation Wm(t) =
Vm(m̃1(t), m̃2(t),Q(t)). Moreover, for all t ≥ t2, we have
that

Ẇm(t) ≤ −ηm(t)γm5Wm(t) (40)

whenever

Wm(t) ≥ max

{
α4
ω(t)cm1, α

2
ω(t)η

2
ω(t)cm2,

α2
ω(t)η

2
ω(t)cm3‖ũ(t)‖2,

α2
ω(t)η

2
m(t)

η2ω(t)
cm4‖ũ(t)‖2,

α4
ω(t)λ

2
u(t)

η2m(t)
cm5‖ũ(t)‖2,

η2u(t)

η2m(t)
cm6‖ũ(t)‖2,

η2m(t)cm7q
2
d, η

2
m(t)cm8q

2
ωd, cm9‖bωd‖2

}
.

(41)

Proof. See Appendix C.

Lemma 11. Under the conditions of Theorem 7, there exists
a time t2 ≥ t1 such that the solutions of ũ are bounded
for all 0 ≤ t ≤ t2 and all ũ(0) ∈ Rnu . In addition,
there exist a function Vu : Rnu → R≥0 and constants
γu1, γu2, γu3, γu4, cu1, cu2 ∈ R>0 such that

γu1‖ũ(t)‖2 ≤ Vu(ũ(t)) ≤ γu2‖ũ(t)‖2 (42)

for all t ≥ t2. Moreover, for all t ≥ t2, we have that

V̇u(ũ(t)) ≤ −min
{
αω(t)λu(t)γu3Vu(ũ(t)),

ηu(t)γu4
√
Vu(ũ(t))

} (43)

whenever

Vu(ũ(t)) ≥ max

{
1

α2
ω(t)

cu1‖m̃2(t)‖2,
η2m(t)

α2
ω(t)

cu2q
2
ωd

}
.

(44)

Proof. See Appendix D.

To prove that the solutions of m̃1, m̃2 and ũ remain
bounded for all t ≥ t2 and to show that bound in (33) holds,
we introduce the following Lyapunov-function candidate as
proposed in [6], [13], [19]:

V (m̃1, m̃2, ũ,Q, αω)

= max

{
Vu(ũ),

1

α2
ω

cu1
γm2

Vm(m̃1, m̃2,Q)

}
,

(45)

where the functions Vm and Vu are defined in Lemmas 10
and 11, respectively. By following similar lines as in [13], we
obtain the following result regarding the solutions of m̃1, m̃2

and ũ.

Lemma 12. Under the conditions of Theorem 7, there exist
constants γV 1, γV 2, γV 3, cV 1, cV 2, . . . , cV 5 ∈ R>0 such that
the solutions of m̃1, m̃2 and ũ are bounded for all t ≥ t2,
all m̃1(t2) ∈ R, m̃2(t2) ∈ Rnu and all ũ(t2) ∈ Rnu , where
t2 ∈ R≥0 is defined in Lemmas 10 and 11. In addition, the
solutions of m̃1, m̃2 and ũ satisfy

lim sup
t→∞

max

{
γV 1

αω(t)
|m̃1(t)|,

γV 2

αω(t)
‖m̃2(t)‖, γV 3‖ũ(t)‖

}

≤ lim sup
t→∞

max

{
αω(t)cV 1, ηω(t)cV 2,

ηm(t)

αω(t)
cV 3qd,

ηm(t)

αω(t)
cV 4qωd,

1

αω(t)
cV 5‖bωd‖

}
.

(46)
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Proof. See Appendix E.

The proof of Theorem 7 follows from Lemmas 8-12 and
the coordinate transformation in (34).

B. Choice of tuning parameters

We explore the implications of Theorem 7 for different
choices of the tuning parameters αω , ηω , ηm, λu and ηu.
First, we consider constant tuning parameters, in which case
Theorem 7 reduces to the following result.

Corollary 13. Let the tuning parameters αω, ηω, ηm, λu, ηu ∈
R>0 be constant (that is, gα = gω = gm = gλ = gu = 0).
Under Assumptions 1-4 and 6, there exist (sufficiently large)
constants c1, c2, . . . , c5 ∈ R>0 and (sufficiently small) con-
stants ε1, ε2, ε3, ε4 ∈ R>0 such that the solutions of the
closed-loop system of the plant in (1) and the extremum-
seeking controller in (25) and (27) are bounded for all t ≥ 0,
all x(0) ∈ Rnx , all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu , all
symmetric positive-definite Q(0) ∈ Rnu×nu , all û(0) ∈ Rnu

and all αω, ηω, ηm, λu, ηu ∈ R>0 that satisfy ηω < ε1,
ηm < ηωε2, ηu < αωηmε3 and αωλu < ηmε4. In addition,
the solutions of û satisfy

lim sup
t→∞

‖û(t)− u∗‖ ≤ max

{
αωc1, ηωc2,

ηm
αω

c3qd,
ηm
αω

c4qωd,
1

αω
c5‖bωd‖

}
.

(47)

Proof. The proof follows directly from Theorem 7 for gα =
gω = gm = gλ = gu = 0.

From Corollary 13, we obtain that û converges to a region
of performance-optimizing value u∗, where the size of the
region is dependent on the tuning parameters αω , ηω and ηm
and the disturbance-related constants qd, qωd and bωd. If the
perturbations and the zero-mean component of the disturbance
are uncorrelated (that is, bωd = 0), the size of the region of
u∗ to which û converges can be made arbitrarily small by
selecting suitable tuning parameters. This result is similar to
the results for plants with output disturbances in [1], [29]. It
is generally not possible to make the size of the region of u∗

to which û converges arbitrarily small if the perturbations and
the zero-mean component of the disturbance are correlated.
We note that, because bωd depends on the tuning parameter
ηω (see Assumption 6), correlation of the perturbations and
the zero-mean component of the disturbance may be avoided
by choosing a different value of ηω .

Now, let us consider time-varying tuning parameters. In
particular, let the time-varying parameters gα, gω , gm, gλ and
gu be defined as follows.

Corollary 14. Let the parameters gα, gω , gm, gλ and gu in
(14), (26) and (28) be given by

gα(t) =
rα

r0 + t
, gω(t) =

rω
r0 + t

, gm(t) =
rm
r0 + t

,

gλ(t) =
rλ

r0 + t
, gu(t) =

ru
r0 + t

,
(48)

where the constants r0 ∈ R>0 and rα, rω, rm, rλ, ru ∈ R≥0
satisfy

0 < rα < rm, 0 < rω < rm,

rm < rα + rλ ≤ 1, rα + rm < ru ≤ 1.
(49)

Suppose that the perturbations and the zero-mean component
of the disturbance are uncorrelated (that is, bωd = 0). Under
this assumption and Assumptions 1-4 and 6, the solutions of
the closed-loop system of the plant in (1) and the extremum-
seeking controller in (25) and (27) are bounded for all t ≥ 0,
all x(0) ∈ Rnx , all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu , all sym-
metric positive-definite Q(0) ∈ Rnu×nu , all û(0) ∈ Rnu and
all αω(0), ηω(0), ηm(0), λu(0), ηu(0) ∈ R>0. In addition, the
solutions of û satisfy limt→∞ û(t) = u∗.

