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Abstract. In this paper a two-stage approach is introduced for optimum path 
planning of a team of autonomous vehicles in an environment cluttered with 
obstacles. The vehicles are requested to move in formation from an initial point 
to a final point. The Bump-Surface concept is used for the representation of the 
environment while the formation of the vehicles is presented by a deformable 
Delaunay triangulation. The proposed approach is presented in detail and test 
cases with multiple vehicles are simulated to demonstrate the efficiency of the 
method. 
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1 Introduction 

Teams of autonomous vehicles are widely used in many applications, where the vehi-
cles are requested to meet formations or other constraints to accomplish complex 
tasks, such as transportation of large objects [1], localization and mapping [2], search 
and rescue missions [3]. This interest is motivated by the necessity of having more 
vehicles performing tasks which are more difficult to perform with only one vehicle, 
for instance surveillance missions [4]. Furthermore, the motion in formation is partic-
ularly important when spatially distributed tasks have to be accomplished, like for 
instance, source seeking missions [5].  
 
In this paper we present an approach for the path planning problem for a multi-vehicle 
system. In particular, we consider a multi-vehicle system which is consisting of au-
tonomous vehicles. The objective is to find an optimal path for each vehicle which 



connects an initial point with a final point while simultaneously the vehicles should be 
moving in a given formation. 

The path planning problem for formations control of a team of autonomous vehicles 
has been investigated [6]-[8]. In [6], the authors presented a method based on rapidly 
exploring random trees (RRT) for path planning of formations with under-actuated 
vehicles. This method randomly samples the environment and chooses a free collision 
configuration for each vehicle. The authors revised the classical RRT to generate 
feasible paths for non-holonomic vehicles. Furthermore, they designed a priority 
strategy, which makes the vehicles to move in a given formation. The work [7] de-
scribes a method based on Voronoi Fast Marching (VFM) for formations of fully 
actuated mobile robots. This method can be classified as a potential field method but 
avoids the drawbacks related to local minima. In [8] an abstract manifold A was de-
fined which is the product of two manifolds G and S. The manifold G is a Lie Group, 
which captures information about the orientation and position of every vehicle, while 
S is a manifold, which captures information about the shape of the group of vehicles. 
The states in the two manifolds G and S are controlled independently. 

In this paper we extend the method proposed in [9] and [10] to multi-vehicle systems 
consisting of autonomous vehicles. The vehicles should be moving in a given for-
mation. By using the proposed approach, it is possible to obtain simultaneously an 
optimum path, for each vehicle. Each path is constructed considering both the envi-
ronment constraints and the formation constraints. 

The main contribution of this paper is the introduction of a method for the path plan-
ning of a flexible formation of n autonomous vehicles in an environment cluttered 
with static obstacles. For the first time the formation relationship is represented by a 
deformable Delaunay triangulation, which has the ability to find a solution even when 
the vehicles are requested to move through narrow passages. Furthermore, the 
smoothness of the path is obtained by controlling the angles between the control-
polygon segments, which define the system’s path. A multiplicity of optimization 
criteria and constraints could be incorporated easily to the formulated optimization 
problem according to the mission requirements of the team of vehicles.  

2 Basic assumptions and the two stage approach 

It is assumed that a formation of autonomous vehicles should move in a 2D environ-
ment which is cluttered with known prohibited areas (obstacles-danger zones). A 
formal statement of the problem, the assumptions and the structure of the proposed 
method are given in this section. 

2.1 The path planning problem for a formation of autonomous vehicles 

Consider a team of 3n ³  autonomous vehicles which should move from an initial to 
a goal location by keeping the desired formation in a 2D environment cluttered with 
known static obstacles. The basic assumptions are:  



• Each vehicle is represented by a point which is moving only forward.  

• Each vehicle is requested to move from an initial point iS  to a goal point iG  inside 
the desired formation, which should not split, while the length of the path should 
be minimum.  

• The path of each vehicle should be smooth.  

• The formation is modeled as a deformable polygon. The user defines both the min-
imum and maximum allowed formations of the polygon. The maximum formation 
is the desired one. 

2.2 The geometry and the representation of the formation 

We assume that a team of autonomous vehicles is enclosed in a deformable convex 
polygon, while no splits are allowed. The vertices of the convex polygon are the “ex-
ternal” vehicles.  Fig.1 shows a visual representation of a team of 15 point-vehicles.  

The convex polygon is used in order to take the advantage of the fact that the centroid 
R always lies inside the polygon. Furthermore, by using convex polygon, we avoid to 
increase the problem’s complexity which is happen when we use non-convex poly-
gons. 
 

