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Abstract

In this thesis, we discuss multiscale simulation techniques for flow and trans-
port in porous media, discretized on unstructured grids. The model equa-
tions considered are taken from the field of reservoir simulation, where sev-
eral orders of magnitude variation in parameters and complex fluid physics
result in highly challenging simulation problems.

We consider several novel multiscale solvers and the subsequent exten-
sion to compressible multiphase black-oil and compositional flow. The ex-
amples include both conceptual models and full field-scale models with in-
dustrial complexity in properties, fluid physics, geology and grid types. The
thesis also describes the application of numerical experiments termed flow
diagnostics for optimization and ranking problems, with and without mul-
tiscale solvers.

In order to facilitate the research on linear and nonlinear solvers, an open
source general purpose simulator framework based on object orientation is
developed. This framework aims to enable researchers to rapidly extend or
improve existing models and solvers, which is exemplified in this thesis by
the development of a simulator for polymer flooding with non-Newtonian
fluid physics.

Finally, we also consider transport solvers based on a novel parametriza-
tion of Newton updates for the three-phase saturation equations with non-
convex, non-monotone flux functions that can converge for much larger time-
steps than the current state of the art solvers.
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Part I

Background





Chapter 1

Introduction

The simulation of flow and transport in porous media is important for many
industrial and scientific applications. The equations used to model creeping,
potential-driven flow in pore networks are applicable for a wide range of
large-scale industrial processes, including different stages of hydrocarbon
recovery, subsurface sequestration of greenhouse gases, geothermal energy,
groundwater management and contamination studies for nuclear or toxic
materials. Small-scale processes are also governed by the same equations,
including aqeuous infiltration into concrete, the design of passive filters and
kidney function.

For many practical applications, numerical simulation is necessary to
evaluate the possible outcomes for any given scenario. In this thesis, we
consider the numerical simulation of flow and transport in heterogeneous
reservoirs with an emphasis on processes relevant for secondary and tertiary
recovery of hydrocarbons. If we take the oil and gas resources located on
the Norwegian continental shelf as a motivating example, the reservoirs are
located off-shore and at depths of several kilometers below sea level [94].
The extreme conditions of these resources make extraction costs significantly
higher than for example shallower reservoirs located on land in the Middle-
East. As a result of high cost, each engineering decision must be carefully
evaluated while accounting for uncertainty in geology, fluid behavior and
hydrocarbon distribution. Reservoir simulation is an integral part of this
process, where better simulation techniques increase both the accuracy of
the predictions and the number of different scenarios that can be evaluated
in a reasonable time frame. Faster, more accurate simulators can thereby
contribute extend the lifetime of mature Norwegian oil fields and assist
in the complex late-stage recovery process where enhanced oil recovery is
deployed.
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2 Introduction

Mathematically, the governing equations for porous media flow on a ge-
omodel scale are interesting because they have large variations in medium
properties on both very short and very long scales. Consequently, the defi-
nition of a scale for a meaningful representative elementary volume (REV)
where the properties can be homogenized without incurring severe errors is
challenging. In addition, the thermodynamic behavior of the fluid is highly
nonlinear, indicating that the physical mechanisms of oil recovery can be
very challenging to simulate accurately.

In the decades since the first computers were made available for scientific
use, the computing landscape has undergone an revolution in capabilities
that has taken reservoir simulators from models with one-dimensional single-
phase flow with ten or so cells to fully three-dimensional multicomponent
models with hundreds of millions of fine cells [26]. However, as the transis-
tor density in CPUs approaches the theoretical limits imposed by the laws
of physics, computer architectures have transitioned to parallel, distributed
computing machines for which algorithms designed for serial processors may
no longer be relevant. The next generation of reservoir simulation requires
new algorithms that scale for such highly parallel computers. These al-
gorithms must correctly decouple the different physical effects to scale for
problem sizes beyond what is currently possible.

Multiscale methods is one proposed technology which aims to correctly
resolve the complex interplay of local flow on small length scales and global
flow on long time scales using a reduced number of unknowns (degrees of
freedom) associated with the coarse scales for highly heterogeneous reser-
voirs. The main goal of this thesis is to further develop multiscale methods
to a level where they are applicable to the physics, grids and strong param-
eter heterogenity relevant for modern reservoir simulation.

1.1 Outline of this thesis

This thesis is divided into two main parts. The first part is a general in-
troduction to the relevant physics, model equations and discretization tech-
niques under consideration. Part I, Chapter 2 gives an introduction to
the different grids, physics and governing equations used in Part II, illus-
trated by a few examples that use the Matlab Reservoir Simulation Tool-
box (MRST), an open source platform for research on numerical methods
for porous media. Chapter 3 details the discretizations and different tech-
niques used to solve the model equations from Chapter 2. Chapter 4 gives a
brief introduction to multiscale solvers for porous media flow. In Chapter 5,
a description of the object-oriented framework used to implement and sim-
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ulate the results in the papers is given. Chapter 6 describes and hopefully
motivates each of the fourteen papers included in Part II. Finally, Chapter 7
contains concluding remarks, as well as some indications to possible future
research directions.

Part II contains the scientific papers that make up the bulk of the thesis.
The order of papers is semi-chronological, where some entries have been
rearranged for benefit of the reader. Five additional papers are listed, that
were not included in the thesis, but never-the-less were written during the
doctoral scholarship.



4 Introduction



Chapter 2

Flow and Transport in
Porous Media

2.1 Grids in subsurface models

In many idealized numerical applications, the grid used to discretize the
domain is not given special care. Often, the model equations are solved
on the unit square where the grid can be freely chosen for accuracy or
convenience as the nature of the equation does not vary spatially. This is
not the case in reservoir simulation, and the grids used have several peculiar
features, due to the physical properties they are intended to model. Grids
representing subsurface reservoirs can contain cells with very large aspect
ratios. For instance, a typical reservoir has typically a vertical thickness of
at most a few hundred meters, corresponding to strata that may have been
deposited over geological timescales of several million years. At the same
time, the reservoir can span ten or even hundreds of kilometers horizontally,
and compartments only a few meters apart vertically can be sealed off from
fluid exchange with each other, while still being in communication with other
areas hundreds or thousands of meters away in the lateral direction. As a
result, the grids often have very thin cells that gives high vertical resolution
to account for geological layering. Figure 2.1 is a conceptual drawing of a
reservoir model that consists of three different geological layers and three
faults.

Layering is not the only feature that makes reservoir grids challenging,
however. Geological processes have over millions of years twisted, crushed
and deformed the structure of the rocks. Large volumes may be eroded
away, and faults and fractures can intersect the neatly layered rock strata
to form highly irregular structures. The industry standard corner-point for-

5



6 Flow and Transport in Porous Media

Figure 2.1: Conceptual drawing of a reservoir. Different layers from different ge-
ological eras are present along the vertical direction, but other processes has dis-
placed and deformed the layering structure. The dimensions of this figure is not to
scale. The impermeable top and bottom layers are transparent.

mat used to create reservoir grids is fundamentally a structured format in
which hexahedral cells are stacked logically upon each other to define a mesh
of pillars that cover the extent of the reservoir. The cells inside each pillar
represent different geological depositions, with the oldest depositions at the
bottom and the youngest at the top. This means that cells with the same
index in the vertical numbering correspond to rock units deposited at ap-
proximately the same time (like the three layers in Figure 2.7). To account
for subsequent geological activities, the pillars are translated and skewed,
cells are shifted upward or downward to represent faults, or deformed or
even removed to model erosion and different degrees of compaction. Hence,
the resulting grids after processing will almost always contain highly un-
structured features.

The Matlab Reservoir Simulation Toolbox (MRST)

All methods implemented and subsequent numerical experiments that form
the basis of this thesis have been carried out using the Matlab Reservoir
Simulation Toolbox (MRST), which is an open-source toolbox for Matlab
released by the Computational Geoscience group at SINTEF Applied Math-
ematics. Originally intended as a platform for implementing consistent dis-
cretizations for unstructured grids [66, 67], the current release of MRST
includes a large number of different routines for defining, solving and vi-
sualizing porous media problems. MRST is used extensively by a large
number of researchers and student all over the world. By working with an
established platform for research, individual contributions build upon each
other, resulting in an end result that is greater than the sum of its individ-
ual parts. New releases of MRST are released twice each year, where the
individual releases reach between 1000 and 2000 unique downloads each.
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Unstructured grids in MRST

MRST was designed to support unstructured grids. For this reason, MRST
represents all grids, regardless of type, as unstructured grids internally. The
benefit is that all grids are given in a common format and routines will
automatically support new grids as long as they can be re-interpreted as
unstructured grids. The downside is that simple grids will require more
memory to be stored and the code structure can be unfamiliar to users who
are used to developing for fully structured grids.

Unstructured grids are chiefly characterized by the lack of clear indexing
structure, making it impossible to tell if any two cells are in proximity to
each other simply based on the cell numbers. In MRST, we assume that any
pair of cells can be connected. All grids are assumed to have nc grid cells,
nf faces and nn nodes. The relationship between different cells is defined by
the interfaces and consequently each grid contains a list of face connections
which is a matrix with nf ×2 entries. A face i is connected to cells N(i, 1)

and N(i, 2). If one of the values is a zero, the face is on the boundary and
is consequently only connected to a single cell. Figure 2.2 demonstrates the
neighborship matrix for two different grids: A fully unstructured Voronoi
grid and a regular Cartesian grid. Treating the topology of a grid model as
a graph was first introduced to reservoir simulation in Lim [68].

G.cells.num = 7

G.faces.num = 30

G.nodes.num = 24

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 2
0 2
0 2
0 3
0 1
1 2
1 0
1 4
1 5
2 3
2 5
3 0
3 5
3 6
3 0
0 4
4 5
4 0
4 0
4 7
5 6
5 7
6 0
6 7
6 0
6 0
0 7
7 0
7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G.cells.num = 6

G.faces.num = 17

G.nodes.num = 12

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 2
2 3
3 0
0 4
4 5
5 6
6 0
0 1
0 2
0 3
1 4
2 5
3 6
4 0
5 0
6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2.2: Two different grids represented in the unstructured MRST format.
The Voronoi (left) and Cartesian (right) grids can both be defined in the form of
a connectivity matrix for the interfaces.

The fully unstructured philosophy extends to the definition of the prim-
itive properties of the grid. MRST has a constructive approach to the grid
data structure, where each cell is defined by a list of the faces that make
up its surface. Faces themselves are again made up of nodes, which finally
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are comprised of actual coordinates that place the nodes, cells and faces
spatially, as shown in Figure 2.3. This format does not make any assump-
tions about structure and any cell can have any number of faces that each
themselves can be general polygons. Once the grid has been constructed,
it is customary to apply the computeGeometry function that accurately de-
termines the cell and face centroids, the face areas and cell volumes and the
normal vectors of each face. Geometry information will be required when
we later on will discretize our model equations. For detailed description of
the grid structure in MRST, the reader is deferred to papers and books that
go into more detail [53, 66, 67]. Papers VII, VIII and XI all touch upon the
way grids and discrete operators are constructed in MRST.

MRST Grid Format

cells

faces

nodes

num: Number of cells in grid (nc)
faces: Array of half-faces for all cells
facePos: nc + 1 array into faces.
volumes: nc array of cell volumes
centroids: nc × d array of cell centroids

num: number of faces in grid (nf )
neighbors: nf × 2 neighborship list
nodes: Array of node indices for each face
nodePos: nf + 1 array into nodes.
areas: nf array of face areas
normals: nf × d area weighted normal vectors
centroids: nf × d face centroids

num: Number of nodes in grid (nn)
coords: nn × d array of node coordinates

Figure 2.3: Visual breakdown of the unstructured grid format used in MRST: The
grid is comprised of cells, faces and nodes, all which come together to form the
final grid shown on the left.

Examples of reservoir grids

We will illustrate the variety and complexity of reservoir grids by the way of
a few worked MRST examples. We begin by considering a simple Cartesian
grid that discretizes the unit square Ω = [0, 1] × [0, 1] into 30 × 30 cells of
equal size as seen in Figure 2.4a.

% Define a 25x25 grid discretizing the unit square
G = cartGrid([30, 30], [1, 1]);
% Add geometry information
G = computeGeometry(G);
plotGrid(G, 'FaceColor', [0.267, 1.000, 0.730])

A common technique in subsurface modeling is to start with some structured
grid of the right dimensions and then remove any cells that either do not
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(a) Initial grid (b) Flagged cells (c) Extracted subgrid

Figure 2.4: A Cartesian grid is converted to a cutout grid using bounding functions
in order to get a grid with a sine pattern.

exist in the physical domain or are impermeable to flow. Let us assume that
we know that the region of interest is bounded by two functions f(x), g(x)
that may represent the horizons of the geological layer we want to study,

f(x) =
1

4
+

1

4
sin(6πx), g(x) =

3

4
+

1

4
sin(6πx).

We define these functions and use them to flag and plot the subset of cells
where f(x) < y < g(x) in Figure 2.4b,

% Get cell x and y centroids
x = G.cells.centroids(:, 1); y = G.cells.centroids(:, 2);
% Define bounding functions, and flag cells that will be kept
fnUnder = @(x) 0.25∗sin(x∗6∗pi) + 0.25;
fnTop = @(x) 0.25∗sin(x∗6∗pi) + 0.75;
ok = y > fnUnder(x) & y < fnTop(x);
hold on

% Plot functions bounding the domain
plot(xs, fnUnder(xs), 'k' , ' linewidth ' , 2), plot(xs, fnTop(xs), 'k' , ' linewidth ' , 2)
% Plot the cells that is to be kept
plotGrid(G, ok, 'FaceColor', [1.00, 0.30, 0.30])
% Plot the cells that will be removed
plotGrid(G, ∼ok, 'FaceColor', [0.75, 0.75, 0.75])
xs = 0:0.01:1;
plot(xs, fnUnder(xs), 'k' , ' linewidth ' , 2)
plot(xs, fnTop(xs), 'k' , ' linewidth ' , 2)

Finally, we remove the excess cells and plot the final grid (seen in Figure
2.4c):

G_sub = extractSubgrid(G, ok);
plotGrid(G_sub, 'FaceColor', [0.267, 1.000, 0.730])

As an example of a realistic grid, we consider the corner-point grid from
the Norne field model [41, 109]. Norne is an oil reservoir in the Norwegian
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Figure 2.5: Five different cross sections of the cells in the Norne field model, taken
perpendicular to the major fault lines. The cells are colorized according to their
relative bulk volumes. Note that the vertical axis is exaggerated by a factor 5 for
visualization purposes.

Sea, for which the reals imulation model has been released to under the
permissive Open Database License [92]. As discussed above, The corner-
point format is a common way of specifying models for reservoir simulation.
We see that the corner-point format for the Norne model results in cells that
are far from ideal hexahedra, as it contains a number of faults and eroded
cells, making the final processed grid essentially unstructured in regions. To
download, read and process the Norne model in MRST, it is sufficient with
seven lines of code:

mrstModule add deckformat

makeNorneSubsetAvailable();
makeNorneGRDECL();
grdecl = fullfile(getDatasetPath('norne'), 'NORNE.GRDECL');
grdecl = readGRDECL(grdecl);
grdecl = convertInputUnits(grdecl, getUnitSystem('METRIC'));
G = processGRDECL(grdecl);

The processed reservoir model is plotted in Figure 2.5. To illustrate
the locally unstructured features, several cross-sections over the fault lines
are included, demonstrating certain highly irregular cells with large aspect
ratios and non-neighboring connections. The Norne field model is used as
an example in many of the papers of this thesis.
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2.2 Petrophysical properties

Permeability and porosity

Once we have obtained the grid structure that describes the geometry and
internal structural architecture of the reservoir, we must populate the cells
with petrophysical properties that reflect the different rock types (sedimen-
tology) in the model. Since the underlying medium can be highly hetero-
geneous, we will require the definitions of several properties. The porous
medium consists of particulate matter that has been compressed together
to form a static rock structure. In between the different grains of sand,
there exists a void space where fluid can flow. The fraction of the (geomet-
rical) bulk volume available to fluid flow is called the effective porosity (φ),
which is a dimensionless fraction that signifies how much of the bulk rock
volume (Vb) is void space accessible to flow. A conceptual model of a porous
medium on the microscale with different grain sizes is shown in Figure 2.6.
It is then natural to define the pore volume as the actual volume available
to fluid flow,

Φ = φVb, 0 ≤ φ ≤ 1

The porosity only defines the porous medium’s ability to store fluids, so we
also require a way to define the rate of fluid flow. The permeability models
the rock’s ability to conduct fluid flow and is represented as a symmetric,
positive definite tensor K. The permeability can vary greatly between dif-
ferent regions in reservoir models and relates the pressure gradient to the
actual flow rates in the medium. When the pore throats have smaller di-
ameters, a higher pressure differential will be required to force the same
amount of fluid through. Darcy’s law is used to model this relationship and
for single-phase flow without gravity or capillary forces it takes the form,

�v = −K∇p,

where �v is the velocity field and p the pressure field. Darcy’s law is a reason-
able empirical law for creeping flow where fluid momentum has negligible
contributions to the flow field. Fluid flowing along the negative potential
gradient is analogous to Fourier’s law in heat transfer and Fick’s law for
diffusion problems.

Examples of grids with petrophysical properties

The proceeding section defined permeability and porosity. To better under-
stand the types of values encountered in practice, we will examine a few
example datasets that are easily accessible using MRST.
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Figure 2.6: Idealized example of a rock cross-section. The white space represents
the void space accessible to fluid flow, while the light brown represents the imper-
meable part of the medium, corresponding to solid mineral grains.

A synthetic layered model

The first model will be a wholly synthetic model that has been chosen to
illustrate a typical situation in a reservoir model, where multiple different
rock types are arranged in layers according to their geological age. We will
consider a 1000× 1000× 100 m3 model, with 100× 100× 30 cells. We can
quickly set up this model using MRST’s built-in routines:

% Define a grid with 30,000 cells and 1000x1000x100 meter dimensions
G = cartGrid([100, 100, 30], [1000, 1000, 100]);
% Define three layers with 250, 10 and 90 mD means
K = logNormLayers(G.cartDims, [250, 10, 90]);
% Create rock structure with uniform porosity
rock = makeRock(G, K∗milli∗darcy(), 0.3);

Once we have set up the grid and the corresponding rock structure, we can
examine the model visually using standard MRST plotting routines. We
plot the permeability as cell-wise data on the grid,

% Take the log10 of the dataset
d = log10(rock.perm/(milli∗darcy()));
plotCellData(G, d, 'EdgeColor', 'none')
axis tight

view(65, 10)

Note that we have taken the base 10 logarithm of the permeability. Taking
the logarithm when plotting permeability is common because the underlying
data varies greatly and a linear color scale over-emphasizes the extremal
values. We also plot a histogram of the distribution, colorized by the same
colormap as in the call to plotCellData:
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(a) log10 of permeability K. Perme-
ability unit is millidarcy. (b) Histogram of log10 K

Figure 2.7: Permeability data for the synthethic layered model used to demon-
strate permeability. Note the three gaussian distributions in the histogram which
correspond to each of the three different rock-types in the model.

figure;
colorizedHistogram(d, 100)
xlim([min(d), max(d)])
x = get(gca, 'XTick');
xt = arrayfun(@(x) ['10ˆ{', num2str(x), '}' ], x, 'UniformOutput', false);
set(gca, 'XTickLabels', xt)

Figure 2.7 contains the resulting plots. We immediately see that there
are three very different rock-types based on the color grouping. If we look
at the histogram of the permeability distribution, there are three differ-
ent Gaussian distributions. In the call to logNormLayers we specified the
means as 250, 10 and 90 mD, respectively, and this is also present in the final
model. We also see that within each layer there is a log-normal stochastic
distribution of the permeabilities. While highly idealized, this is some-
what representative of how simulation models are built. The models are
built using a mixture of various data sources that all have different accu-
racy. Seismic data is used to place the horizons between the layers and
core samples from wells give highly detailed point samples of the geological
distribution. To obtain probable petrophysical properties in areas without
wells, equiprobable statistical realizations are generated and used in a his-
tory matching process where statistical parameters are tuned such that the
simulation results match the known production history.

Model 2 from the Tenth SPE Comparative Solution Project

The comparative solution project is a series of papers published by the Soci-
ety of Petroleum Engineers that compare different simulators and numerical
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techniques on a wide variety of benchmark datasets. The tenth study [19],
in particular, has become a de facto benchmark for new computational
methods. The objective of the study itself was to test different upscaling
methods, but the second dataset from this study has become very popular
among researchers in general, likely due to the geometry being Cartesian
and the petrophysical data being freely available.

The grid itself represents a box domain of size 1200 × 2200 × 170 ft3

with 60 × 220 × 85 cells. The model contains two very different perme-
ability regions. The top 35 layers are sampled from the Tarbert formation
and contains a (relatively) smoothly varying permeability field, while the
remaining 50 layers are sampled from the Upper Ness formation, which con-
tains a fluival distribution where highly permeable sands form channels that
intersect low-permeable mudstone. As the transition between the two rock
types is abrupt, the resulting permeability field has extreme transitions in
contrast.

The MRST module spe10 contains the required routines for download-
ing and displaying the dataset and Figure 2.8 shows the porosity, vertical
and lateral permeabilities. We can clearly see how we have in the same
dataset several different permeability distributions that overlap in parts,
with significant anisotropy as the vertical and lateral permeabilities differ
by several orders of magnitude. The maximal variation in permeability is
over ten orders of magnitude for the entire model. Note also that the poros-
ity contains a number of cells with zero porosity. Such cells are usually
removed in a pre-process step by the simulator, but the zero porosities can
also be replaced by small values to allow for simulation.
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(a) Porosity φ (b) log10 of Kx. (c) log10 of Kz.

Figure 2.8: The second model from the SPE10 dataset. Note that the top 35 layers
correspond to the Tarbert formation and thus have a different permeability and
porosity distribution than the remaining 50 layers which belong to Upper Ness.

The Norne field model

In Section 2.1 we saw that the Norne field had a complex geometrical struc-
ture due to geological features. We can now examine the petrophysical
propertes of the grid, shown in Figure 2.9. The histograms for vertical and
horizontal permeability indicates a highly heterogenous reservoir, with sev-
eral orders of magnitude variations in permeability. Once plotted directly
on the grid cells, we can see that the permeabilities form a layered structure.
The many faults disturb this structure, however, leading to discontinuities
in the permeability in the lateral direction where different layers intersect.
The permeability varies over four orders of magnitude, with significant dif-
ferences in distribution for the vertical and the lateral direction.
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(a) Porosity φ (b) log10 of Kx. (c) log10 of Kz.

Figure 2.9: Petrophysical properties of the Norne field model. The layered struc-
ture of the permeability leads to a non-trivial histogram and varying anisotropy
gives the vertical permeability a differently shaped distribution than the horizon-
tal permeability. As the grid has a vertical extent of 600 meters and a length of
7000 meters, the vertical size of the model has been exaggerated for the purpose of
illustration.

2.3 Fundamental equations

We have up to this point described the grids and medium properties used
in the simulation of flow and transport in porous media. However, we have
not yet described the governing equations and the fluid physics required to
pose a simulation problem. Conceptually, these equations are the same for
a wide range of physical processes, including the simulation of CO2 storage,
geothermal energy production, ground-water management, filter design and
even for in vivo processes including kidney function or oxygenation in lung
tissue. The model problem for this thesis, however, is the simulation of
hydrocarbons production during what is termed the secondary and tertiary
recovery stages. The production of hydrocarbons can be divided into three
stages. The first stage, primary production, relies on the overburden pres-
sure of the reservoir to force out oil and gas from the production wells. In
the secondary stage, injection wells are drilled to force more hydrocarbons
out using a combination of water injection and gas-reinjection. The tertiary
stage, sometimes referred to as enhanced oil recovery, is a late stage strategy
for mature reservoirs where the injected water may be heated or mixed with
chemical/biological compounds to improve the recovery of the residual oil.
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Most Norwegian-operated reservoirs are at late stages in their lifetime and
reservoir simulation is an essential tool to plan new wells, injection rates
and EOR-strategies to extend the lifetime and the amount of resources
recovered. Indeed, the Norwegian government mandates that a certain per-
centage of the estimated fluid volumes are to be extracted regardless of
economic viability to ensure that natural resources are not wasted.

In Figure 2.10 we can see the same reservoir as in Figure 2.1, but we
have now added fluids and wells to the drawing. Initially, the reservoir will
be undisturbed and water, oil and gas (if present) will have been segre-
gated according to densities over the aeons. Production wells are drilled to
extract the valuable oil and gas resources and eventually, as the reservoir
transitions over to secondary production, new wells will be drilled to inject
fluids to sweep out remaining hydrocarbons and keep the reservoir pressure
from dropping too much. As this happens, the forces that have been in equi-
librium for millennia are disturbed and the flow patterns that appear are
the result of a balance between viscous, gravitational and capillary forces
that operate on different scales, with highly nonlinear behavior.

Figure 2.10: The same reservoir as in Figure 2.1, with water, oil and gas added
as blue, brown and green colors respectively. There are two producer wells at the
opposite side of the domain, while a single injector injects water to sweep the oil
towards the producers. The wells are colored red.

The problem of simulating fluid flow and transport in porous media can
generally be stated as a set of conservation equations for each component
present in the porous medium. While this problem in principle can be for-
mulated with an arbitrary number of phases and components, we will in
this thesis only consider flow consisting of up to three phases, without any
restrictions on the number of components present. Furthermore, we will as-
sume that the aqueous phase is made up of a single component which is only
present in the aqueous phase itself so that mixing behavior is restricted to
the liquid and vapor phases. This formulation encompasses most commonly
used models in reservoir simulation, including the standard black-oil model
and many compositional models. By stating the conservation equations in
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the most general terms, we will see that several different model equations
can be obtained.

Immiscible flow

To start, however, we consider a simplified equation where each phase con-
tains a single component only, i.e., the distinction between phases and com-
ponents does not exist. Let ρα and Sα be the density of phase α and the
fraction of the void space occupied by phase α, respectively. First, let us as-
sume that the phase velocity �vα is known for all phases and that any source
terms for each phase can be written as a function qα. The conservation
equation for the mass contained in a given phase can then be written for a
given control volume Ω on standard form,∫

Ω

∂

∂t
(φραSα) dV +

∫
∂Ω

(ρα�vα) · �n dS =

∫
Ω
ραqαdV. (2.1)

Letting the volume of the control volume tend towards zero and applying
the divergence theorem to the surface integral we obtain the differential
form of the equation,

∂

∂t
(φραSα) +∇ · (ρα�vα) = ρwqα (2.2)

valid for all points in the domain Ω.

Isothermal compositional flow

If we as the next step want to consider miscible flow, it is necessary to
assume that there are two phases with N different components, which can
exist in either phase, where Xi is the mass fraction of component i in the
liquid phase and Yi is the mass fraction of the same component in the vapor
phase. If the mass of component i in phase α is mα

i we can determine the
mass fraction from,

Xi = mα
i /

N∑
j=1

mα
j . (2.3)

Assuming that there is some known relationship for the mass transfer be-
tween phases, we obtain another differential equation for the conservation
of the mass of a given component,

∂

∂t
(φ [ρlSlXi + ρvSvYi]) +∇ · (ρlXi�vl + ρvYi�vv) = ρlXiql + ρvYiqv (2.4a)

∂

∂t
(φρwSw) +∇ · (ρw�vw) = qw, (2.4b)
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where we have also included a conservation equation for the pure aque-
ous phase. These are the governing equations for isothermal compositional
models, where the aqueous phase is immiscible.

Darcy’s law for multiphase flow

It was sufficient to assume mass conservation to obtain (2.4), but not all
terms are defined by mass conservation alone. The equations as stated
require a velocity field for each phase. Flow in porous media is generally
creeping flow without significant momentum and as such the fluid velocity
will be modelled using a standard multiphase extension of Darcy’s law,

�vα = −λαK (∇pα − ραg∇z) , λα =
krα
μα

, (2.5)

where K is some positive definite permeability tensor, pα the phase pressure
and g∇z models the effect of gravity. Following convention, we have defined
the ability of the phase to flow as the mobility λα, which is the ratio of the
relative permeability krα and phase viscosity μα. The relative permeability
is typically experimentally determined for a given mixture-medium pair.
The viscosity can be obtained either experimentally or through correlations.

Relative permeability

The relative permeability krα for each phase models the ability of a cer-
tain fluid to flow through a specific porous media in the presence of other
phases. The relative permeability is a monotone function of the phase satu-
ration that takes on values between zero and unity, accounting for how easily
each phase travels through the medium on a microscopic scale. Different
fluids flowing through the same medium can have very different relative
permeability curves, as the microscopic sweep of water, gas and liquid hy-
drocarbon can flow in different regions of the rock microstructure and stick
to the pore walls to varying degrees.

There exist analytical expressions for relative permeability. In practice,
the coefficients of these models are adjusted based on experiments performed
on representative samples of the medium. In many cases, the relative per-
meabilities are created through the history-matching process, in which the
numerical model of a reservoir is adjusted to reproduce real-world output.
Examples of analytical expressions for relative permeabilities include the
exponential Corey-type for a wetting and a non-wetting phase,

krw(S) = Sn
w, krn(S) = (1− Sw)

n, (2.6)
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as well as the form given by Brooks and Corey [14] which introduced a
different exponent coefficient β,

krw(S) = S3+2/β
w , krn(S) = (1− Sw)

2
(
1− S1+2/β

w

)
. (2.7)

In this context, the wetting fluid is the phase that has the lowest contact
angle between the medium surface and the droplet surface when a sample
of the phase is placed on the medium.

Figure 2.11 demonstrates both a simple Corey-type relative permeability
function, as well as a relative permeability system from a real field model.
For problems with three phases present, krα is defined for each pair of
phases, and the three-phase relative permeability model is evaluated by a
combination of the different curves. Several choices for relative permeability
in regions with true three-phase flow have been proposed [107, 106, 9].
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Figure 2.11: Two examples of relative permeability: A simple two-phase system
based on Corey-exponents and the three-phase system from the Norne field model.

Capillary pressure

The observant reader may have noticed that even though we have defined
most of the terms in the multiphase extension Darcy’s law (2.5), we have
still not considered the different phase pressures. The difference in phase
pressures in porous media is normally the result of capillary action, whereby
a combination of differences in surface tension and no-slip conditions for two
different fluids will result in a potential difference. Capillary forces become
more significant for smaller pore diameters and will over time introduce the
spontaneous infiltration of the wetting fluid into the non-wetting region.
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The form of capillary pressure used in MRST is given as a function of
saturation separately for the oil-water and oil-gas contacts,

po − pw = powc (Sw), pg − po = pogc (Sg).

Note that there is by convention a difference in sign for the pressure change
due to capillary action. One well-known example dataset is the SPE 9 model
where the capillary pressure is significant and nearly discontinuous for the
oil-water contact, as shown in Figure 2.12. The effect of capillarity is usually
considered to be important to resolve at small scales and less significant at
the field scale, where viscous and buoyancy forces dominate the flow regime.
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Figure 2.12: Capillary pressure example: The three-phase system for the SPE 9
model contains both capillary curves between the oil and water phases as well as
the gas and oil phases, which differ in orders of magnitude.

2.4 Immiscible, incompressible flow

A commonly studied set of equations for flow and transport in porous media
are the conservation equations for incompressible and immiscible flow. To
derive these equations from (2.4) we will assume that the porosity is con-
stant, that the densities are constants for each phase and that each com-
ponent is only found in a single phase, i.e., that Xi > 0 only if Yi = 0 and
vice versa. By taking the sum over all components in phase and recalling
that the mass fractions sum up to unity as per (2.3), we obtain conservation
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equations for each present phase,

φ
∂

∂t
Sw +∇ · �vw − qw = 0, (2.8a)

φ
∂

∂t
Sl +∇ · �vl − ql = 0, (2.8b)

φ
∂

∂t
Sv +∇ · �vv − qv = 0. (2.8c)

One popular solution strategy for these equations is the sequential pressure-
transport scheme, which exploits the weak coupling between the spatially
global pressure variable and the spatially local saturation variables. In the
following, we will detail the pressure and transport equations individually,
as they are the test problems used in several of the publications in this
thesis. For details on the discretizations of these equations, see Chapter 3.

The pressure equation

The system (2.8) has a mixed elliptic-hyperbolic nature. To illustrate this,
we can reformulate the system in terms of a pressure and a set of transport
equations. The papers of this thesis exploit this reformulation to create
efficient and robust numerical methods for coupled flow and transport. The
pressure equation, under the simplified assumptions of incompressible flow
and constant scalar permeability, is equivalent to the elliptic Poisson equa-
tion,

∇2p = q. (2.9)

In general, however, this is not the case, and for more complex fluid physics,
the pressure equation may be parabolic and will only be truly elliptic in the
incompressible limit. In this section, we consider the incompressible pressure
equation, which can be derived directly from the conservation equations for
immiscible, incompressible flow (2.8). See Papers VIII and XIV for the
black-oil and compositional pressure equations, respectively.

Regardless of the complexity of the model equations, the derivation prin-
ciple remains the same: Ensure that the pressure equation is some weighted
sum of the individual phase conservation equations, where the dependence
on the time derivative of transported quantities is eliminated or minimized.
To find the pressure equation from (2.8), we insert the velocity expressions
from Darcy’s law (2.5), assume a single unique pressure, neglect gravity
and sum the equations together. We obtain the incompressible pressure
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equation,

0 =

{l,w,v}∑
α

[
φ
∂

∂t
Sα −∇ · (Kλα∇p)− qα

]
(2.10)

=φ
∂

∂t
(Sl + Sv + Sw)−∇ · (K(λl + λv + λw)∇p)− ql − qv − qw (2.11)

=∇ · (Kλt∇p) + qt. (2.12)

As noted earlier, the resulting equation is equivalent to the variable coef-
ficient Poisson’s equation when K is a scalar and is a model equation in
many different fields, with varying physical interpretation of the variable
coefficient. In our case, the variable coefficient consists of the scalar total
mobility λt, which depends on fluid distribution in the medium, and the
absolute permeability K which is a tensor representing the properties of the
medium itself. This is an elliptic PDE, and as such the pressure field is
global in nature, where changes in boundary conditions or source terms in
one location will immediately change the pressure field in potentially all
points of the domain.

We can also pose the same pressure equation in a slightly different form
that emphasizes that the equations represents a steady-state balance of fluid
flow,

∇ · �vt = qt, �vt = −Kλt∇p. (2.13)

This is referred to as the mixed form.

Fractional flow transport equation

The fractional flow transport equation for a given phase α can be written
as,

φ
∂

∂t
Sα +∇ · (fα�vt)− qα = 0, (2.14)

where �vt is some total velocity field. This equation is of a hyperbolic nature,
due to the finite speed of propagation for the saturation in the velocity field.
In this form, the dependence on the transport upon the pressure field is
through the total velocity. The fractional flow fα for a phase is defined as
the ratio of the mobility of the phase to the total mobility for all phases,

fα =
λα

λw + λo + λg
. (2.15)
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Sequential solution of the pressure and transport

If we have solved (2.13) produces both the pressure field and the total
velocity field �vt. In addition to the pressure, we are usually interested in
the fluid distribution for each phase as well, and one strategy is to then
solve fractional flow transport equations (2.14), keeping the total velocity
fixed, to advect the saturations along the velocity field. It is sufficient to
solve the transport equations for two of the three transport equations, as the
remaining phase saturation can be determined by the constraint

∑
α Sα = 1.

2.5 The black-oil equations

The workhorse of practical reservoir simulation is the black-oil equations.
These equations represent an intermediate step between the full complexity
of the compositional equations, in which each component is modeled indi-
vidually and properties and phase behavior are predicted by equations of
state, and immiscible, incompressible flow, where phases do not exchange
mass with each other and properties are greatly simplified.

The standard formulation of the black-oil equations will allow the gas
component to dissolve into the oil phase. The case of oil vaporizing into the
gas phase, referred to as live-oil, is not considered here, but the effects are
modeled in an analogous manner to gas dissolving in oil.

In the black-oil model, an auxiliary variable rs is introduced. The def-
inition of rs is somewhat curious, as it for a given volume of the oil phase
refers to the volume ratio between free gas and oil if that volume was trans-
ported to standard conditions. Standard conditions may refer to either
pressure at the surface or at the gas separator of the field, depending on the
dataset. The concept of standard conditions carries through to the defini-
tion of densities, where formation volume factors (FVF) are used to convert
fluid volumes between reservoir and standard conditions,

ρo(p, rs) =
(rsρ

s
g + ρso)

Bo(p, rs)
= bo(p, rs)

(
rsρ

s
g + ρso

)
,

ρg(p) =
ρsg

Bg(p)
= bg(p)ρ

s
g,

ρw(p) =
ρsw

Bw(p)
= bw(p)ρ

s
w.

Introducing the concept of surface volumes is especially useful when working
with more advanced boundary conditions and source terms in the form of
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wells, where the injected and produced volumes are given at very different
conditions than in the reservoir. Note that we here have used ρsα to denote
the density at standard conditions, which is a constant for each component.
We have opted to use the reciprocal of the FVF (bα = 1/Bα) in this de-
scription, which is sometimes incorrectly referred to as the inverse formation
volume factor. We assume that there exists a tabulated maximum value for
dissolved gas-in-oil as a function of pressure rsats (p) so that when the oil is
fully saturated and rs ≥ rsats (p), the bubble-point pressure has been reached
and free gas is formed. We can then write out one conservation equations
for each phase, divide each equation by the corresponding density at stan-
dard conditions ρsα and modify the gas component equation to account for
the dissolved gas component to obtain the black-oil equations,

∂

∂t
(φbwSw) +∇ · (bw�vw) = bwqw, (2.16)

∂

∂t
(φboSo) +∇ · (bo�vo) = boqo, (2.17)

∂

∂t
(φ[bgSg + rsboSo]) +∇ · (bg�vg +Rsbo�vo) = bgqg + rsboqo. (2.18)

Fluid properties in the black-oil model

The properties, hereunder formation-volume-factors and viscosities, are tab-
ulated from either experimental data or from a compositional model with
empirical correlations. For the oil phase, additional curves have to be spec-
ified for saturated and undersaturated flow, as the dissolved gas must result
in density changes to be thermodynamically consistent. Coats [23] derived
explicit inequalities for the b-factors and dissolved components to ensure
positive partial volumes of each phase.