Proof. The proof follows from Theorem 7 for gα, gω , gm, gλ
and gu defined in (48) and (49). We note that

αω(t) =
rrα0 αω(0)

(r0 + t)rα
, ηω(t) =

rrω0 ηω(0)

(r0 + t)rω
,

ηm(t) =
rrm0 ηm(0)

(r0 + t)rm
, λu(t) =

rrλ0 λu(0)

(r0 + t)rλ
,

ηu(t) =
rru0 ηu(0)

(r0 + t)ru
,

(50)

which follows from (14), (26), (28) and (48). Hence, for
any αω(0), ηω(0), ηm(0), λu(0), ηu(0) ∈ R>0, there exists a
time t1 ∈ R≥0 such that (32) in Theorem 7 holds for all
t ≥ t1 under the conditions in (48) and (49). Moreover, from
(49) and (50), we obtain limt→∞ αω(t) = limt→∞ ηω(t) =

limt→∞
ηm(t)
αω(t) = 0 so that the right-hand side of (33) in

Theorem 7 reduces to zero for bωd = 0.

Under the conditions of Corollary 14, û converges to u∗,
even in the presence of an unknown disturbance (if the
perturbations and the zero-mean component of the disturbance
are uncorrelated). It is not difficult to show that the state
x of the plant converges to X(u∗) under the conditions
of Corollary 14, which implies that the plant performance
converges to the optimal steady-state performance as time goes
to infinity. We note that the closed-loop system is globally
asymptotically stable with respect to the optimal steady-
state plant performance under the conditions of Corollary 14
in the sense that the solutions of the closed-loop system
are bounded and asymptotically converge to the steady-state
values for which the plant performance is optimal for any
initial condition of the plant. To the best of our knowledge,
this is the first work about extremum-seeking control in
which global asymptotic stability to the optimal steady-state
performance of the general nonlinear plant in (1) is proved.
Because global asymptotic stability with respect to the optimal
steady-state plant performance is ensured for any plant that
satisfies the assumptions in Corollary 14, selecting any set
of tuning parameters that satisfy (48) and (49) eliminates the
necessity (in [17], [30] for example) to tune the extremum-
seeking controller in order to guarantee stability of the re-
sulting closed-loop system. Nonetheless, plant-specific tuning
of the controller is often desirable as suitably chosen tuning
parameters can significantly enhance the overall convergence
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rate of the extremum-seeking scheme. Moreover, we note that
bωd is the time average of the product of the perturbations,
whose frequencies asymptotically converge to zero, and the
zero-mean component of the disturbance. Hence, bωd = 0 for
a large class of disturbances. Corollary 14 does not guarantee
convergence or boundedness of the solutions of the closed-
loop system if bωd 6= 0. To guarantee robustness of the
closed-loop system for time-varying tuning of the controller
if bωd 6= 0, the perturbation amplitude should be chosen
such that limt→∞ αω(t) > 0, which precludes asymptotic
convergence to the optimal steady-state plant performance.
Additionally, we note that the tuning parameters of the con-
troller should remain positive as time goes to infinity to be
able to track changes in the performance-optimizing plant-
parameter values if slowly time-varying plants are considered
as in [1].

V. SIMULATION EXAMPLES

A. Example 1
Consider the following double-input-single-output plant

ẋ1(t) = −x1(t) + u22(t)

ẋ2(t) = −x2(t) + u1(t)

ẋ3(t) = −x3(t) + u2(t)x2(t)

y(t) = 2(x1(t) + x2(t)− u1(t)) + (x2(t) + x3(t))
2,

(51)

with state x = [x1, x2, x3]
T and plant-parameter vector

u = [u1, u2]
T . The corresponding objective function of the

plant is given by F (u) = (1 + u2)
2u21 + 2u22. We apply

the extremum-seeking controller in Section III to the plant
(51). The tuning parameters of the controller are chosen as
defined in Corollary 13 and Corollary 14, where the tuning
constants in Corollary 14 are set to r0 = 200, rα = 0.4,
rω = 0.4, rm = 0.45, rλ = 0.1 and ru = 0.9. The initial
tuning-parameter values are set to αω(0) = 0.1, ηω(0) = 1,
ηm(0) = 1, λu(0) = 0.5 and ηu(0) = 0.04 for both
tuning conditions. The trajectories of the plant parameters
are illustrated in Fig. 2. Fig. 3 displays the corresponding
measurement y of the performance cost for the first 2000
time units. From Fig. 2, we obtain that the plant parameters
asymptotically converge to the performance-optimizing values
u∗ = 0 if the time-varying tuning in Corollary 14 is applied.
The corresponding measurement y of the performance cost in
Fig. 3 asymptotically converges to the minimum F (u∗) = 0 of
the objective function. This implies that the optimal steady-
state performance of the plant is obtained as time goes to
infinity. Contrarily, the plant parameters converge to a region
of u∗ = 0 for the constant tuning in Corollary 13 (see Fig. 2)
for which the obtained plant performance is suboptimal. As a
result, we observe in Fig. 3 that the measurement y converges
to the value 0.5 instead of zero.

B. Example 2
To illustrate the influence of a time-varying disturbance on

the convergence of the plant parameters for the time-varying
tuning in Corollary 14, we consider the plant

ẋ(t) = −x(t) + u(t)

y(t) = (x(t)− 1)2 + d(t),
(52)

u1

0 1 2 3 4 5

u
2

-1

0

1
Time-varying tuning

Constant tuning

Fig. 2. Trajectory of the plant parameters u = [u1, u2]T for Example 1
using the constant tuning in Corollary 13 and the time-varying tuning in
Corollary 14.

t

0 500 1000 1500 2000
y
(t
)

0

1

2

3 Time-varying tuning

Constant tuning

Fig. 3. Measurement y of the performance cost as a function of time for
Example 1 using the constant tuning in Corollary 13 and the time-varying
tuning in Corollary 14.