 
Fig. 1.  A team of 15 vehicles (black circles). The corresponding: Delaunay triangles (dash 
lines) and the convex hull (black bold line). 

The Delaunay triangulation [12] is used to facilitate the geometric relations between 
the vehicles within a geometry, where constraints could be defined easily. Generally, 
Delaunay triangulation is characterized by its simplicity and its “economy” in data 
storage. Furthermore, the Delaunay triangulation is independent of the order in which 
the points are processed. For a team of n vehicles we have, 2 2n m- -  triangles and 
3 3n m- - edges, where m is the number of vehicles on the convex hull. The length of 
each edge , 3,...,3 3jd j n m= - -  is associated with the constraint min max

j j jd d d£ £ , where 
min
jd is the minimum safe distance and max

jd is the maximum, which is the desired dis-
tance between a pair of vehicles.  

  



3 First stage: the sub-optimal path for the minimum size 
formation 

In this stage, the minimum size formation is considered as a fixed shape and the 
shortest path is searched on the Bump-Surface. For the construction of the Bump-
Surface representing a given 2D environment, a normalized workspace W is con-
structed by linearly mapping the initial environment to 2[0,1] . The construction of the 
corresponding Bump-Surface S is obtained by a straightforward extension of the Z-
value algorithm [9].  

It is assumed that, the team has a reference point which lies at the centroid of the pol-
ygon representing the minimum size formation. The reference point traces a path ( )sR
in the normalized W which starts from the given start point and terminates at the de-
sired goal point. In order to define ( )sR we use a B-Spline curve [13] to represent the 
path of the fixed minimum size formation: 
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where, Q  is the number of control points hp , ( )2

hN s  are the B-Spline basis functions 

and 2 is the curve degree. The goal of the proposed global path planning strategy is 
the determination of the position of ( )2Q -  control points hp  which define the re-
quested path ( )sR . 

3.1 Safe optimum motion of the minimum formation 

A safe path ( )sR  is one that (i) does not collide with the obstacles and (ii) it is smooth. 
Following the results from [10], the arc length of ( )sR  approximates the length L  of 
its image ( ( ))sS R  on the Bump-Surface S as long as ( )sR  lies onto the flat areas of S . 
Furthermore, in order to take into account the shape of the formation, a set of feature 
points iA  is selected on its boundary according to its shape and the requested accura-
cy [10].  

Taking the above analysis into consideration, the path planning problem is formulated 
as an optimization problem which is described by, 
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where pN denotes the number of points taken on ( )sR  to discretize it, hj  is the h-th 

angle between the control-polygon segments h and h+1 ( )sR  and iH is the “flatness” 



of ( )i sA on S. The ( )sR follows the shape of the defining control polygon which is 

derived by connecting the control points hp  [13].  

Then, a Genetic Algorithm is adopted in order to search for a solution to the formulat-
ed optimization problem (Eq.(2)).  A floating point representation scheme is selected 
since the coordinates of the control points and the angles of the control polygon are 
real numbers. A fitness assignment strategy based on Pareto-optimal solutions called 
GPSIFF [14] is implemented. The following three genetic operators were selected. 
Reproduction: the proportional selection strategy is adopted, where chromosomes are 
selected to reproduce their structures in the next generation with a rate proportional to 
their fitness. Crossover: the one-point crossover was adopted. Mutation: a boundary 
mutation is used. 

4 Stage 2: Determining the smooth path of each vehicle in the 
deformable formation. 

With the reference path ( )sR derived by the first stage, the path of every vehicle is 
determined considering the location of the vehicles in the desired formation. Since the 
formation has to pass through areas, where the minimum size formation is able to 
move with safety, then in the second phase a deformable formation is considered.  

A deformation cost function is formulated with an optimum cost at the desired for-
mation. In this stage each vehicle has its own “independent” smooth path but along its 
path it has to respect the desired formation. In order to ensure that the vehicles n m-  
do not cross the border of the convex hull, the following condition is taken into ac-
count. At every point ( ), 1,...,a ps a N=R of the path ( )sR the location of the vehicle 

, 1,...,i i n m= -R is computed by the convex combination of the m vehicles which de-
fine the convex hull. Therefore,  
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The goal of the proposed path planning strategy is the determination of the 2Q - con-
trol points  i

hq , which define the requested path ( )i sR for the i-th vehicle given by the 
same equation as Eq.(1).  