Figure 2.13 plots the PVT-properties from the SPE 1 [93] benchmark
model. We note that while the gas and water phase properties are simple
monotone functions of evaluation pressure, the oil phase is significantly more
complex. The oil density appears to decrease with increasing pressure, which
may at first seem counter-intuitive. This behavior is due to the oil phase
being a mixture of heavy and light components and the whole line represents
the saturated state, where there exists free gas that is gradually dissolved as
the pressure increases. If the system runs out of gas to dissolve, the dashed
undersaturated curves are followed and the density returns to the expected
increase due to pressure. The swelling effect of gas dissolving into the oil
phase as a function of pressure makes the accurate prediction of pressures
more important for the black-oil model than for immiscible flow.
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(b) Gas density
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(c) Water density

100 200 300 400 500

Pressure [bar]

0.4

0.6

0.8

1

1.2

1.4

1.6

O
il
 v

is
c
o

s
it
y
 [

c
P

]

(d) Oil viscosity, with rs
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(e) Gas viscosity
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Figure 2.13: Example of black-oil type PVT-behavior taken from the SPE 1 bench-
mark dataset. Note that as the gas is allowed to dissolve into the oil phase, the
oil properties contain functions for both the saturated case (where free gas exists
and mixes instantaneously) and the undersaturated case (when the gas component
only exists inside the oil phase). The water viscosity is a constant 0.31 cP for all
pressure values and is consequently omitted from the plot.

2.6 Compositional properties

Compositional simulation is characterized by systems with N different com-
ponents where phase behavior is predicted by an equation of state. The
classical equation of state is the ideal gas law,

p =
RT

Vm

where p is the pressure, Vm is the volume of one mole gas, T the temperature
and R the ideal gas constant. For isothermal problems, the ideal gas law
assumes a linear relationship between volume and pressure, which makes the
density linear with increasing pressures. As this is not reasonable outside
of specific pressure ranges for gases, there exists a large body of research
on more accurate phase prediction for mixtures at different pressure and
temperature ranges. One of the most common equations of state employed
for hydrocarbons at relatively high pressures is due to Peng and Robinson
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[96], which for a pure component can be written as

p =
RT

Vm − b
− aα

Vm(Vm + b) + b(Vm − b)
, (2.19)

where the coefficients a, b, α are given by

a =
0.45724R2T 2

c

pc
, b =

0.07780RTc

pc
,

α =
(
1 + (0.37464 + 1.54226ω − 0.26992ω2)(1− T 1/2

r )
)2

.

The properties pc and Tc refer to pressure and temperature taken at the
critical point. For the reduced temperature, Tr, we define

Tr =
T

Tc
.

The critical point is where the notion of gas and liquid converge. ω is
the acentric factor which is a non-negative constant indicating the how far
the molecule is from spherical shape, where ω = 0 indicates a completely
spherical molecule. The degree to which an equation of state deviates from
the ideal gas behavior of (2.6) can be measured by the compressibility factor
Z,

p = Z
RT

Vm
. (2.20)

Flash equations

We let Xi and Yi be the mass fractions of component i in the liquid and
vapor phases respectively, computed from the phase mole fractions for the
liquid (xi) and vapor (yi) phases,

Xi =
xiWi∑N
j=1 xjWj

, Yi =
yiWi∑N
j=1 yjWj

, (2.21)

where we have assumed that the molar weights for each component Wi is
known. Based on the equation-of-state, we must find the distribution of
components in each phase as well as the liquid mole fraction L from the
overall composition z = [z1, ..., zN ]T . These quantities can be obtained by
solving the flash equations, here given in the same form as in [118],

fiv(p, T, x1, ..., xn, Zl)− fil(p, T, y1, ..., yn, Zv) = 0, for i ∈ {1, ..., N}
zi − Lxi − (1− L)yi = 0, for i ∈ {1, ..., N}

N∑
i=1

xi − yi = 0.
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The flash equations require that the component fugacities fil, fiv for both
phases present are equal as well as ensuring that the moles of a component
in each phase balance to the total amount of component moles. The need for
flash can be determined a priori using a phase stability test to determine if a
given composition under current conditions will split into two phases [80, 81].
Since the equations consist of 2N + 1 equations and we need to obtain N
component fractions for both phases as well as the liquid ratio, we can
linearize and solve this system using either Newton’s method or the method
of successive substitution, in which equilibrium constants are successively
updated based on the fugacity ratio. The fugacities and compressibility
factor are predicted using a generalized cubic equation of state reformulated
in terms of the compressibility factors Zα (2.20),

Z3
α + aZ2

α + bZα + c = 0, (2.22)

where a, b, c are coefficients that depend on the phase composition and the
type of equation of state used. This specific generalized cubic form was
derived from Martin’s equation [78] by Coats [22]. This polynomial form is
convenient as the coefficients can easily be chosen to reduce to several well
known cubic equations of state, e.g., Zudkevitch and Joffe [130], Redlich
and Kwong [98], Redlich-Kwong-Soave [105], or Peng and Robinson [96].
Different equations may have mixing coefficients that are empirical and
specific to that equation, so the common implementation is beneficial when
working with existing test problems that cannot easily be used with any
equation of state.

Saturations and phase properties

Once the flash equations have been solved, the phase saturations Sl and Sv

can be computed by letting the compositional phases fill up the remaining
pore volumes not saturated with the aqueous phase,

Sl = (1− Sw)
LZl

V Zv + LZl
, Sv = (1− Sw)

V Zv

V Zv + LZl
, V = (1− L).

(2.23)
The compressibility factors represent the deviation of a phase’s volumetric
expansion behavior predicted by the ideal gas law. From the definition of
density we can obtain explicit expressions for the liquid and vapor as

ρl =
p

RTZl

N∑
i=1

xiWi, ρv =
p

RTZv

N∑
i=1

yiWi. (2.24)
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Table 2.1: The four component mixture dataset used to illustrate compositional
phase properties. We have not included empirical interaction coefficients between
the components and consequently this table contains all required values for a com-
positional phase prediction using a cubic equation of state.

Component Tc [K] pc [Bar] Vc [m
3/mol] ω Mass [kg3/mol]

Methane 190.56 46.00 9.86 · 10−5 0.011 0.016
Nitrogen 126.19 33.96 8.94 · 10−5 0.037 0.028
n-Pentane 469.70 33.70 3.11 · 10−4 0.251 0.072
n-Decane 617.70 21.03 6.10 · 10−4 0.488 0.142

To illustrate the emergent phase behavior from an equation of state, we
will consider a simple four component mixture shown in Table 2.1. The
open source CoolProp package was used to look up these properties [10].
The mixture is assumed to be comprised of equal molar fractions Methane,
Nitrogen and the normal isomers of Pentane and Decane. From the table,
we can see that the properties of the components vary significantly, where
the heavier components generally have higher critical values, as well as
acentric factors due to their molecules being longer chains of hydrocarbons.
We compute the liquid saturation for this mixture, shown in Figure 2.14
using the Peng-Robinson equation of state in MRST. For low pressures,
the mixture forms a vapor phase. As the pressure rises, the gas phase
is gradually converted into liquid. At the critical point, the distinction
between the vapor and liquid phases disappear and beyond this point the
saturation is discontinuous. The complete code, requiring only the names
of the individual components as input, can be written in 10 lines of code:

mrstModule add compositional

components = {'Methane', 'Nitrogen', 'n−Pentane', 'n−Decane'};
fluid = CoolPropsCompositionalFluid(components);
% Intialize cubic eos model
EOS = EquationOfStateModel([], fluid);
% Use standalone routine to get phase diagram for pressure and temperature ranges
z = [0.25, 0.25, 0.25, 0.25];
p = (0:1:250)∗barsa;
t = 273:650;
[L, x, y, Z_L, Z_V, P, T] = getFlashTable(p, t, z, EOS);
% Liquid saturation
S_L = Z_L.∗L./(Z_L.∗L + (1−L).∗Z_V);
% Plot the saturation with 25 contour lines
contourf(T, P/barsa, S_L, 25)

Once we have obtained the compressibility factors ZL, ZV and the liquid
mole fraction L we obtain the densities using (2.24) and the viscosities are
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Figure 2.14: Predicted liquid saturation Sl for the four component test mixture.
The critical point where the distinction between liquid and vapor phases disappear
is marked with a red dot.

found using the Lohrenz-Bray-Clark correlation [70]. This is done by calls
to the member functions of the EquationOfState class instance,

% Compute density
rhoL = EOS.computeDensity(P, x, Z_L, T, true); % Liquid
rhoV = EOS.computeDensity(P, y, Z_V, T, false); % Vapor
% Get viscosities
muL = EOS.computeViscosity(P, rhoL, T, x, true); % Liquid
muV = EOS.computeViscosity(P, rhoV, T, y, false); % Vapor

We have plotted the density and viscosities in Figure 2.15. For the phase
densities, it is worth noting that for the lower pressures the difference be-
tween the two phases is large. As the pressure and temperature approaches
the critical point, the liquid and vapor densities converge to the same val-
ues. The two lighter components Methane and Nitrogen are shown in Fig-
ure 2.15d for a fixed temperature of 350 K. As the pressure increases, the
molar fraction of methane in the vapor phase gradually decreases as other
components are vaporized, while the heavier nitrogen increases its share,
which is also reflected in the evaluated viscosity shown in Figure 2.15c.
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(c) Viscosities for T = 350 K
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(d) Light component fractions for T = 350
K

Figure 2.15: The liquid 2.15a and vapor 2.15b density diagrams as a function of
pressure and temperature for constant overall composition. As the pressure and
temperature goes towards the supercritical region, the densities converge to the
same value. The viscosity of the mixtures 2.15c also change as the components are
transferred between the phases 2.15d.
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Chapter 3

Spatial and temporal
discretization

Analytical solutions of the different model equations introduced in Chap-
ter 2 is not always feasible for general domains. For this reason, we will
need to discretize the equations and solve the resulting nonlinear systems
numerically. In this chapter, we will briefly consider some of the standard
techniques used to solve flow and transport numerically that will be used in
Part II of the thesis.

3.1 Spatial discretization

We have in the preceding chapter introduced the mixed elliptic-hyperbolic
model equations and the grid. Once a domain has been divided into grid
cells Ωi as seen in Figure 3.1, a discretization can be applied to obtain
discrete equivalents of the model equations. We will first consider the ellip-
tic model problem before considering the hyperbolic and mixed-hyperbolic
equations in a later section. The classical choices from numerical analysis
for elliptic equations are broadly speaking different types of finite-element,
finite-difference and finite-volume methods. For flow problems on models of
geological scales, finite-volume schemes are popular due to exact local mass
conservation and ease of implementation for cells with general polyhedral
shapes. Assuming that we have some continuously differentiable velocity
field �v, equations on the form (2.13) can be transformed into a surface in-
tegral by the divergence theorem,∫

Ωi

(∇ · �v) dV =

∫
∂Ωi

(�v · �n) dA =

∫
Ωi

q dV. (3.1)

33
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�n1

�n2

�n3

�n4

�n5

Ωi

∂Ωi

Figure 3.1: A single control-volume Ωi, with boundary ∂Ωi and normal vectors for
each interface �nj .

Two-point flux approximation

We want to integrate the fluxes over the control-volumes representing indi-
vidual cells, and we thus require an expression for the flux at the interface
between two cells. There are many possible flux expressions that lead to dif-
ferent schemes. A through comparison of the options available is outside the
scope of this thesis, but we will consider the most commonly used approxi-
mation in some detail and compare it to another similar scheme numerically.
The industry standard discretization is one of the simplest possible, where
the flux over the interface is approximated using a two-point stencil, re-
ferred to as the two-point flux approximation (TPFA). Let the the interface
between cells Ωi and Ωj in Figure 3.2 be denoted Γij = ∂Ωi ∩ ∂Ωj , and
let xf be the face centroid, Af the area of the face and �nf be the unit
normal vector of the interface. Then the flux through the interface can be
approximated by, ∫

Γij

�v · �n dA ≈ Af�v(xf ) · �n. (3.2)

The flux at the interface can be approximated by a two-point difference
approximation using Darcy’s law for the pressure at the face centroid p(xf )
and the cell centroid pressure in the left cell p(xi),

�v(�xf ) = −Ki∇p ≈ −Ki
�ci
|�ci|2 (p(xf )− p(xi)) = −Tif (p(xf )− p(xi)) , (3.3)
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xi
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�ci
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Γij

Ωi

Ωj

Figure 3.2: Two control-volumes Ωi and Ωj , along with their centroids xi and xj .
The face centroid xf is used to define the cell-face centroid vectors �ci and �cj that
are required to derive the two-point flux approximation.

where we have defined �ci as the vector from cell-centroid to face-centroid, as
well as the half-face transmissibility Tif . There exists an analogous expres-
sion for the same velocity seen from the other side of the interface where
the only difference is a change in sign,

�v(�xf ) ≈ Kj
�cj
|�cj |2 (p(xf )− p(xj)) = Tjf (p(xf )− p(xj)) . (3.4)

If we assume that the pressure is continuous at the interface, we can rear-
range the two equations to eliminate the face pressure p(xf ),

�v(xf ) =
1

T−1
jf + T−1

if

(p(xi)− p(xj)), (3.5)

which can then be combined with (3.2) to obtain the final expression for
the two-point flux,∫

Γ

�v · �n dA ≈ Af

T−1
jf + T−1

if

· �n (p(xi)− p(xj)) = Tij(p(xi)− p(xj)). (3.6)

The resulting finite-volume scheme for the pressure equation (2.13) is
then a discrete analogue of (3.1),∑

j∈Ni

Vij =
∑
j∈Ni

Tij (p(xi)− p(xj)) = Qi,
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where Vij is the discrete flux between cells i and j and Ni is the set of all
cell neighbors for cell i. Qi is the volume-integrated source terms present in
the cell.

Each cell will in the TPFA scheme only be connected to the neighbors
with which it shares faces. For the pressure equation discretized on quadri-
laterals in 2D with a homogeneous isotropic medium, this scheme reduces
to the classical five-point stencil used to solve Poisson’s equation. The ap-
proximation in (3.3) neglects the component of the flux not tangential to
the cell-face centroid vector �ci and the scheme is only consistent for K-
orthogonal grids, i.e., grids where the flow direction aligns with the cell-face
centroid vectors,

(K �nf )× �ci = 0 ∀ i. (3.7)

Consistent discretizations for the flux for general grids is an active field of
research. Many different schemes have been suggested, including different
multipoint flux approximation (MPFA) schemes [3, 4, 27], mixed finite-
element methods [57], mimetic finite-difference methods [13, 69] and more
recently nonlinear TPFA-schemes for which the discretization itself depends
on the unknown pressure field [60, 88].

We can demonstrate this with a simple example with a grid that violates
the assumptions of K-orthogonality. We first define a 20 × 20 fine grid on
the unit square and apply a boundary condition p = 1|x=0 and p = 0|x=0

with implicitly defined no-flow boundary conditions (�v · �n = 0|y=1∨y=0) for
the remaining boundaries. The grid coordinates are then distorted using
the twister routine.

% Define grid and set boundary conditions
G = cartGrid([20, 20], [1, 1]);
G = computeGeometry(twister(G, .1));
bc = pside([], G, 'xmin', 1);
bc = pside(bc, G, 'xmax', 0);
rock = makeRock(G, 1, 1);

We can then solve the same problem using both the MPFA-O and the TPFA
solvers. Note that since the permeability is a constant scalar, the pressure
equation reduces to Poisson’s equation, which has an analytical solution of
a linear drop from the left to right for this problem, p(x) = 1− x.

T_tpfa = computeTrans(G, rock); % TPFA transmissibility
T_mpfa = computeMultiPointTrans(G, rock); % MPFA transmissibility
state = initResSol(G, 0); % Define state
fluid = initSingleFluid('rho', 1, 'mu', 1); % Trivial single−phase fluid
tpfa = incompTPFA(state, G, T_tpfa, fluid, 'bc', bc); % Solve TPFA
mpfa = incompMPFA(state, G, T_mpfa, fluid, 'bc', bc); % Solve MPFA



3.1. Spatial discretization 37

(a) Twisted grid (b) TPFA (c) MPFA

Figure 3.3: Not all discretizations are equal. A twisted grid with linear boundary
conditions (left) leads to consistency issues for the two-point flux approximation
method (middle), while the consistent multipoint flux-approximation (right) does
not suffer from grid orientation effects and agrees with the analytical solution of
a linear pressure drop from x = 0 to x = 1. Note that the pressure is plotted as
constant for each grid cell, which makes it not appear linear between cell centroids.

The results, as well as the twisted grid, are shown in Figure 3.3. We observe
that the pressure field for the TPFA solution is distorted where the grid cells
deviate from regular squares. The streamlines, tangential to the flux field,
are shown in black, and demonstrate that the MPFA scheme accurately
resolves the flow field for this problem. It should be noted, however, that
the MPFA-method can have monotonicity issues for certain grids [89].

Upwinding of advected quantities

t0 t0 +Δt

�v

K∇p

ΓijΩi Ωj

Figure 3.4: Conceptual illustration for the first-order upwind scheme. The fluid,
shown in green, sweeps through the domain as the time progresses. To evaluate
functions that depend strongly on the fluid saturation on the interface, a stable
choice is to approximate the saturation by the inflow cell Ωi.

We have obtained an expression, (3.6), which relates the pressure drop to
the fluxes. Our objective is to find a discrete version of (2.5). If we insert
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the discrete flux expression into (3.6) integrated over a face, we obtain

(Vij)α = −(λα)ijTij (p(xi)− p(xj)− (ραg∇z)ij) . (3.8)

The buoyancy force is straightforward to evaluate discretely, as the phase
density is constant and we can obtain the gradient of the depths of the cell
centroids at the interface,

(∇z)ij ≈ z(xj)− z(xi)

|xj − xi| . (3.9)

The mobility λα must be carefully evaluated, however, as it strongly depends
on the saturation, which is a transported quantity. Consider a two-cell
model as shown in Figure 3.4. As the front moves from the left cell and
into the right, the saturation at the interface will change. To avoid over and
undershoots in the saturation, one natural choice is to upwind the value at
the interface, that is, take the value of the mobility to be equal to the cell
from which the front is propagating,

(λα)ij ≈
{
(λα)i, if (Vij)α > 0,

(λα)j , if (Vij)α ≤ 0.
(3.10)

This is the standard first-order upwind scheme. Much like the TPFA
scheme, it is straightforward to implement for general grids and does not
introduce oscillations. Higher-order schemes can be used for applications
where more accurate saturation profiles are required.

Discretization of wells

In the preceding sections, we have always assumed that the flow is driven by
some volumetric source term q. Flow in reservoir simulation can be driven
by Dirichlet or Neumann boundary conditions, but more often than not, the
displacement of fluids is controlled using wells as source terms. Wells are of
particular interest for subsurface applications, since reservoirs are normally
closed off far below the caprock and wells represent the only option for
injection or extraction of fluid, whether the application is oil recovery, gas
storage, CO2 sequestration or geothermal energy.

A well is a cylindrical hole with a diameter naturally measured in cen-
timeters or inches through the medium that is connected to control facilities
topside. The well-bore is very small compared to the typical grid blocks used
in a reservoir model, with near-well flow happening at a completely different
length scale than the rest of the model, and consequently numerical mod-
elling can be a challenging prospect. The well may perforate multiple blocks
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in the simulation grid, where each perforated cell will potentially contain
source terms. The connection between the well-bore and the reservoir is
defined by an expression very similar to (3.6) for a given phase α,

qαi =

{
WIγαλti(pi − pbh + ρmixgΔz), if qi > 0,

WIλαi(pi − pbh + ρmixgΔz), if qi < 0,
(3.11)

where we differentiate between completions that inject and perforations that
produce the phase in question. Injector cells are weighted by the total mo-
bility in the cell λti and a factor γα which corresponds to the volumetric
fraction of that fluid in the injector. For instance, if a well injects pure
water γi = δwi. For the producer cells, the well will produce the fluids
present in the grid cell according to the mobilities of the different phases.
The pressure inside the well is normally defined at a single point referred to
as the bottom-hole pressure. The pressure in the well in each cell along the
wellbore is computed using standard hydrostatic conditions, with a mixture
ρmix density that reflects the average composition of the well above the
current perforation. The standard wells in MRST use the assumption of
instantaneous mixing for well flow, which means that the well bore compo-
sition immediately changes when the inflow or outflow conditions change.
For the well indices WI , which are analogous to interblock transmissibili-
ties, we follow the seminal work of Peaceman [95] who developed analytical
expressions for hexahedral grid blocks.

Figure 3.5 demonstrates a conceptual drawing of a single injector well.
Once the well has been discretized, we need to define a control equation for
each well that allows some combination of the phase flow rates, the total
flow rate and the bottom-hole pressures to match the observed controls at
the surface. If a well is controlled by the bottom hole pressure, the control
equation is trivial,

ec = ptbh − pbh = 0, (3.12)

where ptbh is some target bottom-hole pressure. For volumetric rates, the
control must account for the total flow for all perforations,

ec = qtα −
n∑

i=1

qαi = 0, (3.13)

where α can be either phase, or some combination of phases. For instance,
liquid rate controls targeting the sum of produced water and liquid hydro-
carbons is a typical control employed by producers with finite liquid capacity
topside.
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p3

q2
p2

q1
p1

qt = q1 + q2 + q3pbh

Figure 3.5: Conceptual model of a well. The well perforates three different cells,
and the well model assigns a single flux to each perforation.

3.2 Temporal discretization

Newton’s method for nonlinear equations

Although certain problems from flow and transport in porous media have
limit solutions that are linear, e.g., the incompressible pressure equation(2.13)
or the transport equations (3.16) with linear flux functions, these seldom
appear in practice (or only under very specific conditions). The problems
we are interested in solving numerically are therefore predominately systems
of nonlinear equations.

Let R(x) be a vector valued function of some primary variable x where
we want the solution R(x) = 0. Newton’s method is the natural technique
for the solution of this system. If we now define the Jacobian J(x) as the
matrix dR(x)/dx, we can apply Newton’s method for the linearized update
to the primary variables,

− J(xi)Δxi = R(xi), Δxi = (xi+1 − xi) . (3.14)

For problems where Newton’s method converges unconditionally, it is straight-
forward to iteratively update x until ‖R(x)‖ < ε for some chosen norm ‖−‖
and tolerance ε. Perhaps due to the quadratic convergence rates under cer-
tain conditions, Newton’s method forms the backbone for the solution of
nonlinear equations in many fields, and reservoir simulation is no excep-
tion. One of the major challenges is then how to best choose the systems of
equations to solve in order to exploit strong and weak couplings, and isolate
subproblems that can be efficiently solved by appropriate linear solvers.
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Three different strategies for three-phase flow

We will consider the conservation equations (2.8) introduced in Chapter 2
for three-phase immiscible transport where all phases are incompressible,

φ
∂

∂t
Sw +∇ · �vw − qw = 0

φ
∂

∂t
Sl +∇ · �vl − ql = 0

φ
∂

∂t
Sv +∇ · �vv − qv = 0,

Sw + Sl + Sv = 1

These equations are somewhat simplified compared to the compositional
or black-oil cases, but in terms of solution strategy, our options are very
similar. For four equations, we want to solve for four primary variables.
For this simplified model, the obvious choices are fluid pressure p and phase
saturations Sw, Sl, Sv. If we use the closure relation for saturations, we can
further reduce the system to three equations and three variables, p, Sw, Sv.

Fully implicit

The most obvious approach is to simply linearize (2.8) directly for our choice
of primary variables and use backward Euler to discretize the accumulation
terms to obtain the fully-implicit system on semidiscrete form,

Φ

Δt
(Sn+1

w − Sn
w) +∇ · �vw(pn+1, S n+1

w )− ql = 0

Φ

Δt
(−Sn+1

v − Sn+1
v + Sn

v + Sn
v ) +∇ · �vl(pn+1, S n+1

w , S n+1
v )− ql = 0

Φ

Δt
(Sn+1

v − Sn
v ) +∇ · �vv(pn+1, S n+1

v )− qv = 0,

where the n+1 superscript indicates that the quantities are evaluated at the
end of the time-step1. The fully-implicit scheme is unconditionally stable
for decaying problems and has been applied to a wide range of reservoir
simulation problems. The scheme is also computationally expensive as the
resulting linear system is 3M × 3M in size, where M is the number of
cells. The conservation equation for each phase contains both a coupled

1For breviety, we have assumed that the source terms themselves do not depend on
the primary variables, which is seldom true in practice. Their treatment for well models
are in practice analogous to the velocity/flux-expressions.
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pressure problem (due to Darcy’s law for each cell-cell interface, and every
phase) and a transport subsystem (due to upwinding of the saturations in
the velocity field). The sparsity pattern of the Jacobian matrix for a small
10 cell problem is shown in Figure 3.6, where we can see that the pressure
subsystem bears resemblance to a standard second-order discretization of
the Laplacian, while the saturation derivatives depend solely on the flow
direction.

∂p ∂S
W

∂S
V

Aqua

Liquid

Vapor

Figure 3.6: Sparsity pattern of a three-phase problem with 10 cells discretized
with a fully-implicit scheme. All three equations have a strong dependence on the
pressure, while the saturation derivatives are not coupled to the same degree, at
least in terms of sparsity pattern.

Implicit pressure

For models with a large number of grid cells, the fully-implicit method may
no longer be computationally feasible due to the size of the resulting linear
systems that need to be inverted. The coupling between the saturations
and the pressure variable is weak for many problems, and consequently one
option is to first solve the pressure equation (2.13),

∇ · (Kλt∇p) + qt = 0.

If we approximate the saturation dependency by the values from the previ-
ous time-step Sn+1

l ≈ Sn
l , S

n+1
v ≈ Sn

v , and discretize the equation implicitly
with respect to the pressure variable we obtain,

∇ · (Kλt(S
n
l , S

n
v )∇pn+1

)
+ qn+1

t = 0,
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which is equivalent to the variable coefficient Poisson’s equation with a
tensor, known to be a linear equation. This equation has the same sparsity
structure as either of the three pressure blocks in the Jacobian of the fully-
implicit nonlinear system, which is significantly more expensive to solve.

Explicit saturation

Once we have solved for a new pressure and a velocity field, we need to
update the phase saturations. The first option is to treat the saturations
explicitly for the fluxes in the transport, making the saturation update for
each phase trivial with a forward Euler scheme,

Sn+1
α = Sn

α +
Δt

Φ

[∇ · �vα(pn+1S n
w )− qn+1

α

]
.

Treating the variables explicitly leads to conditional stability by the Courant-
Friedrichs-Lewy (CFL) condition for each cell,

Δt

Φi
Fi ≤ 1, (3.15)

where F represents the magnitude of the flow terms between the cells [20]. If
the CFL condition is violated, displacement fronts (or material waves) may
pass completely through the cell within a single time step so that updated
saturation values depend on more cells than their next neighbors, and the
approximation �vα(p

n+1S n+1
w ) ≈ �vα(p

n+1S n
w ) is no longer valid. Time-steps

must be chosen carefully to avoid stability issues [21]. As the denominator
contains the pore volume of the cells, very small cells or cells with very low
porosity may lead to strict time-step restrictions for some models.

Implicit saturation

Instead of using an explicit scheme for the phase saturations, it is possible
to use an implicit scheme. For the backward Euler time-discretization with
fixed pressure and total velocity, we obtain the classical fractional flow (2.14)
formulation of the transport equations on semi-discrete form,

Φ

Δt

(
Sn+1
α − Sn

α

)
+∇ · (fn+1

α �v n+1
t )− qα = 0, (3.16)

where the fractional flow-term is updated as the saturations change in the
transport equations,

fn+1
α =

λα(S
n+1
α )

λw(S
n+1
w ) + λl(S

n+1
l ) + λv(S

n+1
v )

. (3.17)
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while the total velocity is kept fixed from the pressure equation,

�v n+1
t = �vw(p

n+1, Sn
w) + �vl(p

n+1, Sn
l ) + �vv(p

n+1, Sn
v ). (3.18)

The consequence is that the total volumetric exchange between cells is kept
fixed throughout the transport step, but the fraction of each phase changes
according to the fractional flow term.

For the black-oil and compositional equations, Trangenstein and Bell
[111, 112] proved that the sequential form of the equations without capillary
forces under certain assumptions admits a parabolic pressure equation with
hyperbolic transport equations. The treatment of upstream directions for
the transport equations with fixed total velocity was detailed by Brenier and
Jaffré [12]. The fine details of the schemes may differ, but many different
authors have considered treating pressure and transport sequentially [28,
123, 111]. For problems where the total velocity depends strongly on the
saturation variables, it is possible to re-visit the pressure equation after
saturations have been updated.

Some authors also consider the adaptive implicit method (AIM) where
cells estimated to be below the CFL limit are treated explicitly [110, 29, 99,
24, 128] as a middle ground between explicit and implicit methods when
high flow rates is localized to specific regions near source terms and/or with
high permeability.



Chapter 4

Multiscale solvers

4.1 Exact and inexact solvers

A discretized problem, whether it is linear or nonlinear, often amounts to
solving one or more linear systems. The size and the difficulty of the linear
systems depend on the discretization schemes used as well as the degree to
which different types of physics is included. For instance, the fully-implicit
scheme with a two-point flux approximation for a three-phase problem with
a million cells will result in linearized systems with three million unknowns.
During each time-step, solving a number of these systems may be required
to obtain convergence, and a simulation of relevant time-scales may consist
of hundreds of individual steps. As a result, reducing the time spent solv-
ing linear systems is one effective way of speeding up reservoir simulation
problems.

In one manner of categorizations, solvers for flow and transport in porous
media can be divided into exact and inexact solvers. Exact solvers solve the
linear systems to a strict tolerance and represent classical direct and itera-
tive solvers. Due to the size and memory requirements of the linear systems,
iterative solvers are used in most modern simulators. Eclipse [101], a pop-
ular commercial reservoir simulator uses the orthomin iterative solver [117]
with nested factorization as a preconditioner [6]. The constrained pressure-
residual (CPR) preconditioner [120, 17] for the fully-implicit system is a
popular, modern choice for reservoir simulation used in both research [51, 59]
and commercial simulators [26, 16, 17]. CPR exploits the structure of the
equations to decouple and solve an pressure equation from the linear sys-
tem, which can then efficiently be solved by for example algebraic multigrid
[108]. The pressure solution is then used to precondition the remainder of
the system which has weaker global coupling between variables. How to effi-
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ciently decouple the pressure equation algebraically, and what solver stages
to use, is an area of active research [32, 15].

In the other end of the spectrum we find inexact solvers. Inexact solvers
are formulated from the assertion that the full problem may be too expensive
to solve completely, and consequently one should be satisfied with a non-
converged solution that captures the most important features of the fine-
scale solution. This is not to say that regular linear solvers are always set
to converge to machine precision, but rather that there is a philosophical
difference between the two classes. Multiscale solvers are fundamentally
approximate solvers, even if they for some configurations can converge to
machine precision if required.

4.2 Multiscale solvers

Multiscale methods for elliptic problems with varying coefficients are in-
troduced in the form of the multiscale finite element method MsFEM [39].
A discretization method with subgrid coefficient resolution is attractive for
flow in porous media, where large variation in medium properties is the
norm. Several articles on multiscale methods therefore use porous media as
their model problem. In this thesis, the starting point is the multiscale finite-
volume (MsFV) method [44]. We will in this section give a brief overview of
the multiscale concept by using the MsFV-framework as an example. For a
more detailed review of multiscale solvers, we defer the reader to the sum-
mary of individual papers in Chapter 6, as well as the introduction of Paper
XII.

Multiscale solvers for flow

Assume that we have a fine-scale problem stemming from the discretiza-
tion of the incompressible pressure equation (2.13) by a cell-centered finite-
volume scheme. The fine-scale problem takes the form of a set of linear
equations for the pressure in each cell,

Ap = q. (4.1)

This system can be challenging to solve directly because it represents an
elliptic or near-elliptic equation, where small changes to the solution vec-
tor can have a large impact on the norm of the residual. Due to several
orders of magnitude variation in the matrix coefficients, such systems can
be ill-conditioned. For large models, it will contain millions of degrees of
freedom that are highly coupled, as elliptic equations have infinite speed of
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propagation. Any changes in one part of the domain will potentially im-
mediately affect all other points in the domain to some degree. In order to
reduce the computational cost of solving (4.1), we will instead only solve
it approximately, while still retaining certain key physical properties of the
solution. Namely, we will try to find some approximate pressure pf ≈ p
that is closer to the fine scale pressure than some given tolerance. We also
want to find a total velocity field �vt such that ∇ · �vt = qt, a property which
is sometimes referred to as a conservative velocity field for incompressible
flow. If we consider the pressure equation (2.13) it is obvious that we cannot
in general fulfill Darcy’s law �vt = −Kλt∇p if the pressure is not solved ex-
actly. For this reason, the exact correspondence between the total velocity
and the pressure is typically the sacrifice made when deriving multiscale
methods. It is usually considered more important to achieve exact mass-
balance, a known first-order principle, than it is to achieve exact fulfillment
of the multiphase Darcy’s law, which is considered to be empirical.

If we define the fine scale domain as the collection of cells {Ωi}ni=1, we
can also define a coarse grid based on some given partition {Ω̄j}mj=1 such

that each fine cell in Ω belongs to exactly one coarse block in Ω̄. In order to
reduce the dimensionality of (4.1), we introduce a coarse pressure pc defined
on Ω̄ and a numerical prolongation operator that maps pressures defined on
the coarse scale to the fine scale P : {Ω̄j} → {Ωi}. We also define an
analogous map in the opposite direction R : {Ωi} → {Ω̄j}. These operators
are represented as matrices P and R of size n×m and m× n, respectively.
By using the prolongation operator, we can define an approximate fine scale
pressure pf on Ω from any pressures defined on Ω̄,

pf = Ppc. (4.2)

If we insert the approximate pf for the fine scale pressure we obtain

A(Ppc) = q. (4.3)

This system now contains more equations than degrees of freedom, and
consequently we left multiply with the restriction operator to obtain

R(A(Ppc)) = (RAP)pc = Acpc = Rq = qc (4.4)

We now have a square linear system Acpc = qc for the coarse pressure that
can be solved. The physical interpretation of this coarse system obviously
depends on the choices made for P and R which have intentionally not been
explained up to this point.



48 Multiscale solvers

Choice of prolongation and restriction operators

The quality of the multiscale solver obviously depends on the choices made
for the restriction and prolongation operator. The prolongation operator
represents the multiscale basis functions, where column i of P contains the
basis function corresponding to coarse block i. The basis function for a
coarse block represents the localized pressure response from unit pressure
in the coarse block itself. For the basis functions, there are several options,
most of which consist of solving some local flow problem in local domains
near the coarse block. One of the primary objectives for this thesis has
been to develop new ways of constructing basis functions that are robust
with respect to strong heterogeneities and straightforward to implement on
fully unstructured grids. The classical MsFV uses a localization assumption
and a dual coarse grid to compute basis functions. Figure 4.1, taken from
Paper V, demonstrates the isocontour lines of the basis functions for the
MsFV and multiscale restriction smoothed basis (MsRSB) methods for four
different permeabilities.

MsFV, Kx = Ky MsRSB, Kx = Ky MsFV, Kx = 8Ky MsRSB, Kx = 8Ky

⎡
⎣
−0.08 −0.16 −0.09
−0.18 +1.00 −0.16
−0.08 −0.17 −0.08

⎤
⎦
⎡
⎣
−0.08 −0.16 −0.09
−0.17 +1.00 −0.16
−0.08 −0.17 −0.08

⎤
⎦
⎡
⎣
−0.09 +0.17 −0.09
−0.49 +1.00 −0.49
−0.07 +0.14 −0.08

⎤
⎦
⎡
⎣
−0.03 +0.05 −0.04
−0.48 +1.00 −0.48
−0.03 +0.05 −0.04

⎤
⎦

MsFV, Tarbert MsRSB, Tarbert MsFV, Upper Ness MsRSB, Upper Ness

⎡
⎣
−0.01 −0.96 −0.02
−0.00 +1.00 +0.00
−0.00 −0.01 −0.00

⎤
⎦
⎡
⎣
−0.01 −0.97 −0.01
−0.00 +1.00 +0.01
−0.00 −0.01 −0.00

⎤
⎦
⎡
⎣
−0.00 −0.55 −0.02
−0.00 +1.00 −0.32
−0.00 −0.09 −0.01

⎤
⎦
⎡
⎣
−0.18 −0.31 −0.02
−0.04 +1.00 −0.17
−0.15 −0.12 −0.01

⎤
⎦

Figure 4.1: Matrix-dependent interpolation operators for a single coarse block with
different types of permeability types. The lognormal and the channelized perme-
abilities in the lower row are both sampled from the SPE10 dataset. The matrices
report the net fluxes into or out of the neighboring coarse blocks induced by a
unit pressure differential for a given basis functions. This figure is reproduced from
Paper V.
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For the restriction operator, there are two options that are commonly
used in the literature. The first choice is to use a control-volume restriction
operator, which is defined as the characteristic function of each coarse block,
and the second is to use a Galerkin-type restriction operator which is the
transpose of the prolongation operator. On matrix form, these choices can
be written as

(Rcv)ji =

{
1, if xi ∈ Ω̄j ,

0, otherwise,
or RG = PT .

We note that the original formulation of the classical MsFV used the
analytical equivalent of the control-volume restriction operator, which can
be interpreted as defining the coarse matrix connection strength between
degrees of freedom as the estimated flux from the basis functions over the
coarse control-volumes. This is conceptually similar to techniques used for
transmissibility upscaling based on localized flow problems and is a prereq-
uisite for the flux reconstruction used to obtain a conservative velocity field
on the fine grid.