with disturbance d(t) = sin(0.2t). The objective function is
given by F (u) = (u− 1)2. We note that the perturbation ω in
(11) and the zero-mean component of the disturbance d̃ = d
are uncorrelated for any values r0, rω > 0 in Corollary 14. We
let r0 = 10, rα = 0.15, rω = 0.25, rm = 0.4, rλ = 0.3 and
ru = 0.6. Figs. 4 and 5 illustrate the evolution of the plant pa-
rameter u, the performance cost (x−2)2 and the measurement
y as a function of time for the initial tuning-parameter values
αω(0) = 0.2, ηω(0) = 0.8, ηm(0) = 0.6, λu(0) = 0.2 and
ηu(0) = 0.4. We observe in Fig. 4 that the plant parameter u
converges to its performance-optimizing values u∗ = 1 as time
progresses. However, the convergence of the plant parameter
is momentarily disrupted when the angular frequency ηω of
the perturbation is equal to the angular frequency of the
disturbance (that is, ηω = 0.2). A similar observation can be
made in Fig. 5 where the performance cost rises as ηω reaches
the value 0.2. We note that this disruption can be contributed
to a “momentary correlation” of the perturbation and the zero-
mean component of the disturbance for ηω = 0.2. We note that
the effect of the momentary correlation can be diminished
by increasing the perturbation amplitude. Alternatively, the
disruption can be prevented by choosing ηω(0) smaller than
0.2. Fig. 5 shows that the performance cost converges to the
optimal value F (u∗) = 0 as time elapses. This implies that
the optimal steady-state performance is achieved despite that
the measurement y of the performance cost is corrupted by
the disturbance d.
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t

0 2000 4000 6000 8000 10000

u
(t
)

0

2

4

6

8

10 ηω = 0.2

Fig. 4. Plant parameter u as a function of time for Example 2.

t

0 2000 4000 6000 8000 10000

0

5

10

15

20 ηω = 0.2 Performance cost

Measurement

Fig. 5. Performance cost (x− 1)2 and measurement y as a function of time
for Example 2.

C. Example 3
We apply the extremum-seeking controller in [33] and the

presented controller with the tuning in Corollary 14 to the
plant

ẋ1(t) = −x1(t) + 2u(t) + 2

ẋ2(t) = 3x1(t)− x2(t) + u2(t)

y(t) = x1(t) + x2(t) + 2,

(53)

with state x = [x1, x2]
T and objective function F (u) =

(u + 4)2 − 6. Let the tuning constants in Corollary 14 be
given by r0 = 100, rα = 0.3, rω = 0.6, rm = 0.65, rλ = 0.4
and ru = 1, with initial parameter values αω(0) = 0.1,
ηω(0) = 0.5, ηm(0) = 0.1, λu(0) = 0.2 and ηu(0) = 0.05.
The tuning parameters of the controller in [33] are set to
k = 0.05, ω = 0.5, ωh = 0.2, ωl = 0.01 and r = 1,
with initial perturbation amplitude a(0) = 0.1. We observe
in Fig. 6 that the plant parameter asymptotically converges
to the performance-optimizing value u∗ = −4 using the
presented controller. The corresponding measurement of the
performance cost asymptotically converges to the minimum
F (u∗) = −6 of the objective function, as shown in Fig. 7.
The controller in [33] regulates the perturbation amplitude
while the perturbation frequency is kept constant; see Fig. 8.
The plant parameter in Fig. 6 converges to a constant value
(that is, u ≈ −3.2) in a region of the performance-optimizing
value u∗ using the controller in [33]. This region can be made
arbitrarily small by choosing a sufficiently small perturbation
frequency, which implies practical convergence. Asymptotic
convergence is only achieved with the presented controller for
this example.

VI. CONCLUSION

In this work, we have introduced a perturbation-based
extremum-seeking controller to optimize the steady-state per-

t

0 500 1000 1500 2000

u
(t
)

-4

-3

-2

-1

0 Wang et al.

Presented

Fig. 6. Plant parameter u as a function of time for Example 3 using the
controller by Wang et al. [33] and the presented controller.

t

0 500 1000 1500 2000

y
(t
)

-6

-4

-2

0 Wang et al.

Presented

Fig. 7. Measurement y of the performance cost as a function of time
for Example 3 using the controller by Wang et al. [33] and the presented
controller.

α
ω
(t
)

0

0.2

0.4 Wang et al.

Presented

t

0 500 1000 1500 2000

η
ω
(t
)

0

0.25

0.5

Fig. 8. Amplitude αω (a in [33]) and angular frequency ηω (ω in [33]) of
the perturbation as a function of time for Example 3 using the controller by
Wang et al. [33] and the presented controller.

formance of nonlinear dynamical plants. We have shown that
global asymptotic stability of the closed-loop system of plant
and controller with respect to the optimal steady-state plant
performance can be obtained for any plant that satisfies the
assumptions in the work. The key to this result is that the
tuning parameters of the controller are time varying and
asymptotically decay to zero as time goes to infinity. We
note that global asymptotic stability can even be obtained
if the plant is subjected to a time-varying disturbance under
the assumption that the perturbations of the controller and
the zero-mean component of the disturbance are uncorrelated.
Moreover, we have identified time-varying tuning-parameter
values of the controller for which the closed-loop system is
globally asymptotically stable for all plants that satisfy the
assumptions in this work. Three simulation examples illustrate
the effectiveness of the proposed extremum-seeking controller.
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APPENDIX A
PROOF OF LEMMA 8

From (1) and (34), we obtain that the state equation for x̃
is given by

˙̃x = f(x̃+X(u),u)− dX

du
(u)u̇. (54)

Because the plant is globally exponentially stable with respect
to the steady-state solution X(u) for constant u, the following
converse lemma holds.

Lemma 15. Under Assumptions 1, 2 and 4, there ex-
ists a function Vx : Rnx × Rnu → R and constants
γx1, γx2, γx3, γx4, γx5 ∈ R>0 such that the inequalities

γx1‖x̃‖2 ≤ Vx(x̃,u) ≤ γx2‖x̃‖2, (55)

∂Vx
∂x̃

(x̃,u)f(x̃+X(u),u) ≤ −γx3‖x̃‖2 (56)

and∥∥∥∥
∂Vx
∂x̃

(x̃,u)

∥∥∥∥ ≤ γx4‖x̃‖,
∥∥∥∥
∂Vx
∂u

(x̃,u)

∥∥∥∥ ≤ γx5‖x̃‖ (57)

are satisfied for all x̃ ∈ Rnx and all u ∈ Rnu .

Proof. The proof follows similar steps as the proof of [15,
Lemma 9.8].

We use the function Vx as a Lyapunov-function candidate
for the x̃-dynamics for time-varying plant parameters u. By
using (54), the time derivative of Vx for time-varying plant
parameters can be written as

V̇x(x̃,u) =
∂Vx
∂x̃

(x̃,u)f(x̃+X(u),u)

+

(
∂Vx
∂u

(x̃,u)− ∂Vx
∂x̃

(x̃,u)
dX

du
(u)

)
u̇.