In order to take into account that the formation of the vehicles should adapt to the 
geometric characteristics of the environment while simultaneously trying to keep the 
desired shape, the following deformation function is proposed: 

max min max-  , [ , ]
, 3,...,3 3 ,

a verybig value (defined by the user), otherwise
jk j j j j j

j j
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Eq. (5) gives a penalizing function, which takes the optimum value when max
j jd d=  

and the worst when min max[ , ]j j jd d dÏ . The minimum size polygonal shape of the for-
mation is obtained when min

j jd d=  .  

According to the above requirements the derived objective function is a vector which 
is represented by, 
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where iL  is the path’s length for the i-th vehicle which is computed in a similar way 
as in Stage 1. In the optimization problem defined by Eq. (6), the optimization varia-
bles are the control points which define the path ( )i sR  of each vehicle and the weight 
factors i

fw .  

A Micro-GA is used to search for a sub-optimum path of each vehicle. The main 
characteristics of the developed Micro-GA are the following: A floating point repre-
sentation scheme is selected for the chromosome syntax. Each chromosome repre-
sents a possible ( )i sR as a sequence of the unknown control points  i

hq . A fitness as-
signment strategy based on Pareto-optimal solutions is implemented.   

It should be noticed that the quality of the individual solution generated in the initial 
phase plays a critical role in determining the quality of the final optimal solution. 
Thus, the solution which is derived from Stage 1 (the control points which define the 
path ( )sR ), is used as an initial solution in the Micro-GA (seeding) for each vehicle’s 
path ( )i sR . This helps the Micro-GA to converge in short time to the sub-optimal path 
for each vehicle. The same genetic operators as in Stage 1 are used except the muta-
tion operator which is ignored. In most cases, a maximum number of iterations (gen-
erations) is defined in advance for the termination. However, it is difficult to deter-
mine beforehand the number of generations needed to find near-optimum solutions. 
Thus, an assessment of the quality level of the Genetic Algorithm is made on-line. 
The proposed algorithm terminates either when the maximum number of generations 
is achieved or when the same best chromosome appears for a maximum number of 
generations. 

5 Simulations 

The performance of the proposed method is investigated through a number of simula-
tion experiments for a variety of formations moving in 2D environments. All simula-
tions are implemented in Matlab. In all test cases, the grid size is set to 100gN = . For 
the first stage, the control parameters of the GA are the following: population 
size=250, maximum number of generations=500, crossover rate =0.75, boundary 
mutation rate=0.004. For the Micro-GA we set: population size=50, maximum num-
ber of generations=30, crossover rate =0.75.  It is worth noting that the selection of 



the appropriate control settings is the result of extensive experimental efforts with 
various control schemes adopted following the indications of the literature.  

Test Case: We assume the environment of fig.2. Here, a team of 15 vehicles is re-
quested to move in formation from the initial points iS   to goal points iG , 1,...,15i =  . 
The convex hull is defined by six vehicles. A visual representation of both the initial 
and final formations, the computed path ( )sR and the corresponding Delaunay trian-
gles are shown in Fig.2. Each vehicle’s path is defined by 8 control points. The com-
puted solution takes about 10.24 minutes. Furthermore, Fig. 2 shows the formation of 
the convex hull while the team of vehicles is passing through narrow passages, where 
the formation is not just shrinked but it changed its shape autonomously to adapt to 
the environment. 

 
Fig. 2. The resulting solution path ( )sR ,the initial and final convex hull with the corresponding 
Delaunay triangles and the trace of the convex hull in two different time instances. 

Despite the fact that the problem under consideration is off-line, computational time 
results with respect to the number of the vehicles is of immense interest. The variation 
of CPU’s time is indicative of the problem complexity. In these experiments, the envi-
ronment is the one shown in Fig.2 and the number of control points is constant, while 
the number of vehicles is changed from 3 to 15. Fig. 3 shows that CPU time increases 
almost linearly with the increase in the number of vehicles. 

 
Fig. 3. A CPU time study 

No of vehicles 

  

  



6 Conclusion 

A new approach for the path planning of a deformable formation of autonomous vehi-
cles is proposed. The Delaunay triangulation is proved to be very convenient for the 
modeling of a deformable formation since the extreme formations (minimum and 
maximum allowed formations) are defined by the user and thus we can easily deter-
mine the limits of the distances between the vehicles. Furthermore, the smoothness of 
the path is obtained by controlling the angles between the control-polygon segments, 
which define the system’s path. 

In future work the proposed approach should be extended to semi-known 2D and 3D 
environments, and in addition to the motion planning the guidance and control of the 
vehicles should be considered.   
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