Using the control-volume restriction operator can lead to negative trans-
missibilities in the presence of strong heterogeneity on the coarse scale,
which implies that the multiscale solver will induce flow going from low to
high pressures. The resulting multiscale solution may have severe errors,
non-monotone pressure and even negative values. For this reason, using a
Galerkin-type restriction operator has been favored when pressure stability
is a concern, as noted by Wang et al. [122].

Flux reconstruction

Once we have obtained an approximate pressure solution pf , the velocity
field that results from a straightforward application of the discrete Darcy’s
law will not necessarily be conservative. To obtain conservative fluxes, local
Neumann flow problems are solved for the interior of each primal coarse
block Ω̄j with boundary conditions equal to the flux values used in the
construction of the coarse system. Once a reconstructed pressure has been
found, the fine scale fluxes in the interior of each block are computed from
this pressure [44].

Iterative multiscale

It is known that the multiscale solvers can give high-quality approximations,
but for certain applications it is important to systematically reduce error be-
low a given threshold. Iterative multiscale solvers have been introduced for
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this purpose and have been used to either reduce the residual systematically
towards zero, or to remove unacceptable values and non-monotonicities in
the solution [33, 122, 76]. To formulate an iterative solver from the mul-
tiscale formulation, we proceed much in the same way as when deriving a
two-level algebraic multigrid method. We let the solution at step k of the
iterative scheme be denoted xk to avoid confusion with the pressure used in
a temporal discretization, and define the defect d in the standard manner,

dk = q−Axd. (4.5)

We also assume that we have some function S(A,b) which, for a given
matrix A and a right hand side b, performs one or more smoothing itera-
tions. The term smoother refers to any kind of inexpensive iterative solver
that efficiently removes high frequency errors from the solution. Examples
of possible smoothers include incomplete LU-factorization with zero or low
degree of fill-in or standard iterative solvers such as variants of Gauss-Seidel
or Jacobi’s method. With this in mind, we can define a two-step precondi-
tioner that first removes local error using the smoother and then computes
a coarse scale correction,

xk+1/2 = xk + S(A,q−Axk) = xk + S(A,dk) (4.6)

xk+1 = xk+1/2 +PA−1
c R(q−Axk+1/2) = xk +PA−1

c Rdk+1/2. (4.7)

After the coarse scale correction has been computed, the solution is again
conservative over the coarse control volumes, provided that the control-
volume restriction operator is employed. The iterative multiscale solver can
be used to get solutions of any accuracy, but there is a significant cost asso-
ciated with iterating to machine precision since certain medium frequency
error modes are not captured. It is also straightforward to use Krylov-based
methods to accelerate the solution process if the linear tolerance is strict.
In Figure 4.2, the MsFV and MsFE methods are tested on layer 85 of the
SPE 10, model 2 dataset. Note that the finite-element version significantly
outperforms the control-volume version, which diverges for the unstabilized
iterations.
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Figure 4.2: Four different iterative solvers based on the same basis functions. For
the heterogenous, channelized permeability distribution sampled from SPE 10,
model 2, layer 85, the control-volume restriction operator gives a solver with mono-
tonicity issues that does not converge. By using the method as a preconditioner
for GMRES, the convergence rates are improved, but the finite-element restriction
operator still significantly outperforms the control-volume version. ILU(0) is used
as the second-stage smoother.
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Chapter 5

Object oriented framework
for experimental
programming

5.1 Introduction

Motivation

In the preceding chapters, we have described how the simulation of flow and
transport in porous media is done using a wide variety of model equations
ranging from incompressible to the compositional. Many of these models are
similar to each other in certain aspects, and if we want to develop advanced
linear and non-linear solvers or test novel discretization techniques, we need
a flexible framework that allows for rapid prototyping and validation.

The flow and transport solvers in the first releases of MRST (see Chap-
ter 2) were limited to incompressible problems with simplified fluid physics,
but over time solvers for compressible and miscible flow were introduced.
The current set of simulators in MRST that include compressibility and/or
miscibility all use automatic differentiation (AD) [87] and this thesis has
made importan contributions to this capability. By using a combination
of operator overloading, the chain rule and basic rules for derivatives of
functions, it is possible to write simulators without manually implementing
Jacobians for Newton’s method, a process that quickly becomes tedious and
time-consuming for complex sets of equations. The current research simu-
lator at Stanford, AD-GPRS, pioneered the use of AD for development of
reservoir simulators [119, 124, 129].

Automatic differentiation was originally introduced to MRST in order
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to solve optimization problems, which resulted in the first generation of AD
solvers named ad-fi due to the singular focus on fully implicit methods with
adjoints [83]. Although widely successful in terms of research productivity,
the first generation of AD solvers were victim of their own success. The
technology, although very flexible for prototyping, encouraged users to write
their own solver stack for each application. This results in many different
implementations for what is essentially the same logic. However, there is
no obvious reason why a two-phase oil-water model should have a separate
implementation of a preconditioned linear solver from the three-phase oil-
water-gas model. In order to facilitate the development of novel physical
models and mathematical methods without unnecessary code growth and
complexity, a new framework based on object orientation was introduced.

The automatic differentiation framework based on object orientation
(MRST AD-OO) was designed from the ground up as a part of this thesis
to experiment with a variety of physical models, different discretization
techniques and solver options, while still retaining all functionality and ease
of development from the first generation of solvers. The underlying vision
was that by separating the different layers of the simulator into classes
and functions with clear interfaces, it would be possible for researchers to
develop new simulators and solvers without in-depth knowledge outside their
preferred field of expertise.

In this chapter, the structure of the framework is outlined by considering
the different components and how they interact during a simulation. An
example of how to design a new model and subsequently solve it using
Newton’s method is also detailed.

Automatic differentiation

Stating and implementing the residual function is usually easy compared
to deriving and implementing the Jacobian of the residual function, where
differentiation is often carried out by hand and at great length for sys-
tems with a large number of active components and equally many partial
derivatives. Automatic differentiation is a technique wherein the Jacobian
of a function is automatically generated by implementing the differentiation
rules for common operators. In conventional programming, a variable will
contain one or more values. If the variable is of AD type, however, it will
contain both the values of the function in the current point, but also the
derivatives of the function with respect to all the primary variables.
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5.2 The MRST AD-OO framework

Outline of the framework

The AD-OO framework has a large number of different classes and functions,
but the core design includes four main parts. Together, these components
make up the entire simulation stack used for simulating a wide variety of
models and cases. We will briefly go over the main components in some
detail.

Models that contain equations, valid values and discretizations

The most central building block in MRST AD-OO is the model concept. All
models are inherited from the virtual base class PhysicalModel. A model
contains everything necessary to perform a single step, where a step is the
process by which the model takes an initial state and advances the solution
quantities in that state as to get closer to some convergence criterion. If the
model represents an implementation of a fully implicit nonlinear equation,
a step amounts to the assembly and solution of a linearized set of residual
equations with a subsequent update, making the step equivalent to a step
of Newton’s method. Other models, such as the sequential model we will
examine in a later section, contain complex logic with nested solution of
different nonlinear systems in order to advance one step.

The model must contain a way to update the solution quantities, often
by the way of a Newton-like process. In addition, the model must contain
a convergence criterion for the solution quantities, as well as rules for valid
values based on the physical constraints of the problem. The framework can
be considered lazy in that reasonable defaults will be created where they
are missing, for instance for functions that update the problem state or a
convergence criterion.

The simulateScheduleAD function

simulateScheduleAD is the main simulator gateway for AD-OO problems.
One of few regular functions in the framework, it is used for simulating a
full schedule consisting of multiple timesteps with different controls during
the simulation. It represents the closest thing to a black box simulator in
MRST. If we have defined a model, initial problem state and a schedule, we
can call the simulator:

[wellSols, states, report] = ...
simulateScheduleAD(state0, model, schedule, 'NonLinearSolver', solver)
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The first input argument is the initial state, which is a struct containing all
variables at the beginning of the simulation, typically pressure and satura-
tions for a simple model. The second input is the model, which will be used
to advance the state from one time-step to the next, as well as validate that
the correct data is present in the initial state. Finally we have the sched-
ule, which is a special struct containing a list of control steps, representing
specific points in time where we want know the solutions to our problem, as
well as driving forces that specify the wells, boundary conditions and source
terms for each step. Note that we can also input a NonLinearSolver as an
optional input argument, if we are not satisfied with the default configu-
ration, for instance we want to modify the maximum number of iterations
used in a step.

Once the simulation is complete, we will get returned an array of wellSols,
containing the state of the wells (rates, composition, pressures) for each con-
trol step, as well as the states cell array which contain all solution variables
for each step. The optional third output argument, the report, holds de-
tailed information about convergence rates, computational cost of each step,
number of iterations and any other output produced by the non-linear solver
during the solution process.

A class for the solution of non-linear problems

NonLinearSolver is used during the simulation to solve the nonlinear prob-
lems during each timestep. The class includes management of time-steps,
book-keeping of convergence reports and relaxation. For problems where a
full schedule is not convenient, the solver can be used as a stand-alone class
for solving nonlinear problems. The nonlinear solver relies on the model
class to perform iterations and report issues and as such is not a New-
ton solver by itself. A notable example of an alternative nonlinear solver
in MRST is the TrustRegionSolver class which implements the generic
fluxsearch trust region algorithm described in Paper XIII.

General linear solver class

The LinearSolverAD superclass is used to implement new or integrate ex-
isting linear solvers. The linear solvers can be problem aware and use in-
formation provided by the model in order to improve convergence or au-
tomatically configure the solvers. Examples include BackslashSolverAD,
GMRES ILUSolverAD, CPRSolverAD and MultiscaleVolumeSolverAD. As fast
solvers for large, specialized problems is a known bottleneck in Matlab, it
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Figure 5.1: Program flow for a fully-implicit simulator based on the AD-framework.
Events are colorized by the function or class they belong to, with the relevant
member functions highlighted at the bottom of each event. The main solver loop
for a single timestep is shown as arrows with solid lines.

is easy to create bindings to external packages, such as the AGMGSolverAD

which couples to the algebraic multigrid solver by Notay [91].
Figure 5.1 attempts to show how the four components interact via sub-

functions during a simulation. In addition to these main components, there
exists several smaller components that are more or less integrated into the
framework:

• computeGradientAdjointAD runs a backward/adjoint [43, 55] simu-
lation in the same manner that simulateScheduleAD runs a forward
simulation. The solution variables in a backward simulation are the
sensitivities of an objective function, giving inexpensive gradients for
optimization at the cost of n linear problems for n control steps.

• computeGradientPerturbationAD computes gradients using pertur-
bated well controls. The adjoint version is preferable, as it is much
less expensive for almost all purposes.

• LinearizedProblem implements a class for storing a linearized prob-
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Figure 5.2: Relationships between different components of the AD-OO framework.
This figure gives a more high-level overview of the program flow than 5.1 as it
demonstrates the steps taken to simulate a whole schedule comprised of many
different steps and controls.

lem, namely a set of equations, knowledge about what the variables are
and the state that produced them. The class is also used to assemble
linear systems from the linearized equations stored in AD-format.

• WellModel represents wells and essentially implements Peaceman’s
model [95]. In addition, the class handles changing well-controls dur-
ing the simulation due to predefined limits being exceeded, e.g. max-
imum bottom-hole pressure.

• SimpleTimeStepSelector is a base class for selecting time-steps. The
base class simply features minimum and maximum time-steps, but
subclasses (IterationCountStepSelector or StateChangeTimeStepSelector)
implement more advanced heuristics for timesteps. The time-step se-
lector can be attached to any NonLinearSolver subclass.

• ResultHandler allows for transparent storage of simulation output.
Large simulations can be written directly to disk to avoid filling up
the memory during a simulation, or to obtain partial results when a
simulator is running.

5.3 Building a new model with AD-OO

All new models in the AD framework start out by subclassing a PhysicalModel,
either directly or via some other subclass that has parts we want to use.
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The PhysicalModel superclass can be thought of as a collection of all the
things that define a specific model. The textbook definition of a model may
not be enough to obtain a working numerical model: A model should also
incorporate the know-how on how to update the variables to ensure good
convergence, what form of the equations is best suitable for the numerical
methods, and so on. All this knowledge can be incorporated into the model
class. To implement a new fully-implicit model, typically only two things
need to be done:

• The first is the residual form of the model equations, implemented as
the getEquations member function.

• The second is the update function which translates the increments
from the Newton solver into a updated state struct, implemented as
the updateState function.

Fortunately, the PhysicalModel contains several member functions that
make it easy to do this. We will begin by looking at a simple textbook model
that can be used in this manner before showing more advanced features.

Rosenbrock Model Problem

The Rosenbrock model problem is a classical optimization test problem that
can be solved by Newton’s method. We have the objective function,

f(x, y) = (a− x)2 + b
(
y − x2

)2
, a, b ∈ {z ∈ R : z > 0}, (5.1)

and we want to obtain a minimum. It is straightforward to see that the
global minimum of this function is (a, a2). We want to see if the Newton
solver is up to the task by implementing this optimization problem as a
subclass of PhysicalModel. It is well known that a requirement for a global
minimum is that

∇f(x, y) = 0, (5.2)

and from this we obtain our two model equations

∂f

∂x
= −2(a− x)− 4bx(y − x2),

∂f

∂y
= 2b(y − x2). (5.3)

The first thing we do is to subclass PhysicalModel directly, adding
properties for the a and b coefficients. We do not add x and y to properties,
as these are solution variables during the simulation and thus parts of the
state and not the model itself. We also add a very simple class constructor.
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classdef RosenbrockModel < PhysicalModel

properties

a, b

end
methods

function model = RosenbrockModel(a, b, varargin)
% Class constructor for tne Rosenbrock model
% Call parent class to get default values. The grid value is
% empty, as we do not have an explicit grid for this problem.
model = model@PhysicalModel([]);
[model.a, model.b] = deal(a, b);
% Allow keyword arguments to override any defaults in the base class
model = merge_options(model, varargin{:});

end
end

end

The class constructor contains a bit of extra code to first call the parent
class and merging together keyword arguments with the defaults. This
allows us to for example adjust the default nonlinear tolerance measured in
the inf-norm, and enable verbose output, both of which are inherited from
PhysicalModel.

model = RosenbrockModel(1, 100, 'nonlinearTolerance', 1e−12, 'verbose', true)

The properties of the model is output to the command window,

RosenbrockModel with properties:

a: 1

b: 100

operators: []

nonlinearTolerance: 1.0000e-12

G: []

verbose: 1

Now that we have our base class up and running, it is time to add the
knowledge of the residual equations to the model. We add another method
for this purpose:
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function [problem, state] = getEquations(model, state0, state, drivingForces, dt)
% Get X and Y
[x, y] = model.getProps(state, 'x', 'y');
% Convert to AD objects
[x, y] = initVariablesADI(x, y);
% Gradient is implemented as two equations
dfdx = −2.∗(model.a−x) − 4.∗model.b.∗(y−x.ˆ2).∗x;
dfdy = 2.∗model.b.∗(y−x.ˆ2);
% Combine into a LinearizedProblem
problem = LinearizedProblem({dfdx, dfdy}, {'scalar', 'scalar'}, ...

{'df/dx', 'df/dy'}, {'x' , 'y'}, ...
state);

end

When calling the LinearizedProblem constructor, we add some extra in-
formation about our equations, namely that they are scalars, their names
are ’df/dx’ and ’df/dy’, and that the solution variables are x and y. For this
example the equation names and types will only be used for printing the
convergence history, but as these are passed onto the linear solver they can
in principle be used to speed up the solution process.

One may also note that we do not access the state struct directly, but
rather use member functions inherited from PhysicalModel. Although it is
still possible to access the state directly, this approach has the advantage of
defining how model data is stored canonically, making it easy for the solver
to determine when fields are accessed inconsistently. The next step is then
to add the canonical mapping for properties x and y, which is taken care of
by the model member function getVariableField. This function takes in
a name and produces the state field name fn and the column index of the
data. In this case we simply want to find x and y at state.x and state.y

respectively.

function [fn, index] = getVariableField(model, name)
% fn is the fieldname, index is the second subsref index.
switch(lower(name))
case 'y'

fn = 'y' ;
index = ':' ;

case 'x'
fn = 'x' ;
index = ':' ;

otherwise
% Basic values are known to the base class
[fn, index] = getVariableField@PhysicalModel(model, name);

end
end
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This implementation simply tells the AD framework how to access the x
and y properties:

model.getProp(state, 'x')
% Is translated into
state.x(:, :)

Note that for values that are not scalar per cell, the index can be used to ac-
cess different elements. For instance, consider a ThreePhaseBlackOilModel,
which has the field .s with individual columns for water, oil and gas:

model.getProp(state, 'sg')
% Is translated into the third column, as the gas phase is the third phase
state.s(:, 3)
% To get all saturations , simply use s by itself
model.getProp(state, 's')
state.s(:, :)

If this seems needlessly bureaucratic, do not worry. It is still possible to
index directly into the state for simple problems, but this approach has the
advantage of making it easy to write general code that handles for instance
one and three phase models with the same code. Fortunately, this also
makes the update function for implicit schemes automatically generated.

We now have everything we need to solve the nonlinear problem! To test
the function we simply create an instance of the default non-linear solver and
call the solveTimestep function with our initial guess, a dummy time-step
and the model itself,

% Create Non−Linear solver
solver = NonLinearSolver();
% Initial guess
state0 = struct('x', −0.5, 'y', 4);
state = solver.solveTimestep(state0, 0, model);
fprintf('Final values: x = %f, y = %f\n', state.x, state.y)

Because we instantiated the class with the verbose flag, it will print output
every time the residuals are checked against the convergence criterion. The
output to terminal is:

==========================================

| It # | df/dx (scalar) | df/dy (scalar) |

==========================================

| 1 | 7.47e+02 | 7.50e+02 |

| 2 | 3.00e+00 | 8.02e-04 |

| 3 | 9.00e+02 | 4.50e+02 |

| 4 | 2.40e-03 | 1.42e-09 |

| 5 | 5.77e-04 | 2.89e-04 |

| 6 | 4.35e-14 | 2.22e-14 |

==========================================

Final values: x = 1.000000, y = 1.000000
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Figure 5.3: The path (red) taken by the nonlinear solver on the Rosenbrock test
problem, shown superimposed over the objective function response surface. By
setting the colormap to a variant of hot it becomes apparent why this function is
sometimes referred to as the banana test function.

As can be seen from the output, the solution converges to the global min-
imum rapidly. The path taken by the nonlinear solver has been plotted in
Figure 5.3. With only a few lines of code, we implemented and solved a
new nonlinear problem and we immediately have access to the full suite of
linear solvers available to MRST if we want to solve larger problems.

A model for single-phase compressible flow

For our second example, we will implement a model for single-phase com-
pressible flow. The governing equation for this model is the compressible
pressure equation, on semi-discrete form,

φ

Δt
(ρn+1 − ρn) +∇ · �v − q = 0, (5.4)

where the velocity field is given by Darcy’s law,

�v = − 1

μ
K∇p. (5.5)

This equation is similar to the incompressible pressure equation (2.13), but
the addition of a density ρ that depends on the pressure makes the prob-
lem compressible, and consequently we have a nonlinear parabolic equation
instead of a linear elliptic equation.

To implement this as a model in AD-OO, we can proceed as we would for
the Rosenbrock model problem: We create a subclass of the ReservoirModel,
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which implements discrete operators that contain the discretizations de-
scribed in Chapter 3. The complete implementation of the single-phase
model can then be written as less than 30 lines of actual code:

classdef CompressibleSinglePhaseModel < ReservoirModel

methods
function model = CompressibleSinglePhaseModel(G, rock, fluid, varargin)

% Default constructor required by Matlab
model = model@ReservoirModel(G, rock, fluid, varargin{:});

end
function [problem, state] = getEquations(model, state0, state, dt,...
drivingForces, varargin)

p = model.getProp(state, 'pressure'); % Current pressure
p0 = model.getProp(state0, 'pressure'); % Previous pressure
p = initVariablesADI(p); % Convert to AD objects
f = model.fluid; % Evaluate properties
rho = f.rho(p); % Current density
rho0 = f.rho(p0); % Density at the previous time−step
s = model.operators; % Short hand for operators
vT = −(1./f.mu).∗s.T.∗s.Grad(p); % Darcy's law
eq = (s.pv./dt).∗(rho − rho0) + s.Div(vT); % Pressure equation
if ∼isempty(drivingForces.src)

% If provided, add in source terms to cells. Sources are given as
% volumetric rates at surface conditions , convert to mass.
srcCells = drivingForces.src.cell;
q = f.rhoS∗drivingForces.src.rate;
eq(srcCells) = eq(srcCells) − q;

end
% Assemble problem: The pressure equation is defined per cell , with pressure
% as the primary variable
problem = LinearizedProblem({eq}, {'cell'},{'pressureEquation'}, ...

{'pressure '},state);
end

end
end

We did not have to implement additional canonical mappings, as the base
class has knowledge of most standard properties, including the pressure.
Details of the discretization are abstracted away, and the final implemented
equations are very similar to the semi-discrete form in (5.4).

We can define a simple test problem for our new model. We define a
10× 10 discretization of the unit square. The fluid model has density that
depends on the pressure,

ρ(p) = ρ0 e
(p−p0)c, (5.6)

where ρ0 is the density at the reference pressure p0 and c is the compress-
ibility constant. The full script for setting up, simulating and plotting the
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injection of one pore volume over 30 days is 20 lines of code when comments
are excluded:

% 10 by 10 grid discretizing the unit square
G = computeGeometry(cartGrid([10, 10], [1, 1]));
rock = makeRock(G, 50∗milli∗darcy, 0.5); % Uniform rock
T = 30∗day; % Simulate 30 days
p0 = 250∗barsa; % Initial pressure
rho0 = 500∗kilogram/meterˆ3; % Initial density
fluid = struct('rho', @(p) rho0∗exp((p − p0)∗1e−3/barsa),... % Density

'mu', 1∗centi∗poise, ... % Constant viscosity
'rhoS', rho0); % Surface density for sources

rate = sum(poreVolume(G, rock))/T; % Inject one pore volume in total
% Inject in south−west corner, produce in north−east
src = addSource([], 1, rate);
src = addSource(src, G.cells.num, −rate);
model = CompressibleSinglePhaseModel(G, rock, fluid); % Set up model
state0 = initResSol(G, p0); % Initial state
nstep = 10; % Request output every 1/10th of time period
dt = repmat(T/nstep, nstep, 1);
schedule = simpleSchedule(dt, 'src', src);
[∼, states] = simulateScheduleAD(state0, model, schedule); % Solve problem
% Plot the pressure after the final time−step in bar
figure; plotCellData(G, states{end}.pressure/barsa); axis equal tight; colorbar

The plot produced by this script is reproduced in Figure 5.4 where we can
see the expected radial flow pattern around each source term. Since the
model itself is derived from the ReservoirModel base class, the new model
is immediately applicable to any of the grids available to MRST.
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Figure 5.4: The pressure after the simulation of a small test problem using the
compressible single-phase solver developed using AD-OO.
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5.4 Advanced extensions

We have seen that the definition of new nonlinear problems with Newton
solvers is straightforward. We will consider two other examples where nested
models are used to implement more advanced solution strategies.

Different model and their relationships

To first give some indication on how the different solvers are represented in
the AD-OO framework, consider the inheritance diagram in Figure 5.5. The
three different mathematical models of two-phase immiscible flow, three-
phase black-oil and compositional are shown in the same figure. For each
model, a fully-implicit discretization is considered as the base class, which is
then extended to pressure and transport models that can be combined using
the generic sequential model. We also see that the compositional models
depend require an equation of state model to be constructed. The default
choices for primary variables for each model is also included, highlighting
that there is significant overlap between models and submodels in terms of
functional dependencies and consequently update functions.
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Figure 5.5: Three different flow models (two-phase compressible, three-phase black-
oil and compositional) solved using fully-implicit and sequential implicit temporal
discretizations.
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Sequential solvers

To implement a model for the coupled pressure and transport equations
posed in sequential form means that one first has to develop a model for
the pressure equation (2.13), and another model for the transport equation
on fractional flow form (2.14). The two models can then be combined using
the constructor of the SequentialPressureTransportModel class, which
allows for the combination of different pressure and transport discretizations
into a coupled scheme. As either model can have distinct linear and non-
linear solvers, the framework offers a great deal of flexibility with regards
to choices for solution strategy.

The SequentialPressureTransportModel has a specialized stepFunction
member function that first solves the pressure, checks for convergence and
then proceeds to solve the transport. The relevant lines of code in the class
definition are short and easy to read if one is familiar with the scheme,

psolver = model.pressureNonLinearSolver;
tsolver = model.transportNonLinearSolver;
% Get the forces used in the step
forceArg = getDrivingForces(model.pressureModel, drivingForces);
% First, solve the pressure using the pressure nonlinear solver
[state, pReport] = psolver.solveTimestep(state0, dt, model.pressureModel,...

' initialGuess ' , state,forceArg{:});
if pReport.Converged

% If pressure converged, we proceed to solve the transport
[state, transportReport] = ...

tsolver.solveTimestep(state0, dt, model.transportModel,...
' initialGuess ' , state, ...
forceArg{:});

transport_ok = transportReport.Converged;
else

transport_ok = false;
transportReport = [];

end

Since each model can have a corresponding nonlinear solver, the pressure
and transport can use different timesteps, solution strategies and conver-
gence criterion. There is also an outer nonlinear solver which can manage
the coupled system of equations, if convergence to the fully-implicit solution
is required.

Compositional models with equation of state

Another example of a model which can be decomposed into different parts
is the compositional model. The phase behavior and fluid properties are
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predicted by the equation of state as seen in Chapter 2, but these calcula-
tions are not only useful in a flow simulator. For this reason, the equation
of state is implemented as a separate model which can be passed to the
NonLinearSolver to solve the flash equations using either Newton’s method
or successive substitution.

When we define a compositional model, we can simply pass in the equa-
tion of state class instance to the constructor for the flow model,

f = CoolPropsCompositionalFluid({'Methane', 'CarbonDioxide'});
EOS = EquationOfStateModel(G, f);
model = ThreePhaseCompositionalModel(G, rock, fluid, EOS);

and the compositional flow model will then use the EquationOfState class
to calculate flash and properties. Since the compositional model relies on a
few functions to obtain required quantities from the equation of state, it is
easy to insert a different model for the phase behavior with no modification
to the flow solver.
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Chapter 6

Summary of Papers

The second part of the thesis contains the different papers that have been
written as a part of the doctoral studies. Broadly speaking, the papers can
be categorized into five themes:

• Papers I, III, IV and V are concerned with the development of robust
and accurate multiscale methods for unstructured grids. The model
equations in these papers are primarily incompressible flow, where
the goal is to accurately resolve flow on all scales for problems with
challenging geometry and petrophysical properties. Paper I focuses
on the extension of the classical MsFV-method to stratigraphic and
unstructured grids and illustrates some of the limitations of the local-
ization assumption for such problems. Paper III develops a two-point
multiscale method (MsTPFA) that is more robust than the classical
MsFV and easily extended to unstructured grids. Paper IV compares
different multiscale and other two-level methods as preconditioners in
order to assess their relative quality. Paper V introduces the mul-
tiscale restriction-smoothed basis method (MsRSB) that is easy to
implement for general grids and is robust and accurate for problems
with strong heterogeneity.

• In papers VIII, IX, X, XIII and XIV the new MsRSB method is ex-
tended to different applications with significant physical complexity.
Paper VIII extends the method to compressible black-oil problems.
This black-oil capability is then extended to an EOR method in the
form of polymer flooding with non-Newtonian fluids in Paper IX. Pa-
per X applies MsRSB to fractured porous media discretized using the
embedded fracture approach. Paper XIII details the implementation
and validation of MsRSB in a commercial multiscale simulator. Fi-
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nally, we consider compositional problems in paper XIV.

• Papers II and VI concern the use of flow diagnostics that uses reduced
physics assumptions to compute fast estimates and other complimen-
tary information that may be expensive or difficult to obtain with
conventional multiphase simulation. Flow diagnostics can give volu-
metric partitions of the simulation domain into different flow regions,
measures of dynamic heterogeneity (variation in length of flow paths)
and estimates of displacement and sweep efficiency. Paper II details
the diagnostics implementation in MRST and demonstrates the use
of flow diagnostics with an adjoint formulation for the optimization of
well rates and placement. Paper VI demonstrates the use of approx-
imate multiscale solvers to compute diagnostics efficiently, including
several examples with model ranking based on uncertain fault multi-
pliers.

• Papers VII and IX detail the use of MRST as a prototyping platform
for the nonlinear simulation of flow and transport in porous media. An
integral component of this capability is the object oriented framework
for writing new solvers based on automatic differentiation. Paper
VII details the general capability added to MRST with AD-based
solvers. Paper IX go into greater detail on the specific application of
polymer flooding, which also serves as an introduction to the class-
based hierarchy of solvers used in other papers of the thesis.

• Paper XIII details the development of a modified Newton solver for
the transport equations that gives greatly improved convergence rates
for three-phase flow with gravity.

In the following pages, motivation and assessment are given for each paper.
The actual papers are included in Part II of the thesis.



Paper I

The Multiscale Finite Volume Method on Stratigraphic Grids

Olav Møyner and Knut-Andreas Lie
SPE Journal, volume 19, issue 5, pp. 816-831, 2014

DOI: 10.2118/163649-PA

The first paper of the thesis concerns the extension of the multiscale finite-
volume (MsFV) [44] method to unstructured grids. The primary focus
of this work was to apply the MsFV-method to stratigraphic corner-point
grids with unstructured features. When the paper was written, the MsFV-
method was considered to be a promising candidate for practical simulation
workflows, in part due to adaptivity [45, 64], error-control in the form of
iterative schemes [33] and demonstrations of idealized nonlinear fluid physics
[72, 73, 63, 56]. The MsFV-method was originally formulated as a series of
analytical problems, which limited the method to structured grids, but a
few key papers had reformulated these problems in operator form [90, 126,
74, 75], making it feasible to consider the method for more complex grids.

The extension to unstructured grids was not straightforward, however,
as the operator formulation merely poses the problem of basis construction
algebraically, given that a wire-basket dual grid ordering of the grid cells
can be found. The major obstacle is therefore to obtain a dual-grid which
is suitable for localized problems for unstructured grids. In this paper, we
consider a triangulation-based approach to construct the dual-grid from a
pre-existing primal partition of the domain. We show that it is possible to
construct basis functions for a wide range of (semi-)unstructured fine grids,
including Voronoi diagrams, prismatic grids and both field and bedding-
scale corner-point grids.

It was previously well-known that the MsFV-method would suffer from
issues with over- and undershoots in the pressure field for problems with
high contrast [50]. As the errors in the solution appear from the localiza-
tion assumption used to construct basis functions, this problem was also the
part of the driving force behind the iterative MsFV formulated by Hajibeygi
et al. [33]. Unfortunately, the over- and undershoots that were restricted to
a relatively small amount of grid cells in 2D will be much more significant
in 3D. In the paper, we verify that for certain grids, severe monotonicity
problems are observed when the contrast becomes larger. Faults, which
result in the sharp transition between different rock-types over the displace-
ment, are especially problematic, as the localization assumption is severely
violated when localized problems pass through multiple sands with different
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properties.
The conclusion of the paper was therefore a mixed success: While we

were capable of producing semi-automated coarsening for a wide variety of
grids, the underlying localization assumption for the MsFV-method would
lead to unusable results. For this reason, we did not pursue dual grid gen-
eration any further and instead shifted focus to robust approaches for basis
generation that were also applicable to general grids.



Paper II

The Application of Flow Diagnostics for Reservoir Management

Olav Møyner, Stein Krogstad and Knut-Andreas Lie
SPE Journal, volume 20, issue 2, pp. 306–323, 2014
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The second paper concerns the use of flow diagnostics for reservoir manage-
ment. Flow diagnostics is a post-processing technique where output from a
simulation can be used to understand connections in the reservoir, as well
as properties of the flow field that are not directly obtainable from standard
simulators. The paper describes the discretization of the time-of-flight equa-
tion and the closely related tracer equations, as well as derived quantities
that are useful to gain an understanding of the recovery processes.

Traditionally done using streamline methods [38, 40], a paper by Shah-
vali et al. [102] built upon earlier work by SINTEF on discretizing time-
of-flight using Eulerian methods [11, 85] demonstrated that comparable
properties could be found for complex grids without implementing stream-
lines tracing for general grids, which is known to be challenging. In our
paper, we present the work on flow-diagnostics done in MRST, including
open source tools for visualization and ranking of models using standard
measures [104, 42]. The functionality is extended with an adjoint formu-
lation, which enables the use of flow diagnostics for optimization. Since
the derived quantities used in flow diagnostics are inexpensive to compute
compared to a fully-featured flow simulation, we can rapidly optimize well
rates and placements for waterflooding. We demonstrate that the reduced
models agree with the fully featured multiphase flow simulations, indicating
that flow diagnostics can be a suitable alternative or accelerator to conven-
tional optimization processes. A more recent paper [54] shows that similar
reduced models can be used to accurately characterize the more complex
recovery process of polymer flooding.
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Following the issues with the MsFV for unstructured grids and strong per-
meability contrast, the second paper in this thesis on multiscale methods
formulates the multiscale two-point flux approximation (MsTPFA) method.
The method is based on the same cell-centered, finite-volume discretization
as the MsFV-method, but overcomes the dual grid issues by using a different
localization assumption. While the classical MsFV uses a set of successive
boundary conditions going from one to two, to three dimensions, we use
a simpler form that solves a single flow problem per coarse interface. The
problems should be familiar from transmissibility upscaling [18, 97] and the
MsMFEM method [1, 2], where such problems have been used to produce
robust coarse scale discretizations.

The key innovation of this paper is the combination of the localized solu-
tions with partition-of-unity functions for general grids. These functions are
based on localized tracer problems using the discretization techniques from
Paper II. For each coarse block, tracer problems subdivide the domain into
patches and naturally associates the pressures response of a single coarse
face solution with a subset of the fine cells. Using partition-of-unity to
combine different analytical functions has also been used with sucess in the
extended finite-element method [30].

The numerical results in the paper indicate that the method overcomes
the issues with unstructured grids faced by the classical MsFV-method. Nu-
merical tests indicate that the method is more robust, can use general grids
and converges rapidly for high-contrast media. Since the local problems can
be defined for any coarse grid, we also demonstrate that arbitrary levels of
coarsening can be achieved for structurally complex models. We do observe
that the error is somewhat higher for problems where the MsFV-method
does not suffer from monotonicity issues, however, due to the combination
of local solutions not always producing a smooth prolongation operator. In
this sense the MsTPFA-method trades accuracy for robustness and gener-
ality with respect to grids. Unfortunately, the approach with both localized
problems and construction of specific partition-of-unity functions makes the
method complex to implement. Eventually, the MsTPFA-method was su-
perseded by the MsRSB-method, which is both more accurate and simpler
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to implement. One obvious extension of this work is the development of
a MPFA-type multiscale method using the same techniques. With a suit-
able choice of partition-of-unity functions and local solutions, there may be
several possible choices that are analogues of fine-scale discretizations.
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Olav Møyner
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The iterative version of the MsFV, referred to as i-MsFV or algebraic mul-
tiscale solver (AMS) when posed in algebraic form has been the subject
of a number of different papers [127, 122, 76] where choices for iterative
strategies using the dual grid basis functions was explored. In 2012, a paper
was published by Zhou and Tchelepi [127] that indicated the poor itera-
tive performance of MsFV for certain high-contrast models as rooted in the
control-volume integration used to construct coarse scale systems. As this
behavior was linked with the monotonicity issues of the method especially
prevalent on unstructured grids, we set out to investigate if different choices
of basis functions could also mitigate the poor convergence behavior.

Through systematic tests, basis functions based on dual-grids, the MsTPFA
basis and basis functions computed using restricted smoothing (MsRSB)
were benchmarked against constant and linear interpolation on a wide ar-
ray of test cases. Although full details of the method was not given in this
paper, this is the first paper where the MsRSB basis functions appear. The
idea of this method was simple. Start with a constant value inside each
coarse block and use a Jacobi iteration to reduce local error. To keep lo-
calization, each basis function is not allowed to grow outside a predefined
support region, and whenever this happened, the corresponding mass out-
side the support region was removed and distributed to other basis functions
to ensure partition of unity. Where possible, the paper also compares ba-
sis functions computed on structured coarse grids with unstructured coarse
grids produced by the Metis graph-partitioning package [79] applied to the
transmissibilities of the fine-scale problems.

The results were somewhat surprising. For many cases, MsFV was out-
performed by the trivial constant basis functions due to severe monotonicity
issues. The preliminary implementation of the MsRSB performed very well
for most test-cases, with MsTPFA giving comparable, albeit slightly worse
performance than MsRSB for several cases. The difference between the dif-
ferent multiscale solvers was significant, but not to the degree as the effect
of adapting the coarse grids to the permeability field. With the same num-
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ber of degrees of freedom, the adaptive grids impacted the convergence rate
more than the choice of basis functions.

From these results, we concluded that grid adaption was essential to
a successful multiscale method. We remark that, although not in an itera-
tive framework, similar observations has been made for the MsMFE-method
[1, 2, 5] and for algebraic multigrid methods [108]. It also became apparent
that the iterative multiscale formulation would not necessarily outperform
algebraic multigrid methods as exact linear solvers, which have been devel-
oped to systematically reduce all components of solution error efficiently.
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After extended unpublished numerical tests, the standard way of construct-
ing basis functions based on localized flow problems did not seem attractive.
The work on creating a dual grid for the MsFV that would be robust to
strong heterogeneity and faults was eventually not continued, as it appeared
that the requirements on the grid in order for the localization assumption to
be reasonable were too restrictive to support fully automated gridding for
general grids. The MsTPFA-method required non-trivial data structures
and pre-processing steps to get partition-of-unity functions that were not
considered feasible by the industrial partner.