(58)

From Assumption 1 and Lemma 15, we obtain that the time
derivative of Vx can be bounded by

V̇x(x̃,u) ≤ −γx3‖x̃‖2 + (γx5 + γx4LX) ‖x̃‖‖u̇‖. (59)

Subsequently, from Lemma 15 and Young’s inequality, it
follows that

V̇x(x̃,u) ≤ −
γx3
2γx2

Vx(x̃,u) +
1

2γx3
(γx5 + γx4LX)

2 ‖u̇‖2.
(60)

From (60) and the comparison lemma [15, Lemma 3.4], we
obtain

Vx(x̃(t),u(t)) ≤ Vx(x̃(t0),u(t0))e−
γx3
2γx2

(t−t0)

+
1

2γx3
(γx5 + γx4LX)

2
∫ t

t0

e−
γx3
2γx2

(t−τ)‖u̇(τ)‖2dτ
(61)

for all t ≥ t0 ≥ 0. To find an upper bound for ‖u̇‖, we note
that it follows from (13) and (14) that

u̇ = ˙̂u− gααωω + αωω̇. (62)

From the definition of ω in (11), it follows that there exist
constants Lω1, Lω2 ∈ R>0 such that

‖ω‖ ≤ Lω1, ‖ω̇‖ ≤ ηωLω2. (63)

Moreover, from (27), we have that ‖ ˙̂u‖ ≤ ηu. Therefore, from
(62), (63) and ‖ ˙̂u‖ ≤ ηu, we obtain

‖u̇‖ ≤ ηu + αωgαLω1 + αωηωLω2. (64)

Because αω , ηω and ηu are nonincreasing (see (14) and (28)),
from (30) in Theorem 7 and (64), it follows that

‖u̇(t)‖ ≤ ηu(0) + αω(0)cgLω1 + αω(0)ηω(0)Lω2 (65)

for all t ≥ 0. By substituting (64) in (61), we obtain

Vx(x̃(t),u(t)) ≤ Vx(x̃(0),u(0)) +
γx2
γ2x3

(γx5 + γx4LX)
2

× (ηu(0) + αω(0)cgLω1 + αω(0)ηω(0)Lω2)
2

(66)
for all t ≥ 0. From (32) in Theorem 7 and (64), it follows that

‖u̇(t)‖ ≤ αω(t)ηω(t)(ε5ε6 + ε2ε5Lω1 + Lω2) (67)

for all t ≥ t1, all gα ≤ ηmε2, all ηm ≤ ηωε5 and all ηu ≤
αωηmε6. From (14), we have that

αω(t) = αω(τ)e
−

∫ t
τ
gα(s)ds, ηω(t) = ηω(τ)e

−
∫ t
τ
gω(s)ds

(68)
for any t ≥ τ ≥ 0. Without loss of generality, we assume that
ε1 in Theorem 7 is sufficiently small such that it follows from
(32) and (68) that

αω(τ)ηω(τ) = αω(t)ηω(t)e
∫ t
τ
(gα(s)+gω(s))ds

≤ αω(t)ηω(t)e
γx3
8γx2

(t−τ).
(69)

for all t ≥ τ ≥ t1 and all gα + gω ≤ ε1. From (67) and (69),
we have

∫ t

t1

e−
γx3
2γx2

(t−τ)‖u̇(τ)‖2dτ

≤ 4α2
ω(t)η

2
ω(t)

γx2
γx3

(ε5ε6 + ε2ε5Lω1 + Lω2)
2

(70)

for all t ≥ t1. Therefore, from (61) and (70), we obtain

Vx(x̃(t),u(t)) ≤ max

{
2Vx(x̃(t1),u(t1))e

− γx3
2γx2

(t−t1),

4α2
ω(t)η

2
ω(t)

γx2
γ2x3

(γx5 + γx4LX)
2

× (ε5ε6 + ε2ε5Lω1 + Lω2)
2

}

(71)
for all t ≥ t1. From (55) in Lemma 15 and (66), it follows that
the solutions x̃(t) are bounded for all t ≥ 0 and all x̃(0) ∈
Rnx . The bound in (37) of Lemma 8 follows from (55) and
(71).

APPENDIX B
PROOF OF LEMMA 9

We note that Q̃ in (34) is well defined if Q−1 exists. First
we will show that the solution Q(t) of (25) is invertible for
all t ≥ 0 and all symmetric and positive-definite Q(0). Let
[0, tQ) be the maximal interval of existence of Q−1(t), with
tQ ∈ R≥0∪{∞}. We note that Q−1(t) is positive definite for
all tQ ∈ R≥0 ∪ {∞} because Q(0) is positive definite. From
(25), it follows that the time derivative of Q−1 is given by

d

dt

(
Q−1

)
= −ηmQ−1 + 2gαQ

−1 + ηmωωT (72)
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for all t ∈ [0, tQ), where we omitted the time index t for
brevity. From (72), we obtain

−ηmQ−1 � d

dt

(
Q−1

)
� 2gαQ

−1 + ηm‖ω‖2I (73)

for all t ∈ [0, tQ). Because ηm is nonincreasing (see (26)), we
have from (30) in Theorem 7, (63) in the proof of Lemma 8
and (73) that

−ηm(0)Q−1(t) � d

dt

(
Q−1(t)

)
� 2cgQ

−1(t) + ηm(0)L2
ω1I

(74)
for all t ∈ [0, tQ). Subsequently, using the comparison lemma
[15, Lemma 3.4], we obtain

Q−1(0)e−ηm(0)t � Q−1(t) � Q−1(0)e2cgt +
ηm(0)

2cg
L2
ω1I

(75)
for all t ∈ [0, tQ). From (75) and the continuity of the
solutions of Q−1, it follows that Q−1(t) is defined for all
t ≥ 0 and all positive definite Q(0). Hence, tQ = ∞.
Moreover, from (75), we have that Q−1(t) is positive definite
for all t ≥ 0 and all positive definite Q(0).

Now, from (26), (28), (34), (35) and (72), we obtain that
the state equation for Q̃ is given by
˙̃Q = −ηmQ̃+ 2gαQ̃+ gαI+

ηm
ηω

(2gα + gm − gω − ηm) l2.

(76)
Because Q(0) is symmetric and l2 in (36) is a symmetric
function, we obtain from (34) that Q̃(0) is symmetric as
well. Subsequently, from (76), it follows that Q̃(t) remains
symmetric for all t ≥ 0. We define the following Lyapunov-
function candidate for the Q̃-dynamics:

VQ(Q̃) = tr
(
Q̃2
)
. (77)

From (76), it follows that the time derivative of VQ can be
written as

V̇Q(Q̃) = −2ηm tr
(
Q̃2
)
+ 4gα tr

(
Q̃2
)
+ 2gα tr

(
Q̃
)

+
2ηm
ηω

(2gα + gm − gω − ηm)
ηm
ηω

tr
(
Q̃l2

)
.

(78)
From Young’s inequality, (77) and (78), we obtain

V̇Q(Q̃) ≤ −ηmVQ(Q̃) + 4gαVQ(Q̃) +
2

ηm
g2α tr (I)

+
2ηm
η2ω

(2gα + gm − gω − ηm)2 tr
(
l22
)
.

(79)

We note that tr (I) = nu. Moreover, from the definition of l2
in (35), it follows that there exists a constant Ll2 ∈ R>0 such
that

‖l2‖ ≤ Ll2, (80)

which implies that tr
(
l22
)
≤ nuL2

l2. We therefore obtain that

V̇Q(Q̃) ≤ −ηmVQ(Q̃) + 4gαVQ(Q̃) +
2

ηm
g2αnu

+
2ηm
η2ω

(2gα + |gm − gω|+ ηm)2nuL
2
l2.