The MsRSB-method was developed as a result of an extensive study of
multigrid theory where the objective was to consider existing techniques for
constructing prolongation operator for general grids. The MsRSB method
is inspired by the technique used in smoothed agglomeration multigrid
[113, 115, 114] where a single pass of a smoother restricted to a connec-
tion subset is applied directly to a constant initial guess to get a locally
smooth prolongation operator. The MsRSB method is defined by a support
region consisting of a number of fine cells close to a coarse block, which is
then used to localize an iterative process whereby local errors are efficiently
removed and basis functions that are perfectly adapted to the features of the
underlying medium are obtained. As the requirements on the underlying
coarse grid are quite simple, the method is straightforward to implement
on fully unstructured grids. With no required localization assumption, the
method appears very robust to strong contrasts and large aspect ratios.
More recently, Lukyanov and Vuik [71] noted that there exist connections
between the MsRSB-method and deflation-based meshless methods.

The paper also presents a technique for adaptive control-volume inte-
gration based on the isosurfaces of the basis functions that allows the MsFV
to avoid most monotonicity issues. This technique, originally intended as
a part of an unpublished dual grid algorithm, works well enough to resolve
the extreme contrasts of the full SPE 10 model 2 problem for the MsFV, but
even with this fix the MsRSB was more accurate. As a result, this is the last
paper in the thesis where the dual-grid basis functions are considered. Note
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that the MsRSB was originally published as Møyner and Lie [82], a paper
which was later split into two parts and extended into Papers V and VII.
The original conference paper was for this reason omitted from the thesis,
but the placement of Paper V is therefore earlier than the publication date
would otherwise imply.
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Previous work on multiscale methods have for the most part focused on the
flow prediction for a specific fine-scale problem. There is a large untapped
potential for optimization, model ranking and uncertainty quantification.
Here, we scratch the surface of what will likely be a more important topic
in the coming years. Multiscale solvers subdivide the domain, and conse-
quently the problem, into smaller parts during the basis construction. The
basis functions depend only on the local variations in the permeability and
mobility field, which has previously been exploited to only update basis
functions adaptively where the mobility has changed. In this work, we first
consider problems where certain parameters that are normally static for a
given simulation are considered to be uncertain. In particular, we consider
the problem of fault multipliers, where there exist a significant uncertainty
to how the fault impacts the flow field. A fault can be completely open to
flow, or it may block off flow completely, or anywhere in-between. We also
consider the problem of optimizing well controls using a global basis method
that is accurate and efficient for models with a moderate number of wells,
applying a more sophisticated optimization algorithm (BFGS) than the line
search used in Paper II.

We use the flow diagnostics-techniques to evaluate the relative sweep
efficiency of the different fault combinations using a single-phase solver.
Multiscale solvers were considered to be a good fit with the flow diagnostics
concept as they produce inexpensive, approximate solutions with an error
that is often smaller than the parameter uncertainty of the underlying prob-
lem. For the problems with fault multipliers, we used a static multiscale
basis, replacing only the basis functions that have support extending close
to the faults under consideration. We also adapt the grid to the near-well
region and close to the faults, which is made possible by the flexible coarse
grid definition introduced for the MsRSB-method.

The results indicated that the relative ranking of the different fault re-
alizations produced by the multiscale method were somewhat in agreement
with the results fine-scale solver, but that a number of iterations was re-
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quired to differentiate between fine-scale features such as small faults that
did not significantly impact the flow field. In part, this was due to the
sensitivity of the Lorenz coefficient to small errors in the flux field. The use
of multiscale methods for fast evaluation of different equiprobable models
with a large degree of similarity holds great promise, but further research on
the choice of the ranking coefficients is required. The optimization results
were positive, however, further establishing that the use of flow diagnostics
with single-phase flow can be an excellent proxy model for a fully-featured
multiphase simulation.
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The importance of a solid research framework is sometimes underestimated.
The Matlab Reservoir Simulation Toolbox contains a large number of open
source solvers and functions for solving different partial differential equa-
tions on unstructured grids. More recently, the use of automatic differentia-
tion has enabled the toolbox to become a modeling tool for different physical
effects as well, making it is straightforward to prototype new solvers with
novel physical phenomena.

This paper summarizes the wide-ranging collective efforts towards bring-
ing MRST into a more general prototyping platform with automatic differ-
entiation as the backbone. One significant part of this effort is the object
oriented framework (see Chapter 5) developed as a part of the doctoral
dissertation that allows efficient reuse of different components, and drop-in
replacement of almost any part of the simulator, whether the new compo-
nent is a new linear solver, a time-stepping algorithm, a nonlinear solver
or a set of new constitutive relationships. Software development is some-
times an under-appreciated part of research, but in the author’s opinion,
the quality of the work contained in this thesis would be greatly diminished
without this framework to rapidly prototype and validate new, advanced
solvers. Further demonstration of the flexibility of the framework is given
in Paper IX. The papers that specifically deal with highly complex nonlinear
problems (VII, IX, XIII and XIV) are all implemented in MRST AD-OO.

Releasing well-documented code as open source enables researchers to
build upon the work of others. It is also an important step towards repro-
ducible science, where code and data can be released alongside conventional
routes for research dissemination like journal articles, talks or books.
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After the MsRSB-method had been validated for a wide variety of single-
and two-phase test cases for incompressible flow, the natural next step was
to consider compressible flow with gas dissolution, which is the workhorse of
industry grade simulation. The properties and the gas dissolution present in
the black-oil equations (2.16) have a strong dependency upon the pressure,
which means that any multiscale method that aims to resolve the flow field
is put to the test. For incompressible and immiscible physics, which are the
most commonly considered model problem for published work on multiscale
methods, there is no dependence on the pressure outside of the gradient
used in Darcy’s law. Because of this weak coupling, the pressure can be
discontinuous, or off by orders-of-magnitude, as long as the velocity field is
conservative: ∇ · �v = q.

Although there exists a few published works for compressible and black-
oil flow for different multiscale solvers (see e.g., [63, 52, 35]), this paper,
to the authors’ knowledge, represents the first paper where a multiscale
method is applied to industry complexity grids and fluid physics. The nu-
merical examples in this paper include the full SPE 10 model 2 scenario
with no simplification to fluids; different compressibility studies on a modi-
fied version of the Norne field model [41], gas injection with the SPE 1 [93]
fluid model, as well as a realistic, synthetic field model made by researchers
at Heriot-Watt [8]. Altogether, the different test cases represent a through
validation of the MsRSB applied to black-oil problems. We demonstrate
the robustness of the method, and the possibility of systematically trading
computational effort for increased accuracy. The solution strategy for these
equations with the multiscale solver is shown in Figure 6.1 as supplementary
to the paper.

Further work from this paper would include extension to related systems
of equations with nonlinear effects, such as enhanced oil-recovery (see Paper
IX), thermal problems [116] or CO2 sequestration. The efficient pressure
solver should also be complimented with a more sophisticated transport
solver that exploits the physical properties of the transport problem, for
instance by using higher-order discretizations, nonlinear reordering based
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on the flux graph [7, 58, 84], trust-region [46, 121, 65], adaptive gridding
[31] or continuation Newton-type solvers [125, 103].

Set pn+1
0 = pn, i = 0

Assemble Jacobian J and residual r
for pressure equation and well model

Solve linearized system −JΔp = r
to given tolerance εp using two-stage
multiscale preconditioner and GMRES

Update pressure, pn+1
i+1 = pn+1

i + Δp

Converged? Reconstruct velocity field

Compute vT =
∑

α vα

Set sn+1
0 = sn, j = 0

Assemble Jacobian Js and residual rs
for nph − 1 phases, leaving out the
phase with the least compressibility

Solve linearized system −JsΔs = rs
using preconditioned GMRES

Update saturation, sn+1
i+1 = sn+1

i +Δs

Converged?

Next
timestep

Yes

i = i+ 1 i = i+ 1

Yes

Figure 6.1: Flowchart demonstrating the sequential implicit black-oil scheme used
in Paper VIII. Note that the light blue boxes correspond to the sequential implicit
scheme itself, while the light red boxes are steps that are performed only when the
multiscale solver is used.
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The black-oil equations are considered sufficient for a wide range of pri-
mary and secondary oil recovery scenarios. For tertiary production where
enhanced oil-recovery is employed, the equations will be modified with ad-
ditional components and constitutive relationships. Such modifications in-
clude the addition of surfactant, different types of polymer, nutrients for
increased microbacterial activity in the reservoir and solvents such as CO2

or N2. From a mathematical perspective, these extensions can drastically
alter the nature of the underlying equations and introduce significant non-
linearities where rapid changes in mobility and solubility is present.

In this paper, we consider the extension of the MsRSB black-oil solver
described in Paper VII to polymer flooding. Polymers are added to the
injected water to increase the viscosity and consequently produce a more
stable displacement. The water viscosity, normally taken to be almost con-
stant, will now depend strongly on the polymer concentration. In addition,
the polymer model considered includes shear-dependent viscosity, where the
non-Newtonian polymer-water mixture changes viscosity depending on the
magnitude of the fluid velocity. As the fluid velocity is predicted by the pres-
sure equation, this makes the pressure system significantly more nonlinear
and the fully-implicit commercial simulator used for comparison purposes
used greatly reduced time-steps to converge.

The MsRSB-method, as previously observed for the black-oil model,
gave excellent agreement with the fine-scale solvers, both fully-implicit and
sequential implicit. The observed speed-up by using a multiscale method
was significant, further validating the multiscale strategy for relevant fluid
physics discretized on challenging grids. On the implementation side, note
that the multiscale solver itself was not at all modified from the black-oil
paper. Due to the highly modular structure of the AD-OO framework, the
multiscale solver can automatically be applied for any sequential scheme
implemented in same framework. Development of the sequential-implicit
scheme for this model is challenging, as the polymer rheology makes the
pressure equation more nonlinear, where errors in the velocity field will im-
pact the accuracy of the viscosity in the polymer front. A natural extension
is to consider different models for polymer, or EOR in general with the mul-
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tiscale solver. Here, as in the black-oil case, there is an untapped potential
for faster and more robust transport solvers.
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Most porous media in the subsurface contain fractures at different scales to
some degree. For many models, it may be sufficient to upscale the fractures
into the permeability to capture the flow pattern, but for applications where
the majority of fluid transport takes place via fractures, it is required to
include the fractures in the model. Capturing the effects of fractures is
especially important in the production of geothermal energy and in the
recovery unconventional petroleum resources found in impermeable shales.

The inclusion of fractures in the simulation of porous media has been
considered using a wide range of different techniques. One option is to
explicitly discretize the fractures using small cells with the same width as
the fracture aperture, but this will often lead to a large number of cells
for large models with many fractures. Some authors consider the fractures
as lower dimensional objects since they can be extremely thin, placing the
fracture cells on the faces between cells (dual-porosity, dual-permeability
models) or as discrete objects as in the discrete fracture model (DFM)
[48, 49]. The embedded fracture model [62] is another model allows for
general fracture geometries without grid modification. The larger fractures
are treated as separate objects connected to the cells they intersect with by
fracture-matrix conductivity indices that are computed analogously to the
treatment of well indices. Smaller fractures at shorter length scales than
the matrix blocks are homogenized into the permeability.

There have been previous work on fracture flow using multiscale solvers,
for example [86, 100, 34]. In this paper we build upon the embedded fracture
approach and extend the MsRSB-method to fractured porous media. An
algorithm for growing support regions for basis functions in the fractures is
developed, resulting in a robust multiscale fracture solver with automated
coarsening for complex fracture networks. The results indicate that the
MsRSB, given a moderate number of fracture degrees-of-freedom, can accu-
rately capture the impact of fractures on flow discretized with the embedded
fracture model.
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This paper demonstrates the use of MRST as a prototyping platform, with a
special emphasis on polymer flooding. The simulation of polymer injection is
of general interest as it is one of the more widely deployed EOR-techniques.
We demonstrate the importance of including the effects of polymer in the
prediction of tertiary recovery scenarios. We also use the polymer equations
as an example of a model that is a close relative of the black-oil equations,
where researchers and practitioners may achieve rapid progress by extending
already implemented models in MRST.

PhysicalModel

Abstract base class for all MRST
models. Contains logic related
to linearization and updates.

Primary variables: None

ReservoirModel

Extends PhysicalModel with rock, fluid,
saturations, pressures, and tempera-

ture. Base class for all reservoir models.

Added primary variables: sα, p, T, qα, pbh

ThreePhaseBlackOilModel

Extends ReservoirModel with optional
solution gas and vaporized oil. Base

class for two- and single-phase versions.

Added primary variables: rs, rv

ThreePhaseBlackOilPolymerModel

Extends ThreePhaseBlackOilModel with
additional variables, mixing rules, viscosity
modification, and optional shear effects.

Added variables: c, cmax

Figure 6.2: Model inheritance diagram for the polymer model, taken from Paper
XI.

The object oriented framework is central to achieving this goal. Fig-
ure 6.2 (Figure 5 in the paper) demonstrates how the polymer model is
a subclass of the black-oil model, which again is a subclass of the generic
reservoir model, which again is one possible extension of the virtual physical
model base class. As different parts of the framework are distinct, modu-
lar components, we automatically benefit from automatic time-stepping and
advanced linear solvers for the new models that implement three-phase poly-
mer flooding with shear dependent viscosity. The feature-set demonstrated
in this paper is similar to the multiscale polymer simulator in Paper XI, and
as such this paper compliments the aforementioned paper by demonstrating
some of the inner workings of the infrastructure required to apply multiscale
solvers in a generic manner.
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Almost two decades after their introduction, multiscale solvers have yet not
seen widespread commercial adoption. In part, this is due to the significant
complexity of commercial simulators where the grids, physics and well mod-
els are often more complex than what is found in academic implementations.
The research branch of the commercial INTERSECT reservoir simulator is
developing a possible next-generation simulator with multiscale solvers as
a key component. The research in this thesis is done as a part of an ongo-
ing research collaboration to develop multiscale technology suitable for the
tough requirements posed by a commercial grade code, including support
for advanced physics, unstructured grids, parallelism and robust, automated
coarsening.

MsRSB was introduced to the group of researchers and developers work-
ing on the INTERSECT multiscale project in September 2014 and before
the end of the same year, it was implemented and used to simulate unstruc-
tured field models. MsRSB is currently the standard basis functions for the
research simulator due to its ability to handle fully unstructured grids and
superior robustness as well as accuracy over the classical MsFV basis func-
tions. In this paper, we review the major developments in multiscale solvers
for porous media over the previous two decades, before demonstrating the
INTERSECT multiscale simulator on both a conceptual model with ex-
plicit fractures, as well as two field models. The Gullfaks field example that
concludes the paper is a real black-oil field model without simplifications,
simulated with a true multiscale reservoir simulator.
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Implicit solvers for the transport equations (2.14) discretized by backward
Euler are unconditionally stable. A sometimes under-emphasized point is
that the unconditional stability does not necessarily mean that the solu-
tion of the resulting nonlinear equations is simple to find. As variants of
Newton’s method are normally used for the strongly nonlinear transport
equations, the convergence to the right solution cannot be guaranteed if the
residual function contains multiple Newton-contraction regions.

One approach for guaranteed convergent transport solvers was intro-
duced by Jenny et al. [46] for S-shaped flux functions and later expanded
by Wang and Tchelepi [121] and Li and Tchelepi [65] for flow with buoy-
ancy and discretized fluxes, respectively. The approach, termed trust-region
solver1 uses strategic chopping of the solution increments produced by New-
ton’s method in order to guarantee convergence.

Previous approaches to these types of solvers had promising results, but
were restricted to two-phase problems where the solution variable is a single
scalar per cell. As the chopping strategy relies on knowing inflection points
and upwind changes a priori, these have to either be calculated manually or
tabulated before simulation for the flow regimes that will be encountered.
In this paper, a novel approach is presented that extends this idea to multi-
component flow with general relative permeabilities. The convergence issues
for Newton’s method applied to transport problems are examined, followed
by the formulation of flux search algorithm for multicomponent transport.
This algorithm is formulated by parametrization of the numerical flux func-
tions along the solution path predicted by the Newton solver. From this
parametrization, directional derivatives and discontinuities are estimated
to identify safe updates. Both a global and a local approach to chopping is
presented, before the method is systematically validated on a range of flow
scenarios, ranging from gravity segregation to the simulation of a full field
model. The solver is demonstrated to be capable of handling time-steps

1To avoid confusion, it should be noted that the trust regions in this context is different
from trust regions for Newton’s method applied to optimization problems.

92



93

of arbitrary length for highly nonlinear problems, including simulating 50
years of field prediction with strong gravity effects in a single time-step.

Robust transport solvers is important for a wide range of applications,
as convergence failures and subsequent time-step cuts may significantly slow
down simulations and reduce the ability to evaluate different scenarios and
outcomes of engineering decisions. One natural extension of this work would
be to consider CO2 sequestration, where the long time horizons for safe
storage of greenhouse gases contrasts with the relatively short time-scale
of viscous flow with strong gravity segregation effects. Another possible
extension would be to thermal and EOR-processes, where the strong non-
linearities due to additional local parameters can lead to severe time-step
restrictions.



Paper XIV

A Multiscale Restriction-Smoothed Basis Method for
Compositional Models

Olav Møyner and Hamdi Tchelepi
Accepted for the proceedings of the SPE Reservoir Simulation Conference

2017, Woodlands, Texas, USA

For the final paper of the thesis, we consider an extension of the MsRSB-
method to compositional problems. This includes the development of both
fully-implicit and sequential implicit compositional simulators for MRST
with a generalized cubic equation-of-state. The compositional equations
cover a wide range of different scenarios and allow simulation with any
number of different molecular species present. As the computational cost
of a fully-implicit multicomponent simulation can be excessive, a robust
sequential scheme with a fast multiscale solver is especially attractive.

The presented paper is the first compositional multiscale finite-volume
solver with a cubic equation of state. We use the sequential mass formulation
previously considered for the black-oil equations and the classical MsFV-
method in [35]. The results indicate that the MsRSB-method gives excellent
pressure and flux approximations for the compositional pressure equation.
We observe that the new compositional solver in MRST agrees well with
the Stanford research simulator AD-GPRS for a simple one-dimensional
validation problem.

Examples with both CO2 and water injection above and below the min-
imum miscibility pressure indicate that the correct phase behavior is pre-
dicted by the sequential scheme compared to the fully-implicit. The mul-
tiscale solver agrees with the implicit solver, although minor errors in the
saturation profile is observed due to the non-converged pressure. For the
final example, we demonstrate that a N2 injection scenario on the Norne
field model was accurately reproduced by the multiscale solver, even though
some oscillations are observed in the producer well curves after gas break-
through for the sequential scheme. Although this does not appear to be a
stability issue in the conventional IMPES sense, improving the sequential
scheme should be a priority for further work in order to efficiently apply
multiscale solvers.
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Chapter 7

Conclusion and future work

7.1 Concluding remarks

This thesis is the culmination of little over three years of research into
understanding and improving the simulation of flow and transport in porous
media. At the outset, the primary goal was to extend the MsFV-method
to unstructured grids, a goal which was in the author’s opinion met by
introducing the MsRSB-method in Paper V. In a sense, this paper is the
core of the thesis as much of the later research has been focused on extending
the MsRSB-method to different problems with more sophisticated types of
physics.

The work on flow diagnostics is complimentary to the work on multi-
scale methods, as they demonstrate the value of information contained in
the flow fields that the multiscale methods strive to capture. The presented
trust region transport solver considers the transport problem, which is very
different from the pressure equation: The idealized transport problem is
hyperbolic and local, inexpensive to solve and nonlinear where the idealized
pressure problem is elliptic and global, expensive to solve and linear, demon-
strating how all aspects of a simulation must be improved if one hopes to
achieve improvement for the entire problem. Finally, the work on a flexible
prototyping framework for flow and transport in porous media has been
essential to achieve the results in this thesis, as the time spent developing
good tools have given savings of a much greater magnitude when working
with advanced fluid physics.
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7.2 Future work

There are several possible avenues for extending the work in this thesis in
new directions. For many of the choices made, we could have taken other
avenues and obtained different results. We will consider the possibilities
grouped according to the same categorization of themes as in Chapter 6.

• For the development of multiscale methods for unstructured grids,
there is a largely unexplored potential for considering different coars-
ening algorithms. In this thesis, we have considered the use of Metis
for automated coarsening, which works reasonably well with MsRSB,
but it seems likely that this result can be improved upon with coars-
ening that for example adapts to the flow field, analogous as the work
done for transport problems by Hauge et al. [37]. We did not consider
enrichment strategies for adaptive improvement of the solution, which
is another field with active research [25, 77]. Finally, the tracer par-
titioning used to formulate the MsTPFA-method may have potential
for the construction of tailored multiscale basis functions near spe-
cific features such as wells or faults where a local flow problem can
determine strong connections.

• The use of flow diagnostics with multiscale solvers is a combination
that holds great promise for different applications with uncertainty,
including optimization problems and model ranking. One possible
direction would be to use the smoothing iterations of MsRSB to cap-
ture minor changes to the permeability field for similar geostatistical
realizations in order to rapidly evaluate large ensembles with flow
diagnostics-techniques.

• In terms of building multiscale solvers for compressible and composi-
tional flow problems, there is still a large number of different models
that have not yet been considered. Preliminary work on applying the
MsRSB-method to thermal problems is discussed by Vennemo [116].
While there are many different EOR-models that could be possible
extensions, thermal problems are especially attractive as the temper-
ature can strongly influence the coefficients of any pressure equation.
More robust sequential implicit schemes should also be a priority, es-
pecially schemes that have rigorous estimates for when the pressure
equation should be re-visited after transport to obtain the correct
solution. Another natural extension would also be to use higher or-
der schemes for the transport equations in order to better resolve the
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fronts of the displacement, which may be more feasible when the pres-
sure is inexpensive to solve due to the (approximate) multiscale solver.

• The trust-region solver for multiphase flow can easily be extended to
more components. EOR problems are a natural fit, as they extend
the existing transport model with additional components that impact
the fractional flow curves. Thermal problems are also interesting, as
they appear to have convergence issues even for fully-implicit problems
that are not always well understood. The implementation described in
Paper XIII uses first-order potential upwind together with Newton’s
method, but other discretization and solver strategies may also benefit
from the trust-region approach. Examples include hybrid upwinding
[61, 36], the C1-PPU scheme presented by Jiang and Younis [47],
reordering methods [7, 58, 84] or higher-order schemes for transport.

• The object-oriented prototyping framework in MRST is built from
the ground up to be extensible to other types of equations and the
framework is used in the development of new simulators in the Com-
putational Geosciences group at SINTEF and other places. Extensive
testing has demonstrated that the framework makes it simple to ex-
tend and implement new solvers and models based on the existing
capability for black-oil, compositional and EOR. New researchers can
easily leverage the work of others to demonstrate new ideas and the
open source license makes it easy to share not only the results, but
also the code behind a research paper.
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A large number of multiscale finite-volume methods have been developed over the past 
decade to compute conservative approximations to multiphase flow problems in hetero-
geneous porous media. In particular, several iterative and algebraic multiscale frameworks 
that seek to reduce the fine-scale residual towards machine precision have been presented. 
Common for all such methods is that they rely on a compatible primal–dual coarse par-
tition, which makes it challenging to extend them to stratigraphic and unstructured grids. 
Herein, we propose a general idea for how one can formulate multiscale finite-volume 
methods using only a primal coarse partition. To this end, we use two key ingredients 
that are computed numerically: (i) elementary functions that correspond to flow solutions 
used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine el-
ementary functions into basis functions. We exemplify the idea by deriving a multiscale 
two-point flux-approximation (MsTPFA) method, which is robust with regards to strong 
heterogeneities in the permeability field and can easily handle general grids with unstruc-
tured fine- and coarse-scale connections. The method can easily be adapted to arbitrary 
levels of coarsening, and can be used both as a standalone solver and as a preconditioner. 
Several numerical experiments are presented to demonstrate that the MsTPFA method can 
be used to solve elliptic pressure problems on a wide variety of geological models in a 
robust and efficient manner.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The oil and gas industry has for decades been a big user of computing and data processing to plan cost effective ex-
ploration and production of petroleum resources. Advanced desktop workflow tools have removed many bottlenecks that 
previously existed between different application domains. However, runtime is still often a limitation on the use of reservoir 
simulation, despite the fact that the available computational power has been greatly increased in the last decades. In part, 
this is caused by a continued increase in the complexity of reservoir models, and in part by modern workflows such as 
model calibration, uncertainty quantification, and optimization of production and recovery, which all require fast, scalable, 
and accurate flow simulations, possibly for large ensembles of model realizations.

Multiscale simulation technology promises to improve runtime by at least an order of magnitude compared to current 
simulator performance for traditional reservoir engineering workflows and offers a systematic framework for increasing 
local model resolution. This makes multiscale simulation a better tool for characterizing volumetric sweep and locating by-
passed and immobile oil compared with traditional upscaling approaches which always imply a loss of information when 
homogenizing fine-scale structures. While there exist a wide variety of multiscale methods tailored to an even wider range 
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of problems, the core idea of most multiscale methods developed for reservoir simulation is an attempt to separate local 
and global phenomena, giving fine-scale solutions based on coarse-scale problems with precomputed basis functions that 
account for localized features [1]. Multiscale formulations also provide a framework that enables variable-fidelity simulation 
that within orders of magnitude shorter simulation times can provide qualitatively correct predictions of flow patterns. Uti-
lizing this, often less emphasized, aspect of multiscale methods may lead to new and innovative simulation-based workflows 
for building earth models, which cannot be achieved with current state-of-the-art reservoir simulators.

Although modeling approaches used by the industry today are predominantly structured, they still lead to irregular 
and unstructured simulation grids. Very complex grids having unstructured connections and degenerate cell geometries 
arise naturally when representing structural framework like faults, joints, and deformation bands, and/or stratigraphic archi-
tectural characteristics like channels, lobes, clinoforms, and shale shale/mud drapes. Similarly, unstructured connections are 
induced when local grid refinement, structured or unstructured, is used to improve the modeling of (deviated) wells. Provid-
ing multiscale simulation capabilities for general grids with unstructured connections may accelerate the general adoption 
of unstructured and refined grids as a means of improved representation of deviated well paths and complex geological 
features. Likewise, greater flexibility with respect to coarse grids is needed to develop automated coarsening strategies that 
perform well for complex models. If possible, coarse partitions should adapt to complex features, such as wells, barriers and 
channels in a way that ensures optimal accuracy for a chosen level of coarsening.

This paper will focus on multiscale methods for computing pressure and fluxes on models that are realistic with the 
respect to geometrical description and petrophysical heterogeneity. Our main goal is to develop multiscale methods that 
are more accurate and simpler to use than state-of-the-art upscaling methods across a wide range of upscaling factors 
and at least an order-of-magnitude faster than conventional methods when used as a fine-grid solver. To provide value 
for commercial applications, the methods should work with industry-standard grid formats, be easy to implement within 
next-generation simulators, and generally be accurate, efficient, intuitive to use, and robust with respect to flow models and 
parameter choices. A lot of the necessary technological components have been developed over the last decade. The cur-
rent industry-relevant state-of-the-art mainly exists as complementary technologies that are developed from two different 
mathematical principles: the multiscale finite-volume (MsFV) method [2] and the multiscale mixed finite-element (MsMFE) 
method [3,4].

The original MsFV method [2] was developed for solving flow problems with many scales and a predominantly elliptic 
nature, and used basis functions computed on a dual grid to define transmissibilities in a multi-point coarse-scale dis-
cretization combined with another set of flow problems on the primal grid to reconstruct conservative fine-scale fluxes. 
The method has later been extended with a large body of research, including adaptivity [5], correction functions [6–8], 
iterative variants for error control [9,10], and operator formulations suitable for pre-existing solvers [11,12,8], and has been 
applied to a wide range of physical problems, including compressible black-oil models [13] and compositional flow [14], 
all on Cartesian grids. Extending the MsFV method to realistic grids is generally encumbered by the requirement of a dual 
coarse partition. We have previously shown that it is possible to generate compatible primal–dual partitions for grids with 
realistic features like pinch-outs, erosions, faults and unstructured connections using a geometrical algorithm with topolog-
ical post-processing [15,16]. However, the coarsening process is difficult to automate in a robust manner, puts restrictions 
on the coarsening degree and type of partitions that can be used, and will sometimes only give partition that drastically 
reduce solution quality. We have also encountered several real models (e.g., the Gullfaks model discussed in Section 3.4) 
on which we have not been able to construct a dual partition at all. In addition, it is well known that highly contrasted 
media and large anisotropy ratios pose problems for the reduced boundary condition used to construct the MsFV basis 
functions [17–20].

The ability to handle fully unstructured grids with almost arbitrary connected coarse-scale partitions is one of the main 
advantages of the MsMFE method. Whereas the basis functions in the MsFV method are computed using a dual-grid for-
mulation with unitary pressure values at each vertex of the coarse blocks, the basis functions in the MsMFE method are 
constructed by prescribing a unit flow across faces in the coarse grid, which ensures that the latter is more robust with 
respect to the size and shape of the coarse blocks when applied to stratigraphic and unstructured grids [21,22]. Pathological 
cases will of course also exist, but the accuracy of the MsMFE method can often be significantly improved by introducing a 
certain degree of adaption to local structures, particularly for high-contrast media [23,24]. For two-phase flow, the method 
has been shown to provide good accuracy on industry-standard geological models [25]. On the other hand, although iter-
ative versions of the MsMFE method have been applied to compressible flow [26,27] and black-oil models [28,29], a full 
extension of the method to realistic flow physics is generally encumbered by the need for a robust splitting of flow and 
transport, in which the flow equations are written on mixed (hybrid) form.

In this paper, our aim is to overcome the complexity of constructing compatible primal–dual partitions and develop a 
formulation that gives more stable and robust coarse-scale systems on models with realistic geometries and heterogeneity. 
To this end, we present what we believe is a general approach that combines the best features of the two multiscale meth-
ods discussed above: multiscale finite-volume methods that use numerically constructed partition-of-unity functions to glue 
together elementary flow solutions associated with interfaces between coarse blocks. The partition-of-unity functions are 
crucial and will enable us to dispense with the requirement of a compatible primal–dual partition (also called a wire-basket 
ordering [30,31]) and hence provide the flexibility necessary to handle complex industry-standard grids with high aspect 
ratios and unstructured connections without significant impact to the solution quality. Likewise, using a finite-volume for-
mulation enables the methods to efficiently resolve realistic flow physics, including capillarity, compressibility, and gravity, 
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and, in particular, be applicable to industry-standard black-oil type models. The construction is fully algebraic, which means 
that existing multiscale techniques such as local stages and iterative cycles, followed by conservative fine-scale flux recon-
structions [20], can be used without modification. Finally, using elementary flow solutions associated with interfaces instead 
of vertices means that the new multiscale methods will closely resemble traditional methods for transmissibility upscaling 
as well as more recent methods that focus on developing stable coarse-scale stencils [32–35].

Although our approach is general and can be applied to construct multiscale methods with multipoint coarse-scale con-
nections, the details will only be developed for the case in which the interfaces consist of the entire face between two 
neighboring grid blocks. The result is a two-point flux-approximation method (called MsTPFA) in which each coarse-scale 
transmissibility captures the local properties of the differential operator in a localized region between the centers of two 
neighboring coarse blocks. For smooth heterogeneities, the resulting method may be less accurate than previous multi-
scale methods that feature multipoint coarse-scale connectivity. However, as our requirements for griding and petrophysical 
properties are quite demanding, we will be willing to sacrifice some accuracy if it leads to increased robustness and ease 
of implementation. The resulting MsTPFA method is easy to integrate in existing simulators either as a preconditioner or 
as a stand-alone solver. Moreover, although this is not elaborated and exploited herein, the method has a large degree of 
inherent parallelism that can likely be exploited to obtain an implementation with good scalability.

2. The multiscale two-point flux-approximation method

The starting point of our discussion is a discrete linear system,

Ap = q, (1)

which defines a fine-scale pressure problem. The system can be produced in any number of ways: from a stationary 
(single-phase) pressure equation, as a pressure subsystem extracted from a fully implicit system, or as a decoupled pressure 
equation in a sequential pressure–transport splitting,

−∇ · (Kλt∇p) = q, (2)

for some total mobility λt and permeability K. Our numerical examples will be limited to the case when (2) is the discretiza-
tion of an elliptic pressure equation. Although this is not a prerequisite for the formulation of the new multiscale method, 
we will in the following tacitly assume that the fine-scale discretization is based upon a two-point flux-approximation 
(TPFA). The TPFA method is the industry-standard discretization for stratigraphic grids, both corner-point and PEBI type, and 
while it may suffer from grid-orientation effects, the method is monotone.

The multiscale two-point flux approximation (MsTPFA) method is, like the name suggests, based on a coarse-scale op-
erator that gives a two-point type stencil for computing global flow patterns on a coarse grid much like in traditional 
transmissibility upscaling. In addition, the method has a set of prolongation operators that allow reconstructions of con-
servative solutions on the underlying fine-scale grid, e.g., as in the MsFV and MsMFE methods. In the following, we will 
describe the construction of basis and correction functions, formulation of coarse-scale problem, and reconstruction of fine-
scale solutions in more detail. Our main purpose is to develop a multiscale method that works well on the discretized
cell-centered flow equations, which introduces several features that are not necessarily needed for the continuous flow 
equations. However, in an attempt to simplify the presentation, we will switch between a geometric and an algebraic (op-
erator) descriptions of the method, trying to always use the description we believe is most transparent to the reader.

To motivate the method, let us first look a bit in detail on the MsFV method. When constructing coarse-scale systems, 
the MsFV method uses two coarse grids: The primal grid defines a typical coarse grid as used for upscaling, and the dual of 
this grid is then used to decompose the domain into local pressure problems. Once these problems have been solved and 
assembled into a basis, the interactions between the basis functions over the primal coarse grid gives a coarse system with 
multipoint connections. In addition, it is common to construct correction functions that take care of the particulate part of 
the solution that is not represented by the homogeneous basis functions. This is the geometrical description of the MsFV 
method. The method can also be described in algebraic form, using vector partitions and manipulation and elimination of 
matrix blocks in the fine-scale discretization [8,11,20]. This operator formulation is particularly useful when formulating the 
method on unstructured grids [15], but requires a compatible primal–dual partition (wire-basket ordering) that is generally 
difficult to construct for (industry-standard) grids with unstructured topologies. To avoid the complexity of constructing a 
wire-basket ordering, MsTPFA is designed using a single partition much in the same manner as in the MsMFE method and 
traditional transmissibility upscaling. MsTPFA still needs dual control volumes, but each control volume is associated with a 
given coarse face and can be constructed as a simple combination of fractions of the primal cells that are on opposite sides 
of the face.

To introduce our new method, we start by discussing the construction of basis functions for pressure, which consists of 
two parts. The first step is a preprocessing step that is performed once for a given partition to map local problems to the 
final basis. The second step is the solution of local pressure problems. We will describe the local pressure problems first, as 
they motivate the preprocessing step.
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Fig. 1. Definition of local flow problems. The left plot shows two coarse blocks and a single face, with unit pressure specified to the left, zero pressure 
specified to the right, and pressure solution computed in the colored region in the middle. The three plots to the right show the same construction for a 
2.5D PEBI grid: blocks sharing an interface, specification of fixed pressures, and local pressure solution, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

2.1. Local flow problems

Multiscale and most upscaling methods use local flow problems to estimate how fine-scale properties contribution to 
a coarse-scale equation that defines the global pressure field. The MsMFE method uses local problems defined over coarse 
faces and associates the degrees of freedom with the coarse faces. The MsFV method assigns local problems to the interac-
tion regions around a coarse block, giving a single degree of freedom per coarse block. In the MsTPFA formulation, we solve 
local problems per coarse face, but we will finally associate the coarse system with a single degree of freedom per coarse 
block.

Fig. 1 illustrates how local flow problems are defined for each coarse face and restricted to the two coarse blocks that 
share the face. To further localize the problem, we introduce two additional boundaries that consist of all cells intersected 
by a plane through each block center defined by a normal vector directed towards the center point of the other block. In 
the left plot of Fig. 1, these cells are shown in color for each side of the coarse face, respectively. The local problem has unit 
pressure imposed on one side and zero on the other and no-flow boundary conditions are specified along the remaining 
outer boundaries of the local domain.

The local flow problem defined over a local domain Ω reads

−∇ · (Kλt∇p) = 0, (3)

with boundary conditions
p = 1 on Γin, p = 0 on Γout, (Kλt∇p) · �n = 0 on ∂Ω \ (Γin ∪ Γout), (4)

where Γin and Γout denote the inflow and outflow Dirichlet boundaries, respectively, and �n denotes the normal vector. In 
the continuous formulation, this setup is identical to a popular variant of transmissibility upscaling, but in the discrete 
version it deviates slightly since we have chosen to impose the Dirichlet boundary as set of cells with prescribed pressure 
values rather than setting the Dirichlet boundary at a fixed location and discretizing the corresponding boundary conditions 
in a conventional manner. The motivation for doing so, is to simplify the algebraic construction of the method, which is the 
one we use in practice. To develop this construction from the existing global fine-scale equations, we extract all the rows 
corresponding to the cells in the local domain (i.e., the colored part of the left plot in Fig. 1) and permute the columns so 
that all the local unknowns appear in one block pi ,

[ Ai1 . . . Aii . . . Ain ]

⎡⎢⎢⎢⎢⎢⎣
p1
...

pi
...

pn

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
q1
...

qi
...

qn

⎤⎥⎥⎥⎥⎥⎦ .

Then the local matrix is given by

(Aloc)km =
{

(Aii)km, k �=m
(Aii)kk +∑ j �=i

∑
�(Ai j)k�, m = k (5)

Further modifications are made to impose boundary conditions, i.e., replacing the entries of rows corresponding to the 
boundary with values one or zero. Linear interpolation is used when the centroid of a ‘Dirichlet boundary cell’ does not 
lie exactly on the plane that defines the boundary. Finally, the right-hand side of the local problem is set up by forcing 
correct values (i.e., zero everywhere except on the boundary). This is equivalent to solving a Dirichlet problem with constant 
pressure boundaries and no-flow on the boundary tangent to the flow direction.
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Fig. 2. The left plot shows the four elementary solutions p� (� = E, W , N, S) defined for a square block along with their superposition within the block. The 
right plot shows computational domains for the elementary solutions along with the sum, ∑�(p� + p̂�), computed numerically inside the coarse block.

2.2. Partition of unity and definition of basis functions

It is possible to set up a conservative coarse-scale system based on the local flow solutions per face, much in the 
same manner as for transmissibility upscaling. However, obtaining a fine-scale pressure solution is more difficult. The local 
solutions can obviously not be used as basis functions directly. To illustrate this, we will look at a simple problem.

Example 1. Assume that the quadratic domain [−1, 2] × [−1, 2] is divided into quadratic blocks of unit size. For the block 
[0, 1] × [0, 1], we will have four different local solutions associated with the east, west, north, and south faces, respectively:

pE(x, y) = 1.5− x, (x, y) ∈ [0.5,1.5] × [0,1],
pW (x, y) = 0.5+ x, (x, y) ∈ [−0.5,0.5] × [0,1],
pN(x, y) = 1.5− y, (x, y) ∈ [0,1] × [0.5,1.5],
pS(x, y) = 0.5+ y, (x, y) ∈ [0,1] × [−0.5,0.5]

that describe flow out over each face and into the neighboring block. The basis functions and their superposition restricted 
to the coarse center block are shown to the left in Fig. 2. If we look at the east face, for instance, there will be a similar 
elementary flow solution p̂E = x − 0.5 that describes flow from the neighbor and into the block. Obviously, these two 
elementary flow solutions must sum to unity, because if not, they would not be able to describe a constant pressure solution. 
Each pair of elementary solutions, p� and p̂� , computed with the discrete approach described above will by construction 
sum to unity inside their domain of definition. However, as illustrated in the right plot of Fig. 2, the local computational 
domains will have a non-trivial overlap, which means that it is not possible to represent a constant pressure using a simple 
superposition of the numerically computed elementary solutions, which is a requirement if such a superposition is to be 
useful as a multiscale finite-volume prolongation/basis operator.

To construct a useful basis, we will introduce an additional set of functions, one associated with each coarse face, that 
together will form a partition of unity. The purpose of these partition-of-unity functions is to extract the useful parts of the 
elementary solutions and discard the parts we are not interested in. That is, because the coarse-scale discretization seeks 
to mimic a two-point scheme we want to keep the part of the elementary functions that accurately represents the pressure 
drop between the two block centers on opposite sides of each face. Likewise, we wish to remove as much as possible of the 
local effects of the no-flow and Dirichlet boundary conditions used to localize the elementary solutions. Fig. 3 shows how 
such a partition of unity w� (� = E, W , N, S) can be constructed for the case discussed in Example 1. Here, the support 
of each function w� covers the corresponding coarse face and narrows in towards the two block centers to which it is 
associated. In general, if pi

j denotes the elementary function defined between block i having unit pressure and block j
having zero pressure and wi

j denotes the corresponding partition-of-unity function, one can define a basis for each face,

ψ i
j = wi

j p
i
j (6)

and a block basis that is simply the sum of the basis functions for all coarse faces in the block,

ψ i =
∑
j

ψ i
j =
∑
j

wi
j p

i
j . (7)

In Fig. 3, the middle plot shows the construction of face bases while the plot to the right shows the block basis. The basis 
function associated with the centroid of a coarse block has support on what would be considered the local neighborhood 
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Fig. 3. Using partition of unity to define basis functions for the case in Example 1. The left plot shows the four functions w� (� = E, W , N, S) defining the 
partition of unity. The middle plot shows how partition functions wE and wW are used to extract parts of the elementary solutions pE and pW to define 
face bases ψE and ψW ; thick lines indicate where boundary conditions (Dirichlet or no-flow) are specified to localize the problem in the coarse block. The 
right plot shows the resulting block basis with support on a rotated square.

for a coarse block using a TPFA approximation. (The MsFV method, on the other hand, has a support on what could be 
considered an MPFA-like neighborhood.)

The smoothness of the pressure approximation is inherited from the elementary solutions pi
j and the partition func-

tions wi
j . In practice, one will obviously not use a discontinuous partition of unity as shown in Fig. 3. Indeed, if the 

partition functions are smooth and zero away from the boundaries used to localize the elementary functions, we will obtain 
an overall smooth pressure approximation.

Partition functions having the required properties can easily be constructed on almost arbitrarily shaped coarse block, 
regardless of whether the underlying grid is structured or unstructured. To motivate our approach, we consider a physical 
analogue. Assume that each coarse face is assigned a unique color and that ink with unit concentration of this color is 
injected uniformly along the face and a corresponding amount of fluid is extracted from point sources located at the block 
centers. If we continue injecting, a suitable partition of unity can be obtained from the steady-state ink concentrations inside 
each coarse block. Computationally, this is achieved by solving an incompressible pressure equation with homogeneous, 
isotropic permeability for each coarse block with a sink in the cell center and sources equal in magnitude to the face area 
on each face. Once the corresponding flow field �v is obtained, the stationary tracer distribution for inflow boundary Γ can 
be computed from

∇ · (�vc) = 0, c = 1 for �x ∈ Γ. (8)

The tracer equation (8) is then solved with a unique tracer for each coarse face, which gives values between zero and one 
for cells inside the coarse block. Fig. 4 illustrates the resulting computation of a face basis function for a homogeneous and 
a heterogeneous case.

To solve the tracer equation, we use a standard first-order upwind discretization, which has an inherent numerical 
diffusion that will give us the required smoothness of the partition functions. If a two-point method is used to compute 
the flow field, the resulting fluxes will form a directed graph that can be used to reorder the discrete tracer equations 
into a triangular form that can be inverted efficiently by an algorithm that visits each cell once [36]. Hence, the cost of 
constructing partition functions is dominated by the cost of solving one pressure equation per block, an operation that is 
naturally parallel and only has to be performed once as the grid is partitioned into coarse blocks.

2.3. Correction functions and treatment of wells

While multiscale methods may produce a fine-scale pressure field from a coarse-scale problem, the basis functions only 
capture the elliptic fine-scale effects driven by a pressure differential. Other effects, e.g., body forces like gravity, will only 
be included in the coarse sense. In many cases, this may be sufficient to resolve the global pressure trends, but in other 
cases, one must also capture fine-scale effects that are not represented in the basis functions to properly resolve the global 
pressure trends. For an illustration of this we will consider a simple example.

Example 2. Let a rectangular discretized domain of [0, 2] × [0, 1] be divided into two unit-size blocks. Flow is driven by 
two injectors with pbhp = 1 at (1/4, 3/4) and (3/4, 1/4) and a producer with pbhp = 0 at (3/4, 1/4), and no-flow boundary 
conditions (Kλt∇p · �n = 0) are imposed on the boundary. The resulting solution is shown to the left in Fig. 5. If the coarse 
blocks are used along with regular basis functions to compute a fine-scale pressure, any combination of wells giving the 
same integral flux over the coarse boundaries will result in the same fine-scale solution as shown in the middle plot. 
However, by constructing local correction functions that capture the fine-scale well behavior as explained below, the solution 
becomes unique as shown in the right plot in Fig. 5.

The concept of correction functions was originally formulated for the MsFV method [6] and can be straightforwardly 
extended to the MsTPFA method to resolve effects from gravity, wells, etc. The central idea is to decompose the fine-scale 
pressure into two parts,
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Fig. 4. Numerically computation of face basis for a homogeneous and a heterogeneous 2D medium.

Fig. 5. The reference pressure solution (left) contains fine-scale information not present in the prolonged coarse multiscale solution (middle) which can be 
reintroduced by the use of correction functions (right).

p = Bpc + c, (9)

where c is a correction term (or particular solution) that resolves fine-scale effects not accounted for by the homogeneous
basis functions. Whereas the basis functions solve a flow problem (3) driven by a pressure differential (4), the correction 
functions are defined as solutions to an inhomogeneous problem driven by a source term

−∇ · (Kλt∇pc) = q, (10)

with zero boundary conditions
pc = 0 on Γi ∪ Γo, (Kλt∇pc) · �n = 0 on ∂Ω \ (Γi ∪ Γo). (11)

Here, Γi and Γo denote the inflow and outflow boundaries of the corresponding homogeneous problem (4). The source 
term q can represent gravity, well models and other fluid sources and sinks, etc.
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Fig. 6. The choice of local problem for a coarse face depends on the use of correction functions. Without correction functions, the local problem is defined 
by A0 and is completely linear (left). Formulated in companionship with a correction function (middle), the local basis problem accounts for the flux out 
of the well perforation and is constructed using A0 + Dbc (right).

Once the local correction problem (10)–(11) has been solved for each coarse face, the solutions can be combined with 
the partition of unity to define the correction operator on the whole domain in a similar manner as Eqs. (6) and (7), 
producing a local solution for each pair of coarse blocks (i, j)

c ij = wi
j pc (12)

Notice that since correction functions are constructed in the same manner as the elementary functions, they must be 
weighted by the partition of unity to avoid overlap effects in all cells that have more than one nonzero wi

j . Moreover, 
because the correction term is independent of the coarse-scale problem, one can simply sum over all block-pairs to get the 
final correction over the entire domain

c =
∑
(i, j)

c ij =
∑
j

wi
j pc. (13)

The fine-scale information present in correction functions representing wells and boundary conditions should replace and 
not add to the prolonged solution. It is therefore important that the flow problems (3) used to construct the corresponding 
homogeneous bases are modified locally to avoid interfering with the correction function. This is done by setting any 
pressure or flux equivalent to wells and boundary conditions to zero to leave ‘gaps’ in the solution of the prolonged system 
that are compatible with the correction functions. Mathematically, one replaces (3) with

−∇ · (Kλt∇p) = q̃, (14)

where q̃ represents the flux from any boundary conditions or wells set to a zero value. In the operator formulation, this 
is done implicitly. Any cell attached to a boundary with prescribed condition different from no-flow or containing a well 
perforation will have extra diagonal entries in the linear system corresponding to the boundary transmissibility or well 
model used. Thus one can extract local linear systems and solve these with zero right hand side. That is, one splits the 
fine-scale system matrix Atot into one part A0 representing cell-wise flux balances and a diagonal part Dbc representing 
flux contributions from boundary conditions and wells,

Atotp = (A0 + Dbc)p = q. (15)

If the basis functions will be used alongside correction functions, we set A = A0 + Dbc in (5). On the other hand, if the 
solution will be constructed without correction functions, it is natural to set A = A0 and impose boundary conditions and 
wells at the coarse scale. In some cases, including inhomogeneous effects on the fine scale may not be required to obtain an 
acceptable approximation, while in other cases these effects can be accounted for by iterative techniques [20] or coarse-grid 
refinement. The effect of omitting inhomogeneous fine-scale effects is illustrated in Fig. 6, in which the basis function for a 
single coarse face from Example 2 is shown with and without correction functions.

2.4. Coarse system

The coarse-scale system for the MsTPFA method is straightforward to formulate, owing to the construction of local basis 
problems over coarse edges. Applying the divergence theorem to (2) for a coarse block Ωi ,

−
∫
Ωi

∇ · Kλt∇p = −
∫

∂Ωi

(Kλt∇p) · �n =
∫
Ωi

q. (16)

Recall that the basis function for each coarse block is denoted ψ i and let N (i) be the set of neighbors for coarse block i
and p̃i be the coarse-scale pressure assigned to block i. This gives∑

j∈N (i)

Tij(p̃i − p̃ j) = −
∫

∂Ωi

(
Kλt∇ψ i

) · �n = −
∫

∂Ωi

(
Kλt∇

(∑
j

ψ i
j

))
· �n =

∫
Ωi

q. (17)
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If we let Γi j denote the interface between blocks i and j, we can write ∂Ωi =⋃ j∈N (i) Γi j . Moreover, because each local 
solution is defined to be nonzero for a single interface,∫

Γik

(
Kλt∇ψ i

j

) · �n = 0 for k �= j. (18)

Hence, the transmissibility for each interface depends only on a single local solution, giving

Tij(p̃i − p̃ j) = −
∫
Γi j

(
Kλt∇ψ i

j

) · �n, j ∈ N (i). (19)

Source terms are handled in the integral sense, with the optional correction functions cij being subtracted to avoid 
accounting for fine-scale effects twice

Q i =
∫
Ωi

q +
∑
j

∫
∂Ωi

(
Kλt∇cij

) · �n (20)

Once these quantities are computed, we can set up the coarse-scale problem

Acpc = qc (21)

where the entries of the matrix and right hand side are

(Ac)i j =
{
Tij i �= j∑

j∈N (i) −Tij i = j and (q)i = Q i . (22)

Finally, if we construct a prolongation operator B of size N f × Nc , in which entry i, j corresponds to the value of basis 
function (7) for coarse block j in fine cell i, the fine-scale pressure is approximated as

p ≈ Bpc + c. (23)

2.5. Conservative reconstruction

The multiscale fine-scale solution will not be conservative everywhere because, like most other multiscale methods, 
the initial pressure produced by the MsTPFA method only fulfills (1) approximately. If the resulting flux field is to be 
passed on to a fine-scale transport solver, it must be mass conservative on the fine scale to avoid unphysical values in the 
transport solver. For the MsFV method, this is typically handled by partially disconnecting the fine-scale flux field from 
the fine-scale pressure field, and solving local flow problems to reconstruct mass-conservative fluxes corresponding to the 
inexact multiscale pressure field. Herein, we will employ the same strategy as used in the MsFV method, which we for 
completeness will outline briefly below.

Conventional solvers let the fluxes be defined by the pressure, i.e., by applying Darcy’s law directly,

�v = −Kλt∇p. (24)

As the coarse-scale pressure is resolved by a flux conservative system (19), the multiscale fine-scale pressure gives a con-
servative flux field over the coarse-block interfaces. We can exploit this by solving local flow problems

−∇ · (Kλt∇ p̄) = q, (25)

in the local domain Ω with Neumann boundary conditions sampled from the block interfaces where the fine-scale pressure 
is conservative,

(Kλt∇ p̄) · �n = (Kλt∇p) · �n on ∂Ω. (26)

We proceed to apply (24) to the reconstructed pressure p̄, giving a new flux field that is conservative everywhere. For 
further discussion of these local problems as well as the operator analogue thereof the reader is referred to [11].

2.6. Iterative multiscale formulation

The pressure extrapolation described above gives an initial approximation to the fine-scale flow equations that may or 
may not be sufficiently accurate. To increase the accuracy of the multiscale approximation, the traditional MsFV method has 
been extended to an iterative formulation, the i-MsFV method [37,10], in which the mass-conservative multiscale operator is 
combined with an inexpensive iterative solver to systematically drive the fine-scale residual towards zero. In this multigrid-
like approach, the coarse-scale multiscale operator will resolve global features in the pressure field, while the smoother is 
used to construct correction terms that account for errors in the prolongated pressure field.
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If we let pn
c denote the coarse pressure at step n and let cn be some correction term defined such that∥∥A(Bpn
c + cn

)− q
∥∥≤ ∥∥ABpn

c − q
∥∥, (27)

a more accurate fine-scale pressure approximation is obtained by setting pn+1
s = Bpn

c + cn . While this pressure reduces the 
residual error of (1), it is no longer guaranteed to be conservative on the coarse scale. Hence, instead of using pn+1

s directly, 
we will construct a new coarse-scale solution pn+1

c that is mass-conservative and accounts for the residual effects of c so 
that

pn+1 = Bpn+1
c + cn. (28)

Inserting (28) into (1) and applying the discrete restriction operator

χi j =
{
1, if cell j is in coarse block i,
0, otherwise,

(29)

gives the coarse-scale problem

χ A
(
Bpn+1

c + cn
)= χq. (30)

Defining Ac = χ AB and moving the actions of the correction function to the right-hand side, the new coarse-scale systems 
reads,

Ac p
n+1
c = χ

(
q − Acn

)
. (31)

Substituting the solution of (31) into (28) gives a new fine-scale pressure approximation that is conservative on the coarse 
scale since the coarse interface fluxes from c have been accounted for via the modified right-hand side. This is referred to as 
a multiscale cycle. It should be noted that writing Ac = χ AB gives a coarse-scale discretization that is not strictly two-point 
because the basis functions may overlap at the vertices of the coarse blocks, which will result in additional weak multipoint 
couplings, i.e., couplings between coarse blocks that are not facial neighbors. To see this, think of a grid with a Cartesian i jk
topology that has been given a tensor-product partition so that the coarse grid has a Cartesian I J K topology. Here, there 
will be weak couplings between block (I, J , K ) and its neighbors (I ± 1, J ± 1, K ± 1), even if these blocks do not share 
a coarse face. Such couplings will not appear if the only connection between neighboring coarse blocks are through faces 
(e.g., as will be the case for 2D PEBI grids).

So far, no assumptions have been made about exactly how c is obtained, other than it should fulfill (27). In general, if 
we assume that the coarse-scale operator is able to resolve the global features of the system, any significant errors will be 
on the sub-scale. Hence, the local solver can be chosen in the same way as in traditional multigrid methods. A local solver 
for multiscale methods should thus be

• able to reduce localized errors present in the initial prolonged coarse-scale solution;
• inexpensive to construct and apply;
• local so that the domain-of-dependence for each node in the local solver should be small.

There are many methods that fulfill these requirements. For our purposes, the most important distinction is between solvers 
that require a setup phase and those who do not. Methods without a setup phase include iterative solvers such as Ja-
cobi/Gauss–Seidel and block variants thereof, whereas methods with a setup phase are exemplified by various multigrid 
methods as well as LU-based preconditioners in which an incomplete factorization is used to approximate A . Local solvers 
with a setup cost are likely useful when several multiscale cycles are required, while iterative solvers without setup cost 
are more useful when only a modest number of iterations are required, for instance when a single multiscale cycle gives 
satisfactory results. The choice of local solver and its impact on the convergence rate and computational cost of the overall 
multiscale method is thoroughly discussed by Wang et al. [20]. In particular, the authors show that correction functions 
are not very good local solvers. We have conducted an independent series of numerical experiments, which confirm these 
observations. Herein, however, our main focus is on the coarse-scale solver, and to illustrate the concept we will only utilize 
what is likely the simplest local solvers in each category to simplify the treatment and implementation. For a method with-
out a setup phase, we will use Jacobi iterations and when more iterations are used, we will use incomplete LU factorization 
with zero fill-in (ILU-0) along with the multiscale operator stabilized with GMRES. Likewise, we have chosen to include 
correction functions since they previously have been used in a large body of literature on the MsFV method.

Although it is possible to use the approach described above to iterate to any desired accuracy, it may not be compu-
tationally feasible compared with other methods such as algebraic multigrid, which may achieve better performance if the 
target is to reduce the fine-scale residual to machine precision. In most workflows, however, one will typically seek com-
putational savings by aborting the iteration of the multiscale pressure solution before it reaches machine precision accuracy 
or even just use the initial MsTPFA approximation, followed by a mass-conservative reconstruction. In the next section, we 
will therefore look at both the initial solution quality, the quality after a single cycle with a few Jacobi iterations, as well as 
convergence for Ms-ILU0-GMRES.
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2.7. Connection to upscaling techniques

The MsTPFA method described herein can be seen as a multiscale realization of the standard local interface based trans-
missibility upscaling. It should be noted that while this paper is focused strictly on this specific coarse scale operator, it 
is possible to use the same framework to create multiscale-like methods from conventional upscaling techniques. As such, 
our work is similar to [32–35]. Further avenues of research would include incorporating generic, global solutions in the 
creation of the basis functions or by creating multipoint-like stencils by changing the local problems. Even though we have 
specifically chosen the coarse faces for the partition of unity and the local solutions to get a TPFA-like operator, another 
choice would be to include the corners to get a MPFA-like stencil.

3. Numerical results

The MsTPFA method has been implemented as an open-source prototype as part of the msfvm module in MRST [38,29]. 
To validate the method, we will consider several different test cases with both varying permeability and geometry. In all 
examples, we will compare the approximate multiscale solutions to the fine-scale reference solutions using scaled L∞ and 
L2 norms,

‖p‖∞ = ‖p f s − pms‖∞
‖p f s‖∞

, ‖p‖2 = ‖p f s − pms‖2
‖p f s‖2

. (32)

As the proposed multiscale formulation has the advantage of being very flexible with regards to grids, coarse grids that 
adapt to permeability features will be used when appropriate. To produce adapted grids, we will use METIS [39] configured 
with the transmissibilities of the fine-scale system as weights for the edge-cut minimization algorithm. We also allow the 
coarse blocks to vary by 75% in cell number to give the partitioning algorithm some freedom to capture fine-scale details. To 
give fairly regular blocks in regions of low contrast, the ‘-minconn’ option was specified. In our experience, this is a simple 
and robust method for generating a coarse partition with a given number of primal blocks that provide a priori adaption 
to local features. This method is also applicable for cases where flow-adapted coarsening [40] is intractable because of grid 
size or when boundary conditions and/or well patterns may change during the simulation or between multiple forward 
simulations. Although it would be possible to also use information of the boundary conditions in the construction of the 
coarse grid, we will for simplicity not consider such coarse grids here.

3.1. SPE10

Model 2 from the 10th Comparative Solution Project [41] was originally designed as a challenging benchmark for upscal-
ing method, and computing flow on subsets of this model has over the years been established as the de facto for multiscale 
methods. The model is part of a Brent sequence and contains two formations that are qualitatively different: the Tarbert 
formation represents a prograding near-shore environment in which the permeabilities follow a lognormal distribution, giv-
ing smoothly varying heterogeneities that most multiscale methods are capable of resolving quite well. The Upper Ness 
formation is fluvial with long high-permeable sand channels appearing in the west-east direction interbedded with low-
permeable mudstone. The combination of long correlation lengths and strong abrupt changes makes the Upper Ness very 
challenging to resolve correctly.

We have run a large number of tests on 2D and 3D sub-samples of the SPE10 model. For brevity, we only report two 
examples that illustrate representative behavior of the MsTPFA method and highlight differences with the MsFV method.

Horizontal layers. As a first example, we will consider two horizontal 60 × 220 sub-samples: the top layer of the Tarbert 
formation (logical index k = 1 in the full model) and a highly channelized layer of the Ness formation (k = 45). In both 
cases, flow is driven by a pressure drop from the east to the west boundary. We consider two different coarse grids: 
a uniform 12 × 22 partition and a 264-block partition produced by METIS, giving an upscaling factor of 50. Fig. 7 shows 
the permeability fields, the coarse grids, and the MsTPFA approximate solutions before and after five iterations with a 
block-Jacobi smoother. The corresponding errors are reported in Table 1, while Fig. 8 reports the reduction in residual for a 
full multiscale iteration.

For the Tarbert layer, the coarse-scale operator is well behaved and adapting the coarse partition to structures in the 
fine-scale transmissibilities only reduces the initial error but does not affect the convergence of subsequent iterations. For 
the Upper Ness layer, we observe several regions with non-monotone pressure caused by weak multipoint connections in the 
coarse-scale stencil, which are induced because the basis functions will overlap at the coarse-grid vertices for tensor-product 
partitions, as mentioned in Section 2.6. Adapting the coarse grid to the transmissibilities in the fine grid gives partitions 
that do not follow the axial directions and hence have less overlap effects, which in turn diminishes the non-monotone 
behavior and significantly improves the accuracy of the coarse-scale stencil. As a result, the error and convergence that are 
comparable to the Tarbert layer. Similar behavior has been observed in many other experiments: rectangular partitions may 
introduce certain non-monotonicities for the MsTPFA method, and these are slightly stronger in 3D for non-unit aspect and 
anisotropy ratios, but can to a large extent be mitigated by using partitions that adapt to fine-scale transmissibilities.
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Fig. 7. Multiscale solutions for two horizontal sub-samples of the SPE10 data set.

Table 1
The error in the pressure solution for two horizontal subsets of SPE10 computed for two different coarse grids by a single multiscale cycle without 
smoothing and with five Jacobi iterations for both the MsTPFA and the MsFV methods.

Setup of model Multiscale Multiscale + Jacobi

Permeability Solver Coarse grid L2 L∞ L2 L∞
Tarbert MsFV uniform 0.0069 0.0586 0.0035 0.0239
Tarbert MsTPFA uniform 0.0735 0.2641 0.0450 0.1389
Tarbert MsTPFA adapted 0.0262 0.1741 0.0158 0.0798

Upper Ness MsFV uniform 0.9525 19.353 1.3696 11.227
Upper Ness MsTPFA uniform 0.3331 3.1365 0.2395 2.2114
Upper Ness MsTPFA adapted 0.0427 0.1415 0.0243 0.0577

Fig. 8. Convergence of multiscale cycles to a tolerance of 10−8 on two horizontal sub-samples of the SPE10 data set. The y-axis is logarithmic and normal-
ized to the largest initial residual error and the convergence of the final solution.

In Table 1 we have also included results computed by the MsFV method on the 12 × 22 partition for comparison. In our 
experience, the MsFV method is unusually accurate compared with other multiscale methods for problems with moderate 
heterogeneities, flow driven by a pressure drop in one of the axial directions, and Cartesian grids (with unit aspect ratios). 
The unusually low error that can be observed in such cases is explained by the fact that the reduced boundary conditions 
used to localize the computation of basis functions in the MsFV method are not very different from the true flow field. 
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Fig. 9. Multiscale solutions computed by the MsFV and MsTPFA methods before and after smoothing for the 3D models using permeability sampled from 
the SPE10 data set.

The localization of the basis functions in the MsTPFA method is less accurate, and hence the error is larger than for the 
MsFV method. On more realistic flow scenarios, in which the flow is not essentially unidirectional, the reduced boundary 
conditions of the MsFV method will generally not be more representative than those of the MsTPFA method, and the 
accuracy of the two methods will be comparable. We have previously observed the same trend when comparing the MsFV 
and the MsMFE method, see e.g., [18]. For the Upper Ness sub-sample, and other strongly heterogeneously cases, MsFVs
multipoint coarse-scale stencil will typically introduce strong unphysical oscillations that may prevent iterative versions of 
the method from converging properly, see [18,17,19,42–44,20,15].

3D box model, slip fault. In this example, which is taken from [15], we compare the MsTPFA method with the MsFV method 
on 3D box models with and without a single slip fault. Our current method for generating the wire-basket ordering [30,31]
needed by MsFV is not yet sufficiently robust to always produce a sensible dual partition for arbitrary transmissibility-
adapted primal grids generated by METIS, and hence we only consider uniform primal partitions. Fig. 9 reports a comparison 
of the MsFV and MsTPFA solutions before and after smoothing for four different 3D models. For the relatively smooth Tar-
bert formation, the MsFV method computes solutions that are qualitatively more accurate than those of the MsTPFA method, 
except for the small unphysical solutions that are difficult to spot in the plots. For the strongly heterogeneous Upper Ness 
formation, on the other hand, the MsFV method introduces large unphysical oscillations that are amplified by smoothing it-
erations, whereas the MsTPFA method is able to capture a qualitatively correct picture of the fine-scale solution. Altogether, 
this example is a good illustration of the purpose of the MsTPFA method: by sacrificing a certain accuracy for problems 
with smooth heterogeneity, one gains significantly in robustness for strongly heterogeneous problems.

3.2. Realistic bed model

One of the main sources of unstructured connections in reservoir modeling is pinch-outs, for which erosion or other 
geological features lead to inactive or highly degenerate cells. To get a test case with a large number of pinch-outs, we con-
sider a highly detailed model designed to reproduce realistic, small-scale bedding structures on a scale much smaller than 
a single full reservoir simulation block. The model contains approximately 90 000 fine cells and has previously been used 
as test case for the MsMFE method [22] and the MsFV method [15]. Even though the domain is rectangular in appearance, 
almost every cell contains non-neighboring connections and degenerate features. The variance of the permeability distribu-
tion is for the most part modest, but intersecting layers of shale make the model especially challenging for the localization 
assumption in the MsFV method. This type of model is typically built as part of an upscaling workflow to determine effec-
tive directional permeability for a given lithofacies and to identify net pay below petrophysical log resolution. Hence, we 
use Dirichlet boundary conditions to impose a constant pressure drop in the horizontal direction.

We consider three different partition methods that all generate a coarse model with 54 blocks: (i) a simple uniform 
partition in index space as used for the MsFV method in [15]; (ii) a METIS partition as discussed above; and (iii) a METIS 
partition in which we do not allow coarse blocks that mix the low-permeable shale and the high-permeable background. 



286 O. Møyner, K.-A. Lie / Journal of Computational Physics 275 (2014) 273–293

Fig. 10. Multiscale solutions computed on different partitions for a high-resolution, core-scale bedding model.

Table 2
Error in the pressure solution for a SBED model containing large amount of pinched and inactive cells for some coarse blocks. Here, METIS* refers to an 
alternate partition in which shales and sand are enforced as separate partitions.
Coarse grid Blocks MsTPFA MsTPFA + Jacobi

L2 L∞ L2 L∞
Uniform 54 0.1048 0.9507 0.0722 0.4019
METIS 54 0.0967 0.9461 0.0744 0.5111
METIS* 54 0.1166 0.9859 0.0909 0.3849
METIS* 200 0.0899 0.9867 0.0665 0.2108
METIS* 1000 0.0448 1.0113 0.0273 0.2275
METIS* 5000 0.0202 0.6534 0.0109 0.0594

For partitions with many blocks, METIS has a tendency to create strongly convex blocks (e.g., consisting of a set of thin shale 
cells plus a column of sand cells), which will typically produce negative transmissibilities for the coarse system. The third 
approach is introduced to avoid creating such blocks and uses a straightforward modification of the transmissibility graph 
so that sand and shale cells are partitioned separately into smaller regions based on transmissibilities. Fig. 10 compares the 
initial multiscale solutions obtained for the three different partition strategies. Errors in L2 and L∞ norm before and after 
smoothing iterations are reported in Table 2. For comparison, the figure and table also include results obtained on finer 
resolutions for the third partition method. With uniform partition, the multiscale solution has a strong patchy behavior that 
cannot be rectified by smoothing iterations. Using METIS to partition the cells gives a qualitatively correct solution, except 
for a small region of unphysical pressure values which are efficiently removed by smoothing cycles. When partitioning sand 
and shale separately, almost one third of the 54 blocks are required to represent disconnected shale units, which leaves 
METIS less freedom to create a good partition of the sand volume in which most of the flow occurs. As a result, the 
corresponding multiscale solution has more grid artifacts than for the second strategy, but after smoothing the L∞ error is 
lower than for the other methods.

The third strategy is more effective for a higher number of coarse blocks. To demonstrate this, we consider a wide 
range of coarsening degrees ranging from 54 to 5000 coarse blocks. The histogram in Fig. 11 confirms that the initial L2
error decays with the size of the coarse blocks. The right-hand plot in Fig. 11 reports reduction in residual by an iterative 
Ms-ILU-GMRES solver. With only 54 blocks, the reduction in residual decays after the first few iterations, indicating that the 
multiscale coarse operator only contributes significantly to the initial reduction of the residual. With 5000 blocks on the 
other hand, the multiscale coarse operator contributes significantly to reduce the residual all the way to machine precision.

3.3. The Norne Field

For this example, we will use the corner-point grid from the simulation model of the Norne reservoir from the Norwegian 
Sea. The simulation model has a layered permeability distribution and contains faults, eroded cells and pinch-out leading 
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Fig. 11. The L2 error for the bed model as a function of varying number of coarse blocks. The histogram shows the error of the initial multiscale solution, 
and the line plots show the reduction in the logarithm of the preconditioned L2 residual for the corresponding Ms-ILU-GMRES solver.

Fig. 12. The grid and permeability for the Norne Field case along with producer wells and boundary conditions.

Table 3
Error in the pressure solution for a realistic simulation model with geometry and permeability data from the Norne Field. Approximate solutions are 
compute for three different coarse grids by a single multiscale cycle without smoothing and with ten Jacobi iterations.
Coarse grid MsTPFA MsTPFA + Jacobi

L2 L∞ L2 L∞
Uniform 0.0782 0.7771 0.0554 0.3338
Fault-adapted 0.0599 0.9039 0.0387 0.1259
METIS 0.0662 0.9132 0.0402 0.0971

to non-neighboring connections as well as jumps in permeability. The grid contains approximately 45000 fine cells, out of 
which 25% have either more or less than six faces, with the number of faces ranging from four to nineteen. The input data 
uses a description based on a structured topology, but once processed, the resulting grid has a non-structured topology and 
irregular geometry. To give flow across the entire domain, two vertical producers operating at fixed bottom-hole pressure 
pbhp = 100 bar are added to the reservoir along with a 500 bar pressure boundary condition at one of the outer boundaries 
at the opposite side of the wells, see Fig. 12.

We will simultaneously consider three different coarse partitions that give approximately 200 coarse degrees of freedom: 
(i) a simple uniform partition in index space that takes neither geometry nor permeability into account, but gives an 
unstructured coarse grid because of inactive cells in the fine grid; (ii) a uniform partition but using geometry information 
to split blocks across faults; and (iii) a purely topological partition produced by METIS. Table 3 reports errors for the three 
partitions. The last two partitions introduce large errors near the boundaries of the coarse blocks and thus have large initial 
L∞ errors. However, these errors can be efficiently removed by a few inexpensive Jacobi iterations. The uniform partition 
has lower initial L∞ error, but since the coarse-scale operator is less accurate, the L∞ error is significantly higher compared 
with the other two partitions after a single multiscale cycle. Similar results are reported for the MsFV method with the 
fault-adapted partition in [15]; for the uniform partition, the MsFV method failed to produce a solution, and for the METIS 
partition, generating a dual partition was not feasible.

To investigate the robustness of the multiscale operator, we use METIS to generate ten different coarse partitions, with 
number of blocks ranging from 10 to 5000, giving upscaling factors from 9 to 4500. The left plot in Fig. 13 reports the L2
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Fig. 13. The L2 error for the Norne Field for varying number of coarse blocks. The histogram shows the error of the initial multiscale solution, and the line 
plots show the reduction in the logarithm of the preconditioned L2 residual for the corresponding Ms-ILU-GMRES solver.

Fig. 14. An example of a structurally complex reservoir model: the Gullfaks Field. The two left-most plots show the reservoir geometry with horizontal 
and vertical permeability (log-scale) and wells colorized by type. The right plot shows a histogram of the number of faces per cell compared to the Norne 
model, which is significantly less structurally complex.

error of the initial multiscale solutions, whereas the right plot shows convergence the full Ms-ILU-GMRES iterative method. 
The convergence of the Ms-ILU-GMRES solver is similar to the results for the SBED example, demonstrating the same ro-
bustness and convergence even in the presence of faults and realistic geometry. For coarse partitions, the convergence of 
the method is very slow and from the kink in the residual plot one can infer that the multiscale coarse operator contributes 
little to the convergence after a few cycles when using less than one hundred blocks. Continued reduction of the residual is 
therefore left to the relatively inefficient ILU and GMRES iterations. However, each cycle has a very low computational cost 
and the first few cycles reduce the error significantly. Hence, one can use MsTPFA on a very coarse grid as an alternative to 
proxy models in workflows that do not require high simulation accuracy. On the opposite end, using more than one thou-
sand blocks gives a very low initial error and rapid convergence, but the cost of each multiscale cycle is now significantly 
higher. Optimal efficiency is expected to lie somewhere in between, corresponding to an upscaling factor of a few hundred. 
Our prototype is not yet parallelized and fully optimized and this reason we refrain from a thorough study of efficiency.

The figure also reports the convergence history for the uniform partition and the uniform partition with splitting of 
blocks containing faults. For both, the reduction in the residual is comparable to that of the METIS partitions with approx-
imately the same number of blocks for the first 5–10 iterations, but then decays significantly and follows the trend of the 
50-block METIS partition. For the 200-block and 250-block METIS partitions, on the other hand, we observe no decay in the 
reduction rate, which demonstrates that using a permeability-adapted coarse partition gives a significantly better multiscale 
operator.

3.4. The Gullfaks Field

In the last example, we will demonstrate that the MsTPFA method is capable of handling models with a high structural 
complexity. To this end, we consider a simulation model of the Gullfaks Field, an oil and gas field in the Norwegian sector 
of the North Sea. The simulation model is represented using an 80 × 100 × 52 corner-point grid in which 216334 cells are 
active. The geometry of the Gullfaks model is highly irregular because of the large number of faults. Almost 44% of the 
cells have non-neighboring connections, and after the non-matching grid has been processed into a matching unstructured 
grid, the number of cell faces range from four to thirty-one as shown in Fig. 14. The permeability varies several orders of 



O. Møyner, K.-A. Lie / Journal of Computational Physics 275 (2014) 273–293 289

Table 4
Errors in the pressure solution computed by the MsTPFA method for the Gullfaks model.

Coarse grid No. blocks MsTPFA MsTPFA + Jacobi

L2 L∞ L2 L∞
Uniform 605 0.0581 0.3058 0.0518 0.2893
METIS 10 0.1049 0.3379 0.1001 0.2390
METIS 100 0.0519 0.3041 0.0429 0.2935
METIS 500 0.0324 0.2969 0.0262 0.2936
METIS 1000 0.0303 0.3016 0.0230 0.1769
METIS 10000 0.0206 0.1994 0.0107 0.1070

magnitude and contains impermeable regions in the horizontal permeability, making this the absolutely most challenging 
test case in this paper.

To drive flow in the model, we consider a simple pattern of vertical wells distributed somewhat unrealistically throughout 
the model. The wells are controlled by bottom-hole pressure and the average injector pressure is set to 500 bars while the 
producers operate at an average pressure of 250 bars. The injectors and producers have per well variations in an order of 
100 bars to make the pressure distribution more challenging to capture accurately.