(81)

From (30) in Theorem 7, (14) and (26), it follows that

ηω(0)e
−cgt ≤ ηω(t), ηm(0)e−cgt ≤ ηm(t) (82)

for all t ≥ 0. Because ηm is nonincreasing (see (26)), from
(30) in Theorem 7, (81) and (82), we obtain that

V̇Q(Q̃(t)) ≤ 4cgVQ(Q̃(t)) +
2

ηm(0)
c2gnue

cgt

+
2ηm(0)

ηω(0)2
(3cg + ηm(0))2nuL

2
l2e

3cgt
(83)

for all t ≥ 0. Applying the comparison lemma [15,
Lemma 3.4] gives

VQ(Q̃(t)) ≤ VQ(Q̃(0))e4cgt +
2

3ηm(0)
cgnue

cgt

+
2ηm(0)

ηω(0)2cg
(3cg + ηm(0))2nuL

2
l2e

3cgt
(84)

for all t ≥ 0. Without loss of generality, we assume that ε2, ε3
and ε5 in Theorem 7 are sufficiently small such that it follows
from (32) and (81) that

V̇Q(Q̃) ≤ −ηm
2
VQ(Q̃) +

ηm
256

(85)

for all t ≥ t1, all gα ≤ ηmε2, all |gm − gω| ≤ ηmε3 and all
ηm ≤ ηωε5. Use of the comparison lemma [15, Lemma 3.4]
yields

VQ(Q̃(t)) ≤ max

{
2VQ(Q̃(t1))e

− 1
2

∫ t
t1
ηm(τ)dτ

,
1

64

}

(86)
for all t ≥ t1. We note that, from (77), it follows that

‖Q̃‖2 ≤ VQ(Q̃) ≤ nu‖Q̃‖2. (87)

The boundedness of the solutions Q̃(t) follows from (84) and
(87) for 0 ≤ t ≤ t1 and from (86) and (87) for t ≥ t1. The
bound in (38) of Lemma 9 follows from (86) and (87).

APPENDIX C
PROOF OF LEMMA 10

From (23), (25), (34) and (35), we obtain that the state
equations for m̃1 and m̃2 are given by

˙̃m1 = −ηmm̃1 −
˙̂u
T

αω
m2 + ηm (gm − gω − ηm) k1

+
ηm
ηω

(gα + gm − gω − ηm) lT1 m2

− α2
ωηm
ηω

lT1 w + α2
ωηmv + ηmz

(88)

and
˙̃m2 = −gαm̃2 − ηmQωm̃1 − ηmQωωT m̃2

− η2mQωk1 −
η2m
ηω

QωlT1 m2

+ ηm (gα + gm − gω − ηm)Qk2

− α2
ωw + α2

ωηmQωv + ηmQωz + ηmQbωd.

(89)

We introduce the following Lyapunov-function candidate for
the m̃1, m̃2-dynamics:

Vm(m̃1, m̃2,Q) = m̃2
1 + m̃T

2 Q
−1m̃2. (90)

We note that
max

{
|m̃1|2, λmin(Q

−1)‖m̃2‖2
}
≤ Vm(m̃1, m̃2,Q)

≤ max
{
2|m̃1|2, 2λmax(Q

−1)‖m̃2‖2
}
,

(91)
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where λmin(Q
−1) and λmax(Q

−1) are the smallest and largest
eigenvalue of Q−1, respectively. From (25) (see also (72) in
the proof of Lemma 9), (88) and (89), it follows that the time
derivative of Vm can be written as

V̇m(m̃1, m̃2,Q) = −ηmm̃2
1 − ηmm̃T

2 Q
−1m̃2

− ηm(m̃1 + ωT m̃2)
2 − 2

αω
m̃1

˙̂u
T
m2

+ 2ηm (gm − gω) m̃1k1 − 2η2m(m̃1 + ωT m̃2)k1

+
2ηm
ηω

(gα + gm − gω) m̃1l
T
1 m2

− 2η2m
ηω

(m̃1 + ωT m̃2)l
T
1 m2

+ 2ηm (gα + gm − gω − ηm) m̃T
2 k2

− 2α2
ωηm
ηω

m̃1l
T
1 w − 2α2

ωm̃
T
2 Q
−1w + 2ηmm̃T

2 bωd

+ 2α2
ωηm(m̃1 + ωT m̃2)v + 2ηm(m̃1 + ωT m̃2)z.

(92)

By applying Young’s inequality and using (90), we obtain

V̇m(m̃1, m̃2,Q) ≤ −ηm
2
Vm(m̃1, m̃2,Q)

+
8

α2
ωηm

‖ ˙̂u‖2‖m2‖2 +
4η3m
η2ω
‖l1‖2‖m2‖2

+ 8ηm|gm − gω|2|k1|2 + 4η3m|k1|2

+
8ηm
η2ω

(gα + |gm − gω|)2 ‖l1‖2‖m2‖2

+ 6ηm (gα + |gm − gω|+ ηm)
2 ‖Q‖‖k2‖2

+
8α4

ωηm
η2ω

‖l1‖2‖w‖2 +
6α4

ω

ηm
‖Q−1‖‖w‖2

+ 4α4
ωηm|v|2 + 4ηm|z|2 + 6ηm‖Q‖‖bωd‖2.

(93)

From Assumption 3 and (20), we have

‖m2‖ ≤ αωLF2‖ũ‖. (94)

From Assumption 6 and (35), it follows that

|k1| ≤ qd, ‖k2‖ ≤ qωd. (95)

From the definition of l1 in (35), it follows that there exists a
constant Ll1 ∈ R>0 such that

‖l1‖ ≤ Ll1. (96)

From Assumption 3 and (24), we obtain

‖w‖ ≤ 1

αω
LF2‖ ˙̂u‖. (97)

Similarly, from Assumption 3, (63) in the proof of Lemma 8
and (24), we obtain

|v| ≤ 1

2
LF2L

2
ω1. (98)

Furthermore, to obtain a bound on |z|, from (24), we have

|z| ≤
∣∣∣∣
∫ 1

0

(
∂h

∂x
(σx̃+X(u),u)− ∂h

∂x
(X(u),u)

)
dσx̃

∣∣∣∣

+

∣∣∣∣
(
∂h

∂x
(X(u),u)− ∂h

∂x
(X(u∗),u∗)

)
x̃

∣∣∣∣

+

∣∣∣∣
∂h

∂x
(X(u∗),u∗)x̃

∣∣∣∣
(99)

From Assumption 4, it follows that
∥∥∥∥
∂h

∂x
(x1,u1)−

∂h

∂x
(x2,u2)

∥∥∥∥
≤ Lhx‖x1 − x2‖+ Lhu‖u1 − u2‖

(100)

for all x1,x2 ∈ Rnx and all u1,u2 ∈ Rnu . By applying the
bound in (100) to (99), we obtain

|z| ≤ Lhx
2
‖x̃‖2 + Lhx‖X(u)−X(u∗)‖‖x̃‖

+ Lhu‖u− u∗‖‖x̃‖+ Lh∗‖x̃‖,
(101)

with Lh∗ = ‖∂h∂x (X(u∗),u∗)‖. Subsequently, from Assump-
tion 1, it follows that

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖u− u∗‖‖x̃‖+ Lh∗‖x̃‖.