As in the earlier models, we consider both a uniform partition as well as a variety of automatically generated partitions 
of increasing resolution to investigate systematic error reduction. The uniform coarse grid has local dimensions of 7 ×7 ×10, 
giving an upscaling factor of approximately 350 once eroded and pinched cells have been removed. No special restrictions 
are added to the unstructured coarse partitions and we do not use correction functions. The results can be seen in Table 4
and Fig. 15. As can be seen from the figures and the table, the pressure field is easily resolved by the MsTPFA method, which 
gives high-quality pressure solutions for arbitrary degrees of coarsening. Using increased resolution of the coarse partition 
results in higher solution quality and fewer iterations required for the Ms-GMRES-ILU solver.

3.5. Time-dependent problems

The MsTPFA method and other methods like it are not primarily intended as general-purpose linear solvers for elliptic 
Laplace-type equations. Instead, the primary appeal lies in their ability to use non-converged pressure solutions to recon-
struct conservative flux fields that can be coupled with a transport solver to solve time-dependent multiphase problems. To 
demonstrate this ability, we revisit the two SPE10 sublayers discussed above, adding a flux boundary condition that injects 
a total of one pore volume over a year. The model is initially filled with oil (5 cP viscosity) and is produced by injecting 
water (1 cP viscosity) along the east boundary. Quadratic relative permeabilities are assumed for both fluids.

When solving problems where coefficients change during the simulation, adaptive recomputation of basis functions [45]
can be utilized to accelerate the simulation. The idea is to update basis functions only when the change in saturation, or in 
total mobility, inside a coarse block exceeds a certain prescribed tolerance. We will use a simple criterion: if the saturation 
in any cell associated with a given local solution has changed by more than 0.25 since the previous update, the whole local 
solution is updated.

Snapshots of the simulations are reported in Fig. 16. We are using the same number of coarse blocks as previously, 
without any iterations. As can be seen from the figure, the multiscale solutions are in a good agreement with the fine-scale 
reference solutions, demonstrating that the MsTPFA fluxes can be used to solve transport problems. By plotting the number 
of times a cell is updated during the simulation, as shown in Fig. 17, we see that basis functions are updated more often in 
regions of high flow. For the Ness case, in particular, basis functions are hardly updated in low-permeability regions since 
these are not swept by the water front.

4. Concluding remarks

In this paper, we have presented a novel multiscale two-point flux-approximation (MsTPFA) method that relies on al-
gebraic manipulations of discrete linear systems arising from standard fine-scale, finite-volume discretizations. The method 
is based on much of the same ideas as the multiscale finite-volume (MsFV) method and can utilize key technologies de-
veloped for this method, including reconstruction of conservative fine-scale fluxes and use of correction functions to more 
accurately capture effects from gravity, wells, etc. that are not accounted for in the basis functions. Moreover, the method 
can be cast within iterative frameworks that have been developed for the MsFV method to systematically drive fine-scale 
residuals towards machine precision. The main advantage of such an iterative framework compared with multigrid methods 
is that the iteration can be aborted at any step to reconstruct conservative fine-scale fluxes.

Two important aspects, the construction of coarse partitions and the structure of the coarse-scale system, distinguish 
the MsTPFA from the MsFV method and makes the former more flexible and robust. To localize basis functions, the MsFV 
method uses reduced, compatible boundary conditions that are vulnerable to strong heterogeneities. As a result, the method 
forms multipoint coarse-scale systems that may produce strongly non-monotone solutions. The MsTPFA method, on the 
other hand, uses a partition of unity derived by solving simple flow problems (tracer partitions) to form a coarse-scale 
system that is virtually a two-point discretization that computes almost monotone pressure solutions. This means that 
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Fig. 15. Multiscale solutions computed on different partitions for the Gullfaks model and the corresponding convergence plots. The histogram shows the 
error of the initial multiscale solution, and the line plots show the reduction in the logarithm of the preconditioned L2 residual (scaled by the largest initial 
residual) for the corresponding Ms-ILU-GMRES solver.

while the MsTPFA method is not as accurate as the MsFV method on smooth heterogeneities, it is significantly more robust 
on highly heterogeneous media with non-unit anisotropy and aspect ratios, which is particularly advantageous when the 
method is used as part of an iterative framework in combination with an inexpensive smoother. If a good starting point 
is provided for the smoother, high-quality solutions can be obtained within a few multiscale cycles even for problems 
with strong heterogeneities. As a simple rule of thumb, we suggest to use the MsTPFA method unless you know that the 
MsFV method will produce a stable coarse-scale operator, which, for instance, is the case for problems that are moderately 
heterogeneous and described on a Cartesian grid.

Secondly, while the MsFV method requires a compatible primal–dual partition to compute basis/correction functions and 
generate coarse-scale systems, the MsTPFA method is based on a single coarse partition and hence shares the flexibility 
that has previously been reported for the multiscale mixed finite-element method. The use of a single coarse partition 
makes the MsTPFA method simple to implement for general unstructured grids. Extensive numerical tests on stratigraphic 
grids with erosion, pinch-outs, faults, and other types of degeneracies and nonconformities show that the method is very 
robust with regard to the choice of coarse partitions and can produce approximate solutions that resemble the fine-scale 
reference for almost arbitrary degrees of coarsening. The method may still have grid effects that reduce the quality of the 
approximate solutions. However, such grid effects, as well as monotonicity problems, can be significantly reduced by using 
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Fig. 16. Multiscale solutions for a waterflood on two horizontal sub-samples of the SPE10 data set (Layers 1 and 45, respectively).

Fig. 17. The number of basis updates per fine cell for the MsTPFA-simulations reported in Fig. 16.

coarse partitions that adapt to the geometry and heterogeneities of the medium. Applying such grids to the multiscale 
finite-volume method, while simultaneously improving the coarse-scale operator, is a subject of ongoing research.

Finally, although the details are not yet worked out, we believe that the tracer partition idea can be extended to cre-
ate other prolongation operators corresponding to multipoint coarse-scale discretizations. For Cartesian grids, the obvious 
starting point is to subdivide faces into multiple patches and create partition-of-unity functions that reflect the desired 
multipoint connections. For unstructured coarse and fine grids, the extension is less obvious.
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A wide variety of multiscale methods have been proposed in the literature to reduce 
runtime and provide better scaling for the solution of Poisson-type equations modeling 
flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) 
method that is designed to be applicable to both rectilinear grids and unstructured grids. 
Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying 
fine grid and a set of local prolongation operators (multiscale basis functions) that map 
unknowns associated with the fine grid cells to unknowns associated with blocks in the 
coarse partition. These mappings are constructed by restricted smoothing: Starting from a 
constant, a localized iterative scheme is applied directly to the fine-scale discretization 
to compute prolongation operators that are consistent with the local properties of the 
differential operators.
The resulting method has three main advantages: First of all, both the coarse and the 
fine grid can have general polyhedral geometry and unstructured topology. This means 
that partitions and good prolongation operators can easily be constructed for complex 
models involving high media contrasts and unstructured cell connections introduced by 
faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition 
can be adapted to geological or flow-field properties represented on cells or faces to 
improve accuracy. Secondly, the method is accurate and robust when compared to existing 
multiscale methods and does not need expensive recomputation of local basis functions to 
account for transient behavior: Dynamic mobility changes are incorporated by continuing 
to iterate a few extra steps on existing basis functions. This way, the cost of updating the 
prolongation operators becomes proportional to the amount of change in fluid mobility 
and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB 
method is formulated on top of a cell-centered, conservative, finite-volume method, it is 
applicable to any flow model in which one can isolate a pressure equation. Herein, we only 
discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled 
by the black-oil equations, is discussed in a separate paper.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The general movement of fluids in a hydrocarbon reservoir is induced by global forces like gravity and pressure differ-
entials. The micro-scale displacement, however, is determined by small-scale flow paths throughout highly heterogeneous 
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porous rocks. Flow modeling therefore needs to take into account processes taking place on a wide range of spatial and 
temporal scales. Resolving all these scales using a single high-resolution grid is not computationally tractable. Instead, the 
traditional approach is to use upscaling or homogenization techniques to develop effective parameters that represent sub-
scale behavior in an averaged sense on a coarser scale. Such methods have proved to be very effective for problems with 
scale separation. However, porous rocks seldom exhibit clear scale separation and upscaling techniques are therefore not 
as robust and accurate as one would wish. Effective properties are generally process dependent, and because one needs to 
assume a specific set of localization conditions to compute effective properties, upscaling techniques tend to only produce 
reliable results for a limited range of flow scenarios.

In an attempt to overcome some of the limitations of upscaling methods, so-called multiscale discretization meth-
ods have been proposed over the past two decades to solve second-order elliptic equations with strongly heterogeneous 
coefficients [1]. This includes methods such as the generalized finite-element methods [2], finite-element methods [3], 
numerical-subgrid upscaling [4,5], multiscale mixed finite-element methods [6,7], multiscale finite-volume methods [8], 
mortar mixed finite-element methods [9], and multiscale mimetic methods [10], to name a few. The key idea of all these 
methods is to construct a set of prolongation operators (or basis functions) that map between unknowns associated with 
cells of the fine geo-cellular grid and unknowns on a coarser grid used for dynamic simulation. The prolongation oper-
ators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling 
methods, but unlike effective parameters, the multiscale basis functions have subscale resolution. The result is that local 
fine-scale variations can be systematically and correctly accounted for when constructing a reduced coarse-scale problem to 
study the macro-scale displacement driven by global forces. There is a large body of literature that develops such multiscale 
methods and studies their mathematical and numerical properties for idealized and simplified problems like the variable-
coefficient Poisson equation formulated on Cartesian box geometry. However, to provide value for commercial applications, 
these methods also need to be developed so that they can handle the complexity in flow physics and geological description 
seen in real-life simulation models. Over the past decade, there have primarily been two main developments in this direc-
tion, focusing on the multiscale finite-volume (MsFV) method [8] and the multiscale mixed finite-element (MsMFE) method 
[6,11,12].

Research on the MsFV method has mainly focused on extending the method from incompressible flow to realistic flow 
physics [13–18] and on developing iterative approaches that ensure that the method converges to the correct solution of the 
underlying fine-scale discretization [16,19–21]. However, with a few notable exceptions [22–26], the MsFV method has so 
far only been studied on grids with a Cartesian topology. (An alternative finite-volume formulation is also discussed in [27].)
Such grids are highly desirable in terms of accuracy, efficiency, and robustness of the numerical discretizations and solvers, 
and modeling approaches used in industry are therefore predominantly structured in a global sense. However, to accurately 
account for structural features like faults, joints, and deformation bands and stratigraphic characteristics like channels, lobes, 
clinoforms, and shale/mud drapes, unstructured connections are introduced locally and cell geometries tend to be (highly) 
skewed or degenerate. Similarly, unstructured connections may be introduced by local grid refinement, e.g., in the near-well 
zones. The challenge in extending the MsFV method to realistic stratigraphic grids, or in the more general sense to grids 
with fully unstructured topologies, lies in the underlying primal–dual coarse partition. The MsFV method computes basis 
functions on a dual partition to define transmissibilities in a multi-point coarse-scale discretization. Approximate solutions 
computed from these basis functions is then used to define boundary conditions for another set of flow problems on the 
primal partition to reconstruct conservative fine-scale fluxes. We have previously demonstrated that compatible primal–dual 
partitions can be generated for grids with degenerate cells and unstructured topologies if these grids are not too irregular 
[25]. However, the coarsening process is difficult to automate in a robust manner, and so far our most advanced algorithm 
is only able to provide semi-structured partitions for a limited range of coarsening factors. It is also well known that highly 
contrasted media and large anisotropy ratios may introduce strong non-monotonicities that are hard to get rid of in the 
iterative stages of the method [21].

For the MsMFE method, on the other hand, the main focus has been on making the method as geometrically flexible 
as possible and developing coarsening strategies that semi-automatically adapt to barriers, channels, faults, and wells in a 
way that ensures good accuracy for a chosen level of coarsening. The resulting method can efficiently predict flow patterns 
that are qualitatively correct for highly heterogeneous and geologically complex reservoir models under the assumption of 
incompressible flow [28–31]. The method has also been extended towards realistic compressible flow physics [32,33], but 
this has proved difficult to achieve in a fully robust manner because of the inherent assumption of a pressure equation 
written on mixed form. In a recent work [34], we presented a fully algebraic finite-volume framework that combines the 
best features of the MsFV and MsMFE methods and developed one specific method that mimics a coarse-scale two-point 
stencil by using numerically generated partition-of-unity functions to glue together elementary flow solutions associated 
with interfaces between coarse blocks. The resulting MsTPFA method generally produces high-quality approximate solutions 
for complex industry-standard grids with high aspect ratios and unstructured connections and can easily be extended to 
incorporate realistic flow physics. However, the method admittedly requires some intricate details to define and compute 
the partition-of-unity functions. Herein, we present a new and quite different multiscale formulation that offers the same 
robustness and flexibility as MsTPFA, but is much simpler to implement and gives very accurate interpolation.

The new method constructs mappings based on restricted smoothing: Starting from initial prolongation operators that 
are defined as the characteristic functions of each coarse block (i.e., equal unity inside the block and zero outside), a 
localized iterative scheme is applied directly to the fine-scale discretization to modify the prolongation operators so that 
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they become increasingly consistent with the local properties of the differential operators. The use of weighted Jacobi 
smoothing on interpolation operators have been used with a large degree of success in the algebraic multigrid (AMG) 
community where fast coarsening is combined with simple operators constructed via one or two smoothing steps [35–38]
as an inexpensive alternative to the interpolation operators used in standard AMG [39]. Many high performance multigrid 
solvers support smoothed aggregation as a strategy for large, complex problems [40,41] due to the inexpensive coarsening 
and interpolation strategies. A series of numerical experiments show that the new MsRSB method gives highly accurate 
prolongation operators for a wide variety of block shapes, e.g., including blocks that adapt to complex geological features 
in real-world models. Moreover, whereas methods like MsFV, MsMFE, and MsTPFA recompute the prolongation operator 
locally when faced with mobility changes in the underlying grid, the new method just continues the iteration until the 
operators are sufficiently smooth. This way, the cost of updating the prolongation operator becomes proportional to the 
amount of change in fluid mobility, eschewing the typical tolerance based updates. The formulation is algebraic and can 
be applied directly to linear systems, possibly in combination with existing multiscale techniques such as local stages and 
iterative cycles [21]. Through a series of numerical experiments, which include the well-known SPE 10 data and grid and 
petrophysical properties from two Norwegian oil fields, we validate our new MsRSB method and show that it is robust 
and efficient for single-phase and multiphase incompressible flow models. In a companion paper [42] we discuss how 
to extend the method to compressible flow problems and demonstrate that it provides one order-of-magnitude speedup 
compared to a fully-implicit simulator with the constrained pressure residual (CPR) preconditioner and algebraic multiscale 
preconditioner for compressible water-injection cases. [43] reports a comparison of the MsFV, MsTPFA, and MsRSB methods 
used as iterative solvers and shows that the MsRSB either performs equally well or clearly outperforms the other two 
methods for the studied test cases.

2. Model problems

Multiscale methods, as discussed herein, are designed to efficiently compute the approximate action of second-order 
elliptic differential operators of the form ∇ · K(x)∇ , where the coefficient K(x) may exhibit orders of magnitude variations 
over short distances and contain short, intermediate, and long-range correlations. This operator primarily determines the 
pressure distribution, but may also govern temperature in thermal models.

2.1. Single-phase flow

To introduce the multiscale method and investigate its spatial approximation properties, it is sufficient to consider a 
incompressible single-phase flow in the absence of gravity, which is modeled by the variable-coefficient Poisson equation,

−∇ · (K(x)∇p(x)) = q(x), x ∈ R
d, K(x) ∈R

d ×R
d, (1)

where p is the fluid pressure, K is the permeability, and q denotes source terms. We discretize this equation using a 
standard finite-volume scheme,∑

j

vi j = qi, vij = −Tij(pi − p j), (2)

where the transmissibility Tij is associated with the interface between each pair of two cells i and j and defines a two-
point flux approximation to the flux across this interface. For a Cartesian grid in 3D, (2) gives the standard seven-point 
finite-difference stencil. The resulting linear system

Ap = q (3)

is weakly diagonally dominant because each equation represents volume conservation over a single cell.

2.2. Multiphase flow

The basic model for multiphase flow consists of conservation of mass and Darcy’s law for each phase α,

∂t
(
φρα Sα

)+ ∇(ρα �vα

)= ραqα, �vα = −λαK
(∇pα − ρα g∇z

)
(4)

Here, φ denotes porosity, g is the gravity constant, and z the coordinate in the vertical direction, whereas Sα is the sat-
uration (volume fraction) and λα = krα/μα the mobility of phase α, where krα is the relative permeability and μα the 
viscosity of the phase. This model has more unknowns than equations and we must therefore specify an additional closure 
relationship for the saturations, 

∑
α Sα = 1, as well as relationships for the phase pressures that express the individual 

capillary pressures as know functions of fluid saturations.
In the following, we only consider incompressible two-phase flow. There are several ways one can choose primary 

variables and reorganize the resulting system of equations to express it as an elliptic equation for flow (pressure and 
fluxes) and a hyperbolic equation for fluid transport. Herein, we use the pressure and saturation of the wetting phase as our 
primary unknowns, giving the pressure equation
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−∇ · (λK∇pw

)= qn + qw − ∇[λnK∇pcnw + K(λnρn + λwρw)g∇z
]
, (5)

and the transport equation

φ∂t Sw + ∇ ·
(
fw
[�v + λnK(ρw − ρn)g∇z

])− ∇ · (λnK∇pcnw
)= qw , (6)

where we have introduced the total Darcy velocity �v = �vw + �vn , the capillary pressure pcnw = pn − pw , the total mobility 
λ = λw + λn , and the fractional flow function fw = λw/(λw + λn). The three latter are known functions of Sw .

To solve the system (5)–(6), we use a sequential procedure, in which we first solve (5) to compute pw and �v and then 
hold these constant while advancing (6) one time step. For spatial discretization of (5), we use the same two-point finite-
volume scheme as for the single-phase equation, extended with upstream weighting of all terms that depend on saturation. 
(Note, however, that we could equally well have used a multipoint flux-approximation for the spatial discretization.) For (6), 
we use potential ordering to determine the upstream weighting [44] for the mobilities on the faces λα = krα/μα , which in 
most situations coincides with the upstream weighting used in the pressure solver. To allow for longer time steps, we use 
an implicit temporal discretization, giving a nonlinear discrete system that is solved with Newton’s method. If necessary, 
one can also iterate the pressure and transport steps to ensure that the residual of the combined discrete system is below 
a prescribed threshold. However, for the cases considered later in the paper, we have not found this necessary.

3. Multiscale formulation

As explained above, our definition of a multiscale method starts from a fine grid {�i }ni=1 and a coarse partition that 
defines a coarse grid {�̄ j}mj=1 so that each fine cell in � belongs to only one coarse block in �̄. We then define a numerical 
prolongation operator, P : {�̄ j} → {�i}, that maps quantities associated with the coarse blocks to quantities associated with 
the fine cells. Likewise, we define a restriction operator as the analogous map going the other way R : {�i} → {�̄ j}. In the 
implementation, these operators are represented as sparse matrices of size n × m and m × n, respectively. If we now let 
pc denote a pressure computed on the coarse grid, we can find a fine-scale approximate pressure p f by the use of the 
prolongation operator,

p f = P pc. (7)

In general, this will not solve (1) exactly no matter how accurate the coarse pressure is; all we can hope for is to compute 
a good and accurate approximation more efficiently than solving (1) directly on �.

3.1. Coarse system

To derive a linear system for pc on the coarse grid, we insert the fine-scale approximation in (7) into (3) and apply the 
restriction operator,

R (A (P pc) ) = (RAP )pc = Acpc = Rq = qc. (8)

The physical interpretation of this system depends on the restriction operator used. Two variants are reported in the litera-
ture, either a control volume summation operator or a Galerkin operator, i.e.,

(Rcv) ji =
{
1, if xi ∈ �̄ j,

0, otherwise,
or RG = P T .

Our focus is not on iterative performance, and hence it is natural to consider the control volume operator Rcv used in the 
classical MsFV method [8], which corresponds to setting the connection strength (Ac)i j from coarse block �̄i into coarse 
block �̄ j as the sum of the fluxes induced by the prolongation operator defined in block i across the interfaces of �̄ j ,∫

∂�̄ j

�v Pi · �ndS ≈
∑

(k,l)∈F j

−Tkl(P li − Pki) = Ai j

where we have defined �v Pi as the velocity of the basis function of block i, F j as the set of fine scale interfaces for �̄ j , 
represented as tuples of neighboring cells (k, l) and approximated the flux using (2).

The pressure obtained by prolongating the solution of (8) back to the fine scale is generally not an exact solution of (3), 
but we can easily compute fluxes that are conservative on the coarse grid since (8) imposes mass balance on this grid. To 
get fluxes that are conservative also on the subscale, we need to solve an additional local problem with the conservative, 
coarse-scale fluxes imposed as Neumann boundary conditions. Using these fluxes, it is possible to solve fine-scale transport 
to a high accuracy without the exact pressure being known. The disadvantage is that we risk producing negative coarse-scale 
transmissibilities, which may lead to unphysical solutions having non-monotone pressure values that violate the maximum 
principle, see e.g., [25].

To define a specific multiscale method, we must also describe in detail how to construct the prolongation operator P . As 
in most other multiscale methods, we construct P by piecing together a set of localized functions. However, before we can 
describe these so-called basis functions, we must provide more details about the coarse grid.
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3.2. Coarse grids and support regions

Multiscale finite-volume formulations rely on a combination of a primal coarse grid and an auxiliary spatial characteri-
zation to obtain localized functions and assemble them together to form the prolongation operator. For the MsFV method, 
this additional mechanism is a dual coarse grid, whereas for the MsTPFA method [34], the additional mechanism is a set 
of localized partition-of-unity functions that are computed numerically over the fine grid. Previous research has shown that 
the choice of the primal grid (and the auxiliary spatial characterization) can have a pronounced impact on the solution 
quality. We therefore want a formulation that is as flexible as possible and enables basis functions to be computed for fairly 
general coarse grids. Even for problems posed on a Cartesian mesh without faults or pinched cells, the solution can be 
greatly improved with coarse grids that adapt to local features in the permeability field or in the flow patterns [25,34,43].

The primal coarse grid is defined through a partition vector that has a single unique indicator value per fine cell, so that 
cells with the same indicator value are agglomerated into coarse blocks. For structured grids, these indicators can simply 
be based on counting, forming logically hexahedral blocks on the coarse scale, whereas a wide variety of graph-based 
partitioning algorithms can be used in the unstructured case. Let F be the index set of fine cells and let C j be the set of 
fine-scale indices corresponding to coarse block number j,

C j ⊆ F , C j ∩ Ci = ∅ ∀ i �= j, i, j ∈ [1,m], |F | = n.

Once we have defined a coarse grid, we must define the support regions that determine the support of the basis functions. 
If we let I j denote the set of all points contained in the support region for coarse block �̄ j and P j the basis function of 
coarse block j, this implies that

P j(x) > 0, x ∈ I j P j(x) = 0 otherwise.

Likewise, we define the support boundary B j as the index set of cells that are topological neighbors to the support region I j , 
but are not themselves contained in it. We also define the center of a coarse block �̄ j as xcj . This is a single point, which in 
many cases may coincide with the centroid of the coarse block. For convenience, we also define the global support boundary 
G as the index set of all fine cells that are part of the support boundary of one or more coarse blocks,

G = B1 ∪ B2 ∪ . . . ∪ Bm−1 ∪ Bm.

Finally, for each fine cell that is member of the global support boundary, we define Hi to be the set of indices of the support 
regions the cell belongs to,

Hi = { j | i ∈ I j, i ∈ G}.
To make this notation easier to visualize, we refer to Fig. 1, which shows a regular partition for a uniform Cartesian grid and 
a semi-structured partition for a PEBI grid. The figure also shows the construction of support regions, support boundaries, 
and basis functions.

Careful numerical experiments have shown that rather than setting the block centroid as the block center, we should 
choose the block centroid as the fine cell whose centroid is closest to the geometric median of the fine-scale faces that 
bound the block. For regular coarse grids, the two choices coincide, but the geometric median gives basis functions of better 
quality for coarse partitions with large variation in block sizes and shapes. Fig. 2 shows an exaggerated example with a 
large block neighboring ten small blocks that each consists of a single fine-scale cell. In Fig. 2(b) the block center is chosen 
as the block centroid. Because of the disparity in size between the block and its neighbors to the west, the support regions 
are defined so that there is a relatively large region inside the block where only the basis function associated with the block 
itself has support. To ensure partition of unity, the basis function will therefore be constant and equal the maximum value 
of one in this region. Using the geometric mean instead, as in Fig. 2(c), means that the basis functions in the north, south, 
and east neighbors are supported in a larger portion of the center block, which reduces the constant region and improves 
the approximation quality of the prolongation operator significantly, so that it, for instance, can better reproduce a linear 
pressure drop.

To define the support region of block number i, we select all blocks that share a coarse node with �̄i and create a 
local triangulation based on the block centers and the centroids of all coarse faces that are shared by any two of these 
blocks, see Figs. 1(a) and 1(d). The support region is then defined as all cells within the selected coarse blocks whose 
centroids lie within the triangulation, and the support boundary is defined as all cells that share at least one face with 
cells in the support region. Support regions are not allowed to include any center cells aside from their own. Because all 
these relations can be produced using only topology information, block centers, and face centroids, the implementation 
is the same regardless of whether we identify support regions in a two-dimensional Cartesian grid or in a complex 3D 
unstructured grid. If needed, one can include a simple post-processing to ensure that each support region only consists of 
cells that are connected in the graph defined by the fine-cell faces.

3.3. Construction of basis functions

Most multiscale methods rely on numerical solution of localized flow problems to produce the basis functions that form 
the prolongation operator. These local problems are typically defined as some subset of the global problem with alternate 
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Fig. 1. Primal coarse grid and construction of a local support region with an associated basis function for a uniform Cartesian grid in the top row and a 
perpendicular bisector (PEBI) grid in the bottom row.

Fig. 2. The choice made for the definition of the center points affects the quality of the prolongation operator. This example shows a coarse block where 
the neighboring blocks to the west consist of a single cell, while the neighbors to the north, south, and east are of the same size as the block itself. The 
prolongation operator takes values in the interval [0, 1] and assumes a more correct, skewed hat shape when the block center is defined as the geometric 
median of the face centroids rather than as the block centroid.

boundary conditions imposed to capture the local features. Herein, we deviate from this and instead construct the basis 
functions using an iterative process. A similar approach can be found in some multigrid methods that employ a single step 
of a smoother applied directly to a simple prolongation operator to reduced local error (Jacobi interpolation), see [35].

The basis functions are initiated as the characteristic function of each coarse block,

P0
i j =
{
1 if i ∈ C j

0 otherwise.
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Fig. 3. Illustration of how the iteration (9) and its restricted counterpart gradually smooth a basis function until it has very low residual error.

Nothing is preventing us from choosing some more intricate initial guess, but constant functions are convenient because 
they are trivial to construct and automatically provide partition of unity. We then define a local smoothing iteration,

Pn+1
j = Pn

j − ωD−1APn
j , (9)

where D is a diagonal matrix that contains the diagonal entries of our (weakly) diagonally dominant system matrix A, and 
ω ∈ (0, 1] is a relaxation factor which we set to 2/3 for all cases considered in this paper. The value 2/3 is the optimal choice 
for Jacobi’s method applied to Poisson’s equation with constant coefficients. Better choices of ω will speed up convergence 
of the basis construction, but are not necessarily obvious for general problems. By iterating on the prolongation operator, 
we seek to make it algebraically smooth, i.e., reduce ‖AP‖1 as much as possible. This means that the residual error in 
the prolongation operator should be relatively smooth. Fig. 3 shows a simple 1D example of how the operator and the 
associated error change as more iterations are applied. Because each iteration modifies cell values based on the topological 
neighbors, we can see that the support of the basis functions will eventually grow to cover the entire domain. To avoid this, 
we use our already defined support regions and support boundaries to localize the updates.

Roughly speaking, the above construction (9) determines an increment for each basis function based on the local error 
and modifies this increment to limit the support to be within the support regions. This update is also used to determine 
convergence of the basis construction procedure:

1. Apply the smoother D to find the increment of the discrete basis function,

d̂ j = −ωD−1APn
j .

2. Modify the update to avoid stencil growth outside of the support region and preserve partition of unity,

dij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d̂i j − Pn

ij

∑
k∈Hi

d̂ik

1+∑k∈Hi
d̂ik

, i ∈ I j, i ∈ G,

d̂i j, i ∈ I j, i /∈ G,

0, i /∈ I j.

3. Update basis functions

Pn+1
i j = Pn

ij + dij
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4. Define local error outside of boundary regions,

e j = max
i

(|̂dij|), i /∈ G

5. If ‖e‖∞ > tol, go to Step 1, otherwise set P = Pn+1.

In practice, checking for convergence should only be done every tenth iterations or so, since a single iteration has negligible 
cost. We note that Step 1 of this process is well suited to parallel processing. As each value only depends on the fine 
neighbors, it can easily be computed using on streaming processors such as GPUs. The modifications in Step 2 at the 
global boundary depend on the values in several coarse blocks, so each basis function will depend on the previous value 
of the other basis functions with support in the same cell. While this does make the basis functions use information about 
each other, the dependence will only extend to the nearest neighbors during each step, and only in a subset of the cells, 
analogous to the matching boundary conditions used on edges in the classical MsFV.

Because we have explicitly enforced partition of unity in cells belonging to the global boundary, we must now show that 
the updates ̂dij preserve the same property in cells not on the boundary. We assume that the row sum of the matrix used 
for the iterations is zero and that the initial prolongation operator has partition of unity,∑

j

Ai j = 0,
∑
j

P0
i j = 1 ∀ i.

If needed, one can easily ensure that the iteration matrix has zero row sum by adjusting the diagonal elements. This 
requirement also applies to the classical MsFV method, so the same adjustment is used if special basis functions for wells, 
boundary conditions, and compressibility are not constructed. We can then write out the explicit update for a single cell i, 
summed over all coarse blocks,∑

j

Pn+1
i j =

∑
j

Pn
i j −

ω

Aii

∑
j

∑
k

Aik P
n
kj

= 1− ω

Aii

∑
k

Aik

⎛⎝∑
j

Pn
kj

⎞⎠= 1− ω

Aii

∑
k

Aik = 1,

showing that the update always preserves partition of unity.
For completeness, we will also verify that the proposed updates for cells in G satisfy partition of unity. If we recall that ∑
j∈Hi

Pn
i j = 1 by assumption and that Pn

ij is nonzero only in Hi , we can explicitly write out the sum over basis functions 
for a cell i in G at step n + 1,∑

j∈{1,...,m}
Pn+1
i j =

∑
j∈Hi

(
Pn
ij +

d̂i j − Pn
ij

∑
k∈Hi

d̂ik

1 +∑k∈Hi
d̂ik

)
= 1+

∑
j∈Hi

d̂i j − Pn
ij

∑
k∈Hi

d̂ik

1+∑k∈Hi
d̂ik

= 1+
∑

k∈Hi
d̂ik

1+∑k∈Hi
d̂ik

−
∑

k∈Hi
d̂ik

1+∑k∈Hi
d̂ik

∑
j∈Hi

Pn
i j = 1.

Fig. 4 illustrates how the prolongation operator changes to adapt to structures in the underlying medium. For comparison, 
we have also included plots of the corresponding prolongation operators for the MsFV method [8]. Note that while the 
MsRSB method coincides with MsFV for the case with homogeneous permeability and to a certain extent the lognormal 
Tarbert layers, there are large differences for the problems with anisotropy and channelized permeability sampled from 
Upper Ness.

To accurately represent Dirichlet boundary conditions, we use a similar approach as shown for the center block in 
Fig. 2(c). That is, we move the block center to a fine cell that is adjacent to the boundary; preferably to the cell that lies 
closes to the centroid of the block face. This way, we ensure that the corresponding basis function decays smoothly out 
from the Dirichlet boundary. Using this approach, we can reproduce a linear pressure drop in a homogeneous domain. No 
other special treatment is required for no-flow boundaries.

3.4. Iterative multiscale formulation

Multiscale finite-volume methods have a link to multigrid methods in the sense that they can be used as two-level 
methods in combination with a smoother step that takes care of localized errors. This can be used for error control, to 
treat compressibility and nonlinear behavior, or to systematically drive the fine-scale residual towards zero. In other words, 
the MsRSB method can be used in three different ways: as a linear solver for the fine-scale system (see [43]); as an 
approximate solver that only reduces the fine-scale residual below a prescribed, relaxed tolerance and still guarantees a 
mass-conservative approximation, or as a one-step approximate solver that is mass-conservative on the fine scale, but has 
no guarantee on the size of the fine-scale residual.
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Fig. 4. Matrix-dependent interpolation operators for a single coarse block with different types of permeability types. The lognormal and the channelized 
permeabilities in the lower row are both sampled from the SPE10 dataset [45]. The matrices report the net fluxes into or out of the neighboring coarse 
blocks induced by a unit pressure differential.

Let P be the converged prolongation operator for a given coefficient matrix A. To define an iterative scheme, we let the 
solution at step k be denoted xk and introduce the defect

dk = b − Axk.

If we let yk = S(dk) denote the smoother applied to the defect with initial guess zero, we can then write the next update 
as the previous solution with the smoothed update added in, along with a coarse correction that ensures that the update 
does not remove the coarse-scale conservative property of the solution,

xk+1 = xk + P
(
A−1
c R(dk − A yk)

)+ yk.

This iterative scheme relies on an inexpensive smoother for the updates. In the following, we use a incomplete LU-
factorization with zero fill in (ILU0) for systematic iteration tests and a few Jacobi iterations for problems where we only 
want to reduce some local error. One pass of the smoother plus the coarse correction is termed a multiscale cycle. For the 
problems considered herein, we will let x0 = 0.

3.5. Flux reconstruction

The multiscale solution pc is mass conservative on the coarse scale by construction. However, if we use the prolongated 
pressures to construct fine-scale fluxes from Darcy’s law (see (2)),

vms
i j = −Tij

(
(P pc)i − (P pc) j

)
, (10)

these fine-scale fluxes will not be mass-conservative since 
∑

j v
ms
i j �= qi . To get conservative fluxes on the fine grid (and 

hence also on any grid of intermediate resolution), we need to compute a new reconstructed pressure p̄ to reconcile errors 
in the pressure gradient with the flux field as formulated for the classical MsFV method in [8]. We define the reconstructed 
pressure p̄ by solving (1) locally for each coarse block Ci with flux boundary conditions obtained from the multiscale 
pressure over the coarse edges.

−∇ · (K∇ p̄(x)) = q(x), x ∈ �̄i ∇ p̄(x) · �n = vms on ∂�̄i .

Once the reconstructed pressure is found, the velocity field inside each coarse block is found using Darcy’s law. The fluxes 
over the coarse edges are the same as were used for boundary conditions. For the unstructured implementation, we use the 
operator form for posing these problems, see [46,16].
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3.6. Treatment of wells

Herein, we consider wells that are either controlled by rate or by bottom-hole pressure. Wells perforated in a single fine 
cell are not much different from source terms or boundary conditions. For wells with multiple completions, potentially in 
different coarse blocks, we need to be a bit more careful. The standard way to treat a well is to use a set of source terms 
resulting from the pressure drop along the bore, i.e., if pi is the bottom-hole pressure in the well and p j the cell pressure, 
the well model gives us,

qij = λT
j W I (p j − pi − ρ�g∇z),

where WI is the productivity/injectivity index and λT the total mobility in the cells. In addition to this, a closure equation 
is defined per control: 

∑
j qi j = q̄i for rate controls and pi = p̄i for pressure controls. In our multiscale framework we keep 

the control equations at the coarse scale to correctly account for inter-block flow on the coarse scale. For the bottom-hole 
controls, we take the well fluxes from the reconstructed pressure, as the pressure drop makes the reconstruction problems 
well posed and consistent with the outgoing block fluxes. For rate controlled wells, we use the fluxes defined by the 
prolongated pressure, as the well-to-cell flow is analogous to the flow between two coarse blocks.

4. Numerical experiments

The MsRSB method introduced above has been implemented using the Matlab Reservoir Simulation Toolbox (MRST), 
see [47–50], and is released as a part of the 2015a release. In the following we report the result of a series of numerical 
experiments we have run to validate the multiscale formulation, verify our implementation, and demonstrate the utility of 
the resulting solver. To this end, we consider a variety of test problems, from simple 2D Cartesian geometries to geological 
models representing petroleum reservoirs on the Norwegian Continental Shelf.

4.1. Spatial accuracy

To assess the spatial accuracy of the MsRSB method, we consider the single-phase model (1) applied to two different 
test cases: (i) the SPE 10 data set, which seem to be a de facto benchmark for new multiscale methods, and (ii) a model 
that uses the grid geometry and petrophysical properties from a simulation model of the Gullfaks field. For both models, 
we investigate the discrepancy between the multiscale approximation and the fine-scale reference solution measured by the 
scaled L∞ and L2 norms,

‖p f s − pms‖∞ = maxi∈F |p f s
i − pms

i |
maxi∈F |p f s

i |
, ‖p f s − pms‖2 =

√√√√∑i∈F |p f s
i − pms

i |2 |�i|∑
i∈F |p f s

i |2 |�i|
, (11)

where p f s
i and pms

i denote the pressure values computed in cell �i by the fine-scale and the multiscale methods, respec-
tively. Discrepancies in reconstructed fluxes are defined analogously.

4.1.1. SPE 10 data set
Model 2 from the 10th SPE Comparative Solution Project [45] was originally designed as a challenging benchmark for 

upscaling methods. The model is described on a 60 × 220 × 85 Cartesian grid with cells of uniform size 20 × 10 × 2 ft3. 
The reservoir contains two sands sampled from a Brent sequence with very different heterogeneity. In the Tarbert formation 
found in the top 35 layers, the permeability follows a lognormal distribution, giving smoothly varying heterogeneities that 
are resolved quite well by most multiscale methods. The Upper Ness formation found in the bottom 50 layers is fluvial 
and consists of an intertwined pattern of long and high-permeable sand channels interbedded with low-permeable mud-
stone. The combination of very long correlation lengths and many orders-of-magnitude difference in permeabilities between 
neighboring cells makes Upper Ness very challenging to resolve accurately.

Horizontal layers First, we consider flow in two horizontal 60 × 220 slices with isotropic permeabilities sampled from the 
top and bottom layers of the model, subject to fixed pressure of one hundred bar on the left and zero bar on the right 
boundary. The domain is partitioned into coarse blocks made up of 10 × 20 fine cells so that the coarse grid blocks are 
square in the interior of the domain. Near the edges of the domain, we add coarse blocks that are half as wide as the other 
blocks in the x or y direction, respectively, see Fig. 5. In each of these blocks, we move the block center to the fine cell that 
lies closest to the face centroid of the block. This gives a total of 6 × 11 coarse blocks, which corresponds to an upscaling 
factor of 200 in the interior and 40 near the boundary.

Fig. 5 shows the permeability for both layers and compares the pressure fields computed by the fine-scale solver and by 
MsRSB using a single multiscale solve without subsequent iteration cycles. Table 1 reports the corresponding discrepancies 
measured in the relative L2 and L∞ norms defined in (11). For comparison, we also report discrepancies for the original 
MsFV method as implemented in the msfvm module of MRST, see [25] for details. Whereas the solution quality is gener-
ally very good for both solvers on the Tarbert subsample, MsRSB clearly outperforms MsFV on Upper Ness. Fig. 6 reports 
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Fig. 5. Permeability and pressure solutions for the top and bottom layers of the second SPE 10 dataset. Flow is driven by a difference in the fixed pressures 
specified at the left and right boundaries.

Table 1
Discrepancy between the fine-scale solution and approximate solutions computed by the MsFV and MsRSB methods for the 2D test problems shown in 
Fig. 5. Total flux is the flux over the outflow edge normalized by the corresponding flux in the fine-scale reference solution.
Setup of simulation Pressure Flux

Formation Layer Solver L2 L∞ L2 L∞ Total

Tarbert 35 MsFV 0.0313 0.0910 0.1138 0.4151 0.9696
MsRSB 0.0204 0.0766 0.0880 0.4071 1.0121

Upper Ness 85 MsFV 0.2299 2.0725 0.4913 0.7124 0.8087
MsRSB 0.0232 0.0801 0.1658 0.3240 1.0936

Fig. 6. Discrepancy between the fine-scale solution and approximate solution computed by the MsFV and MsRSB methods for all horizontal layers of the 
SPE 10 model.

discrepancies for similar experiments performed on all horizontal layers in the model. Several authors have independently 
shown that the MsFV method has issues with coarse-scale stability in the presence of channelized, high-contrast formations 
and will suffer from strong unphysical oscillations that may prevent iterative versions of the method from converging prop-
erly, see e.g., [51,21,25] and references therein. MsRSB is much more robust and does not suffer from such problems and 
therefore has approximately the same level of accuracy for the smooth and the channelized layers.
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Fig. 7. Comparison of pressure solutions computed by the fine-scale solver and the MsFV and MsRSB methods on the full SPE 10 model using a 6 × 11 × 17
coarse grid. Flow is driven by a difference in fixed pressures specified at the west and east boundaries.

Table 2
Discrepancy between the fine-scale solution and approximate solutions computed by the MsFV and the MsRSB methods on two different coarse grids for 
the full SPE 10 model, see Fig. 7. Total flux is the flux over the outflow face normalized by the corresponding flux in the fine-scale reference solution.
Solver Grid Pressure Flux

L2 L∞ L2 L∞ Total

MsFV 6× 11× 17 3.580 128.461 2.288 11.957 0.9110
MsRSB 6× 11× 17 0.039 0.309 0.397 0.487 1.2214
MsFV P -adapted 0.054 0.259 1.418 1.397 1.8434
MsRSB P -adapted 0.036 0.209 0.426 0.453 1.2179

Full 3D model The flow patterns in the 3D model are more complex, and the combination of strong anisotropy and higher 
aspect ratios poses additional challenges for multiscale methods. To coarsen the 1.1 million-cell fine-scale model, we use 
the same strategy as in the previous example with 10 × 20 × 5 fine cells per coarse block, giving coarse blocks of size 
200 × 200 × 10 ft3 in the interior of the domain. Fixed pressures of one hundred and zero bar are prescribed on the east 
and west boundaries, respectively.

Pressure solutions and discrepancies are reported in Fig. 7 and Table 2 and are in line with what we observed in 
2D: Whereas MsFV and MsRSB both perform reasonably well in the upper part of the model, the original MsFV method 
becomes unstable in the lower channelized formation. For MsRSB, it is difficult to distinguish qualitative differences from 
the reference solution in Fig. 7, which is also confirmed by the quantitative comparison in Table 2. SPE 10 is a challenging 
benchmark in terms of heterogeneity, and the good accuracy obtained with the MsRSB method without any kind of grid 
adaption or smoothing iterations is quite remarkable.

To mitigate the unstable behavior of the MsFV method, we can modify the coarse grid so that the control volumes adapt 
to the local structures in the prolongation operator. The adapted grid is defined by computing a new index set

Ĉk = {i |k = argmax j P i j}. (12)

In other words, for each cell i we find the local prolongation operator that has the largest nonzero cell value and assign cell 
i to the corresponding coarse block. This gives a nonuniform grid that can be used as control volumes when formulating the 
coarse system. Table 2 shows that this gives a significant reduction in the discrepancy for the MsFV method, in particular 
in the L∞ norm since the approximate solution now is kept within the bounds of the boundary conditions. The pressure 
discrepancy is also slightly reduced for MsRSB, but the reconstructed flux is significantly less accurate because of the local 
irregularity of the coarse blocks.

4.1.2. Gullfaks field model
Gullfaks is an oil and gas field located in the Norwegian sector of the North Sea that produces primarily from Brent 

sands, i.e., the same type of sedimentary environments as seen in the SPE 10 model. Unlike SPE 10, the Gullfaks field 
has a very complex structure and contains a large number of sloping faults, with angles varying from 30 to 80 degrees 
and throws from zero and up to three hundred meters; see [52] for a discussion of the structural geology. The simulation 
model is represented on a 80 × 100 × 52 corner-point grid in which 216334 cells are active. Almost 44% of the cells have 
non-neighboring connections, and when the corner-point grid is turned into a matching polyhedral grid, the number of cell 
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Fig. 8. Computation of incompressible, single-phase pressure distribution using the grid geometry and the petrophysical data from a simulation model of 
the Gullfaks field. Pressure is set to 500 bar in the two injectors and 250 bar in the two producers.

faces range from four to thirty-one. The combination of strong heterogeneity, large anisotropy and aspect ratios, degenerate 
cell geometries, and unstructured grid topology makes the Gullfaks model very challenging for any multiscale solver. Rather 
than considering the wells pattern that has been drilled in the actual formation, we create a significant pressure drop of 
250 bar across the majority of the field using four wells, two producers and two injectors, placed quite arbitrarily near the 
perimeter and perforated through all layers of the model.

We consider three different partitions. The first is a coarse grid initially partitioned with 15 ×15 ×20 fine cells per coarse 
block. The large coarsening factor in the vertical direction is chosen because of the many inactive layers and cells. Any coarse 
block intersected by a fault or divided into disconnected components by inactive cells is then split into two before coarse 
blocks with very few cells are merged into their neighbors, resulting in a semi-structured coarse grid with 416 blocks. The 
second coarse grid is constructed by the use of Metis [53] configured with the logarithm of the transmissibilities of the 
fine-scale system as weights for the edge-cut minimization algorithm and a target set to 416 blocks to match the number 
of blocks in the structured partition. We also consider another set of finer partitions constructed by the same methodology 
with approximately twice as many coarse blocks (1028 after processing) to demonstrate how the accuracy of the MsRSB 
method can be improved by coarse mesh refinement. We emphasize that no manual effort was required to create the three 
coarse partitions.

The approximate solution computed on the coarsest Metis-based grid can be seen in Fig. 8, while Table 3 reports the 
discrepancies from the fine-scale solution for all the three coarse grids. In all cases the approximate pressure values stayed 
inside the global bounds, i.e., in the interval from 250 to 500 bar. We note that the multiscale approximations are quite 
accurate and that refining the coarse partition improves the accuracy at the cost of a larger coarse system. The table also 
reports discrepancies after applying five multiscale cycles of ten Jacobi iterations each, which confirms that local errors are 
quickly removed by the inexpensive smoother. Altogether, the results are very promising in view of the combined challenge 
posed by the partially degenerate cell geometries, very complex grid topology, and the large permeability contrasts. Being 
able to handle models of this level of structural and stratigraphic complexity in a robust and automated fashion is essential if 
the goal is to bring multiscale methods closer to practical usage. The interested reader can also consult [43] for a discussion 
of MsRSB used as an iterative linear solver for a case with seven injection and eleven production wells.
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Table 3
Discrepancy between the fine-scale solution and approximate MsRSB solutions computed for the Gullfaks model shown in Fig. 8. Total flux is the net flow 
out of the injectors normalized by the corresponding net flow from the fine-scale reference solution.
Solver Iter. Coarse grid Pressure Flux

Block type DoF L2 L∞ L2 L∞ Total

MsRSB – 15 × 15 × 20 416 0.032 0.102 1.256 1.329 1.639
MsRSB 5 15 × 15 × 20 416 0.033 0.100 0.606 0.865 1.283
MsRSB – Metis 416 0.032 0.086 1.399 2.008 1.374
MsRSB 5 Metis 416 0.018 0.067 0.538 0.931 1.099
MsRSB – 10 × 10× 10 1028 0.028 0.597 2.165 4.143 1.502
MsRSB 5 10 × 10× 10 1028 0.024 0.089 0.545 0.430 1.202
MsRSB – Metis 1028 0.015 0.112 1.347 1.399 1.310
MsRSB 5 Metis 1028 0.011 0.027 0.476 0.675 1.085

Fig. 9. Convergence history for GMRES-MS with the MsFV or MsRSB prolongation operators on 2D subsets and the full SPE 10 model.

4.2. Multiscale methods as iterative solvers

The examples presented so far have only used multiscale methods as approximate solvers that are guaranteed to produce 
a conservative flux field regardless of the accuracy of the approximation. However, as explained in Section 3.4, multiscale 
methods can also be used as iterative solvers for the fine-scale system, e.g., in combination with GMRES. To demonstrate 
this capability for the MsRSB method, and compare its performance to that of the iterative MsFV method, we return to the 
SPE 10 test cases from Section 4.1.1. Fig. 9 reports the convergence of the two multiscale methods used as iterative solvers 
for two horizontal layer as well as on the full 3D model. On the smooth Tarbert layer, both methods are able to reduce 
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Fig. 10. Convergence history for GMRES-MS for the Gullfaks field model with different coarsening ratios.

the fine-scale residual six orders of magnitude in approximately thirty iterations (27 iterations for MsRSB and 32 for MsFV). 
On the channelized Upper Ness layer, both methods require more iterations, but because of the improved stability of the 
MsRSB prolongation operator, the residual for MsRSB is significantly lower than for MsFV and decays faster. For the full 
3D model, the MsFV prolongation operator tends to produce solutions that are outside of the bounds, as shown in Fig. 7. 
Reduction of the residual is therefore mainly left to GMRES, which explains the slow convergence observed in Fig. 9(c). If the 
original mass-conservative control-volume restriction operator Rcv is replaced by the Galerkin operator RG , as suggested 
e.g., by [21], the MsFV method exhibits an acceptable convergence that is somewhat faster than MsRSB with finite-volume 
restriction and slightly slower than MsRSB with Galerkin restriction.

We also ran a set of tests on the Gullfaks model used in Section 4.1.2 where we varied the number of coarse blocks to 
estimate the impact coarsening has on convergence for an essentially unstructured model. We used Metis to produce coarse 
grids with 10, 200, 250, 500 and 1000 blocks. The convergence is shown in Fig. 10 where we see that adding more degrees 
of freedom appears to increase the convergence rate. Rapid convergence with a larger coarse system is to be expected, as 
more error modes will be in the null space of the coarse system. The choice of restriction operator does not have a large 
impact on the convergence rate, as the MsRSB operator produces a stable coarse system in either case.

Ref. [43] reports a more thorough assessment and comparison of the MsRSB, MsFV, and MsTPFA [34] prolongation oper-
ators used as pure multiscale solvers or as part of a GMRES iterative solver. The results confirm what we observed above: 
The MsFV method gives accurate multiscale solutions and converges rapidly on the smooth Tarbert formation irregardless of 
the restriction operator used. On Upper Ness, the method is accurate and efficient if one uses Galerkin reconstruction. The 
MsTPFA method is more robust but less accurate and efficient than MsFV on Cartesian partitions. However, if we use Metis 
to compute a coarse partition that adapts to contrasts in the fine-scale transmissibilities, the MsTPFA method becomes as 
accurate and efficient as MsFV (which generally cannot be applied to such adapted grids). In all tests, however, the MsRSB 
method performs equally well or better than the other two methods and is less affected by the choice of restriction operator 
and type of coarse partition.

4.3. Multiphase flow

So far, we have mainly investigated how accurate the multiscale method is able to resolve the pressure in a given L-norm. 
In practical simulations, it is more important that the multiscale method gives fluxes that transport saturations/composi-
tions correctly. For incompressible flow simulation, in particular, the pressure does not appear explicitly in the transport 
equation (6) and only influences the fluid displacement implicitly. Pressure fields are usually also much smoother than the 
associated flux fields and hence primarily reflects large-scale heterogeneous structures. To assess how well the multiscale 
methods resolve the influence of small-scale heterogeneous structures, we will investigate how the multiscale approximation 
affects the accuracy of the transport equation (6), measured using a relative L1 norm

‖φS f s − φSms‖1 =
∑

i∈F φi|S f s
i − Sms

i | |�i|∑
i∈F φi|S f s

i | |�i|
. (13)

Weighting the error by pore volumes makes this the error in spatial mass distribution for incompressible flow. To this end, 
we will, as in the previous sections, use a variety of test problems, from simple slices of the SPE 10 data set to a real field 
model.

4.3.1. Sensitivity to aspect/anisotropy ratios
Grids used in field and sector models predominantly have much larger cells in the horizontal than in the vertical direc-

tion, or likewise have much smaller vertical than horizontal permeability. Hence, it is important that multiscale methods 
are robust with regards to large aspect and anisotropy ratios. It is well known that the classical MsFV method is sensitive 
to high anisotropy and large grid aspect ratios and may produce approximate solutions having strong localized circulations 
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Fig. 11. Aspect ratio test for solutions computed by the MsRSB, MsFV, and MsMFE methods on a uniform 4 × 8 coarse grid covering a 60 × 120 subset of 
Layer 85 of the SPE 10 data set that has been stretched a factor 1, 10, 100, and 1000 in the y-direction.

Fig. 12. Saturation profiles for the two-dimensional waterflood example. The reference saturation field is shown in graytones, with contour lines of the two 
multiscale solutions superimposed. The first and second rows correspond to weak and piston-like displacement, respectively.

in the reconstructed fine-scale flux field, see e.g., [54]. This will, in turn, give smeared saturation fronts in which the sub-
scale resolution is completely lost because of the strong circulations. In [55], it is shown that deficiencies appear even for 
homogeneous cases because of the bilinear nature of the basis functions. The problem can be mitigated to a certain degree 
by a careful choice of boundary conditions for localization of basis functions [56,55].

For the coefficients in the discretized pressure equation, stretching the grid is equivalent to increasing the anisotropy 
ratio. We consider a 60 × 120 subset of Layer 85 of the SPE 10 data set, giving a square domain with Lx = L y = 1200 ft 
in which water is injected from a well operating at fixed rate near the south-east corner and fluid is produced from a 
well operating at constant pressure near the north-east corner. We will compare the MsRSB, MsFV, and MsMFE multiscale 
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Fig. 13. Saturation error measured in the relative L1 norm (13) as function of time step number for water injection in the top layer of the SPE 10 model.

Fig. 14. Pathological example of a high-contrast medium. In the setup, dark color indicates the channel having 100 times higher permeability than the 
background field, solid lines show the coarse blocks, and light colors show cells along the edges of a dual coarse grid. The next four plots show saturation 
profiles after the injection of 0.25 pore volumes of water from a well placed at the center of the lower-left coarse block.

methods with the same uniform 4 × 8 coarse grid for all three methods. To assess how well the multiscale methods resolve 
the transport properties of the flux field, we simulate the injection of one half pore volume of water using linear relative 
permeabilities with unit mobility ratio (i.e., λw(S) = S and λn(S) = 1 − S), for which the equation system (5)–(6) becomes 
fully decoupled and can be solved using a single pressure step.

Fig. 11 reports saturation profiles and discrepancy from the fine-scale solution on four different grids with L y = nLx , for 
n = 1, 10, 100, and 1000. The MsFV method has significantly larger errors than the other two methods and for aspect ratios 
100 and 1000, all fine-scale details in the saturation field are lost. MsRSB is slightly less accurate than MsMFE, but although 
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Fig. 15. Flow in a network of thin channels having one thousand times higher permeability than the surrounding rock. The plots show saturation profiles 
computed by the MsRSB and MsFV method on a Cartesian coarse grid and a coarse grid adapted to the basis functions.

both methods become gradually less accurate in a pointwise sense as the aspect ratio increases, they manage to maintain a 
reasonable prediction of the qualitative behavior of the flow pattern.

4.3.2. Temporal accuracy of multiscale approximation
There are two different ways of using a multiscale solver for time-dependent problems. The first approach is to keep 

the same basis functions throughout the whole simulation, and either hope that the iterations can efficiently account for 
mobility changes or accept the corresponding reduction in local accuracy if the multiscale method is used without itera-
tions. Alternatively, one can update the basis to account for dynamic changes in mobility. The usual way to do this is to 
recompute basis functions locally whenever the total mobility changes significantly. The key to get enhanced efficiency when 
using multiscale methods is to perform as few subgrid computations as possible and only where it is necessary. Smoothed 
basis functions are particularly efficient in this respect since they do not need to be completely regenerated: Because the 
underlying iterative process can start from any function having partition of unity, we can simply restart the iteration process 
with changed mobilities and continue until the basis functions are sufficiently smooth again.

The dynamic character of an incompressible two-phase flow system is often quantified by the ratio of the end-point 
values of the total mobility, usually called the mobility ratio for brevity. To discuss this, we consider a special choice of 
relative mobilities

λw(S) = MS2, λn(S) = (1− S)2, 0 ≤ S ≤ 1. (14)

In this case, the total mobility satisfies λ(0) = 1 and λ(1) = M , so that the end-point mobility ratio is M . Different end-point 
mobility ratios give rise to very different flow scenarios. With M > 1, we have an unstable displacement in which the 
injected fluid is more mobile than the resident fluid and will therefore tend to develop viscous fingers that penetrate rapidly 
through the less viscous resident fluid. For M < 1, on the other hand, the injected fluid is less viscous than the displaced 
fluid, giving a stable displacement characterized by a strong, piston-like displacement front. To correctly predict the speed 
of the displacement front, the multiscale method must accurately account for dynamic changes in the mobility. As noted by 
[54], resolving stable displacements is more challenging than resolving unstable displacements, for which the changes in the 
mobility field will be smooth and relatively small because of the weak displacement front. For a stable displacement, the 
propagation of the strong displacement front will induce large and abrupt changes in the total mobility field, so that it may 
deviate significantly from the mobility field used to compute the basis functions that make up the multiscale prolongation 
operator.
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Fig. 16. Flow in a network of thin flow barriers having one thousand times lower permeability than the surrounding rock. The plots show saturation profiles 
after 0.5 PVI computed by the MsRSB method on a Cartesian coarse grid, on the same grid but with restriction operator adapted to the prolongation 
operator, and on a coarse grid that adapts to the barriers.

To compare the two multiscale approaches, updating or not updating basis functions, we consider the top layer of the 
SPE 10 model initially filled with oil and produced by a quarter five-spot well pattern with water injected in one corner and 
fluid produced in the diagonally opposite corner. The two wells are controlled by pressure, which gives a more challenging 
test than rate-based injection because the inflow and outflow now depends directly on the pressure distribution. Fig. 12
shows the saturation of the injected fluid for M = 0.1 and M = 10 at three different times in the interval [0, T ]. To improve 
the prediction of pressure, we adapted the coarse grid by applying a radial refinement near the wells as shown in Fig. 12(g). 
For the weak displacement front there is good agreement between the multiscale and the reference solutions, even if basis 
functions are not updated throughout the simulation. For the sharp front, however, the multiscale method with static basis 
functions overestimates the speed of the leading shock. This error accumulates during the simulation and results in earlier 
breakthrough. A plot of the saturation error over time in Fig. 13 shows that the error is larger with static basis functions in 
both cases, but the difference in errors is more pronounced for the piston-like displacement.

4.3.3. High-contrast media
Extensive numerical experiments have shown that contemporary multiscale methods provide approximate solutions of 

good quality for highly heterogeneous media. However, cases with large permeability contrasts are generally challenging 
and it is not difficult to construct pathological test cases on which a particular method fails to produce accurate solutions.

Diagonal channel Ref. [54] proposed a simple and illuminating example consisting of a narrow high-permeable channel in 
a low-permeable background, where the channel is aligned with the diagonal direction of the grid as shown in Fig. 14(a). 
For the simulation, we use linear relative permeability, unit viscosity for both fluids, a single pressure step, and twenty 
time-steps in the implicit transport solver.

It is well known that high permeability contrasts along the edges of the dual grid can give poor localization for multiscale 
methods. If the channel intersects the faces of the primal coarse grid, the pressure extrapolation used to localize basis 
functions will start in a low-permeable region at a dual vertex, cross the high-permeable channel along the dual edge, 
before ending in a low-permeable region at the dual vertex on the opposite side of the channel. The corresponding basis 
function will overestimate flux between the high and low-permeable regions and cause a saturation front propagating to 
the high-permeable channel to leak out into the surrounding low-permeable background, as shown in Fig. 14, or in the 
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Fig. 17. Unstructured test case: Fine-scale permeability field, adapted coarse grid, and zoom of local refinements in the fine grid.

worst case, lead to non-monotone coarse-scale operators, e.g., as discussed in [25]. The same type of problem occurs for the 
MsMFE method, which relies on degrees of freedom associated with the faces of the coarse grid, if the channel is shifted 
slightly so that it intersects the vertices of the coarse blocks.

The problem can be mitigated by adapting the restriction operator to the local structures in the prolongation operator as 
discussed in Section 4.1; that is, by assigning cell i to block j if Pij ≥ Pik for all k �= j. Fig. 14(e) shows that the saturation 
profile is significantly improved by using MsRSB on the resulting grid. Results for MsFV are almost identical and are not 
reported. Because the adaptive procedure relies on comparing floating point numbers, the grid is also perturbed away from 
the channel. This numerical artifact has no effect on the accuracy for this particular case and could easily have been removed 
if we had used a slightly more sophisticated implementation.

Multiple channels Our next example considers a slightly more complex case with a network of thin channels having one 
thousand times higher permeability than the surrounding rock. Fig. 15 reports fine-scale solutions and multiscale approxi-
mations computed with the same computational setup as for the diagonal channel, except for changes to the permeability 
field. Adapting the restriction operator clearly improves the qualitative prediction of the flow patterns for both multiscale 
methods. However, the approximation errors are quite large for both methods and if the purpose is to accurately predict 
production profiles or the evolution of the saturation field, extra iterations will be necessary. Plots of production profiles 
and saturation errors are not included for brevity, but show that MsRSB predicts well production much more accurately 
than MsFV and also gives much lower L1 errors in the saturation fields. Interestingly, while adapting the restriction opera-
tor improves saturations errors significantly for MsRSB, the match in production profile becomes slightly worse. For MsFV, 
adapting the restriction operator improves both production profiles and the saturation field.

Our experience after having run a number of similar experiments of high-contrast media is that adapting the restriction 
operator is a simple precaution strategy to improve solution quality near high-permeable channels, at least when these chan-
nels are scattered relatively sparsely throughout the domain. Once exception is dense systems of narrow, high-permeable 
channels as found in fractured media, for which our experiments indicate that is better to describe the high-permeable frac-
tures as lower-dimensional objects in the multiscale method, see [57]. This will be discussed in more detail in a forthcoming 
paper.

Multiple flow barriers Previous experience with the MsMFE method has shown that barriers are best represented in a 
multiscale solution if one adapts the coarse blocks to follow the barriers, see [58,59]. Fig. 16 shows a case containing a 
network of narrow barriers, simulated with the same setup as in the two previous examples, except that we now inject 
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Fig. 18. The water saturation at different timesteps for the unstructured testcase with local refinement. The error colormap has a maximum of 0.5, which 
is higher than the largest error seen.

a total of two volumes. Adapting the restriction operator has no effect on the solution quality up to water breakthrough 
and only a minor positive effect afterwards. If we instead adapt the prolongation operator by fitting the coarse grid to 
the low-permeable barriers, the accuracy is significantly improved at the expense of having to work with a much more 
complicated coarse partition. In principle, one could combine the two approaches and adapt the prolongation operator a 
priori and the restriction operator a posteriori. Our experience is that this is difficult in practice as the combination of the 
two methods tends to produce control volumes that are highly convoluted and hence may cause singular or near-singular 
coarse problems.

Although we have seen several barrier cases for which adapting the restriction operator gives better results than adapting 
the prolongation operator, it is our general experience that barriers are best treated by adapting the coarse partition that 
defines the prolongation operator. However, one should be careful to not create overly complex and irregular grids that 
may introduce numerical artifacts and instabilities that may impact the approximation properties of the otherwise relatively 
robust MsRSB prolongation operator.

4.3.4. Unstructured grid adapted to faults and wells
The Gullfaks example showed how the structured corner-point format easily can result in unstructured topologies near 

faults and eroded or inactive cells. However, fully unstructured grids can also be of interest in regions without complex 
features, for instance to avoid consistency issues with the standard two-point discretization. In this example, we consider 
a two-dimensional PEBI mesh as shown in Fig. 17. The grid is adapted to local features, here exemplified by two sealing 
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Fig. 19. Saturation fronts for a model containing a large number of impermeable zones throughout the domain modeled as inactive cells.

faults and two wells. The cells near the faults are oriented to that the cell faces follow the fault and near the well we have 
introduced a radial grid refinement to better approximate the radial flow in the near-well zone.

The fluid model is a simple incompressible fluid with Corey-type relative permeability curves with quadratic exponents. 
The reservoir is initially filled with oil having a viscosity of 5 centipoise. Water is injected from a well near the upper-left 
corner whereas fluids are produced at a constant rate from a well near the bottom-right corner, with no-flow conditions at 
the boundary. Petrophysical data are sampled from Layer 35 of the Tarbert formation from SPE 10 using nearest neighbor 
interpolation. The resulting grid has 3265 cells. We have selected a slightly smaller grid than the base case to make it easier 
to see the local refinements. This means that the petrophysical parameters may have somewhat stronger contrasts (more 
abrupt jumps) than specified in the original SPE 10 data set. The faults are considered to be completely sealing, i.e., the 
transmissibility over the interfaces is zero.

For the multiscale solver, we create a simple partition using the centroids of the cells. The coarse blocks are then split 
across faults and the coarse blocks in the radial subsgrids are partitioned using distance from the wellbore. Once all the 
local features are accounted for, the coarse grid itself is also unstructured and altogether this represents a challenging test 
case. The coarse grid has 146 blocks. Away from unstructured features the median number of cells in each block is 42.

The saturation profiles for the reference and multiscale simulations presented in Fig. 18 show that the multiscale ap-
proximation captures the flow pattern accurately. Especially, the local fluid behavior near the faults is correctly represented; 
such local flow can easily be lost in a typical upscaled model.

4.3.5. Model with a large number of inactive cells
For many models there will be a large number of cells with insignificant permeability and/or porosity. There are different 

ways to treat such cells. One approach is to simply let the cells retain their small values and include them in the full system. 
By including the cells, however, the computational effort will be just as large as if they were highly permeable even though 
nothing will flow through them. The other option is to remove cells with impermeable rock types, which is what we will 
consider here. Consider a 1 × 1 km domain comprised of 150 × 150 fine cells, with lognormal permeability as shown in 
Fig. 19. We remove 43% of the cells, place a quarter five-spot well pattern with injection in the lower-left corner and proceed 
to inject one pore volume over ten years with unit mobility ratio. The multiscale solver uses a 15 × 15 uniform coarse grid 
and gives an accurate reproduction of the injected fluid, with a flux error of 0.15 in the L2 norm.

4.3.6. Norne field model
In our final example, we study a water-injection problem posed on a geological model with grid geometry and petro-

physical properties taken from the Norne benchmark case [60]. Initially, the reservoir is completely filled with oil, and the 
fluid behavior is described using an incompressible, two-phase model with the same fluid properties as in Section 4.3.4. The 
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Fig. 20. Pressure and saturation profiles after the injection of one pore-volume of water for the model derived from the Norne benchmark data. All plots of 
the same type use the same color axes.

grid has 44420 fine cells and layered permeability distribution. The model consists of two disconnected rock formations that 
are separated by full layer of inactive cells, so that the wells are the primary means of communication between the top 
three layers and the remaining parts of the model. Several faults and partially eroded layers makes the model effectively 
unstructured.

The reservoir has seven wells, three producers and four injectors. Each well is completed in all vertical layers, and will 
hence pass through multiple coarse blocks. The injectors operate at fixed pressure of 500 bar, while the producers have a 
constant rate corresponding to the drainage of a complete pore volume over the production period of 100 years.

The grid is partitioned into 250 coarse blocks using Metis with transmissibilities as edge weights. Wells are resolved 
most accurately in a multiscale method if they are placed near the centers of the coarse blocks. Making coarse grids that 
satisfy this property is straightforward if the grid has a simple structure and each well only perforate a single cell or a 
small contiguous set of cells. For complex grids with multiple perforations per well, however, it is generally not feasible to 
make such grids. We therefore consider two different set-ups for the multiscale solver: In the first, we use one pass of the 
multiscale solver to compute an approximate pressure. In the second, we use five multiscale cycles that each consist of a 
multiscale solve followed by five Jacobi iterations to remove local error and account for near-well information.

Fig. 20 shows pressure and saturation profiles after the injection of one pore-volume of water, as computed by the 
fine-scale solver and the two multiscale solver. We note that the multiscale pressure approximation is in close agreement 
with the fine-scale solution, irregardless of whether we use iterations or not. For the saturation field, the multiscale solvers 
exhibit some smearing near the boundary of the domain, but otherwise reproduce the water distribution at the end of 
simulation excellently. This is also confirmed by the well curves reported in Fig. 21. Even without iterations, the multiscale 
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Fig. 21. Well curves for the water-injection test case based on the Norne benchmark data.

solver is able to correctly reproduce the qualitative behavior of the producer, with a discrepancy of less than 5% in the 
bottom-hole pressure and fluid rates. By adding more iterations, this discrepancy can be reduced to the point where one 
also has an excellent quantitative match.

5. Concluding remarks

We have presented a novel multiscale formulation that relies on an iterative process to construct basis functions. The 
iterative process is defined as standard matrix manipulations in combination with simple grid indicators. These indicators 
can easily be obtained from general coarse partitions without any stringent requirements on the underlying grid topology. 
Because the formulation only requires knowledge of cell centroids and topological neighborship, the method is applicable 
to unstructured polyhedral grids in general and stratigraphic grids in particular. The method is flexible and very robust with 
respect to the shape of the coarse blocks, and it is therefore easy to formulate automated strategies to coarsen complex grid 
models having cells with degenerate geometry and unstructured topology caused by erosion, faults, inactive cells, local grid 
refinement, and other types of non-neighboring connections. In particular, the coarse partition can be adapted to geological 
features or to provide extra resolution, e.g., in near-well regions. This can be done in two ways, either by fitting the coarse 
grid a priori to adapt the prolongation operator or by modifying the control volumes a posteriori to adapt the restriction 
operator.

Extensive numerical tests on single-phase problems, some of which are reported herein and in [43], show that the 
MsRSB method compares favorably with the classical MsFV in terms of accuracy, and is generally much more robust and 
less affected by the choice of restriction operator and the resolution and type of the coarse partition. Notably, the pressure 
field for the challenging SPE 10 benchmark is solved to within 5% accuracy without the need for additional iterations or 
coarse grid adaption. Likewise, a high degree of accuracy is observed on models of the Norne field and the very structurally 
complex Gullfaks field. For both models, a wide range of coarse partitions can easily be generated using standard graph 
partitioning algorithms. This indicates that automated coarsening is indeed possible for realistic models with high media 
contrasts, complex unstructured topology, and cells with very high aspect ratios and degenerate geometries.

Through a set of multiphase test cases we have also demonstrated that the method can easily adapt to changing mobili-
ties and provide prediction of well curves that are qualitatively correct, also when wells crossing different geological layers 
are completed in multiple coarse blocks. By setting tighter tolerances on the fine-scale residuals, excellent quantitative 
match can also be obtained at the cost of a few additional iterations. In many aspects, the iterative version of the method 
resembles an agglomeration-based multigrid method, but unlike these methods, MsRSB can be stopped at any prescribed 
residual tolerance and still produce a mass-conservative approximation.
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A novel multiscale method for multiphase flow in heterogeneous fractured porous media is 
devised. The discrete fine-scale system is described using an embedded fracture modeling 
approach, in which the heterogeneous rock (matrix) and highly-conductive fractures are 
represented on independent grids. Given this fine-scale discrete system, the method first 
partitions the fine-scale volumetric grid representing the matrix and the lower-dimensional 
grids representing fractures into independent coarse grids. Then, basis functions for matrix 
and fractures are constructed by restricted smoothing, which gives a flexible and robust 
treatment of complex geometrical features and heterogeneous coefficients. From the basis 
functions one constructs a prolongation operator that maps between the coarse- and fine-
scale systems. The resulting method allows for general coupling of matrix and fracture 
basis functions, giving efficient treatment of a large variety of fracture conductivities. 
In addition, basis functions can be adaptively updated using efficient global smoothing 
strategies to account for multiphase flow effects. The method is conservative and because 
it is described and implemented in algebraic form, it is straightforward to employ it to 
both rectilinear and unstructured grids. Through a series of challenging test cases for 
single and multiphase flow, in which synthetic and realistic fracture maps are combined 
with heterogeneous petrophysical matrix properties, we validate the method and conclude 
that it is an efficient and accurate approach for simulating flow in complex, large-scale, 
fractured media.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Accurate simulation of multiphase flow in natural porous media represented on high-resolution numerical grids is com-
putationally demanding. Fine-scale petrophysical properties like permeability are often highly heterogeneous, change over 
several orders of magnitudes, and, in general, do not entail scale separation [1]. This computational challenge has moti-
vated the development of several multiscale methods, which solve accurate coarse-scale systems constructed by the use of 
locally-computed basis functions [2–13]. Once the coarse-scale system is solved, its solution is interpolated into the original 
fine-scale resolution using the sub-resolution of the basis functions. Among the proposed multiscale methods, multiscale 
finite-volume (MSFV) methods not only provide mass-conservative solutions at fine-scale, which is a crucial property for 
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H.Hajibeygi@tudelft.nl (H. Hajibeygi).

http://dx.doi.org/10.1016/j.jcp.2016.05.001
0021-9991/© 2016 Elsevier Inc. All rights reserved.



S. Shah et al. / Journal of Computational Physics 318 (2016) 36–57 37

convergent solution of transport equations, but also enable relatively simple inclusion of the type of multiphase flow equa-
tions seen in contemporary reservoir models [3,14–19].

Multiscale methods compute approximate solutions having the original fine-scale resolution so that their error (or resid-
ual) can be calculated with respect to the fine-scale discrete system. As such, one can achieve systematic strategies for 
reducing the error through iterative procedures that combine the multiscale solver with a fine-scale smoother [20–23]. It-
erative multiscale methods are scalable and deliver mass-conservative solutions after any MSFV stage. The latter property 
makes them unique compared with alternative advanced solvers, such as multigrid methods [24]. Recent developments of 
the MSFV method include extensions to compressible and compositional nonlinear displacements [25,26], unstructured grids 
[11,27] and fully-implicit simulations [28]. While these important developments, combined, cast a promising framework for 
next-generation simulators, they have been focused mainly on addressing challenges due to complex fluid physics, highly 
heterogeneous rock properties, and complex computational mesh geometries.

Many geological formations—including hydrocarbon reservoirs, underground water resources, and geothermal energy pro-
duction fields—are naturally fractured. Fractures are highly conductive channels which, for most practical purposes, exist in 
a lower-dimensional space compared to the porous matrix. Physical properties inside fractures and their length scales can 
be very different from those of the surrounding rock, adding significantly to the computational challenges, especially once 
realistic length scales and complex fracture network maps are considered. As a result, a variety of modeling approaches 
and numerical methods for different types of fractured reservoirs have been proposed [29–42,40,43,44]. Among them, the 
embedded fracture modeling approach [35,36,45,46,34,47] benefits from independent grids for fracture and matrix, and 
constitutes a promising approach for naturally fractured reservoirs and also for cases with dynamic fracture creations and 
closure of, e.g., geothermal systems. Note that small-scale fractures (smaller than fine-scale grid cells) are homogenized 
within the matrix porous rock, forming effective matrix conductivities [34]. This approach, similar to other discrete-fracture-
modeling (DFM) approaches, leads to detailed fine-scale discrete systems (for matrix and fracture unknowns) with high 
contrasts within the entries, which are clearly much more challenging to be solved efficiently than non-fractured heteroge-
neous cases. Therefore, it is highly important to develop efficient multiscale methods for fractured formations.