(102)
From (13), (34) and (63) in the proof of Lemma 8, we have

‖u− u∗‖ ≤ ‖ũ‖+ αωLω1. (103)

By substituting (103) in (102), we obtain the following bound
on |z|:

|z| ≤ Lhx
2
‖x̃‖2 + (LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖.
(104)

From (27), it follows that ‖ ˙̂u‖ ≤ ηu. By substituting ‖ ˙̂u‖ ≤ ηu
and the bounds in (94)-(98) and (104) in (93), we obtain

V̇m(m̃1, m̃2,Q) ≤ −ηm
2
Vm(m̃1, m̃2,Q)

+
8η2u
ηm

L2
F2‖ũ‖2 +

4α2
ωη

3
m

η2ω
L2
l1L

2
F2‖ũ‖2

+ 8ηm|gm − gω|2q2d + 4η3mq
2
d

+
8α2

ωηm
η2ω

(gα + |gm − gω|)2 L2
l1L

2
F2‖ũ‖2

+ 6ηm (gα + |gm − gω|+ ηm)
2 ‖Q‖q2ωd

+
8α2

ωηm
η2ω

L2
l1L

2
F2‖ ˙̂u‖2 +

6α2
ω

ηm
‖Q−1‖L2

F2‖ ˙̂u‖2

+ α4
ωηmL

2
F2L

4
ω1 + 4ηm

(
(LhxLX + Lhu)‖ũ‖‖x̃‖

+ αω(LhxLX + Lhu)Lω1‖x̃‖+ Lh∗‖x̃‖+
Lhx
2
‖x̃‖2

)2

+ 6ηm‖Q‖‖bωd‖2.
(105)

We note that if the right-hand side of (105) is bounded and
Q−1 is positive definite and bounded for all 0 ≤ t ≤ t2,
where t2 ≥ t1 is a finite time, then it follows from (91) and
(105) that the solutions m̃1(t) and m̃2(t) are bounded for all
0 ≤ t ≤ t2 using the same arguments as applied in the proofs
of Lemmas 8 and 9. From (75) in the proof of Lemma 9, it
follows that

λmin(Q
−1(0))e−ηm(0)t ≤ λmin(Q

−1(t)),

λmax(Q
−1(t)) ≤ λmax(Q

−1(0))e2cgt +
ηm(0)

2cg
L2
ω1

(106)

for all t ≥ 0, which implies that Q−1 is positive definite and
bounded for all 0 ≤ t ≤ t2. The boundedness of the right-hand
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side of (105) for all 0 ≤ t ≤ t2 follows from the bounds on
gα, gω and gm in (30) of Theorem 7, from the lower bound on
ηω and ηu in (82) in the proof of Lemma 9 and the fact that
αω , ηm and ηu are nonincreasing (see (14) and (28)), from the
boundedness of x̃ and ũ for 0 ≤ t ≤ t2 in Lemmas 8 and 11,
respectively, from ‖ ˙̂u‖ ≤ ηu (see (27)) and from the bounds
in (106), which imply that ‖Q−1(t)‖ = λmax(Q

−1(t)) and
‖Q(t)‖ = 1

λmin(Q−1(t)) are bounded for all 0 ≤ t ≤ t2. Further
details regarding the boundedness of the solutions m̃1(t) and
m̃2(t) for 0 ≤ t ≤ t2 are left to the reader.

Let us define t2 ≥ t1 such that

‖x̃(t)‖ ≤ αω(t)ηω(t)cx2, ‖Q̃(t)‖ ≤ 1

8
(107)

for all t ≥ t2. The existence of a finite time t2 ≥ t1 such
that ‖x̃(t)‖ ≤ αω(t)ηω(t)cx2 for all t ≥ t2 follows from
Lemma 8, where we assume without loss of generality that ε1
in Theorem 7 is sufficiently small such that gα(t)+gω(t) < βx
for all t ≥ t1 and all gα+gω ≤ ε1. Similarly, the existence of
a constant t2 ≥ t1 such that ‖Q̃(t)‖ ≤ 1

8 for all t ≥ t2 follows
from Lemma 9 if

∫∞
t1
ηm(t)dt = ∞, which implies that first

term in the right-hand side of (38) becomes smaller than 1
8 as

time goes to infinity. From (26) and the first equation in (29)
of Theorem 7, we have
∫ ∞

t1

ηm(t)dt = ηm(0)

∫ ∞

t1

e−
∫ t
0
gm(τ)dτdt

= ηm(0)




∫ ∞

0

e−
∫ t
0
gm(τ)dτdt

︸ ︷︷ ︸
=∞

−
∫ t1

0

e−
∫ t
0
gm(τ)dτdt

︸ ︷︷ ︸
≤t1




=∞
(108)

for all ηm(0) ∈ R>0. Hence, there exist a time t2 ≥ t1 such
that (107) holds for all t ≥ t2.

Now, from (34) and (80) in the proof of Lemma 9, it follows
that ∥∥∥∥Q−1 −

1

2
I

∥∥∥∥ ≤ ‖Q̃‖+
ηm
ηω

Ll2. (109)

Without loss of generality, we assume that ε5 in Theorem 7
is sufficiently small such that it follows from (32), Lemma 9
and (107) that

1

4
I � Q−1 � 3

4
I (110)

for all t ≥ t2 and all ηm ≤ ηωε5. Subsequently, from (91)
and (110), we obtain

max

{
|m̃1|2,

1

4
‖m̃2‖2

}
≤ Vm(m̃1, m̃2,Q)

≤ max

{
2|m̃1|2,

3

2
‖m̃2‖2

} (111)

for t ≥ t2. Moreover, from (110), it follows that

‖Q−1‖ ≤ 3

4
, ‖Q‖ ≤ 4 (112)

for all t ≥ t2. From (27) and (34), we have that

‖ ˙̂u‖ ≤ λu‖m̂2‖ ≤ λu (‖m̃2‖+ ‖m2‖+ ηm‖Q‖‖k2‖) .
(113)

Subsequently, from (94), (95) and (112), we obtain

‖ ˙̂u‖ ≤ λu (‖m̃2‖+ αωLF2‖ũ‖+ 4ηmqωd) . (114)

for all t ≥ t2. From (111) and (114), it follows that

‖ ˙̂u‖2 ≤ 12λ2uVm(m̃1, m̃2,Q)

+ 3α2
ωλ

2
uL

2
F2‖ũ‖2 + 48η2mλ

2
uqωd

(115)

for all t ≥ t2. Without loss of generality, we assume that ε2,
ε3, ε4, ε5 and ε7 in Theorem 7 are sufficiently small such that
we obtain from (32), (105), (107), (112) and (115) that

V̇m(m̃1, m̃2,Q) ≤ −ηm
4
Vm(m̃1, m̃2,Q)

+ 2α4
ωηmL

2
F2L

4
ω1 + 16α2

ωη
2
ωηmc

2
x2L

2
h∗

+ 16α2
ωη

2
ωηmc

2
x2(LhxLX + Lhu)

2‖ũ‖2

+
8α2

ωη
3
m

η2ω
L2
l1L

2
F2‖ũ‖2 +

27α4
ωλ

2
u

ηm
L4
F2‖ũ‖2

+
8η2u
ηm

L2
F2‖ũ‖2 + 8η3mq

2
d + 96η3mq

2
ωd + 24ηm‖bωd‖2

(116)
for all t ≥ t2, all gα ≤ ηmε2, all |gm − gω| ≤ ηmε3, all
ηω ≤ ε4, ηm ≤ ηωε5 and all αωλu ≤ ηmε7. From this, it
follows that

V̇m(m̃1, m̃2,Q) ≤ −ηm
8
Vm(m̃1, m̃2,Q) (117)

whenever

Vm(m̃1, m̃2,Q) ≥ 72max

{
2α4

ωηmL
2
F2L

4
ω1,

16α2
ωη

2
ωηmc

2
x2L

2
h∗, 16α

2
ωη

2
ωηmc

2
x2(LhxLX + Lhu)

2‖ũ‖2,
8α2

ωη
3
m

η2ω
L2
l1L

2
F2‖ũ‖2,

27α4
ωλ

2
u

ηm
L4
F2‖ũ‖2,

8η2u
ηm

L2
F2‖ũ‖2, 8η3mq2d, 96η3mq2ωd, 24ηm‖bωd‖2

}

(118)
for all t ≥ t2. The bounds in (39), (40) and (41) of Lemma 10
follow from (111), (117) and (118), respectively.

APPENDIX D
PROOF OF LEMMA 11

From (20), (27) and (34), we obtain that the state equation
for ũ is given by

˙̃u = −λu
ηu
(
αω

dF
duT

(û) + m̃2 + ηmQk2

)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ . (119)

From (119), it follows that ‖ ˙̃u‖ ≤ ηu, from which we obtain
that

‖ũ(t)‖ ≤ ‖ũ(0)‖+ ηu(0)t (120)

for all t ≥ 0. We define the following Lyapunov-function
candidate for the ũ-dynamics:

Vu(ũ) = ‖ũ‖2. (121)

From (119) and (121), it follows that the time derivative of
Vu is given by

V̇u(ũ) = −2λu
ηu
(
αω

dF
du (û)ũ+ ũT m̃2 + ηmũTQk2

)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ .
(122)
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From Assumption 3, we subsequently obtain that

V̇u(ũ) ≤ −
2αωλuηuLF1‖ũ‖2

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥

+
2λuηu‖ũ‖ (‖m̃2‖+ ηm‖Q‖‖k2‖)

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥ .
(123)

By applying Young’s inequality, it follows that

V̇u(ũ) ≤ −
αωλuηuLF1‖ũ‖2

ηu + λu
∥∥αω

dF
duT

(û) + m̃2 + ηmQk2

∥∥

+
4λuηu max

{
‖m̃2‖2, η2m‖Q‖2‖k2‖2

}

αωLF1

(
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥) .
(124)

If Vu(ũ) ≥ 8
α2

ωL
2
F1

max
{
‖m̃2‖2, η2m‖Q‖2‖k2‖2

}
, then from

(121) and (124), it follows that

V̇u(ũ) ≤ −
αωλuηuLF1‖ũ‖2

2
(
ηu + λu

∥∥αω
dF
duT

(û) + m̃2 + ηmQk2

∥∥) .
(125)

From Assumption 3, (121) and (125), we obtain that

V̇u(ũ) ≤ −
αωλuηuLF1Vu(ũ)

2
(
ηu + αωλu

(
LF2 +

LF1√
2

)√
Vu(ũ)

) ,

(126)
whenever Vu(ũ) ≥ 8

α2
ωL

2
F1

max
{
‖m̃2‖2, η2m‖Q‖2‖k2‖2

}
.

From Assumption 6, from (95) and (112) in the proof of
Lemma 10 and from (126), it follows that, for all t ≥ t2,

V̇u(ũ) ≤ −
1

4
min

{
αωλuLF1Vu(ũ),

ηu

√
2LF1√

2LF2 + LF1

√
Vu(ũ)

}
,

(127)

whenever Vu(ũ) ≥ 8
α2

ωL
2
F1

max
{
‖m̃2‖2, 16η2mq2ωd

}
. The

boundedness of the solutions ũ(t) for all 0 ≤ t ≤ t2
follows from (120). The bounds in (42), (43) and (42)
of Lemma 11 follow from (121), (127) and Vu(ũ) ≥

8
α2

ωL
2
F1

max
{
‖m̃2‖2, 16η2mq2ωd

}
, respectively.

APPENDIX E
PROOF OF LEMMA 12

For notational convenience, we introduce the shorthand no-
tation W (t) = V (m̃1(t), m̃2(t), ũ(t),Q(t), αω(t)). We note
that the function V in (45) is not continuously differentiable
with respect to time due to the use of the maximum function.
Let the upper right-hand time derivative of V (see for example
[15]) be denoted by D+W (t) using the shorthand notation
above. Let us consider the following three cases, similar to
[13].

Case 1: Vu(ũ) > 1
α2

ω

cu1

γm2
Vm(m̃1, m̃2,Q). We note that

W = Vu(ũ) for Case 1. Therefore, we obtain from Lemma 11
that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W
}

(128)

whenever

W ≥ max

{
1

α2
ω

cu1‖m̃2‖2,
η2m
α2
ω

cu2q
2
ωd

}
. (129)

It follows from Lemma 10 that

1

α2
ω

cu1
γm2

Vm(m̃1, m̃2,Q) ≥ 1

α2
ω

cu1‖m̃2‖2. (130)

Because W > 1
α2

ω

cu1

γm2
Vm(m̃1, m̃2,Q) for Case 1, we con-

clude from (129) and (130) that, for all t ≥ t2, (128) holds
whenever

W ≥ η2m
α2
ω

cu2q
2
ωd. (131)

Case 2: Vu(ũ) < 1
α2

ω

cu1

γm2
Vm(m̃1, m̃2,Q). We note that

W = 1
α2

ω

cu1

γm2
Vm(m̃1, m̃2,Q) for Case 2. Therefore, it follows

from (14) and Lemma 10 that, for all t ≥ t2,

D+W ≤ −(ηmγm5 − 2gα)W (132)

whenever

W ≥ cu1
γm2

max

{
α2
ωcm1, η

2
ωcm2, η

2
ωcm3‖ũ‖2,

η2m
η2ω

cm4‖ũ‖2,
α2
ωλ

2
u

ηm
cm5‖ũ‖2,

η2u
α2
ωη

2
m

cm6‖ũ‖2,

η2m
α2
ω

cm7q
2
d,
η2m
α2
ω

cm8q
2
ωd,

1

α2
ω

cm9‖bωd‖2
}
.