Early attempts at developing multiscale methods for fractured media were based on a mixed finite-element formula-
tion in which high-conductive fractures were either represented explicitly as volumetric objects [37] or the fracture–matrix 
interaction was modeled by the Stokes–Brinkmann equations [38,48]. Within the MSFV framework, Hajibeygi et al. [47]
developed the first multiscale method for fractured porous media, in which additional fracture basis functions were intro-
duced to map each fracture network into one coarse-scale degree-of-freedom (DOF). Later, Sandve et al. [49] used the MSFV 
method to develop effective coarse-scale MINC-type model for fracture networks. Very recently, Tene et al. [50,51] devel-
oped a general formulation for fractured media by proposing an algebraic multiscale solver for fractured media (F-AMS). In 
the F-AMS, fracture basis functions were introduced on the basis of a coarsening ratio inside fracture domain, similar as 
in the matrix rock. Results of F-AMS when only a few fracture DOFs were used illustrated that such a multiscale map for 
fractured domains is quite efficient. Similar to all MSFV and AMS methods, F-AMS relies on coarse and dual-coarse grids 
imposed on the provided fine-scale grid cells. While the former is used to construct mass-conservative, coarse-scale sys-
tems, the latter is employed to compute local basis functions. However, geological complexities and the use of complex grid 
geometries make the construction of these two coarse grids quite challenging. Recently, the multiscale restriction smoothed 
basis (MsRSB) method was devised to overcome this complexity [52]. The MsRSB is unique in the way the basis functions 
are computed, yet leads to a stable and robust treatment of complex heterogeneous coefficients [53], as well as realistic 
flow physics for improved and enhanced oil recovery [54,55]. It is therefore favorable to use this method as a basis when 
seeking to extend multiscale simulation approaches for more complex fractured media.

In this work, a multiscale restricted smoothed basis method for fractured media (F-MsRSB) is developed. Following F-
AMS [50,51], F-MsRSB constructs basis functions for fractures and matrix in a general way, allowing for different level of 
coupling between them. In addition to F-AMS, though, F-MsRSB constructs its multiscale formulation on the basis of the 
MsRSB approach. This would facilitate its extensions toward complex geometries while maintaining its efficiency for highly 
heterogeneous challenging scenarios such as the SPE10 comparative test case [56]. Unlike previous works, the performance 
of F-MsRSB is investigated for realistic fracture models with complex fracture networks. Transmissibility-weighted connec-
tivity graphs of independent fractures are decomposed using the METIS software [57], leading to an automatic coarsening 
strategy for fractures. Following the traditional algebraic multiscale formulations, F-MsRSB can easily be adapted to account 
for complex physics such as compressibility [23] and gravity [58] as discussed in [54] for the MsRSB method. To facili-
tate implementation, specially for complex fracture networks, here, fracture cells are introduced into the discrete systems 
through non-neighboring connections (NNC).

Through several two- and three-dimensional cases with highly heterogeneous coefficients, F-MsRSB is found to efficiently 
compute approximate solutions of good quality. Furthermore, in order to allow for error control and reduction strategies, 
especially for multiphase flow scenarios, the method is combined with a fine-scale smoother, ILU(0) [59,22,23]. While low-
frequency errors are resolved by the coarse-scale system in F-MsRSB, the fine-scale smoother resolves high-frequency errors, 
the combination of which leads to an efficient iterative multiscale solver for fractured media. These iterations are applied 
adaptively and infrequently just to maintain user-prescribed accuracy. Several multiphase flow cases are considered in which 
the adaptive iterative F-MsRSB is employed to efficiently compute high-quality solutions for the flow equations. All of these 
systematic single- and multiphase flow cases reveal that F-MsRSB is an efficient and versatile multiscale method for natu-
rally fractured reservoirs with highly heterogeneous coefficients.
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The paper is structured as follows. The fine-scale discrete system for flow in fractured porous media is described in 
Section 2. Then, in Section 3.1 and Section 3.3 AMS and MsRSB are revisited, respectively. The development of F-MsRSB is 
presented in Section 4. Numerical results for single- and multiphase flow for both 2D and 3D heterogeneous reservoirs are 
presented in Section 5. Finally, the paper is concluded in Section 6.

2. Governing equations and fine-scale system

Mass conservation for nph incompressible phases flowing in a porous medium reads

∂

∂t
(φSα) − ∇ · (λα · ∇p) = qα ∀ α ∈ {1, . . . ,nph}, (1)

where Darcy’s law is employed to replace phase velocity uα with pressure gradient ∇p. Here, gravitational and capillary 
effects are both neglected. Moreover, Sα and λα are phase saturation and mobility, respectively. Note that λα = kkrα/μα

holds, where the positive-definite permeability tensor k is typically highly heterogeneous at multiple scales. Also, relative 
permeability, krα and phase viscosity, μα , are given functions of primary unknowns p and S . These balance equations, along 
with the constraint that all phases fill the pore volume, i.e.,

nph∑
α=1

Sα = 1, (2)

form a well-posed system of equations for (nph + 1) unknowns. Sequential approaches derive a pressure equation, which is 
solved first, then phase velocities are obtained to subsequently solve nph − 1 transport equations (1). The nph-th saturation 
is obtained using the constraint (2). To obtain the pressure equation, i.e.,

−∇ · (λt · ∇p) = qt, (3)

the mass-balance equations (1) are summed up and the time-dependent term (accumulation) cancels out owing to the 
constraint (2). Total mobility, λt and total source terms qt are obtained by summing their phase-wise counterparts.

For fractured porous media, following the hierarchical fracture model approach, small-scale fractures are homogenized 
and represented by an effective matrix permeability km ∈ R

n , whereas fractures with larger length scales are explicitly 
represented with an embedded fracture modeling approach (EFM). Important is that the fracture elements can cross over 
matrix cells, or be confined at their interfaces. In the latter case, EFM reduces to alternative discrete fracture modeling 
approaches. Note that fractures are lower-dimensional manifolds owing to their small apertures, so that k f ∈ R

n−1. In this 
case, the pressure equation can be expressed as

−∇ · (λt · ∇p)m + ψmf = qmt on �m ⊂ R
n, (4)

−∇ · (λt · ∇p) f + ψ f m = q
f
t on � f ⊂ R

n−1, (5)

where superscripts m and f represent matrix and fracture quantities, respectively. Mass exchange between fracture and 
matrix cells, ψmf and ψ f m , is modeled as∫

A

ψ f mdA = CI λ∗
t (p

f − pm) = −
∫
V

ψmf dV , (6)

where CI is the fracture–matrix conductivity index [47,36]. Interaction of a matrix element i and a fracture element j is 
defined as

CI = Ai− j/〈d〉i− j, (7)

where Ai− j is the fracture plate area and 〈d〉i− j is the average normal distance between i and j. More information about 
embedded fracture models and the calculation of their parameters can be found in [47]. An advantage of EFM is that the 
fracture and matrix grids are independent and, thus, suited for many realistic scenarios such as naturally fractured reservoirs 
and dynamic fracture generation and closures.

Finite-volume discretization of (4) and (5) leads to a fine-scale system of equations, Ap = q, for matrix and fracture 
pressure unknowns, i.e.,⎡⎣ Amm Amf Amw

A fm A f f A f w

Awm Awf Aww

⎤⎦⎡⎣ pm

p f

pw

⎤⎦=
⎡⎣qm

q f

qw

⎤⎦ , (8)

where super-index w denotes external well (source) terms [1]. Obviously, A f w and Awf will be zero if no well is drilled 
into the fracture domain.

The formulation of this paper is developed into the open-source MATLAB simulator MRST [60,61], in which fractures 
are introduced using non-neighboring connections (NNC) [42,62,41] and a sequentially-implicit strategy is used to simulate 
multiphase flow [53,54].
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3. Multiscale restriction smoothed basis method (MsRSB)

Large-scale heterogeneous formations with complex fracture network maps, along with high contrasts between fracture 
and matrix properties make (8) quite challenging to solve using any classical numerical method. To resolve this computa-
tional challenge, a multiscale restriction smoothed basis method for fractured media (F-MsRSB) is developed. The F-MsRSB 
benefits from the previously developed multiscale methods for fractured media [47,50] and the MsRSB formulation for un-
fractured systems [52–54]. To describe the method, we start by discussing a general algebraic multiscale formulation [22,23]
before we continue to describe the specific prolongation and restriction operators of the MsRSB method. This section will 
cast the foundation of the next section in which the novel development of this paper, i.e., F-MsRSB, is presented.

3.1. Algebraic multiscale formulation

To avoid solving (8) directly on the fine scale, multiscale methods introduce a prolongation operator P that maps be-
tween the degrees-of-freedom on the underlying fine-scale grid, that describes the (fractured) porous medium and its 
petrophysical parameters, and degrees-of-freedom associated with a coarse grid partition on which we will solve the global 
flow problem. In other words, if pc and p′ denote approximations on the coarse and fine grids, we have

p′ = Ppc. (9)

Note that p′ contains multiscale pressure approximations for both fracture and matrix at fine-grid resolution, i.e., p′ =
[p′

m p′
f ]T , while pc contains coarse pressures for both matrix and fracture, i.e., pc = [pc,m pc, f ]T [50,51]. These two vectors 

contain n f = nmf + n
f
f and nc = ncm + ncf entries, where n f and nc are the numbers of fine and coarse cells, respectively, 

including both matrix and fractures. To determine pc , we introduce a restriction operator R that maps the fine-scale system 
(8) into a coarse-scale system

(RAP)︸ ︷︷ ︸
Ac

pc = Rq︸︷︷︸
qc

, (10)

that has much smaller size (i.e., nc ×nc) than the original fine-scale system (i.e., n f ×n f ), see [15]. Combining (10) and (9), 
the algebraic multiscale (AMS) procedure can be summarized as

p ≈ p′ = P(RAP)−1R︸ ︷︷ ︸
M−1

ms

q. (11)

In the same way, MsRSB imposes a coarse grid on top of the provided fine-scale grid. Inside each coarse grid block (coarse 
control volumes), a fine-scale grid cell is also selected as coarse node. Coarse blocks �c

K ∀ K ∈ {1, . . . , nc} define a non-
overlapping partition of the domain, where nc is the total number of coarse blocks in the system including ncm matrix and 
ncf fracture blocks.

For the restriction operator, there are two different choices, either to use R = P T , which will lead to a Galerkin-type 
formulation, or to use a finite-volume restriction procedure [3], which can be stated as discrete integration operator over 
coarse control volumes �c

K , i.e.,

Ri,K =
{
1, if xi ⊂ �c

K ,

0, otherwise.
(12)

Here xi represents the i-th control volume at fine-scale. As shown in [52,53], the MsRSB method is not very sensitive to the 
choice of restriction operator and herein we use the finite-volume operator to ensure that we can reconstruct conservative 
fine-scale velocities.

The prolongation operator is constructed by solving localized flow problems, and the way these flow problems are set 
up varies from one method to another. However, in all multiscale methods, the prolongation operator P is defined so that 
it stores basis function �K associated with coarse block �c

K in its K -th column, i.e.,

Pi,K = �K (xi) ∀ i ∈ {1, . . . ,n f }, ∀ K ∈ {1, . . . ,nc}. (13)

Here, �K (xi) is the value of basis function �K in the i-th fine-grid cell, xi . Both the original MSFV method [3] and its 
state-of-the-art extension (AMS) [22,23] rely on a secondary coarse partition, defined as the dual to the primal coarse grid, 
over which the basis functions �K are locally computed. While it is possible to extend conservative multiscale methods 
based on a dual-grid formulation to stratigraphic and other types of unstructured grids [27,18,49,63], it has proved to be 
difficult, when possible, to develop satisfactory dual–primal partitions for grids with complex geometry. Moreover, local-
ization errors induced by strong permeability contrasts across block boundaries introduce instabilities in the corresponding 
multipoint coarse-scale stencil. This motivated the development of a multiscale two-point flux-approximation formulation 
[11], in which an implicitly defined dual grid is used to compose elementary flow solutions into localized basis functions. 
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In the MsRSB method, however, local supports for basis functions are defined based on support regions, which are rela-
tively simple to define even for very complex grids. Once these support regions are obtained, restriction-smoothed basis 
functions are computed by employing a modified form of the damped-Jacobi smoothing approach, similar as in smoothed-
aggregation-based multigrid methods [64–66]. In the following sections, the MsRSB support regions and basis functions are 
briefly explained. Detailed explanations can be found in [52,53].

3.2. Coarse grid and support regions

Basis function �K can have nonzero values only in the support region I K . For the specific case of MSFV, e.g., I K reduces 
to dual-coarse grid blocks. Thus, by construction, the basis function �K and consequently the K -th column of P are set to 
zero outside I K .

The support region of a coarse block �c
K (see Fig. 1) is constructed by creating a local triangulation, using cell and 

shared-face centroids of all immediate geometrical neighbors of �c
K [52]. This ensures that for a Cartesian grid without 

fractures, the coarse system has the same multipoint flux stencil as in the original MSFV method. Support regions for frac-
tured coarse blocks are, because of their (potentially severe) geometrical complexities, computed by a different procedure, 
which will be described in the next section (see Algorithm 1).

The support boundary BK is defined as the set of all fine cells that are topological neighbors of the outermost cells in 
the support region I K . Note that I K ∩ BK = ∅. This leads to the definition of a global boundary G which is a union of all BK

for all K ∈ {1, . . . , nc}, i.e.,
G = B1 ∪ B2 ∪ · · · ∪ Bnc . (14)

Fig. 1 illustrates I , B and G for a 2D rectangular Cartesian and an unstructured hexagonal grid. For a Cartesian grid 
geometry, G becomes equivalent to the set of all dual-coarse boundary cells, i.e., similar to the classical MSFV method. 
Finally, indices of all support regions overlapping with each fine cell xi stored inside G are stored in the set Hi , i.e.,

Hi = {K |xi ∈ I K ,xi ∈ G}. (15)

Hi can be visualized using the last row of images in Fig. 1. Note that they follow the same indexing as depicted in Fig. 1a. 
A randomly picked fine cell belonging to the global boundary G , indexed as i, and denoted by the control volume xi is 
depicted in blue in Fig. 1g. The next two images (Fig. 1h and Fig. 1i) show the support regions that encompass this control 
volume. Hence, the set Hi for this particular cell can be written as Hi = {6, 9}. This can be repeated for each fine cell stored 
inside G to generate the complete set H .

3.3. MsRSB prolongation operator

As mentioned earlier, basis functions are calculated iteratively, having nonzero values only inside their support regions. 
The basis functions are initialized by setting each to be equal to a constant value of one inside the corresponding coarse 
block, i.e.,

P0
i,K =

{
1, if xi ∈ �c

K ,

0, otherwise.
(16)

Then, we compute the iterative increments

d̂K = −ωD−1APη
K , (17)

where A is the fine-scale system, D = diag(A) is the diagonal entries of A, and ω is a relaxation (or damping) parameter, 
which is set to 2/3 for all simulations reported in this paper.

To ensure that basis functions have local support, the increments d̂K must be restricted to have nonzero values only 
inside I K . This is done by setting Pη

K outside the support region to zero and normalizing all other basis functions whose 
support regions include the boundary cells BK , i.e.,

diK =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d̂iK −Pη

iK

∑
J∈Hi

d̂i J

1+∑ J∈Hi
d̂i J

, if xi ∈ I K ∩ G,

d̂iK , if xi ∈ I K \ G,

0, if xi /∈ I K .

(18)

This modified increment is now used to update the prolongation operator, i.e.,

Pη+1
K = Pη

K + dK . (19)



S. Shah et al. / Journal of Computational Physics 318 (2016) 36–57 41

Fig. 1. The top row shows a rectangular grid with a uniform coarse partition, while the second row presents a hexagonal grid with an unstructured coarse 
partition. The left images (a and d) show the indexing scheme for the coarse blocks. In the middle images (b and e), cells inside the support regions for a 
coarse node are highlighted in turquoise, whereas yellow color signifies the support boundary. The right images (c and f) show the global boundary cells 
G highlighted in yellow. The last row uses the same grid as in the first row to depict the set Hi for a particular cell xi ∈ G marked in blue (g). The next 
two images (h and i) show the support regions that make up the set Hi and contain that particular cell. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

To measure convergence of the basis functions, a local error eK is defined outside G ,

eK = max
i

(|d̂iK |), xi /∈ G, (20)

and basis functions are assumed to be converged if ||e||∞ ≤ tolerance after any increment. If not, we set Pη
K = Pη+1

K and 
repeat the steps (17)–(19).

Note that the basis functions can be constructed using parallel processing. By virtue of the fine-scale discretization 
scheme used to construct the system matrix A, every successive increment computed using (17) will only spread the 
corresponding basis functions further by a topological distance of 1. Hence, once the basis function P K covers its support 
region I K , the next increment will spread into its support boundary BK . Using the third expression in (18), these nonzero 
values outside the support region would be set to zero. This could lead to the prolongation operator not having a partition 
of unity. To reimpose partition of unity in the prolongation matrix, the discarded values are redistributed within other basis 
functions with support in these fine cells. Indices of such support regions are stored in the set H . In essence, the first and 
the last expression in (18) explicitly impose a partition of unity in all cells belonging to the global boundary G .

Fig. 2 shows how this iterative procedure gradually converges to the standard FEM hat function for a homogeneous 1D 
medium, while Fig. 3 shows basis functions for three different 2D permeability fields.

4. MsRSB for fractured media (F-MsRSB)

The F-MsRSB method is devised on the basis of introducing basis functions for both matrix and fracture domains, similar 
to F-AMS [50], i.e., p ≈ p′ = [p′

m p′
f ]T , where
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Fig. 2. Restriction smoothed basis function computed iteratively over a 100 m long 1D homogeneous domain with 20 m coarse blocks. The vertical axis 
gives the basis-function value for the 3rd coarse block. Tolerance for convergence = 10−3.

Fig. 3. Illustration of the restriction smoothed basis functions (d–f) for three different permeability fields: homogeneous (a), heterogeneous patchy-field (b), 
and heterogeneous channelized field (c).
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p′
m =

ncm∑
j=1

�
m,m
j pc,mj +

ncf∑
j=1

�
f ,m
j p

c, f
j , (21)

p′
f =

ncm∑
j=1

�
m, f
j pc,mj +

ncf∑
j=1

�
f , f
j p

c, f
j . (22)

Here, p′
m and p′

f are approximate matrix and fracture pressures, respectively, computed by MsRSB at the fine scale. In 
addition, coarse-scale solutions in matrix and fracture are denoted as pc,m and pc, f , respectively. There exist ncm coarse 
matrix blocks and ncf coarse fracture blocks in total. It is important to realize that there may be several disconnected 
fracture networks in a reservoir model. Each independent fracture network can contain one or more fracture coarse cells, so 
that ncf comprises all fracture coarse blocks across all fracture networks. Moreover, �m,m and �m, f are basis functions for 
matrix coarse blocks with superscripts “m,m” and “m, f ” denoting values in the matrix and fracture domains, respectively. 
Both � f , f and � f ,m are fracture basis functions with superscript “ f , f ” representing the values inside the corresponding 
fracture network and superscript “ f ,m” denoting contributions inside the matrix domain. Hence, the prolongation operator 
can be written as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

�
m,m
1 · · · �

m,m
ncm �

f ,m
1 · · · �

f ,m
ncf

...
...

...
...

...
...

...
...

�
m, f
1 · · · �

m, f
ncm �

f , f
1 · · · �

f , f
ncf

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n f ×nc

, (23)

where n f = (nmf + n
f
f ) and nc = (ncm + ncf ) are total degrees-of-freedom (matrix and fractures) at fine and coarse scales, 

respectively.
Generally, fractures are much more conductive than the matrix rock. Full consideration of both fracture and matrix coarse 

solutions, pc,m and pc, f , for interpolated fracture pressure, p′
f , can lead to improved convergence properties. However, 

such an approach results in much denser prolongation operators. Therefore, the improvement in convergence rate may 
not necessarily offset the additional computational cost. Numerical studies of F-AMS for 3D problems (considering CPU 
time), support the idea of eliminating the effect of matrix coarse pressure in the fracture pressure interpolation, i.e., setting 
�m, f = 0. In this paper, the same sparse operator is considered.

Next, the support region and the procedure for calculating basis functions for fractured media are explained.

4.1. Support regions and basis functions

The support region for each fracture block is generated based on a topological distance. More precisely, the support 
region for a fracture block includes all fine cells located inside the sphere (circle in 2D) with radius d in index space. Note 
that d is an integer input to the simulator but there is no algorithmic restriction on using expressions to automatically 
compute d. Optimization of the choice of fracture support regions would require a more detailed study, considering both 
accuracy and efficiency, and also taking into account the effective coarsening ratio used to compute the multiscale solution. 
Such a study is beyond the scope of this paper and subject of a future study. It is clear that the support region will include 
no fine-cell except those overlapping with the fractures, if d = 0 is considered. For the numerical examples studies in this 
paper the value of d = 7 is used. This is of the same order as the matrix coarsening ratio used in our examples (i.e. 10 in 
each direction). An overview of the procedure to generate the fracture support region is presented in Algorithm 1.

Fig. 4 illustrates coarse grids and support regions inside which basis functions are compactly supported for a test case 
with 30 × 30 matrix and 20 fracture cells. Furthermore, Fig. 5 shows basis functions inside the matrix rock (belonging to 
both fracture and matrix coarse nodes).

Algorithm 1 Generating fracture support regions.
Initialize: A = Adjacency matrix for the fine-scale system, d ∈ Z and m = 1

1: for J ∈ {1, ..., ncf } do
2: Ii, J = 1 if xi ∈ �c

J , Ii, J = 0 otherwise
3: while m < d do
4: I J = A × I J
5: m =m + 1
6: end while
7: end for
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Fig. 4. Illustration of multiscale grids for matrix and fracture (a) with support regions for matrix (b) and fracture (c) for a case with 30 × 30 matrix and 20
fracture fine-scale cells. Multiscale coarse grid contains 3 × 3 matrix blocks and 2 blocks inside the fracture. Here, d = 7.

Fig. 5. Matrix and fracture basis functions for the system described in Fig. 4.

5. Numerical results

The developed F-MsRSB method is implemented and integrated with the free, open-source MATLAB Reservoir Simulation 
Toolbox (MRST) [61,67,68,60]. In this section, we investigate the performance of F-MsRSB for many challenging cases. The 
numerical examples involve both 2D and 3D heterogeneous media. Next, the sensitivity of the method to coarse-grid reso-
lution for fracture domain is studied. Then, its performance for heterogeneous rock formations is studied through a realistic 
fracture map obtained from an outcrop and for a statistically generated fracture map. Using an outcrop map is unique in the 
literature of multiscale methods for fractured media. For the statistical map, we use METIS [57] to generate an unstructured 
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Fig. 6. First test case which contains 100 × 100 matrix and 200 fracture cells at the fine scale, with homogeneous 2D rock formation. The left and right 
boundaries are subject to Dirichlet values of 1 and 0, respectively.

Fig. 7. F-MsRSB coarse grids for matrix and fractures. Each coarse matrix block consists of 10 × 10 fine cells, while the fracture blocks are varied from 1 
(200 fine cells in 1 block) to 5 (40 cells in each block) and 10 (20 cells in each block).

partition of a fine-scale hexagonal grid representing the matrix rock. Finally, three test cases with 3D heterogeneous matrix 
properties along with 2D fracture plates are considered to provide the scientific community with a reliable assessment of 
the devised F-MsRSB method.

5.1. Sensitivity to coarse DOFs in fracture

In this test case, we consider single-phase flow in a 100 × 100 m2 homogeneous domain to study the effect of the 
coarsening ratio in the fracture domain on the accuracy of the multiscale method as well as its preconditioning properties. 
The matrix permeability is set to 1 Darcy and k f /km = 104. Fluid viscosity is 1 cP. The matrix contains 100 × 100 grid cells. 
As shown in Fig. 6, the matrix contains one fracture network described using 200 cells. A coarsening ratio of 10 ×10 is fixed 
for the matrix domain, while the coarsening ratio for the fracture is varied from 1 to 50 (some cases are shown in Fig. 7). 
By increasing the number of coarse degrees-of-freedom in the fracture, the F-MsRSB pressure solution improves (Fig. 8). 
This finding is consistent with that of F-AMS [50].

Fig. 8 shows pressure solutions after one multiscale cycle for different fracture coarsening ratios. As a quantitative error 
measurement, the F-MsRSB pressure error is calculated using a scaled discrete L2 norm

εp =

√√√√√∑i∈n f
(p

f s
i − pms

i )2|�i |∑
i∈n f

(p
f s
i )2|�i |

. (24)

Errors for different grid sizes inside the fracture are also provided in Fig. 8. In Fig. 9, we have used Pollock’s method [70]
to trace streamlines for the fine-scale reference solution and the multiscale solution computed using different degrees of 
freedom in the fracture. This provides an excellent way to visualize the flow field and study the accuracy of the multiscale 
velocity profile. Additionally, to quantify the accuracy of the velocity field we consider a vertical slice in the middle of the 
matrix domain, as shown in Fig. 10a. The total flow rates obtained by F-MsRSB (qms) and the fine-scale discretization (q f s) 
are compared across this section. Fig. 10b reports the discrepancy
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Fig. 8. Reference and F-MsRSB pressure for the first test case as shown in Fig. 6. F-MsRSB solutions are presented for different fracture coarsening ratios.

εq = 100× |q f s − qms|
|q f s| (25)

at this cross section as a function of fracture coarsening ratio. Similarly to F-AMS [50], we observe that the condition num-
ber of the F-MsRSB coarse system improves by increasing the coarse resolution inside the fracture. This leads to higher 
iterative convergence rates, as shown in Fig. 11, if F-MsRSB is combined with ILU(0) in an iterative multiscale proce-
dure [50]. Convergence is determined on the basis of setting a threshold value for the scaled residual norm, i.e., ‖rb‖2 =
‖Ap − q‖2/‖q‖2.

5.2. F-MsRSB for heterogeneous fractured media

To study F-MsRSB for heterogeneous fractured media, two fracture maps are considered: (i) the fracture map is extracted 
from an outcrop of dimensions 246.3 × 283.1 m2; (ii) a statistical fracture model is generated over an unstructured PEBI 
grid. The heterogeneous rock property is assumed to represent heterogeneity variations in the matrix rock along with 
homogenized small-scale fractures.

5.2.1. Outcrop fracture map
The fracture coordinates are scaled from an outcrop photo [69] to fit a domain size of 1000 × 1000 m2, as shown in 

Fig. 12a. The fine-scale grid contains 100 × 100 matrix and 2074 fracture cells (over 94 disconnected fracture networks), 
while the F-MsRSB grid contains 15 × 15 matrix and 155 fracture blocks. Fig. 12b shows the permeability of the matrix 
formation. Fracture permeability is set to 1000 Darcy.
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Fig. 9. Reference and F-MsRSB velocity field represented by streamlines for the first test case as shown in Fig. 6. F-MsRSB solutions are presented for 
different fracture coarsening ratios.

We consider two-phase flow, with quadratic relative permeability curves and unit viscosity ratio between the phases. 
Fluid is injected at a constant rate in cell (1, 100), while fluids are produced in the opposite corner (100, 1) at constant 
pressure. Fig. 13 shows the saturation maps obtained after one F-MsRSB cycle (no iterations) compared with reference 
fine-scale solutions, both obtained using a sequentially-implicit strategy. Clearly, the higher the resolution of fracture coarse 
grid, the more accurate the F-MsRSB results.

Saturation error is calculated as

εS =
maxi∈n f

(
|S f s

i − Sms
i ||�i|φi

)
maxi∈n f

(
|S f s

i ||�i|φi

) , (26)

which, because it is scaled with pore volume, gives a very strict measure of the error in the spatial mass distribution for 
incompressible fluids.

Clearly, multiscale solutions can be improved by increasing the number of degrees-of-freedom per fracture network or 
by applying iterations (in combination with ILU(0), similar to [50,58,47,53]). Fig. 14 shows overall saturation errors. After 
only a few iterations of the two stage (F-MsRSB + ILU(0)) cycle, the multiscale fluid distribution is virtually identical to the 
reference solution. Convergence to a tolerance of 0.1 takes 8 iterations for this outcrop model, whereas a tolerance of 0.01
is reached after 20 iterations. One can also employ a local block solver around the fractures and wells [9].
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Fig. 10. Vertical cross section through the center of the matrix domain (a). Percentage error in total flow rate through this vertical cross section in the 
matrix (b).

Fig. 11. Convergence of F-MsRSB+ ILU(0) for different DOF in fracture.

Fig. 12. Coarse grid in matrix showing well locations and fracture map extracted from an outcrop (a). Logarithm of the corresponding permeability field in 
the matrix (b).
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Fig. 13. Reference saturation profile compared with saturation maps obtained after one F-MsRSB cycle at different PV injected. Absolute errors in saturation 
are also shown in (g)–(i).

5.2.2. Statistical fracture model
A 1000 × 500 m2 heterogeneous domain with permeability and porosity sampled from the 10th layer of the SPE10 

dataset [56] is considered and shown in Fig. 15. Similar as in previous test case, fracture permeability and porosity are 1000
Darcy and 0.50, respectively. PEBI grids are employed for the matrix at fine scale, which is a Voronoi map over a uniform 
triangulation in the region. The fine-scale grid contains 4726 cells for matrix and 2207 cells for fractures. There exist 55
disconnected fracture networks in the domain. Both matrix and fracture are coarsened using METIS [57] to give 100 blocks 
for each domain (fracture and matrix) as shown in Fig. 15a.

Two incompressible fluid phases with quadratic relative permeabilities are considered. The reservoir is initially filled 
with oil having a viscosity of 5 cP. Water with a lower viscosity of 1 cP is injected at a constant rate from a well near the 
bottom-left corner, while a the producing well near the top right corner of the domain is kept at constant pressure. Fig. 16
shows the saturation maps after one multiscale cycle (F-MsRSB + ILU(0)) for injection amounts of 0.2, 1.0, and 1.8 pore 
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Fig. 14. Saturation error for the outcrop model as a function of simulation time measured in pore-volume-injection. Shown are the non-iterative and the 
iterative F-MsRSB method with tolerances of 0.1 and 0.01 on the pressure solves.

Fig. 15. Matrix coarse grid with 100 DOF, fracture map, and well locations (a). Petrophysical rock properties sampled from the 10th layer of the Tarbert 
formation in the SPE10 dataset (b and c).

volumes (PVI). The initial multiscale solution is already quite accurate, and after one smoothing-iteration step, the multiscale 
and reference solutions are virtually identical. Fig. 17 compares bottom-hole pressure in the injector oil rate in the producer 
as computed by the fine-scale reference solver and F-MsRSB with different iterative tolerances.

5.3. 3D models

In this section, we study the performance of F-MsRSB for three examples in which the matrix domain is described in 3D 
and fractures are planar 2D surfaces.

5.3.1. Two intersecting fracture planes
The fine-scale grid for the first 3D example consists of 50 × 50 × 50 matrix cells and two fracture planes, each with 

100 × 30 fracture grid cells. The fracture planes cross in the middle of the domain, as shown in Fig. 18a. Fluid is injected 
at a constant rate at the bottom-left corner, while production takes place from the top-right corner. Matrix permeability 
is shown in Fig. 18b. The F-MsRSB grid contains 20 × 20 × 20 matrix blocks, whereas each fracture plan is partitioned 
into 12 × 4 fracture blocks. Fracture permeability is set to 104 Darcy. The matrix coarsening ratio is chosen such that the 
effect of fracture coarsening ratios will be more pronounced in the F-MsRSB results. Fig. 19 shows the pressure solution 
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Fig. 16. Saturation maps at different times computed by the fine-scale reference solver and F-MsRSB with one iteration cycle (F-MsRSB + ILU(0)).

Fig. 17. Production and injection quantities at well locations for the statistical 2D fracture map.

obtained after one F-MsRSB step. In addition, Fig. 20 presents the convergence behavior for different coarse resolutions for 
the fracture planes. We observe that a modest increase in the fracture resolution, from having a single DOF for each plane, 
leads to significantly improved convergence rates.

5.3.2. Depositional bed
As another 3D example, we consider a corner-point grid modeling a core-scale depositional bed. A similar model has 

been used in the literature [8] as an example of a model with a large number of thin, low-permeable shale layers pinched 
between layers of good sands. Pinch-outs, owing mainly to erosion, are a common reason behind unstructured cell connec-
tions in stratigraphic corner-point grids. They lead to degenerate cells with faces of zero area resulting in a complex grid 
geometry. With the addition of heterogeneity, it becomes quite a challenging test case for multiscale finite-volume methods 
[11,18]. We make the model even more complicated by adding inclined fracture planes in the interior of the model. To im-
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Fig. 18. Illustration of the first 3D test case, with a fine-scale grid that contains 50 × 50 × 50 matrix cells and two intersecting fracture planes that each 
contains 100 × 30 fracture cells. Also shown on the right is heterogeneous matrix permeability map, along with the imposed 20 ×20 × 20 coarse grid used 
by F-MsRSB.

Fig. 19. Reference and multiscale pressure solution after one F-MsRSB cycle for single-phase flow in the simple 3D model. Each fracture plane is logically 
partitioned into 12 × 4 blocks.

prove the efficiency of the F-MsRSB preprocessing steps for this challenging grid geometry, we first calculate the CI factors 
globally for each fracture plane and then for each fracture–matrix overlapping discrete grid cell.

The fine-scale grid contains 30 × 30 × 100 matrix with 222 hexagonal fracture cells per fracture plane. As shown in 
Fig. 21a, there exist 6 fracture planes, and the domain is subject to Dirichlet boundary conditions on the left and right faces, 
while all other faces are subject to no-flow condition. As shown in Fig. 21, F-MsRSB employs 10 × 10 × 9 blocks for the 
matrix rock, and only 2 blocks for each fracture plane. In addition, fracture aperture is 0.04 m. The matrix permeability 
distribution is shown in Fig. 21b, and we set k f = 104 D, resulting in large contrasts in the permeability values throughout 
the entire model.

Fig. 22 shows pressure solutions obtained after one F-MsRSB step. It is clear that F-MsRSB and the fine-scale reference 
solutions are in good agreement, even with such a large coarsening ratio for the fractures. The absolute difference between 
the two solutions is depicted in Fig. 22c, with the pressure error (εp) being 8.79 × 10−4.

5.3.3. Model 2 of SPE10 with fracture networks
As the final test case in this section, we extract a 30 × 110 × 40 subsample from the full 3D model of the challenging 

SPE10 data set [56]. As shown in Fig. 23, complex fracture planes (located between layers 11 through 30) are obtained 
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Fig. 20. Convergence property of the F-MsRSB+ ILU(0) solver for various coarse resolutions of the two intersecting fracture planes, which each has 100 ×30
cells at the fine scale.

Fig. 21. Matrix grid with fracture planes and boundary conditions (a). Logarithm of permeability map (b) and matrix porosity (c).

by extruding statistical maps, similar to the ones used for one of the 2D test cases. The model contains 31 disconnected 
fracture networks, which are discretized using 13, 880 fine-scale grid cells.

Fig. 24 shows the matrix rock properties (permeability and porosity). All fractures have permeability value of 1000 
Darcy. The coarse partitions used by F-MsRSB contain 6 ×22 ×8 matrix and 181 fracture blocks in total. Each fracture block 
contains 80 fine-scale fracture cells. A waterflood experiment has been considered for the duration of 5 PVI, using quadratic 
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Fig. 22. Reference and multiscale pressure solution for single-phase flow in the bed model with two degrees-of-freedom per fracture plane.

Fig. 23. Five-spot well locations in a subsample of the 3D SPE10 model with 31 disconnected fracture networks added. Shown on the right is the top view 
of the model.

Fig. 24. Petrophysical properties for the 30 × 110 × 40 domain sampled from the full SPE10 dataset.

relative permeability values. Water with viscosity 1 cP is injected into the reservoir, which is initially filled with 100% oil. 
Oil viscosity is 10 cP. As shown in Fig. 23a, five wells are placed in a five-spot pattern with a fixed rate injector in the 
middle and four fixed-pressure producers at the corners.
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Fig. 25. Well responses for all wells of the 3D SPE10 test case. F-MsRSB solutions are shown for different tolerances of pressure solution, compared with a 
fine-scale reference solution.

Well responses computed by F-MsRSB are presented in Fig. 25 and compared with a fine-scale reference solution. As 
shown, one iteration of (F-MsRSB+ ILU(0)) leads to significantly improved solutions. The initial multiscale solution residual 
is approximately 0.1, which reduces to approximately 0.01 after only one smoothing iteration. Convergence to a tolerance 
of 10−3 and subsequently to 10−4 takes approximately 5 and 15 iterations on average, respectively, per time step.
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6. Conclusion

In this paper, a novel multiscale framework for fractured porous media (F-MsRSB) was introduced. The method benefited 
from the most recent developments within the multiscale community, namely F-AMS and MsRSB, and yet, devised a novel 
approach for robust and efficient treatments of fractured media. Efficiency and accuracy of the devised multiscale method 
was analyzed for many challenging test cases, including a realistic fracture map from an outcrop. These extensive studies 
are quite unique in the multiscale community. F-MsRSB is formulated and implemented in an algebraic form using the 
open-source MATLAB Reservoir Simulation Toolbox (MRST). The codes necessary to run the type of experiments reported 
herein are thus open to the scientific community; another important contribution of this work.

Through a set of single- and multiphase test cases it was found that MsRSB can accurately simulate models of fractured 
porous media with highly heterogeneous coefficients and produce approximate solutions with a prescribed fine-scale resid-
ual accuracy. The numerical test cases also included complex wells. By using an adaptive iterative strategy, one can trade 
accuracy for computational efficiency, and still produce mass-conservative, approximate solutions on the fine scale.

The basis functions used in this method can be adaptively updated using efficient global smoothing strategies to account 
for compressibility and gravity among other physical effects. Ongoing research includes consideration of more challenging 
fluid and rock physics, along with integration of F-MsRSB into an in-house C ++ simulator for comparisons of CPU efficiency.
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