(133)

Without loss of generality, we assume that ε2 in Theorem 7
is sufficiently small such that we obtain from (32) and (132)
that

D+W ≤ −ηm
2
γm5W (134)

for all gα ≤ ηmε2. Moreover, without loss of generality, we
assume that ε4, ε5, ε6 and ε7 in Theorem 7 are sufficiently
small such it follows from (32) and Lemma 11 that

Vu(ũ) ≥
cu1
γm2

max

{
η2ωcm3‖ũ‖2,

η2m
η2ω

cm4‖ũ‖2,

α2
ωλ

2
u

ηm
cm5‖ũ‖2,

η2u
α2
ωη

2
m

cm6‖ũ‖2
} (135)

for all ηω ≤ ε4, ηm ≤ ηωε5, ηu ≤ αωηmε6 and αωλu ≤
ηmε7. Because W > Vu(ũ) for Case 2, we conclude from
(133) and (135) that, for all t ≥ t2, (134) holds whenever

W ≥ max

{
α2
ω

cu1
γm2

cm1, η
2
ω

cu1
γm2

cm2,
η2m
α2
ω

cu1
γm2

cm7q
2
d,

η2m
α2
ω

cu1
γm2

cm8q
2
ωd,

1

α2
ω

cu1
γm2

cm9‖bωd‖2
}
.

(136)
Case 3: Vu(ũ) = 1

α2
ω

cu1

γm2
Vm(m̃1, m̃2,Q). We note that

W = Vu(ũ) =
1
α2

ω

cu1

γm2
Vm(m̃1, m̃2,Q) for Case 3. Therefore,

we obtain from (14) and Lemmas 10 and 11 that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W,

(ηmγm5 − 2gα)W
} (137)
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whenever

W ≥ max

{
1

α2
ω

cu1‖m̃2‖2,
η2m
α2
ωη

2
ω

cu2q
2
ωd, α

2
ω

cu1
γm2

cm1,

η2ω
cu1
γm2

cm2, η
2
ω

cu1
γm2

cm3‖ũ‖2,
η2m
η2ω

cu1
γm2

cm4‖ũ‖2,

α2
ωλ

2
u

ηm

cu1
γm2

cm5‖ũ‖2,
η2u

α2
ωη

2
m

cu1
γm2

cm6‖ũ‖2,

η2m
α2
ω

cu1
γm2

cm7q
2
d,
η2m
α2
ω

cu1
γm2

cm8q
2
ωd,

1

α2
ω

cm9‖bωd‖2
}
.

(138)
By following the same steps as for Case 1 and Case 2, we
obtain from (137) and (138) that, for all t ≥ t2,

D+W ≤ −min
{
αωλuγu3W, ηuγu4

√
W,

ηm
2
γm5W

}

(139)
whenever

W ≥ max

{
α2
ω

cu1
γm2

cm1, η
2
ω

cu1
γm2

cm2,
η2m
α2
ω

cu1
γm2

cm7q
2
d,

η2m
α2
ω

max

{
cu2,

cu1
γm2

cm8

}
q2ωd,

1

α2
ω

cm9‖bωd‖2
}
.

(140)
We note that both (128) and (134) imply that (139) holds.

Moreover, the inequalities in (131) and (136) are satisfied if
(140) is satisfied. Hence, for all three cases and for all t ≥
t2, we have that the (139) holds if the inequality in (140) is
satisfied. From (32) in Theorem 7 and (139), we obtain that,
for all t ≥ t2 (with t2 ≥ t1),

D+W ≤ −min {αωλu, ηu}βV min
{
W,
√
W
}

(141)

for all αωλu ≤ ηmε7 whenever (140) holds, with βV =

min
{
γu3, γu4,

γm5

2ε7

}
. By applying the same reasoning as for

(108) in the proof of Lemma 10, it follows from the second
equation in (29) that

∫ ∞

t2

min {αω(τ)λu(τ), ηu(τ)} dτ =∞. (142)

Now, from (141), (142) and the comparison lemma [15,
Lemma 3.4], we obtain that the solutions W (t) monotonically
converge to zero as time goes to infinity for any initial
condition W (t2) ≥ 0 if the right-hand side of (140) is zero. By
using similar arguments as in the proof of [15, Theorem 4.18],
we obtain from (140), (141) and (142) that

sup
t≥t2

W (t) ≤ sup
t≥t2

max

{
W (t2), α

2
ω(t)

cu1
γm2

cm1,

η2ω(t)
cu1
γm2

cm2,
η2m(t)

α2
ω(t)

cu1
γm2

cm7q
2
d,

η2m(t)

α2
ω(t)

max

{
cu2,

cu1
γm2

cm8

}
q2ωd,

1

α2
ω(t)

cm9‖bωd‖2
}

(143)

and

lim sup
t→∞

W (t) ≤ lim sup
t→∞

max

{
α2
ω(t)

cu1
γm2

cm1,

η2ω(t)
cu1
γm2

cm2,
η2m(t)

α2
ω(t)

cu1
γm2

cm7q
2
d,

η2m(t)

α2
ω(t)

max

{
cu2,

cu1
γm2

cm8

}
q2ωd,

1

α2
ω(t)

cm9‖bωd‖2
}
,

(144)
where we applied [27, Lemma II.1] to obtain the limit superior
in the right-hand side of (144). Because αω and ηω are
nonincreasing (see (14)), it follows that the second and third
term in the right-hand side of (143) are bounded. Moreover,
from (31) in Theorem 7, we have that the fourth, fifth and
sixth term in the right-hand side of (143) are bounded. Hence,
we obtain from (143) that the solutions W (t) are bounded for
all t ≥ t2. From Lemmas 10 and 11 and from the definition
of V in (45), we have that

max

{
cu1
α2
ω

γm1

γm2

|m̃1|2,
cu1
α2
ω

‖m̃2‖2, γu1‖ũ‖2
}
≤W

≤ max

{
cu1
α2
ω

γm3

γm2

|m̃1|2,
cu1
α2
ω

γm4

γm2

‖m̃2‖2, γu2‖ũ‖2
}

(145)
for t ≥ t2, where we used the shorthand notation W =
V (m̃1, m̃2, ũ,Q, αω). From (143) and (145), it follows that
the solutions m̃2(t), m̃2(t) and ũ(t) are bounded for all
t ≥ t2, all m̃1(t2) ∈ R, m̃2(t2) ∈ Rnu and all ũ(t2) ∈ Rnu .
The bound in (46) of Lemma 12 follows from (144) and (145).
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